
A product of SEGGER Microcontroller GmbH & Co. KG

emFile

Document: UM02001
Software version: 3.34

Revision: 1
Date: January 7, 2015

User & Reference Guide

CPU independent
File System for

embedded applications

www.segger.com

2

UM02001 User & Reference Guide for emFile © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER Microcontroller GmbH & Co. KG (SEGGER) assumes no responsibil-
ity for any errors or omissions. SEGGER makes and you receive no warranties or con-
ditions, express, implied, statutory or in any communication with you. SEGGER
specifically disclaims any implied warranty of merchantability or fitness for a particu-
lar purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of SEGGER. The software described in this document is
furnished under a license and may only be used or copied in accordance with the
terms of such a license.

© 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Contact address

SEGGER Microcontroller GmbH & Co. KG

In den Weiden 11
D-40721 Hilden

Germany

Tel.+49 2103-2878-0
Fax.+49 2103-2878-28
E-mail: support@segger.com
Internet: http://www.segger.com

UM02001 User & Reference Guide for emFile © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

3

Manual versions

This manual describes the current software version. If any error occurs, inform us
and we will try to assist you as soon as possible.
Contact us for further information on topics or routines not yet specified.

Print date: January 7, 2015

Software Revision Date By Description

3.34 1 141215 MD

Section "Logical drivers"
 * Added Sector write buffer driver.
 * Added RAID driver.
Section "Device drivers -> NAND flash driver -> Additional
physical layer functions"
 * Added FS_NAND_SPI_EnableReadCache() function.
 * Added FS_NAND_SPI_DisableReadCache() function.
Section "Journaling (Add-on) -> Journaling API"
 * Added FS_JOURNAL_CreateEx() function.
Section "Device drivers -> NAND flash driver -> SLC1
driver - FS_NAND_Driver -> Physical layer"
 * Added pfCopyPage function.
Section "Device drivers -> NOR flash driver -> Sector map
driver - FS_NOR_Driver -> Physical layer"
 * Added FS_NOR_PHY_SFDP physical layer.
Section "API Functions -> Storage layer functions"
 * Added FS_STORAGE_SyncSectors() function.

3.34 0 140603 MD

Section "Logical drivers"
 * Added Sector size adapter driver.
Section "API functions -> Operation on files"
 * Added FS_SetFileSize() function.
Section "API functions -> File access functions"
 * Added FS_FOpenEx() function.
Section "API functions -> Error handling functions ->
FS_ErrorNo2Test()"
 * Added more error codes.
Section "API functions -> File system extended functions"
 * Added FS_FreeSectors() function.

3.32 2 140128 MD

Section "API functions -> File system extended functions"
 * Added FS_GetVolumeInfoEx() function.
Section "API functions -> File system extended functions"
 * Renamed the callback function type of FS_CheckDisk()
to FS_CHECKDISK_ON_ERROR_CALLBACK
Section "API functions -> File system extended functions
-> FS_CheckDisk()"
 * Replaced magic numbers with symbolic defines.
Section "API functions -> Operation on files"
 * Added FS_ModifyFileAttributes() function.
Section "API functions -> Storage layer functions"
 * Added FS_STORAGE_GetCleanCnt() function.
Section "Device drivers -> NOR flash driver
-> Block map driver"
 * Added FS_NOR_BM_GetSectorInfo() function.

3.32 1 130722 MD

Section "API functions -> File system extended functions"
 * Added new return values for FS_CheckDisk().
Section "API functions -> File system configuration func-
tions"
 * Renamed FS_ConfigFileBufferFlags() to
FS_SetFileBufferFlags()
Section "API functions -> Obsolete functions"
 * Made FS_ConfigUpdateDirOnWrite() obsolete.

3.32 0 130521 MD

Section "Device drivers -> SLC1 driver -> Hardware layer"
 * Added section "Hardware functions - SPI NAND flash"
Section "Logical drivers"
 * Added Read-ahead driver.
Section "API Functions -> Storage layer functions"
 * Added FS_STORAGE_FreeSectors() function.
Section "Device drivers -> MMC/SD card driver"
 * Marked FS_MMC_CM_Driver4Atmel as deprecated.

4

UM02001 User & Reference Guide for emFile © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

3.30 6 130208 MD

Section "Journalig (Add-on) -> Journaling API"
 * Added FS_JOURNAL_Disable() function.
 * Added FS_JOURNAL_Enable() function.
 * Changed the return types of FS_JOURNAL_Begin() and
FS_JOURNAL_End() functions to "int".

3.30 5 121214 MD

Section "Device drivers -> NAND flash driver -> Additional
physical layer functions"
 * Added FS_NAND_2048x8_EnableReadCache() function
 * Added FS_NAND_2048x8_DisableReadCache() function

3.30 4 121119 MD
Section "Device drivers -> MMC/SD card driver -> Addi-
tional driver functions"
 * Added FS_MMC_CM_GetCardId() function.

3.30 3 121107 MD
Section "API functions -> Operation on files"
 * Added FS_WipeFile() function

3.30 2 121019 MD

Section "API functions -> Extended functions"
 * Added FS_CreateMBR() function
 * Added FS_GetPartitionInfo() function
Section "API functions -> File system configuration func-
tions"
 * Added FS_SetFileWriteModeEx() function.
Section "Device drivers -> NOR flash driver -> Configuring
the driver -> Configuration API"
 * Added FS_NOR_CFI_SetAddrGap() function.

3.30 1 120903 MD

Section "Device Drivers -> NAND flash driver -> SLC1
dirver -> Physical layer"
 * Added (*pfConfigureECC)() function.
Section "Device drivers -> NAND flash driver -> Universal
NAND driver -> Configuring the driver"
 * Added FS_NAND_ECC_HW_4BIT ECC hook.
 * Renamed FS_NAND_ECC_NULL to
 FS_NAND_ECC_HW_NULL.
 * Renamed FS_NAND_ECC_1BIT to
 FS_NAND_ECC_SW_1BIT.
Section "Logical drivers -> Encryption driver"
 * Added DES algorithm.
Added "Encryption Add-On" chapter.

3.30 0 120803 MD
Chapter "Logical drivers"
 * Added encryption logical driver

3.28 1 120702 MD
Section "API functions -> File access functions"
 * Renamed FS_FFlush() to FS_SyncFile()

Software Revision Date By Description

UM02001 User & Reference Guide for emFile © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

5

3.28 0 120619 MD

Updated preface and about information.
Merged the description of FS_FAT_CheckDisk() and
FS_EFS_CheckDisk() functions to FS_CheckDisk().
Section "API functions -> Extended functions"
 * Ordered the functions alphabetically
 * Added FS_GetVolumeFreeSpaceKB() function
 * Added FS_GetVolumeSizeKB() function
 * Added FS_CheckDisk() function
 * Merged the description of FS_FAT_CheckDisk()
 and FS_EFS_CheckDisk() functions to FS_CheckDisk().
 * Added FS_CheckDisk_ErrCode2Text() function
 * Merged the description of
 FS_FAT_CheckDisk_ErrCode2Text() and
 FS_EFS_CheckDisk_ErrCode2Text() functions
 to FS_CheckDisk_ErrCode2Text().
 * Added FS_ON_CHECK_DISK_ERROR_CALLBACK
 typedef
 * Added FS_SetMemAccessCallback() function
 * Added FS_MEMORY_IS_ACCESSIBLE_CALLBACK
 typedef
 * Added FS_BUSY_LED_CALLBACK typedef
 * Renamed FS_QUERY_F_TYPE to
 FS_ON_CHECK_DISK_ERROR_CALLBACK.
Section "API functions -> File system configuration func-
tions"
 * Ordered the functions alphabetically
 * Added FS_FAT_ConfigUseFSInfoSector() function
 * Added FS_FAT_ConfigMaintainFATCopy() function
Section "API functions -> File system control functions"
 * Ordered the functions alphabetically
Section "API functions -> File access functions"
 * Ordered the functions alphabetically
 * Added FS_FFlush() function.
Section "API functions -> Formatting a medium"
 * Ordered the functions alphabetically
Section "API functions -> Error-handling functions"
 * Ordered the functions alphabetically
Added chapter "Logical drivers"
Section "Configuration of emFile -> Compile time configu-
ration -> General file system configuration"
 * Added FS_SUPPORT_CHECK_MEMORY define
Section "Optimizing performance - Caching and buffering -
> Cache API functions"
 * Added FS_CACHE_Invalidate() function
 * Added FS_CACHE_SetAssocLevel() function
Section "Device Drivers -> SLC1 driver"
 * Renamed FS_NAND_SetOnFatalErrorCB() to
 FS_NAND_SetOnFatalErrorCallback()
 * Renamed FS_NAND_ON_FATAL_ERROR_CB to
 FS_NAND_ON_FATAL_ERROR_CALLBACK
Section "Device Drivers -> Universal driver"
 * Renamed FS_NAND_UNI_SetOnFatalErrorCB() to
 FS_NAND_UNI_SetOnFatalErrorCallback()
Section "OS integration -> OS layer API functions"
 * Added FS_X_OS_Wait() function
 * Added FS_X_OS_Signal() function
Section "API functions -> Directory functions"
 * Added FS_CreateDir() function.
Section "API functions -> Storage layer functions"
 * Added FS_STORAGE_RefreshSectors() function

3.26 3 120322 MD
Section "API functions -> Storage layer functions"
 * Added FS_STORAGE_Clean() function
 * Added FS_STORAGE_CleanOne() function

3.26 2 111205 MD
Section "Device drivers -> NAND flash driver"
 * Subsection "Additional information" added.
 * Subsection "Additional physical layer functions" added.

3.26 1 111104 MD

Chapter "API functions"
 * Function FS_CopyFileEx() added.
Section "Journaling Add-On -> Performance and resource
usage"
 * Corrected the computation of dynamic RAM usage.

Software Revision Date By Description

6

UM02001 User & Reference Guide for emFile © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

3.26 0 111005 MD

Section "Device drivers -> NAND flash driver"
 * Created section "SLC1 driver - FS_NAND_Driver" from
section "NAND flash driver"
 * Section "Universal driver - FS_NAND_UNI_Driver"
added
Section "Device drivers -> NOR flash driver"
 * Created section "Sector map - FS_NOR_Driver" from
section section "NOR flash driver"
 * Section "Block map - FS_NOR_BM_Driver" added

3.24 5 110729 MD
Section "Device drivers -> NAND driver"
 * Added description for the return values of fatal error
callback function

3.24 4 110705 MD

Section "Device drivers -> NAND driver"
 * Function "FS_NAND_SetNumWorkBlocks()" added
Chapter "API functions"
 * Function "FS_Lock()" added
 * Function "FS_Unlock()" added
 * Function "FS_LockVolume()" added
 * Function "FS_UnlockVolume()" added

3.24 3 110318 MD
Section "Journaling (Add on)->Configuration"
 * Added "Journaling and write caching" section

3.24 2 110209 MD

Chapter "API functions"
 * Added FS_GetMaxSectorSize() description.
Chapter "Device drivers -> NOR flash driver -> Perfor-
mance and resource usage"
 * Corrected the performace values
Chapter "Journaling (Add on)"
 * Added "FAQs" section
Chapter "Device drivers -> NAND driver"
 * Function "FS_NAND_SetOnFatalErrorCB()" added

3.24 1 110113 MD
Chapter "Device drivers -> NAND driver"
 * Section "Partial writes" added.

3.24 0 101208 MD

Chapter "API functions"
 * Corrected the description of "FS_AssignMemory()"
 * Corrected the link to "FS_TimeStampToFileTime()"
 * Documented the return value of "FS_Sync()"
Chapter "Device drivers -> MMC/SD card driver"
 * Added description for MMC cards version 4.x
Chapter "Performance and resource usage"
 * Moved the pervormace measurement into the driver
chapters
Chapter "Device drivers -> NOR driver"
 * Added description for the "FS_NOR_SetSectorSize()"
Chapter "Device drivers -> NAND driver"
 * Added description for the
"FS_NAND_SetMaxEraseCntDiff()"
Chapter "Device drivers -> NAND driver -> Hardware
layer"
 * Removed the "FS_NAND_HW_X_Delayus() function"

Software Revision Date By Description

UM02001 User & Reference Guide for emFile © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

7

3.22 1 101001 MD

Chapter "Journaling"
 * Corrected the prototypes of functions.
Chapter "API functions -> File system control functions"
 * FS_SetAutoMount prototype corrected.
Chapter "API functions -> File access functions"
 * FS_Read prototype corrected.
Chapter "Device drivers -> NOR flash driver
 -> Resource usage -> Runtime (dynamic) RAM usage"
 * Simplified the forumula.
 * Added table showing the RAM usage.
Chapter "API functions"
 * Function "FS_AddOnExitHandler()" added.
 * Function "FS_EFS_CheckDisk()" added.
 * Function "FS_EFS_CheckDisk_ErrorCode2Text()"
added.
Chapter "Introduction to emFile -> Basic concepts"
 * Section "Fail safety" added
 * Section "Wear leveling" added
 * Section "Implemenation notes" added
Chapter "Device drivers -> MultiMedia and SD card driver
 -> Hardware functions - Card mode"
 * Revised the description of all functions
Chapter "Device drivers -> NAND flash driver
 -> Fail-safe operation"
 * Diagram and explanation of power loss added

3.22 0 100708 AG

Chapter "Running emFile on target hardware"
 * Section "Adjusting the RAM usage" updated.
Chapter "API functions"
 * Function "FS_Mount()" updated.
 * Function "FS_Sync()" added.
 * Structure "FS_FORMAT_INFO" description updated.
 * Function "FS_ConfigFileBufferDefault()" added.
 * Function "FS_ConfigFileBufferFlags()" added.
 * Function "FS_SetFileWriteMode()" added.
Chapter "Device drivers"
 * Section "NAND flash driver" updated.
 * Section "WinDrive driver" updated/corrected.
Chapter "Performance & resource usage"
 * Section "Memory footprint" updated.
Chapter "Journaling (Add-on)"
 * Section "Resource usage" added.
Chapter "Device drivers"
 * Section "NOR flash driver",
 subsection "Resource usage" added.
Chapter "Porting emFile 2.x to 3.x"
 * Section "Configuration differences" updated.
Chapter "Configuration of emFile"
 * Section "Compile time configuration" updated.

3.20 2 100326 AG

Chapter "Device drivers -> NOR flash driver
 -> configuring the driver"
 * Section "Configuration API" added.
 * Section "Sample configurations" added.

3.20 1 091130 AG
Chapter "API functions"
 * Function "FS_DeInit()" added.

3.14 0 081215
SK/
SR

Chapter "API functions":
 * "Cache functions removed.
Chapter "Optimizing performance - Caching and buffering"
added.
Chapter "Introduction to emFile":
 * Basic concepts updated.
Chapter "Performance and resource usage"
 * RAM requirements added.

3.12 3 080710 SR

Chapter "Performance and Resource Usage":
 * Divided Memory requirements into different sections.
Chapter "API functions":
 * Changed Prototype of FS_Mount.

Software Revision Date By Description

8

UM02001 User & Reference Guide for emFile © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

3.12 2 080605 SR

Chapter "Configuration of emFile":
 * All configuration samples updated:
 * Added FS_AssignMemory.
 * Removed non existing marco:
 * FS_FAT_OPTIMIZE_SEQ_CLUSTERS
 * Added FS_DRIVER_ALIGNMENT macro.

3.12 1 080505 SK

Chapter "Introduction":
 * emFile structure updated.
Chapter "Journaling (Add-on)":
 * FAQ added.

3.12 0 080424 SK

Chapter "Configuration of emFile":
 * FS_FAT_FWRITE_UPDATE_DIR removed.
 * FS_EFS_FWRITE_UPDATE_DIR removed.
Chapter "API functions":
Chapter "Device driver":
 MMC:
 * Section "Configuration" updated.
 * FS_MMC_CM_Allow4bitMode() added.
 NOR:
 * Serial NOR flash hardware functions added.
 Chapter "Journaling (Add-on)" added.

3.10 2 071022 SR

Chapter "Configuration of emFile":
 * Updated runtime configuration.
 * Updated Compiletime configuration.
Chapter "API functions":
 * Added new functions:
 FS_AssignMemory, FS_SetMemHandler,
 FS_SetMaxSectorSize()
 FS_DeInit().
 * Updated function description:
 FS_Mount().
 Chapter "OS integration":
 * Added new function FS_X_OS_DeInit().

3.10 1 071008 SK
Chapter "Device driver":
 * Typos removed.

