PRODUCT MANUAL

RabbitCore RCM3305/RCM3315

C-Programmable Core Module
with Serial Flash Mass Storage and Ethernet

User’s Manual
019-0151 + 080528-E

RabbitCore RCM3305/RCM3315 User’s Manual

Part Number 019-0151 « 080528-E « Printed in U.S.A.
©2005-2008 Digi International Inc. < All rights reserved.

No part of the contents of this manual may be reproduced or transmitted in any form or by any means
without the express written permission of Digi International.

Permission is granted to make one or more copies as long as the copyright page contained therein is
included. These copies of the manuals may not be let or sold for any reason without the express written
permission of Digi International.

Digi International reserves the right to make changes and
improvements to its products without providing notice.

Trademarks
Rabbit, RabbitCore, and Dynamic C are registered trademarks of Digi International Inc.

Rabbit 3000 is a trademark of Digi International Inc.

The latest revision of this manual is available on the Rabbit Web site, www.rabbit.com,
for free, unregistered download.

Rabbit Semiconductor Inc.

www.rabbit.com

RabbitCore RCM3305/RCM3315

http://www.rabbit.com/
http://www.rabbit.com/
http://www.rabbit.com/

TABLE OF CONTENTS

Chapter 1. Introduction 1
1.1 RCMB3305/RCMB3BLE FEALUMESverirverirtesiereiereiesestesitesessessasessssesesassesessasessessssessssessssessasensasessasessans 2
1.2 Comparing the RCM3309/RCM3319 and RCM3305/RCMB3315cccoiivriniaiiiiiseiseiseiee e 4
1.3 Advantages of the RCM3305 and RCIM3B3L5........c.uiiiiiiiiieie e 5
1.4 Development and EVAIUALION TOOIS.ciiiiiiiie e e 6

1.4.1 RCM3305 Series Development Kito e 6
L4.2 SOFEWAIE ...eeieicetii ettt ettt ettt ettt e e ettt e e ettt e e s ab e e e s bt e s s abb e e s sabaessbesesabessesbeaessbbasessbasseabensssrbanaas 7
1.4.3 Connectivity INTErfaCe KItScciviiiiicieririere st sr e see e 7
1.4.4 ONIINE DOCUMENTALIONouiiiiiiietieie ettt sttt b et b ettt b s e et e s et e besbesbenbenaen 7

Chapter 2. Getting Started 9
P2 a3 v L)Y T T o SO 9
2.2 HArdware CONNECIIONS........viuiriieirietirieii sttt b et bbbt ettt sttt 10

2.2.1 Step 1 — Attach Module to Prototyping BOArd...........cccceeeverieriiieencesiese e se e 10
2.2.2 Step 2 — Connect Programming Cable ..o e 11
2.2.2.1 RCM3309 aNd RCMB3BLI ..ottt ettt sr et et resnene s 11
2.2.2.2 RCM3305 aNd RCMB3BL5cooiviieieiieieiee ettt et et snene s 12

2.2.3 StEP 3 —— CONNECE POWETeeeieiieie sttt sttt se st e e e se e e steetesneeneeanaeneeaneesaenneenannnenns 13
2.2.3.1 Alternate Power-Supply CONNECLIONScoiueiiiiieiieiiie ettt 13

2.3 Starting DYNAIMIC €cuoiiiiiiiiiiieiiisense etttk ettt et bbbt bt e 14
2.4 RUN @ SAMPIE PTOGIAIM ...vevviieeiceeeiee ettt st ere e ese e tessestesbeseesae e seeneeenneaneaneerenrenns 14
P2 I (01 0] o] [=T] o o) 1o S 14
2.5 Where DO | GO FIrOM HEIE? ...ttt bbbttt bbb e 15
2.5.1 TECNNICAI SUPPOIT ...ttt b bbb sb ettt be b b 15

Chapter 3. Running Sample Programs 17
R T8 A 11 oo (14 AT o OO UTPTTRSTRRN 17
3.2 SAMPIE PROGIAMS ...ttt bttt e bt e e b et b e st b e ke e b e s bt eb e beseesbene et et e beebesbeabenaeas 18

3.2.1 USE OF Serial FIASH ... ettt 19
3.2.1.1 Onboard Serial FIash.........ccoiiiiiiiii e e 19
3.2.1.2 SF1000 Serial FIash Card.........c.ccoiiiiiiiiiiiieie e 19

3.2.2 Serial COMMUNICALION.ciuiitiiieieiieieie ettt ettt ettt sb e e et st e e ebesbesbe b 19

3.2.3 REAI-TIME CIOCK ...cviviitiiiiti ittt b bbb bbbt enen 21

3.2.4 RADDITNEL ...ttt ettt bttt enen 21

3.2.5 Other SAMPIE PrOGIaMScviiiiiiiiiiett ittt ettt st b b e et e e eaesbe b nne 21

Chapter 4. Hardware Reference 23

4.1 RCM3305/RCM3315 Digital INputs and OULPULSccueruiririiriiiiirie e 24
4.1.1 MEMOPY 1O INEEITACE ...ttt bbb ettt ebe bt nne 29
4.1.2 Other INPULS ANA OULPULS ...c.vviriitiiriiieieie ettt bbbt enes 29
413 LEDS .ottt b bR bR bRt bbb bbb b et enen 29

4.2 Serial COMMUNICATIONc.oitiiiiiiiii ettt et b et b e b et e ebesbesbesbe e e beneeneneanea 30
N 1= g T I o] o TP SO VRURPRPRTRTN 30
4.2.2 ETNEINEE PO ..ottt bbbttt b bbbt enen 31
4.2.3 Programming POciiiiiiiii ettt sttt ettt nn bt nnenes 32

User’s Manual

O I o oo = a g 0 T[T O o] 33

4.3.1 Changing Between Program Mode and RUN MOGE..........ccccererierierenieniericse e 33
4.3.2 Standalone Operation of the RCM3305/RCMB3315cccvvierierieiiiriine e eee e seseesnesee s 34
A4 OFNEE HAIIWENEoeieiie ettt ettt bt bt b e eb e eb b s b e e et e s e et e bt ebesbeebesbennas 35
A.4.1 ClIOCK DOUDIEK ... bbbt bbbttt bbb s 35
T 0T 10 TS o] (T Vo[- 35
T V] 4T S 36
A.5.1 SRAM ..ottt bbb bR bbb n et 36
4.5.2 FIash EPROM.......cciiiiiiiiiee ettt sttt st b et sb ettt ettt ettt sttt st 36
4.5.3 SEHAI FIASN ...ttt et b et b e sb e ab b e e beens 36
4.5.4 Dynamic C BIOS SOUICE FlES.....cuiiieieiiecicesie sttt 36
Chapter 5. Software Reference 37
5.1 More ADOUL DYNAMIC C...oveviierieiiee ettt st et st a et st eaena e e seesanseanesnenrenrennens 37
5.1.1 Developing Programs Remotely with DyNnamic Cccccvviirerinieenisieise e 39
5.2 DYNAMIC C FUNCLIONS......eiviiiieiieiit et se s ste e s se s et s e stesrastestestesbe st e ten e saensesaeneanesnesrenrensens 40
ST R T | v | 1 S 40
5.2.2 SRAIM USE.....eiuiiiitiiiitiiteti ittt sttt ettt etttk b et n et neeren e 40
5.2.3 Serial CoMMUNICALION DIIVEIScviuiiiiiiiieiiries ettt 41
5.2.4 TCP/IP DIIVEIS ...ttt bbbttt b bbbttt bttt 41
5.2.5 Serial FIaSh DIIVEIS ..ottt ettt sbe st e bbb bt 41
5.2.6 Prototyping Board FUNCLIONS........ccccviiiiiirie ittt sn e ene e snenrennes 42
5.2.6.1 Board INItIAHZALIONo.viviiciiieeci et 42
oI T A B T 1 v RSP 43
5.2.6.3 Switches, LEDS, and REIAYcccoveiviiiiiiie e 44
5.2.6.4 Serial COMMUNICALIONovviviiiiiiiciiieiiise bbb 45
5.2.6.5 RADDIINEL POITcviiieiictiieic ettt e 46

5.3 UpPGrading DYNAMIC Cccviveieieiieeesesestese e see e sae e e e esaetessestestesteseessesseseessessesessessessessessessessessens 48
5.3L L EXEAS .ttt bbb R R R e R Rttt r b r e nr s 48
Chapter 6. Using the TCP/IP Features 49
6.1 TCP/IP CONNECLIONSeviteiiiteiirieiete ettt ettt st b bbbt b e b ettt et e bt e s bt e sbebesbe e 49
6.2 TCP/IP Primer 0N [P AGUIESSEScviivetirieirieirieirie ettt ettt sttt bbb e sbe e sae e ebe e 51
6.2.1 IP AdAresses EXPIAINEAcouvviiiiiiiieiisiie et eee sttt eera e neenesresnenrenees 53
6.2.2 HOW IP AdAreSSES are USEUcouiiuiiieiieieeiieiie ettt sttt st sn b sne e 54
6.2.3 Dynamically Assigned INternet AQArESSES.co.irviiurirririeire et 55
6.3 Placing Your Device 0N the NEIWOIKccccveiieiciiece s et s seee e 56
6.4 Running TCP/IP Sample Programs...........cccccvieiiiiimniii s 57
6.4.1 How to Set IP Addresses in the Sample Programs............cccccovmnniiiniiiie s 58
6.4.2 How to Set Up your Computer for DireCt CONNECE...........coviiirire e 59
6.5 Run the PINGME.C SamMPIE PrOGram.......cccoiiiiiiiiiiie ettt s siesnen 60
6.6 Running Additional Sample Programs With Direct CONNECLccorviieieiiieninee e 60
6.6.1 RabbitWeb Sample Programs....... ..o sttt sae e sne s 61
6.6.2 Remote APPlICation UPAAteccvcveiiiiiiie it ere e 61
6.6.3 Dynamic C FAT File System, RabbitWeb, and SSL ModUIesccoceriiireiinniiineeeee, 61
6.7 Where DO | GO FIOM HEIE? ...ttt et sbe bbb 63
Appendix A. RCM3305/RCM3315 Specifications 65
A.1 Electrical and Mechanical CharaCteriStiCscouvirririeinieiresese e 66
ALLL HEAUETS ...ttt bbb bbbttt b e bttt ee bt b et bbb ebe b 70
A2 BUS LOAAING ...ttt b b bbb b ettt ekt bt e bbb bbb 71
A.3 Rabbit 3000 DC CharaCteriStICSccuuitereriertirierieriesieiee sttt sttt se e se e b e e bt e st b sbe e s 74
A.4 1/0 Buffer Sourcing and SIiNKING LIMit........cooiiiiiiice s 75
A5 JUMPET CONTIGUIBTIONS ...ttt e ettt ettt b et bbb e 76
AB CONTOIMAI COBLING ... vttt ettt b e b e et s et e et eb et e nbe s be bt 78

RabbitCore RCM3305/RCM3315

Appendix B. Prototyping Board 79

2 200 1011 (o [0 To4 T o TSSOSO POO 80
B.1.1 Prototyping BOArd FEALUIES.........coviveiiirieresesestestesie st eereeessesreste e te st e sse e e seenesre e nns 81

B.2 Mechanical DImeNnsions and LAYOUL..........ccccviiririerierieiesesieneeeeseeeee e see et aessensesessesnessesees 83
TG 01T T U] o]] YRR 85
B.4 Using the Prototyping BOAIU.........ccccoueiiieiieiiiisiesesesesie s ese e e se e e e e sae e stesne et saessensesessessessenees 86
B.4.1 Adding Other COMPONENTS.cceierierierieseieseeee st eesesre s e sresre e seesreseeseeseeseseesaeseesensessessesressenns 87
B.4.2 DiIgital I/O. ..ot bbbttt 88
L T T 1o 3 - I 4] 01U 88

B.4.3 CIMOS Digital OULPULSeveviieie ettt sttt sae e e enre s e sneere e ens 89
B.4.4 SIiNKIiNG Digital QUIPULS.......civeiieieieeice sttt ne e re e sneerennene 89
B.4.5 REIAY OULPULS ...ttt ettt b ettt b e b e b b e e b e b es e e e bt e se et e et ebeebe b ee 89
B.4.6 Serial COMMUNICALIONcciiiiiteite e ccee sttt sttt et ebeear e st et e s be e besbeesaesbeesbesraesbesbeenbereenne 90
BL4.B.1 RS-232... ittt bbbt b et bttt 91

BL4.8.2 RS-485....c ittt bttt 92

B.4.7 RADDIINEL POIES ...viiiiiviieie ettt ettt beeae e sb e s be bt e et esbeebeesbeeabesbeenbebeenne 93
B.4.8 Other Prototyping Board MOTUIEScoco it e 94
S I O TUT: Vo | = V(U] (=T LTt [T RS 94
B.4.10 Stepper-Motor CONLIOIcvooueieieie et ettt re e sn e s e e eneens 94

B.5 Prototyping Board Jumper CONFIQUIALIONScc.oouiiiiiiiirese s 96
B.6 Use of Rabbit 3000 Parallel POITSouiiiiiiiie e 98
Appendix C. LCD/Keypad Module 101
O ST 1= Yol o7 1] TS 101
C.2 Contrast Adjustments for All LCD/Keypad MOUIES..........cc.civeieieeeeeisnsene e 103
(ORI)Y/ o= Uo = 11 1T PSS 104
C.4 HEABT PINOULS ...ttt ettt sttt et sttt sbe e e s be et e sbe e st e sbeesbesbe et e sbsentesaeeneeabeesbesbeesrens 105
C.4.1 1/O AQAress ASSIGNMENESeiueivirieieieieeesiestestesteseseesseseeesseasessesseseessessessessesensesssssessessessesses 105

C.5 Mounting LCD/Keypad Module on the Prototyping Boardcccceevvverinnenensiencnee e 106
C.6 Bezel-Mount INSTAITALION.........ciiiiiiii et 107
C.6.1 Connect the LCD/Keypad Module to Your Prototyping Board............cccceveererereenieienesnannns 109

C.7 SAMPIE PIOGIAIMS ...ttt ettt e e se e b e e eb e e b e ekt bt eb e s b e e b e sbe b e sbe b enbeb e e e aneeneneas 110
C.8 LCD/Keypad Module FUNCEION CallScccoiiiiiiiiiiiie e 111
C.8.1 LCD/Keypad Module INItialization............ccocooiiiieiiiie e e 111
.82 LEDS..... .ottt sttt sttt sttt e bbbttt bbb R bbb bbb bbb 111
C.8.3 LD DIiSPIAY....cvtreeieieetiieeiesieie sttt sttt sttt ettt sttt s b bbb bbb b et 112
C.8.4 KBYPAU. ...ttt ettt bbbt e et e b et b e b e b bt eh e E et bbbt et b e ntenenns 132
Appendix D. Power Supply 135
D.1 POWEE SUPPIIES. ...ttt ettt ettt b e b b e b eae e e b e sttt e b e sbesb et e sae s enbenea 135
D.1.1 Batery BaACKUDeoveueeieeeeieieeiete ettt ettt ettt b e b bt e e bbbttt e et sneenenns 135
D.1.2 Battery-Backup CIFCUILceooiiieiieie sttt st 136
D.1.3 RESEE GENEBIALONviueeieieeiieieeiiete ettt sttt ettt eb bbbt b e sb e r b b e s et s b et sneerenrs 137
Appendix E. RabbitNet 139
E.1 General RabhitNEet DESCIIPLION ...c.civiiviieieieeesie sttt era e e ene s sreanenne s 139
E.1.1 RabDItNEL CONNECLIONSc.viviiiiiiriitetiiieieiis ettt bbb bbb 139
E.1.2 RabbitNet PEripheral Cards ..ot 140

E.2 Physical IMPIEMENTALIONo.eiuiiiiiiiiee e et et ne b 141
E.2.1 Control and ROULINGcoueiiiiiiiiiie ettt bbbt 141

E.3 FUNCLION CallS.....oiiiiiiiiiiiieiciceie sttt bbbt bbb e na et sb ettt ne et e 142
R TS . LD L3 = 1 USSR 148
Index 149
Schematics 153

User’s Manual

RabbitCore RCM3305/RCM3315

1. INTRODUCTION

The RCM3305 and RCM3315 RabbitCore modules feature a
compact module that incorporates the latest revision of the power-

ful Rabbit® 3000 microprocessor, flash memory, mass storage
(serial flash), static RAM, and digital 1/0 ports. The RCM3305
and RCM3315 feature an integrated 10/100Base-T Ethernet port,
and provide for LAN and Internet-enabled systems to be built as
easily as serial-communication systems.

In addition to the features already mentioned above, the RCM3305 and RCM3315 have
two clocks (main oscillator and real-time clock), reset circuitry, and the circuitry necessary
for management of battery backup of the Rabbit 3000’s internal real-time clock and the
static RAM. Two 34-pin headers bring out the Rabbit 3000 I/O bus lines, parallel ports,
and serial ports.

The RCM3305’s and the RCM3315’s mass-storage capabilities make them suited to running
the optional Dynamic C FAT file system module and the featured remote application
update where data are stored and handled using the same directory file structure com-
monly used on PCs.

The RCM3305 or RCM3315 receives +3.3 V power from the customer-supplied mother-
board on which it is mounted. The RCM3305 and RCM3315 can interface with all kinds
of CMOS-compatible digital devices through the motherboard.

The Development Kit has what you need to design your own microprocessor-based
system: a complete Dynamic C software development system and a Prototyping Board
that allows you to evaluate the RCM3305 or RCM3315, and to prototype circuits that
interface to the RCM3305 or RCM3315 module.

User’s Manual 1

1.1 RCM3305/RCM3315 Features

Small size: 1.85" x 2.73" x 0.86"
(47 mm x 69 mm x 22 mm)

Microprocessor: Rabbit 3000 running at 44.2 MHz

49 parallel 5 V tolerant 1/0 lines: 43 configurable for 1/0, 3 fixed inputs, 3 fixed outputs
Three additional digital inputs, two additional digital outputs

External reset

Alternate 1/0 bus can be configured for 8 data lines and 6 address lines (shared with
parallel 1/0 lines), plus 1/O read/write

Ten 8-bit timers (six cascadable) and one 10-bit timer with two match registers
512K flash memory, 512K program execution SRAM, 512K data SRAM

Serial-flash mass-storage memory options, which are required to run the optional
Dynamic C FAT file system module and the featured remote application update.

Real-time clock

Watchdog supervisor

Provision for customer-supplied backup battery via connections on header J4
10-bit free-running PWM counter and four pulse-width registers

Two-channel Input Capture (shared with parallel 1/O ports) can be used to time input
signals from various port pins

Two-channel Quadrature Decoder accepts inputs from external incremental encoder
modules

Five or six 3.3 V CMOS-compatible serial ports with a maximum asynchronous baud
rate of 5.525 Mbps. Three ports are configurable as a clocked serial port (SPI), and two
ports are configurable as SDLC/HDLC serial ports (shared with parallel 1/0 ports).

Supports 1.15 Mbps IrDA transceiver

The RCM3900/RCM3910 and RCM3365/RCM3375 RabbitCore modules are similar to
the RCM3305/RCM3315 and RCM3309/RCM3319, but they use fixed NAND or remov-
able media for their mass-storage memories instead of the fixed serial flash options of the
RCM3305/RCM3315 and the RCM3309/RCM3319.

RabbitCore RCM3305/RCM3315

Table 1 below summarizes the main features of the RCM3305 and the RCM3315 modules.

Table 1. RCM3305/RCM3315 Features

Feature RCM3305 RCM3315
Microprocessor Rabbit 3000 running at 44.2 MHz
SRAM 512K program (fast SRAM) + 512K data
Flash Memory 519K
(program)

(Frlna;:S l;/la(i?ory 8 Mbytes 4 Mbytes
(serial flash) (serial flash)
storage)
5 shared high-speed, 3.3 V CMOS-compatible ports:
all 5 are configurable as asynchronous serial ports;
. 3 are configurable as a clocked serial port (SPI) and 1 is
Serial Ports

configurable as an HDLC serial port;
option for second HDLC serial port at the expense of 2
clocked serial ports (SPI)

The RCM3305 and RCM3315 are programmed over a standard PC serial port through a
programming cable supplied with the Development Kit, and can also be programed through
a USB port with an RS-232/USB converter, or directly over an Ethernet link using the fea-
tured remote application update or the Dynamic C download manager with or without a
RabbitLink.

Appendix A provides detailed specifications for the RCM3305 and the RCM3315.

User’s Manual 3

1.2 Comparing the RCM3309/RCM3319 and RCM3305/RCM3315

We can no longer obtain certain components for the RCM3305/RCM3315 RabbitCore
modules that support the originally specified -40°C to +70°C temperature range. Instead of
changing the design of the RCM3305/RCM3315 RabbitCore modules to handle available
components specified for the original temperature range, we decided to develop a new
product line — the RCM3309/RCM3319 — based on the RCM3900 RabbitCore modules
that were released for the same reason.

The RCM3309/RCM3319 modules are similar in form, dimensions, and function to the
RCM3305/RCM3315 modules. We strongly recommend that existing RCM3305/3315
customers and designers of new systems consider using the new RCM3309/RCM3319
RabbitCore modules.

This section compares the two lines of RabbitCore modules.

e Temperature Specifications — RCM3305/RCM3315 RabbitCore modules manufac-
tured after May, 2008, are specified to operate at 0°C to +70°C. The RCM3309/
RCM3319, rated for -40°C to +85°C, are offered to customers requiring a larger
temperature range after May, 2008.

e Maximum Current — The RCM3305/RCM3315 draws 250 mA vs. the 325 mA
required by the RCM3309/RCM3319.

e LEDs — The SPEED and user (USR/BSY)LED locations have been swapped between
the RCM3305/RCM3315 and the RCM3309/RCM3319, the LNK/ACT LEDs have
been combined to one LED on the RCM3309/RCM3319, and the RCM3309/RCM3319
has an FDX/COL LED instead of the SF LED on the RCM3305/RCM3315. The SF
LED on the RCM3305/RCM3315 blinks when data are being written to or read from
the serial flash. The FDX/COL LED on the RCM3309/RCM3319 indicates whether the
Ethernet connection is in full-duplex mode (steady on) or that a half-duplex connection
is experiencing collisions (blinks).

NOTE: The change in LED indicators means that there is no indication on the
RCM3309/RCM3319 when data are being written to or read from the serial flash.

e Ethernet chip. A different Ethernet controller chip is used on the RCM3309/RCM3319.
The Ethernet chip is able to detect automatically whether a crossover cable or a straight-
through cable is being used in a particular setup, and will configure the signals on the
Ethernet jack interface.

e Dynamic C — As long as no low-level FAT file system calls were used in your applica-
tion developed for the RCM3305/RCM3315, you may run that application on the
RCM3309/RCM3319 after you recompile it using Dynamic C v. 9.60.

4 RabbitCore RCM3305/RCM3315

1.3 Advantages of the RCM3305 and RCM3315

Fast time to market using a fully engineered, “ready-to-run/ready-to-program’ micro-
processor core.

Competitive pricing when compared with the alternative of purchasing and assembling
individual components.

Easy C-language program development and debugging

Program download utility (Rabbit Field Utility) and cloning board options for rapid
production loading of programs.

Generous memory size allows large programs with tens of thousands of lines of code,
and substantial data storage.

Integrated Ethernet port for network connectivity, with royalty-free TCP/IP software.

Ideal for network-enabling security and access systems, home automation, HVAC
systems, and industrial controls

User’s Manual

1.4 Development and Evaluation Tools
1.4.1 RCM3305 Series Development Kit

The RCM3305 Series Development Kit contains the hardware you need to use your
RCM3305 or RCM3315 module.

RCM3309 module.
Prototyping Board.

Universal AC adapter, 12 V DC, 1 A (includes Canada/Japan/U.S., Australia/N.Z., U.K.,
and European style plugs).

USB programming cable with 10-pin header.

Dynamic C CD-ROM, with complete product documentation on disk.
Getting Started instructions.

Accessory parts for use on the Prototyping Board.

Screwdriver and Cat. 5 Ethernet cables.

Rabbit 3000 Processor Easy Reference poster.

Registration card.

o8

Universal
AC Adapter
with Plugs

Programming

DIAG Cable
Screwdriver

P g
RO , ﬁ

Y Ethernet

l Cables

m Accessory Parts for

Prototyping Board 0

RabbitCore® RCM3305 Series

Getting Started
Instructions

Prototyping Board

Figure 1. RCM3305 Series Development Kit

RabbitCore RCM3305/RCM3315

1.4.2 Software

The RCM3305 and the RCM3315 are programmed using version 9.25 or later of Rabbit’s
Dynamic C. A compatible version is included on the Development Kit CD-ROM.
Dynamic C v. 9.60, which is required for the related RCM3309 and RCM3319 RabbitCore
modules, includes the popular pC/OS-II real-time operating system, point-to-point proto-
col (PPP), FAT file system, RabbitWeb, and other select libraries that were previously sold
as indidual Dynamic C modules.

Rabbit also offers for purchase the Rabbit Embedded Security Pack featuring the Secure
Sockets Layer (SSL) and a specific Advanced Encryption Standard (AES) library. In addi-
tion to the Web-based technical support included at no extra charge, a one-year telephone-
based technical support subscription is also available for purchase. Visit our Web site at
www.rabbit.com for further information and complete documentation, or contact your
Rabbit sales representative or authorized distributor.

1.4.3 Connectivity Interface Kits
Rabbit has available a Connector Adapter Board.

e Connector Adapter Board (Part No. 151-0114)—allows you to plug the RCM3305/
RCM3315 whose headers have a 2 mm pitch into header sockets with a 0.1" pitch.

Visit our Web site at www.rabbit.com or contact your Rabbit sales representative or autho-
rized distributor for further information.

1.4.4 Online Documentation

The online documentation is installed along with Dynamic C, and an icon for the docu-
mentation menu is placed on the workstation’s desktop. Double-click this icon to reach the
menu. If the icon is missing, use your browser to find and load default.htm in the docs
folder, found in the Dynamic C installation folder.

The latest versions of all documents are always available for free, unregistered download
from our Web sites as well.

User’s Manual 7

http://www.rabbit.com/products/Peripherals/
http://www.rabbit.com/products/dc/

RabbitCore RCM3305/RCM3315

2. GETTING STARTED

This chapter describes how to set up and use an RCM3305 series
module and the Prototyping Board included in the Development Kit.

NOTE: Itisassumed that you have a Development Kit. If you purchased an RCM3305
series module by itself, you will have to adapt the information in this chapter and else-
where to your test and development setup.

2.1 Install Dynamic C

To develop and debug programs for an RCM3305 series module (and for all other Rabbit
hardware), you must install and use Dynamic C.

If you have not yet installed Dynamic C version 9.25 (or a later version), do so now by
inserting the Dynamic C CD from the Development Kit in your PC’s CD-ROM drive. If
autorun is enabled, the CD installation will begin automatically.

If autorun is disabled or the installation otherwise does not start, use the Windows
Start | Run menu or Windows Disk Explorer to launch setup . exe from the root folder
of the CD-ROM.

The installation program will guide you through the installation process. Most steps of the
process are self-explanatory.

Dynamic C uses a COM (serial) port to communicate with the target development system.
The installation allows you to choose the COM port that will be used. The default selec-
tion is COM1. You may select any available port for Dynamic C’s use. If you are not cer-
tain which port is available, select COML1. This selection can be changed later within
Dynamic C.

NOTE: The installation utility does not check the selected COM port in any way. Speci-
fying a port in use by another device (mouse, modem, etc.) may lead to a message such
as "could not open serial port" when Dynamic C is started.

Once your installation is complete, you will have up to three icons on your PC desktop.
One icon is for Dynamic C, one opens the documentation menu, and the third is for the
Rabbit Field Utility, a tool used to download precompiled software to a target system.

If you have purchased the optional Dynamic C Rabbit Embedded Security Pack, install it
after installing Dynamic C. You must install the Rabbit Embedded Security Pack in the
same directory where Dynamic C was installed.

User’s Manual 9

2.2 Hardware Connections

There are three steps to connecting the Prototyping Board for use with Dynamic C and the
sample programs:
1. Attach the RCM3305 series RabbitCore module to the Prototyping Board.

