
RabbitCore RCM3305/RCM3315
C-Programmable Core Module

with Serial Flash Mass Storage and Ethernet

User’s Manual
019–0151 • 080528–E

RabbitCore RCM3305/RCM3315

Rabbit Semiconductor Inc.
www.rabbit.com

RabbitCore RCM3305/RCM3315 User’s Manual

Part Number 019-0151 • 080528–E • Printed in U.S.A.
©2005–2008 Digi International Inc. • All rights reserved.

Digi International reserves the right to make changes and
improvements to its products without providing notice.

Trademarks
Rabbit, RabbitCore, and Dynamic C are registered trademarks of Digi International Inc.

Rabbit 3000 is a trademark of Digi International Inc.

No part of the contents of this manual may be reproduced or transmitted in any form or by any means
without the express written permission of Digi International.

Permission is granted to make one or more copies as long as the copyright page contained therein is
included. These copies of the manuals may not be let or sold for any reason without the express written
permission of Digi International.

The latest revision of this manual is available on the Rabbit Web site, www.rabbit.com,
for free, unregistered download.

http://www.rabbit.com/
http://www.rabbit.com/
http://www.rabbit.com/

User’s Manual

TABLE OF CONTENTS

Chapter 1. Introduction 1
1.1 RCM3305/RCM3315 Features ...2
1.2 Comparing the RCM3309/RCM3319 and RCM3305/RCM3315 ..4
1.3 Advantages of the RCM3305 and RCM3315...5
1.4 Development and Evaluation Tools..6

1.4.1 RCM3305 Series Development Kit ..6
1.4.2 Software ..7
1.4.3 Connectivity Interface Kits ...7
1.4.4 Online Documentation ..7

Chapter 2. Getting Started 9
2.1 Install Dynamic C ...9
2.2 Hardware Connections..10

2.2.1 Step 1 — Attach Module to Prototyping Board..10
2.2.2 Step 2 — Connect Programming Cable ..11

2.2.2.1 RCM3309 and RCM3319 .. 11
2.2.2.2 RCM3305 and RCM3315 .. 12

2.2.3 Step 3 — Connect Power ..13
2.2.3.1 Alternate Power-Supply Connections .. 13

2.3 Starting Dynamic C ..14
2.4 Run a Sample Program ...14

2.4.1 Troubleshooting ..14
2.5 Where Do I Go From Here? ...15

2.5.1 Technical Support ...15

Chapter 3. Running Sample Programs 17
3.1 Introduction...17
3.2 Sample Programs ..18

3.2.1 Use of Serial Flash ..19
3.2.1.1 Onboard Serial Flash.. 19
3.2.1.2 SF1000 Serial Flash Card... 19

3.2.2 Serial Communication...19
3.2.3 Real-Time Clock ...21
3.2.4 RabbitNet ..21
3.2.5 Other Sample Programs ..21

Chapter 4. Hardware Reference 23
4.1 RCM3305/RCM3315 Digital Inputs and Outputs ..24

4.1.1 Memory I/O Interface ...29
4.1.2 Other Inputs and Outputs ..29
4.1.3 LEDs ...29

4.2 Serial Communication ..30
4.2.1 Serial Ports ..30
4.2.2 Ethernet Port ...31
4.2.3 Programming Port ...32

RabbitCore RCM3305/RCM3315

4.3 Programming Cable.. 33
4.3.1 Changing Between Program Mode and Run Mode.. 33
4.3.2 Standalone Operation of the RCM3305/RCM3315 ... 34

4.4 Other Hardware .. 35
4.4.1 Clock Doubler .. 35
4.4.2 Spectrum Spreader.. 35

4.5 Memory .. 36
4.5.1 SRAM... 36
4.5.2 Flash EPROM... 36
4.5.3 Serial Flash ... 36
4.5.4 Dynamic C BIOS Source Files... 36

Chapter 5. Software Reference 37
5.1 More About Dynamic C... 37

5.1.1 Developing Programs Remotely with Dynamic C ... 39
5.2 Dynamic C Functions.. 40

5.2.1 Digital I/O... 40
5.2.2 SRAM Use.. 40
5.2.3 Serial Communication Drivers ... 41
5.2.4 TCP/IP Drivers ... 41
5.2.5 Serial Flash Drivers .. 41
5.2.6 Prototyping Board Functions.. 42

5.2.6.1 Board Initialization .. 42
5.2.6.2 Digital I/O.. 43
5.2.6.3 Switches, LEDs, and Relay ... 44
5.2.6.4 Serial Communication ... 45
5.2.6.5 RabbitNet Port ... 46

5.3 Upgrading Dynamic C ... 48
5.3.1 Extras.. 48

Chapter 6. Using the TCP/IP Features 49
6.1 TCP/IP Connections ... 49
6.2 TCP/IP Primer on IP Addresses ... 51

6.2.1 IP Addresses Explained.. 53
6.2.2 How IP Addresses are Used ... 54
6.2.3 Dynamically Assigned Internet Addresses... 55

6.3 Placing Your Device on the Network .. 56
6.4 Running TCP/IP Sample Programs.. 57

6.4.1 How to Set IP Addresses in the Sample Programs... 58
6.4.2 How to Set Up your Computer for Direct Connect .. 59

6.5 Run the PINGME.C Sample Program.. 60
6.6 Running Additional Sample Programs With Direct Connect .. 60

6.6.1 RabbitWeb Sample Programs... 61
6.6.2 Remote Application Update ... 61
6.6.3 Dynamic C FAT File System, RabbitWeb, and SSL Modules .. 61

6.7 Where Do I Go From Here? ... 63

Appendix A. RCM3305/RCM3315 Specifications 65
A.1 Electrical and Mechanical Characteristics .. 66

A.1.1 Headers .. 70
A.2 Bus Loading .. 71
A.3 Rabbit 3000 DC Characteristics .. 74
A.4 I/O Buffer Sourcing and Sinking Limit... 75
A.5 Jumper Configurations .. 76
A.6 Conformal Coating .. 78

User’s Manual

Appendix B. Prototyping Board 79
B.1 Introduction ..80

B.1.1 Prototyping Board Features..81
B.2 Mechanical Dimensions and Layout ..83
B.3 Power Supply ...85
B.4 Using the Prototyping Board..86

B.4.1 Adding Other Components...87
B.4.2 Digital I/O...88

B.4.2.1 Digital Inputs ... 88
B.4.3 CMOS Digital Outputs ...89
B.4.4 Sinking Digital Outputs..89
B.4.5 Relay Outputs ...89
B.4.6 Serial Communication..90

B.4.6.1 RS-232 ... 91
B.4.6.2 RS-485 ... 92

B.4.7 RabbitNet Ports ..93
B.4.8 Other Prototyping Board Modules ...94
B.4.9 Quadrature Decoder ...94
B.4.10 Stepper-Motor Control ...94

B.5 Prototyping Board Jumper Configurations ..96
B.6 Use of Rabbit 3000 Parallel Ports ..98

Appendix C. LCD/Keypad Module 101
C.1 Specifications ...101
C.2 Contrast Adjustments for All LCD/Keypad Modules..103
C.3 Keypad Labeling ..104
C.4 Header Pinouts ...105

C.4.1 I/O Address Assignments...105
C.5 Mounting LCD/Keypad Module on the Prototyping Board ..106
C.6 Bezel-Mount Installation..107

C.6.1 Connect the LCD/Keypad Module to Your Prototyping Board...109
C.7 Sample Programs ...110
C.8 LCD/Keypad Module Function Calls ..111

C.8.1 LCD/Keypad Module Initialization..111
C.8.2 LEDs...111
C.8.3 LCD Display...112
C.8.4 Keypad..132

Appendix D. Power Supply 135
D.1 Power Supplies...135

D.1.1 Battery Backup...135
D.1.2 Battery-Backup Circuit ..136
D.1.3 Reset Generator ...137

Appendix E. RabbitNet 139
E.1 General RabbitNet Description ..139

E.1.1 RabbitNet Connections...139
E.1.2 RabbitNet Peripheral Cards ..140

E.2 Physical Implementation ..141
E.2.1 Control and Routing ...141

E.3 Function Calls...142
E.3.1 Status Byte..148

Index 149

Schematics 153

RabbitCore RCM3305/RCM3315

User’s Manual 1

1. INTRODUCTION

The RCM3305 and RCM3315 RabbitCore modules feature a
compact module that incorporates the latest revision of the power-
ful Rabbit® 3000 microprocessor, flash memory, mass storage
(serial flash), static RAM, and digital I/O ports. The RCM3305
and RCM3315 feature an integrated 10/100Base-T Ethernet port,
and provide for LAN and Internet-enabled systems to be built as
easily as serial-communication systems.

In addition to the features already mentioned above, the RCM3305 and RCM3315 have
two clocks (main oscillator and real-time clock), reset circuitry, and the circuitry necessary
for management of battery backup of the Rabbit 3000’s internal real-time clock and the
static RAM. Two 34-pin headers bring out the Rabbit 3000 I/O bus lines, parallel ports,
and serial ports.

The RCM3305’s and the RCM3315’s mass-storage capabilities make them suited to running
the optional Dynamic C FAT file system module and the featured remote application
update where data are stored and handled using the same directory file structure com-
monly used on PCs.

The RCM3305 or RCM3315 receives +3.3 V power from the customer-supplied mother-
board on which it is mounted. The RCM3305 and RCM3315 can interface with all kinds
of CMOS-compatible digital devices through the motherboard.

The Development Kit has what you need to design your own microprocessor-based
system: a complete Dynamic C software development system and a Prototyping Board
that allows you to evaluate the RCM3305 or RCM3315, and to prototype circuits that
interface to the RCM3305 or RCM3315 module.

2 RabbitCore RCM3305/RCM3315

1.1 RCM3305/RCM3315 Features
• Small size: 1.85" x 2.73" x 0.86"

(47 mm x 69 mm x 22 mm)

• Microprocessor: Rabbit 3000 running at 44.2 MHz

• 49 parallel 5 V tolerant I/O lines: 43 configurable for I/O, 3 fixed inputs, 3 fixed outputs

• Three additional digital inputs, two additional digital outputs

• External reset

• Alternate I/O bus can be configured for 8 data lines and 6 address lines (shared with
parallel I/O lines), plus I/O read/write

• Ten 8-bit timers (six cascadable) and one 10-bit timer with two match registers

• 512K flash memory, 512K program execution SRAM, 512K data SRAM

• Serial-flash mass-storage memory options, which are required to run the optional
Dynamic C FAT file system module and the featured remote application update.

• Real-time clock

• Watchdog supervisor

• Provision for customer-supplied backup battery via connections on header J4

• 10-bit free-running PWM counter and four pulse-width registers

• Two-channel Input Capture (shared with parallel I/O ports) can be used to time input
signals from various port pins

• Two-channel Quadrature Decoder accepts inputs from external incremental encoder
modules

• Five or six 3.3 V CMOS-compatible serial ports with a maximum asynchronous baud
rate of 5.525 Mbps. Three ports are configurable as a clocked serial port (SPI), and two
ports are configurable as SDLC/HDLC serial ports (shared with parallel I/O ports).

• Supports 1.15 Mbps IrDA transceiver

The RCM3900/RCM3910 and RCM3365/RCM3375 RabbitCore modules are similar to
the RCM3305/RCM3315 and RCM3309/RCM3319, but they use fixed NAND or remov-
able media for their mass-storage memories instead of the fixed serial flash options of the
RCM3305/RCM3315 and the RCM3309/RCM3319.

User’s Manual 3

Table 1 below summarizes the main features of the RCM3305 and the RCM3315 modules.

The RCM3305 and RCM3315 are programmed over a standard PC serial port through a
programming cable supplied with the Development Kit, and can also be programed through
a USB port with an RS-232/USB converter, or directly over an Ethernet link using the fea-
tured remote application update or the Dynamic C download manager with or without a
RabbitLink.

Appendix A provides detailed specifications for the RCM3305 and the RCM3315.

Table 1. RCM3305/RCM3315 Features

Feature RCM3305 RCM3315

Microprocessor Rabbit 3000 running at 44.2 MHz

SRAM 512K program (fast SRAM) + 512K data

Flash Memory
(program) 512K

Flash Memory
(mass data
storage)

8 Mbytes
(serial flash)

4 Mbytes
(serial flash)

Serial Ports

5 shared high-speed, 3.3 V CMOS-compatible ports:
all 5 are configurable as asynchronous serial ports;
3 are configurable as a clocked serial port (SPI) and 1 is
configurable as an HDLC serial port;
option for second HDLC serial port at the expense of 2
clocked serial ports (SPI)

4 RabbitCore RCM3305/RCM3315

1.2 Comparing the RCM3309/RCM3319 and RCM3305/RCM3315
We can no longer obtain certain components for the RCM3305/RCM3315 RabbitCore
modules that support the originally specified -40°C to +70°C temperature range. Instead of
changing the design of the RCM3305/RCM3315 RabbitCore modules to handle available
components specified for the original temperature range, we decided to develop a new
product line — the RCM3309/RCM3319 — based on the RCM3900 RabbitCore modules
that were released for the same reason.

The RCM3309/RCM3319 modules are similar in form, dimensions, and function to the
RCM3305/RCM3315 modules. We strongly recommend that existing RCM3305/3315
customers and designers of new systems consider using the new RCM3309/RCM3319
RabbitCore modules.

This section compares the two lines of RabbitCore modules.

• Temperature Specifications — RCM3305/RCM3315 RabbitCore modules manufac-
tured after May, 2008, are specified to operate at 0°C to +70°C. The RCM3309/
RCM3319, rated for -40°C to +85°C, are offered to customers requiring a larger
temperature range after May, 2008.

• Maximum Current — The RCM3305/RCM3315 draws 250 mA vs. the 325 mA
required by the RCM3309/RCM3319.

• LEDs — The SPEED and user (USR/BSY)LED locations have been swapped between
the RCM3305/RCM3315 and the RCM3309/RCM3319, the LNK/ACT LEDs have
been combined to one LED on the RCM3309/RCM3319, and the RCM3309/RCM3319
has an FDX/COL LED instead of the SF LED on the RCM3305/RCM3315. The SF
LED on the RCM3305/RCM3315 blinks when data are being written to or read from
the serial flash. The FDX/COL LED on the RCM3309/RCM3319 indicates whether the
Ethernet connection is in full-duplex mode (steady on) or that a half-duplex connection
is experiencing collisions (blinks).

NOTE: The change in LED indicators means that there is no indication on the
RCM3309/RCM3319 when data are being written to or read from the serial flash.

• Ethernet chip. A different Ethernet controller chip is used on the RCM3309/RCM3319.
The Ethernet chip is able to detect automatically whether a crossover cable or a straight-
through cable is being used in a particular setup, and will configure the signals on the
Ethernet jack interface.

• Dynamic C — As long as no low-level FAT file system calls were used in your applica-
tion developed for the RCM3305/RCM3315, you may run that application on the
RCM3309/RCM3319 after you recompile it using Dynamic C v. 9.60.

User’s Manual 5

1.3 Advantages of the RCM3305 and RCM3315
• Fast time to market using a fully engineered, “ready-to-run/ready-to-program” micro-

processor core.

• Competitive pricing when compared with the alternative of purchasing and assembling
individual components.

• Easy C-language program development and debugging

• Program download utility (Rabbit Field Utility) and cloning board options for rapid
production loading of programs.

• Generous memory size allows large programs with tens of thousands of lines of code,
and substantial data storage.

• Integrated Ethernet port for network connectivity, with royalty-free TCP/IP software.

• Ideal for network-enabling security and access systems, home automation, HVAC
systems, and industrial controls

6 RabbitCore RCM3305/RCM3315

1.4 Development and Evaluation Tools
1.4.1 RCM3305 Series Development Kit

The RCM3305 Series Development Kit contains the hardware you need to use your
RCM3305 or RCM3315 module.

• RCM3309 module.

• Prototyping Board.

• Universal AC adapter, 12 V DC, 1 A (includes Canada/Japan/U.S., Australia/N.Z., U.K.,
and European style plugs).

• USB programming cable with 10-pin header.

• Dynamic C CD-ROM, with complete product documentation on disk.

• Getting Started instructions.

• Accessory parts for use on the Prototyping Board.

• Screwdriver and Cat. 5 Ethernet cables.

• Rabbit 3000 Processor Easy Reference poster.

• Registration card.

Figure 1. RCM3305 Series Development Kit

����������	
���
��
�
������
 �
������������	
�

����

�
���	
�
���

�
������������	
�

��
���
���

�
��
	�����
�	���

Rabbit, RabbitCore, Dynamic C, and Digi are registered trademarks of Digi International Inc.

RabbitCore® RCM3305 Series
The RCM3305 series of RabbitCore modules features built-in Ethernet, and onboard mass storage (serial
flash). These Getting Started instructions included with the Development Kit will help you get your
RCM3309 up and running so that you can run the sample programs to explore its capabilities and develop
your own applications.

Development Kit Contents
The RCM3305 Series Development Kit contains the following items

• RCM3309 module.

• Prototyping Board.

• Universal AC adapter, 12 V DC, 1 A (includes Canada/Japan/U.S., Australia/N.Z., U.K., and
European style plugs).

• USB programming cable with 10-pin header.

• Dynamic C® CD-ROM — with complete product documentation on disk.

• A bag of accessory parts for use on the Prototyping Board.

• Screwdriver and Cat. 5 Ethernet cables.

• Getting Started instructions.

• Rabbit 3000 Processor Easy Reference poster.

• Registration card.

Visit our online Rabbit store at www.rabbit.com/store/ for
the latest information on peripherals and accessories that
are available for the RCM3305 series of RabbitCore
modules.

Installing Dynamic C®

Insert the CD from the Development Kit in
your PC’s CD-ROM drive. If the installation
does not auto-start, run the setup.exe pro-
gram in the root directory of the Dynamic C
CD. Install any optional Dynamic C modules
or packs after you install Dynamic C.

�����

	�
�����	���

���������

��
��� ��� �	

�

�	

�

�	

 ��

��

 �� ��
�
�

�

�������	�

��
���
�

��
�

��
�

��
�

��������

�

��
�

���
�
�

�	
���

��
���

��
���

��
���

��
���

��
���

�

��

�	���
�
�����������

�

��
� � ��
� �

�! ��	
�

�	

�

�	

�

�	

�

�	

�

��

�� ��
�
�
�
�

��
� �

 ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 �

��
�

��
�

��
�

��
�

��

���

�	
���

���
�	

�"

���#
���

�!

 ��

$��$��

���

��
� ��
����

���

���

�	
���

��%
��

�&
�

��

	

�

 �

�� ��

�� �� �
 ��

��

�� $�

��
�

��

��

�

 �

 �
 � �

��
��������������������������������
!�
!��������
����
����
�����

!��'��
������������������!���!�������	����������������!��'

 �

�� �� �� ��

��

��

!��

��	�

���

��
�

��

���

�	�

�	�

�	�

�%�

�%

���

��

���

���

 �
��

��"��!

!���

���
	�

����

���

���

�	�

�	�

�	

���

���

���

�������

�%
����

%��
��	

�

�������
�����������
����

��
�	�	�

 �

�� ��

���

�
�

�
�

�

���

���

���

��

���

���

�%�

�%�

���

���

���

���

����

����

�
�

�
�

�
�

���

���

���

���

���

���

�%�

�%�

���

���

��

���

��

 � �

��
��

��

�

�

��

�
�

��

��
�
�

�

��

��

��
�

 ��

���

�� �	� �		

��
�

 ��

 ��

��� ���

��� �

���

��
�

$

���
��

��
�

���� �������������� ������
������� ����$�

�$�

�����
$�

$�
����

&(
��!	�

����

&(
��!	�

$�

��
 ��� ��� ���

 �� ���

$��

���

��
�

��

���
 �

���

���

��
�

$�

���

 ��

��
�

��
� ��

� ��
�

$)

$)�
����*

$)�
����*

)�

��

 ��
�
�

��

���

�

�
�

��� ��
�

��
�

��
�

��
	

��
�

��
�

��
�

��
�

���	

��
��
��
�

�� �+	����+	�����
����+%����+%����
�����
����
'

�� �� �� ��

���

������������

���	���
$�	
��
�	��

$�

��
��

��"��!

�
�!

��"��!

�
�!

$�

$)�

)�

�)��
�)��

�)��

�)��
�)���)�

�%�,���

�%�,�

 ��

��

$�

��
�

��
�

��
�

��
�

��

�)�

�)�

�

�

�

�

�

�

�

��
�

��
�

��

��
�

�

�

��
�������	�������

�

�

�

�

��
���

(�
��

���
(�

���
���
���
���

����

���

����
���
�	���

User’s Manual 7

1.4.2 Software

The RCM3305 and the RCM3315 are programmed using version 9.25 or later of Rabbit’s
Dynamic C. A compatible version is included on the Development Kit CD-ROM.
Dynamic C v. 9.60, which is required for the related RCM3309 and RCM3319 RabbitCore
modules, includes the popular µC/OS-II real-time operating system, point-to-point proto-
col (PPP), FAT file system, RabbitWeb, and other select libraries that were previously sold
as indidual Dynamic C modules.

Rabbit also offers for purchase the Rabbit Embedded Security Pack featuring the Secure
Sockets Layer (SSL) and a specific Advanced Encryption Standard (AES) library. In addi-
tion to the Web-based technical support included at no extra charge, a one-year telephone-
based technical support subscription is also available for purchase. Visit our Web site at
www.rabbit.com for further information and complete documentation, or contact your
Rabbit sales representative or authorized distributor.

1.4.3 Connectivity Interface Kits

Rabbit has available a Connector Adapter Board.

• Connector Adapter Board (Part No. 151-0114)—allows you to plug the RCM3305/
RCM3315 whose headers have a 2 mm pitch into header sockets with a 0.1" pitch.

Visit our Web site at www.rabbit.com or contact your Rabbit sales representative or autho-
rized distributor for further information.

1.4.4 Online Documentation

The online documentation is installed along with Dynamic C, and an icon for the docu-
mentation menu is placed on the workstation’s desktop. Double-click this icon to reach the
menu. If the icon is missing, use your browser to find and load default.htm in the docs
folder, found in the Dynamic C installation folder.

The latest versions of all documents are always available for free, unregistered download
from our Web sites as well.

http://www.rabbit.com/products/Peripherals/
http://www.rabbit.com/products/dc/

8 RabbitCore RCM3305/RCM3315

User’s Manual 9

2. GETTING STARTED

This chapter describes how to set up and use an RCM3305 series
module and the Prototyping Board included in the Development Kit.

NOTE: It is assumed that you have a Development Kit. If you purchased an RCM3305
series module by itself, you will have to adapt the information in this chapter and else-
where to your test and development setup.

2.1 Install Dynamic C
To develop and debug programs for an RCM3305 series module (and for all other Rabbit
hardware), you must install and use Dynamic C.

If you have not yet installed Dynamic C version 9.25 (or a later version), do so now by
inserting the Dynamic C CD from the Development Kit in your PC’s CD-ROM drive. If
autorun is enabled, the CD installation will begin automatically.

If autorun is disabled or the installation otherwise does not start, use the Windows
Start | Run menu or Windows Disk Explorer to launch setup.exe from the root folder
of the CD-ROM.

The installation program will guide you through the installation process. Most steps of the
process are self-explanatory.

Dynamic C uses a COM (serial) port to communicate with the target development system.
The installation allows you to choose the COM port that will be used. The default selec-
tion is COM1. You may select any available port for Dynamic C’s use. If you are not cer-
tain which port is available, select COM1. This selection can be changed later within
Dynamic C.

NOTE: The installation utility does not check the selected COM port in any way. Speci-
fying a port in use by another device (mouse, modem, etc.) may lead to a message such
as "could not open serial port" when Dynamic C is started.

Once your installation is complete, you will have up to three icons on your PC desktop.
One icon is for Dynamic C, one opens the documentation menu, and the third is for the
Rabbit Field Utility, a tool used to download precompiled software to a target system.

If you have purchased the optional Dynamic C Rabbit Embedded Security Pack, install it
after installing Dynamic C. You must install the Rabbit Embedded Security Pack in the
same directory where Dynamic C was installed.

10 RabbitCore RCM3305/RCM3315

2.2 Hardware Connections
There are three steps to connecting the Prototyping Board for use with Dynamic C and the
sample programs:

1. Attach the RCM3305 series RabbitCore module to the Prototyping Board.
2. Connect the programming cable between the RCM3305 series RabbitCore module and

the workstation PC.
3. Connect the power supply to the Prototyping Board.

2.2.1 Step 1 — Attach Module to Prototyping Board

Turn the RCM3305 series module so that the Ethernet jack is facing the direction shown in
Figure 2 below. Align the pins from the headers on the bottom side of the module into
header sockets JA and JB on the Prototyping Board.

Figure 2. Install the RCM3305/ Series Module on the Prototyping Board

NOTE: It is important that you line up the pins from the headers on the bottom side of the
RCM3305 series module exactly with the corresponding pins of header sockets JA and
JB on the Prototyping Board. The header pins may become bent or damaged if the pin
alignment is offset, and the module will not work. Permanent electrical damage to the
module may also result if a misaligned module is powered up.

Press the module’s pins firmly into the Prototyping Board header sockets—press down in
the area above the header pins using your thumbs or fingers over the connectors as shown
in Figure 2. Do not press down on the middle of the RCM3305 series module to avoid
flexing the module, which could damage the module or the components on the module.

Should you need to remove the RCM3305 series module, grasp it with your fingers along the
sides by the connectors and gently work the module up to pull the pins away from the sockets
where they are installed. Do not remove the module by grasping it at the top and bottom.

��
�
�� ��
�

�	

�

�	

�

�	

�
�

�
�

 �
�

�
�

�

�

�

�������	�

�
���

��

�
��

�
��

�
��

�������
�

�

�
��

���

�
�

�
	
��

�
�
�
��
�
�
�
��
�
�
��
��

�
��
�
�
�
��
�
�
�

��

�	���
�
�����������

�

��
� � ��
� �

�! ��
	
�

�	

�

�	

�

�	

�

�	

�

�
�

�
�

�
�

�

�

�

�

��
� �

 ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 �

�
�
�

�
�
�

�
�
�

�
�
�

��

��
�

�
	
��

�
��
�
�
	

�"

�
�
�#

��
��
!

 ��

$��$��

���

�
�� �
�����

���

���

�
	
�
��
��
%
��

�
&
�

�
�

	
�

 �

�
�

�
�

�
�

�
�

�

�
�

��

�� $�

�
��

��

��

�

 �

 �
 �

 �
��
��������������������������������
!�
!��������
����
����
�����

!��'��
������������������!���!�������	����������������!��'

 �

�� �� �� ��

��

��

!��

��	�

���

��
�

��

���

�	�

�	�

�	�

�%�

�%

���

��

���

���

 �

��

��"��!

!���

���
	�

����

���

���

�	�

�	�

�	

���

���

���

�������

�
%
��
��
%
��
��
	
�

�������
�����������
����

��
�	�	�

 �

�� ��

���

�
�

�
�

�

���

���

���

��

���

���

�%�

�%�

���

���

���

���

����

����

�
�

�
�

�
�

���

���

���

���

���

���

�%�

�%�

���

���

��

���

��

 � �

��
��

�
�

�

�

�
�

�
�

��

��
�
�

�

��

��

�
��

 �
�

���

�
� �	

�
�	

	

�
��

 �
�

 ��

��� ���

��� �

���

�
��

$

���
��

�
��

���� �������������� ������
������� ����$�

�$�

��
���

$�

$�
����

&(
��!	�

����

&(
��!	�

$�

��
 ��� ��� ���

 �� ���

$��

���

�
��

��

���
 �

���

���

�
��

$�

���

 ��

�
��

�
��

�
�� �
��

$)

$)�
����*

$)�
����*

)�

�
�

 ��
�
�

��

���

�

�
�

��
�

��
�

��
�

��
�

��
	

�
��

�
��

�
��

�
��

���	

��
��
��
�

�� �+	����+	�����
����+%����+%����
�����
����
'

�� �� �� ��

���

������������

���	���
$�	

��
�	��

$�

��
��

��"��!

�
�!

��"��!

�
�!

$�

$)�

)�

�)��

�)��

�)��

�)��

�)���)�

�%�,���

�%�,�

 ��

�
�

$�

�
��

�
��

�
��

�
��

�
�

�)�

�)�

�

�

�

�

�

�

�

�
��

�
��

�
�

�
��

�

�

�
��

������	�������

�

�

�

�

�
�
�
��

(�
�
�
�
��

(�

���
���
���
���

$�

�
�

��

��

�
�

 �

$�

�
�

��

 �� �

�

 �� �� �� �
 �

�

���

�
�

�
�

�
�

�
�

���

$�

�
�

$�

�
�

�
��

���
�

��
��$

���

���

�
��

�
�

�
�� ���

�
��

 �
�

 �
��

 �
�

 �
�

��

 �

�
��

�
��

�
��

���

��

�
�

�
��

�
��

�
��

�
��

�
��

���

���

�
�
$�

�
��

���

�
��

���
��

���������

���
���

���

���
���

���

�
��

��� $�

���

���

�
��

�
��

���

���
��
���

�

�
��

� $
�

�
��

�
��

�

�

 �
��

 �
��

���
���

 �
��

�
��

��

�
��

�
��

 ��� ���

$�

��

���

���

�
��

��
���
��

���

�
�

��

��

�
�

�
�

�
�

�
�

	

�
�

�
�

�

�

�

�
�

��

�
��

�����))

�

$��

��

�
��

�
��

�
��

��������

��������	
�����
�
�
	
�

�
��

-������
�������
�.//0
1.2345.6�72889:9;5<

���������
	�
�
��������	
������

User’s Manual 11

2.2.2 Step 2 — Connect Programming Cable

The programming cable connects the RCM3305 series module to the PC running
Dynamic C to download programs and to monitor the module during debugging.

2.2.2.1 RCM3309 and RCM3319

Connect the 10-pin connector of the programming cable labeled PROG to header J1 on
the RCM3309/RCM3319 as shown in Figure 3(a). There is a small dot on the circuit board
next to pin 1 of header J1. Be sure to orient the marked (usually red) edge of the cable
towards pin 1 of the connector. (Do not use the DIAG connector, which is used for a non-
programming serial connection.)

Figure 3(a). Connect Programming Cable and Power Supply

Connect the other end of the programming cable to an available USB port on your PC or
workstation. Your PC should recognize the new USB hardware, and the LEDs in the
shrink-wrapped area of the USB programming cable will flash.

��
�
�� ��
�

�	

�

�	

�

�	

�
�

�
�

 �
�

�
�

�

�

�

�������	�

�
���

��

�
��

�
��

�
��

�������
�

�

�
��

���

�
�

�
	
��

�
�
�
��
�
�
�
��
�
�
��
��

�
��
�
�
�
��
�
�
�

��

�	���
�
�����������

�

��
� � ��
� �

�! ��
	
�

�	

�

�	

�

�	

�

�	

�

�
�

�
�

�
�

�

�

�

�

��
� �

 ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 �

�
�
�

�
�
�

�
�
�

�
�
�

��

��
�

�
	
��

�
��

�
�
	

�"

�
�
�#

��
��
!

 ��

$��$��

���

�
�� �
�����

���

���

�
	
�
��
��
%
��

�
&
�

�
�

	
�

 �

�
�

�
�

�
�

�
�

�

�
�

��

�� $�

�
��

��

��

�

 �

 �
 �

 �
��
��������������������������������
!�
!��������
����
����
�����

!��'��
������������������!���!�������	����������������!��'

 �

�� �� �� ��

��

��

!��

��	�

���

��
�

��

���

�	�

�	�

�	�

�%�

�%

���

��

���

���

 �

��

��"��!