3.10 0 070927 SK

Chapter "API functions":
 * Storage layer functions added.
Chapter "Running emFile on target hardware":
 * Structure/Directory names updated.
Chapter "Device drivers":
 * Structure changed
 * Subsection "Resource usage" added to every driver
section.
 * Section "NAND flash driver" updated and enhanced.
 * Section "NOR flash driver" updated and enhanced.
 * Section "Multimedia & SD card driver" enhanced.
 * Graphics updated.
 * Subsection Troubleshooting added.
 * Section "DataFlash driver" removed. The DataFlash
driver
 is now integrated in the NAND driver.
Chapter "Performance and resource usage":
 * Section "Memory footprint" updated.

3.08 5 070719 SK

Chapter "Device drivers":
 * NAND: Pin description updated.
 * NAND: Illustrations added.
 * NOR: Illustrations added.

3.08 4 070716 SK
Chapter "Introduction":
 * emFile structure picture changed.
 * Layer description updated.

3.08 3 070703 SK

Chapter "API functions":
 * FS_InitStorage() updated.
 * FS_ReadSector() added.
 * FS_WriteSector() added.
 * FS_GetDeviceInfo() added.
Chapter "Index"
 * Index updated.

3.08 2 070703 SK
Chapter "Device drivers":
 * "NAND flash driver" section enhanced.

Software Revision Date By Description

UM02001 User & Reference Guide for emFile © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

9

3.08 1 070618 SK

Chapter "API functions":
 * FS_UnmountLL added.
 * FS_GetVolumeStatus() added.
 * FS_InitStorage() added.
Chapter "Porting emFile 2.x to 3.x" chapter.

3.08 0 070618 SK

Chapter "Introduction":
 * Section "Development environment" added.
Chapter "API functions" updated.
 * FS_Mount() added.
 * FS_SetAutoMount() added.
 * FS_UnmountForced() added.

3.04 0 070427 SK

Various improvements.
Chapter "Running emFile on target hardware" updated.
 * Structural changes.
 * Section "Adjusting the RAM usage" added.
Chapter "API functions" updated.
 * Samples updated.
Chapter "Device driver" updated.
 * Generic flash driver renamed to NOR flash driver.
 - FS_FLASH_* replaced with FS_NOR_*.
 - NOR - additional driver functions added.
 * DataFlash driver added.

3.02 0 070405 SK

Chapter "Running emFile on target hardware" updated.
 * Some smaller structural changes.
 * Section "Step 3: Add device driver" simplified.
 * Section "Step 4: Implement hardware routines" simpli-
fied.
 * Section "Troubleshooting" moved to chapter debug-
ging.
Chapter "API functions":
 * Section "File system configuration functions" added.
 - FS_AddDevice() moved into this section.
 - FS_AddPhysDevice() added.
 - FS_LOGVOL_Create() added.
 - FS_LOGVOL_AddDevice() added.
Chapter "Device drivers":
 * Section "NAND":
 - FS_NAND_SetBlockRange() added.
Chapter "Configuration of emFile":
 * Section "Compile-time configuration"
 - "Miscellaneous configuration"
 - "FS_NO_CLIB" default value corrected.
Chapter "Debugging"
 - "FS_X_Log()", "FS_X_Warn()", "FS_X_ErrorOut()" :
 function description enhanced.
Chapter "OS Support" updated.

Software Revision Date By Description

10

UM02001 User & Reference Guide for emFile © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

UM02001 User & Reference Guide for emFile © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

11

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:

� The software tools used for building your application (assembler, linker, C com-
piler)

� The C programming language
� The target processor
� DOS command line

If you feel that your knowledge of C is not sufficient, we recommend The C Program-
ming Language by Kernighan and Richie (ISBN 0-13-1103628), which describes the
standard in C-programming and, in newer editions, also covers the ANSI C standard.

How to use this manual
This manual explains all the functions and macros that the product offers. It assumes
you have a working knowledge of the C language. Knowledge of assembly program-
ming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command-prompt or that appears on the
display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.

Sample Sample code in program examples.

Sample comment Comments in program examples.

Reference Reference to chapters, sections, tables and figures or other docu-
ments.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Emphasis Very important sections.

Table 1.1:

12

UM02001 User & Reference Guide for emFile © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

EMBEDDED SOFTWARE
(Middleware)

emWin
Graphics software and GUI
emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.

embOS
Real Time Operating System
embOS is an RTOS designed to offer
the benefits of a complete multitasking
system for hard real time applications
with minimal resources.

embOS/IP
TCP/IP stack
embOS/IP a high-performance TCP/IP
stack that has been optimized for
speed, versatility and a small memory
footprint.

emFile
File system
emFile is an embedded file system with
FAT12, FAT16 and FAT32 support. Var-
ious Device drivers, e.g. for NAND and
NOR flashes, SD/MMC and Compact-
Flash cards, are available.

USB-Stack
USB device/host stack
A USB stack designed to work on any
embedded system with a USB control-
ler. Bulk communication and most stan-
dard device classes are supported.

SEGGER TOOLS

Flasher
Flash programmer
Flash Programming tool primarily for micro con-
trollers.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace
JTAG emulator with trace
USB driven JTAG interface for ARM cores with
Trace memory. supporting the ARM ETM (Embed-
ded Trace Macrocell).

J-Link / J-Trace Related Software
Add-on software to be used with SEGGER�s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.

SEGGER Microcontroller GmbH & Co. KG develops
and distributes software development tools and ANSI C
software components (middleware) for embedded sys-
tems in several industries such as telecom, medical
technology, consumer electronics, automotive industry
and industrial automation.

SEGGER�s intention is to cut software development time
for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embOS, a small yet efficient real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER develops and produces programming
tools for flash micro controllers, as well as J-Link, a JTAG emulator to assist in develop-
ment, debugging and production, which has rapidly become the industry standard for
debug access to ARM cores.

Corporate Office:
http://www.segger.com

United States Office:
http://www.segger-us.com

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

13

1 Introduction to emFile ..19

1.1 What is emFile ..20
1.2 Features...20
1.3 Basic concepts ..21
1.3.1 emFile structure ..21
1.3.2 Choice of file system type: FAT vs. EFS ..22
1.3.3 Fail safety...22
1.3.4 Wear leveling ..23
1.4 Implementation notes ..24
1.4.1 File system configuration ..24
1.4.2 Runtime memory requirements ...24
1.4.3 Initializing the file system ...24
1.5 Development environment (compiler)...25

2 Getting started ...27

2.1 Installation ...28
2.2 Using the Windows sample..28
2.2.1 Building the sample program...28
2.2.2 Stepping through the sample ..28
2.2.3 Further source code examples ...32

3 Running emFile on target hardware...33

3.1 Step 1: Creating a simple project without emFile ...35
3.2 Step 2: Adding emFile to the start project...36
3.3 Step 3: Adding the device driver..38
3.3.1 Adding the device driver source to project...38
3.3.2 Adding hardware routines to project...39
3.4 Step 4: Activating the driver ...40
3.4.1 Modifying the runtime configuration ...41
3.5 Step 5: Adjusting the RAM usage...43

4 API functions..45

4.1 API function overview...46
4.2 File system control functions ...50
4.2.1 FS_AddOnExitHandler()..50
4.3 File system configuration functions...59
4.4 File access functions ..72
4.5 File positioning functions ..82
4.6 Operations on files...86
4.7 Directory functions .. 103
4.8 Formatting a medium... 110
4.9 Extended functions .. 118
4.10 Storage layer functions... 155
4.10.1 FS_STORAGE_Clean() .. 155
4.11 FAT related functions ... 172
4.11.1 FS_FAT_GrowRootDir() .. 172
4.12 Error handling functions ... 176
4.13 Obsolete functions ... 181

5 Optimizing performance -

Table of Contents

14

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

Caching and buffering...197

5.1 Introduction ..198
5.2 Types of caches ...199
5.3 Cache API functions..200
5.4 Example applications ..210
5.4.1 Example application: FS_50Files.c ..210

6 Device drivers ..213

6.1 General information..214
6.1.1 Default device driver names ..214
6.1.2 Unit number ..214
6.1.3 Hardware layer ..214
6.2 RAM disk driver..217
6.2.1 Supported hardware ...217
6.2.2 Theory of operation ..217
6.2.3 Fail-safe operation..217
6.2.4 Wear leveling ..217
6.2.5 Configuring the driver ...218
6.2.6 Hardware functions ..220
6.2.7 Additional information...220
6.2.8 Performance and resource usage..220
6.3 NAND flash driver...221
6.3.1 SLC1 driver - FS_NAND_Driver ..222
6.3.2 Universal driver - FS_NAND_UNI_Driver..290
6.3.3 Additional Information ..308
6.3.4 Additional physical layer functions ..308
6.4 NOR flash driver...315
6.4.1 Sector map driver - FS_NOR_Driver..315
6.4.2 Block map - FS_NOR_BM_Driver ..357
6.5 MMC/SD card driver ...373
6.5.1 Supported hardware ...373
6.5.2 Theory of operation ..379
6.5.3 Fail-safe operation..379
6.5.4 Wear leveling ..379
6.5.5 Configuration...379
6.5.6 Hardware functions - SPI mode..383
6.5.7 Hardware functions - Card mode ...392
6.5.8 Hardware functions - Card mode for ATMEL devices407
6.5.9 Additional information...417
6.5.10 Additional driver functions ...417
6.5.11 Performance and resource usage..420
6.5.12 Troubleshooting ...420
6.6 CompactFlash card and IDE driver ..425
6.6.1 Supported Hardware...425
6.6.2 Theory of operation ..430
6.6.3 Fail-safe operation..435
6.6.4 Wear-leveling ..436
6.6.5 Configuring the driver ...436
6.6.6 Hardware functions ..437
6.6.7 Additional information...445
6.6.8 Performance and resource usage..445
6.7 WinDrive driver..446
6.7.1 Supported hardware ...446
6.7.2 Theory of operation ..446
6.7.3 Fail-safe operation..446
6.7.4 Wear leveling ..446
6.7.5 Configuring the driver ...446
6.7.6 Hardware functions ..447
6.7.7 Additional information...447
6.8 Writing your own driver ..448

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

15

6.8.1 Device driver functions ... 448
6.8.2 Integrating a new driver ... 450

7 Logical drivers..451

7.1 General information ... 452
7.1.1 Default logical driver names.. 452
7.1.2 Unit number ... 452
7.2 Disk partition driver ... 453
7.2.1 Configuring the driver .. 453
7.2.2 Performance and resource usage ... 455
7.3 Encryption driver ... 456
7.3.1 Configuring the driver .. 456
7.3.2 Performance and resource usage ... 458
7.4 Sector read-ahead driver .. 459
7.4.1 Configuring the driver .. 459
7.4.2 Performance and resource usage ... 460
7.5 Sector size adapter driver ... 461
7.5.1 Configuring the driver .. 461
7.5.2 Performance and resource usage ... 462
7.6 Sector write buffer driver.. 463
7.6.1 Configuring the driver .. 463
7.6.2 Performance and resource usage ... 464
7.7 RAID1 driver... 465
7.7.1 Configuring the driver .. 465
7.7.2 Performance and resource usage ... 470

8 Configuration of emFile..471

8.1 Runtime configuration .. 472
8.1.1 Driver handling ... 472
8.1.2 System configuration ... 472
8.2 Compile time configuration ... 474
8.2.1 General file system configuration ... 475
8.2.2 FAT configuration .. 477
8.2.3 EFS configuration .. 478
8.2.4 OS support ... 478
8.2.5 Debugging.. 479
8.2.6 Miscellaneous configurations ... 479
8.2.7 Sample configuration ... 480

9 OS integration ..481

9.1 OS layer API functions.. 482
9.1.1 Examples ... 490

10 Debugging..491

10.1 FS_X_Log() .. 492
10.2 FS_X_Warn() .. 493
10.3 FS_X_ErrorOut() ... 494
10.4 Troubleshooting .. 495

11 Performance and resource usage..497

11.1 Memory footprint... 498
11.1.1 System .. 498
11.1.2 File system configuration .. 498
11.1.3 Sample project.. 498
11.1.4 Static ROM requirements .. 500
11.1.5 Static RAM requirements .. 501
11.1.6 Dynamic RAM requirements .. 501
11.1.7 RAM usage example... 501
11.2 Performance ... 502

16

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

11.2.1 Description of the performance tests...502
11.2.2 How to improve the performance ...502

12 Journaling (Add-on) ...505

12.1 Introduction ..506
12.2 Features ...507
12.3 Backgrounds ...508
12.3.1 File System Layer error scenarios ...508
12.3.2 Write optimization ..509
12.4 How to use journaling ...510
12.4.1 What do I need to do to use journaling? ..510
12.4.2 How can I use journaling in my application?...510
12.4.3 Keeping the consistency of file contents ..510
12.5 Configuration...512
12.5.1 Journaling file system configuration ..512
12.5.2 Journaling and write caching..512
12.6 Journaling API ...513
12.7 Performance and resource usage..521
12.7.1 ROM usage..521
12.7.2 Static RAM usage ...521
12.7.3 Runtime (dynamic) RAM usage ..521
12.7.4 Performance..521
12.8 FAQs ..522

13 Encryption (Add-on) ...523

13.1 Introduction ..524
13.2 Features ...525
13.3 How to use encryption ..526
13.3.1 What do I need to do to use file encryption? ..526
13.3.2 How can I use volume encryption? ...526
13.4 Compile time configuration ..527
13.5 Encryption API ...528
13.6 Encryption tool ..533
13.6.1 Using the file encryption tools ..533
13.6.2 Command line options ..533
13.6.3 Command line arguments..535
13.7 Performance and resource usage..537
13.7.1 ROM usage..537
13.7.2 Static RAM usage ...537
13.7.3 Runtime (dynamic) RAM usage ..537
13.7.4 Performance..537

14 Porting emFile 2.x to 3.x ..539

14.1 Differences from version 2.x to 3.x ...540
14.2 API differences ..540
14.3 Configuration differences...541
14.4 Device driver ...542
14.4.1 Renamed drivers..542
14.4.2 Integrating a device driver into emFile ..542
14.4.3 RAM disk driver differences ...542
14.4.4 NAND driver differences ..543
14.4.5 NAND driver differences ..544
14.4.6 MMC driver differences..544
14.4.7 CF/IDE driver differences ..545
14.4.8 Flash / NOR flash differences ...546
14.4.9 Serial Flash / DataFlash differences ..546
14.4.10 Windrive differences ...546
14.5 OS Integration...547

15 FAQs..549

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

17

15.1 FAQs.. 550

18

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

19

Chapter 1

Introduction to emFile

20 CHAPTER 1 Introduction to emFile

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

1.1 What is emFile
emFile is a file system that can be used on any media for which you can provide basic
hardware access functions.

emFile is a high-performance library that has been optimized for speed, versatility
and memory footprint.

1.2 Features
emFile is written in ANSI C and can be used on virtually any CPU.
Some features of emFile:

� MS DOS/MS Windows-compatible FAT12, FAT16 and FAT32 support.
� An optional module that handles long file names of FAT media.
� Multiple device driver support. You can use different device drivers with emFile,

which allows you to access different types of hardware with the file system at the
same time.

� MultiMedia support. A device driver allows you to access different media at the
same time.

� OS support. emFile can be easily integrated into any OS. This allows using emFile
in a multi-threaded environment.

� ANSI C stdio.h-like API for user applications. An application using the standard
C I/O library can easily be ported to use emFile.

� Very simple device driver structure. emFile device drivers need only basic func-
tions for reading and writing blocks. There is a template included. See /Sample/
Driver/DriverTemplate/Driver_Template.c for more details.

� An optional device driver for NAND flash devices, which can be easily used with
any kind of NAND flashes.

� An optional device driver for MultiMedia & SD cards using SPI mode or card mode
that can be easily integrated.

� An optional IDE driver, which is also suitable for CompactFlash using either �True
IDE� or �Memory Mapped� mode.

� An optional NOR flash (EEPROM) driver that handles different flash sector sizes.
� An optional proprietary file system (EFS) with native long file name support.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

21

1.3 Basic concepts

1.3.1 emFile structure
emFile is organized in different layers, illustrated in the diagram below. A short
description of each layer�s functionality follows below.