2. Connect the programming cable between the RCM3305 series RabbitCore module and
the workstation PC.

3. Connect the power supply to the Prototyping Board.
2.2.1 Step 1 — Attach Module to Prototyping Board

Turn the RCM3305 series module so that the Ethernet jack is facing the direction shown in
Figure 2 below. Align the pins from the headers on the bottom side of the module into
header sockets JA and JB on the Prototyping Board.

O 8558 (7] O
RCM3305 series D OEmOEa R W e
Rabbitcore module 55,5 00000000: 00000000: B EBEE Eifa

(RCM3305/RCM3315 look
slightly different)

LLLLLL

Do not press down
here.

CORE LED/

Figure 2. Install the RCM3305/ Series Module on the Prototyping Board

NOTE: Itisimportant that you line up the pins from the headers on the bottom side of the
RCM3305 series module exactly with the corresponding pins of header sockets JA and
JB on the Prototyping Board. The header pins may become bent or damaged if the pin
alignment is offset, and the module will not work. Permanent electrical damage to the
module may also result if a misaligned module is powered up.

Press the module’s pins firmly into the Prototyping Board header sockets—press down in
the area above the header pins using your thumbs or fingers over the connectors as shown
in Figure 2. Do not press down on the middle of the RCM3305 series module to avoid
flexing the module, which could damage the module or the components on the module.

Should you need to remove the RCM3305 series module, grasp it with your fingers along the
sides by the connectors and gently work the module up to pull the pins away from the sockets
where they are installed. Do not remove the module by grasping it at the top and bottom.

10 RabbitCore RCM3305/RCM3315

2.2.2 Step 2 — Connect Programming Cable

The programming cable connects the RCM3305 series module to the PC running
Dynamic C to download programs and to monitor the module during debugging.

2.2.2.1 RCM3309 and RCM3319

Connect the 10-pin connector of the programming cable labeled PROG to header J1 on

the RCM3309/RCM3319 as shown in Figure 3(a). There is a small dot on the circuit board

next to pin 1 of header J1. Be sure to orient the marked (usually red) edge of the cable

towards pin 1 of the connector. (Do not use the DIAG connector, which is used for a non-

programming serial connection.)

AC adapter

* Press down on clip,
€ snap plug into place

3-pin
‘ power connector

EEXCxT)

—"

Colored edge

Programming Cable

@ Insert tab into slot
N Assemble
AC Adapter

Figure 3(a). Connect Programming Cable and Power Supply

Connect the other end of the programming cable to an available USB port on your PC or

workstation. Your PC should recognize the new USB hardware, and the LEDs in the
shrink-wrapped area of the USB programming cable will flash.

User’s Manual

11

2.2.2.2 RCM3305 and RCM3315

Connect the 10-pin connector of the programming cable labeled PROG to header J1 on
the RCM3305/RCM3315 as shown in Figure 3(b). There is a small dot on the circuit
board next to pin 1 of header J1. Be sure to orient the marked (usually red) edge of the
cable towards pin 1 of the connector. (Do not use the DIAG connector, which is used for a
nonprogramming serial connection.)

—

alternate
3-pin
power connector

PC COM port

\ Blue

shrink wrap

!

Colored edge

Programming Cable

Figure 3(b). Connect Programming Cable and Power Supply

NOTE: Be sure to use the serial programming cable (part number 101-0542)—the pro-
gramming cable has blue shrink wrap around the RS-232 converter section located in the
middle of the cable. The USB programming cable and programming cables with clear or
red shrink wrap from other Rabbit kits are not designed to work with RCM3305/
RCM3315 modules.

Connect the other end of the programming cable to a COM port on your PC.

NOTE: It may be possible to use an RS-232/USB converter with the serial programming
described in this section. An RS-232/USB converter (part number 20-151-0178) is
available through the Web store. Note that not all RS-232/USB converters work with
Dynamic C.

12 RabbitCore RCM3305/RCM3315

http://www.rabbit.com/store/

2.2.3 Step 3 — Connect Power

When all other connections have been made, you can connect power to the Prototyping
Board.

If you have the universal power supply, prepare the AC adapter for the country where it
will be used by selecting the plug. The RCM3305 Series Development Kit presently
includes Canada/Japan/U.S., Australia/N.Z., U.K., and European style plugs. Snap in the
top of the plug assembly into the slot at the top of the AC adapter as shown in Figure 3(a),
then press down on the spring-loaded clip below the plug assembly to allow the plug
assembly to click into place.

Depending on the style of adapter, connect the AC adapter to 3-pin header J2 or jack J1 on
the Prototyping Board as shown in Figure 3(a) or Figure 3(b).

Plug in the AC adapter. The red CORE LED on the Prototyping Board should light up.
The RCM3305 series RabbitCore module and the Prototyping Board are now ready to be
used.

NOTE: A RESET button is provided on the Prototyping Board to allow a hardware reset
without disconnecting power.

2.2.3.1 Alternate Power-Supply Connections

All Development Kits sold up to May, 2008, included a header connector that may be used
to connect your power supply to 3-pin header J2 on the Prototyping Board. The connector
may be attached either way as long as it is not offset to one side—the center pin of J2 is
always connected to the positive terminal, and either edge pin is negative. The power
supply should deliver 8 VVto 30 V DC at 8 W.

User’s Manual 13

2.3 Starting Dynamic C

NOTE: Dynamic C v. 9.60 or a later version is required if you are using an RCM3309 or
an RCM3319 RabbitCore module.

Once the RCM3305 series module is connected as described in the preceding pages, start
Dynamic C by double-clicking on the Dynamic C icon on your desktop or in your Start
menu. Select Code and BIOS in Flash, Run in RAM on the “Compiler” tab in the
Dynamic C Options > Project Options menu. Click OK.

If you are using a USB port to connect your computer to the RCM3305/RCM3315 module,
choose Options > Project Options and select “Use USB to Serial Converter” on the
Communications tab. Click OK.

2.4 Run a Sample Program

Use the File menu to open the sample program PoNG. ¢, which is in the Dynamic C
saMpLES folder. Press function key F9 to compile and run the program. The STDIO win-
dow will open on your PC and will display a small square bouncing around in a box.

This program shows that the CPU is working. The sample program described in
Section 6.5, “Run the PINGME.C Sample Program,” tests the TCP/IP portion of the board.

2.4.1 Troubleshooting

If Dynamic C cannot find the target system (error message "No Rabbit Processor
Detected."):

e Check that the RCM3305 series module is powered correctly — the red CORE LED on
the Prototyping Board should be lit when the module is mounted on the Prototyping Board and
the AC adapter is plugged in.

e Check both ends of the programming cable to ensure that they are firmly plugged into
the PC and the PROG connector, not the DIAG connector, is plugged in to the program-
ming port on the RCM3305 series module with the marked (colored) edge of the pro-
gramming cable towards pin 1 of the programming header.

e Ensure that the RCM3305 series module is firmly and correctly installed in its connec-
tors on the Prototyping Board.

e Dynamic C uses the COM port or USB port specified during installation. Select a dif-
ferent COM port within Dynamic C. From the Options menu, select Project Options,
then select Communications. Select another COM port from the list, then click OK.
Press <Ctrl-Y> to force Dynamic C to recompile the BIOS. If Dynamic C still reports it
is unable to locate the target system, repeat the above steps until you locate the COM
port used by the programming cable.

¢ |If you get an error message when you plugged the programming cable into a USB port,
you will have to install USB drivers. Drivers for Windows XP are available in the
Dynamic C Drivers\Rabbit USB Programming Cable\WinXP 2K folder —
double-click brpInst.exe to install the USB drivers. Drivers for other operating sys-
tems are available online at www.ftdichip.com/Drivers/\VCP.htm.

14 RabbitCore RCM3305/RCM3315

http://www.ftdichip.com/Drivers/VCP.htm

If Dynamic C appears to compile the BIOS successfully, but you then receive a communi-
cation error message when you compile and load the sample program, it is possible that
your PC cannot handle the higher program-loading baud rate. Try changing the maximum
download rate to a slower baud rate as follows.

e Locate the Serial Options dialog in the Dynamic C Options > Project Options >
Communications menu. Select a slower Max download baud rate.

If a program compiles and loads, but then loses target communication before you can
begin debugging, it is possible that your PC cannot handle the default debugging baud
rate. Try lowering the debugging baud rate as follows.

e Locate the Serial Options dialog in the Dynamic C Options > Project Options >
Communications menu. Choose a lower debug baud rate.

2.5 Where Do | Go From Here?

If the sample program ran fine, you are now ready to go on to other sample programs and to
develop your own applications. The source code for the sample programs is provided to allow
you to modify them for your own use. The RCM3305/RCM3315 User’s Manual also
provides complete hardware reference information and describes the software function calls
for the RCM3305 and the RCM3315, the Prototyping Board, and the optional LCD/keypad
module. The RCM3309/RCM3319 User’s Manual also provides complete hardware refer-
ence information and describes the software function calls for the RCM3309 and the
RCM3319, the Prototyping Board, and the optional LCD/keypad module.

For advanced development topics, refer to the Dynamic C User’s Manual and the
Dynamic C TCP/IP User’s Manual, also in the online documentation set.

2.5.1 Technical Support

NOTE: If you purchased your RCM3305 series module through a distributor or through a
Rabbit partner, contact the distributor or partner first for technical support.

If there are any problems at this point:
e Use the Dynamic C Help menu to get further assistance with Dynamic C.

e Check the Rabbit Technical Bulletin Board and forums at www.rabbit.com/support/bb/
and at www.rabbit.com/forums/.

e Use the Technical Support e-mail form at www.rabbit.com/support/questionSubmit.shtml.

User’s Manual 15

http://www.rabbit.com/support/bb/index.html
http://www.rabbit.com/support/questionSubmit.shtml
http://www.rabbitsemiconductor.com/forums/

16

RabbitCore RCM3305/RCM3315

3. RUNNING SAMPLE PROGRAMS

To develop and debug programs for the RCM3305/RCM3315
(and for all other Rabbit hardware), you must install and use
Dynamic C.

3.1 Introduction

To help familiarize you with the RCM3305 and RCM3315 modules, Dynamic C includes
several sample programs. Loading, executing and studying these programs will give you a
solid hands-on overview of the RCM3305/RCM3315’s capabilities, as well as a quick
start using Dynamic C as an application development tool.

NOTE: The sample programs assume that you have at least an elementary grasp of the C
programming language. If you do not, see the introductory pages of the Dynamic C
User’s Manual for a suggested reading list.

More complete information on Dynamic C is provided in the Dynamic C User’s Manual.
In order to run the sample programs discussed in this chapter and elsewhere in this manual,

1. Your RCM3305/RCM3315 must be plugged in to the Prototyping Board as described
in Chapter 2, “Getting Started.”

2. Dynamic C must be installed and running on your PC.

3. The programming cable must connect the programming header on the RCM3305/
RCM3315 to your PC.

4. Power must be applied to the RCM3305/RCM3315 through the Prototyping Board.

Refer to Chapter 2, “Getting Started,” if you need further information on these steps.

To run a sample program, open it with the File menu, then press function key F9 to com-
pile and run the program. The RCM3305/RCM3315 must be in Program Mode (see
Figure 8) and must be connected to a PC using the programming cable.

User’s Manual 17

3.2 Sample Programs

Of the many sample programs included with Dynamic C, several are specific to the
RCM3305 and the RCM3315. Sample programs illustrating the general operation of the
RCM3305/RCM3315, serial communication, and the serial flash are provided in the
sAaMPLES\RcM3300 folder. Each sample program has comments that describe the purpose
and function of the program. Follow the instructions at the beginning of the sample pro-
gram. Note that the RCM3305/RCM3315 must be installed on the Prototyping Board
when using the sample programs described in this chapter.

CONTROLLED . c—Demonstrates use of the digital inputs by having you turn the LEDs
on the Prototyping Board on or off from the STDIO window on your PC.

Once you compile and run CONTROLLED . ¢, the following display will appear in the
Dynamic C STDIO window.

22 Stdio i o [=]

<4< Proto-board LEDs P22
nsa2 Ds2 Ds4 Dss

OFF OFF OFF OFF

Fram PC kevboard:
Select 3=DS53, 4=D24, E5=DS5, &6=0%6 to toggle LEDs

< Press "0" To BQuit >

Press “2” or “3” or “4”or “5”on your keyboard to select LED DS3 or DS4 or DS5 or
DS6 on the Prototyping Board. Then follow the prompt in the Dynamic C STDIO win-
dow to turn the LED on or off.

FLASHLED.c—Demonstrates assembly-language program by flashing the USR LED
on the RCM3305/RCM3315 and LEDs DS3, DS4, DS5, and DS6 on the Prototyping
Board.

SWRELAY . c—Demonstrates the relay-switching function call using the relay installed
on the Prototyping Board through screw-terminal header J17.

TOGGLESWITCH.c—Uses costatements to detect switches S2 and S3 using debounc-
ing. The corresponding LEDs (DS3 and DS4) will turn on or off.

Once you have loaded and executed these five programs and have an understanding of
how Dynamic C and the RCM3305/RCM3315 modules interact, you can move on and try
the other sample programs, or begin building your own.

18

RabbitCore RCM3305/RCM3315

3.2.1 Use of Serial Flash
3.2.1.1 Onboard Serial Flash

The following sample programs can be found in the SAMPLES\RCM3300\SerialFlash
folder.

e SFLASH INSPECT.c—This program is a handy utility for inspecting the contents of a
serial flash chip. When the sample program starts running, it attempts to initialize a
serial flash chip on Serial Port B. Once a serial flash chip is found, the user can perform
two different commands to either print out the contents of a specified page or clear (set
to zero) all the bytes in a specified page.

e SFLASH LOG.c—This program runs a simple Web server and stores a log of hits in
the serial flash. This log can be viewed and cleared from a browser.

3.2.1.2 SF1000 Serial Flash Card
The following sample program can be found in the SAMPLES\RCM3300\SF1000 folder.

e SERFLASHTEST.c—An optional SF1000 Serial Flash card is required to run this dem-
onstration. Install the Serial Flash card into socket J11 on the Prototyping Board. This
sample program demonstrates how to read and write from/to the Serial Flash card.

3.2.2 Serial Communication
The following sample programs can be found in the sSAMPLES\RCM3300\SERIAL folder.

e FLOWCONTROL.C—This program demonstrates hardware flow control by configuring
Serial Port F for CTS/RTS with serial data coming from TxE (Serial Port E) at 115,200
bps. One character at a time is received and is displayed in the STDIO window.

To set up the Prototyping Board, you will need to tie
TXE and RxE together on the RS-232 header at J14,
and you will also tie TxF and RxF together as shown in
the diagram.

A repeating triangular pattern should print out in the
STDIO window. The program will periodically switch flow control on or off to demon-
strate the effect of no flow control.

e PARITY.C—This program demonstrates the use of parity modes by repeatedly sending
byte values 0-127 from Serial Port E to Serial Port F. The program will switch between
generating parity or not on Serial Port E. Serial Port F will always be checking parity,
so parity errors should occur during every other sequence.

To set up the Prototyping Board, you will need to tie
TxE and RxF together on the RS-232 header at J14 as ‘
shown in the diagram. J14 [poo0o@ o000

TxE RxE GND TxHf RxF 485+ GND 485-

The Dynamic C STDIO window will display the error
sequence.

User’s Manual 19

SIMPLE3WIRE.C—This program demonstrates basic RS-232 serial communication.
Lower case characters are sent by TXE, and are received by RxF. The characters are
converted to upper case and are sent out by TxF, are received by RXE, and are displayed
in the Dynamic C STDIO window.

To set up the Prototyping Board, you will need to tie
TXE and RxF together on the RS-232 header at J14, and
you will also tie RXE and TxF together as shown in the
diagram.

SIMPLESWIRE.C—This program demonstrates 5-wire RS-232 serial communication
with flow control on Serial Port F and data flow on Serial Port E.

To set up the Prototyping Board, you will need to tie
TXE and RxE together on the RS-232 header at J14,
and you will also tie TxF and RxF together as shown in
the diagram.

Once you have compiled and run this program, you can
test flow control by disconnecting TxF from RxF while the program is running. Char-
acters will no longer appear in the STDIO window, and will display again once TxF is
connected back to RxF.

SWITCHCHAR.C—This program transmits and then receives an ASCII string on Serial
Ports E and F. It also displays the serial data received from both ports in the STDIO
window.

To set up the Prototyping Board, you will need to tie
TXE and RxF together on the RS-232 header at J14, and
you will also tie RXE and TxF together as shown in the
diagram.

Once you have compiled and run this program, press
and release S2 and S3 on the Prototyping Board. The data sent between the serial ports
will be displayed in the STDIO window.

Two sample programs, SIMPLE485MASTER. C and SIMPLE485SLAVE. C, are available

to

illustrate RS-485 master/slave communication. To run these sample programs, you will

need a second Rabbit-based system with RS-485—another Rabbit single-board computer

or

RabbitCore module may be used as long as you use the master or slave sample program

associated with that board.

Before running either of these sample programs on the RCM3305/RCM3315 assembly,
make sure pins 1-2 and pins 5-6 are jumpered together on header JP5 to use the RS-485
bias and termination resistors. The sample programs use Serial Port C as the RS-485 serial
port, and they use PD7 to enable/disable the RS-485 transmitter.

20

RabbitCore RCM3305/RCM3315

The RS-485 connections between the slave and master devices are as follows.

* RS485+ to RS485+
* RS485-to RS485-
* GND to GND

e SIMPLE485MASTER.C—This program demonstrates a simple RS-485 transmission of
lower case letters to a slave. The slave will send back converted upper case letters back
to the master and display them in the STDIO window. Use SIMPLE485SLAVE. C t0
program the slave.

e SIMPLE485SLAVE.C—This program demonstrates a simple RS-485 transmission of
lower case letters to a master. The slave will send back converted upper case letters
back to the master and display them in the STDIO window. Use SIMPLE485MASTER. C
to program the master.

3.2.3 Real-Time Clock

If you plan to use the real-time clock functionality in your application, you will need to set
the real-time clock. Set the real-time clock using the SETRTCKB . ¢ sample program from
the Dynamic C sAMPLES\RTCLOCK folder, using the onscreen prompts. The RTC
TEST. C sample program in the Dynamic C sSAMPLES\RTCLOCK folder provides addi-
tional examples of how to read and set the real-time clock.

3.2.4 RabbitNet

Sample programs are available for each RabbitNet peripheral card, and can be found in the
Dynamic C saMPLES\RabbitNet folder. When you run any of these sample programs
in conjunction with the RCM3305/RCM3315 and the Prototyping Board, you need to add
the line

#use rcm33xx.lib

at the beginning of the sample program.

TIP: You need to add #use rcm33xx.1ib at the beginning of any sample program
that is not in the Dynamic C SAMPLES\RCM3300 folder.

3.2.5 Other Sample Programs

Section 6.6 describes the TCP/IP sample programs, and Appendix C.7 provides sample
programs for the optional LCD/keypad module that can be installed on the Prototyping
Board.

User’s Manual 21

22

RabbitCore RCM3305/RCM3315

4. HARDWARE REFERENCE

Chapter 4 describes the hardware components and principal hardware
subsystems of the RCM3305/RCM3315 modules. Appendix A,
“RCM3305/RCM3315 Specifications,” provides complete physical
and electrical specifications.

Figure 4 shows the Rabbit-based subsystems designed into the RCM3305/RCM3315.

32 kHz || 44.2 MHz
Ethernet osc osc Customer-specific
applications
Fast SRAM
(program) RABBIT ® CMOS-level signals
Data 3000 Level
SRAM converter
Program |
Flash RS-232, RS-485
- . serial communication
I:S‘glsal!l Batt%rig:.cBuaitc kup l drivers on motherboard
. Customer-supplied
RabbitCore Module | external 3V battery

Figure 4. RCM3305/RCM3315 Subsystems

User’s Manual 23

4.1 RCM3305/RCM3315 Digital Inputs and Outputs
Figure 5 shows the RCM3305/RCM3315 pinouts for headers J3 and J4.

J3 J4

GND|m o[] STATUS JRESI® o n.c/PRO

PA7 o o[] PA6 PB2 o o[]PB3

PA5 o o[JPA4 PB4 o o[]PB5

PA3|o o[JPA2 PB6 o o[]PB7

PA1|o o[JPAO PF4 o o[JPF5

PF3[|o o[_1PF2 PF6 o o[PF7

PF1C_|o o[JPFO PE7 o o[PE6

PCOC|o o[JPC1 PE5 |0 o[] PE4

PC2|o o[JPC3 PE3 o o[] PE1
n.c/PC4| o o[Jn.c/PC5 PEOC|o o[PG7
PCB-TXxA[| 0 o[PC7-RxA PG6 o o[PG5

PGO[|o o[1PG1 PG4 o o[J/IOWR

PG2[|o o[1PG3 /IORD] © ©[] SMODEO

PD4[|o o[1PD5 SMODE1]2 o [J/RESET_IN

PD2/TPO-[| o o[] PD3/TPO+ VRAM [l o 0[] VBAT_EXT
PD6/TPI-C = o[1 PD7/TPI+ +33VINL|o o[1GND
LINK/n.c.[_|o o[ACT/n.c. n.c.C]o o[JGND
n.c. = not connected
Note: These pinouts are as seen on
the Bottom Side of the module.

Figure 5. RCM3305/RCM3315 Pinouts

The pinouts for the RCM3000, RCM3100, RCM3200, RCM3305/RCM3315, RCM3360/
RCM3370, and RCM3365/RCM3375 are almost compatible, except signals PB0O, PC4, and PC5.
PBO, PC4, and PC5 are used for the SPI interface to the serial flash on the RCM3305 and the
RCMB3315. Visit the Web site for further information.

Headers J3 and J4 are standard 2 x 34 headers with a nominal 2 mm pitch. An RJ-45 Ether-
net port is also included with the RCM3305/RCM3315.

Pins 29-32 on header J3 are configured using 0 Q resistors at locations JP4, JP5, JP6, and
JP7 to be PD2, PD3, PD6, and PD7 respectively. They may also be reconfigured to carry
the Ethernet signals TPI+, TPI-, TPO+, and TPO-.

Pins 33 and 34 on header J3 are wired to carry the LINK and ACT signals that illuminated
the corresponding LEDs on the RCM3305/RCM3315 module. These signals may be “dis-
connected” by removing 0 Q surface-mount resistors R41 and R42.

See Appendix A.5 for more information about the locations of these surface-mount
resistors.

24 RabbitCore RCM3305/RCM3315

Figure 6 shows the use of the Rabbit 3000 microprocessor ports in the RCM3305/

RCM3315 modules.

PCO, PC2 4
PC1, PC3 I

PAO-PA7 PB2-PB7 PD2_PD7
Port A Port B Port D
Port C Port E

(Serial Ports C & D)

PG2-PG3
PG6-PG7

Port G

RABBIT®

3000

(+Ethernet Port)

PEO-PE1,
PE3-PE7

}ﬁ PFO-PF7

PB1, PC6, STATUS
PC7, IRESET,
SMODEO, SMODE1

4 Ethernet signalsﬁ

PGO-PG1,
PG4-PG5

/RES
/RES
/IORD

(Serial Ports E & F) Port F
Prog;aon:tming Real-Time Clock Port G
(Serial Port A) Watchdog (+Serial Ports)

11 Timers
Etgernet Slave Port Misc. I/0
i Clock Doubler
RAM Backup Battery Flash

Support

/IOWR

Figure 6. Use of Rabbit 3000 Ports

The ports on the Rabbit 3000 microprocessor used in the RCM3305/RCM3315 are config-

urable, and so the factory defaults can be reconfigured. Table 2 lists the Rabbit 3000 fac-
tory defaults and the alternate configurations.

User’s Manual

25

Table 2.

RCM3305/RCM3315 Pinout Configurations

Pin Pin Name Default Use Alternate Use Notes
1 GND
2 STATUS Output (Status) Output
External data bus
IDO-1D7
3-10 PA[7:0] Parallel I/0 () External Data Bus
Slave port data bus
(SD0-SD7)
11 PF3 Input/Output QD2A
12 PF2 Input/Output QD2B
QD1A
13 PF1 Input/Output CLKC
QD1B
14 PFO Input/Output CLKD
15 PCO Output TXD
Serial Port D
16 PC1 Input RXD
17 PC2 Output TXC
Serial Port C
18 PC3 Input RXC
™
g 19 PC4 Output TXB RCM3305/RCM3315—
g Serial Port B Not Connected (used for
£ |20 PC5 Input RXB onboard serial flash)
21 PC6 OUtpUt TXA Serial Port A
22 PC7 Input RXA (programming port)
23 PGO Input/Output TCLKF Serial Clock F output
24 PG1 Input/Output RCLKF Serial Clock F input
25 PG2 Input/Output TXF
Serial Port F
26 PG3 Input/Output RXF
27 PD4 Input/Output ATXB
28 PD5 Input/Output ARXB
29 PD2/TPO- Input/Output TPOUT-* Optional Ethernet
30 PD3/TPO+ | Input/Output TPOUT+ * transmit port
31 PD6/TPI- Input/Output TPIN-* Optional Ethernet
32 PD7/TPI+ Input/Output TPIN+ * receive port
33 LINK Output Max. sinking current
34 ACT Output draw 1 mA (see Note 1)

* Pins 29-32 are configured with 0 Q surface-mount resistors at JP4, JP5, JP7, and JP8.

26

RabbitCore RCM3305/RCM3315

Table 2. RCM3305/RCM3315 Pinout Configurations (continued)

Pin Pin Name Default Use Alternate Use Notes
1 IRES Reset output Reset output from Reset
Generator
RCM3305/RCM3315—
2 PBO Input/Output CLKB Not Connected (used for
onboard serial flash)
IA0 External Address 0
3 PB2 Input/Output .
purbutpu /SWR Slave port write
IAL1 External Address 1
4 PB3 Input/Output
npuvUtpu /SRD Slave port read
5 PB4 Inout/Outout 1A2 External Address 2
P P SAO0 Slave port Address 0
IA3 External Address 3
6 PB5 Input/Output
npuvUtpu SAl Slave port Address 1
7 PB6 Input/Output I1A4 External Address 4
8 PB7 Inout/Outout IAS External Address 5
RUESHED ISLAVEATTN Slave Attention
AQD1B
< 9 PF4 Input/Output PWMO
g AQD1A
S |10 PF5 Input/Output Q
T PWM1
AQD2B
11 PF6 Input/Output PWM?2
AQD2A
12 PF7 Input/Output PWM3
17 I/O Strobe 7
13 PET Input/Output /SCS Slave Port Chip Select
14 PE6 Input/Output 16 I/O Strobe 6
15 I/0O Strobe 5
15 PE5 Input/Output
npuvLtpu INT1B Interrupt 1B
14 I/O Strobe 4
16 PE4 Input/Output
npuvLtpu INTOB Interrupt OB
17 PE3 Input/Output 13 I/O Strobe 3
11 I/0 Strobe 1
18 PE1 Input/Output
npuvLtpu INTLA Interrupt 1A
10 I/0O Strobe 0
19 PEO Input/Output
npuvLtpu INTOA Interrupt OA

User’s Manual

27

Table 2. RCM3305/RCM3315 Pinout Configurations (continued)

Pin Pin Name Default Use Alternate Use Notes
20 PG7 Input/Output RXE
Serial Port E
21 PG6 Input/Output TXE
22 PG5 Input/Output RCLKE Serial Clock E input
23 PG4 Input/Output TCLKE Serial Clock E ouput
24 /IOWR Output External write strobe
25 /IORD Output External read strobe
(0,0)—start executing at address zero
(0,1)—cold boot from slave port
g SMODEO. (1,0)—cold boot from clocked Serial Port A Also connected to
SMODE1 programming cable
SMODEO =1, SMODE1 =1
Cold boot from asynchronous Serial Port A at
2400 bps (programming cable connected)
28 /RESET_IN | Input Input to Reset Generator
29 VRAM Output See Notes below table
Minimum battery
30 VBAT_EXT |3V battery Input voltage 2.85 V
31 +3.3VIN Power Input 3.15-3.45V DC
32 GND
3
5 133 n.c. Reserved for future use
=]
213 [oND
Notes

1. When using pins 33-34 on header J3 to drive LEDs, these pins can handle a sinking

current of up to 8 mA.