!���

���
	�

����

���

���

�	�

�	�

�	

���

���

���

�������

�
%
��
��
%
��
��
	
�

�������
�����������
����

��
�	�	�

 �

�� ��

���

�
�

�
�

�

���

���

���

��

���

���

�%�

�%�

���

���

���

���

����

����

�
�

�
�

�
�

���

���

���

���

���

���

�%�

�%�

���

���

��

���

��

 � �

��
��

�
�

�

�

�
�

�
�

��

��
�
�

�

��

��

�
��

 �
�

���

�
� �	

�
�	

	

�
��

 �
�

 ��

��� ���

��� �

���

�
��

$

���
��

�
��

���� �������������� ������
������� ����$�

�$�

��
���

$�

$�
����

&(
��!	�

����

&(
��!	�

$�

��
 ��� ��� ���

 �� ���

$��

���

�
��

��

���
 �

���

���

�
��

$�

���

 ��

�
��

�
��

�
�� �
��

$)

$)�
����*

$)�
����*

)�

�
�

 ��
�
�

��

���

�

�
�

��
�

��
�

��
�

��
�

��
	

�
��

�
��

�
��

�
��

���	

��
��
��
�

�� �+	����+	�����
����+%����+%����
�����
����
'

�� �� �� ��

���

������������

���	���
$�	

��
�	��

$�

��
��

��"��!

�
�!

��"��!

�
�!

$�

$)�

)�

�)��

�)��

�)��

�)��

�)���)�

�%�,���

�%�,�

 ��

�
�

$�

�
��

�
��

�
��

�
��

�
�

�)�

�)�

�

�

�

�

�

�

�

�
��

�
��

�
�

�
��

�

�

�
��

������	�������

�

�

�

�

�
�
�
��

(�
�
�
�
��

(�

���
���
���
���

���������	

$�

�
�

��

��

�
�

 �

$�

�
�

��

 �� �

�

 �� �� �� �
 �

�

���

�
�

�
�

�
�

�
�

���

$�

�
�

$�

�
�

�
��

���
�

��
��$

���

���

�
��

�
�

�
�� ���

�
��

 �
�

 �
��

 �
�

 �
�

��

 �

�
��

�
��

�
��

���

��

�
�

�
��

�
��

�
��

�
��

�
��

���

���

�
�
$�

�
��

���

�
��

���
��

���������

���
���

���

���
���

���

�
��

��� $�

���

���

�
��

�
��

���

���
��
���

�

�
��

� $
�

�
��

�
��

�

�

 �
��

 �
��

���
���

 �
��

�
��

��

�
��

�
��

 ��� ���

$�

��

���

���

�
��

��
���
��

���

�
�

��

��

�
�
�

�
�
�

�
�
	

�
�

�
�
�

�
�

�
�

��

�
��

�����))

�

$��

��

�
��

�
��

�
��

��
�

�
�
�
�

�/./:97�9739

�
��
	�������	���

�
�
�
�

 �

�/
���
���=/:5

�;19:5�5>?�2;5/�1./5

�:911�7/@;�/;�A.2=B
1;>=�=.C3�2;5/�=.>A9�

�
�

�����
�����	���

����
����	���������	

12 RabbitCore RCM3305/RCM3315

2.2.2.2 RCM3305 and RCM3315

Connect the 10-pin connector of the programming cable labeled PROG to header J1 on
the RCM3305/RCM3315 as shown in Figure 3(b). There is a small dot on the circuit
board next to pin 1 of header J1. Be sure to orient the marked (usually red) edge of the
cable towards pin 1 of the connector. (Do not use the DIAG connector, which is used for a
nonprogramming serial connection.)

Figure 3(b). Connect Programming Cable and Power Supply

NOTE: Be sure to use the serial programming cable (part number 101-0542)—the pro-
gramming cable has blue shrink wrap around the RS-232 converter section located in the
middle of the cable. The USB programming cable and programming cables with clear or
red shrink wrap from other Rabbit kits are not designed to work with RCM3305/
RCM3315 modules.

Connect the other end of the programming cable to a COM port on your PC.

NOTE: It may be possible to use an RS-232/USB converter with the serial programming
described in this section. An RS-232/USB converter (part number 20-151-0178) is
available through the Web store. Note that not all RS-232/USB converters work with
Dynamic C.

���������	

��
�
�� ��
�

�	

�

�	

�

�	

�
�

�
�

 �
�

�
�

�

�

�

�������	�

�
���

��

�
��

�
��

�
��

�������
�

�

�
��

���

�
�

�
	
��

�
�
�
��
�
�
�
��
�
�
��
��

�
��
�
�
�
��
�
�
�

��

�	���
�
�����������

�

��
� � ��
� �

�! ��
	
�

�	

�

�	

�

�	

�

�	

�

�
�

�
�

�
�

�

�

�

�

��
� �

 ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 �

�
�
�

�
�
�

�
�
�

�
�
�

��

��
�

�
	
��

�
��

�
�
	

�"

�
�
�#

��
��
!

 ��

$��$��

���

�
�� �
�����

���

���

�
	
�
��
��
%
��

�
&
�

�
�

	
�

 �

�
�

�
�

�
�

�
�

�

�
�

��

�� $�

�
��

��

��

�

 �

 �
 �

 �
��
��������������������������������
!�
!��������
����
����
�����

!��'��
������������������!���!�������	����������������!��'

 �

�� �� �� ��

��

��

!��

��	�

���

��
�

��

���

�	�

�	�

�	�

�%�

�%

���

��

���

���

 �

��

��"��!

!���

���
	�

����

���

���

�	�

�	�

�	

���

���

���

�������

�
%
��
��
%
��
��
	
�

�������
�����������
����

��
�	�	�

 �

�� ��

���

�
�

�
�

�

���

���

���

��

���

���

�%�

�%�

���

���

���

���

����

����

�
�

�
�

�
�

���

���

���

���

���

���

�%�

�%�

���

���

��

���

��

 � �

��
��

�
�

�

�

�
�

�
�

��

��
�
�

�

��

��

�
��

 �
�

���

�
� �	

�
�	

	

�
��

 �
�

 ��

��� ���

��� �

���

�
��

$

���
��

�
��

���� �������������� ������
������� ����$�

�$�

��
���

$�

$�
����

&(
��!	�

����

&(
��!	�

$�

��
 ��� ��� ���

 �� ���

$��

���

�
��

��

���
 �

���

���

�
��

$�

���

 ��

�
��

�
��

�
�� �
��

$)

$)�
����*

$)�
����*

)�

�
�

 ��
�
�

��

���

�

�
�

��
�

��
�

��
�

��
�

��
	

�
��

�
��

�
��

�
��

���	

��
��
��
�

�� �+	����+	�����
����+%����+%����
�����
����
'

�� �� �� ��

���

������������

���	���
$�	

��
�	��

$�

��
��

��"��!

�
�!

��"��!

�
�!

$�

$)�

)�

�)��

�)��

�)��

�)��

�)���)�

�%�,���

�%�,�

 ��

�
�

$�

�
��

�
��

�
��

�
��

�
�

�)�

�)�

�

�

�

�

�

�

�

�
��

�
��

�
�

�
��

�

�

�
��

������	�������

�

�

�

�

�
�
�
��

(�
�
�
�
��

(�

���
���
���
���

����	����

����

����	���������	

�
�

 �
���

��

��

�
�

�
��

��$�

�
�

���
�

�
�

�
�

�
�

���� �

�
�

�
��

�
��

�
��

�
��

$�

�
��

�
��

��

�
�

�
��

�
��

�
�

�
��

�
��

�
��

��

�
��

�
�

���

$�

�����

��

�
��

���
���
���

���

$
�
��

��

���

������
$��

�
��

���
���
���
���
���

�
�

�
��

�
��

$�
���

���

�����))

�
�

����������
�
���

�
�

��

�
�

 �

��

���

���
���

�
��

�
��

�
��

�
��

�
��

�
��

���

��� �	����
�	����

 �
�

 �
�

 �
�

 �
�

 �

��

���

�
�� �
��

�
��

���

�
�
�
�
���

�
��

���

���

���

�
��

�
��

���

�
��

�
��

�
����

�
�� �

��

��

�

�

�
�
�
�
�

�
�

��
�

�
�
�
�

�/./:97�9739

�/
�������=/:5

�
��
	�������	���

�
�
�
�

 �

�.C9
14:2;0�@:>=

http://www.rabbit.com/store/

User’s Manual 13

2.2.3 Step 3 — Connect Power

When all other connections have been made, you can connect power to the Prototyping
Board.

If you have the universal power supply, prepare the AC adapter for the country where it
will be used by selecting the plug. The RCM3305 Series Development Kit presently
includes Canada/Japan/U.S., Australia/N.Z., U.K., and European style plugs. Snap in the
top of the plug assembly into the slot at the top of the AC adapter as shown in Figure 3(a),
then press down on the spring-loaded clip below the plug assembly to allow the plug
assembly to click into place.

Depending on the style of adapter, connect the AC adapter to 3-pin header J2 or jack J1 on
the Prototyping Board as shown in Figure 3(a) or Figure 3(b).

Plug in the AC adapter. The red CORE LED on the Prototyping Board should light up.
The RCM3305 series RabbitCore module and the Prototyping Board are now ready to be
used.

NOTE: A RESET button is provided on the Prototyping Board to allow a hardware reset
without disconnecting power.

2.2.3.1 Alternate Power-Supply Connections

All Development Kits sold up to May, 2008, included a header connector that may be used
to connect your power supply to 3-pin header J2 on the Prototyping Board. The connector
may be attached either way as long as it is not offset to one side—the center pin of J2 is
always connected to the positive terminal, and either edge pin is negative. The power
supply should deliver 8 V to 30 V DC at 8 W.

14 RabbitCore RCM3305/RCM3315

2.3 Starting Dynamic C
NOTE: Dynamic C v. 9.60 or a later version is required if you are using an RCM3309 or

an RCM3319 RabbitCore module.

Once the RCM3305 series module is connected as described in the preceding pages, start
Dynamic C by double-clicking on the Dynamic C icon on your desktop or in your Start
menu. Select Code and BIOS in Flash, Run in RAM on the “Compiler” tab in the
Dynamic C Options > Project Options menu. Click OK.

If you are using a USB port to connect your computer to the RCM3305/RCM3315 module,
choose Options > Project Options and select “Use USB to Serial Converter” on the
Communications tab. Click OK.

2.4 Run a Sample Program
Use the File menu to open the sample program PONG.C, which is in the Dynamic C
SAMPLES folder. Press function key F9 to compile and run the program. The STDIO win-
dow will open on your PC and will display a small square bouncing around in a box.

This program shows that the CPU is working. The sample program described in
Section 6.5, “Run the PINGME.C Sample Program,” tests the TCP/IP portion of the board.

2.4.1 Troubleshooting
If Dynamic C cannot find the target system (error message "No Rabbit Processor
Detected."):

• Check that the RCM3305 series module is powered correctly — the red CORE LED on
the Prototyping Board should be lit when the module is mounted on the Prototyping Board and
the AC adapter is plugged in.

• Check both ends of the programming cable to ensure that they are firmly plugged into
the PC and the PROG connector, not the DIAG connector, is plugged in to the program-
ming port on the RCM3305 series module with the marked (colored) edge of the pro-
gramming cable towards pin 1 of the programming header.

• Ensure that the RCM3305 series module is firmly and correctly installed in its connec-
tors on the Prototyping Board.

• Dynamic C uses the COM port or USB port specified during installation. Select a dif-
ferent COM port within Dynamic C. From the Options menu, select Project Options,
then select Communications. Select another COM port from the list, then click OK.
Press <Ctrl-Y> to force Dynamic C to recompile the BIOS. If Dynamic C still reports it
is unable to locate the target system, repeat the above steps until you locate the COM
port used by the programming cable.

• If you get an error message when you plugged the programming cable into a USB port,
you will have to install USB drivers. Drivers for Windows XP are available in the
Dynamic C Drivers\Rabbit USB Programming Cable\WinXP_2K folder —
double-click DPInst.exe to install the USB drivers. Drivers for other operating sys-
tems are available online at www.ftdichip.com/Drivers/VCP.htm.

http://www.ftdichip.com/Drivers/VCP.htm

User’s Manual 15

If Dynamic C appears to compile the BIOS successfully, but you then receive a communi-
cation error message when you compile and load the sample program, it is possible that
your PC cannot handle the higher program-loading baud rate. Try changing the maximum
download rate to a slower baud rate as follows.

• Locate the Serial Options dialog in the Dynamic C Options > Project Options >
Communications menu. Select a slower Max download baud rate.

If a program compiles and loads, but then loses target communication before you can
begin debugging, it is possible that your PC cannot handle the default debugging baud
rate. Try lowering the debugging baud rate as follows.

• Locate the Serial Options dialog in the Dynamic C Options > Project Options >
Communications menu. Choose a lower debug baud rate.

2.5 Where Do I Go From Here?
If the sample program ran fine, you are now ready to go on to other sample programs and to
develop your own applications. The source code for the sample programs is provided to allow
you to modify them for your own use. The RCM3305/RCM3315 User’s Manual also
provides complete hardware reference information and describes the software function calls
for the RCM3305 and the RCM3315, the Prototyping Board, and the optional LCD/keypad
module. The RCM3309/RCM3319 User’s Manual also provides complete hardware refer-
ence information and describes the software function calls for the RCM3309 and the
RCM3319, the Prototyping Board, and the optional LCD/keypad module.

For advanced development topics, refer to the Dynamic C User’s Manual and the
Dynamic C TCP/IP User’s Manual, also in the online documentation set.

2.5.1 Technical Support

NOTE: If you purchased your RCM3305 series module through a distributor or through a
Rabbit partner, contact the distributor or partner first for technical support.

If there are any problems at this point:

• Use the Dynamic C Help menu to get further assistance with Dynamic C.

• Check the Rabbit Technical Bulletin Board and forums at www.rabbit.com/support/bb/
and at www.rabbit.com/forums/.

• Use the Technical Support e-mail form at www.rabbit.com/support/questionSubmit.shtml.

http://www.rabbit.com/support/bb/index.html
http://www.rabbit.com/support/questionSubmit.shtml
http://www.rabbitsemiconductor.com/forums/

16 RabbitCore RCM3305/RCM3315

User’s Manual 17

3. RUNNING SAMPLE PROGRAMS

To develop and debug programs for the RCM3305/RCM3315
(and for all other Rabbit hardware), you must install and use
Dynamic C.

3.1 Introduction
To help familiarize you with the RCM3305 and RCM3315 modules, Dynamic C includes
several sample programs. Loading, executing and studying these programs will give you a
solid hands-on overview of the RCM3305/RCM3315’s capabilities, as well as a quick
start using Dynamic C as an application development tool.

NOTE: The sample programs assume that you have at least an elementary grasp of the C
programming language. If you do not, see the introductory pages of the Dynamic C
User’s Manual for a suggested reading list.

More complete information on Dynamic C is provided in the Dynamic C User’s Manual.

In order to run the sample programs discussed in this chapter and elsewhere in this manual,

1. Your RCM3305/RCM3315 must be plugged in to the Prototyping Board as described
in Chapter 2, “Getting Started.”

2. Dynamic C must be installed and running on your PC.

3. The programming cable must connect the programming header on the RCM3305/
RCM3315 to your PC.

4. Power must be applied to the RCM3305/RCM3315 through the Prototyping Board.

Refer to Chapter 2, “Getting Started,” if you need further information on these steps.

To run a sample program, open it with the File menu, then press function key F9 to com-
pile and run the program. The RCM3305/RCM3315 must be in Program Mode (see
Figure 8) and must be connected to a PC using the programming cable.

18 RabbitCore RCM3305/RCM3315

3.2 Sample Programs
Of the many sample programs included with Dynamic C, several are specific to the
RCM3305 and the RCM3315. Sample programs illustrating the general operation of the
RCM3305/RCM3315, serial communication, and the serial flash are provided in the
SAMPLES\RCM3300 folder. Each sample program has comments that describe the purpose
and function of the program. Follow the instructions at the beginning of the sample pro-
gram. Note that the RCM3305/RCM3315 must be installed on the Prototyping Board
when using the sample programs described in this chapter.

• CONTROLLED.c—Demonstrates use of the digital inputs by having you turn the LEDs
on the Prototyping Board on or off from the STDIO window on your PC.

Once you compile and run CONTROLLED.C, the following display will appear in the
Dynamic C STDIO window.

Press “2” or “3” or “4”or “5”on your keyboard to select LED DS3 or DS4 or DS5 or
DS6 on the Prototyping Board. Then follow the prompt in the Dynamic C STDIO win-
dow to turn the LED on or off.

• FLASHLED.c—Demonstrates assembly-language program by flashing the USR LED
on the RCM3305/RCM3315 and LEDs DS3, DS4, DS5, and DS6 on the Prototyping
Board.

• SWRELAY.c—Demonstrates the relay-switching function call using the relay installed
on the Prototyping Board through screw-terminal header J17.

• TOGGLESWITCH.c—Uses costatements to detect switches S2 and S3 using debounc-
ing. The corresponding LEDs (DS3 and DS4) will turn on or off.

Once you have loaded and executed these five programs and have an understanding of
how Dynamic C and the RCM3305/RCM3315 modules interact, you can move on and try
the other sample programs, or begin building your own.

User’s Manual 19

3.2.1 Use of Serial Flash
3.2.1.1 Onboard Serial Flash

The following sample programs can be found in the SAMPLES\RCM3300\SerialFlash
folder.

• SFLASH_INSPECT.c—This program is a handy utility for inspecting the contents of a
serial flash chip. When the sample program starts running, it attempts to initialize a
serial flash chip on Serial Port B. Once a serial flash chip is found, the user can perform
two different commands to either print out the contents of a specified page or clear (set
to zero) all the bytes in a specified page.

• SFLASH_LOG.c—This program runs a simple Web server and stores a log of hits in
the serial flash. This log can be viewed and cleared from a browser.

3.2.1.2 SF1000 Serial Flash Card

The following sample program can be found in the SAMPLES\RCM3300\SF1000 folder.

• SERFLASHTEST.c—An optional SF1000 Serial Flash card is required to run this dem-
onstration. Install the Serial Flash card into socket J11 on the Prototyping Board. This
sample program demonstrates how to read and write from/to the Serial Flash card.

3.2.2 Serial Communication

The following sample programs can be found in the SAMPLES\RCM3300\SERIAL folder.

• FLOWCONTROL.C—This program demonstrates hardware flow control by configuring
Serial Port F for CTS/RTS with serial data coming from TxE (Serial Port E) at 115,200
bps. One character at a time is received and is displayed in the STDIO window.

To set up the Prototyping Board, you will need to tie
TxE and RxE together on the RS-232 header at J14,
and you will also tie TxF and RxF together as shown in
the diagram.

A repeating triangular pattern should print out in the
STDIO window. The program will periodically switch flow control on or off to demon-
strate the effect of no flow control.

• PARITY.C—This program demonstrates the use of parity modes by repeatedly sending
byte values 0–127 from Serial Port E to Serial Port F. The program will switch between
generating parity or not on Serial Port E. Serial Port F will always be checking parity,
so parity errors should occur during every other sequence.

To set up the Prototyping Board, you will need to tie
TxE and RxF together on the RS-232 header at J14 as
shown in the diagram.

The Dynamic C STDIO window will display the error
sequence.

()*
�+	����+	�����
����+%����+%����
�����
����
'

()*
�+	����+	�����
����+%����+%����
�����
����
'

20 RabbitCore RCM3305/RCM3315

• SIMPLE3WIRE.C—This program demonstrates basic RS-232 serial communication.
Lower case characters are sent by TxE, and are received by RxF. The characters are
converted to upper case and are sent out by TxF, are received by RxE, and are displayed
in the Dynamic C STDIO window.

To set up the Prototyping Board, you will need to tie
TxE and RxF together on the RS-232 header at J14, and
you will also tie RxE and TxF together as shown in the
diagram.

• SIMPLE5WIRE.C—This program demonstrates 5-wire RS-232 serial communication
with flow control on Serial Port F and data flow on Serial Port E.

To set up the Prototyping Board, you will need to tie
TxE and RxE together on the RS-232 header at J14,
and you will also tie TxF and RxF together as shown in
the diagram.

Once you have compiled and run this program, you can
test flow control by disconnecting TxF from RxF while the program is running. Char-
acters will no longer appear in the STDIO window, and will display again once TxF is
connected back to RxF.

• SWITCHCHAR.C—This program transmits and then receives an ASCII string on Serial
Ports E and F. It also displays the serial data received from both ports in the STDIO
window.

To set up the Prototyping Board, you will need to tie
TxE and RxF together on the RS-232 header at J14, and
you will also tie RxE and TxF together as shown in the
diagram.

Once you have compiled and run this program, press
and release S2 and S3 on the Prototyping Board. The data sent between the serial ports
will be displayed in the STDIO window.

Two sample programs, SIMPLE485MASTER.C and SIMPLE485SLAVE.C, are available
to illustrate RS-485 master/slave communication. To run these sample programs, you will
need a second Rabbit-based system with RS-485—another Rabbit single-board computer
or RabbitCore module may be used as long as you use the master or slave sample program
associated with that board.

Before running either of these sample programs on the RCM3305/RCM3315 assembly,
make sure pins 1–2 and pins 5–6 are jumpered together on header JP5 to use the RS-485
bias and termination resistors. The sample programs use Serial Port C as the RS-485 serial
port, and they use PD7 to enable/disable the RS-485 transmitter.

()*
�+	����+	�����
����+%����+%����
�����
����
'

()*
�+	����+	�����
����+%����+%����
�����
����
'

()*
�+	����+	�����
����+%����+%����
�����
����
'

User’s Manual 21

The RS-485 connections between the slave and master devices are as follows.

• RS485+ to RS485+

• RS485– to RS485–

• GND to GND

• SIMPLE485MASTER.C—This program demonstrates a simple RS-485 transmission of
lower case letters to a slave. The slave will send back converted upper case letters back
to the master and display them in the STDIO window. Use SIMPLE485SLAVE.C to
program the slave.

• SIMPLE485SLAVE.C—This program demonstrates a simple RS-485 transmission of
lower case letters to a master. The slave will send back converted upper case letters
back to the master and display them in the STDIO window. Use SIMPLE485MASTER.C
to program the master.

3.2.3 Real-Time Clock

If you plan to use the real-time clock functionality in your application, you will need to set
the real-time clock. Set the real-time clock using the SETRTCKB.C sample program from
the Dynamic C SAMPLES\RTCLOCK folder, using the onscreen prompts. The RTC_
TEST.C sample program in the Dynamic C SAMPLES\RTCLOCK folder provides addi-
tional examples of how to read and set the real-time clock.

3.2.4 RabbitNet

Sample programs are available for each RabbitNet peripheral card, and can be found in the
Dynamic C SAMPLES\RabbitNet folder. When you run any of these sample programs
in conjunction with the RCM3305/RCM3315 and the Prototyping Board, you need to add
the line

#use rcm33xx.lib

at the beginning of the sample program.

TIP: You need to add #use rcm33xx.lib at the beginning of any sample program
that is not in the Dynamic C SAMPLES\RCM3300 folder.

3.2.5 Other Sample Programs

Section 6.6 describes the TCP/IP sample programs, and Appendix C.7 provides sample
programs for the optional LCD/keypad module that can be installed on the Prototyping
Board.

22 RabbitCore RCM3305/RCM3315

User’s Manual 23

4. HARDWARE REFERENCE

Chapter 4 describes the hardware components and principal hardware
subsystems of the RCM3305/RCM3315 modules. Appendix A,
“RCM3305/RCM3315 Specifications,” provides complete physical
and electrical specifications.

Figure 4 shows the Rabbit-based subsystems designed into the RCM3305/RCM3315.

Figure 4. RCM3305/RCM3315 Subsystems

������
���

#	������
��$�����

#����+�,
%&&&

��
����
-
�������
�.��
�	��%�/��	���
�

�$0�-������
���	�

�������������
�!"#$%���&&'(#�$)#�(
"#+!"���(�&�),!"-�$"

�'�)�&!"��.!�#/#�
$..%#�$)#�(�

$))!"0�
$��'.
�#"�'#)

�!+!%
��(+!")!"

�),!"(!) ��1��2��
���

�"�3"$&

%$�,

$�)����2
4."�3"$&5

�$)$
���2

�!"#$%

%$�,

24 RabbitCore RCM3305/RCM3315

4.1 RCM3305/RCM3315 Digital Inputs and Outputs
Figure 5 shows the RCM3305/RCM3315 pinouts for headers J3 and J4.

Figure 5. RCM3305/RCM3315 Pinouts

The pinouts for the RCM3000, RCM3100, RCM3200, RCM3305/RCM3315, RCM3360/
RCM3370, and RCM3365/RCM3375 are almost compatible, except signals PB0, PC4, and PC5.
PB0, PC4, and PC5 are used for the SPI interface to the serial flash on the RCM3305 and the
RCM3315. Visit the Web site for further information.

Headers J3 and J4 are standard 2 × 34 headers with a nominal 2 mm pitch. An RJ-45 Ether-
net port is also included with the RCM3305/RCM3315.

Pins 29–32 on header J3 are configured using 0 Ω resistors at locations JP4, JP5, JP6, and
JP7 to be PD2, PD3, PD6, and PD7 respectively. They may also be reconfigured to carry
the Ethernet signals TPI+, TPI–, TPO+, and TPO–.

Pins 33 and 34 on header J3 are wired to carry the LINK and ACT signals that illuminated
the corresponding LEDs on the RCM3305/RCM3315 module. These signals may be “dis-
connected” by removing 0 Ω surface-mount resistors R41 and R42.

See Appendix A.5 for more information about the locations of these surface-mount
resistors.

1���2 ���������������	������������
������������������������������

��	�
���
���
���
�%�
�%�
�	�
�	

�	�
�	�
���
���

����

���
	�

!���
��"��!��

;"A"

;"A"����
���
��

���
�%

�%�
�	�
�	�
�	�
���
��

���*�
���
	�
��	�	�,��
!���,)�
��

��

��
����$�
���
���
���
���
�%�
�%�
���
���
;"A"���

���(�+�
���
���
�

�
������
�
������
����;"A"

��

���
��

���
���
�%�
�%�
���
���

;"A"����
���(�+�

���
���
�
�

�
�����'
�
�����'
�����;"A"

��

;"A"�D�;/5�A/;;9A597

User’s Manual 25

Figure 6 shows the use of the Rabbit 3000 microprocessor ports in the RCM3305/
RCM3315 modules.

Figure 6. Use of Rabbit 3000 Ports

The ports on the Rabbit 3000 microprocessor used in the RCM3305/RCM3315 are config-
urable, and so the factory defaults can be reconfigured. Table 2 lists the Rabbit 3000 fac-
tory defaults and the alternate configurations.

#����+�,
%&&&

��")�� ��")�
 ��")��

���'��� ���'���

�	�'�	�B
�	�'�	�

�
�'�
�

��	�
����

���*�

6$)�,*�3
���	#&!"�

�%������'-%!"
�%$+!���")

�!$%�	#&!��%���

��2
$��'.�
$))!"0
�'..�")
%$�,

��")��
4�!"#$%���")����7��5

�"�3"$&&#(3
��")

4�!"#$%���")��5

�),!"(!)
��")��	549:;95�123;>.1

���B����B�����$�
���B���	�	�B

���
	�B����
	�

���B����

���B����

��")�8
4�!"#$%���")����7�
5

��")�
 �%�'�%�

��	�

���'���
���'���

2#��1�9:�

���'���B
���'��

��")�8
4��!"#$%���")�5

��")��
4��),!"(!)���")5

26 RabbitCore RCM3305/RCM3315

Table 2. RCM3305/RCM3315 Pinout Configurations

Pin Pin Name Default Use Alternate Use Notes

H
ea

de
r J

3

1 GND

2 STATUS Output (Status) Output

3–10 PA[7:0] Parallel I/O

External data bus
(ID0–ID7)

Slave port data bus
(SD0–SD7)

External Data Bus

11 PF3 Input/Output QD2A

12 PF2 Input/Output QD2B

13 PF1 Input/Output
QD1A
CLKC

14 PF0 Input/Output
QD1B
CLKD

15 PC0 Output TXD
Serial Port D

16 PC1 Input RXD

17 PC2 Output TXC
Serial Port C

18 PC3 Input RXC

19 PC4 Output TXB
Serial Port B

RCM3305/RCM3315—
Not Connected (used for
onboard serial flash)20 PC5 Input RXB

21 PC6 Output TXA Serial Port A
(programming port)22 PC7 Input RXA

23 PG0 Input/Output TCLKF Serial Clock F output

24 PG1 Input/Output RCLKF Serial Clock F input

25 PG2 Input/Output TXF
Serial Port F

26 PG3 Input/Output RXF

27 PD4 Input/Output ATXB

28 PD5 Input/Output ARXB

29 PD2/TPO– Input/Output TPOUT– * Optional Ethernet
transmit port30 PD3/TPO+ Input/Output TPOUT+ *

31 PD6/TPI– Input/Output TPIN– * Optional Ethernet
receive port32 PD7/TPI+ Input/Output TPIN+ *

33 LINK Output Max. sinking current
draw 1 mA (see Note 1)34 ACT Output

* Pins 29–32 are configured with 0 Ω surface-mount resistors at JP4, JP5, JP7, and JP8.

User’s Manual 27

H
ea

de
r J

4
1 /RES Reset output Reset output from Reset

Generator

2 PB0 Input/Output CLKB
RCM3305/RCM3315—
Not Connected (used for
onboard serial flash)

3 PB2 Input/Output
IA0
/SWR

External Address 0
Slave port write

4 PB3 Input/Output
IA1
/SRD

External Address 1
Slave port read

5 PB4 Input/Output
IA2
SA0

External Address 2
Slave port Address 0

6 PB5 Input/Output
IA3
SA1

External Address 3
Slave port Address 1

7 PB6 Input/Output IA4 External Address 4

8 PB7 Input/Output
IA5
/SLAVEATTN

External Address 5
Slave Attention

9 PF4 Input/Output
AQD1B
PWM0

10 PF5 Input/Output
AQD1A
PWM1

11 PF6 Input/Output
AQD2B
PWM2

12 PF7 Input/Output
AQD2A
PWM3

13 PE7 Input/Output
I7
/SCS

I/O Strobe 7
Slave Port Chip Select

14 PE6 Input/Output I6 I/O Strobe 6

15 PE5 Input/Output
I5
INT1B

I/O Strobe 5
Interrupt 1B

16 PE4 Input/Output
I4
INT0B

I/O Strobe 4
Interrupt 0B

17 PE3 Input/Output I3 I/O Strobe 3

18 PE1 Input/Output
I1
INT1A

I/O Strobe 1
Interrupt 1A

19 PE0 Input/Output
I0
INT0A

I/O Strobe 0
Interrupt 0A

Table 2. RCM3305/RCM3315 Pinout Configurations (continued)

Pin Pin Name Default Use Alternate Use Notes

28 RabbitCore RCM3305/RCM3315

Notes

1. When using pins 33–34 on header J3 to drive LEDs, these pins can handle a sinking
current of up to 8 mA.

2. The VRAM voltage is temperature-dependent. If the VRAM voltage drops below about
1.2 V to 1.5 V, the contents of the battery-backed SRAM may be lost. If VRAM drops
below 1.0 V, the 32 kHz oscillator could stop running. Pay careful attention to this volt-
age if you draw any current from this pin.