API Layer

The API Layer is the interface between emFile and the user application. It is divided
in two parts Storage API and File System API. The File System API declares file func-
tions in ANSI C standard I/O style, such as FS_FOpen(), FS_FWrite() etc. The API
Layer transfers any calls to these functions to the File System Layer. Currently the
FAT file system or an optional file system, called EFS, are available for emFile. Right
now they cannot be used simultaneously. The Storage API declares the functions
which are required to initialize and access a storage medium. The Storage API allows
sector read and write operations. The API Layer transfers these calls to the Storage
Layer. The Storage API is optimized for applications which do not require file system
functionality like file and directory handling. A typical application which uses the
Storage API could be a USB mass storage device, where data has to be stored on a
medium, but all file system functionality is handled by the host PC.

File System Layer

Storage Layer

Low level routines to access
sectors of a device and check

status.

Synchronisation of device
operations for different file
operations and chaching.

Translation of file operations
to sector operations.

<stdio.h> like functions like
FS_FOpen(), FS_FRead(),

FS_FWrite().

Application Layer
App. Program using

Storage API or FS API.
Responsibility of app.

programmer

Hardware Layer

e
m

F
ile

Low level routines to access
your hardware.

Responsibility of app.
programmer

File System API:

File System APIStorage API
API Layer

Device Driver
(CF / IDE / MMC / NAND / NOR / SD /...)

Driver Layer

Journaling (optional)

FAT / EFS

22 CHAPTER 1 Introduction to emFile

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

File System Layer

The file system layer translates file operations to logical block (sector) operations.
After such a translation, the file system calls the logical block layer and specifies the
corresponding device driver for a device.

Storage Layer

The main purpose of the Storage Layer is to synchronize accesses to a device driver.
Furthermore, it provides a simple interface for the File System API. The Storage
Layer calls a device driver to perform a block operation. It also contains the cache
mechanism.

Driver Layer

Device drivers are low-level routines that are used to access sectors of the device
and to check status. It is hardware independent but depends on the storage medium.

Hardware Layer

These layer contains the low-level routines to access your hardware. These routines
simply read and store fixed length sectors. The structure of the device driver is sim-
ple in order to allow easy integration of your own hardware.

1.3.2 Choice of file system type: FAT vs. EFS
Within emFile, there is a choice among two different file systems. The first, the FAT
file system, is divided into three different sub types, FAT12, FAT16 and FAT32. While
the other, EFS, is a proprietary file system developed by Segger. Choosing a suitable
file system will depend on the environment in which the end application is to operate.

The FAT file system was developed by Microsoft to manage file segments, locate
available clusters and reassemble file for use. Released in 1976, the first version of
the FAT file system was FAT12, which is no longer widely used. It was created for
extremely small storage devices. (The early version of FAT12 did not support manag-
ing directories).

FAT16 is good for use on multiple operating systems because it is supported by all
versions of Microsoft Windows, including DOS, OS/2 and Linux. The newest version,
FAT32, improves upon the FAT16 file system by utilizing a partition/disk much more
efficiently. It is supported by Microsoft Windows 98/ME/2000/XP/2003 and Vista and
as well on Linux based systems.

The EFS file system has been added to emFile as an alternative to the FAT file sys-
tem. EFS has been designed for embedded devices. This file system reduces frag-
mentation of the data by utilizing drive space more efficiently, while still offering
faster access to embedded storage devices. Another benefit of EFS is that there are
no issues concerning long file name (LFN) support. The FAT file system was not
designed for long file name support, limiting names to twelve characters (8.3). LFN
support may be added to any of the FAT file systems, but there are legal issues that
must be settled with Microsoft before end applications make use of this feature. Long
file names are inherent to this proprietary file system relieving it of any legal issues.

1.3.3 Fail safety
Fail safety is the feature of emFile that ensures the consistency of data in case of
unexpected loss of power during a write access to a storage medium. emFile will be
fail-safe only when both the file system (FAT/EFS) and the device driver are fail-safe.
The journaling add-on of emFile to makes the FAT/EFS file systems fail-safe. The
device drivers of emFile are all from design fail-safe. You can find detailed informa-
tion about how the fail-safety works on chapter Journaling (Add-on) on page 505 and
of the description of individual device drivers.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

23

1.3.4 Wear leveling
This is a feature of the NAND and NOR flash device drivers that increase the lifetime
of a storage medium by ensuring that all the storage blocks are equally well used.
The flash storage memories have a limited number of program/erase cycles, typically
around 100000. The manufacturers do not guarantee that the storage device will
work properly if this limit is exceeded. The wear leveling logic implemented in the
device drivers tries to keep the number of program-erase cycles of a storage block as
low as possible. You can find additional information in the description of the respec-
tive device drivers.

24 CHAPTER 1 Introduction to emFile

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

1.4 Implementation notes

1.4.1 File system configuration
The file system is designed to be configurable at runtime. This has various advan-
tages. Most of the configuration is done automatically; the linker links in only code
that is required. This concept allows to putting the file system in a library. The file
system need not to be recompiled when the configuration changes, e.g. a different
driver is used. Compile time configuration is kept to a minimum, primarily to select
the level of multitasking support and the level of debug information. For detailed
information about configuration of emFile, refer to Configuration of emFile on
page 471.

1.4.2 Runtime memory requirements
Because the configuration is selected at runtime the amount of memory required is
not known at compile-time. For this reason a mechanism for runtime memory assign-
ment is required. Runtime memory is typically allocated when required during the
initialization and in most embedded systems never freed.

1.4.3 Initializing the file system
The first thing that needs to be done after the system start-up and before any file
system function can be used, is to call the function FS_Init(). This routine initializes
the internals of the file system.While initializing the file system, you have to add your
target device to the file system. The function FS_X_AddDevices() adds and initializes
the device.

FS_Init()
FS_X_AddDevices()
FS_AssignMemory()
FS_AddDevice()
Optional: Other configuration functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

25

1.5 Development environment (compiler)
The CPU used is of no importance; only an ANSI-compliant C compiler complying with
at least one of the following international standard is required:

� ISO/IEC/ANSI 9899:1990 (C90) with support for C++ style comments (//)
� ISO/IEC 9899:1999 (C99)
� ISO/IEC 14882:1998 (C++)

If your compiler has some limitations, let us know and we will inform you if these will
be a problem when compiling the software. Any compiler for 16/32/64-bit CPUs or
DSPs that we know of can be used; most 8-bit compilers can be used as well.

A C++ compiler is not required, but can be used. The application program can there-
fore also be programmed in C++ if desired.

26 CHAPTER 1 Introduction to emFile

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

27

Chapter 2

Getting started

This chapter provides an introduction to using emFile. It explains how to use the Win-
dows sample, which is an easy way to get a first project with emFile up and running.

28 CHAPTER 2 Getting started

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

2.1 Installation
emFile is shipped as a CD-ROM or as a .zip file in electronic form.
In order to install it, proceed as follows:

� If you received a CD, copy the entire contents to your hard drive into any folder
of your choice. When copying, keep all files in their respective sub- directories.
Make sure the files are not read-only after copying.

� If you received a .zip file, extract it to any folder of your choice, preserving the
directory structure of the .zip file.

2.2 Using the Windows sample
If you have MS Visual C++ 6.00 or any later version available, you will be able to
work with a Windows sample project using emFile. Even if you do not have the
Microsoft compiler, you should read this chapter in order to understand how an appli-
cation can use emFile.

2.2.1 Building the sample program
Open the workspace FS_Start.dsw with MS Visual Studio (for example double-click-
ing it). There is no further configuration necessary. You should be able to build the
application without any error or warning message.

2.2.2 Stepping through the sample
The sample project uses the RAM disk driver for demonstration. The main function of
the sample application Start.c calls the function MainTask(). MainTask() initializes
the file system and executes some basic file system operations.

The sample application Start.c step-by-step:

1. main.c calls MainTask(),
2. MainTask() initializes and adds a device to emFile,
3. checks if volume is low- level formatted and formats if required,
4. checks if volume is high-level formatted and formats if required,
5. outputs the volume name,
6. calls FS_GetFreeVolumeSpace() and outputs the return value - the available free

space of the RAM disk - to console window,
7. creates and opens a file test with write access (File.txt) on the device,
8. writes 4 bytes into the file and closes the file handle or outputs an error mes-

sage,
9. calls FS_GetFreeVolumeSpace() and outputs the return value - the available free

space of the RAM disk - again to console window,
10. outputs an quit message and runs into an endless loop.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

29

The sample step-by-step
1. After starting the debugger by stepping into the application, your screen should look

as the screenshot below. The main function calls MainTask().

Figure 2.1: FS_Start project - main()

30 CHAPTER 2 Getting started

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

2. The first things called from MainTask() is the emFile function FS_Init(). This
function initializes the file system and calls FS_X_AddDevices(). The function
FS_X_AddDevices() is used to add and configure the used device drivers to the
file system. In the example configuration only the RAM disk driver is added.
FS_Init() must be called before using any other emFile function. You should
step over this function.

Figure 2.2: FS_Start project - MainTask()

3. If the initialization was successfully, FS_FormatLLIfRequired() is called. It
checks if the volume is low-level formatted and formats the volume if it is
required. You should step over this function.

4. Afterwards FS_IsHLFormatted() is called. It checks if the volume is high-level
formatted and formats the volume if this is required. You should step over this
function.

5. The volume name is printed in the console window.
6. The emFile function FS_GetVolumeFreeSpace() is called and the return value is

written into the console window.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

31

7. Afterwards, you should get to the emFile function call FS_FOpen(). This function
creates a file named file.txt in the root directory of your RAM disk. Stepping
over this function should return the address of an FS_FILE structure. In case of
any error, it would return 0, indicating that the file could not be created.

Figure 2.3: FS_Start project - MainTask()

8. If FS_FOpen() returns a valid pointer to an FS_FILE structure, the sample appli-
cation will write a small ASCII string to this file by calling the emFile function
FS_FWrite(). Step over this function. If a problem occurs, compare the return
value of FS_FWrite() with the length of the ASCII string, which should be writ-
ten. FS_FWrite() returns the number of elements which have been written.
If no problem occurs the function emFile function FS_FClose() should be
reached. FS_FClose() closes the file handle for file.txt. Step over this func-
tion.

9. Continue stepping over until you reach the call to the call of
FS_GetVolumeFreeSpace().The emFile function FS_GetVolumeFreeSpace()
returns available free drive space in bytes. After you step over this function, the
variable v should have a value greater than zero.

10. The return value is written in the console window.

Figure 2.4: FS_Start project - console output

32 CHAPTER 2 Getting started

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

2.2.3 Further source code examples
Further source code examples which demonstrate directory operations and perfor-
mance measuring are available. All emFile source code examples are located in
the.\Sample\API\ directory under your emFile directory.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

33

Chapter 3

Running emFile on target hard-
ware

This chapter explains how to integrate and run emFile on your target hardware.
It explains this process step-by-step.

34 CHAPTER 3 Running emFile on target hardware

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

Integrating emFile

The emFile default configuration contains a single device: a RAM disk. This should
always be the first step to check the proper function of emFile with your target hard-
ware.

We assume that you are familiar with the tools you have selected for your project
(compiler, project manager, linker, etc.). You should therefore be able to add files,
add directories to the include search path, and so on. It is also assumed that you are
familiar with the OS that you will be using in your target system (if you are using
one). In this document the IAR Embedded Workbench® IDE is used for all examples
and screenshots, but every other ANSI C toolchain can also be used. It is also possi-
ble to use make files; in this case, when we say �add to the project�, this translates
into �add to the make file�.

Procedure to follow

Integration of emFile is a relatively simple process, which consists of the following
steps:

� Step 1: Creating a start project without emFile
� Step 2: Adding emFile to the start project
� Step 3: Adding the device driver
� Step 4: Activating the driver
� Step 5: Adjusting the RAM usage

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

35

3.1 Step 1: Creating a simple project without emFile
We recommend that you create a small �hello world� program for your system. That
project should already use your OS and there should be a way to display text on a
screen or serial port.

If you are using embOS, you can use the start project shipped with the OS for this
purpose.

Figure 3.1: Start project

36 CHAPTER 3 Running emFile on target hardware

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

3.2 Step 2: Adding emFile to the start project
Add all source files in the following directories (and their subdirectories) to your
project:

� Application
• Config
� FS
� Sample\Driver\RAM
� Sample\OS\ (Optional, add if you use an RTOS. Add only the file compatible to

the used operating system.)

It is recommended to keep the provided folder structure.

Figure 3.2: emFile project structure

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

37

Configuring the include path

The include path is the path in which the compiler looks for include files. In cases
where the included files (typically header files, .h) do not reside in the same direc-
tory as the C file to compile, an include path needs to be set. In order to build the
project with all added files, you will need to add the following directories to your
include path:

• Config
• FS\

Figure 3.3: Configure the include path

Select the start application

For quick and easy testing of your emFile integration, start with the code found in the
folder Application. Exclude all files in the Application folder of your project except
the supplied main.c and Start.c.

The application performs the following steps:

1. main.c calls MainTask(),
2. MainTask() initializes and adds a device to emFile,
3. checks if volume is low- level formatted and formats if required,
4. checks if volume is high-level formatted and formats if required,
5. outputs the volume name,
6. calls FS_GetFreeVolumeSpace() and outputs the return value - the available

total space of the RAM disk - to console window,
7. creates and opens a file test with write access (File.txt) on the device,
8. writes 4 bytes into the file and closes the file handle or outputs an error mes-

sage,
9. calls FS_GetFreeVolumeSpace() and outputs the return value - the available free

space of the RAM disk - again to console window,
10. outputs an quit message and runs into an endless loop.

Build the project and test it

Build the project. It should compile without errors and warnings. If you encounter
any problem during the build process, check your include path and your project con-
figuration settings. The start application should print out the storage space of the
device twice, once before a file has been written to the device and once afterwards.

38 CHAPTER 3 Running emFile on target hardware

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

3.3 Step 3: Adding the device driver
To configure emFile with a device driver 2 things need to be done at the same time:

� Adding device driver source to project
� Adding hardware routines to project

Every recommended step is explained in the following sections. For example, the
implementation of the MMC/SD driver is shown, but all steps should be easy to adapt
on every other device driver implementation.

3.3.1 Adding the device driver source to project
Add the driver sources to the project and add the directory to the include path.

Example

Figure 3.4: Add driver sources to project

Most drivers require additional hardware routines to work with the specific hardware.
If your driver requires low-level I/O routines to access the hardware, you will have to
provide them.

Drivers which require hardware routines are:

� NAND
� MMC/SD cards
� Compact flash / IDE

Drivers which not require hardware routines are:

� NOR flash
� RAM

Nearly all drivers have to be configured before they can be used. The runtime config-
uration functions which specify for example the memory addresses and the size of
memory are located in the configuration file of the respective driver. All required con-
figurations are explained in configuration section of the respective driver. If you use
one of the drivers which do not require hardware routines skip the next section and
refer to Step 4: Activating the driver on page 40.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

39

3.3.2 Adding hardware routines to project
A template with empty function bodies and in most cases one ore more sample
implementations are supplied for every driver which requires hardware routines. The
easiest way to start is to use one of the ready-to-use samples. The ready-to-use
samples can be found in the subfolders of Sample\Driver\<DRIVER_DIR>\. You
should check the Readme.txt file located in the driver directory to see which samples
are included. If there is one which is a good or close match for your hardware, it
should be used. Otherwise, use the template to implement the hardware routines.

The template is a skeleton driver which contains empty implementations of the
required functions and is the ideal base to start the implementation of hardware spe-
cific I/O routines.

What to do

Copy the compatible hardware function sample or the template into a subdirectory of
your work directory and add it to your project. The template file is located in the
Sample\Driver\<DRIVER_DIR>\ directory; the example implementations are located
in the respective directories. If you start the implementation of hardware routines
with the hardware routine template, refer to Device drivers on page 213 for detailed
information about the implementation of the driver specific hardware functions, else
refer to section Step 4: Activating the driver on page 40.

Note: You cannot run and test the project with the new driver on your hardware
as long as you have not added the proper configuration file for the driver to your
project. Refer to section Step 4: Activating the driver on page 40 for more informa-
tion about the activation of the driver with the configuration file.

40 CHAPTER 3 Running emFile on target hardware

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

3.4 Step 4: Activating the driver
After adding the driver source, and if required the hardware function implementation
to the project, copy also the Config<DRIVERNAME>.c file (for example,
ConfigMMC_SPI.c for the MMC/SD card driver using the SPI mode) into the Config
directory of your emFile work directory. Add it afterwards to your project as show
below.