2. The VRAM voltage is temperature-dependent. If the VRAM voltage drops below about
1.2 V to 1.5V, the contents of the battery-backed SRAM may be lost. If VRAM drops
below 1.0 V, the 32 kHz oscillator could stop running. Pay careful attention to this volt-

age if you draw any current from this pin.

28

RabbitCore RCM3305/RCM3315

4.1.1 Memory I/O Interface

The Rabbit 3000 address lines (A0-A18) and all the data lines (D0-D7) are routed
internally to the onboard flash memory and SRAM chips. 1/0 write (/IOWR) and 1/0 read
(/IORD) are available for interfacing to external devices.

Parallel Port A can also be used as an external I/0O data bus to isolate external 1/0 from the
main data bus. Parallel Port B pins PB2-PB5 and PB7 can also be used as an external
address bus.

When using the external 1/0 bus for a digital output or the LCD/keypad module on the
Prototyping Board, or for any other reason, you must add the following line at the begin-
ning of your program.

#define PORTA AUX IO // required to enable external I/O bus

4.1.2 Other Inputs and Outputs

The status, /RESET_IN, SMODEOQ, and SMODEZ1 1/0 are normally associated with the
programming port. Since the status pin is not used by the system once a program has been
downloaded and is running, the status pin can then be used as a general-purpose CMOS
output. The programming port is described in more detail in Section 4.2.3.

/RES is an output from the reset circuitry that can be used to reset external peripheral
devices.

4.1.3 LEDs

The RCM3305/RCM3315 has three Ethernet status LEDs located beside the RJ-45 Ether-
net jack—these are discussed in Section 4.2.

Addiitionally, there are two other LEDs. The SF LED at DS3 blinks when data are being
written to or read from the flash mass-storage device. The red USR LED at DS3 is a user-
programmable LED, which is controlled by PDO on the Rabbit 3000’s Parallel Port D. The
sample program FLASHLED. C provided in the Dynamic C saMPLES\RCM3300 folder
shows how to set up and use this user-programmable LED.

User’s Manual 29

4.2 Serial Communication

The RCM3305/RCM3315 does not have any serial transceivers directly on the board.
However, a serial interface may be incorporated into the board the RCM3305/RCM3315
is mounted on. For example, the Prototyping Board has RS-232 and RS-485 transceiver
chips.

4.2.1 Serial Ports

There are six serial ports designated as Serial Ports A, B, C, D, E, and F. All six serial
ports can operate in an asynchronous mode up to the baud rate of the system clock divided
by 8. An asynchronous port can handle 7 or 8 data bits. A 9th bit address scheme, where
an additional bit is sent to mark the first byte of a message, is also supported.

Serial Port A is normally used as a programming port, but may be used either as an asyn-
chronous or as a clocked serial port once the RCM3305/RCM3315 has been programmed
and is operating in the Run Mode.

Serial Port B is used to communicate with the serial flash on the RCM3305/RCM3315 and
is not available for other use.

Serial Ports C and D can also be operated in the clocked serial mode. In this mode, a clock
line synchronously clocks the data in or out. Either of the two communicating devices can
supply the clock.

Serial Ports E and F can also be configured as HDLC serial ports. The IrDA protocol is
also supported in SDLC format by these two ports.

30 RabbitCore RCM3305/RCM3315

4.2.2 Ethernet Port

Figure 7 shows the pinout for the RJ-45 Ethernet port (J2). Note that some Ethernet con-
nectors are numbered in reverse to the order used here.

ETHERNET
' | @ |
1. E_Tx+
2. E_Tx—
3. E_Rx+
6. E_Rx-
RJ-45 Plug RJ-45 Jack

Figure 7. RJ-45 Ethernet Port Pinout

The RJ-45 connector is shielded to minimize EMI effects to/from the Ethernet signals.

Three Ethernet status LEDs are located beside the RJ-45 Ethernet jack: ACT, LINK, and
SPEED. The yellow ACT LED at DS1 indicates network activity. The green LINK LED at
DS2 indicates that the RCM3305/RCM3315 is connected to a working network. The
green SPEED LED at DS4 is on to indicate when the RCM3305/RCM3315 is connected
to a 100Base-T Ethernet connection.

User’s Manual 31

4.2.3 Programming Port

The RCM3305/RCM3315 is programmed either through the serial programming port,
which is accessed using header J1, or through the Ethernet jack. The RabbitLink may be
used to provide a serial connection via the RabbitLink’s Ethernet jack. The programming
port uses the Rabbit 3000°s Serial Port A for communication; Serial Port A is not used
when programming is done over an Ethernet connection via the Dynamic C download
manager or the remote application update. Dynamic C uses the programming port to
download and debug programs.

The programming port is also used for the following operations.
e Cold-boot the Rabbit 3000 on the RCM3305/RCM3315 after a reset.

¢ Remotely download and debug a program over an Ethernet connection using the
RabbitLink EG2110.

o Fast copy designated portions of flash memory from one Rabbit-based board (the
master) to another (the slave) using the Rabbit Cloning Board.

In addition to Serial Port A, the Rabbit 3000 startup-mode (SMODEQO, SMODEL), status,
and reset pins are available on the programming port.

The two startup mode pins determine what happens after a reset—the Rabbit 3000 is
either cold-booted or the program begins executing at address 0x0000.

The status pin is used by Dynamic C to determine whether a Rabbit microprocessor is
present. The status output has three different programmable functions:

1. It can be driven low on the first op code fetch cycle.
2. It can be driven low during an interrupt acknowledge cycle.
3. It can also serve as a general-purpose CMOS output.

The /RESET _IN pin is an external input that is used to reset the Rabbit 3000 and the
RCM3305/RCM3315 onboard peripheral circuits. The serial programming port can be
used to force a hard reset on the RCM3305/RCM3315 by asserting the /RESET _IN signal.

Alternate Uses of the Programming Port

All three clocked Serial Port A signals are available as

e asynchronous serial port

¢ an asynchronous serial port, with the clock line usable as a general CMOS 1/0O pin

The programming port may also be used as a serial port once the application is running.
The SMODE pins may then be used as inputs and the status pin may be used as an output.

Refer to the Rabbit 3000 Microprocessor User’s Manual for more information.

32 RabbitCore RCM3305/RCM3315

4.3 Programming Cable

The programming cable is used to connect the programming port of the RCM3305/
RCM3315 to a PC serial COM port. The programming cable converts the RS-232 voltage
levels used by the PC serail port to the CMOS voltage levels used by the Rabbit 3000.

When the PROG connector on the programming cable is connected to the RCM3305/
RCM3315 programming port, programs can be downloaded and debugged over the serial
interface.

The DIAG connector of the programming cable may be used on header J1 of the RCM3305/
RCM3315 with the RCM3305/RCM3315 operating in the Run Mode. This allows the
programming port to be used as a regular serial port.

4.3.1 Changing Between Program Mode and Run Mode

The RCM3305/RCM3315 is automatically in Program Mode when the PROG connector
on the programming cable is attached, and is automatically in Run Mode when no pro-
gramming cable is attached. When the Rabbit 3000 is reset, the operating mode is deter-
mined by the state of the SMODE pins. When the programming cable’s PROG connector
is attached, the SMODE pins are pulled high, placing the Rabbit 3000 in the Program
Mode. When the programming cable’s PROG connector is not attached, the SMODE pins
are pulled low, causing the Rabbit 3000 to operate in the Run Mode.

Colored edge

RESET RESET RCM3305/RCM3315 when changing mode:

Press RESET button (if using Prototyping Board), OR
Cycle power off/on
after removing or attaching programming cable.

Figure 8. Switching Between Program Mode and Run Mode

User’s Manual 33

A program “runs” in either mode, but can only be downloaded and debugged when the
RCM3305/RCM3315 is in the Program Mode.

Refer to the Rabbit 3000 Microprocessor User’s Manual for more information on the pro-
gramming port.

4.3.2 Standalone Operation of the RCM3305/RCM3315

The RCM3305/RCM3315 must be programmed via the Prototyping Board or via a similar
arrangement on a customer-supplied board. Once the RCM3305/RCM3315 has been pro-
grammed successfully, remove the programming cable from the programming connector
and reset the RCM3305/RCM3315. The RCM3305/RCM3315 may be reset by cycling the
power off/on or by pressing the RESET button on the Prototyping Board. The RCM3305/
RCM3315 module may now be removed from the Prototyping Board for end-use
installation.

CAUTION: Disconnect power to the Prototyping Board or other boards when removing
or installing your RCM3305/RCM3315 module to protect against inadvertent shorts
across the pins or damage to the RCM3305/RCM3315 if the pins are not plugged in
correctly. Do not reapply power until you have verified that the RCM3305/RCM3315
module is plugged in correctly.

34 RabbitCore RCM3305/RCM3315

4.4 Other Hardware
4.4.1 Clock Doubler

The RCM3305/RCM3315 takes advantage of the Rabbit 3000 microprocessor’s internal
clock doubler. A built-in clock doubler allows half-frequency crystals to be used to reduce
radiated emissions. The 44.2 MHz frequency specified for the RCM3305/RCM3315 is
generated using a 22.12 MHz resonator.

The clock doubler may be disabled if 44.2 MHz clock speeds are not required. This will
reduce power consumption and further reduce radiated emissions. The clock doubler is
disabled with a simple configuration macro as shown below.

1. Select the “Defines” tab from the Dynamic C Options > Project Options menu.
2. Add the line CLOCK DOUBLED=0 to always disable the clock doubler.

The clock doubler is enabled by default, and usually no entry is needed. If you need to
specify that the clock doubler is always enabled, add the line CLOCK_DOUBLED=1 t0o
always enable the clock doubler.

3. Click OK to save the macro. The clock doubler will now remain off whenever you are
in the project file where you defined the macro.

4.4.2 Spectrum Spreader

The Rabbit 3000 features a spectrum spreader, which helps to mitigate EMI problems. The
spectrum spreader is on by default, but it may also be turned off or set to a stronger setting.
The means for doing so is through a simple configuration macro as shown below.

1. Select the “Defines” tab from the Dynamic C Options > Project Options menu.

2. Normal spreading is the default, and usually no entry is needed. If you need to specify
normal spreading, add the line

ENABLE SPREADER=1
For strong spreading, add the line
ENABLE SPREADER=2
To disable the spectrum spreader, add the line

ENABLE SPREADER=0
NOTE: The strong spectrum-spreading setting is unnecessary for the RCM3305/RCM3315.

3. Click OK to save the macro. The spectrum spreader will now be set to the state specified
by the macro value whenever you are in the project file where you defined the macro.

NOTE: Refer to the Rabbit 3000 Microprocessor User’s Manual for more information
on the spectrum-spreading setting and the maximum clock speed.

User’s Manual 35

4.5 Memory
45.1 SRAM

RCM3305/RCM3315 boards have 512K of program-execution fast SRAM at U11. The
program-execution SRAM is not battery-backed. There are 512K of battery-backed data
SRAM installed at U10.

4.5.2 Flash EPROM
RCM3305/RCM3315 hoards also have 512K of flash EPROM at U9.

NOTE: Rabbit recommends that any customer applications should not be constrained by
the sector size of the flash EPROM since it may be necessary to change the sector size
in the future.

Writing to arbitrary flash memory addresses at run time is also discouraged. Instead, use a
portion of the “user block” area to store persistent data. The functions writeUser-
Block () and readUserBlock () are provided for this. Refer to the Rabbit 3000
Microprocessor Designer’s Handbook and the Dynamic C Function Reference Manual for
additional information.

45.3 Serial Flash

A serial flash is supplied on the RCM3305 and the RCM3315 to store data and Web pages.
Sample programs in the SAMPLES\RCM3300 folder illustrate the use of the serial flash.
These sample programs are described in Section 3.2.1, “Use of Serial Flash.”

4.5.4 Dynamic C BIOS Source Files

The Dynamic C BIOS source files handle different standard RAM and flash EPROM sizes
automatically.

36 RabbitCore RCM3305/RCM3315

5. SOFTWARE REFERENCE

Dynamic C is an integrated development system for writing
embedded software. It runs on an IBM-compatible PC and is
designed for use with controllers based on the Rabbit micropro-
cessor. Chapter 5 describes the libraries and function calls
related to the RCM3305/RCM3315.

5.1 More About Dynamic C

Dynamic C has been in use worldwide since 1989. It is specially designed for program-
ming embedded systems, and features quick compile and interactive debugging. A com-
plete reference guide to Dynamic C is contained in the Dynamic C User’s Manual.

You have a choice of doing your software development in the flash memory or in the static
SRAM included on the RCM3305/RCM3315. The flash memory and SRAM options are
selected with the Options > Program Options > Compiler menu.

The advantage of working in RAM is to save wear on the flash memory, which is limited
to about 100,000 write cycles. The disadvantage is that the code and data might not both
fit in RAM.

NOTE: An application should be run from the program execution SRAM after the pro-
gramming cable is disconnected. Your final code must always be stored in flash memory
for reliable operation. RCM3305/RCM3315 modules running at 44.2 MHz have a fast
program execution SRAM that is not battery-backed. Select Code and BIOS in Flash,
Run in RAM from the Dynamic C Options > Project Options > Compiler menu to
store the code in flash and copy it to the fast program execution SRAM at run-time to
take advantage of the faster clock speed. This option optimizes the performance of
RCM3305/RCM3315 modules running at 44.2 MHz.

NOTE: Do not depend on the flash memory sector size or type in your program logic.
The RCM3305/RCM3315 and Dynamic C were designed to accommodate flash
devices with various sector sizes in response to the volatility of the flash-memory
market.

Developing software with Dynamic C is simple. Users can write, compile, and test C and
assembly code without leaving the Dynamic C development environment. Debugging
occurs while the application runs on the target. Alternatively, users can compile a program
to an image file for later loading. Dynamic C runs on PCs under Windows 2000 and

later—see Rabbit’s Technical Note TN257, Running Dynamic C® With Windows Vista®,

User’s Manual 37

for additional information if you are using a Dynamic C release prior to v. 9.60 under Win-
dows Vista. Programs can be downloaded at baud rates of up to 460,800 bps after the pro-
gram compiles.

Dynamic C has a number of standard features.

o Full-feature source and/or assembly-level debugger, no in-circuit emulator required.
¢ Royalty-free TCP/IP stack with source code and most common protocols.

e Hundreds of functions in source-code libraries and sample programs:

» Exceptionally fast support for floating-point arithmetic and transcendental functions.
» RS-232 and RS-485 serial communication.
» Analog and digital 1/O drivers.

» 12C, SPI, GPS, file system.
» LCD display and keypad drivers.
o Powerful language extensions for cooperative or preemptive multitasking

e Loader utility program to load binary images into Rabbit targets in the absence of
Dynamic C.

e Provision for customers to create their own source code libraries and augment on-line
help by creating “function description” block comments using a special format for
library functions.

e Standard debugging features:

» Breakpoints—Set breakpoints that can disable interrupts.
» Single-stepping—Step into or over functions at a source or machine code level, uC/OS-Il aware.

» Code disassembly—The disassembly window displays addresses, opcodes, mnemonics, and
machine cycle times. Switch between debugging at machine-code level and source-code level by
simply opening or closing the disassembly window.

» Watch expressions—Watch expressions are compiled when defined, so complex expressions
including function calls may be placed into watch expressions. Watch expressions can be updated
with or without stopping program execution.

» Register window—All processor registers and flags are displayed. The contents of general registers
may be modified in the window by the user.

» Stack window—shows the contents of the top of the stack.
» Hex memory dump—displays the contents of memory at any address.

» STDIO window—print£ outputs to this window and keyboard input on the host PC can be
detected for debugging purposes. print £ output may also be sent to a serial port or file.

38 RabbitCore RCM3305/RCM3315

5.1.1 Developing Programs Remotely with Dynamic C

Dynamic C is an integrated development environment that allows you to edit, compile,
and debug your programs. Dynamic C has the ability to allow programming over the
Internet or local Ethernet. This is accomplished in one of two ways.

1. Viathe Rabbit RabbitLink, which allows a Rabbit-based target to have programs down-
loaded to it and debugged with the same ease as exists when the target is connected
directly to a PC.

2. The RCM3305/RCM3315 has a featured remote application update written specifically
to allow the RCM3305/RCM3315 to be programmed over the Internet or local Ether-
net. These programs, DLP_STATIC.C and DLP_WEB.C, are available in the Dynamic C
SAMPLES\RCM3300\RemoteApplicationUpdate folder. Complete information on
the use of these programs is provided in the Remote Application Update instructions,
which are available with the online documentation.

Dynamic C provides sample programs to illustrate the use of a download manager.

User’s Manual 39

5.2 Dynamic C Functions
5.2.1 Digital I/0

The RCM3305/RCM3315 was designed to interface with other systems, and so there are

no drivers written specifically for the 1/0. The general Dynamic C read and write func-

tions allow you to customize the parallel 1/0 to meet your specific needs. For example, use
WrPortI (PEDDR, &PEDDRShadow, 0x00);

to set all the Port E bits as inputs, or use

WrPortI (PEDDR, &PEDDRShadow, OxFF);

to set all the Port E bits as outputs.

When using the external 1/0 bus on the Rabbit 3000 chip, add the line

#define PORTA AUX IO // required to enable external I/O bus

to the beginning of any programs using the external 1/O bus.

The sample programs in the Dynamic C saMPLES/RcM3300 folder provide further
examples.

5.2.2 SRAM Use

The RCM3305/RCM3315 have a battery-backed data SRAM and a program-execution
SRAM. Dynamic C provides the protected keyword to identify variables that are to be
placed into the battery-backed SRAM. The compiler generates code that creates a backup
copy of a protected variable before the variable is modified. If the system resets while the
protected variable is being modified, the variable's value can be restored when the system
restarts.

The sample code below shows how a protected variable is defined and how its value can
be restored.

protected nf device nandFlash;

int main() {

__sysIsSoftReset(); // restore any protected variables

The bbram keyword may also be used instead if there is a need to store a variable in bat-
tery-backed SRAM without affecting the performance of the application program. Data
integrity is not assured when a reset or power failure occurs during the update process.

Additional information on bbram and protected variables is available in the Dynamic C
User’s Manual.

40 RabbitCore RCM3305/RCM3315

5.2.3 Serial Communication Drivers

Library files included with Dynamic C provide a full range of serial communications sup-
port. The Rs232.LIB library provides a set of circular-buffer-based serial functions. The
PACKET . LIB library provides packet-based serial functions where packets can be delimited
by the 9th bit, by transmission gaps, or with user-defined special characters. Both libraries
provide blocking functions, which do not return until they are finished transmitting or
receiving, and nonblocking functions, which must be called repeatedly until they are fin-
ished, allowing other functions to be performed between calls. For more information, see
the Dynamic C Function Reference Manual and Technical Note TN213, Rabbit Serial
Port Software.

5.2.4 TCP/IP Drivers

The TCP/IP drivers are located in the LB\ Tcp1P folder. Complete information on these
libraries and the TCP/IP functions is provided in the Dynamic C TCP/IP User’s Manual.

5.2.5 Serial Flash Drivers

The Dynamic C SserialFlash\SFLASH.LIB library is used to interface to serial flash
memory devices on an SPI bus such as the serial flash on board the RCM3305 and the
RCM3315, which use Serial Port B as an SPI port. The library has two sets of function
calls—the first is maintained for compatibility with previous versions of the SFLASH.LIB
library. The functions are all blocking and only work for single flash devices. The new
functions, which should be used for the RCM3305/RCM3315, make use of an

sf device structure as a handle for a specific serial flash device. This allows multiple
devices to be used by an application.

More information on these function calls is available in the Dynamic C Function Refer-
ence Manual.

User’s Manual 41

5.2.6 Prototyping Board Functions

The functions described in this section are for use with the Prototyping Board features.
The source code is in the Dynamic C sAMPLES\RCM3300\RCM33xx.LIB library if you
need to modify it for your own board design.

The rReM33xx. LIB library is supported by the RN cFe RcM33 . LIB—Ilibrary, which is
used to configure the RCM3305/RCM3315 for use with RabbitNet peripheral boards on
the Prototyping Board.

Other generic functions applicable to all devices based on Rabbit microprocessors are
described in the Dynamic C Function Reference Manual.

5.2.6.1 Board Initialization

void brdInit (void);

Call this function at the beginning of your program. This function initializes Parallel Ports A through G
for use with the Prototyping Board.

Summary of Initialization
1. 1/O port pins are configured for Prototyping Board operation.
2. Unused configurable 1/O are set as tied inputs or outputs.
3. External 1/O are disabled.
4. The LCD/keypad module is disabled.
5. RS-485 is not enabled.
6. RS-232is not enabled.
7. LEDs are off.
8. Ethernet select is disabled.
9. Mass-storage flash select is disabled.
10. Motor control is disabled.
11. The RabbitNet SPI interface is disabled.
12. The relay is set to normally closed positions.

RETURN VALUE
None.

42 RabbitCore RCM3305/RCM3315

5.2.6.2 Digital I/O

int digIn(int channel);

Reads the input state of inputs on Prototyping Board headers J5 and J6. Do not use this function if you
configure these pins for alternate use after brdInit () is called.

PARAMETERS
channels is the channel number corresponding to the signal on header J5 or J6

0—INO
1—IN1
2—IN2
3—IN3
4—QD1B
5—QD1A
6—QD2B
7—QD2A

RETURN VALUE
The logic state (0 or 1) of the input.

SEE ALSO
brdInit

void digOut (int channel, int wvalue);

Writes a value to an output channel on Prototyping Board header J10. Do not use this function if you
have installed the stepper motor chips at U2 and U3.

PARAMETERS
channel is output channel 0-7 (OUT00-OUTO07).

value is the value (0 or 1) to output.

RETURN VALUE
None.

SEE ALSO
brdInit

User’s Manual

5.2.6.3 Switches, LEDs, and Relay

int switchIn(int swin) ;

Reads the state of a switch input.

PARAMETERS
swin is the switch input to read:
2—S2
3—S3
RETURN VALUE
State of the switch input:

1 =open
0 = closed

SEE ALSO
brdInit

void ledOut (int led, int wvalue);

Controls LEDs on the Prototyping Board and on the RCM3305/RCM3315.

PARAMETERS
ledis the LED to control:
0 =red User LED on RCM3305/RCM3315
3 = DS3 on Prototyping Board
4 = DS4 on Prototyping Board
5 = DS5 on Prototyping Board
6 = DS6 on Prototyping Board

value is the value used to control the LED:
0 = off
l=o0n
RETURN VALUE
None.

SEE ALSO
brdInit

44 RabbitCore RCM3305/RCM3315

void relayOut (int relay, int wvalue);

Sets the position for the relay common contact. The default position is for normally closed contacts.

PARAMETERS
relay is the one relay (1)

value is the value used to connect the relay common contact:
0 = normally closed positions (NC1 and NC2)
1 = normally open positions (NO1 and NO2)

RETURN VALUE
None.

SEE ALSO
brdInit

5.2.6.4 Serial Communication

void ser485Tx(void) ;

Enables the RS-485 transmitter. Transmitted data are echoed back into the receive data buffer. The
echoed data may be used as an indicator for disabling the transmitter by using one of the following meth-
ods:

Byte mode—disable the transmitter after the same byte that is transmitted is detected in the receive
data buffer.

Block data mode—disable the transmitter after the same number of bytes transmitted are detected in
the receive data buffer.

Remember to call the serXopen () function before running this function.
SEE ALSO

ser485Rx

void ser485Rx (void) ;

Disables the RS-485 transmitter. This puts the device into the listen mode, which allows it to receive data
from the RS-485 interface.

Remember to call the serXopen () function before running this function.

SEE ALSO
ser485Tx

User’s Manual 45

5.2.6.5 RabbitNet Port

The function calls described in this section are used to configure the RabbitNet port on the
Prototyping Board for use with RabbitNet peripheral cards. The user’s manual for the spe-
cific peripheral card you are using contains additional function calls related to the Rabbit-
Net protocol and the individual peripheral card. Appendix E provides additional
information about the RabbitNet.

These RabbitNet peripheral cards are available at the present time.

e Digital I/0 Card (RN1100) e Relay Card (RN1400)
e A/D Converter Card (RN1200) e Keypad/Display Interface (RN1600)
e D/A Converter Card (RN1300)

Before using the RabbitNet port, add the following lines at the start of your program.

#define RN MAX DEV 10 // max number of devices

#define RN MAX DATA 16 // max number of data bytes in any transaction

#define RN MAX PORT 2 // max number of serial ports
Set the following bits in RNSTATUSABORT to abort transmitting data after the status byte is
returned. This does not affect the status byte and still can be interpreted. Set any bit com-
bination to abort:

bit 7—device busy is hard-coded into driver
bit 5—identifies router or slave

bits 4,3,2—peripheral-board-specific bits
bit 1—command rejected

bit 0—watchdog timeout

#define RNSTATUSABORT 0x80
// hard-coded driver default to abort if the peripheral board is busy

void rn sp info();

Provides rn_init () with the serial port control information needed for RCM3305/RCM3315 modules.

RETURN VALUE
None.

46 RabbitCore RCM3305/RCM3315

Deactivates the RCM3305/RCM3315 RabbitNet port as a clocked serial port. This call is also used by
rn_init().

PARAMETERS
portnum =0

RETURN VALUE
None

This is a macro that enables or asserts the RCM3305/RCM3315 RabbitNet port chip select prior to data
transfer.

PARAMETERS
portnum =0

RETURN VALUE
None

This is a macro that disables or deasserts the RCM3305/RCM3315 RabbitNet port chip select to invali-
date data transfer.

PARAMETERS
portnum =0

RETURN VALUE
None.

User’s Manual 47

5.3 Upgrading Dynamic C

Dynamic C patches that focus on bug fixes are available from time to time. Check the Web
site www.rabbit.com/support/ for the latest patches, workarounds, and bug fixes.

5.3.1 Extras

Dynamic C installations are designed for use with the board they are included with, and
are included at no charge as part of our low-cost kits.

Starting with Dynamic C version 9.60, Dynamic C includes the popular pC/OS-I1 real-
time operating system, point-to-point protocol (PPP), FAT file system, Rabbit\Web, and
other select libraries. Rabbit also offers for purchase the Rabbit Embedded Security Pack
featuring the Secure Sockets Layer (SSL) and a specific Advanced Encryption Standard
(AES) library.

In addition to the Web-based technical support included at no extra charge, a one-year
telephone-based technical support subscription is also available for purchase.

Visit our Web site at www.rabbit.com for further information and complete documentation.

48 RabbitCore RCM3305/RCM3315

http://www.rabbit.com/support/
http://www.rabbit.com/products/dc/

6. USING THE TCP/IP FEATURES

6.1 TCP/IP Connections

Programming and development can be done with the RCM3305/RCM3315 modules with-
out connecting the Ethernet port to a network. However, if you will be running the sample
programs that use the Ethernet capability or will be doing Ethernet-enabled development,
you should connect the RCM3305/RCM3315 module’s Ethernet port at this time.

Before proceeding you will need to have the following items.

e If you don’t have Ethernet access, you will need at least a 10Base-T Ethernet card
(available from your favorite computer supplier) installed in a PC.

e Two RJ-45 straight-through Ethernet cables and a hub, or an RJ-45 crossover Ethernet
cable.

A straight-through and a crossover Ethernet cable are included in both the RCM3305/
RCM3315 Development Kit. Figure 9 shows how to identify the two cables based on the
wires in the transparent RJ-45 connectors.

Same
color order ‘
‘ in connectors

‘ ‘ Different ‘ ‘

color order
‘ in connectors

Straight-
Through Crossover
Cable Cable

Figure 9. How to Identify Straight-Through and Crossover Ethernet Cables

Ethernet cables and a 10Base-T Ethernet hub are available from Rabbit in a TCP/IP tool
kit. More information is available at www.rabbit.com.

User’s Manual 49

http://www.rabbit.com/

Now you should be able to make your connections.

1.