H
ea

de
r J

4

20 PG7 Input/Output RXE
Serial Port E

21 PG6 Input/Output TXE

22 PG5 Input/Output RCLKE Serial Clock E input

23 PG4 Input/Output TCLKE Serial Clock E ouput

24 /IOWR Output External write strobe

25 /IORD Output External read strobe

26–27 SMODE0,
SMODE1

(0,0)—start executing at address zero
(0,1)—cold boot from slave port
(1,0)—cold boot from clocked Serial Port A

SMODE0 =1, SMODE1 = 1
Cold boot from asynchronous Serial Port A at
2400 bps (programming cable connected)

Also connected to
programming cable

28 /RESET_IN Input Input to Reset Generator

29 VRAM Output See Notes below table

30 VBAT_EXT 3 V battery Input Minimum battery
voltage 2.85 V

31 +3.3 VIN Power Input 3.15–3.45 V DC

32 GND

33 n.c. Reserved for future use

34 GND

Table 2. RCM3305/RCM3315 Pinout Configurations (continued)

Pin Pin Name Default Use Alternate Use Notes

User’s Manual 29

4.1.1 Memory I/O Interface

The Rabbit 3000 address lines (A0–A18) and all the data lines (D0–D7) are routed
internally to the onboard flash memory and SRAM chips. I/0 write (/IOWR) and I/0 read
(/IORD) are available for interfacing to external devices.

Parallel Port A can also be used as an external I/O data bus to isolate external I/O from the
main data bus. Parallel Port B pins PB2–PB5 and PB7 can also be used as an external
address bus.

When using the external I/O bus for a digital output or the LCD/keypad module on the
Prototyping Board, or for any other reason, you must add the following line at the begin-
ning of your program.

#define PORTA_AUX_IO // required to enable external I/O bus

4.1.2 Other Inputs and Outputs

The status, /RESET_IN, SMODE0, and SMODE1 I/O are normally associated with the
programming port. Since the status pin is not used by the system once a program has been
downloaded and is running, the status pin can then be used as a general-purpose CMOS
output. The programming port is described in more detail in Section 4.2.3.

/RES is an output from the reset circuitry that can be used to reset external peripheral
devices.

4.1.3 LEDs

The RCM3305/RCM3315 has three Ethernet status LEDs located beside the RJ-45 Ether-
net jack—these are discussed in Section 4.2.

Addiitionally, there are two other LEDs. The SF LED at DS3 blinks when data are being
written to or read from the flash mass-storage device. The red USR LED at DS3 is a user-
programmable LED, which is controlled by PD0 on the Rabbit 3000’s Parallel Port D. The
sample program FLASHLED.C provided in the Dynamic C SAMPLES\RCM3300 folder
shows how to set up and use this user-programmable LED.

30 RabbitCore RCM3305/RCM3315

4.2 Serial Communication
The RCM3305/RCM3315 does not have any serial transceivers directly on the board.
However, a serial interface may be incorporated into the board the RCM3305/RCM3315
is mounted on. For example, the Prototyping Board has RS-232 and RS-485 transceiver
chips.

4.2.1 Serial Ports

There are six serial ports designated as Serial Ports A, B, C, D, E, and F. All six serial
ports can operate in an asynchronous mode up to the baud rate of the system clock divided
by 8. An asynchronous port can handle 7 or 8 data bits. A 9th bit address scheme, where
an additional bit is sent to mark the first byte of a message, is also supported.

Serial Port A is normally used as a programming port, but may be used either as an asyn-
chronous or as a clocked serial port once the RCM3305/RCM3315 has been programmed
and is operating in the Run Mode.

Serial Port B is used to communicate with the serial flash on the RCM3305/RCM3315 and
is not available for other use.

Serial Ports C and D can also be operated in the clocked serial mode. In this mode, a clock
line synchronously clocks the data in or out. Either of the two communicating devices can
supply the clock.

Serial Ports E and F can also be configured as HDLC serial ports. The IrDA protocol is
also supported in SDLC format by these two ports.

User’s Manual 31

4.2.2 Ethernet Port

Figure 7 shows the pinout for the RJ-45 Ethernet port (J2). Note that some Ethernet con-
nectors are numbered in reverse to the order used here.

Figure 7. RJ-45 Ethernet Port Pinout

The RJ-45 connector is shielded to minimize EMI effects to/from the Ethernet signals.

Three Ethernet status LEDs are located beside the RJ-45 Ethernet jack: ACT, LINK, and
SPEED. The yellow ACT LED at DS1 indicates network activity. The green LINK LED at
DS2 indicates that the RCM3305/RCM3315 is connected to a working network. The
green SPEED LED at DS4 is on to indicate when the RCM3305/RCM3315 is connected
to a 100Base-T Ethernet connection.

��������

#(-*'�����

�"��	,�+�
�"��	,�+'
�"��	,�+�
�"��	,�+'

� �

#(-*'�(�3

32 RabbitCore RCM3305/RCM3315

4.2.3 Programming Port

The RCM3305/RCM3315 is programmed either through the serial programming port,
which is accessed using header J1, or through the Ethernet jack. The RabbitLink may be
used to provide a serial connection via the RabbitLink’s Ethernet jack. The programming
port uses the Rabbit 3000’s Serial Port A for communication; Serial Port A is not used
when programming is done over an Ethernet connection via the Dynamic C download
manager or the remote application update. Dynamic C uses the programming port to
download and debug programs.

The programming port is also used for the following operations.

• Cold-boot the Rabbit 3000 on the RCM3305/RCM3315 after a reset.

• Remotely download and debug a program over an Ethernet connection using the
RabbitLink EG2110.

• Fast copy designated portions of flash memory from one Rabbit-based board (the
master) to another (the slave) using the Rabbit Cloning Board.

In addition to Serial Port A, the Rabbit 3000 startup-mode (SMODE0, SMODE1), status,
and reset pins are available on the programming port.

The two startup mode pins determine what happens after a reset—the Rabbit 3000 is
either cold-booted or the program begins executing at address 0x0000.

The status pin is used by Dynamic C to determine whether a Rabbit microprocessor is
present. The status output has three different programmable functions:

1. It can be driven low on the first op code fetch cycle.

2. It can be driven low during an interrupt acknowledge cycle.

3. It can also serve as a general-purpose CMOS output.

The /RESET_IN pin is an external input that is used to reset the Rabbit 3000 and the
RCM3305/RCM3315 onboard peripheral circuits. The serial programming port can be
used to force a hard reset on the RCM3305/RCM3315 by asserting the /RESET_IN signal.

Alternate Uses of the Programming Port

All three clocked Serial Port A signals are available as

• a synchronous serial port

• an asynchronous serial port, with the clock line usable as a general CMOS I/O pin

The programming port may also be used as a serial port once the application is running.
The SMODE pins may then be used as inputs and the status pin may be used as an output.

Refer to the Rabbit 3000 Microprocessor User’s Manual for more information.

User’s Manual 33

4.3 Programming Cable
The programming cable is used to connect the programming port of the RCM3305/
RCM3315 to a PC serial COM port. The programming cable converts the RS-232 voltage
levels used by the PC serail port to the CMOS voltage levels used by the Rabbit 3000.

When the PROG connector on the programming cable is connected to the RCM3305/
RCM3315 programming port, programs can be downloaded and debugged over the serial
interface.

The DIAG connector of the programming cable may be used on header J1 of the RCM3305/
RCM3315 with the RCM3305/RCM3315 operating in the Run Mode. This allows the
programming port to be used as a regular serial port.

4.3.1 Changing Between Program Mode and Run Mode

The RCM3305/RCM3315 is automatically in Program Mode when the PROG connector
on the programming cable is attached, and is automatically in Run Mode when no pro-
gramming cable is attached. When the Rabbit 3000 is reset, the operating mode is deter-
mined by the state of the SMODE pins. When the programming cable’s PROG connector
is attached, the SMODE pins are pulled high, placing the Rabbit 3000 in the Program
Mode. When the programming cable’s PROG connector is not attached, the SMODE pins
are pulled low, causing the Rabbit 3000 to operate in the Run Mode.

Figure 8. Switching Between Program Mode and Run Mode

#���+

��
�
�� ��
�

�	

�

�	

�

�	

�
�

�
�

 �
�

�
�

�

�

�

�������	�

�
���

��

�
��

�
��

�
��

�������
�

�

�
��

���

�
�

�
	
��

�
�
�
��
�
�
�
��
�
�
��
��

�
��
�
�
�
��
�
�
�

��

�	���
�
�����������

�

��
� � ��
� �

�! ��
	
�

�	

�

�	

�

�	

�

�	

�

�
�

�
�

�
�

�

�

�

�

��
� �

 ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 �

�
�
�

�
�
�

�
�
�

�
�
�

��

��
�

�
	
��

�
��

��
	

�"

�
��
#

��
��
!

 ��

$��$��

���

�
�� �
�����

���

���

�
	
�
��
��
%�

�
�
&
�

�
�

	
�

 �

�
�

�
�

�
�

�
�

�

�
�

��

�� $�

�
��

��

��

�

 �

 �
 �

 �
��
��������������������������������
!�
!��������
����
����
�����

!��'��
������������������!���!�������	����������������!��'

 �

�� �� �� ��

��

��

!��

��	�

���

��
�

��

���

�	�

�	�

�	�

�%�

�%

���

��

���

���

 �

��

��"��!

!���

���
	�

����

���

���

�	�

�	�

�	

���

���

���

�������

�
%�

���
%�

���
	
�

�������
�����������
����

��
�	�	�

 �

�� ��

���

�
�

�
�

�

���

���

���

��

���

���

�%�

�%�

���

���

���

���

����

����

�
�

�
�

�
�

���

���

���

���

���

���

�%�

�%�

���

���

��

���

��

 � �

��
��

�
�

�

�

�
�

�
�

��

��
�
�

�

��

��

�
��

 �
�

���

�
� �	

�
�	

	

�
��

 �
�

 ��

��� ���

��� �

���

�
��

$

���
��

�
��

���� �������������� ������
������� ����$�

�$�

��
���

$�

$�
����

&(
��!	�

����

&(
��!	�

$�

��
 ��� ��� ���

 �� ���

$��

���

�
��

��

���
 �

���

���

�
��

$�

���

 ��

�
��

�
��

�
�� �
��

$)

$)�
����*

$)�
����*

)�

�
�

 ��
�
�

��

���

�

�
�

��
�

��
�

��
�

��
�

��
	

�
��

�
��

�
��

�
��

���	

��
��
��
�

�� �+	����+	�����
����+%����+%����
�����
����
'

�� �� �� ��

���

������������

���	���
$�	

��
�	��

$�

��
��

��"��!

�
�!

��"��!

�
�!

$�

$)�

)�

�)��

�)��

�)��

�)��

�)���)�

�%�,���

�%�,�

 ��

�
�

$�

�
��

�
��

�
��

�
��

�
�

�)�

�)�

�

�

�

�

�

�

�

�
��

�
��

�
�

�
��

�

�

�
��

������	�������

�

�

�

�

�
�
��

�(
�

�
�
��

�(
�

���
���
���
���

�
�

 �
���

��

��

�
�

�
��

��$�

�
�

���
�

�
�

�
�

�
�

���� �

�
�

�
��

�
��

�
��

�
��

$�

�
��

�
��

��

�
�

�
��

�
��

�
�

�
��

�
��

�
��

��

�
��

�
�

���

$�

�����

��

�
��

���
���
���

���

$
�
��

��

���

������
$��

�
��

���
���
���
���
���

�
�

�
��

�
��

$�
���

���

�����))

�
�

����������
�
���

�
�

��

�
�

 �

��

���

���
���

�
��

�
��

�
��

�
��

�
��

�
��

���

��� �	����
�	����

 �
�

 �
�

 �
�

 �
�

 �

��

���

�
�� �
��

�
��

���

�
�
�
�
���

�
��

���

���

���

�
��

�
��

���

�
��

�
��

�
����

�
�� �

��

��

�

�

�
�
�
�
�

�
�

��
�

�
�
�
�

�/./:97�9739

�/
�������=/:5

�
��
	�������	���

����	���2��; :��2��� �<,!(��,$(3#(3�&�*!=
��	�����	�	��������� �������!��	����"���!����	�#$���
��"��������	����%��
$/)!"�"!&�+#(3��"�$))$�,#(3�."�3"$&&#(3��$-%!1

34 RabbitCore RCM3305/RCM3315

A program “runs” in either mode, but can only be downloaded and debugged when the
RCM3305/RCM3315 is in the Program Mode.

Refer to the Rabbit 3000 Microprocessor User’s Manual for more information on the pro-
gramming port.

4.3.2 Standalone Operation of the RCM3305/RCM3315

The RCM3305/RCM3315 must be programmed via the Prototyping Board or via a similar
arrangement on a customer-supplied board. Once the RCM3305/RCM3315 has been pro-
grammed successfully, remove the programming cable from the programming connector
and reset the RCM3305/RCM3315. The RCM3305/RCM3315 may be reset by cycling the
power off/on or by pressing the RESET button on the Prototyping Board. The RCM3305/
RCM3315 module may now be removed from the Prototyping Board for end-use
installation.

CAUTION: Disconnect power to the Prototyping Board or other boards when removing
or installing your RCM3305/RCM3315 module to protect against inadvertent shorts
across the pins or damage to the RCM3305/RCM3315 if the pins are not plugged in
correctly. Do not reapply power until you have verified that the RCM3305/RCM3315
module is plugged in correctly.

User’s Manual 35

4.4 Other Hardware
4.4.1 Clock Doubler

The RCM3305/RCM3315 takes advantage of the Rabbit 3000 microprocessor’s internal
clock doubler. A built-in clock doubler allows half-frequency crystals to be used to reduce
radiated emissions. The 44.2 MHz frequency specified for the RCM3305/RCM3315 is
generated using a 22.12 MHz resonator.

The clock doubler may be disabled if 44.2 MHz clock speeds are not required. This will
reduce power consumption and further reduce radiated emissions. The clock doubler is
disabled with a simple configuration macro as shown below.

4.4.2 Spectrum Spreader

The Rabbit 3000 features a spectrum spreader, which helps to mitigate EMI problems. The
spectrum spreader is on by default, but it may also be turned off or set to a stronger setting.
The means for doing so is through a simple configuration macro as shown below.

NOTE: Refer to the Rabbit 3000 Microprocessor User’s Manual for more information
on the spectrum-spreading setting and the maximum clock speed.

1. Select the “Defines” tab from the Dynamic C Options > Project Options menu.

2. Add the line CLOCK_DOUBLED=0 to always disable the clock doubler.

The clock doubler is enabled by default, and usually no entry is needed. If you need to
specify that the clock doubler is always enabled, add the line CLOCK_DOUBLED=1 to
always enable the clock doubler.

3. Click OK to save the macro. The clock doubler will now remain off whenever you are
in the project file where you defined the macro.

1. Select the “Defines” tab from the Dynamic C Options > Project Options menu.
2. Normal spreading is the default, and usually no entry is needed. If you need to specify

normal spreading, add the line
ENABLE_SPREADER=1

For strong spreading, add the line
ENABLE_SPREADER=2

To disable the spectrum spreader, add the line
ENABLE_SPREADER=0

NOTE: The strong spectrum-spreading setting is unnecessary for the RCM3305/RCM3315.

3. Click OK to save the macro. The spectrum spreader will now be set to the state specified
by the macro value whenever you are in the project file where you defined the macro.

36 RabbitCore RCM3305/RCM3315

4.5 Memory
4.5.1 SRAM

RCM3305/RCM3315 boards have 512K of program-execution fast SRAM at U11. The
program-execution SRAM is not battery-backed. There are 512K of battery-backed data
SRAM installed at U10.

4.5.2 Flash EPROM

RCM3305/RCM3315 boards also have 512K of flash EPROM at U9.

NOTE: Rabbit recommends that any customer applications should not be constrained by
the sector size of the flash EPROM since it may be necessary to change the sector size
in the future.

Writing to arbitrary flash memory addresses at run time is also discouraged. Instead, use a
portion of the “user block” area to store persistent data. The functions writeUser-
Block() and readUserBlock() are provided for this. Refer to the Rabbit 3000
Microprocessor Designer’s Handbook and the Dynamic C Function Reference Manual for
additional information.

4.5.3 Serial Flash

A serial flash is supplied on the RCM3305 and the RCM3315 to store data and Web pages.
Sample programs in the SAMPLES\RCM3300 folder illustrate the use of the serial flash.
These sample programs are described in Section 3.2.1, “Use of Serial Flash.”

4.5.4 Dynamic C BIOS Source Files

The Dynamic C BIOS source files handle different standard RAM and flash EPROM sizes
automatically.

User’s Manual 37

5. SOFTWARE REFERENCE

Dynamic C is an integrated development system for writing
embedded software. It runs on an IBM-compatible PC and is
designed for use with controllers based on the Rabbit micropro-
cessor. Chapter 5 describes the libraries and function calls
related to the RCM3305/RCM3315.

5.1 More About Dynamic C
Dynamic C has been in use worldwide since 1989. It is specially designed for program-
ming embedded systems, and features quick compile and interactive debugging. A com-
plete reference guide to Dynamic C is contained in the Dynamic C User’s Manual.

You have a choice of doing your software development in the flash memory or in the static
SRAM included on the RCM3305/RCM3315. The flash memory and SRAM options are
selected with the Options > Program Options > Compiler menu.

The advantage of working in RAM is to save wear on the flash memory, which is limited
to about 100,000 write cycles. The disadvantage is that the code and data might not both
fit in RAM.

NOTE: An application should be run from the program execution SRAM after the pro-
gramming cable is disconnected. Your final code must always be stored in flash memory
for reliable operation. RCM3305/RCM3315 modules running at 44.2 MHz have a fast
program execution SRAM that is not battery-backed. Select Code and BIOS in Flash,
Run in RAM from the Dynamic C Options > Project Options > Compiler menu to
store the code in flash and copy it to the fast program execution SRAM at run-time to
take advantage of the faster clock speed. This option optimizes the performance of
RCM3305/RCM3315 modules running at 44.2 MHz.

NOTE: Do not depend on the flash memory sector size or type in your program logic.
The RCM3305/RCM3315 and Dynamic C were designed to accommodate flash
devices with various sector sizes in response to the volatility of the flash-memory
market.

Developing software with Dynamic C is simple. Users can write, compile, and test C and
assembly code without leaving the Dynamic C development environment. Debugging
occurs while the application runs on the target. Alternatively, users can compile a program
to an image file for later loading. Dynamic C runs on PCs under Windows 2000 and
later—see Rabbit’s Technical Note TN257, Running Dynamic C® With Windows Vista®,

38 RabbitCore RCM3305/RCM3315

for additional information if you are using a Dynamic C release prior to v. 9.60 under Win-
dows Vista. Programs can be downloaded at baud rates of up to 460,800 bps after the pro-
gram compiles.

Dynamic C has a number of standard features.

• Full-feature source and/or assembly-level debugger, no in-circuit emulator required.

• Royalty-free TCP/IP stack with source code and most common protocols.

• Hundreds of functions in source-code libraries and sample programs:
Exceptionally fast support for floating-point arithmetic and transcendental functions.

RS-232 and RS-485 serial communication.

Analog and digital I/O drivers.

I2C, SPI, GPS, file system.

LCD display and keypad drivers.

• Powerful language extensions for cooperative or preemptive multitasking

• Loader utility program to load binary images into Rabbit targets in the absence of
Dynamic C.

• Provision for customers to create their own source code libraries and augment on-line
help by creating “function description” block comments using a special format for
library functions.

• Standard debugging features:
Breakpoints—Set breakpoints that can disable interrupts.

Single-stepping—Step into or over functions at a source or machine code level, µC/OS-II aware.

Code disassembly—The disassembly window displays addresses, opcodes, mnemonics, and
machine cycle times. Switch between debugging at machine-code level and source-code level by
simply opening or closing the disassembly window.

Watch expressions—Watch expressions are compiled when defined, so complex expressions
including function calls may be placed into watch expressions. Watch expressions can be updated
with or without stopping program execution.

Register window—All processor registers and flags are displayed. The contents of general registers
may be modified in the window by the user.

Stack window—shows the contents of the top of the stack.

Hex memory dump—displays the contents of memory at any address.

STDIO window—printf outputs to this window and keyboard input on the host PC can be
detected for debugging purposes. printf output may also be sent to a serial port or file.

User’s Manual 39

5.1.1 Developing Programs Remotely with Dynamic C

Dynamic C is an integrated development environment that allows you to edit, compile,
and debug your programs. Dynamic C has the ability to allow programming over the
Internet or local Ethernet. This is accomplished in one of two ways.

1. Via the Rabbit RabbitLink, which allows a Rabbit-based target to have programs down-
loaded to it and debugged with the same ease as exists when the target is connected
directly to a PC.

2. The RCM3305/RCM3315 has a featured remote application update written specifically
to allow the RCM3305/RCM3315 to be programmed over the Internet or local Ether-
net. These programs, DLP_STATIC.C and DLP_WEB.C, are available in the Dynamic C
SAMPLES\RCM3300\RemoteApplicationUpdate folder. Complete information on
the use of these programs is provided in the Remote Application Update instructions,
which are available with the online documentation.

Dynamic C provides sample programs to illustrate the use of a download manager.

40 RabbitCore RCM3305/RCM3315

5.2 Dynamic C Functions
5.2.1 Digital I/O

The RCM3305/RCM3315 was designed to interface with other systems, and so there are
no drivers written specifically for the I/O. The general Dynamic C read and write func-
tions allow you to customize the parallel I/O to meet your specific needs. For example, use

WrPortI(PEDDR, &PEDDRShadow, 0x00);

to set all the Port E bits as inputs, or use

WrPortI(PEDDR, &PEDDRShadow, 0xFF);

to set all the Port E bits as outputs.

When using the external I/O bus on the Rabbit 3000 chip, add the line

#define PORTA_AUX_IO // required to enable external I/O bus

to the beginning of any programs using the external I/O bus.

The sample programs in the Dynamic C SAMPLES/RCM3300 folder provide further
examples.

5.2.2 SRAM Use

The RCM3305/RCM3315 have a battery-backed data SRAM and a program-execution
SRAM. Dynamic C provides the protected keyword to identify variables that are to be
placed into the battery-backed SRAM. The compiler generates code that creates a backup
copy of a protected variable before the variable is modified. If the system resets while the
protected variable is being modified, the variable's value can be restored when the system
restarts.

The sample code below shows how a protected variable is defined and how its value can
be restored.

protected nf_device nandFlash;

int main() {
 ...

 _sysIsSoftReset(); // restore any protected variables

The bbram keyword may also be used instead if there is a need to store a variable in bat-
tery-backed SRAM without affecting the performance of the application program. Data
integrity is not assured when a reset or power failure occurs during the update process.

Additional information on bbram and protected variables is available in the Dynamic C
User’s Manual.

User’s Manual 41

5.2.3 Serial Communication Drivers

Library files included with Dynamic C provide a full range of serial communications sup-
port. The RS232.LIB library provides a set of circular-buffer-based serial functions. The
PACKET.LIB library provides packet-based serial functions where packets can be delimited
by the 9th bit, by transmission gaps, or with user-defined special characters. Both libraries
provide blocking functions, which do not return until they are finished transmitting or
receiving, and nonblocking functions, which must be called repeatedly until they are fin-
ished, allowing other functions to be performed between calls. For more information, see
the Dynamic C Function Reference Manual and Technical Note TN213, Rabbit Serial
Port Software.

5.2.4 TCP/IP Drivers

The TCP/IP drivers are located in the LIB\TCPIP folder. Complete information on these
libraries and the TCP/IP functions is provided in the Dynamic C TCP/IP User’s Manual.

5.2.5 Serial Flash Drivers

The Dynamic C SerialFlash\SFLASH.LIB library is used to interface to serial flash
memory devices on an SPI bus such as the serial flash on board the RCM3305 and the
RCM3315, which use Serial Port B as an SPI port. The library has two sets of function
calls—the first is maintained for compatibility with previous versions of the SFLASH.LIB
library. The functions are all blocking and only work for single flash devices. The new
functions, which should be used for the RCM3305/RCM3315, make use of an
sf_device structure as a handle for a specific serial flash device. This allows multiple
devices to be used by an application.

More information on these function calls is available in the Dynamic C Function Refer-
ence Manual.

42 RabbitCore RCM3305/RCM3315

5.2.6 Prototyping Board Functions

The functions described in this section are for use with the Prototyping Board features.
The source code is in the Dynamic C SAMPLES\RCM3300\RCM33xx.LIB library if you
need to modify it for your own board design.

The RCM33xx.LIB library is supported by the RN_CFG_RCM33.LIB—library, which is
used to configure the RCM3305/RCM3315 for use with RabbitNet peripheral boards on
the Prototyping Board.

Other generic functions applicable to all devices based on Rabbit microprocessors are
described in the Dynamic C Function Reference Manual.

5.2.6.1 Board Initialization

Call this function at the beginning of your program. This function initializes Parallel Ports A through G
for use with the Prototyping Board.

Summary of Initialization

1. I/O port pins are configured for Prototyping Board operation.

2. Unused configurable I/O are set as tied inputs or outputs.

3. External I/O are disabled.

4. The LCD/keypad module is disabled.

5. RS-485 is not enabled.

6. RS-232 is not enabled.

7. LEDs are off.

8. Ethernet select is disabled.

9. Mass-storage flash select is disabled.

10. Motor control is disabled.

11. The RabbitNet SPI interface is disabled.

12. The relay is set to normally closed positions.

RETURN VALUE
None.

void brdInit (void);

User’s Manual 43

5.2.6.2 Digital I/O

Reads the input state of inputs on Prototyping Board headers J5 and J6. Do not use this function if you
configure these pins for alternate use after brdInit() is called.

PARAMETERS
channels is the channel number corresponding to the signal on header J5 or J6

0—IN0
1—IN1
2—IN2
3—IN3
4—QD1B
5—QD1A
6—QD2B
7—QD2A

RETURN VALUE
The logic state (0 or 1) of the input.

SEE ALSO
brdInit

Writes a value to an output channel on Prototyping Board header J10. Do not use this function if you
have installed the stepper motor chips at U2 and U3.

PARAMETERS
channel is output channel 0–7 (OUT00–OUT07).

value is the value (0 or 1) to output.

RETURN VALUE
None.

SEE ALSO
brdInit

int digIn(int channel);

void digOut(int channel, int value);

44 RabbitCore RCM3305/RCM3315

5.2.6.3 Switches, LEDs, and Relay

Reads the state of a switch input.

PARAMETERS
swin is the switch input to read:

2—S2
3—S3

RETURN VALUE
State of the switch input:

1 = open
0 = closed

SEE ALSO
brdInit

Controls LEDs on the Prototyping Board and on the RCM3305/RCM3315.

PARAMETERS
led is the LED to control:

0 = red User LED on RCM3305/RCM3315
3 = DS3 on Prototyping Board
4 = DS4 on Prototyping Board
5 = DS5 on Prototyping Board
6 = DS6 on Prototyping Board

value is the value used to control the LED:

0 = off
1 = on

RETURN VALUE
None.

SEE ALSO
brdInit

int switchIn(int swin);

void ledOut(int led, int value);

User’s Manual 45

Sets the position for the relay common contact. The default position is for normally closed contacts.

PARAMETERS
relay is the one relay (1)

value is the value used to connect the relay common contact:

0 = normally closed positions (NC1 and NC2)
1 = normally open positions (NO1 and NO2)

RETURN VALUE
None.

SEE ALSO
brdInit

5.2.6.4 Serial Communication

Enables the RS-485 transmitter. Transmitted data are echoed back into the receive data buffer. The
echoed data may be used as an indicator for disabling the transmitter by using one of the following meth-
ods:

Byte mode—disable the transmitter after the same byte that is transmitted is detected in the receive
data buffer.

Block data mode—disable the transmitter after the same number of bytes transmitted are detected in
the receive data buffer.

Remember to call the serXopen() function before running this function.

SEE ALSO
ser485Rx

Disables the RS-485 transmitter. This puts the device into the listen mode, which allows it to receive data
from the RS-485 interface.

Remember to call the serXopen() function before running this function.

SEE ALSO
ser485Tx

void relayOut(int relay, int value);

void ser485Tx(void);

void ser485Rx(void);

46 RabbitCore RCM3305/RCM3315

5.2.6.5 RabbitNet Port

The function calls described in this section are used to configure the RabbitNet port on the
Prototyping Board for use with RabbitNet peripheral cards. The user’s manual for the spe-
cific peripheral card you are using contains additional function calls related to the Rabbit-
Net protocol and the individual peripheral card. Appendix E provides additional
information about the RabbitNet.

These RabbitNet peripheral cards are available at the present time.

Before using the RabbitNet port, add the following lines at the start of your program.

#define RN_MAX_DEV 10 // max number of devices
#define RN_MAX_DATA 16 // max number of data bytes in any transaction
#define RN_MAX_PORT 2 // max number of serial ports

Set the following bits in RNSTATUSABORT to abort transmitting data after the status byte is
returned. This does not affect the status byte and still can be interpreted. Set any bit com-
bination to abort:

bit 7—device busy is hard-coded into driver
bit 5—identifies router or slave
bits 4,3,2—peripheral-board-specific bits
bit 1—command rejected
bit 0—watchdog timeout

#define RNSTATUSABORT 0x80
 // hard-coded driver default to abort if the peripheral board is busy

Provides rn_init() with the serial port control information needed for RCM3305/RCM3315 modules.

RETURN VALUE
None.

• Digital I/O Card (RN1100)

• A/D Converter Card (RN1200)

• D/A Converter Card (RN1300)

• Relay Card (RN1400)

• Keypad/Display Interface (RN1600)

void rn_sp_info();

User’s Manual 47

Deactivates the RCM3305/RCM3315 RabbitNet port as a clocked serial port. This call is also used by
rn_init().

PARAMETERS
portnum = 0

RETURN VALUE
None

This is a macro that enables or asserts the RCM3305/RCM3315 RabbitNet port chip select prior to data
transfer.

PARAMETERS
portnum = 0

RETURN VALUE
None

This is a macro that disables or deasserts the RCM3305/RCM3315 RabbitNet port chip select to invali-
date data transfer.

PARAMETERS
portnum = 0

RETURN VALUE
None.

void rn_sp_close(int port);

void rn_sp_enable(int portnum);

void rn_sp_disable(int portnum);

48 RabbitCore RCM3305/RCM3315

5.3 Upgrading Dynamic C
Dynamic C patches that focus on bug fixes are available from time to time. Check the Web
site www.rabbit.com/support/ for the latest patches, workarounds, and bug fixes.

5.3.1 Extras

Dynamic C installations are designed for use with the board they are included with, and
are included at no charge as part of our low-cost kits.

Starting with Dynamic C version 9.60, Dynamic C includes the popular µC/OS-II real-
time operating system, point-to-point protocol (PPP), FAT file system, RabbitWeb, and
other select libraries. Rabbit also offers for purchase the Rabbit Embedded Security Pack
featuring the Secure Sockets Layer (SSL) and a specific Advanced Encryption Standard
(AES) library.

In addition to the Web-based technical support included at no extra charge, a one-year
telephone-based technical support subscription is also available for purchase.

Visit our Web site at www.rabbit.com for further information and complete documentation.

http://www.rabbit.com/support/
http://www.rabbit.com/products/dc/

User’s Manual 49

6. USING THE TCP/IP FEATURES

6.1 TCP/IP Connections
Programming and development can be done with the RCM3305/RCM3315 modules with-
out connecting the Ethernet port to a network. However, if you will be running the sample
programs that use the Ethernet capability or will be doing Ethernet-enabled development,
you should connect the RCM3305/RCM3315 module’s Ethernet port at this time.

Before proceeding you will need to have the following items.

• If you don’t have Ethernet access, you will need at least a 10Base-T Ethernet card
(available from your favorite computer supplier) installed in a PC.

• Two RJ-45 straight-through Ethernet cables and a hub, or an RJ-45 crossover Ethernet
cable.

A straight-through and a crossover Ethernet cable are included in both the RCM3305/
RCM3315 Development Kit. Figure 9 shows how to identify the two cables based on the
wires in the transparent RJ-45 connectors.

Figure 9. How to Identify Straight-Through and Crossover Ethernet Cables

Ethernet cables and a 10Base-T Ethernet hub are available from Rabbit in a TCP/IP tool
kit. More information is available at www.rabbit.com.