Example

Figure 3.5: Adding template to your project

In the configuration files are all runtime configuration functions of the file system
located. The configuration files include a start configuration which allows a quick and
easy start with every driver. The most important function for the beginning is
FS_X_AddDevices(). It activates and configures if required the driver. Driver which
not require hardware routines has to configured before they can be used.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

41

3.4.1 Modifying the runtime configuration
The example on the next page adds a single CFI compliant NOR flash chip with a 16-
bit interface and a size of 256 Mbytes to the file system. The base address, the start
address and the size of the NOR flash are defined using the macros
FLASH0_BASE_ADDR, FLASH0_START_ADDR and FLASH0_SIZE. Normally, only the
Defines, configurable section of the configuration files requires changes for typi-
cal embedded systems. The Public code section which includes the time and date
functions and FS_X_AddDevices() does not require modifications in most systems.

Example
/***
*
* Defines, configurable
*
* This section is the only section which requires changes for
* typical embedded systems using the NOR flash driver with a
* single device.
*
**
*/
#define ALLOC_SIZE 0x10000 // Size of memory dedicated to the file
 // system. This value should be fine-tuned
 // according for your system.
#define FLASH0_BASE_ADDR 0x40000000 // Base addr of the NOR flash device to
 // be used as storage
#define FLASH0_START_ADDR 0x40000000 // Start addr of the first sector be used
 // as storage. If the entire chip is
 // used for file system, it is identical to
 // the base addr.
#define FLASH0_SIZE 0x200000 // Number of bytes to be used for storage

/***
*
* Static data.
*
* This section does not require modifications in most systems.
*
**
*/
static U32 _aMemBlock[ALLOC_SIZE / 4]; // Memory pool used for semi-dynamic
 // allocation in FS_AssignMemory().
/***
*
* Public code
*
* This section does not require modifications in most systems.
*
**
*/

/***
*
* FS_X_AddDevices
*
* Function description
* This function is called by the FS during FS_Init().
* It is supposed to add all devices, using primarily FS_AddDevice().
*/
void FS_X_AddDevices(void) {
 FS_AssignMemory(&_aMemBlock[0], sizeof(_aMemBlock));
 //
 // Add driver
 //
 FS_AddDevice(&FS_NOR_Driver);
 //

42 CHAPTER 3 Running emFile on target hardware

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

 // Confgure the NOR flash interface
 //
 FS_NOR_SetPhyType(0, &FS_NOR_PHY_CFI_1x16);
 FS_NOR_Configure(0, FLASH0_BASE_ADDR, FLASH0_START_ADDR, FLASH0_SIZE);
 //
 // Configure a read buffer for the file data.
 //
 FS_ConfigFileBufferDefault(512, 0);
}

After the driver has been added, the configuration functions (in this example
FS_NOR_SetPhyType() and FS_NOR_Configure()) should be called. Detailed informa-
tion about the driver configuration can be found in the configuration section of the
respective driver.

Refer to section Runtime configuration on page 472 for detailed information about
the other runtime configuration of the file system.

Before compiling and running the sample application with the added driver, you have
to exclude ConfigRAMDisk.c from project.

Note for drivers which require hardware routines:If you have only added the
template with empty function bodies until now, the project should compile without
errors or warning messages. But you can only run the project on your hardware if
you have finished the implementation of the hardware functions.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

43

3.5 Step 5: Adjusting the RAM usage
The file system needs RAM for management purposes in various places. The amount
of RAM required depends primarily on the configuration, especially the drivers used.
The drivers which have their own level of management (such as NOR / NAND drivers)
in general need more RAM than the �simple� drivers for hard drives, compact flash or
SD cards.

Every driver needs to allocate RAM. The file system allocates RAM in the initialization
phase and holds it while the file system is running. The macro ALLOC_SIZE which is
located in the respective driver configuration file specifies the size of RAM used by
the file system. This value should be fine-tuned according to the requirements of
your target system.

What to do

Per default, ALLOC_SIZE is set to a value which should be appropriate for most target
systems. Nevertheless, you should adjust it in order to avoid wasting. Once your file
system project is up and running, you can check the real RAM requirement of the
driver with the public auxiliary variable FS_NumBytesAllocated which is also located
in the configuration file of the respective driver. Check the value of
FS_NumBytesAllocated after the initialization of the file system (FS_Init()) and
after a volume has been mounted. At this point FS_NumBytesAllocated can be used
as reference for the dynamic memory usage of emFile. You should reserve a few
more bytes for emFile as the value of FS_NumBytesAllocated is at this point, since
every file which is opened needs dynamic memory for maintenance information. For
more information about resource usage of the file handlers, please refer to Dynamic
RAM requirements on page 501.

Note: If you define ALLOC_SIZE with a value which is smaller than the appropri-
ate size, the file system will run into FS_X_Panic(). If you define ALLOC_SIZE with a
value which is above the limits of your target system, the linker will give an error
during the build process of the project.

44 CHAPTER 3 Running emFile on target hardware

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

45

Chapter 4

API functions

In this chapter, you will find a description of each emFile API functions. An application
should only access emFile by these functions.

46 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.1 API function overview
The table below lists the available API functions within their respective categories.

Function Description

File system control functions

FS_AddOnExitHandler()
Registers a callback to be invoked when the
file system de-initializes.

FS_Init() Starts the file system.
FS_DeInit() De-initializes the file system.
FS_Mount() Mounts a volume.
FS_MountEx() Mounts a volume.

FS_SetAutoMount()
Sets the mount behavior of the specified
volume.

FS_Sync() Synchronizes the given volume.

FS_Unmount()
Closes all file/directory handles and
unmounts the volume.

FS_UnmountForced()
Invalidates all file/directory handles and
unmounts the volume.

File system configuration functions

FS_AddDevice()
Adds and makes a device driver accessible
to emFile.

FS_AddPhysDevice() Adds a device driver physical to emFile.
FS_AssignMemory() Assigns memory to the file system.

FS_ConfigFileBufferDefault()
Configures the file buffers which can be
used by emFile to improve the performance
when reading/writing small blocks of data.

FS_ConfigUpdateDirOnWrite()
Enables that writing to a file always updates
the directory entry.

FS_FAT_ConfigMaintainFATCopy()
Enables/disables the update of the second
FAT allocation table.

FS_FAT_ConfigUseFSInfoSector()
Enables/disables the usage of the informa-
tion from FSInfoSector.

FS_LOGVOL_Create() Creates a logical volume.
FS_LOGVOL_AddDevice() Adds a device to a logical volume.

FS_SetFileBufferFlags()
Changes the file buffer flags of a specified
file.

FS_SetFileWriteMode()
Allows the user to modify the file writing
mode emFile uses.

FS_SetFileWriteModeEx() Sets the write mode of a volume.

FS_SetMemHandler()
Sets the memory allocation routines when
file system shall use external memory allo-
cation routines.

FS_SetMaxSectorSize() Configures the max sector size.
File access functions

FS_FClose() Closes a file.
FS_FOpen() Opens a file.
FS_FOpenEx() Opens a file.
FS_FRead() Reads data from a file.
FS_FWrite() Writes data to a file.
FS_Read() Reads data from a file.

FS_SyncFile()
Cleans the write buffer and updates the
management information of a file to storage
medium.

Table 4.1: emFile API function overview

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

47

FS_Write() Writes data to a file.
File positioning functions

FS_FSeek() Sets position of a file pointer.
FS_FTell() Returns position of a file pointer.
FS_GetFilePos() Returns position of a file pointer.
FS_SetFilePos() Sets position of a file pointer.

Operations on files
FS_CopyFile() Copies a file.

FS_CopyFileEx()
Copies a file using a buffer provided by the
application.

FS_GetFileAttributes()
Retrieves the attributes of a given file or
directory.

FS_GetFileTime()
Retrieves the creation, access or modify
timestamp of a given file or directory.

FS_GetFileTimeEx()
Retrieves the timestamp of a given file or
directory.

FS_ModifyFileAttributes()
Sets and clears attributes of given file or
directory.

FS_Move()
Moves an existing file or a directory, includ-
ing its children.

FS_Remove() Deletes a file.
FS_Rename() Renames a file/directory.
FS_SetEndOfFile() Sets the end of a file.

FS_SetFileAttributes()
Sets the attributes of a given file or direc-
tory.

FS_SetFileTime()
Sets the timestamp of a given file or direc-
tory.

FS_SetFileTimeEx()
Sets the creation, access or modify times-
tamp of a given file or directory.

FS_SetFileSize() Modifies the size of a file.
FS_Truncate() Truncates a file to a specified size.
FS_Verify() Verifies a file with a given data buffer.

FS_WipeFile()
Overwrites the contents of a file with ran-
dom data.

Directory functions
FS_CreateDir() Creates a directory or a path to a directory.
FS_FindClose() Closes a directory.
FS_FindFirstFile() Searches for a file in a specified directory.
FS_FindNextFile() Continues file search in a directory.
FS_MkDir() Creates a directory.
FS_RmDir() Removes a directory.

Formatting a medium
FS_Format() High-level formats a device.

FS_FormatLLIfRequired()
Checks if a device is low-level formatted
and formats it if required.

FS_FormatLow() Low-level formats a device.
FS_IsHLFormatted() Checks if a device is high-level formatted.
FS_IsLLFormatted() Checks if a device is low-level formatted.

File system extended functions
FS_CheckDisk() Checks and repairs a FAT volume.

FS_CheckDisk_ErrCode2Text()
Returns an error string to a specific check-
disk error code.

Function Description

Table 4.1: emFile API function overview (Continued)

48 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

FS_CreateMBR() Creates a Master Boot Record.
FS_FileTimeToTimeStamp() Converts a file time to a timestamp.

FS_FreeSectors()
Informs the storage layer about unused
sectors.

FS_GetFileSize()
Retrieves the current file size of a given file
pointer.

FS_GetMaxSectorSize() Returns the logical sector size.
FS_GetNumFilesOpen() Returns the number of opened files.
FS_GetNumVolumes() Returns the available volumes.
FS_GetPartitionInfo() Returns information about a disk partition.
FS_GetVolumeFreeSpace() Gets the free space of a given volume.

FS_GetVolumeFreeSpaceKB()
Returns the free space of a given volume in
kilo bytes.

FS_GetVolumeInfo() Get volume information.
FS_GetVolumeInfoEx() Get volume information.
FS_GetVolumeLabel() Retrieves the label of a given volume index.

FS_GetVolumeName()
Retrieves the name of a given volume
index.

FS_GetVolumeSize() Gets the size of a given volume.

FS_GetVolumeSizeKB()
Returns the size of a given volume in kilo
bytes.

FS_GetVolumeStatus() Returns the status of a volume.

FS_IsVolumeMounted()
Returns if the volume is mounted and has
correct file system information.

FS_Lock() Claims exclusive access to file system.
FS_LockVolume() Claims exclusive access to a volume.

FS_SetBusyLEDCallback()
Sets a busy LED callback for a specific vol-
ume.

FS_SetMemAccessCallback()
Registers a 0-copy check function for a spe-
cific volume.

FS_SetVolumeLabel() Sets a label to a specific volume.
FS_TimeStampToFileTime() Converts a timestamp to a file time.
FS_Unlock() Releases exclusive access to file system.
FS_UnlockVolume() Releases exclusive access to a volume.

Storage layer functions

FS_STORAGE_Clean()
Performs garbage collection on the storage
medium.

FS_STORAGE_CleanOne()
Performs a single garbage collection step on
the storage medium.

FS_STORAGE_FreeSectors() Informs the driver about unused sectors.
FS_STORAGE_GetCounters() Returns the statistic counters.
FS_STORAGE_GetDeviceInfo() Returns the device info.
FS_STORAGE_Init() Initializes the driver and OS if necessary.
FS_STORAGE_ReadSector() Reads a sector from a device.
FS_STORAGE_ReadSectors() Reads multiple sectors from a device.
FS_STORAGE_RefreshSectors() Rewrites a sector with the original data.
FS_STORAGE_ResetCounters() Sets the statistic counters to 0.
FS_STORAGE_Sync() Writes cached data to the storage medium.

FS_STORAGE_SyncSectors()
Writes cached sector data to storage
medium.

FS_STORAGE_Unmount()
Low-level unmount. Unmounts a volume on
driver layer.

Function Description

Table 4.1: emFile API function overview (Continued)

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

49

FS_STORAGE_WriteSector() Writes a sector to a device.
FS_STORAGE_WriteSectors() Writes multiple sectors to a device.

FAT related functions

FS_FAT_GrowRootDir()
Lets the root directory of a FAT32 volume
grow.

FS_FAT_SupportLFN()
Add long file name support to the file sys-
tem.

FS_FAT_DisableLFN()
Disables the support for the long file
names.

FS_FormatSD()
High-level formats a device according to the
SD card file system specification.

Error-handling functions

FS_ClearErr()
Clears the error status of a given file
pointer.

FS_ErrorNo2Text() Retrieves text for a given error code.
FS_FEof() Tests for end-of-file on a given file pointer.

FS_FError()
Returns the error code of a given file
pointer.

Obsolete functions
FS_CloseDir() Closes a directory stream.
FS_DirEnt2Attr() Gets the directory entry attributes.
FS_DirEnt2Name() Gets the directory entry name.
FS_DirEnt2Size() Gets the directory entry file size.
FS_DirEnt2Time() Gets the directory entry timestamp.
FS_GetDeviceInfo() Returns the device info.
FS_GetNumFiles() Gets the number of files in a directory.
FS_InitStorage() Initializes the driver and OS if necessary.
FS_OpenDir() Opens a directory stream.
FS_ReadDir() Reads next directory entry.
FS_ReadSector() Reads a sector from a device.
FS_RewindDir() Resets position of directory stream.
FS_WriteSector() Writes a sector to a device.

FS_UnmountLL()
Low-level unmount. Unmounts a volume on
driver layer.

Function Description

Table 4.1: emFile API function overview (Continued)

50 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.2 File system control functions

4.2.1 FS_AddOnExitHandler()
Description

Registers a callback to be invoked when the file system de-initializes.

Prototype
void FS_AddOnExitHandler(FS_ON_EXIT_CB * pCB,

 void (* pfOnExit)(void));

Additional Information

The pCB memory location is used internally by emFile and it should remain valid from
the moment the handler is registered until the FS_DeInit() function is called.

The FS_DeInit() invokes all the registered callback function in reversed order that is
the last registered function is called first.

In order to use this function the binary compile time switch FS_SUPPORT_DEINIT has
to be enabled (has to be set to �1�).

Parameter Description

pCB
IN: Structure holding the callback information.
OUT: ---

pfOnExit Pointer to the callback function to invoke.
Table 4.2: FS_AddOnExitHandler() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

51

4.2.2 FS_Init()
Description

Starts the file system.

Prototype
void FS_Init(void);

Additional Information

FS_Init() initializes the file system and creates resources required for an OS inte-
gration of emFile. This function must be called before any other emFile function.

Example

#include "FS.h"

void main(void) {
 FS_Init();
 //
 // Access file system
 //
 }

52 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.2.3 FS_DeInit()
Description

De-initializes the file system. All resources which are occupied by the file system, are
freed. All static variables for each layer are reset in order to guarantee that emFile is
in a known state after de-initialization.

Please use this function when you are planning to reset emFile during run-time. For
example this is the case if your target application uses a software reboot which re-
initializes the target application.

Prototype
void FS_DeInit(void);

Additional information

In order to use this function the binary compile time switch FS_SUPPORT_DEINIT has
to be enabled (has to be set to �1�).

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

53

4.2.4 FS_Mount()
Description

Mounts a volume.

Prototype
int FS_Mount(const char * sVolumeName);

Return value

== 0: Volume is not mounted
== 1: Volume is mounted read-only
== 3: Volume is mounted read/write
< 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

This function can be useful if the default auto mount behavior has been changed with
FS_SetAutoMount(). Normally, it is not required to mount a device with FS_Mount(),
since the file system auto mounts all accessible volumes in read/write mode. Refer to
FS_SetAutoMount() on page 55 for an overview about the different auto mount
types.

Parameter Description

sVolumeName
sVolumeName is the name of a volume. If not specified, the first
device in the volume table will be used.

Table 4.3: FS_Mount() parameter list

54 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.2.5 FS_MountEx()
Description

Mounts a volume.

Prototype
int FS_MountEx(const char * sVolumeName, U8 MountType);

Return value

== 0: Volume is not mounted
== 1: Volume is mounted read-only
== 3: Volume is mounted read/write
< 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

This function can be useful if the default auto mount behavior has been changed with
FS_SetAutoMount(). Normally, it is not required to mount a device with
FS_MountEx(), since the file system auto mounts all accessible volumes in read/write
mode. Refer to FS_SetAutoMount() on page 55 for an overview about the different
auto mount types.