Connect the AC adapter and the programming cable as shown in Chapter 2, “Getting
Started.”

. Ethernet Connections

There are four options for connecting the RCM3305/RCM3315 module to a network
for development and runtime purposes. The first two options permit total freedom of
action in selecting network addresses and use of the “network,” as no action can inter-
fere with other users. We recommend one of these options for initial development.

No LAN — The simplest alternative for desktop development. Connect the
RCM3305/RCM3315 module’s Ethernet port directly to the PC’s network interface
card using an RJ-45 crossover cable. A crossover cable is a special cable that flips
some connections between the two connectors and permits direct connection of two cli-
ent systems. A standard RJ-45 network cable will not work for this purpose.

Micro-LAN — Another simple alternative for desktop development. Use a small Eth-
ernet 10Base-T hub and connect both the PC’s network interface card and the
RCM3305/RCM3315 module’s Ethernet port to it using standard network cables.

The following options require more care in address selection and testing actions, as
conflicts with other users, servers and systems can occur:

LAN — Connect the RCM3305/RCM3315 module’s Ethernet port to an existing
LAN, preferably one to which the development PC is already connected. You will need
to obtain IP addressing information from your network administrator.

WAN — The RCM3305/RCM3315 is capable of direct connection to the Internet and
other Wide Area Networks, but exceptional care should be used with IP address
settings and all network-related programming and development. We recommend that
development and debugging be done on a local network before connecting a Rabbit-
Core system to the Internet.

TIP: Checking and debugging the initial setup on a micro-LAN is recommended before
connecting the system to a LAN or WAN.

The PC running Dynamic C does not need to be the PC with the Ethernet card.

. Apply Power

Plug in the AC adapter. The RCM3305/RCM3315 module and Prototyping Board are
now ready to be used.

50

RabbitCore RCM3305/RCM3315

6.2 TCP/IP Primer on IP Addresses

Obtaining IP addresses to interact over an existing, operating, network can involve a num-
ber of complications, and must usually be done with cooperation from your ISP and/or
network systems administrator. For this reason, it is suggested that the user begin instead
by using a direct connection between a PC and the RCM3305/RCM3315 using an Ether-
net crossover cable or a simple arrangement with a hub. (A crossover cable should not be
confused with regular straight through cables.)

In order to set up this direct connection, the user will have to use a PC without networking,
or disconnect a PC from the corporate network, or install a second Ethernet adapter and set
up a separate private network attached to the second Ethernet adapter. Disconnecting your
PC from the corporate network may be easy or nearly impossible, depending on how it is
set up. If your PC boots from the network or is dependent on the network for some or all
of its disks, then it probably should not be disconnected. If a second Ethernet adapter is
used, be aware that Windows TCP/IP will send messages to one adapter or the other,
depending on the IP address and the binding order in Microsoft products. Thus you should
have different ranges of IP addresses on your private network from those used on the cor-
porate network. If both networks service the same IP address, then Windows may send a
packet intended for your private network to the corporate network. A similar situation will
take place if you use a dial-up line to send a packet to the Internet. Windows may try to
send it via the local Ethernet network if it is also valid for that network.

The following IP addresses are set aside for local networks and are not allowed on the
Internet: 10.0.0.0 to 10.255.255.255, 172.16.0.0 to 172.31.255.255, and 192.168.0.0 to
192.168.255.255.

The RCM3305/RCM3315 uses a 10/100Base-T type of Ethernet connection, which is the
most common scheme. The RJ-45 connectors are similar to U.S. style telephone connec-
tors, except they are larger and have 8 contacts.

An alternative to the direct connection using a crossover cable is a direct connection using
a hub. The hub relays packets received on any port to all of the ports on the hub. Hubs are
low in cost and are readily available. The RCM3305/RCM3315 uses 10/100 Mbps Ether-
net, so the hub or Ethernet adapter can be a 10 Mbps unit, a 100 Mbps unit, or a 10/100
Mbps unit.

In a corporate setting where the Internet is brought in via a high-speed line, there are typi-
cally machines between the outside Internet and the internal network. These machines
include a combination of proxy servers and firewalls that filter and multiplex Internet traf-
fic. In the configuration below, the RCM3305/RCM3315 could be given a fixed address
so any of the computers on the local network would be able to contact it. It may be possi-
ble to configure the firewall or proxy server to allow hosts on the Internet to directly con-
tact the controller, but it would probably be easier to place the controller directly on the
external network outside of the firewall. This avoids some of the configuration complica-
tions by sacrificing some security.

User’s Manual 51

T1lin

Adapter

Ethernet

Firewall
Proxy
Server

Hub(s)

]

— |

Ethernet

Typical Corporate Network

y Network
L]

RCM3305/RCM3315
System

If your system administrator can give you an Ethernet cable along with its IP address, the
netmask and the gateway address, then you may be able to run the sample programs with-
out having to setup a direct connection between your computer and the RCM3305/
RCM3315. You will also need the IP address of the nameserver, the name or IP address of
your mail server, and your domain name for some of the sample programs.

52

RabbitCore RCM3305/RCM3315

6.2.1 IP Addresses Explained

IP (Internet Protocol) addresses are expressed as 4 decimal numbers separated by periods,
for example:

216.103.126.155
10.1.1.6

Each decimal number must be between 0 and 255. The total IP address is a 32-bit number
consisting of the 4 bytes expressed as shown above. A local network uses a group of adja-

cent IP addresses. There are always 2N IP addresses in a local network. The netmask (also
called subnet mask) determines how many IP addresses belong to the local network. The
netmask is also a 32-bit address expressed in the same form as the IP address. An example
netmask is:

255.255.255.0

This netmask has 8 zero bits in the least significant portion, and this means that 28
addresses are a part of the local network. Applied to the IP address above
(216.103.126.155), this netmask would indicate that the following IP addresses belong to
the local network:

216.103.126.0
216.103.126.1
216.103.126.2
etc.
216.103.126.254
216.103.126.255

The lowest and highest address are reserved for special purposes. The lowest address
(216.102.126.0) is used to identify the local network. The highest address
(216.102.126.255) is used as a broadcast address. Usually one other address is used for the
address of the gateway out of the network. This leaves 256 - 3 = 253 available IP
addresses for the example given.

User’s Manual 53

6.2.2 How IP Addresses are Used

The actual hardware connection via an Ethernet uses Ethernet adapter addresses (also
called MAC addresses). These are 48-bit addresses and are unique for every Ethernet
adapter manufactured. In order to send a packet to another computer, given the IP address
of the other computer, it is first determined if the packet needs to be sent directly to the
other computer or to the gateway. In either case, there is an Ethernet address on the local
network to which the packet must be sent. A table is maintained to allow the protocol
driver to determine the MAC address corresponding to a particular IP address. If the table
is empty, the MAC address is determined by sending an Ethernet broadcast packet to all
devices on the local network asking the device with the desired IP address to answer with
its MAC address. In this way, the table entry can be filled in. If no device answers, then
the device is nonexistent or inoperative, and the packet cannot be sent.

Some IP address ranges are reserved for use on internal networks, and can be allocated
freely as long as no two internal hosts have the same IP address. These internal IP
addresses are not routed to the Internet, and any internal hosts using one of these reserved
IP addresses cannot communicate on the external Internet without being connected to a
host that has a valid Internet IP address. The host would either translate the data, or it
would act as a proxy.

Each RCM3305/RCM3315 RabbitCore module has its own unique MAC address, which
consists of the prefix 0090C2 followed by a code that is unique to each RCM3305/
RCM3315 module. For example, a MAC address might be 0090C2C002CO0.

TIP: You can always obtain the MAC address on your board by running the sample pro-
gram DISPLAY MAC.C from the SAMPLES\TCPIP folder.

54 RabbitCore RCM3305/RCM3315

6.2.3 Dynamically Assigned Internet Addresses

In many instances, devices on a network do not have fixed IP addresses. This is the case
when, for example, you are assigned an IP address dynamically by your dial-up Internet
service provider (ISP) or when you have a device that provides your IP addresses using
the Dynamic Host Configuration Protocol (DHCP). The RCM3305/RCM3315 modules
can use such IP addresses to send and receive packets on the Internet, but you must take
into account that this IP address may only be valid for the duration of the call or for a
period of time, and could be a private IP address that is not directly accessible to others on
the Internet. These addresses can be used to perform some Internet tasks such as sending
e-mail or browsing the Web, but it is more difficult to participate in conversations that
originate elsewhere on the Internet. If you want to find out this dynamically assigned IP
address, under Windows 98 you can run the winipc£g program while you are connected
and look at the interface used to connect to the Internet.

Many networks use IP addresses that are assigned using DHCP. When your computer
comes up, and periodically after that, it requests its networking information from a DHCP
server. The DHCP server may try to give you the same address each time, but a fixed IP
address is usually not guaranteed.

If you are not concerned about accessing the RCM3305/RCM3315 from the Internet, you
can place the RCM3305/RCM3315 on the internal network using an IP address assigned
either statically or through DHCP.

User’s Manual 55

6.3 Placing Your Device on the Network

In many corporate settings, users are isolated from the Internet by a firewall and/or a
proxy server. These devices attempt to secure the company from unauthorized network
traffic, and usually work by disallowing traffic that did not originate from inside the net-
work. If you want users on the Internet to communicate with your RCM3305/RCM3315,
you have several options. You can either place the RCM3305/RCM3315 directly on the
Internet with a real Internet address or place it behind the firewall. If you place the
RCM3305/RCM3315 behind the firewall, you need to configure the firewall to translate
and forward packets from the Internet to the RCM3305/RCM3315.

56 RabbitCore RCM3305/RCM3315

6.4 Running TCP/IP Sample Programs

We have provided a number of sample programs demonstrating various uses of TCP/IP for
networking embedded systems. These programs require you to connect your PC and the

RCM3305/RCM3315 board together on the same network. This network can be a local pri-
vate network (preferred for initial experimentation and debugging), or a connection via the

Internet.

RCM3gO5/ RCM3315 RCM3305/RCM3315
ystem
System

g
User's PCK/]

/(Ethernet /'/
Ethernet cables

crossover m E/D El\> To additional

cable Hub network
elements

Direct Connection _ i .
(network of 2 computers) Direct Connection Using a Hub

User’s Manual 57

6.4.1 How to Set IP Addresses in the Sample Programs

With the introduction of Dynamic C 7.30 we have taken steps to make it easier to run
many of our sample programs. You will see a TcPCONFIG macro. This macro tells
Dynamic C to select your configuration from a list of default configurations. You will
have three choices when you encounter a sample program with the TCPCONFIG macro.

1. You can replace the TcpcoNFIG macro with individual MY IP ADDRESS, MY NET-
MASK, MY GATEWAY, and MY NAMESERVER Macros in each program.

2. You can leave TcPCONFIG at the usual default of 1, which will set the IP configurations
t010.10.6.100, the netmask to 255.255.255. 0, and the nameserver and gateway
t010.10.6.1. If youwould like to change the default values, for example, to use an IP
address of 10.1.1.2 for the RCM3305/RCM3315 board, and 10.1.1.1 for your PC,
you can edit the values in the section that directly follows the “General Configuration”
comment in the TcP_coNFIG.LIB library. You will find this library in the LIB\TCcPIP
directory.

3. You can create a CUSTOM CONFIG.LIB library and use a TCPCONFIG value greater
than 100. Instructions for doing this are at the beginning of the TCP_CONFIG.LIB
library in the LIB\TCPIP directory.

There are some other “standard” configurations for TcPcoNFIG that let you select differ-
ent features such as DHCP. Their values are documented at the top of the Tcp_con-
FIG.LIB library in the LIB\TCPIP directory. More information is available in the
Dynamic C TCP/IP User’s Manual.

58 RabbitCore RCM3305/RCM3315

6.4.2 How to Set Up your Computer for Direct Connect

Follow these instructions to set up your PC or notebook. Check with your administrator if
you are unable to change the settings as described here since you may need administrator
privileges. The instructions are specifically for Windows 2000, but the interface is similar
for other versions of Windows.

TIP: If you are using a PC that is already on a network, you will disconnect the PC from
that network to run these sample programs. Write down the existing settings before
changing them to facilitate restoring them when you are finished with the sample pro-
grams and reconnect your PC to the network.

1. Go to the control panel (Start > Settings > Control Panel), and then double-click the
Network icon.

2. Select the network interface card used for the Ethernet interface you intend to use (e.g.,
TCP/IP Xircom Credit Card Network Adapter) and click on the “Properties” button.
Depending on which version of Windows your PC is running, you may have to select
the “Local Area Connection” first, and then click on the “Properties” button to bring up
the Ethernet interface dialog. Then “Configure” your interface card for a “10Base-T
Half-Duplex” or an “Auto-Negotiation” connection on the “Advanced” tab.

NOTE: Your network interface card will likely have a different name.

3. Now select the IP Address tab, and check Specify an IP Address, or select TCP/IP and
click on “Properties” to assign an IP address to your computer (this will disable “obtain
an IP address automatically”):

IP Address : 10.10.6.101
Netmask : 255.255.255.0
Default gateway : 10.10.6.1
4. Click <OK> or <Close> to exit the various dialog boxes.

RCM3305/RCM3315
IP 10.10.6.101 System
Netmask
255.255.255.0
—
User’s PC

Ethernet

crossover

cable

Direct Connection PC to RCM3305/RCM3315 Board

User’s Manual 59

6.5 Run the PINGME.C Sample Program

Connect the crossover cable from your computer’s Ethernet port to the RCM3305/
RCM3315 board’s RJ-45 Ethernet connector. Open this sample program from the sam-
PLES\TcPIP\ICMP folder, compile the program, and start it running under Dynamic C.
The crossover cable is connected from your computer’s Ethernet adapter to the RCM3305/
RCM3315 board’s RJ-45 Ethernet connector. When the program starts running, the green
LINK light on the RCM3305/RCM3315 module should be on to indicate an Ethernet con-
nection is made. (Note: If the LNK light does not light, you may not be using a crossover
cable, or if you are using a hub perhaps the power is off on the hub.)

The next step is to ping the board from your PC. This can be done by bringing up the MS-
DOS window and running the pingme program:

ping 10.10.6.101
or by Start > Run

and typing the entry

ping 10.10.6.101

Notice that the yellow ACT light flashes on the RCM3305/RCM3315 module while the
ping is taking place, and indicates the transfer of data. The ping routine will ping the board
four times and write a summary message on the screen describing the operation.

6.6 Running Additional Sample Programs With Direct Connect

The following sample programs are in the Dynamic C SAMPLES\RCM3300\TCPIP\
folder.

e BROWSELED.C—This program demonstrates a basic controller running a Web page.
Two “device LEDs” are created along with two buttons to toggle them. Users can use
their Web browser to change the status of the lights. The DS3 and DS4 LEDs on the
Prototyping Board will match those on the Web page. As long as you have not modified
the TCcPCONFIG 1 macro in the sample program, enter the following server address in
your Web browser to bring up the Web page served by the sample program.

http://10.10.6.100
Otherwise use the TCP/IP settings you entered in the TCP_CONFIG.LIB library.

e MBOXDEMO.C—The optional LCD/keypad module (see Appendix C) must be plugged
in to the Prototyping Board when using this sample program. This program demon-
strates sending e-mail messages that are then shown on the LCD/keypad module dis-
play. The keypad is used to scroll through a menu to view the messages, flip to other
messages, mark messages as read, and delete messages. When a new e-mail arrives, an
LED on the LCD/keypad module turns on, and then turns off once the message has
been marked as read. A log of all e-mail actions is kept, and can be displayed in the
Web browser. All current e-mails can also be read with the Web browser.

e PINGLED.C—This program demonstrates ICMP by pinging a remote host. It will flash
LEDs DS3 and DS4 on the Prototyping Board when a ping is sent and received.

60 RabbitCore RCM3305/RCM3315

e sMTP.C—This program demonstrates using the SMTP library to send an e-mail when
the S2 and S3 switches on the Prototyping Board are pressed. LEDs DS3 and DS4 on
the Prototyping Board will light up when e-mail is being sent.

6.6.1 RabbitWeb Sample Programs

You will need to have the Dynamic C RabbitWeb module installed before you run the
sample programs described in this section. The following sample programs are in the
Dynamic C sSAMPLES\RCM3300\TCPIP\RABBITWEB folder.

e BLINKLEDS.C—This program demonstrates a basic example to change the rate at
which the DS3 and DS4 LEDs on the Prototyping Board blink.

e DOORMONITOR.C—The optional LCD/keypad module (see Appendix C) must be plugged
in to the Prototyping Board when using this sample program. This program demon-
strates adding and monitoring passwords entered via the LCD/keypad module.

e SPRINKLER.C—This program demonstrates how to schedule times for the relay and
digital outputs in a 24-hour period.

6.6.2 Remote Application Update

The following programs that make up the featured application for the RCM3305/
RCM3315 can be found in the SAMPLES\RCM3300\RemoteApplicationUpdate folder.

e DLP STATIC.C—This program uses the TCP/IP aTTP.LIB library, and outputs a
basic static Web page.

e DLP WEB.C—This program outlines a basic download program with a Web interface.

Complete information on the use of these programs is provided in the Remote Application
Update instructions, which are available with the online documentation.

6.6.3 Dynamic C FAT File System, RabbitWeb, and SSL Modules

The Dynamic C FAT File System, RabbitWeb, and Secure Sockets Layer (SSL) modules
have been integrated into a sample program for the RCM3305 and the RCM3315. The
sample program requires that you have installed the Dynamic C FAT File System, Rabbit-
Web, and SSL modules.

TIP: Before running any of the sample programs described in this section, you should
look at and run sample programs for the TCP/IP ZSERVER. L.IB library, the FAT file
system, RabbitWeb, SSL, the download manager, and HTTP upload to become more
familiar with their operation.

The INTEGRATION. C sample program in the SAMPLES\RCM3300\Module Integra-
tion folder demonstrates the use of the TCP/IP zsERVER.LIB library and FAT file sys-
tem functionality with RabbitWeb dynamic HTML content, all secured using SSL. The
sample program also supports dynamic updates of both the application and its resources
using the Rabbit Download Manager (DLM) and HTTP upload capability, respectively—
note that neither of these currently supports SSL security.

User’s Manual 61

First, you need to format and partition the serial flash. Find the FMT DEVICE.cC sample
program in the Dynamic C saMPLES\FileSystem folder. Open this sample program
with the File > Open menu, then compile and run it by pressing F9. FMT DEVICE.C
formats the mass storage device for use with the FAT file system. If the serial flash or
NAND flash is already formatted, FMT DEVICE. C gives you the option of erasing the
mass storage flash and reformatting it with a single large partition. This erasure does not
check for non-FAT partitions and will destroy all existing partitions.

Next, run the INTEGRATION FAT SETUP.C sample program in the Dynamic C
SAMPLES\RCM3300\Module Integration folder. Open this sample program with the
File > Open menu, then compile and run it by pressing F9. INTEGRATION FAT
SETUP. C Will copy some #ximported files into the FAT file system.

The last step to complete before you can run the INTEGRATION. C sample program is to
create an SSL certificate. The SSL walkthrough in the online documentation for the
Dynamic C SSL module explains how to do this.

Now you are ready to run the INTEGRATION. ¢ sample program in the Dynamic C
SAMPLES\RCM3300\Module Integration folder. Open thissample program with the
File > Open menu, then compile and run it by pressing F9.

NOTE: Since HTTP upload and the Dynamic C SSL module currently do not work
together, compiling the INTEGRATION. C sample program will generate a serious
warning. Ignore the warning because we are not using HTTP upload over SSL. A
macro (HTTP_UPLOAD SSL SUPRESS WARNING) is available to suppress the
warning message.

Open a Web browser, and browse to the device using the IP address from the Tcp
CONFIG.LIB library or the URL you assigned to the device. The humidity monitor will
be displayed in your Web browser. This page is accessible via plain HTTP or over SSL-
secured HTTPS. Click on the administrator link to bring up the admin page, which is
secured automatically using SSL with a user name and a password. Use myadmin for user
name and use myadmin for the password.

The admin page demonstrates some RabbitWeb capabilities and provides access to the
HTTP upload page. Click the upload link to bring up the HTTP upload page, which allows
you to choose new files for both the humidity monitor and the admin page. If your browser
prompts you again for your user name and password, they are the same as above.

Note that the upload page is a static page included in the program flash, and can only be
updated by recompiling and downloading the application. This page is protected so that
you cannot accidentally change the upload page, possibly restricting yourself from per-
forming future updates.

To try out the update capability, click the upload link on the admin page and choose a sim-
ple text file to replace monitor . ztm. Open another browser window and load the main
page. You will see that your text file has replaced the humidity monitor. To restore the
monitor, go back to the other window, click back to go to the upload page again, and
choose HUMIDITY MONITOR.ZHTML t0 replace monitor.ztm and click Upload.

62 RabbitCore RCM3305/RCM3315

When you refresh the page in your browser, you will see that the page has been restored.
You have successfully updated and restored your application's files remotely!

When you are finished with the INTEGRATION. C sample program, you need to follow a
special shutdown procedure before powering off to prevent any possible corruption of the
FAT file system. Press and hold switch S2 on the Prototyping Board until LED DS3 blinks
rapidly to indicate that it is now safe to turn the RCM3305/RCM3315 off. This procedure
can be modified by the user to provide other application-specific shutdown tasks.

6.7 Where Do | Go From Here?

NOTE: If you purchased your RCM3305/RCM3315 through a distributor or through a
Rabbit partner, contact the distributor or partner first for technical support.

If there are any problems at this point:
e Use the Dynamic C Help menu to get further assistance with Dynamic C.

e Check the Rabbit Technical Bulletin Board and forums at www.rabbit.com/support/bb/
and at www.rabbit.com/forums/.

e Use the Technical Support e-mail form at www.rabbit.com/support/questionSubmit.shtml.
If the sample programs ran fine, you are now ready to go on.
Additional sample programs are described in the Dynamic C TCP/IP User’s Manual.

Please refer to the Dynamic C TCP/IP User’s Manual to develop your own applications.
An Introduction to TCP/IP provides background information on TCP/IP, and is available
on the CD and on our \Web site.

User’s Manual 63

http://www.rabbit.com/
http://www.rabbit.com/support/bb/index.html
http://www.rabbit.com/support/questionSubmit.shtml
http://www.rabbitsemiconductor.com/forums/

64

RabbitCore RCM3305/RCM3315

APPENDIX A. RCM3305/RCM3315
SPECIFICATIONS

Appendix A provides the specifications for the RCM3305/
RCM3315, and describes the conformal coating.

User’s Manual 65

A.l1 Electrical and Mechanical Characteristics
Figure A-1 shows the mechanical dimensions for the RCM3305/RCM3315.

EE
e Please refer to the RCM3305
GRrL " footprint diagram later in this
0.100 dia : i N appendix for precise header
29 T locations.

Q|
N
AN~

&0

o~ O~

T N©

O~ 0w

y <2

A

N

N

(=)

\i

0.86
(22)

Figure A-1. RCM3305/RCM3315 Dimensions

NOTE: All measurements are in inches followed by millimeters enclosed in parentheses.
All dimensions have a manufacturing tolerance of £0.01" (0.25 mm).

66 RabbitCore RCM3305/RCM3315

It is recommended that you allow for an “exclusion zone” of 0.04" (1 mm) around the
RCM3305/RCM3315 in all directions when the RCM3305/RCM3315 is incorporated into
an assembly that includes other printed circuit boards. An “exclusion zone” of 0.08"

(2 mm) is recommended below the RCM3305/RCM3315 when the RCM3305/RCM3315
is plugged into another assembly. Figure A-2 shows this “exclusion zone.”

| 2.81 |
‘ (71.2) ‘

—

. 06
(16)
0.08
(2)

2.725
(69.2)

Exclusion

193 | Zone

(49.0) ‘

Figure A-2. RCM3305/RCM3315 “Exclusion Zone”

NOTE: All measurements are in inches followed by millimeters enclosed in parentheses.

User’s Manual

67

Table A-1 lists the electrical, mechanical, and environmental specifications for the RCM3305/
RCM3315.

Table A-1. RCM3305/RCM3315 Specifications

Parameter RCM3305 RCM3315
Microprocessor Low-EMI Rabbit 3000® at 44.2 MHz
EMI Reduction Spectrum spreader for reduced EMI (radiated emissions)
Ethernet Port 10/100Base-T, RJ-45, 3 LEDs
SRAM 512K program (fast SRAM) + 512K data
Flash Memory 519K
(program)
Flash Memory 8 Mbytes 4 Mbytes
(mass data . .

(serial flash) (serial flash)
storage)
ACT (activity)
LINK (link)

LED Indicators SPEED (on for 100Base-T Ethernet connection)

SF (serial flash)
USR (user-programmable)

Connection for user-supplied backup battery
(to support RTC and data SRAM)

49 parallel digital 1/0 lines:

Backup Battery

General-Purpose « 43 configurable 1/0
1/0 « 3 fixed inputs
« 3 fixed outputs
Additional Inputs Startup mode (2), reset in
Additional
Outputs Status, reset out

Can be configured for 8 data lines and
5 address lines (shared with parallel 1/O lines), plus 1/O read/write

Five 3.3 V, CMOS-compatible ports (shared with 1/0)
® all 5 configurable as asynchronous (with IrDA)

External 1/0 Bus

Serial Ports e 3 configurable as clocked serial (SPI)

2 configurable as SDLC/HDLC

1 asynchronous serial port dedicated for programming

Serial Rate Maximum asynchronous baud rate = CLK/8

A slave port allows the RCM3305/RCM3315 to be used as an
Slave Interface intelligent peripheral device slaved to a master processor, which
may either be another Rabbit 3000 or any other type of processor

Real-Time Clock Yes

Ten 8-bit timers (6 cascadable, 3 reserved for internal peripherals),
one 10-bit timer with 2 match registers

Timers

68 RabbitCore RCM3305/RCM3315

Table A-1. RCM3305/RCM3315 Specifications (continued)

Parameter RCM3305 RCM3315
Watchd_og/ Yes
Supervisor
Pulse-Width 4 PWM registers with 10-bit free-running counter
Modulators and priority interrupts
Input Capture 2-channe| |an_Jt capture can be used to time input signals from
various port pins
Quadrature 2-channel quadrature decoder accepts inputs from external
Decoder incremental encoder modules
Power 3.15-3.45V DC
250 mA @ 44.2 MHz, 3.3V
Operating -40°C to +70°C (boards manufactured up to May, 2008)
Temperature 0°C to +70°C (boards manufactured after May, 2008)
Humidity 5% to 95%, noncondensing
Connectors Two 2 x 17, 2 mm pitch
one 2 x 5 for programming with 1.27 mm pitch
Board Size 1.850" x 2.725" x 0.86

(47 mm x 69 mm x 22 mm)

User’s Manual

69

A.1.1 Headers

The RCM3305/RCM3315 uses headers at J3 and J4 for physical connection to other
boards. J3 and J4 are 2 x 17 SMT headers with a 2 mm pin spacing. J1, the programming

port, isa 2 x 5 header with a 1.27 mm pin spacing.
Figure A-3 shows the layout of another board for the RCM3305/RCM3315 to be plugged
into. These values are relative to the mounting hole.

(a2
=
o
2
o
»0
oo
Qe
<
o\
o~
- ~o
< Sa)“’
w23 o
S =
~— O
<8
Re5——
ey SN
=P o=
ow
Sd
-
e [So DS
o
< @L —
\ o
~—
<<
— D
<8
o~
ON
o X6
o236 2a,
<SP 586
“NANO
T2
Sa
— O
)
[
[T
RCM3300 Series
Footprint F%

o~

wn
Sy
o2

328

o
>
1

0

Figure A-3. User Board Footprint for RCM3305/RCM3315

70

RabbitCore RCM3305/RCM3315

A.2 Bus Loading

You must pay careful attention to bus loading when designing an interface to the
RCM3305/RCM3315. This section provides bus loading information for external devices.

Table A-2 lists the capacitance for the various RCM3305/RCM3315 1/O ports.

Table A-2. Capacitance of Rabbit 3000 I/O Ports

Input Output
I/O Ports Capacitance Capacitance
(pF) (pF)
Parallel Ports Ato G 12 14

Table A-3 lists the external capacitive bus loading for the various RCM3305/RCM3315
output ports. Be sure to add the loads for the devices you are using in your custom system
and verify that they do not exceed the values in Table A-3.