�
�

���

�	���

��
	����-
+�
����
�	���

�>E9
A/./:�/:79:

2;�A/;;9A5/:1

2889:9;5
A/./:�/:79:

2;�A/;;9A5/:1

http://www.rabbit.com/

50 RabbitCore RCM3305/RCM3315

Now you should be able to make your connections.

1. Connect the AC adapter and the programming cable as shown in Chapter 2, “Getting
Started.”

2. Ethernet Connections

There are four options for connecting the RCM3305/RCM3315 module to a network
for development and runtime purposes. The first two options permit total freedom of
action in selecting network addresses and use of the “network,” as no action can inter-
fere with other users. We recommend one of these options for initial development.

• No LAN — The simplest alternative for desktop development. Connect the
RCM3305/RCM3315 module’s Ethernet port directly to the PC’s network interface
card using an RJ-45 crossover cable. A crossover cable is a special cable that flips
some connections between the two connectors and permits direct connection of two cli-
ent systems. A standard RJ-45 network cable will not work for this purpose.

• Micro-LAN — Another simple alternative for desktop development. Use a small Eth-
ernet 10Base-T hub and connect both the PC’s network interface card and the
RCM3305/RCM3315 module’s Ethernet port to it using standard network cables.

The following options require more care in address selection and testing actions, as
conflicts with other users, servers and systems can occur:

• LAN — Connect the RCM3305/RCM3315 module’s Ethernet port to an existing
LAN, preferably one to which the development PC is already connected. You will need
to obtain IP addressing information from your network administrator.

• WAN — The RCM3305/RCM3315 is capable of direct connection to the Internet and
other Wide Area Networks, but exceptional care should be used with IP address
settings and all network-related programming and development. We recommend that
development and debugging be done on a local network before connecting a Rabbit-
Core system to the Internet.

TIP: Checking and debugging the initial setup on a micro-LAN is recommended before
connecting the system to a LAN or WAN.

The PC running Dynamic C does not need to be the PC with the Ethernet card.

3. Apply Power

Plug in the AC adapter. The RCM3305/RCM3315 module and Prototyping Board are
now ready to be used.

User’s Manual 51

6.2 TCP/IP Primer on IP Addresses
Obtaining IP addresses to interact over an existing, operating, network can involve a num-
ber of complications, and must usually be done with cooperation from your ISP and/or
network systems administrator. For this reason, it is suggested that the user begin instead
by using a direct connection between a PC and the RCM3305/RCM3315 using an Ether-
net crossover cable or a simple arrangement with a hub. (A crossover cable should not be
confused with regular straight through cables.)

In order to set up this direct connection, the user will have to use a PC without networking,
or disconnect a PC from the corporate network, or install a second Ethernet adapter and set
up a separate private network attached to the second Ethernet adapter. Disconnecting your
PC from the corporate network may be easy or nearly impossible, depending on how it is
set up. If your PC boots from the network or is dependent on the network for some or all
of its disks, then it probably should not be disconnected. If a second Ethernet adapter is
used, be aware that Windows TCP/IP will send messages to one adapter or the other,
depending on the IP address and the binding order in Microsoft products. Thus you should
have different ranges of IP addresses on your private network from those used on the cor-
porate network. If both networks service the same IP address, then Windows may send a
packet intended for your private network to the corporate network. A similar situation will
take place if you use a dial-up line to send a packet to the Internet. Windows may try to
send it via the local Ethernet network if it is also valid for that network.

The following IP addresses are set aside for local networks and are not allowed on the
Internet: 10.0.0.0 to 10.255.255.255, 172.16.0.0 to 172.31.255.255, and 192.168.0.0 to
192.168.255.255.

The RCM3305/RCM3315 uses a 10/100Base-T type of Ethernet connection, which is the
most common scheme. The RJ-45 connectors are similar to U.S. style telephone connec-
tors, except they are larger and have 8 contacts.

An alternative to the direct connection using a crossover cable is a direct connection using
a hub. The hub relays packets received on any port to all of the ports on the hub. Hubs are
low in cost and are readily available. The RCM3305/RCM3315 uses 10/100 Mbps Ether-
net, so the hub or Ethernet adapter can be a 10 Mbps unit, a 100 Mbps unit, or a 10/100
Mbps unit.

In a corporate setting where the Internet is brought in via a high-speed line, there are typi-
cally machines between the outside Internet and the internal network. These machines
include a combination of proxy servers and firewalls that filter and multiplex Internet traf-
fic. In the configuration below, the RCM3305/RCM3315 could be given a fixed address
so any of the computers on the local network would be able to contact it. It may be possi-
ble to configure the firewall or proxy server to allow hosts on the Internet to directly con-
tact the controller, but it would probably be easier to place the controller directly on the
external network outside of the firewall. This avoids some of the configuration complica-
tions by sacrificing some security.

52 RabbitCore RCM3305/RCM3315

If your system administrator can give you an Ethernet cable along with its IP address, the
netmask and the gateway address, then you may be able to run the sample programs with-
out having to setup a direct connection between your computer and the RCM3305/
RCM3315. You will also need the IP address of the nameserver, the name or IP address of
your mail server, and your domain name for some of the sample programs.

Hub(s)

Firewall
Proxy
Server

T1 in
Adapter

Ethernet Ethernet

Network

RCM3305/RCM3315
SystemTypical Corporate Network

User’s Manual 53

6.2.1 IP Addresses Explained

IP (Internet Protocol) addresses are expressed as 4 decimal numbers separated by periods,
for example:

216.103.126.155

10.1.1.6

Each decimal number must be between 0 and 255. The total IP address is a 32-bit number
consisting of the 4 bytes expressed as shown above. A local network uses a group of adja-
cent IP addresses. There are always 2N IP addresses in a local network. The netmask (also
called subnet mask) determines how many IP addresses belong to the local network. The
netmask is also a 32-bit address expressed in the same form as the IP address. An example
netmask is:

255.255.255.0

This netmask has 8 zero bits in the least significant portion, and this means that 28
addresses are a part of the local network. Applied to the IP address above
(216.103.126.155), this netmask would indicate that the following IP addresses belong to
the local network:

216.103.126.0

216.103.126.1

216.103.126.2

etc.

216.103.126.254

216.103.126.255

The lowest and highest address are reserved for special purposes. The lowest address
(216.102.126.0) is used to identify the local network. The highest address
(216.102.126.255) is used as a broadcast address. Usually one other address is used for the
address of the gateway out of the network. This leaves 256 - 3 = 253 available IP
addresses for the example given.

54 RabbitCore RCM3305/RCM3315

6.2.2 How IP Addresses are Used

The actual hardware connection via an Ethernet uses Ethernet adapter addresses (also
called MAC addresses). These are 48-bit addresses and are unique for every Ethernet
adapter manufactured. In order to send a packet to another computer, given the IP address
of the other computer, it is first determined if the packet needs to be sent directly to the
other computer or to the gateway. In either case, there is an Ethernet address on the local
network to which the packet must be sent. A table is maintained to allow the protocol
driver to determine the MAC address corresponding to a particular IP address. If the table
is empty, the MAC address is determined by sending an Ethernet broadcast packet to all
devices on the local network asking the device with the desired IP address to answer with
its MAC address. In this way, the table entry can be filled in. If no device answers, then
the device is nonexistent or inoperative, and the packet cannot be sent.

Some IP address ranges are reserved for use on internal networks, and can be allocated
freely as long as no two internal hosts have the same IP address. These internal IP
addresses are not routed to the Internet, and any internal hosts using one of these reserved
IP addresses cannot communicate on the external Internet without being connected to a
host that has a valid Internet IP address. The host would either translate the data, or it
would act as a proxy.

Each RCM3305/RCM3315 RabbitCore module has its own unique MAC address, which
consists of the prefix 0090C2 followed by a code that is unique to each RCM3305/
RCM3315 module. For example, a MAC address might be 0090C2C002C0.

TIP: You can always obtain the MAC address on your board by running the sample pro-
gram DISPLAY_MAC.C from the SAMPLES\TCPIP folder.

User’s Manual 55

6.2.3 Dynamically Assigned Internet Addresses

In many instances, devices on a network do not have fixed IP addresses. This is the case
when, for example, you are assigned an IP address dynamically by your dial-up Internet
service provider (ISP) or when you have a device that provides your IP addresses using
the Dynamic Host Configuration Protocol (DHCP). The RCM3305/RCM3315 modules
can use such IP addresses to send and receive packets on the Internet, but you must take
into account that this IP address may only be valid for the duration of the call or for a
period of time, and could be a private IP address that is not directly accessible to others on
the Internet. These addresses can be used to perform some Internet tasks such as sending
e-mail or browsing the Web, but it is more difficult to participate in conversations that
originate elsewhere on the Internet. If you want to find out this dynamically assigned IP
address, under Windows 98 you can run the winipcfg program while you are connected
and look at the interface used to connect to the Internet.

Many networks use IP addresses that are assigned using DHCP. When your computer
comes up, and periodically after that, it requests its networking information from a DHCP
server. The DHCP server may try to give you the same address each time, but a fixed IP
address is usually not guaranteed.

If you are not concerned about accessing the RCM3305/RCM3315 from the Internet, you
can place the RCM3305/RCM3315 on the internal network using an IP address assigned
either statically or through DHCP.

56 RabbitCore RCM3305/RCM3315

6.3 Placing Your Device on the Network
In many corporate settings, users are isolated from the Internet by a firewall and/or a
proxy server. These devices attempt to secure the company from unauthorized network
traffic, and usually work by disallowing traffic that did not originate from inside the net-
work. If you want users on the Internet to communicate with your RCM3305/RCM3315,
you have several options. You can either place the RCM3305/RCM3315 directly on the
Internet with a real Internet address or place it behind the firewall. If you place the
RCM3305/RCM3315 behind the firewall, you need to configure the firewall to translate
and forward packets from the Internet to the RCM3305/RCM3315.

User’s Manual 57

6.4 Running TCP/IP Sample Programs
We have provided a number of sample programs demonstrating various uses of TCP/IP for
networking embedded systems. These programs require you to connect your PC and the
RCM3305/RCM3315 board together on the same network. This network can be a local pri-
vate network (preferred for initial experimentation and debugging), or a connection via the
Internet.

User’s PC

Ethernet
crossover
cable

Direct Connection
(network of 2 computers)

Hub

Ethernet
cables

To additional
network
elements

Direct Connection Using a Hub

RCM3305/RCM3315
System RCM3305/RCM3315

System

58 RabbitCore RCM3305/RCM3315

6.4.1 How to Set IP Addresses in the Sample Programs

With the introduction of Dynamic C 7.30 we have taken steps to make it easier to run
many of our sample programs. You will see a TCPCONFIG macro. This macro tells
Dynamic C to select your configuration from a list of default configurations. You will
have three choices when you encounter a sample program with the TCPCONFIG macro.

1. You can replace the TCPCONFIG macro with individual MY_IP_ADDRESS, MY_NET-
MASK, MY_GATEWAY, and MY_NAMESERVER macros in each program.

2. You can leave TCPCONFIG at the usual default of 1, which will set the IP configurations
to 10.10.6.100, the netmask to 255.255.255.0, and the nameserver and gateway
to 10.10.6.1. If you would like to change the default values, for example, to use an IP
address of 10.1.1.2 for the RCM3305/RCM3315 board, and 10.1.1.1 for your PC,
you can edit the values in the section that directly follows the “General Configuration”
comment in the TCP_CONFIG.LIB library. You will find this library in the LIB\TCPIP
directory.

3. You can create a CUSTOM_CONFIG.LIB library and use a TCPCONFIG value greater
than 100. Instructions for doing this are at the beginning of the TCP_CONFIG.LIB
library in the LIB\TCPIP directory.

There are some other “standard” configurations for TCPCONFIG that let you select differ-
ent features such as DHCP. Their values are documented at the top of the TCP_CON-
FIG.LIB library in the LIB\TCPIP directory. More information is available in the
Dynamic C TCP/IP User’s Manual.

User’s Manual 59

6.4.2 How to Set Up your Computer for Direct Connect

Follow these instructions to set up your PC or notebook. Check with your administrator if
you are unable to change the settings as described here since you may need administrator
privileges. The instructions are specifically for Windows 2000, but the interface is similar
for other versions of Windows.

TIP: If you are using a PC that is already on a network, you will disconnect the PC from
that network to run these sample programs. Write down the existing settings before
changing them to facilitate restoring them when you are finished with the sample pro-
grams and reconnect your PC to the network.

1. Go to the control panel (Start > Settings > Control Panel), and then double-click the
Network icon.

2. Select the network interface card used for the Ethernet interface you intend to use (e.g.,
TCP/IP Xircom Credit Card Network Adapter) and click on the “Properties” button.
Depending on which version of Windows your PC is running, you may have to select
the “Local Area Connection” first, and then click on the “Properties” button to bring up
the Ethernet interface dialog. Then “Configure” your interface card for a “10Base-T
Half-Duplex” or an “Auto-Negotiation” connection on the “Advanced” tab.

NOTE: Your network interface card will likely have a different name.

3. Now select the IP Address tab, and check Specify an IP Address, or select TCP/IP and
click on “Properties” to assign an IP address to your computer (this will disable “obtain
an IP address automatically”):

IP Address : 10.10.6.101

Netmask : 255.255.255.0

Default gateway : 10.10.6.1

4. Click <OK> or <Close> to exit the various dialog boxes.

User’s PC

Ethernet
crossover
cable

IP 10.10.6.101
Netmask
255.255.255.0

Direct Connection PC to RCM3305/RCM3315 Board

RCM3305/RCM3315
System

60 RabbitCore RCM3305/RCM3315

6.5 Run the PINGME.C Sample Program
Connect the crossover cable from your computer’s Ethernet port to the RCM3305/
RCM3315 board’s RJ-45 Ethernet connector. Open this sample program from the SAM-
PLES\TCPIP\ICMP folder, compile the program, and start it running under Dynamic C.
The crossover cable is connected from your computer’s Ethernet adapter to the RCM3305/
RCM3315 board’s RJ-45 Ethernet connector. When the program starts running, the green
LINK light on the RCM3305/RCM3315 module should be on to indicate an Ethernet con-
nection is made. (Note: If the LNK light does not light, you may not be using a crossover
cable, or if you are using a hub perhaps the power is off on the hub.)

The next step is to ping the board from your PC. This can be done by bringing up the MS-
DOS window and running the pingme program:

ping 10.10.6.101

or by Start > Run

and typing the entry

ping 10.10.6.101

Notice that the yellow ACT light flashes on the RCM3305/RCM3315 module while the
ping is taking place, and indicates the transfer of data. The ping routine will ping the board
four times and write a summary message on the screen describing the operation.

6.6 Running Additional Sample Programs With Direct Connect
The following sample programs are in the Dynamic C SAMPLES\RCM3300\TCPIP\
folder.

• BROWSELED.C—This program demonstrates a basic controller running a Web page.
Two “device LEDs” are created along with two buttons to toggle them. Users can use
their Web browser to change the status of the lights. The DS3 and DS4 LEDs on the
Prototyping Board will match those on the Web page. As long as you have not modified
the TCPCONFIG 1 macro in the sample program, enter the following server address in
your Web browser to bring up the Web page served by the sample program.

http://10.10.6.100

Otherwise use the TCP/IP settings you entered in the TCP_CONFIG.LIB library.

• MBOXDEMO.C—The optional LCD/keypad module (see Appendix C) must be plugged
in to the Prototyping Board when using this sample program. This program demon-
strates sending e-mail messages that are then shown on the LCD/keypad module dis-
play. The keypad is used to scroll through a menu to view the messages, flip to other
messages, mark messages as read, and delete messages. When a new e-mail arrives, an
LED on the LCD/keypad module turns on, and then turns off once the message has
been marked as read. A log of all e-mail actions is kept, and can be displayed in the
Web browser. All current e-mails can also be read with the Web browser.

• PINGLED.C—This program demonstrates ICMP by pinging a remote host. It will flash
LEDs DS3 and DS4 on the Prototyping Board when a ping is sent and received.

User’s Manual 61

• SMTP.C—This program demonstrates using the SMTP library to send an e-mail when
the S2 and S3 switches on the Prototyping Board are pressed. LEDs DS3 and DS4 on
the Prototyping Board will light up when e-mail is being sent.

6.6.1 RabbitWeb Sample Programs

You will need to have the Dynamic C RabbitWeb module installed before you run the
sample programs described in this section. The following sample programs are in the
Dynamic C SAMPLES\RCM3300\TCPIP\RABBITWEB folder.

• BLINKLEDS.C—This program demonstrates a basic example to change the rate at
which the DS3 and DS4 LEDs on the Prototyping Board blink.

• DOORMONITOR.C—The optional LCD/keypad module (see Appendix C) must be plugged
in to the Prototyping Board when using this sample program. This program demon-
strates adding and monitoring passwords entered via the LCD/keypad module.

• SPRINKLER.C—This program demonstrates how to schedule times for the relay and
digital outputs in a 24-hour period.

6.6.2 Remote Application Update

The following programs that make up the featured application for the RCM3305/
RCM3315 can be found in the SAMPLES\RCM3300\RemoteApplicationUpdate folder.

• DLP_STATIC.C—This program uses the TCP/IP HTTP.LIB library, and outputs a
basic static Web page.

• DLP_WEB.C—This program outlines a basic download program with a Web interface.

Complete information on the use of these programs is provided in the Remote Application
Update instructions, which are available with the online documentation.

6.6.3 Dynamic C FAT File System, RabbitWeb, and SSL Modules

The Dynamic C FAT File System, RabbitWeb, and Secure Sockets Layer (SSL) modules
have been integrated into a sample program for the RCM3305 and the RCM3315. The
sample program requires that you have installed the Dynamic C FAT File System, Rabbit-
Web, and SSL modules.

TIP: Before running any of the sample programs described in this section, you should
look at and run sample programs for the TCP/IP ZSERVER.LIB library, the FAT file
system, RabbitWeb, SSL, the download manager, and HTTP upload to become more
familiar with their operation.

The INTEGRATION.C sample program in the SAMPLES\RCM3300\Module_Integra-
tion folder demonstrates the use of the TCP/IP ZSERVER.LIB library and FAT file sys-
tem functionality with RabbitWeb dynamic HTML content, all secured using SSL. The
sample program also supports dynamic updates of both the application and its resources
using the Rabbit Download Manager (DLM) and HTTP upload capability, respectively—
note that neither of these currently supports SSL security.

62 RabbitCore RCM3305/RCM3315

First, you need to format and partition the serial flash. Find the FMT_DEVICE.C sample
program in the Dynamic C SAMPLES\FileSystem folder. Open this sample program
with the File > Open menu, then compile and run it by pressing F9. FMT_DEVICE.C
formats the mass storage device for use with the FAT file system. If the serial flash or
NAND flash is already formatted, FMT_DEVICE.C gives you the option of erasing the
mass storage flash and reformatting it with a single large partition. This erasure does not
check for non-FAT partitions and will destroy all existing partitions.

Next, run the INTEGRATION_FAT_SETUP.C sample program in the Dynamic C
SAMPLES\RCM3300\Module_Integration folder. Open this sample program with the
File > Open menu, then compile and run it by pressing F9. INTEGRATION_FAT_
SETUP.C will copy some #ximported files into the FAT file system.

The last step to complete before you can run the INTEGRATION.C sample program is to
create an SSL certificate. The SSL walkthrough in the online documentation for the
Dynamic C SSL module explains how to do this.

Now you are ready to run the INTEGRATION.C sample program in the Dynamic C
SAMPLES\RCM3300\Module_Integration folder. Open this sample program with the
File > Open menu, then compile and run it by pressing F9.

NOTE: Since HTTP upload and the Dynamic C SSL module currently do not work
together, compiling the INTEGRATION.C sample program will generate a serious
warning. Ignore the warning because we are not using HTTP upload over SSL. A
macro (HTTP_UPLOAD_SSL_SUPRESS_WARNING) is available to suppress the
warning message.

Open a Web browser, and browse to the device using the IP address from the TCP_
CONFIG.LIB library or the URL you assigned to the device. The humidity monitor will
be displayed in your Web browser. This page is accessible via plain HTTP or over SSL-
secured HTTPS. Click on the administrator link to bring up the admin page, which is
secured automatically using SSL with a user name and a password. Use myadmin for user
name and use myadmin for the password.

The admin page demonstrates some RabbitWeb capabilities and provides access to the
HTTP upload page. Click the upload link to bring up the HTTP upload page, which allows
you to choose new files for both the humidity monitor and the admin page. If your browser
prompts you again for your user name and password, they are the same as above.

Note that the upload page is a static page included in the program flash, and can only be
updated by recompiling and downloading the application. This page is protected so that
you cannot accidentally change the upload page, possibly restricting yourself from per-
forming future updates.

To try out the update capability, click the upload link on the admin page and choose a sim-
ple text file to replace monitor.ztm. Open another browser window and load the main
page. You will see that your text file has replaced the humidity monitor. To restore the
monitor, go back to the other window, click back to go to the upload page again, and
choose HUMIDITY_MONITOR.ZHTML to replace monitor.ztm and click Upload.

User’s Manual 63

When you refresh the page in your browser, you will see that the page has been restored.
You have successfully updated and restored your application's files remotely!

When you are finished with the INTEGRATION.C sample program, you need to follow a
special shutdown procedure before powering off to prevent any possible corruption of the
FAT file system. Press and hold switch S2 on the Prototyping Board until LED DS3 blinks
rapidly to indicate that it is now safe to turn the RCM3305/RCM3315 off. This procedure
can be modified by the user to provide other application-specific shutdown tasks.

6.7 Where Do I Go From Here?
NOTE: If you purchased your RCM3305/RCM3315 through a distributor or through a

Rabbit partner, contact the distributor or partner first for technical support.

If there are any problems at this point:

• Use the Dynamic C Help menu to get further assistance with Dynamic C.

• Check the Rabbit Technical Bulletin Board and forums at www.rabbit.com/support/bb/
and at www.rabbit.com/forums/.

• Use the Technical Support e-mail form at www.rabbit.com/support/questionSubmit.shtml.

If the sample programs ran fine, you are now ready to go on.

Additional sample programs are described in the Dynamic C TCP/IP User’s Manual.

Please refer to the Dynamic C TCP/IP User’s Manual to develop your own applications.
An Introduction to TCP/IP provides background information on TCP/IP, and is available
on the CD and on our Web site.

http://www.rabbit.com/
http://www.rabbit.com/support/bb/index.html
http://www.rabbit.com/support/questionSubmit.shtml
http://www.rabbitsemiconductor.com/forums/

64 RabbitCore RCM3305/RCM3315

User’s Manual 65

APPENDIX A. RCM3305/RCM3315
SPECIFICATIONS

Appendix A provides the specifications for the RCM3305/
RCM3315, and describes the conformal coating.

66 RabbitCore RCM3305/RCM3315

A.1 Electrical and Mechanical Characteristics
Figure A-1 shows the mechanical dimensions for the RCM3305/RCM3315.

Figure A-1. RCM3305/RCM3315 Dimensions

NOTE: All measurements are in inches followed by millimeters enclosed in parentheses.
All dimensions have a manufacturing tolerance of ±0.01" (0.25 mm).

�
"�
�
�

-�
"�
<

�
�

 �
���

��

��
�
�

�
� �

�� $�

�
�

�� �
�

�
�

�
�

�
�

�� ���

�
�

�
�
�

�
�
�

�
�
�

�
�
�

$�

�
�
�

�
�
�

��

�
�

�
��

�
�
�

�
�

�
�
�

�
�
�

�
�
�

��

�
�
�

�
�

���

$�

��� ��

��

�
�
�

���
���
���

���

$
 �
�
�

��

���

��� ���
$��

�
�
�

���
���
���
���
���

�
�

�
��

�
�
�

$�
���

���

�����))

�
�

�
�

�
��

��
�
��
�
���

�
�

��

�
�

 �

��

���

���
���

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

���

����	� ���
�	� ���

 �
�

 �
�

 �
�

 �
�

 �

��

���

�
�
��
�
�

�
�
�

���

�
�
�
�
���

�
�
�

���

���

���

�
�
�

�
�
�

���

�
�
�

�
�
�

�
�
� ��

�
�
��
�
�

��

�

�

�
�
�
�
�

�
�

�
"

-�
�
<

�"����72>
-�"
<

�
"�
�
�

-�
"�
<

�
"�
�

-�
"�
<

�
"�
�

-�
�
<

 � �

�
"�
�

-�
�
"�
<

�"�
�
-��"�<

�
"�
�
�

-�
�
"

<

�
"�
�

-�
�
"�
<

�"�
�
-��"�<

�
"�
�
�

-�
�
"

<

�"��

-��"�<

���	
��
���
��������#�$%%&'
�����
������	�
	���	��
�������

	������.���
��
���
����	��

���	����
"

�"��
-�"�<

�"��
-��"�<

User’s Manual 67

It is recommended that you allow for an “exclusion zone” of 0.04" (1 mm) around the
RCM3305/RCM3315 in all directions when the RCM3305/RCM3315 is incorporated into
an assembly that includes other printed circuit boards. An “exclusion zone” of 0.08"
(2 mm) is recommended below the RCM3305/RCM3315 when the RCM3305/RCM3315
is plugged into another assembly. Figure A-2 shows this “exclusion zone.”

Figure A-2. RCM3305/RCM3315 “Exclusion Zone”

NOTE: All measurements are in inches followed by millimeters enclosed in parentheses.

�"
�� -�
<

�"
�� -�
<

 � �

�.���
���
4���

�"��

-��"�<

�"�
�
-��"�<

�"
�

-�
�<

�"
�

-�
�<

�"��
-��"�<

�"��
-��"�<

68 RabbitCore RCM3305/RCM3315

Table A-1 lists the electrical, mechanical, and environmental specifications for the RCM3305/
RCM3315.

Table A-1. RCM3305/RCM3315 Specifications

Parameter RCM3305 RCM3315

Microprocessor Low-EMI Rabbit 3000® at 44.2 MHz

EMI Reduction Spectrum spreader for reduced EMI (radiated emissions)

Ethernet Port 10/100Base-T, RJ-45, 3 LEDs

SRAM 512K program (fast SRAM) + 512K data

Flash Memory
(program) 512K

Flash Memory
(mass data
storage)

8 Mbytes
(serial flash)

4 Mbytes
(serial flash)

LED Indicators

ACT (activity)
LINK (link)

SPEED (on for 100Base-T Ethernet connection)
SF (serial flash)

USR (user-programmable)

Backup Battery Connection for user-supplied backup battery
(to support RTC and data SRAM)

General-Purpose
I/O

49 parallel digital I/0 lines:
• 43 configurable I/O
• 3 fixed inputs
• 3 fixed outputs

Additional Inputs Startup mode (2), reset in

Additional
Outputs Status, reset out

External I/O Bus Can be configured for 8 data lines and
5 address lines (shared with parallel I/O lines), plus I/O read/write

Serial Ports

Five 3.3 V, CMOS-compatible ports (shared with I/O)
• all 5 configurable as asynchronous (with IrDA)

• 3 configurable as clocked serial (SPI)

• 2 configurable as SDLC/HDLC

• 1 asynchronous serial port dedicated for programming

Serial Rate Maximum asynchronous baud rate = CLK/8

Slave Interface
A slave port allows the RCM3305/RCM3315 to be used as an
intelligent peripheral device slaved to a master processor, which
may either be another Rabbit 3000 or any other type of processor

Real-Time Clock Yes

Timers Ten 8-bit timers (6 cascadable, 3 reserved for internal peripherals),
one 10-bit timer with 2 match registers

User’s Manual 69

Watchdog/
Supervisor Yes

Pulse-Width
Modulators

4 PWM registers with 10-bit free-running counter
and priority interrupts

Input Capture 2-channel input capture can be used to time input signals from
various port pins

Quadrature
Decoder

2-channel quadrature decoder accepts inputs from external
incremental encoder modules

Power 3.15–3.45 V DC
250 mA @ 44.2 MHz, 3.3 V

Operating
Temperature

-40°C to +70°C (boards manufactured up to May, 2008)
0°C to +70°C (boards manufactured after May, 2008)

Humidity 5% to 95%, noncondensing

Connectors
Two 2 × 17, 2 mm pitch

one 2 × 5 for programming with 1.27 mm pitch

Board Size 1.850" × 2.725" × 0.86"
(47 mm × 69 mm × 22 mm)

Table A-1. RCM3305/RCM3315 Specifications (continued)

Parameter RCM3305 RCM3315

70 RabbitCore RCM3305/RCM3315

A.1.1 Headers

The RCM3305/RCM3315 uses headers at J3 and J4 for physical connection to other
boards. J3 and J4 are 2 × 17 SMT headers with a 2 mm pin spacing. J1, the programming
port, is a 2 × 5 header with a 1.27 mm pin spacing.

Figure A-3 shows the layout of another board for the RCM3305/RCM3315 to be plugged
into. These values are relative to the mounting hole.

Figure A-3. User Board Footprint for RCM3305/RCM3315

 �
�"
��

-�
�"
�< �"
��

�
-�
�"
�<

 � �

���������9:291
%//5=:2;5

�"
��

�
-�
"�
<

�"
��

��
72
>

-�
"

<

�"
��

��
1F

�56
=

-�
"

<

�"
��

�
-�
"�
<

�"
��

�
-�
"�
<

�"
��

�
-�
�"

<

�"
��

�
-�
�"
�<

�"
��

�
-�
"�
<

�"
�

�
-�
�"
�<

�"
��

-�
�"
�<

�"
��

�
-�
�"

<

�"
��

�
-�
"�

<

�"
��

-�
�"
�<

User’s Manual 71

A.2 Bus Loading
You must pay careful attention to bus loading when designing an interface to the
RCM3305/RCM3315. This section provides bus loading information for external devices.

Table A-2 lists the capacitance for the various RCM3305/RCM3315 I/O ports.

Table A-3 lists the external capacitive bus loading for the various RCM3305/RCM3315
output ports. Be sure to add the loads for the devices you are using in your custom system
and verify that they do not exceed the values in Table A-3.

Table A-2. Capacitance of Rabbit 3000 I/O Ports

I/O Ports
Input

Capacitance
(pF)

Output
Capacitance

(pF)

Parallel Ports A to G 12 14

Table A-3. External Capacitive Bus Loading -40°C to +85°C

Output Port Clock Speed
(MHz)

Maximum External
Capacitive Loading (pF)

All I/O lines with clock
doubler enabled 44.2 100

72 RabbitCore RCM3305/RCM3315

Figure A-4 shows a typical timing diagram for the Rabbit 3000 microprocessor external I/O
read and write cycles.

Figure A-4. I/O Read and Write Cycles—No Extra Wait States

NOTE: /IOCSx can be programmed to be active low (default) or active high.

�>7:

�>7:

�.��
�	���50�#�	��6�����
��
	������	���
�	��7

���

�G�
H�I

�.��
�	���50�8
����6�����
��
	������	���
�	��7

���

�G�
H�I

����

�����

�� �@

�� �@ ��

�����

��

��$%	�

�����+

���*�

��$%	�

G�H�I �����

�195C=

�4/.7

���+

�����+

���+

�����+

����

��$%	�

���+

�����+

����

��$%	�

�����
G�H�I

���+
���+

�����+

���*�

���+

�����+

���*�

��$%	� ��$%	�

�
&J! �
!&J

User’s Manual 73

Table A-4 lists the delays in gross memory access time at 3.3 V.

The measurements are taken at the 50% points under the following conditions.

• T = -40°C to 85°C, V = VDD ±10%

• Internal clock to nonloaded CLK pin delay ≤ 1 ns @ 85°C/3.0 V

The clock to address output delays are similar, and apply to the following delays.

• Tadr, the clock to address delay

• TCSx, the clock to memory chip select delay

• TIOCSx, the clock to I/O chip select delay

• TIORD, the clock to I/O read strobe delay

• TIOWR, the clock to I/O write strobe delay

• TBUFEN, the clock to I/O buffer enable delay

The data setup time delays are similar for both Tsetup and Thold.