Parameter Description

sVolumeName
sVolumeName is the name of a volume. If not specified, the first
device in the volume table will be used.

MountType Specifies how the volume should be mounted.
Table 4.4: FS_MountEx() parameter list

Permitted values for parameter MountType

FS_MOUNT_R The volume will be read only auto mounted.
FS_MOUNT_RW The volume will be read/write auto mounted.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

55

4.2.6 FS_SetAutoMount()
Description

Sets the mount behavior of the specified volume.

Prototype
void FS_SetAutoMount(const char * sVolumeName,

 U8 MountType);

Additional Information

The file system auto mounts all volumes default in read/write mode.

Parameter Description

sVolumeName
sVolumeName is the name of a volume. If not specified, the first
device in the volume table will be used.

MountType Specifies the auto mount behavior.
Table 4.5: FS_SetAutoMount() parameter list

Permitted values for parameter MountType

FS_MOUNT_R The volume will be read only auto mounted.
FS_MOUNT_RW The volume will be read/write auto mounted.
0 Disables auto mount for the volume.

56 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.2.7 FS_Sync()
Description

Writes to storage medium all modifications buffered in RAM by the file system.

Prototype
int FS_Sync(const char * sVolumeName);

Return value

== 0: Volume synchronized.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional information

The function cleans the write buffer and updates the management information of all
opened file handles. The file handles are not closed. If configured, it also cleans the
write cache and the journal. FS_Sync() can be called from the same task as the one
writing data or from a different task.

Parameter Description

sVolumeName sVolumeName is the name of a volume.
Table 4.6: FS_Sync() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

57

4.2.8 FS_Unmount()
Description

Closes all file/directory handles and unmounts the volume.

Prototype
void FS_Unmount(const char * sVolumeName);

Additional Information

FS_Unmount() should be called before a volume is removed. It guarantees that all file
handles to this volume are closed and the directory entries for the files are updated.
This function is also useful when shutting down the system.

Example

#include "FS.h"

void Shutdown(void) {
 FS_Unmount(""); /* Close all file handles and unmount the default volume. */
}

Parameter Description

sVolumeName
sVolumeName is the name of a volume. If not specified, the first
device in the volume table will be used.

Table 4.7: FS_Unmount() parameter list

58 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.2.9 FS_UnmountForced()
Description

Invalidates all file/directory handles and unmounts the volume.

Prototype
void FS_UnmountForced(const char * sVolumeName);

Additional Information

FS_UnmountForced() should be called if a volume has been removed before it could
be regular unmounted. It invalidates all file handles. If you use FS_UnmountForced()
there is no guarantee that all file handles to this volume are closed and the directory
entries for the files are updated.

Parameter Description

sVolumeName
sVolumeName is the name of a volume. If not specified, the first
device in the volume table will be used.

Table 4.8: FS_UnmountForced() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

59

4.3 File system configuration functions
The file system control functions listed in this section can only be used in the runtime
configuration phase. This means in practice that they can only be called from within
FS_X_AddDevices(), refer to FS_X_AddDevices() on page 472 for more information
about this function.

4.3.1 FS_AddDevice()
Description

Adds a device to emFile.

This consists of 2 operations:

1. Add physical device. This initialises the driver, allowing the driver to identify the stor-
age device as far as required and allocate memory required for driver level manage-
ment of the device. This makes sector operations possible.

2. Add the devices as a logical device. This makes it possible to mount the device,
making it accessible for the file system and allowing file operations.

Prototype
FS_VOLUME * FS_AddDevice(const FS_DEVICE_TYPE * pDevType);

Return value

Pointer of the volume added to emFile.

Additional Information

This function can be used to add an additional device driver.

Parameter Description

pDevType
Pointer to device driver table. See Device driver function table on
page 449 for additional information.

Table 4.9: FS_AddDevice() parameter list

60 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.3.2 FS_AddPhysDevice()
Description

Adds a device physical to emFile. This initialises the driver, allowing the driver to identify
the storage device as far as required and allocate memory required for driver level man-
agement of the device. This makes sector operations possible.

Prototype
int FS_AddPhysDevice(const FS_DEVICE_TYPE * pDevType);

Return value

>= 0: Unit number of the device.
< 0: An error has occurred.

Additional Information

Devices that are only physically added to emFile can be combined to a logical vol-
ume. Refer to FS_LOGVOL_Create() on page 65 and FS_LOGVOL_AddDevice() on
page 66 for information about logical volumes.

Parameter Description

pDevType
Pointer to device driver table. See Device driver function table on
page 449 for additional information.

Table 4.10: FS_AddDevice() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

61

4.3.3 FS_AssignMemory()
Description

Assigns memory to the file system.

Prototype
void FS_AssignMemory(U32 * pMem, U32 NumBytes);

Additional Information

If the internal memory allocation functions (FS_SUPPORT_EXT_MEM_MANAGER ==
0) are used, this function is the first function that is called in FS_X_AddDevices().
Otherwise this function does nothing. The memory assigned is used by the file sys-
tem to satisfy runtime memory requirements.

Parameter Description

pMem
A pointer to the start of the memory region which should be
assigned.

NumBytes Number of bytes which should be assigned.
Table 4.11: FS_AssignMemory() parameter list

62 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.3.4 FS_ConfigFileBufferDefault()
Description

emFile can make use of file buffers in order to increase reading/writing speeds when
reading/writing a file in small chunks. In order to use file buffers the compile time
switch FS_USE_FILE_BUFFER has to be set to 1. For more information about compile
time switches, please refer to Compile time configuration on page 474.

In order to make file buffers usable for emFile, you have to configure a buffer size,
using this function.

Prototype
void FS_ConfigFileBufferDefault(int BufferSize, int Flags);

Additional information

It is only allowed to call this function once, in FS_X_AddDevices(). Every file has its
own file buffer and the buffer size passed to this function is the same for all files. The
same buffer is used for read and write operations. The buffer can be configured for
read operations only (Flags set to 0) and changed to work also as a write buffer
using FS_SetFileBufferFlags() for specific files.

For maximum performance it is recommended to set the size of the buffer to logical
sector size. Smaller buffer sizes can also be used to reduce the RAM usage.

Parameter Description

BufferSize Size of the file buffer. This buffer size will be used for every file.

Flags

Allowed values:
==0 Use the buffer for read operations only.
==FS_FILE_BUFFER_WRITE Use the buffer for read and write
operations.

Table 4.12: FS_ConfigFileBufferDefault() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

63

4.3.5 FS_FAT_ConfigMaintainFATCopy()
Description

Sets if the second copy of the FAT allocation table should be kept up to date.

Prototype
void FS_FAT_ConfigMaintainFATCopy(int OnOff);

Additional information

The function is available only when the compile-time switch FS_MAINTAIN_FAT_COPY
is set to 1. For more information about compile time switches, please refer to Com-
pile time configuration on page 474.

Parameter Description

OnOff
==1 second allocation table should be updated
==0 do not update the backup allocation table (default)

Table 4.13: FS_FAT_ConfigMaintainFATCopy() parameter list

64 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.3.6 FS_FAT_ConfigUseFSInfoSector()
Description

Sets if the information stored in the FSInfoSector of a FAT32 volume should be eval-
uated.

Prototype
void FS_FAT_ConfigUseFSInfoSector(int OnOff);

Additional information

The FSInfoSector stores the number of free clusters and the position of the next free
cluster. The number of free clusters is used by emFile to compute the available free
space on the storage medium on an efficient way. Without this information the avail-
able free space must be determined by visiting all FAT entries and counting which of
them are not allocated. This operation is slow on large storage mediums. Unfortu-
nately, the information stored in the FSInfoSector is not 100% reliable. Applications
which require very reliable information about the available free space can disable the
use of information from FSInfoSector by calling this function withe the OnOff param-
eter set to 0.

To take effect, the function must be called before any FAT32 volume is mounted. The
function is available only when the compile-time switch FS_FAT_USE_FSINFO_SECTOR is
set to 1. For more information about compile time switches, please refer to Compile
time configuration on page 474.

Parameter Description

OnOff
==1 use the information from FSInfoSector (default)
==0 ignore FSInfoSector information

Table 4.14: FS_FAT_ConfigUseFSInfoSector() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

65

4.3.7 FS_LOGVOL_Create()
Description

Creates a logical volume. A logical volume is the representation of one or more phys-
ical devices as a single device. It allows treating multiple physical devices as one
larger device; the file system takes care of selecting the correct location on the cor-
rect physical device when reading or writing to the logical volume. Logical volumes
are typically used if multiple flash devices (NOR or NAND) are present, but should be
presented to the application the same way as single device with the combined capac-
ity.

Prototype
int FS_LOGVOL_Create (const char * sVolName);

Additional Information

Normally, all devices are added indi-
vidually using FS_AddDevice(). This
function adds the devices physically
and logically to the file system, this
means that every 1 Gbyte NAND
devices can be accessed individually.
Refer to FS_AddDevice() on page 59
for detailed information.

In contrast to adding all devices
individually, all devices can be com-
bined in a logical volume with a total
size of all combined devices.

To create a logical volume the fol-
lowing steps have to be done:

1.The available device has to be physi-
cally added to the file system with
FS_AddPhysDevice().
2.A logical volume has to be cre-
ated. with FS_LOGVOL_Create().
3.The devices which are physically
added to the file system has to be
added to the logical volume with
FS_LOGVOL_AddDevice().

Parameter Description

sVolName Name for the logical volume.
Table 4.15: FS_LOGVOL_Create() parameter list

N
A

N
D

:2
1 G

b
yte

N
A

N
D

:3
1 G

b
yte

N
A

N
D

:0
1 G

b
yte

N
A

N
D

:1
1 G

b
yte

NAND devices - 4x1 Gbyte
1 G

b
yte

1 G
b
yte

1 G
b
yte

1 G
b
yte

NAND device - 1x4 Gbytes

66 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.3.8 FS_LOGVOL_AddDevice()
Description

Adds a device to a logical volume.

Prototype
int FS_LOGVOL_AddDevice(const char * sLogVolName,
 const FS_DEVICE_TYPE * pDevice,
 U8 Unit,
 U32 StartOff,

 U32 NumSectors);

Additional information

Only devices with an identical sector size can be combined to a logical volume. All
additional added devices need to have the same sector size as the first physical
device of the logical volume.

Example

void FS_X_AddDevices(void) {
 void * pRAM;
 U8 Unit1, Unit2;

 //
 // Add the RAM drives physical to FS
 //
 Unit1 = FS_AddPhysDevice(&FS_RAMDISK_Driver);
 Unit2 = FS_AddPhysDevice(&FS_RAMDISK_Driver);
 //
 // Allocate the required memory and configure the RAM drives
 //
 pRAM = FS_Alloc(RAMDISK_NUM_SECTORS * RAMDISK_BYTES_PER_SECTOR);
 FS_RAMDISK_Configure(Unit1, pRAM, RAMDISK_BYTES_PER_SECTOR, RAMDISK_NUM_SECTORS);
 pRAM = FS_Alloc(RAMDISK_NUM_SECTORS * RAMDISK_BYTES_PER_SECTOR);
 FS_RAMDISK_Configure(Unit2, pRAM, RAMDISK_BYTES_PER_SECTOR, RAMDISK_NUM_SECTORS);
 //
 // Create a logical volume to composite the RAM drives
 //
 FS_LOGVOL_Create("ramc");
 //
 // Add the devices
 //
 FS_LOGVOL_AddDevice("ramc", &FS_RAMDISK_Driver, Unit1, 0, 0);
 FS_LOGVOL_AddDevice("ramc", &FS_RAMDISK_Driver, Unit2, 0, 0);

 if (FS_IsHLFormatted("ramc") == 0) {
 FS_Format("ramc", NULL);
 }
}

Parameter Description

sVolName Name of the logical volume.
pDevice Pointer to device type that should be added.
Unit Number of unit that should be added.
StartOff Offset to define the start of sector range that should be used.
NumSector Number of sectors that should be used.

Table 4.16: FS_LOGVOL_AddDevice() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

67

4.3.9 FS_SetFileBufferFlags()
Description

Allows to change the file buffer flags for a specific file. This allows the user to have
different file buffers (read-only, read/write, etc.) for different files.

Prototype
void FS_SetFileBufferFlags(FS_FILE * pFile, int Flags);

Additional information

It is only allowed to call this function immediately after opening a file. If read/write
operations to the file have already been performed, the file has to be closed and re-
opened in order to change the file buffer settings. This is necessary to guarantee,
that all the file buffer is synchronized before changing the usage flags.

When the buffer is also used for write operations, the data is written to the storage
medium only when the buffer is full or when the data crosses the boundary of a logi-
cal sector. This reduces the number of write accesses and can lead to significant per-
formance improvements especially when writing a lot of smaller chunks.

Old name
FS_ConfigFileBufferFlags

Example

The following sample program shows how to configure the file buffer for read and
write operation.

void SampleFileBufferFlags(void) {
 FS_FILE * pFile;

 pFile = FS_FOpen("test.txt", "w");
 if (pFile) {
 //
 // Set the file buffer for read and write operation.
 //
 FS_SetFileBufferFlags(pFile, FS_FILE_BUFFER_WRITE);
 //
 // Data is written to file buffer.
 //
 FS_Write(pFile, "Test", 4);
 //
 // Write the data from file buffer to storage and close the file.
 //
 FS_FClose(pFile);
 }
}

Parameter Description

pFile Handle of file which buffer flags shall be changed

Flags

Allowed values:
==0 Use the buffer for read operations only.
==FS_FILE_BUFFER_WRITE Use the buffer for read and write
operations.

Table 4.17: FS_SetFileBufferFlags() parameter list

68 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.3.10 FS_SetFileWriteMode()
Description

Sets the default write mode.

Prototype
void FS_SetFileWriteMode(FS_WRITEMODE WriteMode);

Valid values for parameter WriteMode are:

Additional information

This function can be called to configure which mode emFile should use when writing
files. By default emFile uses the safe write mode which allows maximum fail safe
behavior, since the FAT and the directory entry is updated on every write. There are
different write modes available, which are described above in detail.

If the fast write mode is set the update of the FAT is done using a special algorithm.
When writing to the file for the first time, the file system checks how many clusters
in series are empty starting from the first one the file occupies. This cluster chain is
remembered, so that if the file grows and needs an additional cluster, the FAT must
not to be read again in order to find the next free cluster. The FAT is only modified if
necessary, which is the case when:

� all clusters of the cached free-cluster-chain are occupied
� the volume or the file is synchronized that is when FS_Sync(), FS_FClose() or

FS_SyncFile() is called.
� a different file is written.

Especially when writing big files, the fast write mode allows maximum performance,
since usually the file system, has to search for a free cluster in the FAT and link it
with the last one the file occupied, so in the worst case multiple FAT sectors have to
be read in order to find a free cluster. If the pre-allocation method is used, the file
system does not need to search for free clusters as the file grows overtime, but only
the file position pointer needs to be modified (a new file end is specified, then the
file-position pointer is set back to the old file end, so writing to the file can be
resumed from there). Moving the file position pointer back for resume writing, forces
the file system to go though the complete cluster chain of the file in order to find the
last cluster where writing shall be resumed. Especially on big files the cluster chain
can be very long so going through it can cause multiple read-accesses to the FAT and
take some time.

Parameter Description

WriteMode Write mode which is used by emFile when writing files.
Table 4.18: FS_SetFileWriteMode() parameter list

Permitted values for parameter WriteMode

FS_WRITEMODE_SAFE
Allows maximum fail-safe behavior. FAT and
directory entry are modified after each file
write access. (Slowest performance)

FS_WRITEMODE_MEDIUM

Medium fail-safe. FAT is modified after each
file write access. Directory entry is written
only if file is synchronized that is when
FS_Sync(), FS_FClose() or FS_SyncFile()
is called.

FS_WRITEMODE_FAST

Maximum performance. Directory entry is
written only if file is synchronized that is
when FS_Sync(), FS_FClose() or
FS_SyncFile() is called. FAT is modified if
necessary.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

69

4.3.11 FS_SetFileWriteModeEx()
Description

Sets the write mode of a volume.