Table A-3. External Capacitive Bus Loading -40°C to +85°C

St Ba Clock Speed Maximum External
P (MHz) Capacitive Loading (pF)

All 1/0 lines with clock
doubler enabled 44.2 100

User’s Manual 71

Figure A-4 shows a typical timing diagram for the Rabbit 3000 microprocessor external 1/0
read and write cycles.

External I/O Read (one programmed wait state)

1 | Tw——se—— T2 |
CLK —
A[15:0] X valid X
7 Tadr
/CSx | |, __
1 Tcsx Tesx| <7
/I0CSx K -
1 Tiocsx Tiocsx|<]
/IORD -
TiorD TiorRD[<]
/BUFEN -
“1TBUFEN TBUFﬁN‘_’
setup,”|
D[7:0] < VAT
| Thold <"

External I/O Write (one programmed wait state)

k—T1 | Tw—] T2 ——)
o | | |
A[15:01 — X valid : C
7 Tadr ‘
\
ICSx | 1 \ N
D TCSx } TCSX D
/I0CSx !) &
1 Tiocsx { Tiocsx[<
/IOWR ‘
Tiowr TiowR[<™]
/BUFEN a8
~1TBUFEN TBUFEN
D[7:0] valid —
TbHzv ‘ TovHzZ <

Figure A-4. 1/0 Read and Write Cycles—No Extra Wait States

NOTE: /IOCSx can be programmed to be active low (default) or active high.

72 RabbitCore RCM3305/RCM3315

Table A-4 lists the delays in gross memory access time at 3.3 V.

Table A-4. Data and Clock Delays VIN £10%, Temp, -40°C—+85°C (maximum)

Clock to Address Output Delay Spectrum Spreader Delay
(ns) Data Setup (ns)
VIN Time Delay
30 oF 60 0F 90 oF (ns) Normal Strong
k k k no dbl/dbl | no dbl/dbl
3.3V 6 8 11 1 3/4.5 4.5/9

The measurements are taken at the 50% points under the following conditions.
o T=-40°C t0 85°C, V = Vpp +10%

¢ Internal clock to nonloaded CLK pin delay <1 ns @ 85°C/3.0 V

The clock to address output delays are similar, and apply to the following delays.
e T.q4r the clock to address delay

o Ty, the clock to memory chip select delay

* Tiocsx the clock to 1/0 chip select delay

* T,0rp, the clock to I/O read strobe delay

e T,owr the clock to I/0 write strobe delay

e Tguren, the clock to I/O buffer enable delay

The data setup time delays are similar for both Tget,, and Tpgyg.

When the spectrum spreader is enabled with the clock doubler, every other clock cycle is
shortened (sometimes lengthened) by a maximum amount given in the table above. The
shortening takes place by shortening the high part of the clock. If the doubler is not
enabled, then every clock is shortened during the low part of the clock period. The maxi-
mum shortening for a pair of clocks combined is shown in the table.

Technical Note TN227, Interfacing External 1/0 with Rabbit 2000/3000 Designs, con-
tains suggestions for interfacing 1/0 devices to the Rabbit 3000 microprocessors.

User’s Manual 73

A.3 Rabbit 3000 DC Characteristics

Table A-5. Rabbit 3000 Absolute Maximum Ratings

Symbol Parameter Maximum Rating
Ta Operating Temperature -55° to +85°C
Ts Storage Temperature -65° to +150°C

Maximum Input Voltage:

® Oscillator Buffer Input Vpp + 0.5V

e 5-V-tolerant I/O 55V
Vpp | Maximum Operating Voltage 3.6V

Stresses beyond those listed in Table A-5 may cause permanent damage. The ratings are

stress ratings only, and functional operation of the Rabbit 3000 chip at these or any other
conditions beyond those indicated in this section is not implied. Exposure to the absolute
maximum rating conditions for extended periods may affect the reliability of the Rabbit

3000 chip.

Table A-6 outlines the DC characteristics for the Rabbit 3000 at 3.3 V over the recom-
mended operating temperature range from T, = -55°C to +85°C, Vpp = 3.0V t0 3.6 V.

Table A-6. 3.3 Volt DC Characteristics

Symbol Parameter Test Conditions Min | Typ | Max | Units
Vbop | Supply Voltage 3.0 3.3 3.6 \Y
Vig | High-Level Input Voltage 2.0 \Y
VL | Low-Level Input Voltage 0.8 \%

_ loy = 6.8 MA, 0.7 x
V - .
oH | High-Level Output Voltage Vpp = Vpp (Min) Vop \%
Vv Low-Level Output Volt lo, =6.8mA, 04 |V
oL ow-Level Output Voltage Vop = Vpp (min) .
| High-Level Input Current | Vin = Vo 10 A
IH (absolute worst case, all buffers) | Vpp = Vpp (max) H
| Low-Level Input Current | VIN = Vss, 10 A
L | (absolute worst case, all buffers) | Vpp = Vpp (Max) H
High-Impedance State -
loz Ougtput Cpurrent x'N __\QDD O(rm\;‘:’(‘;” o oullup | 710 10 HA
(absolute worst case, all buffers) | * PP~ *DD » N0 puli-up

74

RabbitCore RCM3305/RCM3315

A.4 1/0O Buffer Sourcing and Sinking Limit

Unless otherwise specified, the Rabbit 1/0 buffers are capable of sourcing and sinking
6.8 mA of current per pin at full AC switching speed. Full AC switching assumes a
22.1 MHz CPU clock and capacitive loading on address and data lines of less than 100 pF

per pin. The absolute maximum operating voltage on all 1/O is 5.5 V.

Table A-7 shows the AC and DC output drive limits of the parallel 1/0 buffers when the
Rabbit 3000 is used in the RCM3305/RCM3315.

Table A-7. I/O Buffer Sourcing and Sinking Capability

Output Drive (Full AC Switching)
Sourcing/Sinking Limits

enabled

Pin Name (MA)
Sourcing Sinking
All data, address, and 1/0
lines with clock doubler 6.8 6.8

Under certain conditions, you can exceed the limits outlined in Table A-7. See the Rabbit

3000 Microprocessor User’s Manual for additional information.

User’s Manual

75

A.5 Jumper Configurations

Figure A-5 shows the jumper locations used to configure the various RCM3305/
RCM3315 options. The black square indicates pin 1.

RCM3305/RCM3315
Top Side Bottom Side
L]
s[]uP2
s[]uP3

Figure A-5. Location of RCM3305/RCM3315 Configurable Positions

76 RabbitCore RCM3305/RCM3315

Table A-8 lists the configuration options.

Table A-8. RCM3305/RCM3315 Jumper Configurations

Header Description Pins Connected ':Da;;%rﬁ/
1-2 | 128K/256K
JP1 Flash Memory Size
2-3 |512K X
1-2 | Reserved for future use
JP2 Flash Memory Bank Select
2-3 | Normal Mode X
1-2 | 128K/256K
JP3 | Data SRAM Size
2-3 |512K X
1-2 | TPO+
Ethernet or 1/0 Output
JP4
on Header J3 2_3 | PD3 X
1-2 | TPO-
Ethernet or 1/0 Output
JP5
on Header J3 2_3 | PD2 X
1-2 |ENET_INT
Ethernet or 1/0 Output
JP6
on Header J3 2_3 | PEO X
1-2 | TPI+
Ethernet or 1/0 Output
JP7
on Header J3 2_3 | PD7 X
1-2 | TPI-
Ethernet or 1/0 Output
JP8
on Header J3 2_3 | PD6 X

NOTE: The jumper connections are made using 0 Q surface-mounted resistors.

User’s Manual

A.6 Conformal Coating

The areas around the 32 kHz real-time clock crystal oscillator have had the Dow Corning
silicone-based 1-2620 conformal coating applied. The conformally coated area is shown
in Figure A-6. The conformal coating protects these high-impedance circuits from the
effects of moisture and contaminants over time.

Conformally coated
areas

RCM 3305/RCM3315 /
2 — OO

52

R3S
Rl
2 8 reymm
H Resmm

RCM33XX

Figure A-6. RCM3305/RCM3315 Areas Receiving Conformal Coating

Any components in the conformally coated area may be replaced using standard soldering
procedures for surface-mounted components. A new conformal coating should then be
applied to offer continuing protection against the effects of moisture and contaminants.

NOTE: For more information on conformal coatings, refer to Technical Note 303,
Conformal Coatings.

78 RabbitCore RCM3305/RCM3315

APPENDIX B. PROTOTYPING BOARD

Appendix B describes the features and accessories of the Proto-
typing Board.

User’s Manual 79

B.1 Introduction

The Prototyping Board included in the Development Kit makes it easy to connect an
RCM3305/RCM3315 module to a power supply and a PC workstation for development. It
also provides some basic 1/0 peripherals (RS-232, RS-485, a relay, LEDs, and switches),
as well as a prototyping area for more advanced hardware development.

For the most basic level of evaluation and development, the Prototyping Board can be
used without modification.

As you progress to more sophisticated experimentation and hardware development, modi-
fications and additions can be made to the board without modifying or damaging the
RCM3305/RCM3315 module itself.

The Prototyping Board is shown below in Figure B-1, with its main features identified.

Module

Extension Header |.

.

Voltage
Regulators

RCM3300/RCM3310 :

Module
Connectors

()
q ®

Module I B e O
Extension Header — [
User RS-232
LEDs Signals
Reset LCD/Keypad Relay User
Switch ser Core RS-485 Module LED
Switches LED Connections

H-Bridge Quadrature
Power Motor Driver Decoder
Terminals Terminals

LED

Through-Hole
Prototyping Area

Digital RabbitNet
Inputs

8 Serial Flash
B

Socket

v

+5V, 3.3V, and

uuuuuuuuu

3

GND Buses

Relay
Terminals

Figure B-1. Prototyping Board

80

RabbitCore RCM3305/RCM3315

B.1.1 Prototyping Board Features

e Power Connection—A power-supply jack and a 3-pin header are provided for con-
nection to the power supply. Note that the 3-pin header is symmetrical, with both outer
pins connected to ground and the center pin connected to the raw V+ input. The cable
of the AC adapter provided with the North American version of the Development Kit
ends in a plug that connects to the power-supply jack (J1). A header plug leading to
bare leads is provided for overseas customers to connect their power supply to the 3-pin
header (J2)—the center pin of J2 is always connected to the positive terminal, and
either edge pin is negative.

Users providing their own power supply should ensure that it delivers 8-30 V DCat 1 A.

e Regulated Power Supply—The raw DC voltage provided at the POWER IN jack is
routed to a 5 V switching voltage regulator, then to a separate 3.3 V linear regulator.
The regulators provide stable power to the RCM3305/RCM3315 module and the Proto-
typing Board. The voltage regulators will get warm while in use.

e Power LED—The power LED lights whenever power is connected to the Prototyping
Board.

e Core LED—The core LED lights whenever an RCM3305/RCM3315 module is
plugged in correctly on the Prototyping Board and the RCM3305/RCM3315 module is
not being reset.

e Relay LED—The relay LED lights whenever the Prototyping Board relay is energized.

e Reset Switch—A momentary-contact, normally open switch is connected directly to the
RCM3305/RCM3315’s /RESET _IN pin. Pressing the switch forces a hardware reset of
the system.

e |/O Switches and LEDs—Two momentary-contact, normally open switches are con-
nected to the PGO and PG1 pins of the RCM3305/RCM3315 module and may be read
as inputs by sample applications.

Four user LEDs (DS3-DS6) are connected to alternate 1/0 bus pins PAO-PA3 pins of
the RCM3305/RCM3315 module via U8, and may be driven as output indicators. PE7
and PG5 control the registers in U8 as shown in the sample applications.

e Prototyping Area—A generous prototyping area has been provided for the installation
of through-hole components. +3.3 V, +5 V, and Ground buses run along one edge of
this area. Several areas for surface-mount devices are also available. Each SMT pad is
connected to a hole designed to accept a 30 AWG solid wire.

e LCD/Keypad Module—Rabbit’s LCD/keypad module may be plugged in directly to
headers LCD1JA, LCD1JB, and LCD1JC. The signals on headers LCD1JB and
LCD1JC will be available only if the LCD/keypad module is plugged in to header
LCD1JA. Appendix C provides complete information for mounting and using the
LCD/keypad module.

User’s Manual 81

Module Extension Headers—The complete pin set of the RCM3305/RCM3315
module is duplicated at headers J8 and J9. Developers can solder wires directly into the
appropriate holes, or, for more flexible development, 2 x 17 header strips with a 0.1"
pitch can be soldered into place. See Figure B-4 for the header pinouts.

Digital I/0—Four digital inputs are available on screw-terminal header J6. See
Figure B-4 for the header pinouts.

RS-232—Two 3-wire serial ports or one 5-wire RS-232 serial port are available on the
Prototyping Board at screw-terminal header J14.

RS-485—0ne RS-485 serial port is available on the Prototyping Board at screw-termi-
nal header J14.

Quadrature Decoder—Four quadrature decoder inputs (PFO-PF3) from the Rabbit
3000 chip are available on screw-terminal header J5. See Figure B-4 for the header
pinouts.

H-Bridge Motor Driver—Two pairs of H-bridge motor drivers are supported using
screw-terminal headers J3 and J4 on the Prototyping Board for stepper-motor control.
See Figure B-4 for the header pinouts.

RabbitNet Port—One RS-422 RabbitNet port (shared with the serial flash interface) is
available to allow RabbitNet peripheral cards to be used with the Prototyping Board.

Serial Flash Interface—One serial flash interface (shared with the RabbitNet port) is
available to allow Rabbit’s SF1000 series serial flash to be used on the Prototyping
Board.

82

RabbitCore RCM3305/RCM3315

B.2 Mechanical Dimensions and Layout

Figure B-2 shows the mechanical dimensions and layout for the Prototyping Board.

ROOREL 7 =
‘G+ | #E00 HEHH:
c2 Tdr c3 D B QQE QQQ RABBITNET
00000000. 00000000 " oBERE gege
L2030 o2 oo g O
H-DRIVER H-DRIVER R9
00000000 00000000 i z
Cdri3 Cdr14 Ccs T
— - gg N)
EE;E&E
. X
=
£ £0 B8

RCM3300
PROTOTYPING
[BOARD

‘CORE MODULE
aNDEGND
% T e
r— p— O (e} '8(2
& crondo mEE3S OF I Qe gz
=l e o=l S¥5L Jo oL IE™ 23
= o o=l g o z<
(= -] Q Uxs © 3
o} " 3 2
Ee o8 soaw| 8 T] 88 gs
= B °al 8 oo 9
=] 8 J17
Jus
= -] o o
" § ' Si
= -] g
] C16 = = K1 - ’l g
Rl Rep R23 R24 e o= g 18§
= i] g Ee o= j (D ‘z’
b _ i
E == E. .5 - 'éi
= Eo oS 08 g
JA JB A
i = O g
g 2 g 2)|E

R25 R26 R27 R28 “2
CoTn [T D RsoldD D(?OOO

RELAYE

KEYPAD DISPLAY BOARD u:u';,
ool 5 8

m 3
I3
CD1JB cD1JC

5.25
(133)

Figure B-2. Prototyping Board Dimensions

NOTE: All measurements are in inches followed by millimeters enclosed in parentheses.

User’s Manual

83

Table B-1 lists the electrical, mechanical, and environmental specifications for the Proto-
typing Board.

Table B-1. Prototyping Board Specifications

Parameter Specification
Board Size 5.25" x 6.75" x 1.00" (133 mm x 171 mm x 25 mm)
Operating Temperature —20°C to +70°C
Humidity 5% to 95%, noncondensing
Input Voltage 8Vto30VDC
Maximum Current Draw 800 mA max. for +3.3 V supply,

(including user-added circuits) | 1 A total +3.3 V and +5 V combined

Backup Battery CR2032, 3 V lithium coin-type

4 inputs pulled up, £ 36 V DC,
switching threshold 0.9-2.3 V typical

Digital Inputs

4 sinking outputs,+30 V DC, 500 mA maximum per channel

Digital Outputs 8 CMOS-level outputs if stepper motor not installed

Relay SPDT relay, 500 mA @ 30 V
. ® two 3-wire RS-232 or one RS-232 with RTS/CTS
Serial Ports
® one RS-485
Other Serial Interfaces RabbitNet RS-422 port or serial flash interface
® stepper motor control
Other Interfaces ® (uadrature decoder
® | CD/keypad module
Seven LEDs
® one power on indicator
LEDs ® one RCM3305/RCM3315 module indicator

e four user-configurable LEDs
® one relay indicator

Throughhole, 0.1" spacing, additional space for SMT

Prototyping Area components

® two 2 x 17, 2 mm pitch sockets for RCM3305/RCM3315
module

® one 2 x5, 2 mm pitch socket for serial flash

Connectors ® six screw-terminal headers for serial ports, digital inputs,
stepper motor control, quadrature decoder, and relay
contacts

® one RJ-45 RabbitNet jack

Standoffs/Spacers 7, accept 4-40 x 1/2 screws

84 RabbitCore RCM3305/RCM3315

B.3 Power Supply

The RCM3305/RCM3315 requires a regulated 3.15 V to 3.45 V DC power source to oper-
ate. Depending on the amount of current required by the application, different regulators
can be used to supply this voltage.

The Prototyping Board has an onboard +5 V switching power regulator from which a
+3.3 V linear regulator draws its supply. Thus both +5 V and +3.3 V are available on the

Prototyping Board.

The Prototyping Board itself is protected against reverse polarity by a diode at D1 as

shown in Figure B-3.

,
2] Ppen

POWER |
IN

Ll
3 ¢ DL4003 l c1
147 uF

u1

LM2575

SWITCHING POWER REGULATOR

LINEAR POWER
oy REGULATOR 55y
LM1117

U4 2

L

‘\} »l

330 uH
L1

L

3
Lo L
330pF ——10pF L 10 uF
L]

Figure B-3. Prototyping Board Power Supply

User’s Manual

85

B.4 Using the Prototyping Board

The Prototyping Board is actually both a demonstration board and a prototyping board. As
a demonstration board, it can be used with the sample programs to demonstrate the func-
tionality of the RCM3305/RCM3315 right out of the box without any modifications.

The Prototyping Board pinouts are shown in Figure B-4.

Stepper-Motor Quadrature Digital
Control Decoder Inputs

g

8
VMAT
MDA4
MDA3
MDA2
MDA1
VMA+
VMB+
MDB4
MDB3
MDB2
MDB1
VMB-

.
GND PC1_RxD
S I o9 vee PFO_CLK_RES
oooooooo PCO_TXD PD3_RNET_/RTS
PD2_CE PD6_/CTRL
PD4_DCD PD5_/CTS
”
4]
Ao rqmora®ms oo~
862x2238083838808
EEE R R
. 5

f [No2 RELAY
H [nci [conTacTs

Digital H | com1
Outputs &

(sinking)

ND
HOUT4
HOUT3

g [no1
| ps7
&0 |RELAY
LED

sz DS3 DS4 DS5 DS6,
L 1%

Core User

LED LEDs Rs-232 Rs-485

Figure B-4. Prototyping Board Pinout

86 RabbitCore RCM3305/RCM3315

The Prototyping Board comes with the basic components necessary to demonstrate the
operation of the RCM3305/RCM3315. Four user LEDs (DS3-DS6) are connected to
alternate 1/0 bus pins PAO—-PA3 pins of the RCM3305/RCM3315 module via U8, and may
be driven as output indicators when controlled by PE7 and PG5 as shown in the sample
applications. Two switches (S2 and S3) are connected to PGO and PG1 to demonstrate the
interface to the Rabbit 3000 microprocessor. Reset switch S1 is the hardware reset for the
RCM3305/RCM3315.

The Prototyping Board provides the user with RCM3305/RCM3315 connection points
brought out conveniently to labeled points at J8 and J9 on the Prototyping Board. Although
locations J8 and J9 are unstuffed, 2 x 17 headers are included in the bag of parts.

RS-232 and RS-485 signals are available on screw-terminal header J14, quadrature decoder
inputs are available on screw-terminal header J5, and digital inputs are available on screw-
terminal header J6. A 1 x 5 header strip from the bag of parts may be installed at J12 for four
sinking digital outputs. The clocked Serial Port B signals from the RCM3305/RCM3315
are used for the serial flash, and cannot be accessed via header J13 on the Prototyping
Board.

If you don’t plan to use the LCD/keypad module, additional signals may be brought outon 1 x 5
and 1 x 8 headers from the bag of parts that you install at J15 and J16. If you don’t plan to use
the stepper-motor control option, additional CMOS outputs are available via a 1 x 8 header
that you install at J10.

There is a through-hole prototyping space available on the Prototyping Board. The holes in
the prototyping area are spaced at 0.1" (2.5 mm). +3.3 V, +5 V, and GND traces run along
one edges of the prototyping area. Small to medium circuits can be prototyped using point-
to-point wiring with 20 to 30 AWG wire between the prototyping area, the +3.3 V, +5 'V, and
GND traces, and the surrounding area where surface-mount components may be installed.
Small holes are provided around the surface-mounted components that may be installed
around the prototyping area.

B.4.1 Adding Other Components

There are two sets of pads for 6-pin, 16-pin, and 28-pin devices that can be used for sur-
face-mount prototyping devices. There are also pads that can be used for SMT resistors
and capacitors in an 0805 SMT package. Each component has every one of its pin pads
connected to a hole in which a 30 AWG wire can be soldered (standard wire wrap wire can
be soldered in for point-to-point wiring on the Prototyping Board). Because the traces are
very thin, carefully determine which set of holes is connected to which surface-mount pad.

User’s Manual 87

B.4.2 Digital /0
B.4.2.1 Digital Inputs

The Prototyping Board has four digital inputs, INO-IN3, each of which is protected over a
range of —36 V to +36 V. The inputs are pulled up to +3.3 V as shown in Figure B-5.

+3.3V

27 kQ

22 kQ

GND

.||_

Figure B-5. Prototyping Board Digital Inputs

The four quadrature decoder inputs on screw-terminal header J5 may be used as inputs
IN4—IN7. To use the PFO signal from the Rabbit microprocessor, which goes to QD1B,
remember to reconfigure the jumper on header JP3 to jumper pins 1-2.

The actual switching threshold is between 0.9 V and 2.3 V. Anything below this value is a
logic 0, and anything above is a logic 1.

The digital inputs are each fully protected over a range of -36 V to +36 V, and can handle
short spikes of £40 V.

88 RabbitCore RCM3305/RCM3315

B.4.3 CMOS Digital Outputs

If the stepper-motor option is not used, eight CMOS-level digital outputs are available at
J10, and can each handle up to 25 mA.

B.4.4 Sinking Digital Outputs

Four sinking digital outputs shared with LEDs DS3—-DS6 are available at J12, and can each
handle up to 500 mA. Figure B-6 shows a wiring diagram for a typical sinking output.

Vce
Y
ADD DIODE
330 Q WHEN LOAD
IS INDUCTIVE
ouT E LOAD
1kQ + External
Power
- Supply
GND

Figure B-6. Prototyping Board Sinking Digital Outputs

B.4.5 Relay Outputs

Figure B-7 shows the contact connections for the relay on the Prototyping Board. A diode
across the coil provides a return path for inductive spikes, and snubbers across the relay
contacts protect the relay contacts from inductive spikes.

1 2 3 4 5 6
1 8§ COM1

| o 7 NO1 47 Q 100 nF

Z l} 9 NC1 A
*® 10 3 COM2 47Q 100 nF
= l}o 4 NO2 470 100 nF

2 NC2 AANA

470
100 nF

Figure B-7. Prototyping Board Relay Output Contact Connections

The relay is driven by pin PA4 of the RCM3305/RCM3315 module via U8, and is con-
trolled by PE7 and PG5 as shown in the sample applications.

User’s Manual 89

B.4.6 Serial Communication

The Prototyping Board allows you to access four of the serial ports from the RCM3305/
RCM3315 module. Table B-2 summarizes the configuration options.

Table B-2. Prototyping Board Serial Port Configurations

Serial Port Signal Header Configured via Default Use Alternate Use

C J14 IP5” RS-485 —
37 RabbitNet

5 3 (PD2=1) Rabbit 3000

SF1000 quadrature decoder

i (PD2 = 0)

E J14 — RS-232 —

F J14 — RS-232 —

* RS-485 termination and bias resistors are configured via header JP5.

Serial Port D is configured in software either to allow J7 to be used as a RabbitNet port or
to allow J11 to be used as a serial interface for the SF1000 series serial flash.

90 RabbitCore RCM3305/RCM3315

B.4.6.1 RS-232

RS-232 serial communication on the Prototyping Board is supported by an RS-232 trans-
ceiver installed at U9. This transceiver provides the voltage output, slew rate, and input
voltage immunity required to meet the RS-232 serial communication protocol. Basically,
the chip translates the Rabbit 3000’s signals to RS-232 signal levels. Note that the polarity
is reversed in an RS-232 circuit so that a +5 V output becomes approximately -10 V and 0
V is output as +10 V. The RS-232 transceiver also provides the proper line loading for
reliable communication.

RS-232 can be used effectively at the RCM3305/RCM3315 module’s maximum baud rate
for distances of up to 15 m.

RS-232 flow control on an RS-232 port is initiated in software using the
serXflowcontrolon () function call from LIB\RS232.LIB, where X is the serial port
(E or F). The locations of the flow control lines are specified using a set of five macros.

SERX RTS PORT—Data register for the parallel port that the RTS line is on (e.g., PGDR).

SERX RTS SHADOW—Shadow register for the RTS line's parallel port (e.g., PGDRShadow).
SERX RTS_ BIT—The bit number for the RTS line.

SERX CTS_ PORT—Data register for the parallel port that the CTS line is on (e.g., PCDRShadow).
SERX CTS_BIT—The bit number for the CTS line.

Standard 3-wire RS-232 communication using Serial Ports E and F is illustrated in the fol-
lowing sample code.

#define EINBUFSIZE 15 // set size of circular buffers in bytes
#define EOUTBUFSIZE 15

#define FINBUFSIZE 15
#define FOUTBUFSIZE 15

#define MYBAUD 115200 // set baud rate
#endif

main () {
serEopen (_ MYBAUD) ; // open Serial Ports E and F
serFopen (_ MYBAUD) ;
serEwrFlush () ; // flush their input and transmit buffers
serErdFlush() ;
serFwrFlush() ;
serFrdFlush() ;
serEclose(MYBAUD); // close Serial Ports C and D
serFclose (_ MYBAUD) ;

User’s Manual 91

B.4.6.2 RS-485

The Prototyping Board has one RS-485 serial channel, which is connected to the Rabbit
3000 Serial Port C through an RS-485 transceiver. The half-duplex communication uses
an output from PD7 on the Rabbit 3000 to control the transmit enable on the communica-
tion line. Using this scheme a strict master/slave relationship must exist between devices
to insure that no two devices attempt to drive the bus simultaneously.

Serial Port C is configured in software for RS-485 as follows.

#define ser485open serCopen
#define ser485close serCclose
#define ser485wrFlush serCwrFlush
#define ser485rdFlush serCrdFlush
#define ser485putc serCputc
#define ser485getc serCgetc

#define CINBUFSIZE 15
#define COUTBUFSIZE 15

#ifndef 485BAUD

#define 485BAUD 115200

#endif
The configuration shown above is based on circular buffers. RS-485 configuration may
also be done using functions from the pPACKET . LIB library.

The Prototyping Boards with RCM3305/RCM3315 modules installed can be used in an
RS-485 multidrop network spanning up to 1200 m (4000 ft), and there can be as many as
32 attached devices. Connect the 485+ to 485+ and 485— to 485- using single twisted-pair
wires as shown in Figure B-8. Note that a common ground is recommended.

/}fs:cs:ﬁ&:cx::S::&.'\ 'ﬁ=c>:<>:<>=s=<>a?

| + N | + N | + N
v Y = 0 v = v Y =
230 P30 P30
L L r o

Figure B-8. Multidrop Network

92 RabbitCore RCM3305/RCM3315

The Prototyping Board comes with a 220 Q termination resistor and two 681 Q bias resis-
tors installed and enabled with jumpers across pins 1-2 and 5-6 on header JP5, as shown
in Figure B-9.