When the spectrum spreader is enabled with the clock doubler, every other clock cycle is
shortened (sometimes lengthened) by a maximum amount given in the table above. The
shortening takes place by shortening the high part of the clock. If the doubler is not
enabled, then every clock is shortened during the low part of the clock period. The maxi-
mum shortening for a pair of clocks combined is shown in the table.

Technical Note TN227, Interfacing External I/O with Rabbit 2000/3000 Designs, con-
tains suggestions for interfacing I/O devices to the Rabbit 3000 microprocessors.

Table A-4. Data and Clock Delays VIN ±10%, Temp, -40°C–+85°C (maximum)

VIN

Clock to Address Output Delay
(ns) Data Setup

Time Delay
(ns)

Spectrum Spreader Delay
(ns)

30 pF 60 pF 90 pF
Normal

no dbl/dbl
Strong

no dbl/dbl

3.3 V 6 8 11 1 3/4.5 4.5/9

74 RabbitCore RCM3305/RCM3315

A.3 Rabbit 3000 DC Characteristics

Stresses beyond those listed in Table A-5 may cause permanent damage. The ratings are
stress ratings only, and functional operation of the Rabbit 3000 chip at these or any other
conditions beyond those indicated in this section is not implied. Exposure to the absolute
maximum rating conditions for extended periods may affect the reliability of the Rabbit
3000 chip.

Table A-6 outlines the DC characteristics for the Rabbit 3000 at 3.3 V over the recom-
mended operating temperature range from TA = –55°C to +85°C, VDD = 3.0 V to 3.6 V.

Table A-5. Rabbit 3000 Absolute Maximum Ratings

Symbol Parameter Maximum Rating

TA Operating Temperature -55° to +85°C

TS Storage Temperature -65° to +150°C

Maximum Input Voltage:
• Oscillator Buffer Input
• 5-V-tolerant I/O

VDD + 0.5 V
5.5 V

VDD Maximum Operating Voltage 3.6 V

Table A-6. 3.3 Volt DC Characteristics

Symbol Parameter Test Conditions Min Typ Max Units

VDD Supply Voltage 3.0 3.3 3.6 V

VIH High-Level Input Voltage 2.0 V

VIL Low-Level Input Voltage 0.8 V

VOH High-Level Output Voltage
IOH = 6.8 mA,
VDD = VDD (min)

0.7 x
VDD

V

VOL Low-Level Output Voltage
IOL = 6.8 mA,
VDD = VDD (min) 0.4 V

IIH
High-Level Input Current
(absolute worst case, all buffers)

VIN = VDD,
VDD = VDD (max) 10 µA

IIL
Low-Level Input Current
(absolute worst case, all buffers)

VIN = VSS,
VDD = VDD (max) -10 µA

IOZ

High-Impedance State
Output Current
(absolute worst case, all buffers)

VIN = VDD or VSS,
VDD = VDD (max), no pull-up -10 10 µA

User’s Manual 75

A.4 I/O Buffer Sourcing and Sinking Limit
Unless otherwise specified, the Rabbit I/O buffers are capable of sourcing and sinking
6.8 mA of current per pin at full AC switching speed. Full AC switching assumes a
22.1 MHz CPU clock and capacitive loading on address and data lines of less than 100 pF
per pin. The absolute maximum operating voltage on all I/O is 5.5 V.

Table A-7 shows the AC and DC output drive limits of the parallel I/O buffers when the
Rabbit 3000 is used in the RCM3305/RCM3315.

Under certain conditions, you can exceed the limits outlined in Table A-7. See the Rabbit
3000 Microprocessor User’s Manual for additional information.

Table A-7. I/O Buffer Sourcing and Sinking Capability

Pin Name

Output Drive (Full AC Switching)

Sourcing/Sinking Limits
(mA)

Sourcing Sinking

All data, address, and I/O
lines with clock doubler
enabled

6.8 6.8

76 RabbitCore RCM3305/RCM3315

A.5 Jumper Configurations
Figure A-5 shows the jumper locations used to configure the various RCM3305/
RCM3315 options. The black square indicates pin 1.

Figure A-5. Location of RCM3305/RCM3315 Configurable Positions

���

���

 �
�

 �
�

 �
�

 �
�

 �

 ��
 ��
 ��

+�������

#�$%%&'5#�$%%)'
�����������

�
��

User’s Manual 77

Table A-8 lists the configuration options.

NOTE: The jumper connections are made using 0 Ω surface-mounted resistors.

Table A-8. RCM3305/RCM3315 Jumper Configurations

Header Description Pins Connected Factory
Default

JP1 Flash Memory Size
1–2 128K/256K

2–3 512K ×

JP2 Flash Memory Bank Select
1–2 Reserved for future use

2–3 Normal Mode ×

JP3 Data SRAM Size
1–2 128K/256K

2–3 512K ×

JP4 Ethernet or I/O Output
on Header J3

1–2 TPO+

2–3 PD3 ×

JP5 Ethernet or I/O Output
on Header J3

1–2 TPO–

2–3 PD2 ×

JP6 Ethernet or I/O Output
on Header J3

1–2 ENET_INT

2–3 PE0 ×

JP7 Ethernet or I/O Output
on Header J3

1–2 TPI+

2–3 PD7 ×

JP8 Ethernet or I/O Output
on Header J3

1–2 TPI–

2–3 PD6 ×

78 RabbitCore RCM3305/RCM3315

A.6 Conformal Coating
The areas around the 32 kHz real-time clock crystal oscillator have had the Dow Corning
silicone-based 1-2620 conformal coating applied. The conformally coated area is shown
in Figure A-6. The conformal coating protects these high-impedance circuits from the
effects of moisture and contaminants over time.

Figure A-6. RCM3305/RCM3315 Areas Receiving Conformal Coating

Any components in the conformally coated area may be replaced using standard soldering
procedures for surface-mounted components. A new conformal coating should then be
applied to offer continuing protection against the effects of moisture and contaminants.

NOTE: For more information on conformal coatings, refer to Technical Note 303,
Conformal Coatings.

�/;8/:E>..6�A/>597
>:9>1

#�$�%%&'5#�$%%)'

�
�

 �
���

��

��

�
�

�
� �

�� $�
�
�

�� �
�

�
�

�
�

�
�

�� ���

�
�

�
��

�
��

�
��

�
��

$�

�
��

�
����

�
�

�
��

�
��

�
�

�
��

�
��

�
��

��

�
��

�
�

���

$�

��� ��

��

�
��

���
���
���

���

$
 �
��

��

���

��� ���
$��

�
��

���
���
���
���
���

�
�

�
��

�
��

$�
���

���

�����))

�
�

��
��

��
��
��
�
���

�
�

��

�
�

 �

��

���

���
���

�
��

�
��

�
��

�
��

�
��

�
��

���

����	� ���
�	� ���

 �
�

 �
�

 �
�

 �
�

 �

��

���

�
���
��

�
��

���

�
�
�
�
���

�
��

���

���

���

�
��

�
��

���

�
��

�
��

�
�� ��

�
���

��

��

�

�

�
�
�
�
�

�
�

User’s Manual 79

APPENDIX B. PROTOTYPING BOARD

Appendix B describes the features and accessories of the Proto-
typing Board.

80 RabbitCore RCM3305/RCM3315

B.1 Introduction
The Prototyping Board included in the Development Kit makes it easy to connect an
RCM3305/RCM3315 module to a power supply and a PC workstation for development. It
also provides some basic I/O peripherals (RS-232, RS-485, a relay, LEDs, and switches),
as well as a prototyping area for more advanced hardware development.

For the most basic level of evaluation and development, the Prototyping Board can be
used without modification.

As you progress to more sophisticated experimentation and hardware development, modi-
fications and additions can be made to the board without modifying or damaging the
RCM3305/RCM3315 module itself.

The Prototyping Board is shown below in Figure B-1, with its main features identified.

Figure B-1. Prototyping Board

��
�
�� ��
�

�	

�

�	

�

�	

�
�

�
�

 �
�

�
�

�

�

�

�������	�

�
���

��

�
��

�
��

�
��

�������
�

�

�
��

���

�
�

�
	
��

�
�
�
��
�
�
�
��
�
�
��
��

�
��
�
�
�
��
�
�
�

��

�	���
�
�����������

�

��
� � ��
� �

�! ��
	
�

�	

�

�	

�

�	

�

�	

�

�
�

�
�

�
�

�

�

�

�

��
� �

 ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 �

�
�
�

�
�
�

�
�
�

�
�
�

��

��
�

�
	
��

�
��

�
�
	

�"

�
�
�#

��
��
!

 ��

$��$��

���

�
�� �
�����

���

���

�
	
�
��
��
%
��

�
&
�

�
�

	
�

 �

�
�

�
�

�
�

�
�

�

�
�

��

�� $�

�
��

��

��

�

 �

 �
 �

 �
��
��������������������������������
!�
!��������
����
����
�����

!��'��
������������������!���!�������	����������������!��'

 �

�� �� �� ��

��

��

!��

��	�

���

��
�

��

���

�	�

�	�

�	�

�%�

�%

���

��

���

���

 �

��

��"��!

!���

���
	�

����

���

���

�	�

�	�

�	

���

���

���

�������

�
%
��
��
%
��
��
	
�

�������
�����������
����

��
�	�	�

 �

�� ��

���

�
�

�
�

�

���

���

���

��

���

���

�%�

�%�

���

���

���

���

����

����

�
�

�
�

�
�

���

���

���

���

���

���

�%�

�%�

���

���

��

���

��

 � �

��
��

�
�

�

�

�
�

�
�

��

��
�
�

�

��

��

�
��

 �
�

���

�
� �	

�
�	

	

�
��

 �
�

 ��

��� ���

��� �

���

�
��

$

���
��

�
��

���� �������������� ������
������� ����$�

�$�

��
���

$�

$�
����

&(
��!	�

����

&(
��!	�

$�

��
 ��� ��� ���

 �� ���

$��

���

�
��

��

���
 �

���

���

�
��

$�

���

 ��

�
��

�
��

�
�� �
��

$)

$)�
����*

$)�
����*

)�

�
�

 ��
�
�

��

���

�

�
�

��
�

��
�

��
�

��
�

��
	

�
��

�
��

�
��

�
��

���	

��
��
��
�

�� �+	����+	�����
����+%����+%����
�����
����
'

�� �� �� ��

���

������������

���	���
$�	

��
�	��

$�

��
��

��"��!

�
�!

��"��!

�
�!

$�

$)�

)�

�)��

�)��

�)��

�)��

�)���)�

�%�,���

�%�,�

 ��

�
�

$�

�
��

�
��

�
��

�
��

�
�

�)�

�)�

�

�

�

�

�

�

�

�
��

�
��

�
�

�
��

�

�

�
��

������	�������

�

�

�

�

�
�
�
��

(�
�
�
�
��

(�

���
���
���
���

!/.5>39
�93C.>5/:1

�/@9:
�;=C5

�/@9:
�	

�9195
�@25A4

$19:
�	
1

�/7C.9
	+59;12/;�&9>79:

�
�!B��"��!B�>;7
��
��C191

���������������
�/7C.9

�/;;9A5/:1

��(���
�23;>.1

$19:
�@25A491

�����:/5/56=2;3
�:9>

��
��96=>7
�/7C.9

�/;;9A52/;1

�>??25�95
�/:5

�4:/C34(&/.9
�:/5/56=2;3��:9>

�9:2>.�%.>14
�/A095

K

�/:9
�	

K K

��(��

�9.>6�$19:

�	

K

�9.>6
�9:E2;>.1

K &(�:2739�/5/:�
:2L9:
�9:E2;>.1 K�C>7:>5C:9

9A/79:
�9:E2;>.1 K
2325>.�;=C51

�/7C.9
	+59;12/;�&9>79:

User’s Manual 81

B.1.1 Prototyping Board Features

• Power Connection—A power-supply jack and a 3-pin header are provided for con-
nection to the power supply. Note that the 3-pin header is symmetrical, with both outer
pins connected to ground and the center pin connected to the raw V+ input. The cable
of the AC adapter provided with the North American version of the Development Kit
ends in a plug that connects to the power-supply jack (J1). A header plug leading to
bare leads is provided for overseas customers to connect their power supply to the 3-pin
header (J2)—the center pin of J2 is always connected to the positive terminal, and
either edge pin is negative.

Users providing their own power supply should ensure that it delivers 8–30 V DC at 1 A.

• Regulated Power Supply—The raw DC voltage provided at the POWER IN jack is
routed to a 5 V switching voltage regulator, then to a separate 3.3 V linear regulator.
The regulators provide stable power to the RCM3305/RCM3315 module and the Proto-
typing Board. The voltage regulators will get warm while in use.

• Power LED—The power LED lights whenever power is connected to the Prototyping
Board.

• Core LED—The core LED lights whenever an RCM3305/RCM3315 module is
plugged in correctly on the Prototyping Board and the RCM3305/RCM3315 module is
not being reset.

• Relay LED—The relay LED lights whenever the Prototyping Board relay is energized.

• Reset Switch—A momentary-contact, normally open switch is connected directly to the
RCM3305/RCM3315’s /RESET_IN pin. Pressing the switch forces a hardware reset of
the system.

• I/O Switches and LEDs—Two momentary-contact, normally open switches are con-
nected to the PG0 and PG1 pins of the RCM3305/RCM3315 module and may be read
as inputs by sample applications.

Four user LEDs (DS3–DS6) are connected to alternate I/O bus pins PA0–PA3 pins of
the RCM3305/RCM3315 module via U8, and may be driven as output indicators. PE7
and PG5 control the registers in U8 as shown in the sample applications.

• Prototyping Area—A generous prototyping area has been provided for the installation
of through-hole components. +3.3 V, +5 V, and Ground buses run along one edge of
this area. Several areas for surface-mount devices are also available. Each SMT pad is
connected to a hole designed to accept a 30 AWG solid wire.

• LCD/Keypad Module—Rabbit’s LCD/keypad module may be plugged in directly to
headers LCD1JA, LCD1JB, and LCD1JC. The signals on headers LCD1JB and
LCD1JC will be available only if the LCD/keypad module is plugged in to header
LCD1JA. Appendix C provides complete information for mounting and using the
LCD/keypad module.

82 RabbitCore RCM3305/RCM3315

• Module Extension Headers—The complete pin set of the RCM3305/RCM3315
module is duplicated at headers J8 and J9. Developers can solder wires directly into the
appropriate holes, or, for more flexible development, 2 × 17 header strips with a 0.1"
pitch can be soldered into place. See Figure B-4 for the header pinouts.

• Digital I/O—Four digital inputs are available on screw-terminal header J6. See
Figure B-4 for the header pinouts.

• RS-232—Two 3-wire serial ports or one 5-wire RS-232 serial port are available on the
Prototyping Board at screw-terminal header J14.

• RS-485—One RS-485 serial port is available on the Prototyping Board at screw-termi-
nal header J14.

• Quadrature Decoder—Four quadrature decoder inputs (PF0–PF3) from the Rabbit
3000 chip are available on screw-terminal header J5. See Figure B-4 for the header
pinouts.

• H-Bridge Motor Driver—Two pairs of H-bridge motor drivers are supported using
screw-terminal headers J3 and J4 on the Prototyping Board for stepper-motor control.
See Figure B-4 for the header pinouts.

• RabbitNet Port—One RS-422 RabbitNet port (shared with the serial flash interface) is
available to allow RabbitNet peripheral cards to be used with the Prototyping Board.

• Serial Flash Interface—One serial flash interface (shared with the RabbitNet port) is
available to allow Rabbit’s SF1000 series serial flash to be used on the Prototyping
Board.

User’s Manual 83

B.2 Mechanical Dimensions and Layout
Figure B-2 shows the mechanical dimensions and layout for the Prototyping Board.

Figure B-2. Prototyping Board Dimensions

NOTE: All measurements are in inches followed by millimeters enclosed in parentheses.

��
�
�� ��
�

�	

�

�	

�

�	

�
�

�
�

 �
�

�
�

�

�

�

�������	�

�
���

��

�
��

�
��

�
��

�������
�

�

�
��

���

�
�

�
	
��

�
�
�
��
�
�
�
��
�
�
��
��

�
��
�
�
�
��
�
�
�

��

�	���
�
�����������

�

��
� � ��
� �

�! ��
	
�

�	

�

�	

�

�	

�

�	

�

�
�

�
�

�
�

�

�

�

�

��
� �

 ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 �

�
�
�

�
�
�

�
�
�

�
�
�

��

��
�

�
	
��

�
��

�
�
	

�"

�
�
�#

��
��
!

 ��

$��$��

���

�
�� �
�����

���

���

�
	
�
��
��
%
��

�
&
�

�
�

	
�

 �

�
�

�
�

�
�

�
�

�

�
�

��

�� $�

�
��

��

��

�

 �

 �
 �

 �
��
��������������������������������
!�
!��������
����
����
�����

!��'��
������������������!���!�������	����������������!��'

 �

�� �� �� ��

��

��

!��

��	�

���

��
�

��

���

�	�

�	�

�	�

�%�

�%

���

��

���

���

 �

��

��"��!

!���

���
	�

����

���

���

�	�

�	�

�	

���

���

���

�������

�
%
��
��
%
��
��
	
�

�������
�����������
����

��
�	�	�

 �

�� ��

���

�
�

�
�

�

���

���

���

��

���

���

�%�

�%�

���

���

���

���

����

����

�
�

�
�

�
�

���

���

���

���

���

���

�%�

�%�

���

���

��

���

��

 � �

��
��

�
�

�

�

�
�

�
�

��

��
�
�

�

��

��

�
��

 �
�

���

�
� �	

�
�	

	

�
��

 �
�

 ��

��� ���

��� �

���
�
��

$

���
��

�
��

���� �������������� ������
������� ����$�

�$�

��
���

$�

$�
����

&(
��!	�

����

&(
��!	�

$�

��
 ��� ��� ���

 �� ���

$��

���

�
��

��

���
 �

���

���

�
��

$�

���

 ��

�
��

�
��

�
�� �
��

$)

$)�
����*

$)�
����*

)�

�
�

 ��
�
�

��

���

�

�
�

��
�

��
�

��
�

��
�

��
	

�
��

�
��

�
��

�
��

���	

��
��
��
�

�� �+	����+	�����
����+%����+%����
�����
����
'

�� �� �� ��

���

������������

���	���
$�	

��
�	��

$�

��
��

��"��!

�
�!

��"��!

�
�!

$�

$)�

)�

�)��

�)��

�)��

�)��

�)���)�

�%�,���

�%�,�

 ��

�
�

$�

�
��

�
��

�
��

�
��

�
�

�)�

�)�
�

�

�

�

�

�

�

�
��

�
��

�
�

�
��

�

�

�
��

������	�������

�

�

�

�

�
�
�
��

(�
�
�
�
��

(�

���
���
���
���

�>559:6

�"�

-���<

"
�

-�
��

<

84 RabbitCore RCM3305/RCM3315

Table B-1 lists the electrical, mechanical, and environmental specifications for the Proto-
typing Board.

Table B-1. Prototyping Board Specifications

Parameter Specification

Board Size 5.25" × 6.75" × 1.00" (133 mm × 171 mm × 25 mm)

Operating Temperature –20°C to +70°C

Humidity 5% to 95%, noncondensing

Input Voltage 8 V to 30 V DC

Maximum Current Draw
(including user-added circuits)

800 mA max. for +3.3 V supply,
1 A total +3.3 V and +5 V combined

Backup Battery CR2032, 3 V lithium coin-type

Digital Inputs 4 inputs pulled up, ± 36 V DC,
switching threshold 0.9–2.3 V typical

Digital Outputs 4 sinking outputs,+30 V DC, 500 mA maximum per channel
8 CMOS-level outputs if stepper motor not installed

Relay SPDT relay, 500 mA @ 30 V

Serial Ports
• two 3-wire RS-232 or one RS-232 with RTS/CTS
• one RS-485

Other Serial Interfaces RabbitNet RS-422 port or serial flash interface

Other Interfaces
• stepper motor control
• quadrature decoder
• LCD/keypad module

LEDs

Seven LEDs
• one power on indicator
• one RCM3305/RCM3315 module indicator
• four user-configurable LEDs
• one relay indicator

Prototyping Area Throughhole, 0.1" spacing, additional space for SMT
components

Connectors

• two 2 × 17, 2 mm pitch sockets for RCM3305/RCM3315
module

• one 2 × 5, 2 mm pitch socket for serial flash
• six screw-terminal headers for serial ports, digital inputs,

stepper motor control, quadrature decoder, and relay
contacts

• one RJ-45 RabbitNet jack

Standoffs/Spacers 7, accept 4-40 x 1/2 screws

User’s Manual 85

B.3 Power Supply
The RCM3305/RCM3315 requires a regulated 3.15 V to 3.45 V DC power source to oper-
ate. Depending on the amount of current required by the application, different regulators
can be used to supply this voltage.

The Prototyping Board has an onboard +5 V switching power regulator from which a
+3.3 V linear regulator draws its supply. Thus both +5 V and +3.3 V are available on the
Prototyping Board.

The Prototyping Board itself is protected against reverse polarity by a diode at D1 as
shown in Figure B-3.

Figure B-3. Prototyping Board Power Supply

���	�����*	�
�	�$�����

�
�
*
	
�

��

 �

���M%

������
$�

��"��!

�

�

�

�

�

�
�����

�

���M% ����M%

�
�!

��

��
����M&

�
��
���

�*���&������*	���	�$�����

���
$�

���
�

���M%

86 RabbitCore RCM3305/RCM3315

B.4 Using the Prototyping Board
The Prototyping Board is actually both a demonstration board and a prototyping board. As
a demonstration board, it can be used with the sample programs to demonstrate the func-
tionality of the RCM3305/RCM3315 right out of the box without any modifications.

The Prototyping Board pinouts are shown in Figure B-4.

Figure B-4. Prototyping Board Pinout

��
�	���
�	

()9()'

():

())

(:

(;
()

(* (9('(%(<

(=

�����

�
�

�

�

�
�

�
�

()&

()*

()%();

��
�
 �!

!
�
�
�

�

�
�

�

�
�

�

�
�

�

�
�

!
�
�
'

�
�

�

��

�

��

�

��

�

��

�

�L

�

�!

��
�

��
�

��
�

��
�

�
�

�
+	

�
+	

�
�

�
+%

�
+%

��

�

�
�

��

'

�
$
�
��

�
$
�
��

�
$
�
��

�
$
�
��

�
$
�
��

�
$
�
�

�
$
�
��

�
$
�
��

��

!��

���,�+

�
�,�	

�
�,
�

���,�+

�%�,���,�	�
�
�,��	�,����
�
�,�����
�

,����

��

,�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���
���
���
�
�
��

�
�

 �!

�	���
��������

������
-$���

����
��

>�	�
	��
�
!�����

!����	�
�����

#�-;%; #�-*<'

���
��

���

�
�

&
�
$
�
�

&
�
$
�
�

&
�
$
�
�

&
�
$
�
�

!����	�
0�����

6
��3���7

!
�
�
'

�

�
�

�

�
�

�

�
�

�

�
�

!
�
�
�

���

����

���

���

����

���

;"A"
��"��!
!���
���
	�
����

���
���
�	�
�	�
�	

�	�
�%�
�%�
���
���
���
��	�,�$�

��

��

!��
��	�

���
	�
���*�
��

���
�	�
�	�
�	�
�%�
�%

���
��

���
���

���
�
�
�
�
�

���
���
���
��

���
���
�%�
�%�
���
���
���
���

����$�

����
�
�
�
�
�
�
���
���
���
���
���
���
�%�
�%�
���
���
��

���
��

User’s Manual 87

The Prototyping Board comes with the basic components necessary to demonstrate the
operation of the RCM3305/RCM3315. Four user LEDs (DS3–DS6) are connected to
alternate I/O bus pins PA0–PA3 pins of the RCM3305/RCM3315 module via U8, and may
be driven as output indicators when controlled by PE7 and PG5 as shown in the sample
applications. Two switches (S2 and S3) are connected to PG0 and PG1 to demonstrate the
interface to the Rabbit 3000 microprocessor. Reset switch S1 is the hardware reset for the
RCM3305/RCM3315.

The Prototyping Board provides the user with RCM3305/RCM3315 connection points
brought out conveniently to labeled points at J8 and J9 on the Prototyping Board. Although
locations J8 and J9 are unstuffed, 2 × 17 headers are included in the bag of parts.

RS-232 and RS-485 signals are available on screw-terminal header J14, quadrature decoder
inputs are available on screw-terminal header J5, and digital inputs are available on screw-
terminal header J6. A 1 × 5 header strip from the bag of parts may be installed at J12 for four
sinking digital outputs. The clocked Serial Port B signals from the RCM3305/RCM3315
are used for the serial flash, and cannot be accessed via header J13 on the Prototyping
Board.

If you don’t plan to use the LCD/keypad module, additional signals may be brought out on 1 × 5
and 1 × 8 headers from the bag of parts that you install at J15 and J16. If you don’t plan to use
the stepper-motor control option, additional CMOS outputs are available via a 1 × 8 header
that you install at J10.

There is a through-hole prototyping space available on the Prototyping Board. The holes in
the prototyping area are spaced at 0.1" (2.5 mm). +3.3 V, +5 V, and GND traces run along
one edges of the prototyping area. Small to medium circuits can be prototyped using point-
to-point wiring with 20 to 30 AWG wire between the prototyping area, the +3.3 V, +5 V, and
GND traces, and the surrounding area where surface-mount components may be installed.
Small holes are provided around the surface-mounted components that may be installed
around the prototyping area.

B.4.1 Adding Other Components

There are two sets of pads for 6-pin, 16-pin, and 28-pin devices that can be used for sur-
face-mount prototyping devices. There are also pads that can be used for SMT resistors
and capacitors in an 0805 SMT package. Each component has every one of its pin pads
connected to a hole in which a 30 AWG wire can be soldered (standard wire wrap wire can
be soldered in for point-to-point wiring on the Prototyping Board). Because the traces are
very thin, carefully determine which set of holes is connected to which surface-mount pad.

88 RabbitCore RCM3305/RCM3315

B.4.2 Digital I/O
B.4.2.1 Digital Inputs

The Prototyping Board has four digital inputs, IN0–IN3, each of which is protected over a
range of –36 V to +36 V. The inputs are pulled up to +3.3 V as shown in Figure B-5.

Figure B-5. Prototyping Board Digital Inputs

The four quadrature decoder inputs on screw-terminal header J5 may be used as inputs
IN4–IN7. To use the PF0 signal from the Rabbit microprocessor, which goes to QD1B,
remember to reconfigure the jumper on header JP3 to jumper pins 1–2.

The actual switching threshold is between 0.9 V and 2.3 V. Anything below this value is a
logic 0, and anything above is a logic 1.

The digital inputs are each fully protected over a range of -36 V to +36 V, and can handle
short spikes of ±40 V.

(�9

���0�

���0�

��"��!

��

>

User’s Manual 89

B.4.3 CMOS Digital Outputs

If the stepper-motor option is not used, eight CMOS-level digital outputs are available at
J10, and can each handle up to 25 mA.

B.4.4 Sinking Digital Outputs

Four sinking digital outputs shared with LEDs DS3–DS6 are available at J12, and can each
handle up to 500 mA. Figure B-6 shows a wiring diagram for a typical sinking output.

Figure B-6. Prototyping Board Sinking Digital Outputs

B.4.5 Relay Outputs

Figure B-7 shows the contact connections for the relay on the Prototyping Board. A diode
across the coil provides a return path for inductive spikes, and snubbers across the relay
contacts protect the relay contacts from inductive spikes.

Figure B-7. Prototyping Board Relay Output Contact Connections

The relay is driven by pin PA4 of the RCM3305/RCM3315 module via U8, and is con-
trolled by PE7 and PG5 as shown in the sample applications.

!AA

�����

��0�

�

�
��
	
*&	�����

�����
$���!	

�

�

�

�

��

����

���

���

�

�

�

����

���

���

��"��!

���� ����;%

���� ����;%

():

� � �

>

�
 �

���� ����;%

���� ����;%

90 RabbitCore RCM3305/RCM3315

B.4.6 Serial Communication

The Prototyping Board allows you to access four of the serial ports from the RCM3305/
RCM3315 module. Table B-2 summarizes the configuration options.

Serial Port D is configured in software either to allow J7 to be used as a RabbitNet port or
to allow J11 to be used as a serial interface for the SF1000 series serial flash.

Table B-2. Prototyping Board Serial Port Configurations

Serial Port Signal Header Configured via Default Use Alternate Use

C J14 JP5*

* RS-485 termination and bias resistors are configured via header JP5.

RS-485 —

D
J7

JP3

RabbitNet
(PD2 = 1) Rabbit 3000

quadrature decoder
J11 SF1000

(PD2 = 0)

E J14 — RS-232 —

F J14 — RS-232 —

User’s Manual 91

B.4.6.1 RS-232

RS-232 serial communication on the Prototyping Board is supported by an RS-232 trans-
ceiver installed at U9. This transceiver provides the voltage output, slew rate, and input
voltage immunity required to meet the RS-232 serial communication protocol. Basically,
the chip translates the Rabbit 3000’s signals to RS-232 signal levels. Note that the polarity
is reversed in an RS-232 circuit so that a +5 V output becomes approximately -10 V and 0
V is output as +10 V. The RS-232 transceiver also provides the proper line loading for
reliable communication.

RS-232 can be used effectively at the RCM3305/RCM3315 module’s maximum baud rate
for distances of up to 15 m.

RS-232 flow control on an RS-232 port is initiated in software using the
serXflowcontrolOn() function call from LIB\RS232.LIB, where X is the serial port
(E or F). The locations of the flow control lines are specified using a set of five macros.

SERX_RTS_PORT—Data register for the parallel port that the RTS line is on (e.g., PGDR).

SERX_RTS_SHADOW—Shadow register for the RTS line's parallel port (e.g., PGDRShadow).

SERX_RTS_BIT—The bit number for the RTS line.

SERX_CTS_PORT—Data register for the parallel port that the CTS line is on (e.g., PCDRShadow).

SERX_CTS_BIT—The bit number for the CTS line.

Standard 3-wire RS-232 communication using Serial Ports E and F is illustrated in the fol-
lowing sample code.

#define EINBUFSIZE 15 // set size of circular buffers in bytes
#define EOUTBUFSIZE 15

#define FINBUFSIZE 15
#define FOUTBUFSIZE 15

#define MYBAUD 115200 // set baud rate
#endif

main(){
 serEopen(_MYBAUD); // open Serial Ports E and F
 serFopen(_MYBAUD);
 serEwrFlush(); // flush their input and transmit buffers
 serErdFlush();
 serFwrFlush();
 serFrdFlush();
 serEclose(_MYBAUD); // close Serial Ports C and D
 serFclose(_MYBAUD);
}

92 RabbitCore RCM3305/RCM3315

B.4.6.2 RS-485

The Prototyping Board has one RS-485 serial channel, which is connected to the Rabbit
3000 Serial Port C through an RS-485 transceiver. The half-duplex communication uses
an output from PD7 on the Rabbit 3000 to control the transmit enable on the communica-
tion line. Using this scheme a strict master/slave relationship must exist between devices
to insure that no two devices attempt to drive the bus simultaneously.

Serial Port C is configured in software for RS-485 as follows.

#define ser485open serCopen
#define ser485close serCclose
#define ser485wrFlush serCwrFlush
#define ser485rdFlush serCrdFlush
#define ser485putc serCputc
#define ser485getc serCgetc

#define CINBUFSIZE 15
#define COUTBUFSIZE 15

#ifndef _485BAUD
#define _485BAUD 115200
#endif

The configuration shown above is based on circular buffers. RS-485 configuration may
also be done using functions from the PACKET.LIB library.