Prototype
void FS_SetFileWriteModeEx(FS_WRITEMODE WriteMode,
 const char * sVolumeName);

Additional information

When not explicitly set using this function the write mode of a volume is the write
mode set in the call to FS_SetFileWriteMode() or the default write mode. Typical
usage of this function is in a 2-volume configuration where one volume should be
configured for maximum performance (FS_WRITEMODE_FAST) and the other volume
should be fail-safe (FS_WRITEMODE_SAFE). Refer to FS_SetFileWriteMode() on
page 68 for detailed information about the parameters.

Parameter Description

WriteMode Write mode which is used when writing to a file.
sVolumeName Name of the volume for which the write mode should be set.

Table 4.19: FS_SetFileWriteModeEx() parameter list

70 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.3.12 FS_SetMemHandler()
Description

Sets the memory allocation routines when file system shall use external memory
allocation routines.

Prototype
void FS_SetMemHandler(FS_PF_ALLOC * pfAlloc, FS_PF_FREE * pfFree);

Additional Information

If the external memory allocation functions (FS_SUPPORT_EXT_MEM_MANAGER set to 1)
should be used, this function is the first function that is called in FS_X_AddDevices()
to setup the memory allocation functions. Otherwise this function does nothing.

Parameter Description

pfAlloc Pointer to the allocation function (e.g. malloc()).
pfFree Pointer to the allocation function (e.g. free()).

Table 4.20: FS_SetMemHandler() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

71

4.3.13 FS_SetMaxSectorSize()
Description

Configures the maximum sector size.

Prototype
void FS_SetMaxSectorSize(unsigned MaxSectorSize);

Additional Information

The default value for a the max sector size is set 512 bytes. Therefore this function
only needs to be called when a device driver is added that handles sector sizes
greater than 512 bytes.
This function needs to be called within FS_X_AddDevices().

Parameter Description

MaxSectorSize The max sector size in bytes.
Table 4.21: FS_SetMaxSectorSize() parameter list

72 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.4 File access functions

4.4.1 FS_FClose()
Description

Closes an open file.

Prototype
int FS_FClose(FS_FILE * pFile);

Return value

== 0: File pointer has successfully been closed.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Example

void MainTask(void) {
 FS_FILE *pFile;

 pFile = FS_FOpen("test.txt", "r");
 if (pFile != 0) {
 //
 // Access file.
 //
 FS_FClose(pFile);
 }
}

Parameter Description

pFile Pointer to a data structure of type FS_FILE.
Table 4.22: FS_FClose() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

73

4.4.2 FS_FOpen()
Description

Opens an existing file or creates a new file depending on the parameters.

Prototype
FS_FILE * FS_FOpen(const char * pName,
 const char * pMode);

Return value

Returns the address of an FS_FILE data structure, if the file could be opened in the
requested mode. NULL in case of any error.

Additional Information

A fully qualified file name looks like:
[DevName:[UnitNum:]][DirPathList]Filename

� DevName is the name of a device. If not specified, the first device in the volume
table will be used.
UnitNum is the number of the unit for this device. If not specified, unit 0 will be
used. Note that it is not allowed to specify UnitNum if DevName has not been spec-
ified.

� DirPathList means a complete path to an already existing subdirectory;
FS_FOpen() does not create directories. The path must start and end with a '\'
character. Directory names in the path are separated by '\'. If DirPathList is
not specified, the root directory on the device will be used.

� FileName desired
If FAT is used and long file name support is not enabled, all file names and all
directory names have to follow the standard FAT naming conventions (for exam-
ple 8.3 notation).
EFS supports long file names. The name length of a file or directory is limited to
235 valid characters.

The parameter pMode points to a string. If the string is one of the following, emFile
will open the file in the specified mode:

Parameter Description

pName
Pointer to a string that specifies the name of the file to create or
open.

pMode Mode for opening the file.
Table 4.23: FS_FOpen() parameter list

Permitted values for parameter pMode

r Opens text file for reading.

w
Truncates to zero length or creates text file for
writing.

a
Appends; opens/creates text file for writing at end-
of-file.

rb Opens binary file for reading.

wb
Truncates to zero length or creates binary file for
writing.

ab
Appends; opens/creates binary file for writing at
end-of-file.

r+ Opens text file for update (reading and writing).

w+
Truncates to zero length or creates text file for
update.

a+
Appends; opens/creates text file for update, writ-
ing at end-of-file.

74 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

For more details on the FS_FOpen() function, also refer to the ANSI C documentation
regarding the fopen() function.
Note that emFile does not distinguish between binary and text mode; files are always
accessed in binary mode.

In order to use long file names with FAT, the FS_FAT_SupportLFN() should be called
before the file is opened.

In order to use characters outside of the ASCII range with FAT, emFile should be
compiled with the FS_FAT_SUPPORT_UTF8 define to 1 and the support for long file
names should be enabled. The name of the file should be encoded in UTF-8 format.

Example

FS_FILE * pFile;

/***
*
* OpenFileSample1
*
* Function description
* Opens for reading a file on the default volume.
*/
void OpenFileSample1(void) {
 pFile = FS_FOpen("test.txt", "r");
}

/***
*
* OpenFileSample2
*
* Function description
* Opens for writing a file on the default volume.
*/
void OpenFileSample2(void) {
 pFile = FS_FOpen("test.txt", "w");
}

/***
*
* OpenFileSample3
*
* Function description
* Opens for reading a file in folder 'mysub' on the default volume.
*/
void OpenFileSample3(void) {
 pFile = FS_FOpen("\\mysub\\test.txt", "r");
}

/***
*
* OpenFileSample4
*
* Function description
* Opens for reading a file on the first “ram“ volume.
*/
void OpenFileSample4(void) {
 pFile = FS_FOpen("ram:test.txt", "r");
}

/***
*
* OpenFileSample5
*
* Function description
* Opens for reading a file on the second “ram“ volume.
*/
void OpenFileSample5(void) {

r+b or rb+ Opens binary file for update (reading and writing).

w+b or wb+
Truncates to zero length or creates binary file for
update.

a+b or ab+
Appends; opens/creates binary file for update,
writing at end-of-file.

Permitted values for parameter pMode

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

75

 pFile = FS_FOpen("ram:1:test.txt", "r");
}

/***
*
* OpenFileSample6
*
* Function description
* Opens for writing a file with a long name for writing.
*/
void OpenFileSample6(void) {
 FS_FAT_SupportLFN();
 pFile = FS_FOpen("Long file name.text", "w");
}

/***
*
* OpenFileSample7
*
* Function description
* Opens for writing a file with a name encoded in UTF-8 format.
* The file system should be compiled with FS_SUPPORT_UTF8 define set to 1.
* The name contains the following characters:
* small a, umlaut mark
* small o, umlaut mark
* small sharp s
* small u, umlaut mark
* ’.’
* ’t’
* ’x’
* ’t’
*/
void OpenFileSample7(void) {
 FS_FAT_SupportLFN();
 pFile = FS_FOpen("\xC3\xA4\xC3\xB6\xC3\x9F\xC3\xBC.txt", "w");
}

76 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.4.3 FS_FOpenEx()
Description

Opens an existing file or creates a new file depending on the parameters.

Prototype
int FS_FOpenEx(const char * pName,
 const char * pMode,
 FS_FILE ** ppFile);

Return value

== 0: OK, file opened
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

For additional information refer to FS_FOpen() on page 73.

Example

FS_FILE * pFile;

/***
*
* OpenFileSample
*
* Function description
* Opens for reading a file on the default volume.
*/
void OpenFileSample(void) {
 int r;

 r = FS_FOpenEx("test.txt", "r", &pFile);
 if (r) {
 printf(“Could not open file (%s)\n“, FS_ErrorNo2Text(r));
 }
}

Parameter Description

pName
Pointer to a string that specifies the name of the file to create or
open.

pMode Mode for opening the file.

ppFile
IN: ---
OUT: Pointer to the opened file handle.

Table 4.24: FS_FOpenEx() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

77

4.4.4 FS_FRead()
Description

Reads data from an open file.

Prototype
U32 FS_FRead(void * pData,
 U32 Size,
 U32 N,
 FS_FILE * pFile);

Return value

Number of elements read.

Additional Information

If there is less data transferred than specified, you should check for possible errors
by calling the FS_FError() function.

Example

char acBuffer[100];

void MainTask(void) {
 FS_FILE* pFile;
 int i;

 pFile = FS_FOpen("test.txt", "r");
 if (pFile != 0) {
 do {
 i = FS_FRead(acBuffer, 1, sizeof(acBuffer) - 1, pFile);
 acBuffer[i] = 0;
 if (i) {
 printf("%s", acBuffer);
 }
 } while (i);
 FS_FClose(pFile);
 }
}

Parameter Description

pData Pointer to a data buffer for storing data transferred from a file.
Size Size of an element to be transferred from a file to a data buffer.
N Number of elements to be transferred from the file.
pFile Pointer to a data structure of type FS_FILE.

Table 4.25: FS_FRead() parameter list

78 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.4.5 FS_FWrite()
Description

Writes data to an open file.

Prototype
U32 FS_FWrite(const void * pData,
 U32 Size,
 U32 N,
 FS_FILE * pFile);

Return value

Number of elements written.

Additional Information

If there is less data transferred than specified, you should check for possible errors
by calling the FS_FError() function.

Example

const char acText[]="hello world\n";

void MainTask(void) {
 FS_FILE *pFile;

 pFile = FS_FOpen("test.txt", "w");
 if (pFile != 0) {
 FS_FWrite(acText, 1, strlen(acText), pFile);
 FS_FClose(pFile);
 }
}

Parameter Description

pData Pointer to data to be written to the file.
Size Size of an element to be transferred from a data buffer to a file.
N Number of elements to be transferred to the file.
pFile Pointer to a data structure of type FS_FILE.

Table 4.26: FS_FWrite() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

79

4.4.6 FS_Read()
Description

Reads data from an open file.

Prototype
U32 FS_Read(FS_FILE * pFile,
 void * pData,
 U32 NumBytes);

Return value

Number of bytes read.

Additional Information

If there is less data transferred than specified, you should check for possible errors
by calling the FS_FError() function.

Example

char acBuffer[100];

void MainTask(void) {
 FS_FILE *pFile;

 pFile = FS_FOpen("test.txt", "r");
 if (pFile != 0) {
 do {
 i = FS_Read(pFile, acBuffer, sizeof(acBuffer) - 1);
 acBuffer[i] = 0;
 if (i) {
 printf("%s", acBuffer);
 }
 } while (i);
 FS_FClose(pFile);
 }
}

Parameter Description

pFile Pointer to a data structure of type FS_FILE.
pData Pointer to a data buffer for storing data transferred from a file.
NumBytes Number of bytes to be transferred from the file.

Table 4.27: FS_Read() parameter list

80 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.4.7 FS_SyncFile()
Description

Clears the write buffer and updates the management information of a file to storage
medium.

Prototype
int FS_SyncFile(FS_FILE * pFile);

Return value

== 0: Data has been successfully synchronized.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional information

The function performs the same operations as FS_FClose() with the only difference
that it leaves the file open. It cleans the write buffer, the directory entry and the allo-
cation table entries of the file to storage medium. FS_SyncFile() is used typically
with fast or medium write modes. It can also be called from a different task.

Example

void SampleFileSync(void) {
 FS_FILE *pFile;

 FS_SetFileWriteMode(FS_WRITEMODE_FAST);
 pFile = FS_FOpen("test.txt", "w");
 if (pFile != 0) {
 //
 // Write to file...
 //

 FS_SyncFile(pFile);
 //
 // Write to file...
 //

 FS_SyncFile(pFile);
 //
 // Write to file...
 //

 FS_FClose(pFile);
 }
}

Parameter Description

pFile
Pointer to a data structure of type FS_FILE. If NULL all opened files
are updated.

Table 4.28: FS_SyncFile() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

81

4.4.8 FS_Write()
Description

Writes data to an open file.

Prototype
U32 FS_Write(FS_FILE * pFile,
 const void * pData,
 U32 NumBytes);

Return value

Number of bytes written.

Additional Information

If there is less data transferred than specified, you should check for possible errors
by calling the FS_FError() function.

Example

const char acText[]="hello world\n";

void MainTask(void) {
 FS_FILE *pFile;

 pFile = FS_FOpen("test.txt", "w");
 if (pFile != 0) {
 FS_Write(pFile, acText, strlen(acText));
 FS_FClose(pFile);
 }
}

Parameter Description

pFile Pointer to a data structure of type FS_FILE.
pData Pointer to data to be written to the file.
NumBytes Number of bytes that should be written to the file.

Table 4.29: FS_Write() parameter list

82 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.5 File positioning functions

4.5.1 FS_FSeek()
Description

Sets the current position of a file pointer.

Prototype
int FS_FSeek(FS_FILE * pFile,
 I32 Offset,
 int Origin);

Return value

== 0: If the file pointer has been positioned according to the parameters.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

The FS_FSeek() function moves the file pointer to a new location that is an offset in
bytes from Origin. You can use FS_FSeek() to reposition the pointer anywhere in a
file. The pointer can also be positioned beyond the end of the file.
Valid values for parameter Origin are:

This function is identical to FS_SetFilePos(). Refer to FS_SetFilePos() on page 85
for more information.

Example

const char acText[]="some text will be overwritten\n";

void MainTask(void) {
 FS_FILE *pFile;

 pFile = FS_FOpen("test.txt", "w");
 if (pFile != 0) {
 FS_FWrite(acText, 1, strlen(acText), pFile);
 FS_FSeek(pFile, -4, FS_SEEK_CUR);
 FS_FWrite(acText, 1, strlen(acText), pFile);
 FS_FClose(pFile);
 }
}

Parameter Description

pFile Pointer to a data structure of type FS_FILE.
Offset Offset for setting the file pointer position.
Origin Mode for positioning the file pointer.

Table 4.30: FS_FSeek() parameter list

Permitted values for parameter Origin

FS_SEEK_SET The origin is the beginning of the file.
FS_SEEK_CUR The origin is the current position of the file pointer.
FS_SEEK_END The origin is the current end-of-file position.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

83

4.5.2 FS_FTell()
Description

Returns the current position of a file pointer.

Prototype
I32 FS_FTell(FS_FILE * pFile);

Return value

>= 0: Current position of the file pointer in the file.
< 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

In this version of emFile, this function simply returns the file pointer element of the
file's FS_FILE structure. Nevertheless, you should not access the FS_FILE structure
yourself, because that data structure may change in the future.
In conjunction with FS_FSeek(), this function can also be used to examine the file
size. By setting the file pointer to the end of the file using FS_SEEK_END, the length of
the file can now be retrieved by calling FS_FTell().

This function is identical to FS_GetFilePos(). Refer to FS_GetFilePos() on page 84
for more information.

Example

const char acText[]="hello world\n";

void MainTask(void) {
 FS_FILE *pFile;
 I32 Pos;

 pFile = FS_FOpen("test.txt", "w");
 if (pFile != 0) {
 FS_FWrite(acText, 1, strlen(acText), pFile);
 Pos = FS_FTell(pFile);
 FS_FClose(pFile);
 }
}

Parameter Description

pFile Pointer to a data structure of type FS_FILE.
Table 4.31: FS_FTell() parameter list

84 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.5.3 FS_GetFilePos()
Description

Returns the current position of a file pointer.

Prototype
I32 FS_GetFilePos(FS_FILE * pFile);

Return value

>= 0: Current position of the file pointer in the file.
== -1: In case of any error.

Additional Information

In this version of emFile, this function simply returns the file pointer element of the
file's FS_FILE structure. Nevertheless you should not access the FS_FILE structure
yourself, because that data structure may change in the future versions of emFile.
In conjunction with FS_SetFilePos(), FS_GetFilePos() this function can also be
used to examine the file size. By setting the file pointer to the end of the file using
FS_SEEK_END, the length of the file can now be retrieved by calling
FS_GetFilePos().

This function is identical to FS_FTell(). Refer to FS_FTell() on page 83 for more
information.

Example

const char acText[]="hello world\n";

void MainTask(void) {
 FS_FILE *pFile;
 I32 Pos;

 pFile = FS_FOpen("test.txt", "w");
 if (pFile != 0) {
 FS_FWrite(acText, 1, strlen(acText), pFile);
 Pos = FS_GetFilePos(pFile);
 FS_FClose(pFile);
 }
}

Parameter Description

pFile Pointer to a data structure of type FS_FILE.
Table 4.32: FS_GetFilePos() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

85

4.5.4 FS_SetFilePos()
Description

Sets the current position of a file pointer.

Prototype
int FS_SetFilePos(FS_FILE * pFile,
 I32 DistanceToMove,
 int MoveMethod);

Return value

== 0: If the file pointer has been positioned according to the parameters.
== -1: In case of any error.