L e i)
oo, @cocose

2R53

y s onfiiny S
OemOE g o F

00000000= 00000000 2ERE
uz U3 R8 g C6
L293D 293D i} i

H-DRIVER H-DRIVER RY

00000000y OO000000
T Jres COri Codes

R1I0[CT]
" O

E:HCM
Cis

SERIAL FLASH/
R20 MODEM

R18
[T
R19
[umil,
i}

sy
:v:|

E PR3 16
s, A F o] i
xade o +33V

485+
ias > R36
JP5 bias
u10 |, 1 681 Q

10101610.070.0.6]6.6.6.0.6.6.0 ¢

O O O

Qs

[ﬂ el .TI
core D%D

S3
DS2 DS3 DS4

Figure B-9. RS-485 Termination and Bias Resistors

For best performance, the termination resistors in a multidrop network should be enabled
only on the end nodes of the network, but not on the intervening nodes. Jumpers on boards
whose termination resistors are not enabled may be stored across pins 1-3 and 4-6 of
header JP5.

B.4.7 RabbitNet Ports

The RJ-45 jack labeled RabbitNet is a clocked SPI RS-422 serial 1/0 expansion port for
use with RabbitNet peripheral boards. The RabbitNet jack does not support Ethernet con-
nections. Header JP3 must have pins 2-3 jumpered when using the RabbitNet port.

The RabbitNet port is enabled in software by setting PD2 = 1. Note that the RabbitNet
port and the J11 interface cannot be used simultaneously.

User’s Manual 93

B.4.8 Other Prototyping Board Modules

An optional LCD/keypad module is available that can be mounted on the Prototyping
Board. The signals on headers LCD1JB and LCD1JC will be available only if the LCD/
keypad module is installed. Refer to Appendix C, “LCD/Keypad Module,” for complete
information.

Rabbit’s SF1000 series serial flash may be installed in the socket labeled J11. The J11
interface is enabled in software by setting PD2 = 0. Header JP3 must have pins 2-3 jum-
pered when using the J11 interface. Note that the RabbitNet port and the J11 interface
cannot be used simultaneously.

B.4.9 Quadrature Decoder

Four quadrature decoder inputs are available on screw-terminal header J5. To use the PFO
input from the Rabbit microprocessor, which goes to the QD1B input, remember to recon-
figure the jumper on header JP3 to jumper pins 1-2.

Additional information on the use of the quadrature decoders on Parallel Port F is pro-
vided in the Rabbit 3000 Microprocessor User’s Manual.

B.4.10 Stepper-Motor Control

The Prototyping Board can be used to demonstrate the use of the RCM3305/RCM3315 to
control a stepper motor. Stepper motor control typically directs moves in two orthogonal
directions, and so two sets of stepper-motor control circuits are provided for via screw-
terminal headers J3 and J4.

In order to use the stepper-motor control, install two Texas Instruments L293DN chips at
locations U2 and U3 (shown in Figure B-10). These chips are readily available from your
favorite electronics parts source, and may be purchased through Rabbit’s \Web store as part
number 660-0205.

Figure B-10. Install Four-Channel Push-Pull Driver Chips

94 RabbitCore RCM3305/RCM3315

http://www.rabbit.com/store/

Figure B-11 shows the stepper-motor driver circuit.

U2 J3
VMA+
,,,,,, INT 2| P~ s OUT1 MDA1
PF4_ ENABLE1 1 W
,,,,,, IN2 7 IJ s OUT2 MDA2
l/
,,,,,, IN3 10| PN 1__OUT3 MDA3
PF5 ENABLE2 o W
o IN4 15 IJ 14 OUT4 MDA4
,,,,,, >
€28292¢ VMA-
RTRTR TR L293DN
U3 J4
VMB-
,,,,,, INT 2| P~ s OUT1 MDB1
PF6_ ENABLE1 1
,,,,,, IN2_ 7 s OUT2 MDB2
l/
,,,,,, IN3 10f [N 1 OUT3 MDB3
PE7._ ENABLE2 o
o IN4 15 s OUT4 MDB4
,,,,,, >
% % - ,Cf: VMB+
~ __ VMB?t |
N[N N L293DN

MOTOR +

MOTOR -

MOTOR +

MOTOR —

Figure B-11. Stepper-Motor Driver Circuit

The stepper motor(s) can be powered either from the onboard power supply or from an
external power based on the jumper settings on headers JP1 and JP2.

Table B-3. Stepper Motor Power-Supply Options

Header Pins Connected Factory
Default
1-2 %
9-10 Onboard power supply to U2
JP1
3-4
7-8 External power supply to U2
1-2 %
9-10 Onboard power supply to U3
JP2
3-4
7-8 External power supply to U3

User’s Manual

95

B.5 Prototyping Board Jumper Configurations

Figure B-12 shows the header locations used to configure the various Prototyping Board
options via jumpers.

JP1 JP2

L}
DJP4 Battery)
L}

JP5

Figure B-12. Location of Prototyping Board Configurable Positions

96 RabbitCore RCM3305/RCM3315

Table B-4 lists the configuration options using jumpers.

Table B-4. Prototyping Board Jumper Configurations

Header Description Pins Connected FDZ(;;?;){
1-2
9-10 Onboard power supply X
Stepper Motor Power-Supply -
JP1 .
Options (U2) 3_4
7_8 External power supply
1-2
9_10 | Onboard power supply X
Stepper Motor Power-Supply B
JP2 .
Options (U3) 3_4
7_8 External power supply
1-2 | Quadrature decoder inputs enabled
JP3 | PFO Option RabbitNet/Serial Flash interface
2-3 X
enabled
RCM3305/RCM3315 Power RCM3305/RCM3315 powered via
JP4 2-3 : X
Supply Prototyping Board
1-2 | Bias and termination resistors %
5-6 |connected
P5 RS-485 Bias and Termination
Resistors 1-3 Bias and termination resistors not
46 connected (parking position for
jumpers)
User’s Manual 97

B.6 Use of Rabbit 3000 Parallel Ports
Table B-5 lists the Rabbit 3000 parallel ports and their use for the Prototyping Board.

Table B-5. Prototyping Board Use of Rabbit 3000 Parallel Ports

Port I/O Use Initial State
PAO-PA3 Data Bus LCD/keypad module, motor driver, LEDs, J7 Active high
PA4 Data Bus LCD/keypad module, motor driver, relay, J7 Active high
PA5-PA7 Data Bus LCD/keypad module, mator control, J7 Active high
PBO Input CLKB, Serial Flash SCLK High
PB1 Input CLKA Programming Port High
(when not driven by CLKA)
PB2-PB5 Address Bus | LCD/keypad module, J6 High
PB6-PB7 Address Bus | J6 High
PCO Output TXD SPI, serial flash, J7 High (disabled)
Serial Port D
PC1 Input RXD SPI, serial flash, J7 High (disabled)
PC2 Output TXC RS-485 J7 High (disabled)
Serial Port C
PC3 Input RXC RS-485 J7 High (disabled)
PC4 Output TXB RCM3305 serial flash . High (disabled)
Serial Port B - -
PC5 Input RXB RCM3305 serial flash High (disabled)
PC6 Output TXA Programming Port High
Serial Port A
PC7 Input RXA Programming Port High
PDOT Output RCM3305 USR LED High
pD1t Output RCM3305 onboard serial flash select High (disabled)
PD2 Output SPI, serial flash, J7 Low (SPI disabled)
PD3 Output SPI, serial flash, J7 High (SPI CS disabled)
PD4-PD6 Input Serial flash, J7 High (disabled)
PD7 Output RS-485 Tx enable Low (disabled)
PEO-PE1 Input INO-IN1, J6 High
pE2T Output Ethernet AEN Low (disabled)
PE3 Output Motor driver A clock pulse Low (disabled)
PE4-PE5 Input IN2-IN3, J6 High
PE6 Output LCD/keypad module High (disabled)
PE7 Output Motor driver B clock pulse High (disabled)

98

RabbitCore RCM3305/RCM3315

Table B-5. Prototyping Board Use of Rabbit 3000 Parallel Ports (continued)

Port I/O Use Initial State
PFO Input SPI, serial flash, quadrature decoder, J7 High
PF1-PF3 Input Quadrature decoder, J7 High
PF4-PF7 Output Motor 1-4 control Low (disabled)
PGO Input Switch S1 High
PG1 Input Switch S2 High
PG2 Input TXF RS-232 High (disabled)
Serial Port F
PG3 Input RXF RS-232 High (disabled)
PG4 Output Motor driver A enable High (disabled)
PG5 Output Motor driver B enable High (disabled)
PG6 Input TXE RS-232 High (disabled)
Serial Port E
PG7 Input RXE RS-232 High (disabled)

* Serial Port B is not available on the Prototyping Board when the RCM3305/RCM3315 is
plugged in.

t PDO, PD1, and PE2 are not normally available on the Prototyping Board because they are not
brought out on RCM3305 headers J3 and J4.

User’s Manual

100 RabbitCore RCM3305/RCM3315

APPENDIX C. LCD/KEYPAD MODULE

An optional LCD/keypad is available for the Prototyping Board.
Appendix C describes the LCD/keypad and provides the soft-
ware function calls to make full use of the LCD/keypad.

C.1 Specifications

Two optional LCD/keypad modules—with or without a panel-mounted NEMA 4 water-
resistant bezel—are available for use with the Prototyping Board. They are shown in
Figure C-1.

LCD/Keypad Modules

0O @0@0@@000 eeoco0o0o0

gonan
20

gofn
- N+ B

Figure C-1. LCD/Keypad Module Versions

Only the version without the bezel can mount directly on the Prototyping Board; if you
have the version with a bezel, you will have to remove the bezel to be able to mount the
LCD/keypad module on the Prototyping Board. Either version of the LCD/keypad module
can be installed at a remote location up to 60 cm (24") away. Contact your Rabbit sales
representative or your authorized for further assistance in purchasing an LCD/keypad
module.

User’s Manual 101

Mounting hardware and a 60 cm (24") extension cable are also available for the LCD/
keypad module through your sales representative or authorized distributor.

Table C-1 lists the electrical, mechanical, and environmental specifications for the LCD/
keypad module.

Table C-1. LCD/Keypad Specifications

Parameter Specification
T o
Bezel Size 4.50" x 3.60" x 0.30"

(114 mm x 91 mm % 7.6 mm)

Temperature Storage Ranges 40°C 1o 185°C
Humidity 5% to 95%, noncondensing
Power Consumption 1.5 W maximum”
Connections Connects to high-rise header sockets on the Prototyping Board
LCD Panel Size 122 x 32 graphic display
Keypad 7-key keypad
LEDs Seven user-programmable LEDs

* The backlight adds approximately 650 mW to the power consumption.

The LCD/keypad module has 0.1"

IDC headers at J1, J2, and J3 for L l.0.100
physical connection to other boards or 29
ribbon cables. Figure C-2 shows the
LCD/keypad module footprint. These P
values are relative to one of the T R
mounting holes. gs
NOTE: All measurements are in ¥ D S,
inches followed by millimeters G
enclosed in parentheses. All dimen- 52
sions have a manufacturing toler- g8e v
ance of £0.01" (0.25 mm). -3
0.200 |__,|.0.500,
(5.1) (12.7)
1.450
(36.8)
2.200
(55.9)

Figure C-2. User Board Footprint for
LCD/Keypad Module

102 RabbitCore RCM3305/RCM3315

C.2 Contrast Adjustments for All LCD/Keypad Modules

Starting in 2005, LCD/keypad modules were factory-configured to optimize their contrast
based on the voltage of the system they would be used in. Be sure to select a KDU3V
LCD/keypad module for use with the Prototyping Board for the RCM3305/RCM3315 —
these modules operate at 3.3 V. You may adjust the contrast using the potentiometer at R2
as shown in Figure C-3. LCD/keypad modules configured for 5 V may be used with the
3.3 V RCM3300 Prototyping Board, but the backlight will be dim.

LCD/Keypad Module Jumper Configurations

L Pins Factory
Header Description Connected Default
28V 12 X
75 33V 34
5V nc.
Contrast

Adjustment [

om OmR OB

R13 R14

il
&

T or §06 8Ol

om OmR OB

on

o O

(0]
=0

Hd E

5o [}
Q8

Part No. 101-0541

DISPLAY
BOARD

O

Figure C-3. LCD/Keypad Module Contrast Adjustments

You can set the contrast on the LCD display of pre-2005 LCD/keypad modules by adjust-
ing the potentiometer at R2 or by setting the voltage for 3.3 V by connecting the jumper
across pins 3—4 on header J5 as shown in Figure C-3. Only one of these two options is
available on these LCD/keypad modules.

NOTE: Older LCD/keypad modules that do not have a header at J5 or a contrast adjust-
ment potentiometer at R2 are limited to operate only at 5 V, and will not work with the
Prototyping Board for the RCM3305/RCM3315. The older LCD/keypad modules are
no longer being sold.

User’s Manual 103

C.3 Keypad Labeling

The keypad may be labeled according to your needs. A template is provided in Figure C-4
to allow you to design your own keypad label insert.

(28)

Figure C-4. Keypad Template

To replace the keypad legend, remove the old legend and insert your new legend prepared
according to the template in Figure C-4. The keypad legend is located under the blue key-
pad matte, and is accessible from the left only as shown in Figure C-5.

Keypad label is located

under the blue keypad matte. O 000000 O

<JoRvl»
B00

Figure C-5. Removing and Inserting Keypad Label

)

The sample program KEYBASIC.C in the 122x32 1x7 folder in SAMPLES\LCD KEYPAD
shows how to reconfigure the keypad for different applications.

104 RabbitCore RCM3305/RCM3315

C.4 Header Pinouts
Figure C-6 shows the pinouts for the LCD/keypad module.

J1

PE7 |= o |/RES

DB7B |0 o | DB6B
+5BKLT (o m| VCC

DB5B | o o | DB4B
DB3B |o o | DB2B
DB1B |o o | DBOB
AOB [0 o|A1B

A2B [0 o|A3B

GND |o o | GND
GND |o o| LED7
LED6 |o o | LED5S
LED4 |o o | LED3
LED2 |o o | LED1

GND
DB6B
DB4B
DB2B
DBOB
AOB |Z ©| A1B

J3 J2

A2B |- B | A3B
PE7 |© = |/RES

GND | o |GND
+5BKLT |C W |VCC

GND | = ©|LED7
LED6 | & O |LED5S
LED4 |o O |LED3

LED2 | o o |LED1

GND |o ©
DB7B |0 ©
DB5B |0 O
DB3B |0 ©
DB1B |0 ©

Figure C-6. LCD/Keypad Module Pinouts

C.4.1 1/O Address Assignments

The LCD and keypad on the LCD/keypad module are addressed by the /CS strobe as
explained in Table C-2.

Table C-2. LCD/Keypad Module Address Assignment

Address Function
0xE000 Device select base address (/CS)
OXExx0-0xExx7 LCD control
OXExx8 LED enable
OXExx9 Not used
OXExxA 7-key keypad
OXExxB (bits 0-6) 7-LED driver
OxExxB (bit 7) LCD backlight on/off
OXExxC-ExxF Not used

User’s Manual

105

C.5 Mounting LCD/Keypad Module on the Prototyping Board

Install the LCD/keypad module on header sockets LCD1JA, LCD1JB, and LCD1JC of the
Prototyping Board as shown in Figure C-7. Be careful to align the pins over the headers,
and do not bend them as you press down to mate the LCD/keypad module with the Proto-

typing Board.

RCM3300
PROTOTYPING

[BOARD [

Figure C-7. Install LCD/Keypad Module on Prototyping Board

106

RabbitCore RCM3305/RCM3315

C.6 Bezel-Mount Installation

This section describes and illustrates how to bezel-mount the LCD/keypad module
designed for remote installation. Follow these steps for bezel-mount installation.

1. Cut mounting holes in the mounting panel in accordance with the recommended dimen-
sions in Figure C-8, then use the bezel faceplate to mount the LCD/keypad module onto

the panel.

0125 D, 4x
€/(3) \
JR— ‘ - 7®7 —-
\‘ ‘/
AN //
AN s
AN //
AN /
AN /
AN ,
AN /
AN ;
AN 7
AN s
O/\
<
cuTtout S
// \
, AN
// \
, AN
// \
s AN
// \
s AN
// \
/ AN
//‘ \
*éﬁ ——————————— — S
. 0.230 | 85;‘
(5.8) -
2.870 |
(72.9)
3.100
(78.8)

Figure C-8. Recommended Cutout Dimensions

2. Carefully “drop in” the LCD/keypad module with the bezel and gasket attached.

User’s Manual 107

3. Fasten the unit with the four 4-40 screws and washers included with the LCD/keypad
module. If your panel is thick, use a 4-40 screw that is approximately 3/16" (5 mm)
longer than the thickness of the panel.

/7 Bezel/Gasket

Om ON ON Om Om Om Om
R R R RS pe R R
BDUECDEMD 200 ZTD

Figure C-9. LCD/Keypad Module Mounted in Panel (rear view)

Carefully tighten the screws until the gasket is compressed and the plastic bezel face-
plate is touching the panel.

Do not tighten each screw fully before moving on to the next screw. Apply only one or
two turns to each screw in sequence until all are tightened manually as far as they can
be so that the gasket is compressed and the plastic bezel faceplate is touching the panel.

108 RabbitCore RCM3305/RCM3315

C.6.1 Connect the LCD/Keypad Module to Your Prototyping Board

The LCD/keypad module can be located as far as 2 ft. (60 cm) away from the Prototyping
Board, and is connected via a ribbon cable as shown in Figure C-10.

aaaaaa

i g
L '500 000 4,0 i
X R ke = S

5 - 2l S

L 62

00000000 GO0 000

AGED VSO
QAU AR

auvos|
ONIALOLONd|
00gEN0Y

ZHE2 B2
w3aow
/HSY1d
RCES] Ej
Ear gg
L=
IIIE\'H

EEEEEE

.9Cdo oCdg, - oCdg, 000 OOOOO
o[]oo[]o o[]o
]

"9EJo oCAS"

i em——— | e——

Figure C-10. Connecting LCD/Keypad Module to Prototyping Board

Note the locations and connections relative to pin 1 on both the Prototyping Board and the
LCD/keypad module.

Rabbit offers 2 ft. (60 cm) extension cables. Contact your authorized distributor or a Rab-
bitsales representative for more information.

User’s Manual 109

C.7 Sample Programs

Sample programs illustrating the use of the LCD/keypad module with the Prototyping
Board are provided in the SAMPLES\RCM3300\LCD KEYPAD folder.

These sample programs use the external 1/0 bus on the Rabbit 3000 chip, and so the
#define PORTA AUX IO lineis already included in the sample programs.

Each sample program has comments that describe the purpose and function of the pro-
gram. Follow the instructions at the beginning of the sample program. To run a sample
program, open it with the File menu (if it is not still open), then compile and run it by
pressing F9. The RCM3305/RCM3315 must be connected to a PC using the programming
cable as described in Chapter 2, “Getting Started.”

Complete information on Dynamic C is provided in the Dynamic C User’s Manual.

e KEYPADTOLED.C—This program demonstrates the use of the external 1/0 bus. The
program will light up an LED on the LCD/keypad module and will display a message
on the LCD when a key press is detected. The DS3, DS4, DS5, and DS6 LEDs on the
Prototyping Board will also light up.

e LCDKEYFUN.C—This program demonstrates how to draw primitive features from the
graphic library (lines, circles, polygons), and also demonstrates the keypad with the key
release option.

e SWITCHTOLCD.C—This program demonstrates the use of the external 1/0 bus. The
program will light up an LED on the LCD/keypad module and will display a message
on the LCD when a switch press is detected. The DS1 and DS2 LEDs on the Prototyp-
ing Board will also light up.

Additional sample programs are available in the SAMPLES\LCD KEYPAD\122x32 1x7
folder.

110 RabbitCore RCM3305/RCM3315

C.8 LCD/Keypad Module Function Calls

When mounted on the Prototyping Board, the LCD/keypad module uses the external 1/0
bus on the Rabbit 3000 chip. Remember to add the line

#define PORTA AUX IO

to the beginning of any programs using the external 1/0O bus.
C.8.1 LCD/Keypad Module Initialization

The function used to initialize the LCD/keypad module can be found in the Dynamic C
LIB\DISPLAYS\LCD122KEY7.LIB library.

void dispInit();

Initializes the LCD/keypad module. The keypad is set up using keypadDef () or keyConfig () after
this function call.

RETURN VALUE
None.

C.8.2 LEDs

When power is applied to the LCD/keypad module for the first time, the red LED (DS1)
will come on, indicating that power is being applied to the LCD/keypad module. The red
LED is turned off when the brdInit function executes.

One function is available to control the LEDs, and can be found in the Dynamic C nis\
DISPLAYS\LCD122KEY7.LIB library.

void displedOut (int led, int wvalue);

LED on/off control. This function will only work when the LCD/keypad module is installed on the
RCM3700 Prototyping Board.

PARAMETERS
led is the LED to control.

0=LED DS1
1=LED DS2
2=LED DS3
3=LED DS4
4 =LED DS5
5=LED DS6
6 = LED DS7

value is the value used to control whether the LED is on or off (0 or 1).
0 = off
1l=on

RETURN VALUE
None.

User’s Manual 111

C.8.3 LCD Display

The functions used to control the LCD display are contained in the GrRaPHIC.LIB library
located in the Dynamic C LIB\DISPLAYS\GRAPHIC library folder. When x and y coordi-
nates on the display screen are specified, x can range from 0 to 121, and y can range from
0 to 31. These numbers represent pixels from the top left corner of the display.

void glInit(void) ;

Initializes the display devices, clears the screen.

RETURN VALUE
None.

SEE ALSO

glDispOnOFF, glBacklight, glSetContrast, glPlotDot, glBlock, glPlotDot,
glPlotPolygon, glPlotCircle, glHScroll, glVScroll, glXFontInit, glPrintf,
glPutChar, glSetBrushType, glBufflock, glBuffUnlock, glPlotLine

void glBackLight (int onOff) ;

Turns the display backlight on or off.
PARAMETER
onOf £ turns the backlight on or off

1—turn the backlight on
0—turn the backlight off

RETURN VALUE
None.

SEE ALSO
glInit, glDispOnoff, glSetContrast

void glDispOnOff (int onOff) ;

Sets the LCD screen on or off. Data will not be cleared from the screen.
PARAMETER
onOf f turns the LCD screen on or off

1—turn the LCD screen on
0—turn the LCD screen off

RETURN VALUE
None.

SEE ALSO
glInit, glSetContrast, glBackLight

112 RabbitCore RCM3305/RCM3315

void glSetContrast (unsigned level) ;

Sets display contrast.

NOTE: This function is not used with the LCD/keypad module since the support circuits
are not available on the LCD/keypad module.

void glFillScreen(int pattern);

Fills the LCD display screen with a pattern.

PARAMETER
The screen will be set to all black if pattern is OXFF, all white if pattern is 0x00, and vertical stripes
for any other pattern.

RETURN VALUE
None.

SEE ALSO
glBlock, glBlankScreen, glPlotPolygon, glPlotCircle

void glBlankScreen (void) ;

Blanks the LCD display screen (sets LCD display screen to white).

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlock, glPlotPolygon, glPlotCircle

void glFillRegion (int left, int top, int width,
int height, char pattern);

Fills a rectangular block in the LCD buffer with the pattern specified. Any portion of the block that is
outside the LCD display area will be clipped.

PARAMETERS
left is the x coordinate of the top left corner of the block.
top is the y coordinate of the top left corner of the block.
width is the width of the block.
height is the height of the block.
pattern is the bit pattern to display (all black if pattern is OxFF, all white if pattern is 0x00, and
vertical stripes for any other pattern).

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlankScreen, glBlock, glBlankRegion

User’s Manual 113

void glFastFillRegion(int left, int top, int width,
int height, char pattern);

Fills a rectangular block in the LCD buffer with the pattern specified. The block left and width parame-
ters must be byte-aligned. Any portion of the block that is outside the LCD display area will be clipped.

PARAMETERS
left is the x coordinate of the top left corner of the block.
top is the y coordinate of the top left corner of the block.
width is the width of the block.
height is the height of the block.
pattern is the bit pattern to display (all black if pattern is OxFF, all white if pattern is 0x00, and
vertical stripes for any other pattern).

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlankScreen, glBlock, glBlankRegion

void glBlankRegion (int left, int top, int width,
int height) ;

Clears a region on the LCD display. The block left and width parameters must be byte-aligned. Any por-
tion of the block that is outside the LCD display area will be clipped.

PARAMETERS
left is the x coordinate of the top left corner of the block (x must be evenly divisible by 8).

top is the y coordinate of the top left corner of the block.
width is the width of the block (must be evenly divisible by 8).
height is the height of the block.

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlankScreen, glBlock

114 RabbitCore RCM3305/RCM3315

void glBlock(int left, int top, int width,
int height) ;

Draws a rectangular block in the page buffer and on the LCD if the buffer is unlocked. Any portion of the
block that is outside the LCD display area will be clipped.

PARAMETERS
left is the x coordinate of the top left corner of the block.
top is the y coordinate of the top left corner of the block.
width is the width of the block.
height is the height of the block.

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlankScreen, glPlotPolygon, glPlotCircle

void glPlotVPolygon(int n, int *pFirstCoord) ;

Plots the outline of a polygon in the LCD page buffer, and on the LCD if the buffer is unlocked. Any
portion of the polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are
specified, the function will return without doing anything.

PARAMETERS
n is the number of vertices.
pFirstCoord is a pointer to array of vertex coordinates: x1,y1, x2,y2, x3,y3, .

RETURN VALUE
None.

SEE ALSO
glPlotPolygon, glFillPolygon, glFillVPolygon

User’s Manual 115

void glPlotPolygon(int n, int yl, int x1, int y2,
int x2, ...);

Plots the outline of a polygon in the LCD page buffer and on the LCD if the buffer is unlocked. Any
portion of the polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are
specified, the function will return without doing anything.

PARAMETERS
n is the number of vertices.
y1is the y coordinate of the first vertex.
x1 is the x coordinate of the first vertex.
y2 is the y coordinate of the second vertex.
x2 is the x coordinate of the second vertex.
. . . are the coordinates of additional vertices.

RETURN VALUE
None.

SEE ALSO
glPlotVPolygon, glFillPolygon, glFillVPolygon

void glFillVPolygon (int n, int *pFirstCoord) ;

Fills a polygon in the LCD page buffer and on the LCD screen if the buffer is unlocked. Any portion of
the polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are specified,
the function will return without doing anything.

PARAMETERS
n is the number of vertices.
pFirstCoord is a pointer to array of vertex coordinates: x1,y1, x2,y2, x3,y3, ...

RETURN VALUE
None.

SEE ALSO
glFillPolygon, glPlotPolygon, glPlotVPolygon

116 RabbitCore RCM3305/RCM3315

void glFillPolygon(int n, int x1, int y1l, int x2,
int Y2 Y 4 e o o) ;
Fills a polygon in the LCD page buffer and on the LCD if the buffer is unlocked. Any portion of the

polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are specified, the
function will return without doing anything.

PARAMETERS
n is the number of vertices.
x1 is the x coordinate of the first vertex.
y1is the y coordinate of the first vertex.
x2 is the x coordinate of the second vertex.
y2 is the y coordinate of the second vertex.
. . . are the coordinates of additional vertices.

RETURN VALUE
None.

SEE ALSO
glFillVPolygon, glPlotPolygon, glPlotVPolygon

void glPlotCircle(int xc, int yc, int rad);

Draws the outline of a circle in the LCD page buffer and on the LCD if the buffer is unlocked. Any por-
tion of the circle that is outside the LCD display area will be clipped.

PARAMETERS
xc is the x coordinate of the center of the circle.
ye is the y coordinate of the center of the circle.
rad is the radius of the center of the circle (in pixels).

RETURN VALUE
None.