The Prototyping Boards with RCM3305/RCM3315 modules installed can be used in an
RS-485 multidrop network spanning up to 1200 m (4000 ft), and there can be as many as
32 attached devices. Connect the 485+ to 485+ and 485– to 485– using single twisted-pair
wires as shown in Figure B-8. Note that a common ground is recommended.

Figure B-8. Multidrop Network

�
�
(�
�

'

�
�
��

�

�
�

�
�
(�
�

'

�
�
��

�

�
�

�
�
(�
�

'

�
�
��

�

�
�

User’s Manual 93

The Prototyping Board comes with a 220 Ω termination resistor and two 681 Ω bias resis-
tors installed and enabled with jumpers across pins 1–2 and 5–6 on header JP5, as shown
in Figure B-9.

Figure B-9. RS-485 Termination and Bias Resistors

For best performance, the termination resistors in a multidrop network should be enabled
only on the end nodes of the network, but not on the intervening nodes. Jumpers on boards
whose termination resistors are not enabled may be stored across pins 1–3 and 4–6 of
header JP5.

B.4.7 RabbitNet Ports

The RJ-45 jack labeled RabbitNet is a clocked SPI RS-422 serial I/O expansion port for
use with RabbitNet peripheral boards. The RabbitNet jack does not support Ethernet con-
nections. Header JP3 must have pins 2–3 jumpered when using the RabbitNet port.

The RabbitNet port is enabled in software by setting PD2 = 1. Note that the RabbitNet
port and the J11 interface cannot be used simultaneously.

��
�
�� ��
�

�	

�

�	

�

�	

�
�

�
�

 �
�

�
�

�

�

�

�������	�

�
���

��

�
��

�
��

�
��

�������
�

�

�
��

���

�
�

�
	
��

�
�
�
��
�
�
�
��
�
�
��
��

�
��
�
�
�
��
�
�
�

��

�	���
�
�����������

�

��
� � ��
� �

�! ��
	
�

�	

�

�	

�

�	

�

�	

�

�
�

�
�

�
�

�

�

�

�

��
� �

 ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 �

�
�
�

�
�
�

�
�
�

�
�
�

��

��
�

�
	
��

�
��

�
�
	

�"

�
�
�#

��
��
!

 ��

$��$��

���

�
�� �
�����

���

���

�
	
�
��
��
%
��

�
&
�

�
�

	
�

 �

�
�

�
�

�
�

�
�

�

�
�

��

�� $�

�
��

��

��

�

 �

 �
 �

 �
��
��������������������������������
!�
!��������
����
����
�����

!��'��
������������������!���!�������	����������������!��'

 �

�� �� �� ��

��

��

!��

��	�

���

��
�

��

���

�	�

�	�

�	�

�%�

�%

���

��

���

���

 �

��

��"��!

!���

���
	�

����

���

���

�	�

�	�

�	

���

���

���

�������

�
%
��
��
%
��
��
	
�

�������
�����������
����

��
�	�	�

 �

�� ��

���

�
�

�
�

�

���

���

���

��

���

���

�%�

�%�

���

���

���

���

����

����

�
�

�
�

�
�

���

���

���

���

���

���

�%�

�%�

���

���

��

���

��

 � �

��
��

�
�

�

�

�
�

�
�

��

��
�
�

�

��

��

�
��

 �
�

���

�
� �	

�
�	

	

�
��

 �
�

 ��

��� ���

��� �

���
�
��

$

���
��

�
��

���� �������������� ������
������� ����$�

�$�

��
���

$�

$�
����

&(
��!	�

����

&(
��!	�

$�

��
 ��� ��� ���

 �� ���

$��

���

�
��

��

���
 �

���

���

�
��

$�

���

 ��

�
��

�
��

�
�� �
��

$)

$)�
����*

$)�
����*

)�

�
�

 ��
�
�

��

���

�

�
�

��
�

��
�

��
�

��
�

��
	

�
��

�
��

�
��

�
��

���	

��
��
��
�

�� �+	����+	�����
����+%����+%����
�����
����
'

�� �� �� ��

���

������������

���	���
$�	

��
�	��

$�

��
��

��"��!

�
�!

��"��!

�
�!

$�

$)�

)�

�)��

�)��

�)��

�)��

�)���)�

�%�,���

�%�,�

 ��

�
�

$�

�
��

�
��

�
��

�
��

�
�

�)�

�)�
�

�

�

�

�

�

�

�
��

�
��

�
�

�
��

�

�

�
��

������	�������

�

�

�

�

�
�
�
��

(�
�
�
�
��

(�

���
���
���
���

�
�

 �
���

��

��

�
�

�
��

��$�

�
�

���
�

�
�

�
�

�
�

���� �

�
�

�
��

�
��

�
��

�
��

$�

�
��

�
��

��

�
�

�
��

�
��

�
�

�
��

�
��

�
��

��

�
��

�
�

���

$�

�����

��

�
��

���
���
���

���

$
�
��

��

���

������
$��

�
��

���
���
���
���
���

�
�

�
��

�
��

$�
���

���

�����))

�
�

����������
�
���

�
�

��

�
�

 �

��

���

���
���

�
��

�
��

�
��

�
��

�
��

�
��

���

��� �	����
�	����

 �
�

 �
�

 �
�

 �
�

 �

��

���

�
�� �
��

�
��

���

�
�
�
�
���

�
��

���

���

���

�
��

�
��

���

�
��

�
��

�
����

�
�� �

��

��

�

�

�
�
�
�
�

�
�

?	���
�
!��	���

���
�����

���
�����

���
�����

��
�

��
'

�

�

������
����	�

���

���

$�� �

� �

�

�
�
��

 �

�

�

�

�

�

94 RabbitCore RCM3305/RCM3315

B.4.8 Other Prototyping Board Modules

An optional LCD/keypad module is available that can be mounted on the Prototyping
Board. The signals on headers LCD1JB and LCD1JC will be available only if the LCD/
keypad module is installed. Refer to Appendix C, “LCD/Keypad Module,” for complete
information.

Rabbit’s SF1000 series serial flash may be installed in the socket labeled J11. The J11
interface is enabled in software by setting PD2 = 0. Header JP3 must have pins 2–3 jum-
pered when using the J11 interface. Note that the RabbitNet port and the J11 interface
cannot be used simultaneously.

B.4.9 Quadrature Decoder

Four quadrature decoder inputs are available on screw-terminal header J5. To use the PF0
input from the Rabbit microprocessor, which goes to the QD1B input, remember to recon-
figure the jumper on header JP3 to jumper pins 1–2.

Additional information on the use of the quadrature decoders on Parallel Port F is pro-
vided in the Rabbit 3000 Microprocessor User’s Manual.

B.4.10 Stepper-Motor Control

The Prototyping Board can be used to demonstrate the use of the RCM3305/RCM3315 to
control a stepper motor. Stepper motor control typically directs moves in two orthogonal
directions, and so two sets of stepper-motor control circuits are provided for via screw-
terminal headers J3 and J4.

In order to use the stepper-motor control, install two Texas Instruments L293DN chips at
locations U2 and U3 (shown in Figure B-10). These chips are readily available from your
favorite electronics parts source, and may be purchased through Rabbit’s Web store as part
number 660-0205.

Figure B-10. Install Four-Channel Push-Pull Driver Chips

��
��

�

��
�

�	

�

�	

�

�	

 ��

��

 �� ��
�
�

�

�������	�

��
���
�

��
�

��
�

��
�

��������

�

��
�

���
�
�

�	
��

�
��

���
��

���
��

���
��

���
��

��
��

��

�	���
�
�����������

�

��
� � ��
� �

�! ��
	�

�	

�

�	

�

�	

�

�	

�

��

�� ��
�
�
�
�

��
� �

 ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 �

��
�

��
�

��
�

��
�

��

��
�

�	
��

���
��

	

�"

���
#
���

�!

 ��

$��$��

���

��
� ��
����

���

���

�	
���

��%
��

�&
�

��

	

�

 �

�� ��

�� �� �
 ��

��

�� $�

��
�

��

��

�

 �

 �
 � �

��
��������������������������������
!�
!��������
����
����
�����

!��'��
������������������!���!�������	����������������!��'

 �

�� �� �� ��

��

��

!��

��	�

���

��
�

��

���

�	�

�	�

�	�

�%�

�%

���

��

���

���

 �
��

��"��!

!���

���
	�

����

���

���

�	�

�	�

�	

���

���

���

�������

�%
���
�%

���
�	

�

�������
�����������
����

��
�	�	�

 �

�� ��

���

�
�

�
�

�

���

���

���

��

���

���

�%�

�%�

���

���

���

���

����

����

�
�

�
�

�
�

���

���

���

���

���

���

�%�

�%�

���

���

��

���

��

 � �

��
��

��

�

�

��

�
�

��

��
�
�

�

��

��

��
�

 �
�

���

��

�	
�

�		

��
�

 �
�

 ��

��� ���

��� �

���

��
�

$

���
��

��
�

���� �������������� ������
������� ����$�

�$�

�����
$�

$�
����

&(
��!	�

����

&(
��!	�

$�

��
 ��� ��� ���

 �� ���

$��

���

��
�

��

���
 �

���

���

��
�

$�

���

 ��

��
�

��
� ��

� ��
�

$)

$)�
����*

$)�
����*

)�

��

 ��
�
�

��

���

�

�
�

��
�

��
�

��
�

��
�

��
	

��
�

��
�

��
�

��
�

���	

��
��
��
�

�� �+	����+	�����
����+%����+%����
�����
����
'

�� �� �� ��

���

������������

���	���
$�	
��
�	��

$�

��
��

��"��!

�
�!

��"��!

�
�!

$�

$)�

)�

�)��
�)��

�)��

�)��
�)���)�

�%�,���

�%�,�

 ��

��

$�

��
�

��
�

��
�

��
�

��

�)�

�)�

�

�

�

�

�

�

�

��
�

��
�

��

��
�

�

�

��
�������	�������

�

�

�

�

��
��

�(�
��

��
�(�

���
���

���
���

��

 �
���

��

��

�����

��$�

�� ��������

��

���� �

��

���
���

���

���

$�

���

��� ��

��

���

���

��

���

���

���

��

���

��

���

$�

�����

��

���

���
���
���

���

$
���

��

���

������
$��

���

���
���
���
���
���

�
�

���
���

$�
���

���

�����))

��

����������������

��

��

 �

��

���
���
���

���

���

���

���

���

���

���

��� �	���� �	����

 ��

 ��
 ��
 ��
 �

��

���

��� ���

���

���

�
�
�
�
���

���

���

���

���

���
���

���

���

���
�����

��� ���

��

�
�
�����

��

http://www.rabbit.com/store/

User’s Manual 95

Figure B-11 shows the stepper-motor driver circuit.

Figure B-11. Stepper-Motor Driver Circuit

The stepper motor(s) can be powered either from the onboard power supply or from an
external power based on the jumper settings on headers JP1 and JP2.

Table B-3. Stepper Motor Power-Supply Options

Header Pins Connected Factory
Default

JP1

1–2
9–10 Onboard power supply to U2 ×
3–4
7–8 External power supply to U2

JP2

1–2
9–10 Onboard power supply to U3 ×
3–4
7–8 External power supply to U3

 �

�

�

�

$�

�

�

�

�

��

��

�

�

�

��

�

�

	����	�

	����	�

�������K
������'K

��
�0
�

��
�0
�

����
�

!���

�
��

�
��

�
��

�
��

!��(

�$��

�$��

�$��

�$��

���

���

���

���

��
�0
�

��
�0
�

 �

�

�

�

$�

�

�

�

�

��

��

�

�

�

��

�

�

	����	�

	����	�

�������K
������'K

��
�0
�

��
�0
�

����
�

!��(

�
��

�
��

�
��

�
��

!���

>
�$��

�$��

�$��

�$��

���

���

���

���

��
�0
�

��
�0
�

> �%�

�%

�%�

�%�

96 RabbitCore RCM3305/RCM3315

B.5 Prototyping Board Jumper Configurations
Figure B-12 shows the header locations used to configure the various Prototyping Board
options via jumpers.

Figure B-12. Location of Prototyping Board Configurable Positions

 ��

 ��

 �

 �� ��

�>559:6

User’s Manual 97

Table B-4 lists the configuration options using jumpers.

Table B-4. Prototyping Board Jumper Configurations

Header Description Pins Connected Factory
Default

JP1 Stepper Motor Power-Supply
Options (U2)

1–2
9–10 Onboard power supply ×
3–4
7–8 External power supply

JP2 Stepper Motor Power-Supply
Options (U3)

1–2
9–10 Onboard power supply ×
3–4
7–8 External power supply

JP3 PF0 Option
1–2 Quadrature decoder inputs enabled

2–3 RabbitNet/Serial Flash interface
enabled ×

JP4 RCM3305/RCM3315 Power
Supply 2–3 RCM3305/RCM3315 powered via

Prototyping Board ×

JP5 RS-485 Bias and Termination
Resistors

1–2
5–6

Bias and termination resistors
connected ×

1–3
4–6

Bias and termination resistors not
connected (parking position for
jumpers)

98 RabbitCore RCM3305/RCM3315

B.6 Use of Rabbit 3000 Parallel Ports
Table B-5 lists the Rabbit 3000 parallel ports and their use for the Prototyping Board.

Table B-5. Prototyping Board Use of Rabbit 3000 Parallel Ports

Port I/O Use Initial State

PA0–PA3 Data Bus LCD/keypad module, motor driver, LEDs, J7 Active high

PA4 Data Bus LCD/keypad module, motor driver, relay, J7 Active high

PA5–PA7 Data Bus LCD/keypad module, motor control, J7 Active high

PB0 Input CLKB, Serial Flash SCLK High

PB1 Input CLKA Programming Port High
(when not driven by CLKA)

PB2–PB5 Address Bus LCD/keypad module, J6 High

PB6–PB7 Address Bus J6 High

PC0 Output TXD SPI, serial flash, J7
Serial Port D

High (disabled)

PC1 Input RXD SPI, serial flash, J7 High (disabled)

PC2 Output TXC RS-485 J7
Serial Port C

High (disabled)

PC3 Input RXC RS-485 J7 High (disabled)

PC4 Output TXB RCM3305 serial flash
Serial Port B*

High (disabled)

PC5 Input RXB RCM3305 serial flash High (disabled)

PC6 Output TXA Programming Port
Serial Port A

High

PC7 Input RXA Programming Port High

PD0† Output RCM3305 USR LED High

PD1† Output RCM3305 onboard serial flash select High (disabled)

PD2 Output SPI, serial flash, J7 Low (SPI disabled)

PD3 Output SPI, serial flash, J7 High (SPI CS disabled)

PD4–PD6 Input Serial flash, J7 High (disabled)

PD7 Output RS-485 Tx enable Low (disabled)

PE0–PE1 Input IN0–IN1, J6 High

PE2† Output Ethernet AEN Low (disabled)

PE3 Output Motor driver A clock pulse Low (disabled)

PE4–PE5 Input IN2–IN3, J6 High

PE6 Output LCD/keypad module High (disabled)

PE7 Output Motor driver B clock pulse High (disabled)

User’s Manual 99

PF0 Input SPI, serial flash, quadrature decoder, J7 High

PF1–PF3 Input Quadrature decoder, J7 High

PF4–PF7 Output Motor 1–4 control Low (disabled)

PG0 Input Switch S1 High

PG1 Input Switch S2 High

PG2 Input TXF RS-232
Serial Port F

High (disabled)

PG3 Input RXF RS-232 High (disabled)

PG4 Output Motor driver A enable High (disabled)

PG5 Output Motor driver B enable High (disabled)

PG6 Input TXE RS-232
Serial Port E

High (disabled)

PG7 Input RXE RS-232 High (disabled)

* Serial Port B is not available on the Prototyping Board when the RCM3305/RCM3315 is
plugged in.

† PD0, PD1, and PE2 are not normally available on the Prototyping Board because they are not
brought out on RCM3305 headers J3 and J4.

Table B-5. Prototyping Board Use of Rabbit 3000 Parallel Ports (continued)

Port I/O Use Initial State

100 RabbitCore RCM3305/RCM3315

User’s Manual 101

APPENDIX C. LCD/KEYPAD MODULE

An optional LCD/keypad is available for the Prototyping Board.
Appendix C describes the LCD/keypad and provides the soft-
ware function calls to make full use of the LCD/keypad.

C.1 Specifications
Two optional LCD/keypad modules—with or without a panel-mounted NEMA 4 water-
resistant bezel—are available for use with the Prototyping Board. They are shown in
Figure C-1.

Figure C-1. LCD/Keypad Module Versions

Only the version without the bezel can mount directly on the Prototyping Board; if you
have the version with a bezel, you will have to remove the bezel to be able to mount the
LCD/keypad module on the Prototyping Board. Either version of the LCD/keypad module
can be installed at a remote location up to 60 cm (24") away. Contact your Rabbit sales
representative or your authorized for further assistance in purchasing an LCD/keypad
module.

 �!5@���	��$�����

102 RabbitCore RCM3305/RCM3315

Mounting hardware and a 60 cm (24") extension cable are also available for the LCD/
keypad module through your sales representative or authorized distributor.

Table C-1 lists the electrical, mechanical, and environmental specifications for the LCD/
keypad module.

Table C-1. LCD/Keypad Specifications

Parameter Specification

Board Size 2.60" x 3.00" x 0.75"
(66 mm x 76 mm x 19 mm)

Bezel Size 4.50" × 3.60" × 0.30"
(114 mm × 91 mm × 7.6 mm)

Temperature Operating Range: 0°C to +50°C
Storage Range: –40°C to +85°C

Humidity 5% to 95%, noncondensing

Power Consumption 1.5 W maximum*

* The backlight adds approximately 650 mW to the power consumption.

Connections Connects to high-rise header sockets on the Prototyping Board

LCD Panel Size 122 × 32 graphic display

Keypad 7-key keypad

LEDs Seven user-programmable LEDs

The LCD/keypad module has 0.1"
IDC headers at J1, J2, and J3 for
physical connection to other boards or
ribbon cables. Figure C-2 shows the
LCD/keypad module footprint. These
values are relative to one of the
mounting holes.

NOTE: All measurements are in
inches followed by millimeters
enclosed in parentheses. All dimen-
sions have a manufacturing toler-
ance of ±0.01" (0.25 mm).

Figure C-2. User Board Footprint for
LCD/Keypad Module

(;

()

�"���
-
"�<

�"���
-�"
<

�"
��
-��"�<

�"�
�
-��"�<

(%

�"���
-

"�<

�"
��

�
-�
�"
�<

�"
��

�
-�
�"

<

�"
��

�
-�

"
�<

User’s Manual 103

C.2 Contrast Adjustments for All LCD/Keypad Modules
Starting in 2005, LCD/keypad modules were factory-configured to optimize their contrast
based on the voltage of the system they would be used in. Be sure to select a KDU3V
LCD/keypad module for use with the Prototyping Board for the RCM3305/RCM3315 —
these modules operate at 3.3 V. You may adjust the contrast using the potentiometer at R2
as shown in Figure C-3. LCD/keypad modules configured for 5 V may be used with the
3.3 V RCM3300 Prototyping Board, but the backlight will be dim.

Figure C-3. LCD/Keypad Module Contrast Adjustments

You can set the contrast on the LCD display of pre-2005 LCD/keypad modules by adjust-
ing the potentiometer at R2 or by setting the voltage for 3.3 V by connecting the jumper
across pins 3–4 on header J5 as shown in Figure C-3. Only one of these two options is
available on these LCD/keypad modules.

NOTE: Older LCD/keypad modules that do not have a header at J5 or a contrast adjust-
ment potentiometer at R2 are limited to operate only at 5 V, and will not work with the
Prototyping Board for the RCM3305/RCM3315. The older LCD/keypad modules are
no longer being sold.

�
�

��

�
�

�
�

� ��
�

�

$�

 �� ��
$�

��

�
��

���

�
�

���
���

�
�

��

��

���

��� ��� ��� ��� �� ��� ��

�
��

��

�
��

�

�
����

$

 �

������
����

 �

���

�
�� ��

�
�� ��

�
�� ��

�
��

�
� �
��

$� ���

�
��

�
�

�
��

$�

$�

����
$�

��
� ���

��
�

��

 �

��

��� ���

���
��
�"��!

��&	�
�"��!

�

�

�

�

;"A"�D�
�!

 �!5@���	��$������(����
��������
	����

�!$*!" �!��"#.)#�(�#(�
��((!�)!*

$�)�"0
�!/$'%)

��

�	
��

	
��

���

���

��

�	�	

�

�

�

�

�

�
>:
5��

/"
��
��

(�

�

�

����	���
��&�������

104 RabbitCore RCM3305/RCM3315

C.3 Keypad Labeling
The keypad may be labeled according to your needs. A template is provided in Figure C-4
to allow you to design your own keypad label insert.

Figure C-4. Keypad Template

To replace the keypad legend, remove the old legend and insert your new legend prepared
according to the template in Figure C-4. The keypad legend is located under the blue key-
pad matte, and is accessible from the left only as shown in Figure C-5.

Figure C-5. Removing and Inserting Keypad Label

The sample program KEYBASIC.C in the 122x32_1x7 folder in SAMPLES\LCD_KEYPAD
shows how to reconfigure the keypad for different applications.

�"��
-��<

�"�

-��<

�96=>7�.>?9.�21�./A>597
����	�549�?.C9�096=>7�E>559"

User’s Manual 105

C.4 Header Pinouts
Figure C-6 shows the pinouts for the LCD/keypad module.

Figure C-6. LCD/Keypad Module Pinouts

C.4.1 I/O Address Assignments

The LCD and keypad on the LCD/keypad module are addressed by the /CS strobe as
explained in Table C-2.

Table C-2. LCD/Keypad Module Address Assignment

Address Function

0xE000 Device select base address (/CS)

0xExx0–0xExx7 LCD control

0xExx8 LED enable

0xExx9 Not used

0xExxA 7-key keypad

0xExxB (bits 0–6) 7-LED driver

0xExxB (bit 7) LCD backlight on/off

0xExxC–ExxF Not used

�
��

�
��

�
��

�
��

�
��

�
��

�
�

�	

�

�	

�	

�

�	

�

��
	
�

!
�
�

�
��

�

�

�
��

�
��

�
��

�
��

�
�

�
�

�	

�

�	

�

�	

�

�
	
�

�

�
�
��

��

�
�

�
�

�	

�

�	

�

�	

�

�
	
�

�

�
�
��

�
�

�	

�

�	

�	

�

�	

�

��
	
�

!
�
�

��

�
�

�
��

�

�

�
��

�
��

�
��

�
��

�
�

�
��

�
��

�
��

�
��

�
��

�
��

��

106 RabbitCore RCM3305/RCM3315

C.5 Mounting LCD/Keypad Module on the Prototyping Board
Install the LCD/keypad module on header sockets LCD1JA, LCD1JB, and LCD1JC of the
Prototyping Board as shown in Figure C-7. Be careful to align the pins over the headers,
and do not bend them as you press down to mate the LCD/keypad module with the Proto-
typing Board.

Figure C-7. Install LCD/Keypad Module on Prototyping Board

��
�
�� ��
�

�	

�

�	

�

�	

�
�

�
�

 �
�

�
�

�

�

�

�)��

�)��

�)��

�������	�

�
���

��

�
��

�
��

�
��

�������
�

�

�
��

���

�
�

�
	
��

�
�
�
��
�
�
�
��
�
�
��
��

�
��
�
�
�
��
�
�
�

��

�	���
�
�����������

�

��
� � ��
� �

�! ��
	
�

�	

�

�	

�

�	

�

�	

�

�
�

�
�

�
�

�

�

�

�

��
� �

 ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 �

�
�
�

�
�
�

�
�
�

�
�
�

��

��
�

�
	
��

�
��

�
�
	

�"

�
�
�#

��
��
!

 ��

$��$��

���

�
�� �
�����

���

���

�
��

�
��

�
��

�	����
%���&�
��
	�

�
��

�
�
 ��

 �

�
�

�
�

�
�

�
�

�

�
�

��

�� $�

�
��

�� $���

���

�����

�

 �

 �
 �

 �
��
��������������������������������
!�
!��������
����
����
�����

!��'��
������������������!���!�������	����������������!��'

 �

�� �� �� ��

��

��

!��

��	�

���

��
�

��

���

�	�

�	�

�	�

�%�

�%

���

��

���

���

 �

��

��"��!

!���

���
	�

����

���

���

�	�

�	�

�	

���

���

���

�������

�
%
��
��
%
��
��
	
�

�������
�����������
����

��
�	�	�

 �

�� ��

���

�
�

�
�

�

���

���

���

��

���

���

�%�

�%�

���

���

���

���

����

����

�
�

�
�

�
�

���

���

���

���

���

���

�%�

�%�

���

���

��

���

��

 � �

��
��

�
�

�

�

�
�

�
�

��

��
�
�

�

��

��

�
��

�)�

�)�

�)�

�)�

�)

�)�

���

���

 �
�

�)�

�)�

�)�

��

���

�
� �	

�
�	

	

�
��

 �
�

 ��

��� ���

��� �

���

�
��

$

���
��

�

�
��

���������������������
��������

�$� �$�

��
���

$�

$�
����

&(
��!	�

����

&(
��!	�

$�

��
 ��� ��� ���

 �� ���

$��

���

�
��

��

���
 �

���

���

�
��

$��
��

 ��

�
��

�
��

�
�� �
��

$)

$)�
$)�

$)�
$)�
)�

�)��

�)��

�)��

�)��

�)��

�)�

)�

�
�

 ��
�
�

��

���

�

�
�

��
�

��
�

��
�

��
�

��
	

�
��

�
��

�
��

�
��

���	

��
��
��
�

�� �+	����+	�����
����+%����+%����
�����
����
'

�� �� �� ��

���

������������

���	���
$�	

��
�	��

$�

��
��

��"��!

�
�!

��"��!

�
�!

$�

������

�
�

 �
���

��

��

�
�

�
��

��$�

�
�

���
�

�
�

�
�

�
�

���� �

�
�

�
��

�
��

�
��

�
��

$�

�
��

�
��

��
�
�

�
��

�
��

�
�

�
��

�
��

�
��

��

�
��

�
�

���

$�

�����

��

�
��

���
���
���

���

$
�
��

��

���

������
$��

�
��

���
���
���
���
���

�
�

�
��

�
��

$�
���

���

�����))

�
�

����������
�
���

�
�

��

�
�

 �

��

���

���
���

�
��

�
��

�
��

�
��

�
��

�
��

���

��� �	����
�	����

 �
�

 �
�

 �
�

 �
�

 �

��

���

�
�� �
��

�
��

���

�
�
�
�
���

�
��

���

���

���

�
��

�
��

���

�
��

�
��

�
����

�
�� �

��

��

�

�

�
�
�
�
�

�
�

�����
 ������

User’s Manual 107

C.6 Bezel-Mount Installation
This section describes and illustrates how to bezel-mount the LCD/keypad module
designed for remote installation. Follow these steps for bezel-mount installation.

1. Cut mounting holes in the mounting panel in accordance with the recommended dimen-
sions in Figure C-8, then use the bezel faceplate to mount the LCD/keypad module onto
the panel.

Figure C-8. Recommended Cutout Dimensions

2. Carefully “drop in” the LCD/keypad module with the bezel and gasket attached.

�"
��

�
-�
�"
�<

�"���
-��"�<

�"���
-��"�<

�"���
-
"�<

�"��
�
B��+
-�<

��+0�+

�"
��

�
-�
"�
<

108 RabbitCore RCM3305/RCM3315

3. Fasten the unit with the four 4-40 screws and washers included with the LCD/keypad
module. If your panel is thick, use a 4-40 screw that is approximately 3/16" (5 mm)
longer than the thickness of the panel.

Figure C-9. LCD/Keypad Module Mounted in Panel (rear view)

Carefully tighten the screws until the gasket is compressed and the plastic bezel face-
plate is touching the panel.

Do not tighten each screw fully before moving on to the next screw. Apply only one or
two turns to each screw in sequence until all are tightened manually as far as they can
be so that the gasket is compressed and the plastic bezel faceplate is touching the panel.

��A��5�	
3��

�����������

$� $�
��

�� ��

��
$�

�
��

 �

��

�

��

�� �� ��

�
�

�
��

�
��

�� �� ��

�
��

�
 ��

�
 ��

�
��

��

�
��

��
�
�

�
��

�� �� �

�
��

�� �
$�

���
 �

�
�

�
�

���

�	���

User’s Manual 109

C.6.1 Connect the LCD/Keypad Module to Your Prototyping Board

The LCD/keypad module can be located as far as 2 ft. (60 cm) away from the Prototyping
Board, and is connected via a ribbon cable as shown in Figure C-10.

Figure C-10. Connecting LCD/Keypad Module to Prototyping Board

Note the locations and connections relative to pin 1 on both the Prototyping Board and the
LCD/keypad module.

Rabbit offers 2 ft. (60 cm) extension cables. Contact your authorized distributor or a Rab-
bitsales representative for more information.

��
�
��

��
�

�	

�

�	

�

�	

�
�

�
�

�
�

�
�

�

�

�

�)��

�)��

�)��

�������	�

�
�� �

��

�
��

�
��

�
��

��� ��� �
�

�

�
��

���

�
�

�
	
��

�
�
�
���

�
�
���

�
����

�
���

�
�
���

�
�

��

�	���
�
�����������

�

��
� ���
� �

�!��
	
�

�	

�

�	

�

�	

�

�	

�

�
�

�
�

�
�

�

�

�

�

��
� �

 ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 �

�
�
�

�
�
�

�
�
�

�
�
�

��

��
�

�
	
��

�
��
�
�
	

�"
��
�#

����!

 ��

$�� $��

���

�
��

�
�� ���

���

���

�
��

�
��

�
��

�	����
%���&�
��
	�

�
��

�
�

 ��

 �

�
�

�
�

�
�

�
�

�

�
�

��

��$�

�
��

��$���

���

��� ��

�

 �

 �
 �

 �
��
������������������������ ��������
! �
!��������
����
����
�����

 !��'��
������������������!��� !�������	����������������!��'

 �

�� ���� ��

��

��

!��

��	�

���

��
�

��

���

�	�

�	�

�	�

�%�

�%

���

��

���

���

 �

��

��"��!

!���

���
	�

����

���

���

�	�

�	�

�	

���

���

���

�������

�
%
����

%
����

	
�

�������
�����������
����

��
�	�	�

 �

����

���

�
�

�
�

�

���

���

���

��

���

���

�%�

�%�

���

���

���

���

����

����

�
�

�
�

�
�

���

���

���

���

���

���

�%�

�%�

���

���

��

���

��

 � �

��
��

�
�

�

�

�
�

�
�

��

��
 �
�

�

��

��

�
��

�)�

�)�

�)�

�)�

�)

�)�

���

���

 �
�

�)�

�)�

�)�

��

���

�
��	�

�		

�
��

 �
�

 ��

������

����

���

�
��

$

���
��

�

�
��

���������������������
��������

�$��$�

��
���

$�

$�
����

&(
��!	�

����

&(
��!	�

$�

��
���������

 �����

$��

���

�
��

��

���
 �

���

���

�
��

$� �
��

 ��

�
��

�
���

��

�
��

$)

$)�
$)�

$)�
$)�
)�

�)��

�)��

�)��

�)��

�)��

�)�

)�

�
�

 ��
�
�

��

���

�

�
�

���

��
�

��
�

��
�

��
	

�
��

�
��

�
��

�
��

���	

��
��
��
�

���+	����+	�����
����+%����+%����
�����
����
'

��������

���

��� ��� ��� ���

���	���
$�	

��
�	��

$�

��
 ��

��"��!

�
�!

��"��!

�
�!