Additional Information

The FS_SetFilePos() function moves the file pointer to a new location that is an off-
set in bytes from MoveMethod. You can use FS_SetFilePos() to reposition the
pointer anywhere in a file. The pointer can also be positioned beyond the end of the
file.
Valid values for parameter MoveMethod are:

This function is identical to FS_FSeek(). Refer to FS_FSeek() on page 82 for more
information.

Example

const char acText[]="some text will be overwritten\n";

void MainTask(void) {
 FS_FILE *pFile;

 pFile = FS_FOpen("test.txt", "w");
 if (pFile != 0) {
 FS_FWrite(acText, 1, strlen(acText), pFile);
 FS_FSeek(pFile, -4, FS_SEEK_CUR);
 FS_FWrite(acText, 1, strlen(acText), pFile);
 FS_FClose(pFile);
 }
}

Parameter Description

pFile Pointer to a data structure of type FS_FILE.

DistanceToMove
A 32-bit signed value where a positive value moves the file
pointer forward in the file, and a negative value moves the file
pointer backward.

MoveMethod The starting point for the file pointer move.
Table 4.33: FS_SetFilePos() parameter list

Permitted values for parameter MoveMethod

FS_FILE_BEGIN
The starting point is zero or the beginning of the
file.

FS_FILE_CURRENT
The starting point is the current value of the file
pointer.

FS_FILE_END
The starting point is the current end-of-file posi-
tion.

86 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.6 Operations on files

4.6.1 FS_CopyFile()
Description

Copies an existing file to a new file.

Prototype
int FS_CopyFile(const char * sSource,
 const char * sDest);

Return value

== 0: If the file has been copied.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

Valid values for sSource and sDest are the same as for FS_FOpen(). The function
overwrites the destination file. Refer to FS_FOpen() on page 73 for examples of valid
names.

Note: The function allocates 512 bytes on the stack as data buffer.

Example

void MainTask(void) {
 FS_CopyFile("test.txt", "ram:\\info.txt");
}

Parameter Description

sSource Pointer to a string that specifies the name of an existing file.
sDest Pointer to a string that specifies the name of the new file.

Table 4.34: FS_CopyFile() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

87

4.6.2 FS_CopyFileEx()
Description

Copies the contents of an existing file to a new file.

Prototype
int FS_CopyFileEx(const char * sSource,
 const char * sDest,
 void * pBuffer,
 U32 NumBytes);

Return value

== 0: If the file has been copied.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

Valid values for sSource and sDest are the same as for FS_FOpen(). The function
overwrites the destination file. Refer to FS_FOpen() on page 73 for examples of valid
names.

Example

static U32 _aBuffer[1024 / 4]; // Buffer to be used as temporary storage.

void MainTask(void) {
 FS_CopyFileEx("src.txt", "dest.txt", _aBuffer, sizeof(_aBuffer));
}

Parameter Description

sSource Pointer to a string that specifies the name of an existing file.
sDest Pointer to a string that specifies the name of the new file.
pBuffer Buffer to be used as temporary storage by the copy process.
NumBytes Capacity of the temporary buffer in bytes.

Table 4.35: FS_CopyFileEx() parameter list

88 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.6.3 FS_GetFileAttributes()
Description

The function retrieves attributes for a specified file or directory.

Prototype
U8 FS_GetFileAttributes(const char * pName);

Return value

>= 0x00: Attributes of the given file or directory.
== 0xFF: In case of any error.
The attributes can be one or more of the following values:

Additional Information

Valid values for pName are the same as for FS_FOpen(). Refer to FS_FOpen() on
page 73 for examples of valid names.

Example

void MainTask(void) {
 U8 Attributes;
 char ac[100];
 Attributes = FS_GetFileAttributes("test.txt");
 sprintf(ac, "File attribute of test.txt: %d", Attributes);
 FS_X_Log(ac);
}

Parameter Description

pName Pointer to a string that specifies the name of a file or directory.
Table 4.36: FS_GetFileAttributes() parameter list

Attribute Description

FS_ATTR_ARCHIVE
The file or directory is an archive file or directory. Applications
can use this attribute to mark files for backup or removal.

FS_ATTR_DIRECTORY The given pName is a directory.

FS_ATTR_HIDDEN
The file or directory is hidden. It is not included in an ordinary
directory listing.

FS_ATTR_READ_ONLY
The file or directory is read-only. Applications can read the file
but cannot write to it or delete it. In case of a directory, appli-
cations cannot delete it

FS_ATTR_SYSTEM
The file or directory is part of, or is used exclusively by, the
operating system.

Table 4.37: FS_GetFileAttributes() - list of possible attributes

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

89

4.6.4 FS_GetFileTime()
Description

Retrieves a timestamp for a specified file or directory.

Prototype
int FS_GetFileTime(const char * pName,
 U32 * pTimeStamp);

Return value

== 0: The timestamp of the given file was successfully read and stored
in pTimeStamp.

!= 0: Error code indicating the failure reason.
Refer to FS_ErrorNo2Text() on page 177.

Additional Information

Values for pName are the same as for FS_FOpen(). Refer to FS_FOpen() on page 73
for examples of valid names.

A timestamp is a packed value with the following format:

To convert a timestamp to a FS_FILETIME on page 153 structure, use the function
FS_GetNumFilesOpen() on page 126.

Example

void MainTask(void) {
 char ac[80];
 U32 TimeStamp;
 FS_FILETIME FileTime;
 FS_GetFileTime ("test.txt", &TimeStamp);
 FS_TimeStampToFileTime(TimeStamp, &FileTime);
 sprintf(ac, "File time of test.txt: %d-%.2d-%.2d %.2d:%.2d:%.2d",
 FileTime.Year, FileTime.Month, FileTime.Day,
 FileTime.Hour, FileTime.Minute, FileTime.Second);
 FS_X_Log(ac);
}

Parameter Description

pName
IN: Specifies the name of a file or directory.
OUT: ---

pTimeStamp
IN: ---
OUT: Timestamp of the file.

Table 4.38: FS_GetFileTime() parameter list

Bits Description

0-4 Second divided by 2
5-10 Minute (0 - 59)
11-15 Hour (0-23)
16-20 Day of month (1-31)
21-24 Month (January -> 1, February -> 2, etc.)
25-31 Year offset from 1980. Add 1980 to get current year.

Table 4.39: FS_GetFileTime() - timestamp format description

90 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.6.5 FS_GetFileTimeEx()
Description

Retrieves the creation, access or modify timestamp for a specified file or directory.

Prototype
int FS_GetFileTime(const char * pName,
 U32 * pTimeStamp
 int Index);

Return value

== 0: The timestamp of the given file was successfully read and stored
in pTimeStamp.

!= 0: Error code indicating the failure reason.
Refer to FS_ErrorNo2Text() on page 177.

Additional Information

Values for pName are the same as for FS_FOpen(). Refer to FS_FOpen() on page 73
for examples of valid names.

A timestamp is a packed value with the following format:

To convert a timestamp to a FS_FILETIME on page 153 structure, use the function
FS_GetNumFilesOpen() on page 126.

Parameter Description

pName Pointer to a string that specifies the name of a file or directory.
pTimeStamp Pointer to a U32 variable that receives the timestamp.
Index Flag that indicates which timestamp should be returned.

Table 4.40: FS_GetFileTimeEx() parameter list

Permitted values for parameter Index

FS_FILETIME_CREATE
Indicates that the creation timestamp should
be returned.

FS_FILETIME_ACCESS
Indicates that the access timestamp should
be returned.

FS_FILETIME_MODIFY
Indicates that the modify timestamp should
be returned.

Bits Description

0-4 Second divided by 2
5-10 Minute (0 - 59)
11-15 Hour (0-23)
16-20 Day of month (1-31)
21-24 Month (January -> 1, February -> 2, etc.)
25-31 Year offset from 1980. Add 1980 to get current year.

Table 4.41: FS_GetFileTime() - timestamp format description

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

91

4.6.6 FS_ModifyFileAttributes()
Description

Sets and clears the attributes of the specified file or directory.

Prototype
U8 FS_ModifyFileAttributes(const char * sName, U8 SetMask, U8 ClrMask);

Return value

>= 0x00: The old attributes of the given file or directory.
== 0xFF: In case of any error.
The attributes can be one or more of the following values:

Additional Information

Valid values for pName are the same as for FS_FOpen(). Refer to FS_FOpen() on
page 73 for examples of valid names.

Example

void ModifyAttributesSample(void) {
 U8 Attr;

 //
 // Set the read-only flag. Clear archive flag.
 //
 Attr = FS_ModifyFileAttributes("test.txt", FS_ATTR_READ_ONLY, FS_ATTR_ARCHIVE);
 printf("Old file attributes: 0x%02x", Attr);
}

Parameter Description

sName Pointer to a string that specifies the name of a file or directory.
SetMask Bitmask of the attributes to be set
ClrMask Bitmask of the attributes to be cleared

Table 4.42: FS_ModifyFileAttributes() parameter list

Attribute Description

FS_ATTR_ARCHIVE
The file or directory is an archive file or directory. Applications
can use this attribute to mark files for backup or removal.

FS_ATTR_DIRECTORY The given pName is a directory.

FS_ATTR_HIDDEN
The file or directory is hidden. It is not included in an ordinary
directory listing.

FS_ATTR_READ_ONLY
The file or directory is read-only. Applications can read the file
but cannot write to it or delete it. In case of a directory, appli-
cations cannot delete it

FS_ATTR_SYSTEM
The file or directory is part of, or is used exclusively by, the
operating system.

Table 4.43: FS_ModifyFileAttributes() - list of possible attributes

92 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.6.7 FS_Move()
Description

Moves an existing file or a directory, including its children.

Prototype
int FS_Move(const char * sExistingName,
 const char * sNewName);

Return value

== 0: If the file was successfully moved.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

Valid values for sExistingName and sNewName are the same as for FS_FOpen(). Refer
to FS_FOpen() on page 73 for examples of valid names. The FS_Move() function will
move either a file or a directory (including its children) either in the same directory
or across directories. The file or directory you want to move has to be on the same
volume.

Example

void MainTask(void) {
 FS_Move("subdir1", "subdir2\\subdir3");
}

Parameter Description

sExistingname Pointer to a string that names an existing file or directory.

sNewName
Pointer to a string that specifies the name of the new file or
directory.

Table 4.44: FS_Move() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

93

4.6.8 FS_Remove()
Description

Removes an existing file.

Prototype
int FS_Remove(const char * pName);

Return value

== 0: If the file was successfully removed.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

Valid values for pName are the same as for FS_FOpen(). Refer to FS_FOpen() on
page 73 for examples of valid names.

Example

void MainTask(void) {
 FS_Remove("test.txt");
}

Parameter Description

pName Pointer to a string that specifies the file to be deleted.
Table 4.45: FS_Remove() parameter list

94 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.6.9 FS_Rename()
Description

Renames an existing file or a directory.

Prototype
int FS_Rename(const char * sExistingName,
 const char * sNewName);

Return value

== 0: If the file was successfully renamed.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

Valid values for sExistingName and sNewName are the same as for FS_FOpen(). Refer
to FS_FOpen() on page 73 for examples of valid names. sNewName should only specify
a valid file or directory name without a path.

Example

void MainTask(void) {
 FS_Rename("ram:\\subdir1", "subdir2");
}

Parameter Description

sExistingName Pointer to a string that names an existing file or directory.

sNewName
Pointer to a string that specifies the new name of the file or
directory.

Table 4.46: FS_Rename() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

95

4.6.10 FS_SetEndOfFile()
Description

Sets the end of file for the specified file.

Prototype
int FS_SetEndOfFile(FS_FILE * pFile);

Return value

== 0: End of File was set.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

pFile should point to a file that has been opened with write permission. Refer to
FS_FOpen() on page 73. This function can be used to truncate or extend a file. If the
file is extended, the contents of the file between the old EOF position and the new
position are not defined.

Example

void MainTask(void) {
 FS_FILE * pFile;

 pFile = FS_FOpen("test.bin", "r+");
 FS_SetFilePos(pFile, 2000);
 FS_SetEndOfFile(pFile);
 FS_FClose(pFile);
}

Parameter Description

pFile Pointer to a data structure of type FS_FILE.
Table 4.47: FS_SetEndOfFile() parameter list

96 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.6.11 FS_SetFileAttributes()
Description

Sets attributes for a specified file or directory.

Prototype
int FS_SetFileAttributes(const char * pName,
 U8 Attributes);

Return value

== 0: Attributes have been successfully set.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

Valid values for pName are the same as for FS_FOpen(). Refer to FS_FOpen() on
page 73 for examples of valid names.

Example

void MainTask(void) {
 U8 Attributes;
 char ac[100];
 FS_SetFileAttributes("test.txt", FS_ATTR_HIDDEN);
 Attributes = FS_GetFileAttributes("test.txt");
 sprintf(ac, "File attribute of test.txt: %d", Attributes);
 FS_X_Log(ac);
}

Parameter Description

pName Pointer to a string that specifies the name of a file or directory.
Attributes Attributes to be set to the file or directory.

Table 4.48: FS_SetFileAttributes() parameter list

Permitted values for parameter Attributes

FS_ATTR_ARCHIVE
The file or directory is an archive file or direc-
tory. Applications can use this attribute to
mark files for backup or removal.

FS_ATTR_HIDDEN
The file or directory is hidden. It is not
included in an ordinary directory listing.

FS_ATTR_READ_ONLY

The file or directory is read-only. Applications
can read the file but cannot write to it or
delete it. In case of a directory, applications
cannot delete it.

FS_ATTR_SYSTEM
The file or directory is part of, or is used exclu-
sively by, the operating system.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

97

4.6.12 FS_SetFileTime()
Description

The FS_SetFileTime function sets the timestamp for a specified file or directory.

Prototype
int FS_SetFileTime(const char * pName,
 U32 TimeStamp);

Return value

== 0: The timestamp of the given file was successfully set.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

Valid values for pName are the same as for FS_FOpen(). Refer to FS_FOpen() on
page 73 for examples of valid names.
On a FAT medium, FS_SetFileTime() sets the creation time of a file or directory.
On a EFS medium, FS_SetFileTime() sets the time stamp of a file or directory.

A timestamp is a packed value with the following format.

To convert a FS_FILETIME structure to a timestamp, use the function
FS_FileTimeToTimeStamp(). For more information about the conversion have a look
at the description of FS_FileTimeToTimeStamp() on page 122.

Example

void MainTask(void) {
 U32 TimeStamp;
 FS_FILETIME FileTime;

 FileTime.Year = 2005;
 FileTime.Month = 03;
 FileTime.Day = 26;
 FileTime.Hour = 10;
 FileTime.Minute = 56;
 FileTime.Second = 14;
 FS_FileTimeToTimeStamp (&FileTime, &TimeStamp);
 FS_SetFileTime("test.txt", TimeStamp);
}

Parameter Description

pName Pointer to a string that specifies the name of a file or directory.
TimeStamp Timestamp to be set to the file or directory.

Table 4.49: FS_SetFileTime() parameter list

Bits Description

0-4 Second divided by 2
5-10 Minute (0 - 59)
11-15 Hour (0-23)
16-20 Day of month (1-31)
21-24 Month (January -> 1, February -> 2, etc.)
25-31 Year offset from 1980. Add 1980 to get current year.

Table 4.50: FS_SetFileTime() - timestamp format description

98 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.6.13 FS_SetFileTimeEx()
Description

Sets the creation, access or modify timestamp for a specified file or directory.

Prototype
int FS_SetFileTimeEx(const char * pName,
 U32 TimeStamp
 int Index);

Return value

== 0: The timestamp of the given file was successfully set.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

Values for pName are the same as for FS_FOpen(). Refer to FS_FOpen() on page 73
for examples of valid names.

The EFS file system has only one timestamp hence it makes no difference which
value you use for the Index parameter.

A timestamp is a packed value with the following format:

To convert a timestamp to a FS_FILETIME structure, use the function
FS_GetNumFilesOpen() on page 126. For more information about the FS_FILETIME
structure, refer to FS_FILETIME on page 153.

Parameter Description

pName Pointer to a string that specifies the name of a file or directory.
TimeStamp The value of the timestamp to set.
Index Flag that indicates which timestamp should be set.

Table 4.51: FS_SetFileTimeEx() parameter list

Permitted values for parameter Index

FS_FILETIME_CREATE
Indicates that the creation timestamp should
be set.

FS_FILETIME_ACCESS
Indicates that the access timestamp should
be set.