SEE ALSO
glFillCircle, glPlotPolygon, glFillPolygon

void glFillCircle(int xc, int yc, int rad);

Draws a filled circle in the LCD page buffer and on the LCD if the buffer is unlocked. Any portion of the
circle that is outside the LCD display area will be clipped.

PARAMETERS
xc is the x coordinate of the center of the circle.

ye is the y coordinate of the center of the circle.
rad is the radius of the center of the circle (in pixels).

RETURN VALUE
None.

SEE ALSO
glPlotCircle, glPlotPolygon, glFillPolygon

User’s Manual 117

void glXFontInit (fontInfo *pInfo, char pixWidth,
char pixHeight, unsigned startChar,
unsigned endChar, unsigned long xmemBuffer) ;

Initializes the font descriptor structure, where the font is stored in xmem. Each font character's bitmap is
column major and byte-aligned.

PARAMETERS
pInfo is a pointer to the font descriptor to be initialized.
pixWidth is the width (in pixels) of each font item.
pixHeight is the height (in pixels) of each font item.
startcChar is the value of the first printable character in the font character set.
endChar is the value of the last printable character in the font character set.

xmemBuf fer is the xmem pointer to a linear array of font bitmaps.

RETURN VALUE
None.

SEE ALSO
glPrinf

unsigned long glFontCharAddr (fontInfo *pInfo,
char letter);

Returns the xmem address of the character from the specified font set.

PARAMETERS
*pInfo is the xmem address of the bitmap font set.
letter isan ASCII character.

RETURN VALUE
xmem address of bitmap character font, column major and byte-aligned.

SEE ALSO
glPutFont, glPrintf

118 RabbitCore RCM3305/RCM3315

void glPutFont (int x, int y, fontInfo *pInfo,
char code) ;

Puts an entry from the font table to the page buffer and on the LCD if the buffer is unlocked. Each font
character's bitmap is column major and byte-aligned. Any portion of the bitmap character that is outside
the LCD display area will be clipped.

PARAMETERS
x is the x coordinate (column) of the top left corner of the text.
y is the y coordinate (row) of the top left corner of the text.
pInfo is a pointer to the font descriptor.
code is the ASCII character to display.

RETURN VALUE
None.

SEE ALSO
glFontCharAddr, glPrintf

void glSetPfStep(int stepX, int stepY);

Setsthe glPrint£ () printing step direction. The x and y step directions are independent signed values.
The actual step increments depend on the height and width of the font being displayed, which are multi-
plied by the step values.

PARAMETERS
stepX isthe glPrintf x step value

stepY isthe glPrint£ y step value

RETURN VALUE
None.

SEE ALSO
Use glGetP£fStep () to examine the current x and y printing step direction.

int glGetPfStep(void) ;

Gets the current glPrint £ () printing step direction. Each step direction is independent of the other,
and is treated as an 8-bit signed value. The actual step increments depends on the height and width of the
font being displayed, which are multiplied by the step values.

RETURN VALUE
The x step is returned in the MSB, and the y step is returned in the LSB of the integer result.

SEE ALSO
Use glGetP£fStep () to control the x and y printing step direction.

User’s Manual 119

void glPutChar (char ch, char *ptr, int *cnt,
glPutCharInst *plInst)

Provides an interface between the STDIO string-handling functions and the graphic library. The
STDIO string-formatting function will call this function, one character at a time, until the entire format-
ted string has been parsed. Any portion of the bitmap character that is outside the LCD display area will
be clipped.

PARAMETERS
ch is the character to be displayed on the LCD.

*ptr is not used, but is a place holder for STDIO string functions.
*cnt is not used, is a place holder for STDIO string functions.
pInst is a pointer to the font descriptor.

RETURN VALUE
None.

SEE ALSO
glPrintf, glPutFont, doprnt

void glPrintf (int x, int y, fontInfo *pInfo,
char *fmt, ...);

Prints a formatted string (much like print£) on the LCD screen. Only the character codes that exist in
the font set are printed, all others are skipped. For example, \b', \t', \n' and '\r' (ASCII backspace, tab,
new line, and carriage return, respectively) will be printed if they exist in the font set, but will not have
any effect as control characters. Any portion of the bitmap character that is outside the LCD display area
will be clipped.

PARAMETERS
x is the x coordinate (column) of the upper left corner of the text.

y is the y coordinate (row) of the upper left corner of the text.
pInfo is a pointer to the font descriptor.

*£mt is a formatted string.

. . . are formatted string conversion parameter(s).

EXAMPLE
glprintf (0,0, &£fil2x16, "Test %d\n", count);

RETURN VALUE
None.

SEE ALSO
glXFontInit

120 RabbitCore RCM3305/RCM3315

void glBufflock (void) ;

Increments LCD screen locking counter. Graphic calls are recorded in the LCD memory buffer and are
not transferred to the LCD if the counter is non-zero.

NOTE: glBuffLock() and glBuffUnlock () can be nested up to a level of 255, but be
sure to balance the calls. It is not a requirement to use these procedures, but a set of
glBuffLock () and glBuffUnlock () bracketing a set of related graphic calls speeds
up the rendering significantly.

RETURN VALUE
None.

SEE ALSO
glBuffUnlock, glSwap

void glBuffUnlock(void) ;

Decrements the LCD screen locking counter. The contents of the LCD buffer are transferred to the LCD
if the counter goes to zero.

RETURN VALUE
None.

SEE ALSO
glBuffLock, glSwap

void glSwap (void) ;

Checks the LCD screen locking counter. The contents of the LCD buffer are transferred to the LCD if the
counter is zero.

RETURN VALUE
None.

SEE ALSO

glBuffUnlock, glBuffLock, glSwapData (located in the library specifically for the LCD
that you are using)

void glSetBrushType (int type);

Sets the drawing method (or color) of pixels drawn by subsequent graphic calls.
PARAMETER
type value can be one of the following macros.

PIXBLACK draws black pixels (turns pixel on).
PIXWHITE draws white pixels (turns pixel off).
PIXXOR draws old pixel XOR'ed with the new pixel.
RETURN VALUE
None.

SEE ALSO
glGetBrushType

User’s Manual 121

int glGetBrushType (void) ;

Gets the current method (or color) of pixels drawn by subsequent graphic calls.

RETURN VALUE
The current brush type.

SEE ALSO
glSetBrushType

void glXGetBitmap (int x, int y, int bmWidth,
int bmHeight, unsigned long XBm) ;

Gets a bitmap from the LCD page buffer and stores it in xmem RAM. This function automatically calls
glXGetFastmap if the left edge of the bitmap is byte-aligned and the left edge and width are each
evenly divisible by 8.
This function call is intended for use only when a graphic engine is used to interface with the LCD/keypad
module.
PARAMETERS
x is the x coordinate in pixels of the top left corner of the bitmap (x must be evenly divisible by 8).
y is the y coordinate in pixels of the top left corner of the bitmap.
bmWidth is the width in pixels of the bitmap (must be evenly divisible by 8).
bmHeight is the height in pixels of the bitmap.
xBm is the xmem RAM storage address of the bitmap.

RETURN VALUE
None.

void glXGetFastmap (int left, int top, int width,
int height, unsigned long xmemptr) ;

Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This function is similar
to glXPutBitmap, except that it's faster. The bitmap must be byte-aligned. Any portion of a bitmap
image or character that is outside the LCD display area will be clipped.
This function call is intended for use only when a graphic engine is used to interface with the LCD/keypad
module.
PARAMETERS
left is the x coordinate of the top left corner of the bitmap (x must be evenly divisible by 8).
top is the y coordinate in pixels of the top left corner of the bitmap.
width is the width of the bitmap (must be evenly divisible by 8).
height is the height of the bitmap.
xmemptr is the xmem RAM storage address of the bitmap.

RETURN VALUE
None.

SEE ALSO
glXPutBitmap, glPrintf

122 RabbitCore RCM3305/RCM3315

void glPlotDot (int x, int y);

Draws a single pixel in the LCD buffer, and on the LCD if the buffer is unlocked. If the coordinates are
outside the LCD display area, the dot will not be plotted.

PARAMETERS
x is the x coordinate of the dot.
y is the y coordinate of the dot.

RETURN VALUE
None.

SEE ALSO
glPlotline, glPlotPolygon, glPlotCircle

void glPlotLine(int x0, int y0, int x1, int y1l);

Draws a line in the LCD buffer, and on the LCD if the buffer is unlocked. Any portion of the line that is
beyond the LCD display area will be clipped.

PARAMETERS
x0 is the x coordinate of one endpoint of the line.
y0 is the y coordinate of one endpoint of the line.
x1 is the x coordinate of the other endpoint of the line.
y1 is the y coordinate of the other endpoint of the line.

RETURN VALUE
None.

SEE ALSO
glPlotDot, glPlotPolygon, glPlotCircle

void glLeftl (int left, int top, int cols, int rows);

Scrolls byte-aligned window left one pixel, right column is filled by current pixel type (color).
PARAMETERS

left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE
None.

SEE ALSO
glHScroll, glRightl

User’s Manual 123

void glRightl (int left, int top, int cols, int rows);

Scrolls byte-aligned window right one pixel, left column is filled by current pixel type (color).

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.
cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE
None.

SEE ALSO
glHScroll, glLeftl

void glUpl(int left, int top, int cols, int rows);

Scrolls byte-aligned window up one pixel, bottom column is filled by current pixel type (color).

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.
cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE
None.

SEE ALSO
glvScroll, glDownl

void glDownl (int left, int top, int cols, int rows);

Scrolls byte-aligned window down one pixel, top column is filled by current pixel type (color).

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.
top is the top left corner of the bitmap.
cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.
rows is the number of rows in the window.

RETURN VALUE
None.

SEE ALSO
glvScroll, glUpl

124 RabbitCore RCM3305/RCM3315

void glHScroll (int left, int top, int cols,
int rows, int nPix);

Scrolls right or left, within the defined window by x number of pixels. The opposite edge of the scrolled
window will be filled in with white pixels. The window must be byte-aligned.

Parameters will be verified for the following:

1. The Left and cols parameters will be verified that they are evenly divisible by 8. If not, they will
be truncated to a value that is a multiple of 8.

2. Parameters will be checked to verify that the scrolling area is valid. The minimum scrolling area is
a width of 8 pixels and a height of one row.
PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8.
top is the top left corner of the bitmap.
cols is the number of columns in the window, must be evenly divisible by 8.
rows is the number of rows in the window.
nPix is the number of pixels to scroll within the defined window (a negative value will produce a scroll
to the left).

RETURN VALUE
None.

SEE ALSO
glvScroll

User’s Manual 125

void glVScroll (int left, int top, int cols,
int rows, int nPix);

Scrolls up or down, within the defined window by x number of pixels. The opposite edge of the scrolled
window will be filled in with white pixels. The window must be byte-aligned.

Parameters will be verified for the following:

1. The left and cols parameters will be verified that they are evenly divisible by 8. If not, they will
be truncated to a value that is a multiple of 8.

2. Parameters will be checked to verify that the scrolling area is valid. The minimum scrolling area is
a width of 8 pixels and a height of one row.
PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8.
top is the top left corner of the bitmap.
cols is the number of columns in the window, must be evenly divisible by 8.
rows is the number of rows in the window.
nPix is the number of pixels to scroll within the defined window (a negative value will produce a scroll
up).
RETURN VALUE
None.

SEE ALSO
glHScroll

void glXPutBitmap (int left, int top, int width,
int height, unsigned long bitmap) ;

Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This function calls

glXPutFastmap automatically if the bitmap is byte-aligned (the left edge and the width are each

evenly divisible by 8).

Any portion of a bitmap image or character that is outside the LCD display area will be clipped.
PARAMETERS

left is the top left corner of the bitmap.

top is the top left corner of the bitmap.

width is the width of the bitmap.

height is the height of the bitmap.

bitmap is the address of the bitmap in xmem.

RETURN VALUE
None.

SEE ALSO
glXPutFastmap, glPrintf

126 RabbitCore RCM3305/RCM3315

void glXPutFastmap(int left, int top, int width,
int height, unsigned long bitmap);

Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This function is like
glXPutBitmap, except that it is faster. The restriction is that the bitmap must be byte-aligned.

Any portion of a bitmap image or character that is outside the LCD display area will be clipped.
PARAMETERS

left is the top left corner of the bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

width is the width of the bitmap, must be evenly divisible by 8, otherwise truncates.

height is the height of the bitmap.

bitmap is the address of the bitmap in xmem.

RETURN VALUE
None.

SEE ALSO
glXPutBitmap, glPrintf

int TextWindowFrame (windowFrame *window,
fontInfo *pFont, int x, int y, int winWidth,
int winHeight)

Defines a text-only display window. This function provides a way to display characters within the text
window using only character row and column coordinates. The text window feature provides end-of-line
wrapping and clipping after the character in the last column and row is displayed.

NOTE: Execute the TextWwindowFrame function before other Text. .. functions.
PARAMETERS
window is a pointer to the window frame descriptor.
pFont is a pointer to the font descriptor.
x is the x coordinate of the top left corner of the text window frame.
y is the y coordinate of the top left corner of the text window frame.
winWidth is the width of the text window frame.
winHeight is the height of the text window frame.
RETURN VALUE
0—window frame was successfully created.
-1—x coordinate + width has exceeded the display boundary.

-2—y coordinate + height has exceeded the display boundary.
-3—Invalid winHeight and/or winWidth parameter value.

User’s Manual 127

void TextBorderInit (windowFrame *wPtr, int border,
char *title);

This function initializes the window frame structure with the border and title information.

NOTE: Execute the TextWwindowFrame function before using this function.

PARAMETERS
wPtr iS a pointer to the window frame descriptor.

border is the border style:
SINGLE LINE—The function will draw a single-line border around the text window.
DOUBLE LINE—The function will draw a double-line border around the text window.

title is a pointer to the title information:
If a NULL string is detected, then no title is written to the text menu.
If a string is detected, then it will be written center-aligned to the top of the text menu box.

RETURN VALUE
None.

SEE ALSO
TextBorder, TextGotoXY, TextPutChar, TextWindowFrame, TextCursorLocation

void TextBorder (windowFrame *wPtr) ;

This function displays the border for a given window frame. This function will automatically adjust the
text window parameters to accommodate the space taken by the text border. This adjustment will only
occur once after the TextBorderInit function executes.

NOTE: Execute the TextWwindowFrame function before using this function.

PARAMETERS
wPtr is a pointer to the window frame descriptor.

RETURN VALUE
None.

SEE ALSO

TextBorderInit, TextGotoXY, TextPutChar, TextWindowFrame,
TextCursorLocation

128 RabbitCore RCM3305/RCM3315

void TextGotoXY (windowFrame *window, int col,
int row) ;

Sets the cursor location to display the next character. The display location is based on the height and

width of the character to be displayed.
NOTE: Execute the TextWwindowFrame function before using this function.

PARAMETERS
window is a pointer to a font descriptor.

col is a character column location.
row is a character row location.

RETURN VALUE
None.

SEE ALSO
TextPutChar, TextPrintf, TextWindowFrame

void TextCursorLocation (windowFrame *window,
int *col, int *row);

Gets the current cursor location that was set by a Graphic Text. . . function.
NOTE: Execute the TextwindowFrame function before using this function.
PARAMETERS
window is a pointer to a font descriptor.
col is a pointer to cursor column variable.
row iS a pointer to cursor row variable.

RETURN VALUE
Lower word = Cursor Row location
Upper word = Cursor Column location

SEE ALSO
TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

User’s Manual

129

void TextPutChar (struct windowFrame *window, char ch);

Displays a character on the display where the cursor is currently pointing. Once a character is displayed,
the cursor will be incremented to the next character position. If any portion of a bitmap character is out-
side the LCD display area, the character will not be displayed.

NOTE: Execute the TextwindowFrame function before using this function.

PARAMETERS
*window is a pointer to a font descriptor.

ch is a character to be displayed on the LCD.

RETURN VALUE
None.

SEE ALSO
TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

void TextPrintf (struct windowFrame *window,
char *fmt, ...);

Prints a formatted string (much like print£) on the LCD screen. Only printable characters in the font
set are printed; escape sequences \r' and \n' are also recognized. All other escape sequences will be
skipped over; for example, "\b' and \'t" will cause nothing to be displayed.

The text window feature provides end-of-line wrapping and clipping after the character in the last col-
umn and row is displayed. The cursor then remains at the end of the string.
NOTE: Execute the TextwindowFrame function before using this function.
PARAMETERS
window is a pointer to a font descriptor.
*£mt is a formatted string.

. . . are formatted string conversion parameter(s).

EXAMPLE
TextPrintf (&TextWindow, "Test %d\n", count);

RETURN VALUE
None.

SEE ALSO
TextGotoXY, TextPutChar, TextWindowFrame, TextCursorLocation

130 RabbitCore RCM3305/RCM3315

int TextMaxChars (windowFrame *wPtr) ;

This function returns the maximum number of characters that can be displayed within the text window.

NOTE: Execute the TextwindowFrame function before using this function.

PARAMETERS
wPtr is a pointer to the window frame descriptor.

RETURN VALUE
The maximum number of characters that can be displayed within the text window.

SEE ALSO

TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation
void TextWinClear (windowFrame *wPtr) ;

This functions clears the entire area within the specified text window.

NOTE: Execute the TextwindowFrame function before using this function.

PARAMETERS
wPtr is a pointer to the window frame descriptor.

RETURN VALUE
None.

SEE ALSO

TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

User’s Manual

131

C.8.4 Keypad

The functions used to control the keypad are contained in the Dynamic C LIB\KEYPADS\
KEYPAD7 .LIB library.

void keyInit (void);

Initializes keypad process

RETURN VALUE
None.

SEE ALSO
brdInit

void keyConfig(char cRaw, char cPress,
char cRelease, char cCntHold, char cSpdLlo,
char cCntLo, char cSpdHi) ;

Assigns each key with key press and release codes, and hold and repeat ticks for auto repeat and
debouncing.

PARAMETERS
cRaw is a raw key code index.

1 x 7 keypad matrix with raw key code index assignments (in brackets):

[0] [1] [2] [3]
[4] [5] (6]

User Keypad Interface

cPress is a key press code

An 8-bit value is returned when a key is pressed.
0 = Unused.

See keypadDef () for default press codes.
cRelease is a key release code.

An 8-bit value is returned when a key is pressed.
0 = Unused.

cCntHold is a hold tick, which is approximately one debounce period or 5 ps.

How long to hold before repeating.
0 = No Repeat.

cSpdLo is a low-speed repeat tick, which is approximately one debounce period or 5 ps.

How many times to repeat.
0 = None.

cCntLo is a low-speed hold tick, which is approximately one debounce period or 5 ps.

How long to hold before going to high-speed repeat.
0 = Slow Only.

132 RabbitCore RCM3305/RCM3315

cSpdHi is a high-speed repeat tick, which is approximately one debounce period or 5 ps.

How many times to repeat after low speed repeat.
0 = None.

RETURN VALUE
None.

SEE ALSO
keyProcess, keyGet, keypadDef

Scans and processes keypad data for key assignment, debouncing, press and release, and repeat.

NOTE: This function is also able to process an 8 x 8 matrix keypad.

RETURN VALUE
None

SEE ALSO
keyConfig, keyGet, keypadDef

Get next keypress.

RETURN VALUE
The next keypress, or 0 if none

SEE ALSO
keyConfig, keyProcess, keypadDef

Pushes the value of cKey to the top of the input queue, which is 16 bytes deep.

PARAMETER
cKey

RETURN VALUE
None.

SEE ALSO
keyGet

User’s Manual 133

void keypadbDef () ;

Configures the physical layout of the keypad with the desired ASCII return key codes.

Keypad physical mapping 1 x 7

0 4 1 5 2 6 3
L] [U] [D] [R1]
-1 [+1] [E]

where

'L' represents Left Scroll

'U' represents Up Scroll

‘D' represents Down Scroll
'R’ represents Right Scroll
'—' represents Page Down

'+' represents Page Up
'E' represents the ENTER key

Example: Do the following for the above physical vs. ASCII return key codes.

keyConfig
keyConfig
keyConfig
keyConfig
keyConfig
keyConfig
keyConfig

~ e~~~ o~~~

3,'R',
6,'E',
2,'D',
4,'-',0,
i,'u',
5,'+"',
0,'L',

0, 0,
ol
ol

4
4

4

ol
ol
ol

4

4

O O O o o o

4

01
7
7
7
7

7

O O O O o o

7

ol
4
4
4

4

O O O o o

4

0,

0);
) ;
) ;
) ;
) ;
) ;
) ;

O O O O o o

Characters are returned upon keypress with no repeat.

RETURN VALUE
None.

SEE ALSO

keyConfig,

keyGet,

keyProcess

void keyScan (char *pcKeys) ;

Writes "1" to each row and reads the value. The position of a keypress is indicated by a zero value in a bit
position.

PARAMETER
pcKeys is a pointer to the address of the value read.

RETURN VALUE
None.

SEE ALSO

keyConfig,

keyGet,

keypadDef,

keyProcess

134

RabbitCore RCM3305/RCM3315

APPENDIX D. POWER SUPPLY

Appendix D provides information on the current requirements
of the RCM3305/RCM3315, and includes some background on
the reset generator.

D.1 Power Supplies

Power is supplied from the motherboard to which the RCM3305/RCM3315 is connected
via header J4. The RCM3305/RCM3315 requires a regulated 3.15 V to 3.45 V DC power
source. An RCM3305/RCM3315 with no loading at the outputs operating at 44.2 MHz
typically draws 350 mA.

D.1.1 Battery Backup

The RCM3305/RCM3315 does not have a battery, but there is provision for a customer-
supplied battery to back up the data SRAM and keep the internal Rabbit 3000 real-time
clock running.

Header J4, shown in Figure D-1, allows access to the external battery. This header makes
it possible to connect an external 3 V power supply. This allows the SRAM and the inter-
nal Rabbit 3000 real-time clock to retain data with the RCM3305/RCM3315 powered
down.

External
J4 Battery

VRAM 29 30 VBAT_EXT

—j—
+3.3 VIN 31 O O 32 GND J

Figure D-1. External Battery Connections
at Header J4

User’s Manual 135

A lithium battery with a nominal voltage of 3 VV and a minimum capacity of 165 mA-h is
recommended. A lithium battery is strongly recommended because of its nearly constant
nominal voltage over most of its life.

The drain on the battery by the RCM3305/RCM3315 is typically 6 LA when no other power
is supplied. If a 165 mA-h battery is used, the battery can last about 3 years:

165 mA-h
6 HA

The RCM3305/RCM3315 does not drain the battery while it is powered up normally.

= 3.1 years.

Cycle the main power off/on on the RCM3305/RCM3315 after you install a backup battery
for the first time, and whenever you replace the battery. This step will minimize the current
drawn by the real-time clock oscillator circuit from the backup battery should the
RCM3305/RCM3315 experience a loss of main power.

NOTE: Remember to cycle the main power off/on any time the RCM3305/RCM3315 is
removed from the Protoyping Board or motherboard since that is where the backup
battery would be located.

Rabbit’s Technical Note TN235, External 32.768 kHz Oscillator Circuits, provides addi-
tional information about the current draw by the the real-time clock oscillator circuit.

D.1.2 Battery-Backup Circuit
Figure D-2 shows the battery-backup circuit.

VRAM VOSC

External Battery D1 RAG

VBAT-EXT
150 kQ

Figure D-2. RCM33305/RCM3315 Backup Battery Circuit

The battery-backup circuit serves three purposes:

¢ It reduces the battery voltage to the SRAM and to the real-time clock, thereby limiting
the current consumed by the real-time clock and lengthening the battery life.

¢ It ensures that current can flow only out of the battery to prevent charging the battery.

e A voltage, VOSC, is supplied to U1, which keeps the 32.768 kHz oscillator working
when the voltage begins to drop.

136 RabbitCore RCM3305/RCM3315

D.1.3 Reset Generator

The RCM3305/RCM3315 uses a reset generator to reset the Rabbit 3000 microprocessor
when the voltage drops below the voltage necessary for reliable operation. The reset occurs
between 2.85 V and 3.00 V, typically 2.93 V.

The RCM3305/RCM3315 has a reset pin, pin 28 on header J4. This pin provides access to
the reset input of the reset generator, whose output drives the reset input of the Rabbit
3000 and peripheral circuits. The /RESET output from the reset generator is available on
pin 1 of header J4 on the RCM3305/RCM3315, and can be used to reset user-defined cir-
cuits on the motherboard on which the RCM3305/RCM3315 module is mounted.

User’s Manual 137

138 RabbitCore RCM3305/RCM3315

APPENDIX E. RABBITNET

E.1 General RabbitNet Description

RabbitNet is a high-speed synchronous protocol developed by Rabbit to connect periph-
eral cards to a master and to allow them to communicate with each other.

E.1.1 RabbitNet Connections

All RabbitNet connections are made point to point. A RabbitNet master port can only be
connected directly to a peripheral card, and the number of peripheral cards is limited by
the number of available RabbitNet ports on the master.

SLAVE

Iﬂ““v
-’_

. Straight-through
Ethernet cable
e =
MASTER i

Crossover
Ethernet cable

MASTER i SLAVE /

“~~ Straight-through
Ethernet cable

Figure E-1. Connecting Peripheral Cards to a Master

User’s Manual 139

Use a straight-through Ethernet cable to connect the master to slave peripheral cards, unless
you are using a device such as the OP7200 that could be used either as a master or a slave. In
this case you would use a crossover cable to connect an OP7200 that is being used as a slave.

Distances between a master unit and peripheral cards can be up to 10 m or 33 ft.

E.1.2 RabbitNet Peripheral Cards

Digital 1/0

24 inputs, 16 push/pull outputs, 4 channels of 10-bit A/D conversion with ranges of
0 tol10V,0to 1V, and-0.25 to +0.25 V. The following connectors are used:
Signal = 0.1" friction-lock connectors
Power = 0.156" friction-lock connectors
RabbitNet = RJ-45 connector

A/D converter

8 channels of programmable-gain 12-bit A/D conversion, configurable as current mea-
surement and differential-input pairs. 2.5 V reference voltage is available on the con-
nector. The following connectors are used:

Signal = 0.1" friction-lock connectors

Power = 0.156" friction-lock connectors

RabbitNet = RJ-45 connector

D/A converter

8 channels of 0-10 V 12-bit D/A conversion. The following connectors are used:
Signal = 0.1" friction-lock connectors
Power = 0.156" friction-lock connectors
RabbitNet = RJ-45 connector

Display/Keypad interface

allows you to connect your own keypad with up to 64 keys and one character liquid
crystal display from 1 x 8 to 4 x 40 characters with or without backlight using standard
1 x 16 or 2 x 8 connectors. The following connectors are used:

Signal = 0.1" headers or sockets

Power = 0.156" friction-lock connectors

RabbitNet = RJ-45 connector

Relay card

6 relays rated at 250 VV AC, 1200 V-A or 100 V DC up to 240 W. The following connectors are
used:

Relay contacts = screw-terminal connectors

Power = 0.156" friction-lock connectors

RabbitNet = RJ-45 connector

Visit our Web site for up-to-date information about additional cards and features as they
become available. The Web site also has the latest revision of this user’s manual.

140 RabbitCore RCM3305/RCM3315

http://www.rabbit.com/

E.2 Physical Implementation

There are four signaling functions associated with a RabbitNet connection. From the mas-
ter’s point of view, the transmit function carries information and commands to the periph-
eral card. The receive function is used to read back information sent to the master by the
peripheral card. A clock is used to synchronize data going between the two devices at high
speed. The master is the source of this clock. A slave select (SS) function originates at the
master, and when detected by a peripheral card causes it to become selected and respond
to commands received from the master.

The signals themselves are differential RS-422, which are series-terminated at the source.
With this type of termination, the maximum frequency is limited by the round-trip delay
time of the cable. Although a peripheral card could theoretically be up to 45 m (150 ft)
from the master for a data rate of 1 MHz, Rabbit recommends a practical limit of 10 m (33
ft).

Connections between peripheral cards and masters are done using standard 8-conductor
Ethernet cables. Masters and peripheral cards are equipped with RJ-45 8-pin female con-
nectors. The cables may be swapped end for end without affecting functionality.