$�

�
�

��

�
�

�
�

� ��
�

�

$�

 �� ��
$�

��

�
��

���

�
�

���
���

�
�

��

��

���

��� ��� ��� ��� �� ��� ��

�
��

��

�
��

�

�
����

$

 �

������
����

 �

���

�
�� ��

�
�� ��

�
�� ��

�
��

�
� �
��

$� ���

�
��

�
�

�
��

$�

$�

����
$�

��
� ���

��
�

��

 �

��

��� ���

���
��
�"��!

��&	�
�"��!

�

�

�

�

;"A"�D�
�!

������

�
�

 �
���

��

��

�
�

�
� �

�� $�

�
�

�� �
�

�
�

�
�

�
�

�� ���

�
�

�
��

�
��

�
��

�
��

$�

�
��

�
����

�
�

�
��

�
��

�
�

�
��

�
��

�
��

��

�
��

�
�

���

$�

��� ��

��

�
��

���
���
���

���

$
 �
��

��

���

��� ���
$��

�
��

���
���
���
���
���

�
�

�
��

�
��

$�
���

���

�����))

�
�

��
��

��
��
��
�
���

�
�

��

�
�

 �

��

���

���
���

�
��

�
��

�
��

�
��

�
��

�
��

���

����	� ���
�	� ���

 �
�

 �
�

 �
�

 �
�

 �

��

���

�
���
��

�
��

���

�
�
�
�
���

�
��

���

���

���

�
��

�
��

���

�
��

�
��

�
�� ��

�
���

��

��

�

�

�
�
�
�
�

�
�

�2;��

�2;��

110 RabbitCore RCM3305/RCM3315

C.7 Sample Programs
Sample programs illustrating the use of the LCD/keypad module with the Prototyping
Board are provided in the SAMPLES\RCM3300\LCD_KEYPAD folder.

These sample programs use the external I/O bus on the Rabbit 3000 chip, and so the
#define PORTA_AUX_IO line is already included in the sample programs.

Each sample program has comments that describe the purpose and function of the pro-
gram. Follow the instructions at the beginning of the sample program. To run a sample
program, open it with the File menu (if it is not still open), then compile and run it by
pressing F9. The RCM3305/RCM3315 must be connected to a PC using the programming
cable as described in Chapter 2, “Getting Started.”

Complete information on Dynamic C is provided in the Dynamic C User’s Manual.

• KEYPADTOLED.C—This program demonstrates the use of the external I/O bus. The
program will light up an LED on the LCD/keypad module and will display a message
on the LCD when a key press is detected. The DS3, DS4, DS5, and DS6 LEDs on the
Prototyping Board will also light up.

• LCDKEYFUN.C—This program demonstrates how to draw primitive features from the
graphic library (lines, circles, polygons), and also demonstrates the keypad with the key
release option.

• SWITCHTOLCD.C—This program demonstrates the use of the external I/O bus. The
program will light up an LED on the LCD/keypad module and will display a message
on the LCD when a switch press is detected. The DS1 and DS2 LEDs on the Prototyp-
ing Board will also light up.

Additional sample programs are available in the SAMPLES\LCD_KEYPAD\122x32_1x7
folder.

User’s Manual 111

C.8 LCD/Keypad Module Function Calls
When mounted on the Prototyping Board, the LCD/keypad module uses the external I/O
bus on the Rabbit 3000 chip. Remember to add the line

#define PORTA_AUX_IO

to the beginning of any programs using the external I/O bus.

C.8.1 LCD/Keypad Module Initialization

The function used to initialize the LCD/keypad module can be found in the Dynamic C
LIB\DISPLAYS\LCD122KEY7.LIB library.

Initializes the LCD/keypad module. The keypad is set up using keypadDef() or keyConfig() after
this function call.

RETURN VALUE
None.

C.8.2 LEDs

When power is applied to the LCD/keypad module for the first time, the red LED (DS1)
will come on, indicating that power is being applied to the LCD/keypad module. The red
LED is turned off when the brdInit function executes.

One function is available to control the LEDs, and can be found in the Dynamic C LIB\
DISPLAYS\LCD122KEY7.LIB library.

LED on/off control. This function will only work when the LCD/keypad module is installed on the
RCM3700 Prototyping Board.

PARAMETERS
led is the LED to control.

0 = LED DS1
1 = LED DS2
2 = LED DS3
3 = LED DS4
4 = LED DS5
5 = LED DS6
6 = LED DS7

value is the value used to control whether the LED is on or off (0 or 1).

0 = off
1 = on

RETURN VALUE
None.

void dispInit();

void displedOut(int led, int value);

112 RabbitCore RCM3305/RCM3315

C.8.3 LCD Display

The functions used to control the LCD display are contained in the GRAPHIC.LIB library
located in the Dynamic C LIB\DISPLAYS\GRAPHIC library folder. When x and y coordi-
nates on the display screen are specified, x can range from 0 to 121, and y can range from
0 to 31. These numbers represent pixels from the top left corner of the display.

Initializes the display devices, clears the screen.

RETURN VALUE
None.

SEE ALSO
glDispOnOFF, glBacklight, glSetContrast, glPlotDot, glBlock, glPlotDot,
glPlotPolygon, glPlotCircle, glHScroll, glVScroll, glXFontInit, glPrintf,
glPutChar, glSetBrushType, glBuffLock, glBuffUnlock, glPlotLine

Turns the display backlight on or off.

PARAMETER
onOff turns the backlight on or off

1—turn the backlight on
0—turn the backlight off

RETURN VALUE
None.

SEE ALSO
glInit, glDispOnoff, glSetContrast

Sets the LCD screen on or off. Data will not be cleared from the screen.

PARAMETER
onOff turns the LCD screen on or off

1—turn the LCD screen on
0—turn the LCD screen off

RETURN VALUE
None.

SEE ALSO
glInit, glSetContrast, glBackLight

void glInit(void);

void glBackLight(int onOff);

void glDispOnOff(int onOff);

User’s Manual 113

Sets display contrast.

NOTE: This function is not used with the LCD/keypad module since the support circuits
are not available on the LCD/keypad module.

Fills the LCD display screen with a pattern.

PARAMETER
The screen will be set to all black if pattern is 0xFF, all white if pattern is 0x00, and vertical stripes
for any other pattern.

RETURN VALUE
None.

SEE ALSO
glBlock, glBlankScreen, glPlotPolygon, glPlotCircle

Blanks the LCD display screen (sets LCD display screen to white).

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlock, glPlotPolygon, glPlotCircle

Fills a rectangular block in the LCD buffer with the pattern specified. Any portion of the block that is
outside the LCD display area will be clipped.

PARAMETERS
left is the x coordinate of the top left corner of the block.

top is the y coordinate of the top left corner of the block.

width is the width of the block.

height is the height of the block.

pattern is the bit pattern to display (all black if pattern is 0xFF, all white if pattern is 0x00, and
vertical stripes for any other pattern).

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlankScreen, glBlock, glBlankRegion

void glSetContrast(unsigned level);

void glFillScreen(int pattern);

void glBlankScreen(void);

void glFillRegion(int left, int top, int width,
int height, char pattern);

114 RabbitCore RCM3305/RCM3315

Fills a rectangular block in the LCD buffer with the pattern specified. The block left and width parame-
ters must be byte-aligned. Any portion of the block that is outside the LCD display area will be clipped.

PARAMETERS
left is the x coordinate of the top left corner of the block.

top is the y coordinate of the top left corner of the block.

width is the width of the block.

height is the height of the block.

pattern is the bit pattern to display (all black if pattern is 0xFF, all white if pattern is 0x00, and
vertical stripes for any other pattern).

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlankScreen, glBlock, glBlankRegion

Clears a region on the LCD display. The block left and width parameters must be byte-aligned. Any por-
tion of the block that is outside the LCD display area will be clipped.

PARAMETERS
left is the x coordinate of the top left corner of the block (x must be evenly divisible by 8).

top is the y coordinate of the top left corner of the block.

width is the width of the block (must be evenly divisible by 8).

height is the height of the block.

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlankScreen, glBlock

void glFastFillRegion(int left, int top, int width,
int height, char pattern);

void glBlankRegion(int left, int top, int width,
int height);

User’s Manual 115

Draws a rectangular block in the page buffer and on the LCD if the buffer is unlocked. Any portion of the
block that is outside the LCD display area will be clipped.

PARAMETERS
left is the x coordinate of the top left corner of the block.

top is the y coordinate of the top left corner of the block.

width is the width of the block.

height is the height of the block.

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlankScreen, glPlotPolygon, glPlotCircle

Plots the outline of a polygon in the LCD page buffer, and on the LCD if the buffer is unlocked. Any
portion of the polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are
specified, the function will return without doing anything.

PARAMETERS
n is the number of vertices.

pFirstCoord is a pointer to array of vertex coordinates: x1,y1, x2,y2, x3,y3, ...

RETURN VALUE
None.

SEE ALSO
glPlotPolygon, glFillPolygon, glFillVPolygon

void glBlock(int left, int top, int width,
int height);

void glPlotVPolygon(int n, int *pFirstCoord);

116 RabbitCore RCM3305/RCM3315

Plots the outline of a polygon in the LCD page buffer and on the LCD if the buffer is unlocked. Any
portion of the polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are
specified, the function will return without doing anything.

PARAMETERS
n is the number of vertices.

y1 is the y coordinate of the first vertex.

x1 is the x coordinate of the first vertex.

y2 is the y coordinate of the second vertex.

x2 is the x coordinate of the second vertex.

... are the coordinates of additional vertices.

RETURN VALUE
None.

SEE ALSO
glPlotVPolygon, glFillPolygon, glFillVPolygon

Fills a polygon in the LCD page buffer and on the LCD screen if the buffer is unlocked. Any portion of
the polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are specified,
the function will return without doing anything.

PARAMETERS
n is the number of vertices.
pFirstCoord is a pointer to array of vertex coordinates: x1,y1, x2,y2, x3,y3, ...

RETURN VALUE
None.

SEE ALSO
glFillPolygon, glPlotPolygon, glPlotVPolygon

void glPlotPolygon(int n, int y1, int x1, int y2,
int x2, ...);

void glFillVPolygon(int n, int *pFirstCoord);

User’s Manual 117

Fills a polygon in the LCD page buffer and on the LCD if the buffer is unlocked. Any portion of the
polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are specified, the
function will return without doing anything.

PARAMETERS
n is the number of vertices.
x1 is the x coordinate of the first vertex.
y1 is the y coordinate of the first vertex.
x2 is the x coordinate of the second vertex.
y2 is the y coordinate of the second vertex.
... are the coordinates of additional vertices.

RETURN VALUE
None.

SEE ALSO
glFillVPolygon, glPlotPolygon, glPlotVPolygon

Draws the outline of a circle in the LCD page buffer and on the LCD if the buffer is unlocked. Any por-
tion of the circle that is outside the LCD display area will be clipped.

PARAMETERS
xc is the x coordinate of the center of the circle.
yc is the y coordinate of the center of the circle.
rad is the radius of the center of the circle (in pixels).

RETURN VALUE
None.

SEE ALSO
glFillCircle, glPlotPolygon, glFillPolygon

Draws a filled circle in the LCD page buffer and on the LCD if the buffer is unlocked. Any portion of the
circle that is outside the LCD display area will be clipped.

PARAMETERS
xc is the x coordinate of the center of the circle.
yc is the y coordinate of the center of the circle.
rad is the radius of the center of the circle (in pixels).

RETURN VALUE
None.

SEE ALSO
glPlotCircle, glPlotPolygon, glFillPolygon

void glFillPolygon(int n, int x1, int y1, int x2,
int y2, ...);

void glPlotCircle(int xc, int yc, int rad);

void glFillCircle(int xc, int yc, int rad);

118 RabbitCore RCM3305/RCM3315

Initializes the font descriptor structure, where the font is stored in xmem. Each font character's bitmap is
column major and byte-aligned.

PARAMETERS
pInfo is a pointer to the font descriptor to be initialized.

pixWidth is the width (in pixels) of each font item.

pixHeight is the height (in pixels) of each font item.

startChar is the value of the first printable character in the font character set.

endChar is the value of the last printable character in the font character set.

xmemBuffer is the xmem pointer to a linear array of font bitmaps.

RETURN VALUE
None.

SEE ALSO
glPrinf

Returns the xmem address of the character from the specified font set.

PARAMETERS
*pInfo is the xmem address of the bitmap font set.

letter is an ASCII character.

RETURN VALUE
xmem address of bitmap character font, column major and byte-aligned.

SEE ALSO
glPutFont, glPrintf

void glXFontInit(fontInfo *pInfo, char pixWidth,
char pixHeight, unsigned startChar,
unsigned endChar, unsigned long xmemBuffer);

unsigned long glFontCharAddr(fontInfo *pInfo,
char letter);

User’s Manual 119

Puts an entry from the font table to the page buffer and on the LCD if the buffer is unlocked. Each font
character's bitmap is column major and byte-aligned. Any portion of the bitmap character that is outside
the LCD display area will be clipped.

PARAMETERS
x is the x coordinate (column) of the top left corner of the text.

y is the y coordinate (row) of the top left corner of the text.

pInfo is a pointer to the font descriptor.

code is the ASCII character to display.

RETURN VALUE
None.

SEE ALSO
glFontCharAddr, glPrintf

Sets the glPrintf() printing step direction. The x and y step directions are independent signed values.
The actual step increments depend on the height and width of the font being displayed, which are multi-
plied by the step values.

PARAMETERS
stepX is the glPrintf x step value

stepY is the glPrintf y step value

RETURN VALUE
None.

SEE ALSO
Use glGetPfStep() to examine the current x and y printing step direction.

Gets the current glPrintf() printing step direction. Each step direction is independent of the other,
and is treated as an 8-bit signed value. The actual step increments depends on the height and width of the
font being displayed, which are multiplied by the step values.

RETURN VALUE
The x step is returned in the MSB, and the y step is returned in the LSB of the integer result.

SEE ALSO
Use glGetPfStep() to control the x and y printing step direction.

void glPutFont(int x, int y, fontInfo *pInfo,
char code);

void glSetPfStep(int stepX, int stepY);

int glGetPfStep(void);

120 RabbitCore RCM3305/RCM3315

Provides an interface between the STDIO string-handling functions and the graphic library. The
STDIO string-formatting function will call this function, one character at a time, until the entire format-
ted string has been parsed. Any portion of the bitmap character that is outside the LCD display area will
be clipped.

PARAMETERS
ch is the character to be displayed on the LCD.

*ptr is not used, but is a place holder for STDIO string functions.

*cnt is not used, is a place holder for STDIO string functions.

pInst is a pointer to the font descriptor.

RETURN VALUE
None.

SEE ALSO
glPrintf, glPutFont, doprnt

Prints a formatted string (much like printf) on the LCD screen. Only the character codes that exist in
the font set are printed, all others are skipped. For example, '\b', '\t', '\n' and '\r' (ASCII backspace, tab,
new line, and carriage return, respectively) will be printed if they exist in the font set, but will not have
any effect as control characters. Any portion of the bitmap character that is outside the LCD display area
will be clipped.

PARAMETERS
x is the x coordinate (column) of the upper left corner of the text.

y is the y coordinate (row) of the upper left corner of the text.

pInfo is a pointer to the font descriptor.

*fmt is a formatted string.

... are formatted string conversion parameter(s).

EXAMPLE
glprintf(0,0, &fi12x16, "Test %d\n", count);

RETURN VALUE
None.

SEE ALSO
glXFontInit

void glPutChar(char ch, char *ptr, int *cnt,
glPutCharInst *pInst)

void glPrintf(int x, int y, fontInfo *pInfo,
char *fmt, ...);

User’s Manual 121

Increments LCD screen locking counter. Graphic calls are recorded in the LCD memory buffer and are
not transferred to the LCD if the counter is non-zero.

NOTE: glBuffLock() and glBuffUnlock() can be nested up to a level of 255, but be
sure to balance the calls. It is not a requirement to use these procedures, but a set of
glBuffLock() and glBuffUnlock() bracketing a set of related graphic calls speeds
up the rendering significantly.

RETURN VALUE
None.

SEE ALSO
glBuffUnlock, glSwap

Decrements the LCD screen locking counter. The contents of the LCD buffer are transferred to the LCD
if the counter goes to zero.

RETURN VALUE
None.

SEE ALSO
glBuffLock, glSwap

Checks the LCD screen locking counter. The contents of the LCD buffer are transferred to the LCD if the
counter is zero.

RETURN VALUE
None.

SEE ALSO
glBuffUnlock, glBuffLock, _glSwapData (located in the library specifically for the LCD
that you are using)

Sets the drawing method (or color) of pixels drawn by subsequent graphic calls.

PARAMETER
type value can be one of the following macros.

PIXBLACK draws black pixels (turns pixel on).
PIXWHITE draws white pixels (turns pixel off).
PIXXOR draws old pixel XOR'ed with the new pixel.

RETURN VALUE
None.

SEE ALSO
glGetBrushType

void glBuffLock(void);

void glBuffUnlock(void);

void glSwap(void);

void glSetBrushType(int type);

122 RabbitCore RCM3305/RCM3315

Gets the current method (or color) of pixels drawn by subsequent graphic calls.

RETURN VALUE
The current brush type.

SEE ALSO
glSetBrushType

Gets a bitmap from the LCD page buffer and stores it in xmem RAM. This function automatically calls
glXGetFastmap if the left edge of the bitmap is byte-aligned and the left edge and width are each
evenly divisible by 8.

This function call is intended for use only when a graphic engine is used to interface with the LCD/keypad
module.

PARAMETERS
x is the x coordinate in pixels of the top left corner of the bitmap (x must be evenly divisible by 8).
y is the y coordinate in pixels of the top left corner of the bitmap.
bmWidth is the width in pixels of the bitmap (must be evenly divisible by 8).
bmHeight is the height in pixels of the bitmap.
xBm is the xmem RAM storage address of the bitmap.

RETURN VALUE
None.

Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This function is similar
to glXPutBitmap, except that it's faster. The bitmap must be byte-aligned. Any portion of a bitmap
image or character that is outside the LCD display area will be clipped.

This function call is intended for use only when a graphic engine is used to interface with the LCD/keypad
module.

PARAMETERS
left is the x coordinate of the top left corner of the bitmap (x must be evenly divisible by 8).
top is the y coordinate in pixels of the top left corner of the bitmap.
width is the width of the bitmap (must be evenly divisible by 8).
height is the height of the bitmap.
xmemptr is the xmem RAM storage address of the bitmap.

RETURN VALUE
None.

SEE ALSO
glXPutBitmap, glPrintf

int glGetBrushType(void);

void glXGetBitmap(int x, int y, int bmWidth,
int bmHeight, unsigned long xBm);

void glXGetFastmap(int left, int top, int width,
int height, unsigned long xmemptr);

User’s Manual 123

Draws a single pixel in the LCD buffer, and on the LCD if the buffer is unlocked. If the coordinates are
outside the LCD display area, the dot will not be plotted.

PARAMETERS
x is the x coordinate of the dot.

y is the y coordinate of the dot.

RETURN VALUE
None.

SEE ALSO
glPlotline, glPlotPolygon, glPlotCircle

Draws a line in the LCD buffer, and on the LCD if the buffer is unlocked. Any portion of the line that is
beyond the LCD display area will be clipped.

PARAMETERS
x0 is the x coordinate of one endpoint of the line.

y0 is the y coordinate of one endpoint of the line.

x1 is the x coordinate of the other endpoint of the line.

y1 is the y coordinate of the other endpoint of the line.

RETURN VALUE
None.

SEE ALSO
glPlotDot, glPlotPolygon, glPlotCircle

Scrolls byte-aligned window left one pixel, right column is filled by current pixel type (color).

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE
None.

SEE ALSO
glHScroll, glRight1

void glPlotDot(int x, int y);

void glPlotLine(int x0, int y0, int x1, int y1);

void glLeft1(int left, int top, int cols, int rows);

124 RabbitCore RCM3305/RCM3315

Scrolls byte-aligned window right one pixel, left column is filled by current pixel type (color).

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE
None.

SEE ALSO
glHScroll, glLeft1

Scrolls byte-aligned window up one pixel, bottom column is filled by current pixel type (color).

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE
None.

SEE ALSO
glVScroll, glDown1

Scrolls byte-aligned window down one pixel, top column is filled by current pixel type (color).

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE
None.

SEE ALSO
glVScroll, glUp1

void glRight1(int left, int top, int cols, int rows);

void glUp1(int left, int top, int cols, int rows);

void glDown1(int left, int top, int cols, int rows);

User’s Manual 125

Scrolls right or left, within the defined window by x number of pixels. The opposite edge of the scrolled
window will be filled in with white pixels. The window must be byte-aligned.

Parameters will be verified for the following:

1. The left and cols parameters will be verified that they are evenly divisible by 8. If not, they will
be truncated to a value that is a multiple of 8.

2. Parameters will be checked to verify that the scrolling area is valid. The minimum scrolling area is
a width of 8 pixels and a height of one row.

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8.

rows is the number of rows in the window.

nPix is the number of pixels to scroll within the defined window (a negative value will produce a scroll
to the left).

RETURN VALUE
None.

SEE ALSO
glVScroll

void glHScroll(int left, int top, int cols,
int rows, int nPix);

126 RabbitCore RCM3305/RCM3315

Scrolls up or down, within the defined window by x number of pixels. The opposite edge of the scrolled
window will be filled in with white pixels. The window must be byte-aligned.

Parameters will be verified for the following:

1. The left and cols parameters will be verified that they are evenly divisible by 8. If not, they will
be truncated to a value that is a multiple of 8.

2. Parameters will be checked to verify that the scrolling area is valid. The minimum scrolling area is
a width of 8 pixels and a height of one row.

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8.

rows is the number of rows in the window.

nPix is the number of pixels to scroll within the defined window (a negative value will produce a scroll
up).

RETURN VALUE
None.

SEE ALSO
glHScroll

Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This function calls
glXPutFastmap automatically if the bitmap is byte-aligned (the left edge and the width are each
evenly divisible by 8).

Any portion of a bitmap image or character that is outside the LCD display area will be clipped.

PARAMETERS
left is the top left corner of the bitmap.

top is the top left corner of the bitmap.

width is the width of the bitmap.

height is the height of the bitmap.

bitmap is the address of the bitmap in xmem.

RETURN VALUE
None.

SEE ALSO
glXPutFastmap, glPrintf

void glVScroll(int left, int top, int cols,
int rows, int nPix);

void glXPutBitmap(int left, int top, int width,
int height, unsigned long bitmap);

User’s Manual 127

Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This function is like
glXPutBitmap, except that it is faster. The restriction is that the bitmap must be byte-aligned.

Any portion of a bitmap image or character that is outside the LCD display area will be clipped.

PARAMETERS
left is the top left corner of the bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

width is the width of the bitmap, must be evenly divisible by 8, otherwise truncates.

height is the height of the bitmap.

bitmap is the address of the bitmap in xmem.

RETURN VALUE
None.

SEE ALSO
glXPutBitmap, glPrintf

Defines a text-only display window. This function provides a way to display characters within the text
window using only character row and column coordinates. The text window feature provides end-of-line
wrapping and clipping after the character in the last column and row is displayed.

NOTE: Execute the TextWindowFrame function before other Text... functions.

PARAMETERS
window is a pointer to the window frame descriptor.

pFont is a pointer to the font descriptor.

x is the x coordinate of the top left corner of the text window frame.

y is the y coordinate of the top left corner of the text window frame.

winWidth is the width of the text window frame.

winHeight is the height of the text window frame.

RETURN VALUE
 0—window frame was successfully created.
 -1—x coordinate + width has exceeded the display boundary.
-2—y coordinate + height has exceeded the display boundary.
-3—Invalid winHeight and/or winWidth parameter value.

void glXPutFastmap(int left, int top, int width,
int height, unsigned long bitmap);

int TextWindowFrame(windowFrame *window,
fontInfo *pFont, int x, int y, int winWidth,
int winHeight)

128 RabbitCore RCM3305/RCM3315

This function initializes the window frame structure with the border and title information.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
wPtr is a pointer to the window frame descriptor.

border is the border style:
SINGLE_LINE—The function will draw a single-line border around the text window.
DOUBLE_LINE—The function will draw a double-line border around the text window.

title is a pointer to the title information:
If a NULL string is detected, then no title is written to the text menu.
If a string is detected, then it will be written center-aligned to the top of the text menu box.

RETURN VALUE
None.

SEE ALSO
TextBorder, TextGotoXY, TextPutChar, TextWindowFrame, TextCursorLocation

This function displays the border for a given window frame. This function will automatically adjust the
text window parameters to accommodate the space taken by the text border. This adjustment will only
occur once after the TextBorderInit function executes.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
wPtr is a pointer to the window frame descriptor.

RETURN VALUE
None.

SEE ALSO
TextBorderInit, TextGotoXY, TextPutChar, TextWindowFrame,
TextCursorLocation

void TextBorderInit(windowFrame *wPtr, int border,
char *title);

void TextBorder(windowFrame *wPtr);

User’s Manual 129

Sets the cursor location to display the next character. The display location is based on the height and
width of the character to be displayed.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
window is a pointer to a font descriptor.

col is a character column location.

row is a character row location.

RETURN VALUE
None.

SEE ALSO
TextPutChar, TextPrintf, TextWindowFrame

Gets the current cursor location that was set by a Graphic Text... function.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
window is a pointer to a font descriptor.

col is a pointer to cursor column variable.

row is a pointer to cursor row variable.

RETURN VALUE
Lower word = Cursor Row location
Upper word = Cursor Column location

SEE ALSO
TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

void TextGotoXY(windowFrame *window, int col,
int row);

void TextCursorLocation(windowFrame *window,
int *col, int *row);

130 RabbitCore RCM3305/RCM3315

Displays a character on the display where the cursor is currently pointing. Once a character is displayed,
the cursor will be incremented to the next character position. If any portion of a bitmap character is out-
side the LCD display area, the character will not be displayed.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
*window is a pointer to a font descriptor.

ch is a character to be displayed on the LCD.

RETURN VALUE
None.

SEE ALSO
TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

Prints a formatted string (much like printf) on the LCD screen. Only printable characters in the font
set are printed; escape sequences '\r' and '\n' are also recognized. All other escape sequences will be
skipped over; for example, '\b' and \'t' will cause nothing to be displayed.

The text window feature provides end-of-line wrapping and clipping after the character in the last col-
umn and row is displayed. The cursor then remains at the end of the string.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
window is a pointer to a font descriptor.

*fmt is a formatted string.

... are formatted string conversion parameter(s).

EXAMPLE
TextPrintf(&TextWindow, "Test %d\n", count);

RETURN VALUE
None.

SEE ALSO
TextGotoXY, TextPutChar, TextWindowFrame, TextCursorLocation

void TextPutChar(struct windowFrame *window, char ch);

void TextPrintf(struct windowFrame *window,
char *fmt, ...);

User’s Manual 131

This function returns the maximum number of characters that can be displayed within the text window.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
wPtr is a pointer to the window frame descriptor.

RETURN VALUE
The maximum number of characters that can be displayed within the text window.

SEE ALSO
TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

This functions clears the entire area within the specified text window.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
wPtr is a pointer to the window frame descriptor.

RETURN VALUE
None.

SEE ALSO
TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

int TextMaxChars(windowFrame *wPtr);

void TextWinClear(windowFrame *wPtr);

132 RabbitCore RCM3305/RCM3315

C.8.4 Keypad

The functions used to control the keypad are contained in the Dynamic C LIB\KEYPADS\
KEYPAD7.LIB library.

Initializes keypad process

RETURN VALUE
None.

SEE ALSO
brdInit

Assigns each key with key press and release codes, and hold and repeat ticks for auto repeat and
debouncing.

PARAMETERS
cRaw is a raw key code index.

1 × 7 keypad matrix with raw key code index assignments (in brackets):

User Keypad Interface

cPress is a key press code

An 8-bit value is returned when a key is pressed.
0 = Unused.

See keypadDef() for default press codes.

cRelease is a key release code.

An 8-bit value is returned when a key is pressed.
0 = Unused.

cCntHold is a hold tick, which is approximately one debounce period or 5 µs.

How long to hold before repeating.
0 = No Repeat.

cSpdLo is a low-speed repeat tick, which is approximately one debounce period or 5 µs.

How many times to repeat.
0 = None.

cCntLo is a low-speed hold tick, which is approximately one debounce period or 5 µs.

How long to hold before going to high-speed repeat.
0 = Slow Only.

void keyInit(void);

void keyConfig(char cRaw, char cPress,
char cRelease, char cCntHold, char cSpdLo,
char cCntLo, char cSpdHi);

[0] [1] [2] [3]
[4] [5] [6]

User’s Manual 133

cSpdHi is a high-speed repeat tick, which is approximately one debounce period or 5 µs.

How many times to repeat after low speed repeat.
0 = None.

RETURN VALUE
None.

SEE ALSO
keyProcess, keyGet, keypadDef

Scans and processes keypad data for key assignment, debouncing, press and release, and repeat.

NOTE: This function is also able to process an 8 × 8 matrix keypad.

RETURN VALUE
None

SEE ALSO
keyConfig, keyGet, keypadDef

Get next keypress.

RETURN VALUE
The next keypress, or 0 if none

SEE ALSO
keyConfig, keyProcess, keypadDef

Pushes the value of cKey to the top of the input queue, which is 16 bytes deep.

PARAMETER
cKey

RETURN VALUE
None.

SEE ALSO
keyGet

void keyProcess(void);

char keyGet(void);

int keyUnget(char cKey);

134 RabbitCore RCM3305/RCM3315

Configures the physical layout of the keypad with the desired ASCII return key codes.

Keypad physical mapping 1 × 7

where
'L' represents Left Scroll
'U' represents Up Scroll
'D' represents Down Scroll
'R' represents Right Scroll
'–' represents Page Down
'+' represents Page Up
'E' represents the ENTER key

Example: Do the following for the above physical vs. ASCII return key codes.

keyConfig (3,'R',0, 0, 0, 0, 0);
keyConfig (6,'E',0, 0, 0, 0, 0);
keyConfig (2,'D',0, 0, 0, 0, 0);
keyConfig (4,'-',0, 0, 0, 0, 0);
keyConfig (1,'U',0, 0, 0, 0, 0);
keyConfig (5,'+',0, 0, 0, 0, 0);
keyConfig (0,'L',0, 0, 0, 0, 0);

Characters are returned upon keypress with no repeat.

RETURN VALUE
None.

SEE ALSO
keyConfig, keyGet, keyProcess

Writes "1" to each row and reads the value. The position of a keypress is indicated by a zero value in a bit
position.

PARAMETER
pcKeys is a pointer to the address of the value read.

RETURN VALUE
None.

SEE ALSO
keyConfig, keyGet, keypadDef, keyProcess

void keypadDef();

0 4 1 5 2 6 3

['L'] ['U'] ['D'] ['R']

['–'] ['+'] ['E']

void keyScan(char *pcKeys);

User’s Manual 135

APPENDIX D. POWER SUPPLY

Appendix D provides information on the current requirements
of the RCM3305/RCM3315, and includes some background on
the reset generator.

D.1 Power Supplies
Power is supplied from the motherboard to which the RCM3305/RCM3315 is connected
via header J4. The RCM3305/RCM3315 requires a regulated 3.15 V to 3.45 V DC power
source. An RCM3305/RCM3315 with no loading at the outputs operating at 44.2 MHz
typically draws 350 mA.

D.1.1 Battery Backup

The RCM3305/RCM3315 does not have a battery, but there is provision for a customer-
supplied battery to back up the data SRAM and keep the internal Rabbit 3000 real-time
clock running.

Header J4, shown in Figure D-1, allows access to the external battery. This header makes
it possible to connect an external 3 V power supply. This allows the SRAM and the inter-
nal Rabbit 3000 real-time clock to retain data with the RCM3305/RCM3315 powered
down.

Figure D-1. External Battery Connections
at Header J4

!���

��"��!��

��

��

��

��

!���,)�

��

	+59:;>.
�>559:6��

136 RabbitCore RCM3305/RCM3315

A lithium battery with a nominal voltage of 3 V and a minimum capacity of 165 mA·h is
recommended. A lithium battery is strongly recommended because of its nearly constant
nominal voltage over most of its life.

The drain on the battery by the RCM3305/RCM3315 is typically 6 µA when no other power
is supplied. If a 165 mA·h battery is used, the battery can last about 3 years:

The RCM3305/RCM3315 does not drain the battery while it is powered up normally.

Cycle the main power off/on on the RCM3305/RCM3315 after you install a backup battery
for the first time, and whenever you replace the battery. This step will minimize the current
drawn by the real-time clock oscillator circuit from the backup battery should the
RCM3305/RCM3315 experience a loss of main power.

NOTE: Remember to cycle the main power off/on any time the RCM3305/RCM3315 is
removed from the Protoyping Board or motherboard since that is where the backup
battery would be located.

Rabbit’s Technical Note TN235, External 32.768 kHz Oscillator Circuits, provides addi-
tional information about the current draw by the the real-time clock oscillator circuit.

D.1.2 Battery-Backup Circuit

Figure D-2 shows the battery-backup circuit.

Figure D-2. RCM33305/RCM3315 Backup Battery Circuit

The battery-backup circuit serves three purposes:

• It reduces the battery voltage to the SRAM and to the real-time clock, thereby limiting
the current consumed by the real-time clock and lengthening the battery life.

• It ensures that current can flow only out of the battery to prevent charging the battery.

• A voltage, VOSC, is supplied to U1, which keeps the 32.768 kHz oscillator working
when the voltage begins to drop.

165 mA·h
6 µA------------------------ 3.1 years.=

!���

�
��0�

���
!���()�

'(��	���������	"
��

���0�

!���

� ��

�����

��
����;%

�

���;%

User’s Manual 137

D.1.3 Reset Generator

The RCM3305/RCM3315 uses a reset generator to reset the Rabbit 3000 microprocessor
when the voltage drops below the voltage necessary for reliable operation. The reset occurs
between 2.85 V and 3.00 V, typically 2.93 V.

The RCM3305/RCM3315 has a reset pin, pin 28 on header J4. This pin provides access to
the reset input of the reset generator, whose output drives the reset input of the Rabbit
3000 and peripheral circuits. The /RESET output from the reset generator is available on
pin 1 of header J4 on the RCM3305/RCM3315, and can be used to reset user-defined cir-
cuits on the motherboard on which the RCM3305/RCM3315 module is mounted.

138 RabbitCore RCM3305/RCM3315

User’s Manual 139

APPENDIX E. RABBITNET

E.1 General RabbitNet Description
RabbitNet is a high-speed synchronous protocol developed by Rabbit to connect periph-
eral cards to a master and to allow them to communicate with each other.

E.1.1 RabbitNet Connections

All RabbitNet connections are made point to point. A RabbitNet master port can only be
connected directly to a peripheral card, and the number of peripheral cards is limited by
the number of available RabbitNet ports on the master.

Figure E-1. Connecting Peripheral Cards to a Master

$��+�#

� �/�

� �/�

$��+�# � �/�

�$--#)��;;;>
2#�"�."��!���"

��
	����-��
����
����
�����	���

�
�

���

����
�����	���

��
	����-��
����
����
�����	���

140 RabbitCore RCM3305/RCM3315

Use a straight-through Ethernet cable to connect the master to slave peripheral cards, unless
you are using a device such as the OP7200 that could be used either as a master or a slave. In
this case you would use a crossover cable to connect an OP7200 that is being used as a slave.

Distances between a master unit and peripheral cards can be up to 10 m or 33 ft.

E.1.2 RabbitNet Peripheral Cards

• Digital I/O

24 inputs, 16 push/pull outputs, 4 channels of 10-bit A/D conversion with ranges of
0 to 10 V, 0 to 1 V, and -0.25 to +0.25 V. The following connectors are used:

Signal = 0.1" friction-lock connectors
Power = 0.156" friction-lock connectors
RabbitNet = RJ-45 connector

• A/D converter

8 channels of programmable-gain 12-bit A/D conversion, configurable as current mea-
surement and differential-input pairs. 2.5 V reference voltage is available on the con-
nector. The following connectors are used:

Signal = 0.1" friction-lock connectors
Power = 0.156" friction-lock connectors
RabbitNet = RJ-45 connector

• D/A converter

8 channels of 0–10 V 12-bit D/A conversion. The following connectors are used:
Signal = 0.1" friction-lock connectors
Power = 0.156" friction-lock connectors
RabbitNet = RJ-45 connector

• Display/Keypad interface

allows you to connect your own keypad with up to 64 keys and one character liquid
crystal display from 1 × 8 to 4 × 40 characters with or without backlight using standard
1 × 16 or 2 × 8 connectors. The following connectors are used:

Signal = 0.1" headers or sockets
Power = 0.156" friction-lock connectors
RabbitNet = RJ-45 connector

• Relay card
6 relays rated at 250 V AC, 1200 V·A or 100 V DC up to 240 W. The following connectors are
used:

Relay contacts = screw-terminal connectors
Power = 0.156" friction-lock connectors
RabbitNet = RJ-45 connector

Visit our Web site for up-to-date information about additional cards and features as they
become available. The Web site also has the latest revision of this user’s manual.

http://www.rabbit.com/

User’s Manual 141

E.2 Physical Implementation
There are four signaling functions associated with a RabbitNet connection. From the mas-
ter’s point of view, the transmit function carries information and commands to the periph-
eral card. The receive function is used to read back information sent to the master by the
peripheral card. A clock is used to synchronize data going between the two devices at high
speed. The master is the source of this clock. A slave select (SS) function originates at the
master, and when detected by a peripheral card causes it to become selected and respond
to commands received from the master.

The signals themselves are differential RS-422, which are series-terminated at the source.
With this type of termination, the maximum frequency is limited by the round-trip delay
time of the cable. Although a peripheral card could theoretically be up to 45 m (150 ft)
from the master for a data rate of 1 MHz, Rabbit recommends a practical limit of 10 m (33
ft).

Connections between peripheral cards and masters are done using standard 8-conductor
Ethernet cables. Masters and peripheral cards are equipped with RJ-45 8-pin female con-
nectors. The cables may be swapped end for end without affecting functionality.

E.2.1 Control and Routing

Control starts at the master when the master asserts the slave select signal (SS). Then it
simultaneously sends a serial command and clock. The first byte of a command contains
the address of the peripheral card if more than one peripheral card is connected.

A peripheral card assumes it is selected as soon as it receives the select signal. For direct
master-to-peripheral-card connections, this is as soon as the master asserts the select sig-
nal. The connection is established once the select signal reaches the addressed slave. At
this point communication between the master and the selected peripheral card is estab-
lished, and data can flow in both directions simultaneously. The connection is maintained
so long as the master asserts the select signal.

142 RabbitCore RCM3305/RCM3315

E.3 Function Calls
The function calls described in this section are used with all RabbitNet peripheral cards,
and are available in the RNET.LIB library in the Dynamic C RABBITNET folder.

Resets, initializes, or disables a specified RabbitNet port on the master single-board computer. During
initialization, the network is enumerated and relevant tables are filled in. If the port is already initialized,
calling this function forces a re-enumeration of all devices on that port.

Call this function first before using other RabbitNet functions.

PARAMETERS
portflag is a bit that represents a RabbitNet port on the master single-board computer (from 0 to the
maximum number of ports). A set bit requires a service. If portflag = 0x03, both RabbitNet ports 0
and 1 will need to be serviced.

servicetype enables or disables each RabbitNet port as set by the port flags.

0 = disable port
1 = enable port

RETURN VALUE
0

Returns an address index to device information from a given physical node address. This function will
check device information to determine that the peripheral card is connected to a master.

PARAMETER
pna is the physical node address, indicated as a byte.

7,6—2-bit binary representation of the port number on the master
5,4,3—Level 1 router downstream port
2,1,0—Level 2 router downstream port

RETURN VALUE
Pointer to device information. -1 indicates that the peripheral card either cannot be identified or is not
connected to the master.

SEE ALSO
rn_find

int rn_init(char portflag, char servicetype);

int rn_device(char pna);

User’s Manual 143

Locates the first active device that matches the search criteria.

PARAMETER
srch is the search criteria structure rn_search:

unsigned int flags; // status flags see MATCH macros below
unsigned int ports; // port bitmask
char productid; // product id
char productrev; // product rev
char coderev; // code rev
long serialnum; // serial number

Use a maximum of 3 macros for the search criteria:

RN_MATCH_PORT // match port bitmask
RN_MATCH_PNA // match physical node address
RN_MATCH_HANDLE // match instance (reg 3)
RN_MATCH_PRDID // match id/version (reg 1)
RN_MATCH_PRDREV // match product revision
RN_MATCH_CODEREV // match code revision
RN_MATCH_SN // match serial number

For example:

rn_search newdev;
newdev.flags = RN_MATCH_PORT|RN_MATCH_SN;
newdev.ports = 0x03; //search ports 0 and 1
newdev.serialnum = E3446C01L;
handle = rn_find(&newdev);

RETURN VALUE
Returns the handle of the first device matching the criteria. 0 indicates no such devices were found.

SEE ALSO
rn_device

The peripheral card sends back the character the master sent. This function will check device information
to determine that the peripheral card is connected to a master.

PARAMETERS
handle is an address index to device information. Use rn_device() or rn_find() to establish the
handle.

sendecho is the character to echo back.

recdata is a pointer to the return address of the character from the device.

RETURN VALUE
The status byte from the previous command. -1 means that device information indicates the peripheral
card is not connected to the master.

int rn_find(rn_search *srch);

int rn_echo(int handle, char sendecho,
char *recdata);

144 RabbitCore RCM3305/RCM3315

Writes a string to the specified device and register. Waits for results. This function will check device infor-
mation to determine that the peripheral card is connected to a master.

PARAMETERS
handle is an address index to device information. Use rn_device() or rn_find() to establish the
handle.

regno is the command register number as designated by each device.

data is a pointer to the address of the string to write to the device.

datalen is the number of bytes to write (0–15).

NOTE: A data length of 0 will transmit the one-byte command register number.

RETURN VALUE
The status byte from the previous command. -1 means that device information indicates the peripheral
card is not connected to the master, and -2 means that the data length was greater than 15.

SEE ALSO
rn_read

Reads a string from the specified device and register. Waits for results. This function will check device
information to determine that the peripheral card is connected to a master.

PARAMETERS
handle is an address index to device information. Use rn_device() or rn_find() to establish the
handle.

regno is the command register number as designated by each device.

recdata is a pointer to the address of the string to read from the device.

datalen is the number of bytes to read (0–15).

NOTE: A data length of 0 will transmit the one-byte command register number.

RETURN VALUE
The status byte from the previous command. -1 means that device information indicates the peripheral
card is not connected to the master, and -2 means that the data length was greater than 15.

SEE ALSO
rn_write

int rn_write(int handle, int regno, char *data,
int datalen);

int rn_read(int handle, int regno, char *recdata,
int datalen);

User’s Manual 145

Sends a reset sequence to the specified peripheral card. The reset takes approximately 25 ms before the
peripheral card will once again execute the application. Allow 1.5 seconds after the reset has completed
before accessing the peripheral card. This function will check peripheral card information to determine
that the peripheral card is connected to a master.

PARAMETERS
handle is an address index to device information. Use rn_device() or rn_find() to establish the
handle.

resettype describes the type of reset.

0 = hard reset—equivalent to power-up. All logic is reset.
1 = soft reset—only the microprocessor logic is reset.

RETURN VALUE
The status byte from the previous command. -1 means that device information indicates the peripheral
card is not connected to the master.

Sets software watchdog timeout period. Call this function prior to enabling the software watchdog timer.
This function will check device information to determine that the peripheral card is connected to a master.

PARAMETERS
handle is an address index to device information. Use rn_device() or rn_find() to establish the
handle.

timeout is a timeout period from 0.025 to 6.375 seconds in increments of 0.025 seconds. Entering a
zero value will disable the software watchdog timer.

RETURN VALUE
The status byte from the previous command. -1 means that device information indicates the peripheral
card is not connected to the master.

int rn_reset(int handle, int resettype);

int rn_sw_wdt(int handle, float timeout);

146 RabbitCore RCM3305/RCM3315

Enables the hardware and/or software watchdog timers on a peripheral card. The software on the periph-
eral card will keep the hardware watchdog timer updated, but will hard reset if the time expires. The
hardware watchdog cannot be disabled except by a hard reset on the peripheral card. The software watch-
dog timer must be updated by software on the master. The peripheral card will soft reset if the timeout set
by rn_sw_wdt() expires. This function will check device information to determine that the peripheral
card is connected to a master.

PARAMETERS
handle is an address index to device information. Use rn_device() or rn_find() to establish the
handle.

wdttype

0 enables both hardware and software watchdog timers
1 enables hardware watchdog timer
2 enables software watchdog timer

RETURN VALUE
The status byte from the previous command. -1 means that device information indicates the peripheral
card is not connected to the master.

SEE ALSO
rn_hitwd, rn_sw_wdt

Hits software watchdog. Set the timeout period and enable the software watchdog prior to using this
function. This function will check device information to determine that the peripheral card is connected to
a master.

PARAMETERS
handle is an address index to device information. Use rn_device() or rn_find() to establish the
handle.

count is a pointer to return the present count of the software watchdog timer. The equivalent time left in
seconds can be determined from count × 0.025 seconds.

RETURN VALUE
The status byte from the previous command. -1 means that device information indicates the peripheral
card is not connected to the master.

SEE ALSO
rn_enable_wdt, rn_sw_wdt

int rn_enable_wdt(int handle, int wdttype);

int rn_hitwd(int handle, char *count);

User’s Manual 147

Reads the status of which reset occurred and whether any watchdogs are enabled.

PARAMETERS
handle is an address index to device information. Use rn_device() or rn_find() to establish the
handle.

retdata is a pointer to the return address of the communication byte. A set bit indicates which error
occurred. This register is cleared when read.

7—HW reset has occurred
6—SW reset has occurred
5—HW watchdog enabled
4—SW watchdog enabled
3,2,1,0—Reserved

RETURN VALUE
The status byte from the previous command.

PARAMETERS
handle is an address index to device information. Use rn_device() or rn_find() to establish the
handle.

retdata is a pointer to the return address of the communication byte. A set bit indicates which error
occurred. This register is cleared when read.

7—Data available and waiting to be processed MOSI (master out, slave in)
6—Write collision MISO (master in, slave out)
5—Overrun MOSI (master out, slave in)
4—Mode fault, device detected hardware fault
3—Data compare error detected by device
2,1,0—Reserved

RETURN VALUE
The status byte from the previous command.

int rn_rst_status(int handle, char *retdata);

int rn_comm_status(int handle, char *retdata);

148 RabbitCore RCM3305/RCM3315

E.3.1 Status Byte

Unless otherwise specified, functions returning a status byte will have the following format
for each designated bit.

7 6 5 4 3 2 1 0

× ×

00 = Reserved
01 = Ready
10 = Busy
11 = Device not connected

×
0 = Device
1 = Router

×
0 = No error

1 = Communication error*

* Use the function rn_comm_status() to determine which error occurred.

× Reserved for individual peripheral
cards

× Reserved for individual peripheral
cards

×
0 = Last command accepted
1 = Last command unexecuted

×
0 = Not expired
1 = HW or SW watchdog timer

expired†

† Use the function rn_rst_status() to determine which timer expired.

User’s Manual 149

INDEX

A
accessories

Connector Adapter Board ... 7
additional information

online documentation 7

B
battery backup

circuit 136
external battery connec-

tions 135
reset generator 137
use of battery-backed SRAM

....................................... 40
board initialization

function calls 42
brdInit 42

bus loading 71

C
clock doubler 35
conformal coating 77, 78
Connector Adapter Board 7

D
Development Kit 9

AC adapter 6
DC power supply 6
programming cable 6
RCM3305/RCM3315 6

Getting Started instruc-
tions 6

digital I/O 24
function calls

digIn 43
digOut 43

I/O buffer sourcing and sink-
ing limits 75

memory interface 29
SMODE0 32
SMODE1 32

digital inputs
switching threshold 88

dimensions
LCD/keypad module 101
LCD/keypad template 104
Prototyping Board 83
RCM3305/RCM3315 66

Dynamic C 7, 9, 14, 37
add-on modules 9, 48

installation 9
battery-backed SRAM 40
libraries

RCM33xx.LIB 42
RN_CFG_RCM33.LIB . 42

protected variables 40
Rabbit Embedded Security

Pack 7, 9, 48
sample programs 18
standard features

debugging 38
telephone-based technical

support 7, 48
upgrades and patches 48
USB/serial port converter . 14

E
Ethernet cables 49

how to tell them apart 49
Ethernet connections 49, 51

10/100Base-T 51
10Base-T Ethernet card 49
additional resources 63
direct connection 51
Ethernet cables 51
Ethernet hub 49
IP addresses 51, 53
MAC addresses 54
steps 50

Ethernet port 31
pinout 31

exclusion zone 67
external I/O bus 29

software 29, 40, 111

F
features 2

comparison with RCM3309/
RCM3319 4

Prototyping Board 80, 81
flash memory addresses

user blocks 36

H
hardware connections

install RCM3305 module on
Prototyping Board 10

power supply 13
programming cable 11

hardware reset 13
headers

Prototyping Board
JP3 90
JP5 93

I
I/O address assignments

LCD/keypad module 105
I/O buffer sourcing and sinking

limits 75
IP addresses 53

how to set in sample programs
....................................... 58

how to set PC IP address .. 59

J
jumper configurations

Prototyping Board
JP1 (RS-485 bias and termi-

nation resistors) 93
JP1 (stepper motor power

supply) 97
JP2 (stepper motor power

supply) 97
JP3 (quadrature decoder/se-

rial flash) 97

150 RabbitCore RCM3305/RCM3315

jumper configurations
Prototyping Board (cont’d)

JP4 (RCM3305/RCM3315
power supply)97

JP5 (RS-485 bias and termi-
nation resistors)97

stepper motor power supply
.....................................95

RCM3305/RCM3315 ..76, 77
JP1 (flash memory size) 77
JP2 (flash memory bank

select)77
JP3 (data SRAM size) ...77
JP4 (Ethernet or I/O output

on header J3)77
JP5 (Ethernet or I/O output

on header J3)77
JP6 (Ethernet or I/O output

on header J3)77
JP7 (Ethernet or I/O output

on header J3)77
JP8 (Ethernet or I/O output

on header J3)77
jumper locations76

K
keypad template104

removing and inserting label
......................................104

L
LCD/keypad module

bezel-mount installation ..107
dimensions101
function calls

dispInit111
displedOut111
LEDs111

header pinout105
I/O address assignments ..105
keypad

function calls
keyConfig132
keyGet133
keyInit132
keypadDef134
keyProcess133
keyScan134
keyUnget133

keypad template104

LCD display
function calls

glBackLight112
glBlankRegion114
glBlankScreen113
glBlock115
glBuffLock121
glBuffUnlock121
glDispOnOff112
glDown1124
glFastFillRegion114
glFillCircle117
glFillPolygon117
glFillRegion113
glFillScreen113
glFillVPolygon116
glFontCharAddr118
glGetBrushType122
glGetPfStep119
glHScroll125
glInit112
glLeft1123
glPlotCircle117
glPlotDot123
glPlotLine123
glPlotPolygon116
glPlotVPolygon115
glPrintf120
glPutChar120
glPutFont119
glRight1124
glSetBrushType121
glSetContrast113
glSetPfStep119
glSwap121
glUp1124
glVScroll126
glXFontInit118
glXGetBitmap122
glXGetFastmap122
glXPutBitmap126
glXPutFastmap127
TextBorder128
TextBorderInit128
TextCursorLocation .129
TextGotoXY129
TextMaxChars131
TextPrintf130
TextPutChar130
TextWinClear131
TextWindowFrame ..127

mounting instructions106
reconfigure keypad104

remote cable connection ..109
removing and inserting keypad

label104
sample programs110
specifications102
versions101
voltage settings103

LED (Prototyping Board)
function calls

ledOut44
LEDs (RCM3305/RCM3315)

Ethernet status31
other LEDs29
SPEED31

M
MAC addresses54
mounting instructions

LCD/keypad module106

P
peripheral cards

connection to master 139, 140
pinout

Ethernet port31
LCD/keypad module105
RCM3305/RCM3315

alternate configurations .26
RCM3305/RCM3315 headers

.......................................24
power supplies

+3.3 V135
battery backup135

Program Mode33
switching modes33

programming cable
PROG connector33
RCM3305/RCM3315 connec-

tions11
programming port32
Prototyping Board80

adding components87
dimensions83
expansion area81
features80, 81
jumper configurations97
jumper locations96
mounting RCM3305/

RCM331510
power supply85
prototyping area87
specifications84
use of parallel ports98

User’s Manual 151

R
Rabbit 3000

data and clock delays 73
spectrum spreader time delays

....................................... 73
Rabbit subsystems 25
RabbitNet

Ethernet cables to connect
peripheral cards .. 139, 140

function calls
rn_comm_status 147
rn_device 142
rn_echo 143
rn_enable_wdt 146
rn_find 143
rn_hitwd 146
rn_init 142
rn_read 144
rn_reset 145
rn_rst_status 147
rn_sw_wdt 145
rn_write 144

general description 139
peripheral cards 140

A/D converter 140
D/A converter 140
digital I/O 140
display/keypad inter-

face 140
relay card 140

physical implementation . 141
RabbitNet port 93

RabbitNet port
function calls 46

rn_sp_close 47
rn_sp_disable 47
rn_sp_enable 47
rn_sp_info 46

software
macros 46

RCM3305/RCM3315
mounting on Prototyping

Board 10
RCM3309/RCM3319

comparison with RCM3305/
RCM3315 4

RCM3360/RCM3370
mass storage options

NAND flash 2
relay

function calls
relayOut 45

reset 13
use of reset pin 137

RS-485 network
termination and bias resistors

....................................... 93
Run Mode 33

switching modes 33

S
sample programs 18

FAT file system
FMT_DEVICE.C 62

getting to know the
RCM3305/RCM3315
CONTROLLED.C 18
FLASHLED1.C 18
SWRELAY.C 18
TOGGLESWITCH.C 18

how to run TCP/IP sample
programs 57, 58

how to set IP address 58
how to use non-RCM3305/

RCM3315 RabbitNet
sample programs 21

LCD/keypad module . 21, 110
KEYBASIC.C 104
KEYPADTOLED.C 110
LCDKEYFUN.C 110
reconfigure keypad 104
SWITCHTOLCD.C 110

module integration 61
INTEGRATION.C 62
INTEGRATION_FAT_

SETUP.C 62
onboard serial flash

SFLASH_INSPECT.C .. 19
SFLASH_LOG.C 19

PONG.C 14
RabbitNet 21
real-time clock

RTC_TEST.C 21
SETRTCKB.C 21

Remote Application Update
DLP_STATIC.C 39, 61
DLP_WEB.C 39, 61

serial communication
FLOWCONTROL.C 19
PARITY.C 19
SIMPLE3WIRE.C 20
SIMPLE485MASTER.C 21
SIMPLE485SLAVE.C .. 21
SIMPLE5WIRE.C 20
SWITCHCHAR.C 20

SF1000 serial flash card
SERFLASHTEST.C 19

TCP/IP
BROWSELED.C 60
DISPLAY_MAC.C 54
MBOXDEMO.C 60
PINGLED.C 60
PINGME.C 60
RabbitWeb

BLINKLEDS.C 61
DOORMONITOR.C . 61
SPRINKLER.C 61

SMTP.C 61
user-programmable LED

FLASHLED.C 29
serial communication 30

function calls
ser485Rx 45
ser485Tx 45

Prototyping Board
RS-232 91
RS-485 termination and bias

resistors 93
serial port configura-

tions 90
RabbitNet port 93

serial ports 30
Ethernet port 31
programming port 32
Prototyping Board 90

software 7
external I/O bus 40
I/O drivers 40
libraries

KEYPAD7.LIB 132
LCD122KEY7.LIB 111
PACKET.LIB 41
RCM33XX.LIB 42
RN_CFG_RCM33.LIB . 42
RNET.LIB 142
RS232.LIB 41
serial flash 41
TCP/IP 41

sample programs 18
serial communication drivers

41
serial flash drivers 41
TCP/IP drivers 41

152 RabbitCore RCM3305/RCM3315

specifications65
bus loading71
digital I/O buffer sourcing and

sinking limits75
dimensions66
electrical, mechanical, and

environmental68
exclusion zone67
header footprint70
headers70
LCD/keypad module

dimensions101
electrical102
header footprint102
mechanical102
relative pin 1 locations 102
temperature102

Prototyping Board84
Rabbit 3000 DC characteris-

tics74
Rabbit 3000 timing diagram

..72
relative pin 1 locations70

spectrum spreader73
settings35

status byte148
subsystems

digital inputs and outputs ..24
switches

function calls
switchIn44

switching modes33

T
TCP/IP primer51
technical support15
troubleshooting

changing COM port14
connections14

U
USB/serial port converter

Dynamic C settings14
user block

function calls
readUserBlock36
writeUserBlock36

User’s Manual 153

SCHEMATICS

090-0221 RCM3305/RCM3315 Schematic
www.rabbit.com/documentation/schemat/090-0221.pdf

090-0188 Prototyping Board Schematic
www.rabbit.com/documentation/schemat/090-0188.pdf

090-0156 LCD/Keypad Module Schematic
www.rabbit.com/documentation/schemat/090-0156.pdf

090-0128 Programming Cable Schematic
www.rabbit.com/documentation/schemat/090-0128.pdf

You may use the URL information provided above to access the latest schematics directly.

http://www.rabbit.com/documentation/schemat/090-0221.pdf
http://www.rabbit.com/documentation/schemat/090-0188.pdf
http://www.rabbit.com/documentation/schemat/090-0128.pdf
http://www.rabbit.com/documentation/schemat/090-0156.pdf

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Rabbit Semiconductor:

 101-1069 20-101-1067 20-101-1068

http://www.mouser.com/Rabbit-Semiconductor
http://www.mouser.com/access/?pn=101-1069
http://www.mouser.com/access/?pn=20-101-1067
http://www.mouser.com/access/?pn=20-101-1068

	RabbitCore RCM3305/RCM3315 User's Manual
	Table of Contents
	1. Introduction
	1.1 RCM3305/RCM3315 Features
	1.2 Comparing the RCM3309/RCM3319 and RCM3305/RCM3315
	1.3 Advantages of the RCM3305 and RCM3315
	1.4 Development and Evaluation Tools
	1.4.1 RCM3305 Series Development Kit
	1.4.2 Software
	1.4.3 Connectivity Interface Kits
	1.4.4 Online Documentation

	2. Getting Started
	2.1 Install Dynamic C
	2.2 Hardware Connections
	2.2.1 Step 1 — Attach Module to Prototyping�Board
	2.2.2 Step 2 — Connect Programming Cable
	2.2.3 Step 3 — Connect Power

	2.3 Starting Dynamic C
	2.4 Run a Sample Program
	2.4.1 Troubleshooting

	2.5 Where Do I Go From Here?
	2.5.1 Technical Support

	3. Running Sample Programs
	3.1 Introduction
	3.2 Sample Programs
	3.2.1 Use of Serial Flash
	3.2.2 Serial Communication
	3.2.3 Real-Time Clock
	3.2.4 RabbitNet
	3.2.5 Other Sample Programs

	4. Hardware Reference
	4.1 RCM3305/RCM3315 Digital Inputs and Outputs
	4.1.1 Memory I/O Interface
	4.1.2 Other Inputs and Outputs
	4.1.3 LEDs

	4.2 Serial Communication
	4.2.1 Serial Ports
	4.2.2 Ethernet Port
	4.2.3 Programming Port

	4.3 Programming Cable
	4.3.1 Changing Between Program Mode and Run Mode
	4.3.2 Standalone Operation of the RCM3305/RCM3315

	4.4 Other Hardware
	4.4.1 Clock Doubler
	4.4.2 Spectrum Spreader

	4.5 Memory
	4.5.1 SRAM
	4.5.2 Flash EPROM
	4.5.3 Serial Flash
	4.5.4 Dynamic C BIOS Source Files

	5. Software Reference
	5.1 More About Dynamic C
	5.1.1 Developing Programs Remotely with Dynamic C

	5.2 Dynamic C Functions
	5.2.1 Digital I/O
	5.2.2 SRAM Use
	5.2.3 Serial Communication Drivers
	5.2.4 TCP/IP Drivers
	5.2.5 Serial Flash Drivers
	5.2.6 Prototyping Board Functions

	5.3 Upgrading Dynamic C
	5.3.1 Extras

	6. Using the TCP/IP Features
	6.1 TCP/IP Connections
	6.2 TCP/IP Primer on IP Addresses
	6.2.1 IP Addresses Explained
	6.2.2 How IP Addresses are Used
	6.2.3 Dynamically Assigned Internet Addresses

	6.3 Placing Your Device on the Network
	6.4 Running TCP/IP Sample Programs
	6.4.1 How to Set IP Addresses in the Sample Programs
	6.4.2 How to Set Up your Computer for Direct Connect

	6.5 Run the PINGME.C Sample Program
	6.6 Running Additional Sample Programs With Direct Connect
	6.6.1 RabbitWeb Sample Programs
	6.6.2 Remote Application Update
	6.6.3 Dynamic C FAT File System, RabbitWeb, and SSL Modules

	6.7 Where Do I Go From Here?

	Appendix A. RCM3305/RCM3315 Specifications
	A.1 Electrical and Mechanical Characteristics
	A.1.1 Headers

	A.2 Bus Loading
	A.3 Rabbit 3000 DC Characteristics
	A.4 I/O Buffer Sourcing and Sinking Limit
	A.5 Jumper Configurations
	A.6 Conformal Coating

	Appendix B. Prototyping Board
	B.1 Introduction
	B.1.1 Prototyping Board Features

	B.2 Mechanical Dimensions and Layout
	B.3 Power Supply
	B.4 Using the Prototyping Board
	B.4.1 Adding Other Components
	B.4.2 Digital I/O
	B.4.3 CMOS Digital Outputs
	B.4.4 Sinking Digital Outputs
	B.4.5 Relay Outputs
	B.4.6 Serial Communication
	B.4.7 RabbitNet Ports
	B.4.8 Other Prototyping Board Modules
	B.4.9 Quadrature Decoder
	B.4.10 Stepper-Motor Control

	B.5 Prototyping Board Jumper Configurations
	B.6 Use of Rabbit 3000 Parallel Ports

	Appendix C. LCD/Keypad Module
	C.1 Specifications
	C.2 Contrast Adjustments for All LCD/Keypad Modules
	C.3 Keypad Labeling
	C.4 Header Pinouts
	C.4.1 I/O Address Assignments

	C.5 Mounting LCD/Keypad Module on the Prototyping Board
	C.6 Bezel-Mount Installation
	C.6.1 Connect the LCD/Keypad Module to Your Prototyping Board

	C.7 Sample Programs
	C.8 LCD/Keypad Module Function Calls
	C.8.1 LCD/Keypad Module Initialization
	C.8.2 LEDs
	C.8.3 LCD Display
	C.8.4 Keypad

	Appendix D. Power Supply
	D.1 Power Supplies
	D.1.1 Battery Backup
	D.1.2 Battery-Backup Circuit
	D.1.3 �Reset Generator

	Appendix E. RabbitNet
	E.1 General RabbitNet Description
	E.1.1 RabbitNet Connections
	E.1.2 RabbitNet Peripheral Cards

	E.2 Physical Implementation
	E.2.1 Control and Routing

	E.3 Function Calls
	E.3.1 Status Byte

	Index
	Schematics