E.2.1 Control and Routing

Control starts at the master when the master asserts the slave select signal (SS). Then it
simultaneously sends a serial command and clock. The first byte of a command contains
the address of the peripheral card if more than one peripheral card is connected.

A peripheral card assumes it is selected as soon as it receives the select signal. For direct
master-to-peripheral-card connections, this is as soon as the master asserts the select sig-
nal. The connection is established once the select signal reaches the addressed slave. At
this point communication between the master and the selected peripheral card is estab-
lished, and data can flow in both directions simultaneously. The connection is maintained
so long as the master asserts the select signal.

User’s Manual 141

E.3 Function Calls

The function calls described in this section are used with all RabbitNet peripheral cards,
and are available in the RNET . LIB library in the Dynamic C RABBITNET folder.

int rn init (char portflag, char servicetype):;

Resets, initializes, or disables a specified RabbitNet port on the master single-board computer. During
initialization, the network is enumerated and relevant tables are filled in. If the port is already initialized,
calling this function forces a re-enumeration of all devices on that port.

Call this function first before using other RabbitNet functions.

PARAMETERS

portflag is a bit that represents a RabbitNet port on the master single-board computer (from 0 to the
maximum number of ports). A set bit requires a service. If portflag = 0x03, both RabbitNet ports 0
and 1 will need to be serviced.

servicetype enables or disables each RabbitNet port as set by the port flags.
0 = disable port
1 = enable port

RETURN VALUE
0

int rn device(char pna);

Returns an address index to device information from a given physical node address. This function will
check device information to determine that the peripheral card is connected to a master.

PARAMETER
pna is the physical node address, indicated as a byte.

7,6—2-bit binary representation of the port number on the master
5,4,3—Level 1 router downstream port
2,1,0—Level 2 router downstream port

RETURN VALUE

Pointer to device information. -1 indicates that the peripheral card either cannot be identified or is not
connected to the master.

SEE ALSO

rn_find

142 RabbitCore RCM3305/RCM3315

int rn find(rn search *srch);

Locates the first active device that matches the search criteria.

PARAMETER

srch is the search criteria structure rn_search:
unsigned int flags; // status flags see MATCH macros below
unsigned int ports; // port bitmask
char productid; // product id
char productrev; // product rev
char coderev; // code rev
long serialnum; // serial number

Use a maximum of 3 macros for the search criteria:

RN MATCH PORT // match port bitmask
RN MATCH PNA // match physical node address
RN MATCH HANDLE // match instance (reg 3)
RN MATCH PRDID // match id/version (reg 1)
RN MATCH PRDREV // match product revision
RN MATCH CODEREV // match code revision
RN MATCH SN // match serial number
For example:

rn_search newdev;

newdev.flags = RN MATCH PORT|RN MATCH SN;
newdev.ports = 0x03; //search ports 0 and 1
newdev.serialnum = E3446C01L;

handle = rn_ find(&newdev) ;

RETURN VALUE
Returns the handle of the first device matching the criteria. O indicates no such devices were found.

SEE ALSO

rn _device

int rn echo(int handle, char sendecho,
char *recdata);

The peripheral card sends back the character the master sent. This function will check device information
to determine that the peripheral card is connected to a master.

PARAMETERS

handle is an address index to device information. Use rn_device () orrn_£find () to establish the
handle.

sendecho is the character to echo back.
recdata is a pointer to the return address of the character from the device.
RETURN VALUE

The status byte from the previous command. -1 means that device information indicates the peripheral
card is not connected to the master.

User’s Manual 143

int rn write(int handle, int regno, char *data,
int datalen);

Writes a string to the specified device and register. Waits for results. This function will check device infor-
mation to determine that the peripheral card is connected to a master.

PARAMETERS

hand1le is an address index to device information. Use rn_device () orrn_£find () to establish the
handle.

regno is the command register number as designated by each device.
data is a pointer to the address of the string to write to the device.

datalen is the number of bytes to write (0-15).

NOTE: A data length of O will transmit the one-byte command register number.

RETURN VALUE
The status byte from the previous command. -1 means that device information indicates the peripheral
card is not connected to the master, and -2 means that the data length was greater than 15.

SEE ALSO

rn read

int rn read(int handle, int regno, char *recdata,
int datalen);

Reads a string from the specified device and register. Waits for results. This function will check device
information to determine that the peripheral card is connected to a master.

PARAMETERS

handle is an address index to device information. Use rn_device () orrn_f£ind () to establish the
handle.

regno is the command register number as designated by each device.
recdata is a pointer to the address of the string to read from the device.

datalen is the number of bytes to read (0-15).

NOTE: A data length of O will transmit the one-byte command register number.

RETURN VALUE
The status byte from the previous command. -1 means that device information indicates the peripheral
card is not connected to the master, and -2 means that the data length was greater than 15.

SEE ALSO

rn write

144 RabbitCore RCM3305/RCM3315

int rn reset(int handle, int resettype):;

Sends a reset sequence to the specified peripheral card. The reset takes approximately 25 ms before the
peripheral card will once again execute the application. Allow 1.5 seconds after the reset has completed
before accessing the peripheral card. This function will check peripheral card information to determine
that the peripheral card is connected to a master.

PARAMETERS
handle is an address index to device information. Use rn_device () orrn_f£ind () to establish the
handle.

resettype describes the type of reset.

0 = hard reset—equivalent to power-up. All logic is reset.
1 = soft reset—only the microprocessor logic is reset.

RETURN VALUE

The status byte from the previous command. -1 means that device information indicates the peripheral
card is not connected to the master.

int rn sw _wdt (int handle, float timeout);

Sets software watchdog timeout period. Call this function prior to enabling the software watchdog timer.

This function will check device information to determine that the peripheral card is connected to a master.
PARAMETERS

handle is an address index to device information. Use rn_device () orrn_£find () to establish the

handle.

timeout is a timeout period from 0.025 to 6.375 seconds in increments of 0.025 seconds. Entering a
zero value will disable the software watchdog timer.
RETURN VALUE

The status byte from the previous command. -1 means that device information indicates the peripheral
card is not connected to the master.

User’s Manual 145

int rn enable wdt(int handle, int wdttype);

Enables the hardware and/or software watchdog timers on a peripheral card. The software on the periph-
eral card will keep the hardware watchdog timer updated, but will hard reset if the time expires. The
hardware watchdog cannot be disabled except by a hard reset on the peripheral card. The software watch-
dog timer must be updated by software on the master. The peripheral card will soft reset if the timeout set
by rn_sw wdt () expires. This function will check device information to determine that the peripheral
card is connected to a master.

PARAMETERS
handle is an address index to device information. Use rn_device () orrn_£find () to establish the

handle.
wdttype

0 enables both hardware and software watchdog timers
1 enables hardware watchdog timer
2 enables software watchdog timer

RETURN VALUE
The status byte from the previous command. -1 means that device information indicates the peripheral

card is not connected to the master.

SEE ALSO
rn_hitwd, rn sw wdt

int rn hitwd(int handle, char *count);

Hits software watchdog. Set the timeout period and enable the software watchdog prior to using this
function. This function will check device information to determine that the peripheral card is connected to

a master.

PARAMETERS
handle is an address index to device information. Use rn_device () orrn_f£ind () to establish the

handle.
count is a pointer to return the present count of the software watchdog timer. The equivalent time leftin
seconds can be determined from count x 0.025 seconds.

RETURN VALUE
The status byte from the previous command. -1 means that device information indicates the peripheral

card is not connected to the master.

SEE ALSO
rn _enable wdt, rn sw wdt

146 RabbitCore RCM3305/RCM3315

int rn rst status(int handle, char *retdata);

Reads the status of which reset occurred and whether any watchdogs are enabled.

PARAMETERS
handle is an address index to device information. Use rn_device () orrn_£find () to establish the
handle.

retdata is a pointer to the return address of the communication byte. A set bit indicates which error
occurred. This register is cleared when read.

7—HW reset has occurred

6—SW reset has occurred

5—HW watchdog enabled

4—SW watchdog enabled

3,2,1,0—Reserved

RETURN VALUE
The status byte from the previous command.

int rn comm status(int handle, char *retdata);

PARAMETERS
handle is an address index to device information. Use rn_device () orrn_f£ind () to establish the
handle.

retdata is a pointer to the return address of the communication byte. A set bit indicates which error
occurred. This register is cleared when read.

7—Data available and waiting to be processed MOSI (master out, slave in)
6—Write collision MISO (master in, slave out)

5—Overrun MOSI (master out, slave in)

4—Mode fault, device detected hardware fault

3—Data compare error detected by device

2,1,0—Reserved

RETURN VALUE
The status byte from the previous command.

User’s Manual 147

E.3.1 Status Byte

Unless otherwise specified, functions returning a status byte will have the following format

for each designated bit.

00 = Reserved

01 = Ready

10 = Busy

11 = Device not connected

0 = Device
1 = Router

0 = No error

1 = Communication error”

Reserved for individual peripheral
cards

Reserved for individual peripheral
cards

0 = Last command accepted
1 = Last command unexecuted

0 = Not expired
1 = HW or SW watchdog timer
expired’r

* Use the function rn_comm_status () to determine which error occurred.

T Use the function rn_rst_status () to determine which timer expired.

148

RabbitCore RCM3305/RCM3315

A

accessories
Connector Adapter Board ... 7
additional information

online documentation 7
B
battery backup
CIFCUIL oo 136
external battery connec-
tiONS oo 135
reset generator 137
use of battery-backed SRAM
....................................... 40
board initialization
function calls 42
brdlnit ..o, 42
bus loadingccccovveiiinnenn 71
C
clock doublerccoevnee. 35
conformal coating 77,78

Connector Adapter Board 7
D

digital inputs
switching threshold 88
dimensions
LCD/keypad module 101
LCD/keypad template 104

Prototyping Board 83
RCM3305/RCM3315 66
Dynamic C 7,9,14,37
add-on modules 9,48
installationcccveviene. 9

battery-backed SRAM 40
libraries

RCM33xx.LIB 42

RN_CFG_RCMS33.LIB .42
protected variables 40
Rabbit Embedded Security

Pack ..o, 7,9,48
sample programs 18
standard features

debuggingcccoevvvvrinnn. 38
telephone-based technical

SUPPOIT v 7,48

upgrades and patches 48
USB/serial port converter . 14

E

F

features ... 2
comparison with RCM3309/
RCM3319 ...ccccovvvvrene 4
Prototyping Board 80, 81
flash memory addresses
user blockscccoeiinnine 36

H

hardware connections
install RCM3305 module on
Prototyping Board 10

power Supplyccccceevneene. 13
programming cable 11
hardware resetc.ccoeenee 13
headers
Prototyping Board
JP3 90
IP5 93

1/0 address assignments
LCD/keypad module 105
1/0 buffer sourcing and sinking

liMits oo 75
Development Kit ... g Ethernetcables ... 49 1P addresses ... 53
how to tell them apart 49 how to set in sample programs
AC adapterccoceevvevrennns 6 .
Ethernet connections 49,51 58
DC power supplycccueneee. 6
. 10/100Base-Tcccevenneene. 51 how to set PC IP address ..59
programming cable 6 10Base-T Ethernet card. ... 49
RCM3305/RCM3315 6 L J
. ; additional resources 63
Getting Started instruc- . .
. direct connection 51 . . .
tiONS ovviriii 6 Ethernet cables 5 Jumper configurations
digital /O ..oovvvveereeee 24 o T Prototyping Board
. Ethernet hubcccccenee. 49 . .
function calls JP1 (RS-485 bias and termi-
. IP addressesccv.vue 51, 53 ' .
(o To] o 43 nation resistors) 93
. MAC addressesc..cc..... 54
digOut ...covovevece 43 JP1 (stepper motor power
. . SEEPS coveiere e 50
1/0 buffer sourcing and sink- SUPPIY) cvevereece 97
L Ethernet portcccocevveviennnne. 31
ing limits ..o 75 inout 31 JP2 (stepper motor power
memory interface 29 extF:)Iusion zone """""""""""" 67 SUPPIY) cvevereee 97
SMODEDQD ...cccooovvvvvverennn 32 U JP3 (quadrature decoder/se-
SMODE1 32 external /O busc..ceeueee 29 rial flash) 97
.......................... SOFtWAre 29, 40, 111
User’s Manual 149

jumper configurations
Prototyping Board (cont’d)
JP4 (RCM3305/RCM3315
power supply) 97
JP5 (RS-485 bias and termi-
nation resistors) 97
stepper motor power supply

RCM3305/RCM3315 ..76, 77
JP1 (flash memory size) 77
JP2 (flash memory bank

=1 (=T) [77
JP3 (data SRAM size) ...77
JP4 (Ethernet or 1/O output

on header J3) 77
JP5 (Ethernet or 1/O output
on header J3) 77
JP6 (Ethernet or 1/O output
on header J3) 77
JP7 (Ethernet or 1/O output
on header J3) 77
JP8 (Ethernet or 1/O output
on header J3) 77
jumper locations 76
K
keypad template 104
removing and inserting label
...................................... 104
L

LCD/keypad module
bezel-mount installation ..107

dimensionsc.cceceveenas 101
function calls
dispInit ...ccovvveiiiiins 111
displedOutc.co..... 111
LEDS ..ocoeverrireiercnns 111
header pinout 105
I/0O address assignments ..105
keypad
function calls
keyConfigcccevnene 132
keyGetcccovvennnne 133
keylInitcccovvinnne 132
keypadDef 134
keyProcessc..... 133
keyScanccoevvevnnne 134
keyungetccoevnene 133
keypad template 104

LCD display
function calls
glBackLight 112
glBlankRegion 114
glBlankScreen 113
giBlockccceevnnnee. 115
glBuffLock 121
glBuffUnlock 121
gIDispONnoOff 112
glDownl 124
glFastFillRegion 114
glFillCircle 117
glFillPolygon 117
glFillRegion 113
glFillScreen 113

glFillvVPolygon 116
glFontCharAddr 118
glGetBrushType 122

glGetPfStep 119
glHScroll 125
glinit oo 112
glLeftl ..o 123
glPlotCircle 117
glPlotDot 123
glPlotLine 123
glPlotPolygon 116
glPlotVPolygon 115
glPrintf ... 120
glPutChar 120
glPutFont 119
gIRightlccee. 124
glSetBrushType 121
glSetContrast 113
glSetPfStep 119
gISWapcccoceveienne 121
glupl .. 124
glvScroll 126
gIXFontlnit 118
gIXGetBitmap 122
gIXGetFastmap 122
gIXPutBitmap 126
gIXPutFastmap 127
TextBorder 128
TextBorderlnit 128
TextCursorLocation .129
TextGotoXY 129
TextMaxChars 131
TextPrintf 130
TextPutChar 130
TextWinClear 131

TextWindowFrame ..127
mounting instructions 106
reconfigure keypad 104

remote cable connection ..109
removing and inserting keypad

labelcccooeiiiiiiis 104
sample programs 110
specifications 102
VEISIONS ..o 101
voltage settings 103

LED (Prototyping Board)
function calls

ledOutooovveiiieee, 44
LEDs (RCM3305/RCM3315)
Ethernet statusc....... 31
other LEDSccocoevveveennne. 29
SPEEDcoveieeeeeceeee 31
M
MAC addressesc.cceevveennee 54

mounting instructions
LCD/keypad module 106

P

peripheral cards
connection to master 139, 140

pinout
Ethernet portcccceeeee. 31
LCD/keypad module 105
RCM3305/RCM3315

alternate configurations .26
RCM3305/RCM3315 headers

....................................... 24
power supplies
3.3V 135
battery backup 135
Program Modec..cceevvunee. 33
switching modes 33
programming cable
PROG connector 33
RCM3305/RCM3315 connec-
tIONS wvvieieeee e 11
programming port 32
Prototyping Board 80
adding components 87
dimensionsc.ccceveevnenens 83
€XPansion area 81
featuresccoeevveennn. 80, 81
jumper configurations 97
jumper locations 96
mounting RCM3305/
RCM3315 ..o 10
power supplyccocveevrennn. 85
prototyping area 87
specificationsc....... 84
use of parallel ports 98

150

RabbitCore RCM3305/RCM3315

R (=T1-] 13 SF1000 serial flash card
use of reset pin 137 SERFLASHTEST.C 19
Rabbit 3000 RS-485 network TCP/IP
data and clock delays 73 termination and bias resistors BROWSELED.C 60
spectrum spreader time delays L 93 DISPLAY_MAC.C54
--------------------------------------- 73 RUNMOGE ..oovvvreereeerernnrenn 33 MBOXDEMO.C60
Eagg?:’\slu?sys'fems ---------------- 25 switching modes 33 PINGLED.C ..oorvverenn. 60
abbitNe PINGME.Ccccevene. 60
Ethernet cables to connect S RabbitWeb
eripheral cards ..139, 140
funpctioa calls sample programsc.cc..... 18 gl(_)IONgl\I;II(E)DNSITCORC gi
rn_comm_status 147 FAT file system SPRINKLER.C . 61
MN_dEVICE ©.oorvvvrerrrrennn, 14 FMT_DEVICEC 62 SMTP.C N 61
MN_€CNO wovvereeeeeeerrrrennn, 143 getting to know the rammal b |LED
r_enable Wdt 146 RCMB3305/RCM3315 usgf;gﬂirgg% ° 29
IR T 143 CONTROLLED.C 18 ial i t 30
N_RItWd oo, 146 FLASHLEDLC 18 serfla ct(_)mmurllca O e
111 SO 142 SWRELAY.C oo 18 . ?;5(;1) 45
MN_read ...oooovvvveerrrvennn, 144 TOGGLESWITCH.C ... 18 ser485Tx 45
A (S S 145 how to run TCP/IP sample P s:‘:rt i XB“ d
FN_rSt_Status 147 Programs 57,58 r?qg églzng o 91
mosw wdt 145 how to set IP address 58 RS-485t.mm'm’lt.' """"" db
L R 144 how to use non-RCM3305/ i t S naonan Ig;
gene?al description 139 RCM3315 RabbitNet Serr?z:s (())r:[Conﬂura
peripheral cards 140 sample programs.......... 21 ti P ’ 90
A/D converter 140 LCD/keypad module .21, 110 R bbl'?[r:jst. t 93
D/A converter 140 KEYBASIC.C 104 'a| I te PO o 30
digital 1/O oo 140 KEYPADTOLED.C...110 S0 BAR oo 31
display/keypad inter- LCDKEYFUN.C 110 o ramnqin ort """""""" 32
face ..o, 140 reconfigure keypad 104 r|:)> ? typi ng Ao 90
relay cardc.c....... 140 SWITCHTOLCD.C ... 110 Soft\r/\(l)a(r)eyplng O 7
physical implementation . 141 module integration 61 externainl./l(.)mtl).llj.sl """""""""" 4.10
RabbitNet port 93 INTEGRATION.C 62 O drivers 40
RabDINet pon INTEGRATION_FAT 11O VIS v
function callscccccue... 46 SETUPIC """""""""" 62 KEYPAD7.LIB 132
M_SP_ClOSE ..vooovereer. 47 onboard serial flash LCDI122KEY7.LIB ... 111
rn_sp_disable 47 SFLASH_INSPECT.C .19 PACKET.LIB — 41
rn_sp_enable lllllllllllllllll 47 SFLASH LOG.C 19 RCMSSX.X Llé """"""" 42
rn_sp_info lllllllllllllllllllll 46 PONG.C ..o, 14 RN CFG RCMBSLIB 42
softhare_ RabbitNetcovvevveveeiins 21 RNET L|E ’ 142
MACTOS ovvvveeeveeeeseerees 46 real-time clock RS232.LIB oo 41
RCM3305/RCM3315 RTC TEST.C......cc...... 21 serial fiash """""""""" a
mounting on Prototyping SETRTCKB.C 21 TCRIP a
Board ... 10 Remote Application Update le Drograms 18
RCM3309/ROMAA1S DLP_STATIC.C 39, 61 Sa”_‘pl € programs o
comparison with RCM3305/ DLP_WEB.C 39,61 ser‘li FommAnIEIon SvE
RCM3315 ..o 4 serial communication ial flash dri 0
RCM3360/RCM A0 FLOWCONTROL.C 19 STeé';‘/IPa;riverr'g’ers """""""" il
mass storage options PARITY.Ccccevviirnnns 19 TTTE RS e
NAND flash ..o 2 SIMPLESWIREC 20
relay SIMPLE485MASTER.C 21
function calls SIMPLE485SLAVE.C ..21
relayOutcccoeennennns 45 SIMPLESWIRE.C 20
SWITCHCHAR.C 20
User’s Manual 151

specificationsccoccevevenns 65

bus loadingccccoevvrenne. 71
digital 1/0O buffer sourcing and
sinking limits 75
dimensionsccveereennns 66
electrical, mechanical, and
environmental 68
exclusion zone 67
header footprint 70
headersccocecevvvieriiecnnn, 70
LCD/keypad module
dimensionscccoceu... 101
electricalccccoevene 102
header footprint 102
mechanical 102
relative pin 1 locations 102
temperature 102
Prototyping Board 84
Rabbit 3000 DC characteris-
HICS v 74
Rabbit 3000 timing diagram
.. 72
relative pin 1 locations 70
spectrum spreader 73
SELHINGS .oveeeeeire e 35
status bytecccceoeveieinnnne 148
subsystems

digital inputs and outputs ..24
switches
function calls

switchln ... 44
switching modesc........ 33
T
TCP/IP primerccccceveevenns 51
technical support 15
troubleshooting

changing COM port 14
CONNECLIONS ...c.cvveeeiirenne 14
U
USB/serial port converter
Dynamic C settings 14
user block
function calls

readUserBlock 36

writeUserBlock 36
152

RabbitCore RCM3305/RCM3315

SCHEMATICS

090-0221 RCM3305/RCM3315 Schematic

www.rabbit.com/documentation/schemat/090-0221.pdf

090-0188 Prototyping Board Schematic

www.rabbit.com/documentation/schemat/090-0188.pdf

090-0156 LCD/Keypad Module Schematic

www.rabbit.com/documentation/schemat/090-0156.pdf

090-0128 Programming Cable Schematic

www.rabbit.com/documentation/schemat/090-0128.pdf

You may use the URL information provided above to access the latest schematics directly.

User’s Manual 153

http://www.rabbit.com/documentation/schemat/090-0221.pdf
http://www.rabbit.com/documentation/schemat/090-0188.pdf
http://www.rabbit.com/documentation/schemat/090-0128.pdf
http://www.rabbit.com/documentation/schemat/090-0156.pdf

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Rabbit Semiconductor:
101-1069 20-101-1067 20-101-1068

http://www.mouser.com/Rabbit-Semiconductor
http://www.mouser.com/access/?pn=101-1069
http://www.mouser.com/access/?pn=20-101-1067
http://www.mouser.com/access/?pn=20-101-1068

	RabbitCore RCM3305/RCM3315 User's Manual
	Table of Contents
	1. Introduction
	1.1 RCM3305/RCM3315 Features
	1.2 Comparing the RCM3309/RCM3319 and RCM3305/RCM3315
	1.3 Advantages of the RCM3305 and RCM3315
	1.4 Development and Evaluation Tools
	1.4.1 RCM3305 Series Development Kit
	1.4.2 Software
	1.4.3 Connectivity Interface Kits
	1.4.4 Online Documentation

	2. Getting Started
	2.1 Install Dynamic C
	2.2 Hardware Connections
	2.2.1 Step 1 — Attach Module to Prototyping�Board
	2.2.2 Step 2 — Connect Programming Cable
	2.2.3 Step 3 — Connect Power

	2.3 Starting Dynamic C
	2.4 Run a Sample Program
	2.4.1 Troubleshooting

	2.5 Where Do I Go From Here?
	2.5.1 Technical Support

	3. Running Sample Programs
	3.1 Introduction
	3.2 Sample Programs
	3.2.1 Use of Serial Flash
	3.2.2 Serial Communication
	3.2.3 Real-Time Clock
	3.2.4 RabbitNet
	3.2.5 Other Sample Programs

	4. Hardware Reference
	4.1 RCM3305/RCM3315 Digital Inputs and Outputs
	4.1.1 Memory I/O Interface
	4.1.2 Other Inputs and Outputs
	4.1.3 LEDs

	4.2 Serial Communication
	4.2.1 Serial Ports
	4.2.2 Ethernet Port
	4.2.3 Programming Port

	4.3 Programming Cable
	4.3.1 Changing Between Program Mode and Run Mode
	4.3.2 Standalone Operation of the RCM3305/RCM3315

	4.4 Other Hardware
	4.4.1 Clock Doubler
	4.4.2 Spectrum Spreader

	4.5 Memory
	4.5.1 SRAM
	4.5.2 Flash EPROM
	4.5.3 Serial Flash
	4.5.4 Dynamic C BIOS Source Files

	5. Software Reference
	5.1 More About Dynamic C
	5.1.1 Developing Programs Remotely with Dynamic C

	5.2 Dynamic C Functions
	5.2.1 Digital I/O
	5.2.2 SRAM Use
	5.2.3 Serial Communication Drivers
	5.2.4 TCP/IP Drivers
	5.2.5 Serial Flash Drivers
	5.2.6 Prototyping Board Functions

	5.3 Upgrading Dynamic C
	5.3.1 Extras

	6. Using the TCP/IP Features
	6.1 TCP/IP Connections
	6.2 TCP/IP Primer on IP Addresses
	6.2.1 IP Addresses Explained
	6.2.2 How IP Addresses are Used
	6.2.3 Dynamically Assigned Internet Addresses

	6.3 Placing Your Device on the Network
	6.4 Running TCP/IP Sample Programs
	6.4.1 How to Set IP Addresses in the Sample Programs
	6.4.2 How to Set Up your Computer for Direct Connect

	6.5 Run the PINGME.C Sample Program
	6.6 Running Additional Sample Programs With Direct Connect
	6.6.1 RabbitWeb Sample Programs
	6.6.2 Remote Application Update
	6.6.3 Dynamic C FAT File System, RabbitWeb, and SSL Modules

	6.7 Where Do I Go From Here?

	Appendix A. RCM3305/RCM3315 Specifications
	A.1 Electrical and Mechanical Characteristics
	A.1.1 Headers

	A.2 Bus Loading
	A.3 Rabbit 3000 DC Characteristics
	A.4 I/O Buffer Sourcing and Sinking Limit
	A.5 Jumper Configurations
	A.6 Conformal Coating

	Appendix B. Prototyping Board
	B.1 Introduction
	B.1.1 Prototyping Board Features

	B.2 Mechanical Dimensions and Layout
	B.3 Power Supply
	B.4 Using the Prototyping Board
	B.4.1 Adding Other Components
	B.4.2 Digital I/O
	B.4.3 CMOS Digital Outputs
	B.4.4 Sinking Digital Outputs
	B.4.5 Relay Outputs
	B.4.6 Serial Communication
	B.4.7 RabbitNet Ports
	B.4.8 Other Prototyping Board Modules
	B.4.9 Quadrature Decoder
	B.4.10 Stepper-Motor Control

	B.5 Prototyping Board Jumper Configurations
	B.6 Use of Rabbit 3000 Parallel Ports

	Appendix C. LCD/Keypad Module
	C.1 Specifications
	C.2 Contrast Adjustments for All LCD/Keypad Modules
	C.3 Keypad Labeling
	C.4 Header Pinouts
	C.4.1 I/O Address Assignments

	C.5 Mounting LCD/Keypad Module on the Prototyping Board
	C.6 Bezel-Mount Installation
	C.6.1 Connect the LCD/Keypad Module to Your Prototyping Board

	C.7 Sample Programs
	C.8 LCD/Keypad Module Function Calls
	C.8.1 LCD/Keypad Module Initialization
	C.8.2 LEDs
	C.8.3 LCD Display
	C.8.4 Keypad

	Appendix D. Power Supply
	D.1 Power Supplies
	D.1.1 Battery Backup
	D.1.2 Battery-Backup Circuit
	D.1.3 �Reset Generator

	Appendix E. RabbitNet
	E.1 General RabbitNet Description
	E.1.1 RabbitNet Connections
	E.1.2 RabbitNet Peripheral Cards

	E.2 Physical Implementation
	E.2.1 Control and Routing

	E.3 Function Calls
	E.3.1 Status Byte

	Index
	Schematics