FS_FILETIME_MODIFY
Indicates that the modify timestamp should
be set.

Bits Description

0-4 Second divided by 2
5-10 Minute (0 - 59)
11-15 Hour (0-23)
16-20 Day of month (1-31)
21-24 Month (January -> 1, February -> 2, etc.)
25-31 Year offset from 1980. Add 1980 to get current year.

Table 4.52: FS_GetFileTime() - timestamp format description

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

99

4.6.14 FS_SetFileSize()
Description

Sets the end of file for the specified file.

Prototype
int FS_SetFileSize(FS_FILE * pFile, U32 NumBytes);

Return value

== 0: Size of the file has been modified.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

pFile should point to a file that has been opened with write permission. Refer to
FS_FOpen() on page 73. This function can be used to truncate or extend a file. If the
file is extended, the file pointer is not moved.

Example

void MainTask(void) {
 FS_FILE * pFile;

 pFile = FS_FOpen("test.bin", "r+");
 FS_SetFileSize(pFile, 2000);
 FS_FClose(pFile);
}

Parameter Description

pFile Pointer to a data structure of type FS_FILE.
NumBytes The new size of the file in bytes.

Table 4.53: FS_SetFileSize() parameter list

100 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.6.15 FS_Truncate()
Description

Truncates a file opened with FS_FOpen() to the specified size.

Prototype
int FS_Truncate(FS_FILE * pFile,
 U32 NewSize);

Return value

== 0: Truncation was successful.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

This function truncates an open file. Be sure that pFile points to a file that has been
opened with write permission. For more information about setting write permission
for pFile have a look at the description of FS_FOpen() on page 73.

Example

void MainTask(void) {
 FS_FILE * pFile;
 U32 FileSize;
 Int Success;
 pFile = FS_FOpen("test.bin", "r+");
 FileSize = FS_GetFileSize(pFile);
 Success = FS_Truncate(pFile, FileSize - 200);
 if (Success == 0) {
 FS_X_Log("Truncation was successful.");
 } else {
 FS_X_Log("Truncation was not successful");
 }
 FS_Fclose(pFile);
}

Parameter Description

pFile Pointer to a data structure of type FS_FILE.
NewSize New size of the file.

Table 4.54: FS_Truncate() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

101

4.6.16 FS_Verify()
Description

Validates a file by comparing its contents with a data buffer.

Prototype
int FS_Verify(FS_FILE * pFile,
 const void * pData,
 U32 NumBytes);

Return value

== 0: If verification was successful.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

If the file contains less bytes than to be verified, only the available bytes are verified.

Note: The position of the file pointer has to set to the beginning of the data that
should be verified.

Example

const U8 acVerifyData[4] = { 1, 2, 3, 4 };

void MainTask(void) {
 FS_FILE * pFile;
 I32 n;

 FS_Init();
 //
 // Open file and write data into
 //
 pFile = FS_FOpen("test.txt", "w+");
 FS_Write(pFile, acVerifyData, sizeof(acVerifyData));
 //
 // Determine current position of file pointer.
 //
 n = FS_FTell(pFile);
 //
 // Set file pointer to the start of the data that should be verified.
 //
 FS_FSeek(pFile, 0, FS_SEEK_SET);
 //
 // Verify data.
 //
 if (FS_Verify(pFile, acVerifyData, sizeof(acVerifyData)) == 0) {
 FS_X_Log("Verification was successful");
 } else {
 FS_X_Log("Verification failed");
 }
 //
 // Set file pointer to end of data that was written and verified.
 //
 FS_FSeek(pFile, n, FS_SEEK_SET);
 FS_FClose(pFile);

 while (1);
}

Parameter Description

pFile Pointer to a file handle.
pData Pointer to a buffer that holds the data to be verified with the file.
NumBytes Number of bytes to be verified.

Table 4.55: FS_Verify() parameter list

102 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.6.17 FS_WipeFile()
Description

Overwrites the contents of the entire file with random data.

Prototype
int FS_WipeFile(const char * sFileName);

Return value

== 0: File contents overwritten.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

When a file is removed the file system marks the corresponding directory entry and
the clusters in the allocation table as free. The contents of the file is not modified and
the file can be restore by using a disk recovery tool. This can be a problem if the file
stores sensitive data. Calling FS_WipeFile() function before the file is removed
makes the recovery of data impossible.

Note: The function allocates a 512 byte buffer on the stack.

Example

void WipeFileSample(void) {
 FS_FILE * pFile;

 //
 // Create a file and write data to it.
 //
 pFile = FS_FOpen("test.txt", "w");
 FS_Write(pFile, "12345", 5);
 FS_FClose(pFile);
 //
 // Overwrite the file contents with random data.
 //
 FS_WipeFile("test.txt");
 //
 // Delete the file from storage medium.
 //
 FS_Remove("test.txt");
}

Parameter Description

sFileName Pointer to a string that specifies the name of the file.
Table 4.56: FS_WipeFile() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

103

4.7 Directory functions

4.7.1 FS_CreateDir()
Description

Creates a new directory or directory path.

Prototype
int FS_CreateDir(const char * sDirPath);

Return value

==0 Directory path created.
==1 Directory path already exists.
< 0 Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional information

If a directory in the path does not exist it is created automatically.

Note: The function allocates 260 bytes on the stack.

Example

void CreateDirSample(void) {
 int r;

 r = FS_CreateDir("SubDir1\\SubDir2\\SubDir3");
 if (r == 0) {
 printf("Directory path created.\n");
 }
}

Parameter Description

sDirPath
IN: Fully qualified directory name.
OUT: ---

Table 4.57: FS_CreateDir() parameter list

104 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.7.2 FS_FindClose()
Description

Closes a directory search.

Prototype
void FS_FindClose(FS_FIND_DATA * pfd);

Example

typedef struct {
 // Public elements, to be used by application
 U8 Attributes;
 U32 CreationTime;
 U32 LastAccessTime;
 U32 LastWriteTime;
 U32 FileSize;
 char * sFileName;
 // Private elements. Not be used by the application
 int SizeofFileName;
 FS__DIR Dir;
} FS_FIND_DATA;

FindFileSample(void) {
 FS_FIND_DATA fd;
 char acFilename[20];

 if (FS_FindFirstFile(&fd, "\\YourDir\\", acFilename, sizeof(acFilename)) == 0) {
 do {
 printf(acFilename);
 } while (FS_FindNextFile (&fd));
 }
 FS_FindClose(&fd);
}

Parameter Description

pfd Pointer to a FS_FIND_DATA structure.
Table 4.58: FS_FindClose() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

105

4.7.3 FS_FindFirstFile()
Description

Searches for files and directories in a specified directory.

Prototype
int FS_FindFirstFile(FS_FIND_DATA * pfd,
 const char * sPath,
 char * sFilename,
 int sizeofFilename);

Return value

== 0: Directory or file found.
== 1: No entries available in the directory.
else: An error occurred

Additional Information

A fully qualified directory name looks like:

[DevName:[UnitNum:]][DirPathList]DirectoryName

where:

� DevName is the name of a device, for example �ram� or �mmc�. If not specified, the
first device in the device table will be used.
UnitNum is the number for the unit of the device. If not specified, unit 0 will be
used. Note that it is not allowed to specify UnitNum if DevName has not been spec-
ified.

� DirPathList is a complete path to an existing subdirectory. The path must start
and end with a '\' character. Directory names in the path are separated by '\'. If
DirPathList is not specified, the root directory on the device will be used.

� DirectoryName and all other directory names have to follow the standard FAT
naming conventions (for example 8.3 notation), if support for long file names is
not enabled.

To open the root directory, simply use an empty string for sPath.

Refer to Structure FS_FIND_DATA on page 109 for more information about the struc-
ture pfd points to.

Example

Refer to FS_FindClose() on page 104 for an example.

Parameter Description

pfd Pointer to a FS_FIND_DATA structure.

sPath
Pointer to a string containing the name of a directory which
should be scanned.

sFilename
Pointer to a buffer used to store the name of a file which has
been found.

sizeofFilename
Size of the buffer which contains the name of a file which has
been found.

Table 4.59: FS_FindFirstFile() parameter list

106 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.7.4 FS_FindNextFile()
Description

Continues a file or directory search from a previous call to the FS_FindFirstFile()
function.

Prototype
int FS_FindNextFile(FS_FIND_DATA * pfd);

Return value

== 1: File found in directory.
== 0: In case of any error.

Example

Refer to FS_FindClose() on page 104 for an example.

Parameter Description

pfd Pointer to a FS_FIND_DATA structure.
Table 4.60: FS_FindNextFile() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

107

4.7.5 FS_MkDir()
Description

Creates a new directory.

Prototype
int FS_MkDir(const char * pDirName);

Return value

== 0: The directory was successfully created.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

Refer to FS_FindFirstFile() on page 105 for examples of valid fully qualified directory
names. Note that FS_MkDir() will not create the whole pDirName, it will only create a
directory in an already existing path.

Example

void FSTask1(void) {
 int Err;

 //
 // Create mydir in directory test - default driver on default device
 //
 Err = FS_MkDir("\\test\\mydir");
}

void FSTask2(void) {
 int Err;

 //
 // Create directory mydir - RAM device driver on default device
 //
 Err = FS_MkDir("ram:\\mydir");
}

Parameter Description

pDirName Fully qualified directory name.
Table 4.61: FS_MkDir() parameter list

108 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.7.6 FS_RmDir()
Description

Deletes a directory.

Prototype
int FS_RmDir(const char * pDirname);

Return value

== 0: If the directory has been successfully removed.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

Refer to FS_FindFirstFile() on page 105 for examples of valid and fully qualified
directory names. FS_RmDir() will only delete a directory if it is empty.

Example

void FSTask1(void) {
 int Err;

 //
 // Remove mydir in directory test - default driver on default device
 //
 Err = FS_RmDir("\\test\\mydir");
}

void FSTask2(void) {
 int Err;

 //
 // Remove directory mydir - RAM device driver on default device
 //
 Err = FS_RmDir("ram:\\mydir");
}

Parameter Description

pDirname Fully qualified directory name.
Table 4.62: FS_RmDir() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

109

4.7.7 Structure FS_FIND_DATA
Description

The FS_FORMAT_INFO structure represents the information used to access directories
and files.

Prototype
typedef struct {
 //
 // Public elements, to be used by application
 //
 U8 Attributes;
 U32 CreationTime;
 U32 LastAccessTime;
 U32 LastWriteTime;
 U32 FileSize;
 char * sFileName;
 //
 // Private elements. Not be used by the application
 //
 int SizeofFileName;
 FS__DIR Dir;
} FS_FIND_DATA;

Members Description

Attributes Specifies the file attributes of the file found.
CreationTime U32 value containing the time the file was created.
LastAccessTime U32 value containing the time that the file was last accessed.
LastWriteTime U32 value containing the time that the file was last written to.
FileSize U32 value specifies the size of the file.
sFileName String that is the name of the file.

SizeofFileName
Size of the file name. (Private element. Not to be used by
application.)

Dir
Directory administration structure. (Private element. Not to be
used by an application.)

Table 4.63: FS_FIND_DATA - list of structure elements

110 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.8 Formatting a medium
In general, before a medium can be used to read or write to a file, it needs to be for-
matted. Flash cards are usually already preformatted and do not need to be format-
ted. Flashes used as storage devices have normally to be reformatted. These devices
require a low-level format first, then a high-level format. The low-level format is
device-specific, the high-level format depends on the file system only. (FAT-format
typically).

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

111

4.8.1 FS_Format()
Description

Performs a high-level format of a device. This means putting the management infor-
mation required by the File system on the medium. In case of FAT, this means prima-
rily initialization of FAT and the root directory, as well as the BIOS parameter block.

Prototype
int FS_Format(const char * pVolumeName
 FS_FORMAT_INFO * pFormatInfo);

Return value

== 0: High-level format successful.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

There are many different ways to format a medium, even with one file system. If the
second parameter is not specified, reasonable default values are used (auto-format).
However, FS_Format() also allows fine-tuning of the parameters used. For details,
refer to the sample file FS_Format.c, which is shipped with emFile.

For more information about the structure FS_FORMAT_INFO, refer to
FS_FORMAT_INFO on page 116.

Parameter Description

pVolumeName Name of the device to format.
pFormatInfo Optional info for formatting.

Table 4.64: FS_Format() parameter list

112 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.8.2 FS_FormatLLIfRequired()
Description

Checks if the volume is low-level formatted and formats the volume if required.

Prototype
int FS_FormatLLIfRequired(const char * pVolumeName);

Return value

== 0: Ok - low-level format successful.
== 1: Low-level format not required.
< 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

Low-level format is only required for devices which have their own management
level. These are the drivers for NOR flashes, NAND flashes. MMC, SD and all other
cards do not require a low-level format.

Parameter Description

pVolumeName Name of the device to low-level format.
Table 4.65: FS_FormatLLIfRequired() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

113

4.8.3 FS_FormatLow()
Description

Low-level formats a device. Required by NAND/NOR flashes prior to format.

Prototype
int FS_FormatLow(const char * pDeviceName);

Return value

== 0: Low-level format successful.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

Low-level format is only required for devices which have their own management
level. These are the drivers for NOR flashes, NAND flashes and SMC cards. MMC, SD
and all other cards do not require a low-level format.

Parameter Description

pVolumeName Name of the device to low-level format.
Table 4.66: FS_FormatLow() parameter list

114 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.8.4 FS_IsHLFormatted()
Description

Checks if the volume is high-level formatted.

Prototype
int FS_IsHLFormatted(const char * sVolumeName);

Return value

== 1: Volume is high-level formatted.
== 0: Volume is not high-level formatted.
< 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional information

This function can be use to determine if the format of a partition is supported by the
emFile. If the partition format is unknown the function returns 0.

Parameter Description

pVolumeName Name of the device to check.
Table 4.67: FS_IsHLFormatted() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

115

4.8.5 FS_IsLLFormatted()
Description

Checks if the volume is low-level formatted.

Prototype
int FS_IsHLFormatted(const char * sVolumeName);

Return value

== 1: Volume is low-level formatted.
== 0: Volume is not low-level formatted.
< 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

Low-level format is only required for devices which have their own management
level. These are the drivers for NOR flashes, NAND flashes. MMC, SD and all other
cards do not require a low-level format.

Parameter Description

sVolumeName Name of the device to check.
Table 4.68: FS_IsLLFormatted() parameter list

116 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.8.6 FS_FORMAT_INFO
Description

The FS_FORMAT_INFO structure represents the information used to format a volume.

Prototype
typedef struct {
 U16 SectorsPerCluster;
 U16 NumRootDirEntries;
 FS_DEV_INFO * pDevInfo;
} FS_FORMAT_INFO;

Members Description

SectorsPerCluster

A cluster is the minimal unit size a file system can handle.
Sectors are combined together to form a cluster. Value should
be a power of 2, for example 1, 2, 4, 8, 16, 32, 64. Bigger val-
ues lead to a higher read/write performance with big files, low
values (1) make more efficient use of disk space.

NumRootDirEntries

Represents the number of directory entries the root directory
should have. Typically it is only used for FAT12 and FAT16
drives. FAT32 has a dynamically grow table. If this element is
used and not set to an invalid value (!= 0), emFile will use a
default value of 256. If warnings are enabled, a warning mes-
sage is output.

pDevInfo
Pointer to a FS_DEV_INFO structure. Optional IN parameter,
passing information to the function. Typically NULL, unless
some device specifics need to be passed to the function.

Table 4.69: FS_FORMAT_INFO - list of structure elements

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

117

4.8.7 FS_DEV_INFO
Description

The FS_DEV_INFO structure contains the medium information.

Prototype
typedef struct {
 U16 NumHeads;
 U16 SectorsPerTrack;
 U32 NumSectors;
 U16 BytesPerSector;
} FS_DEV_INFO;

Members Description

NumHeads
Number of heads on the drive. This is relevant for mechanical
drives only.

SectorsPerTrack
Number of sectors in each track. This is relevant for mechani-
cal drives only.

NumSectors Total number of sectors on the medium.
BytesPerSector Number of bytes per sector.

Table 4.70: FS_DEV_INFO - list of structure elements

118 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.9 Extended functions

4.9.1 FS_CheckDisk()
Description

Checks and repairs a volume (FAT and EFS).

Prototype
int FS_CheckDisk(const char * sVolumeName,
 void * pBuffer,
 U32 BufferSize,
 int MaxRecursionLevel,
 FS_CHECKDISK_ON_ERROR_CALLBACK * pfOnError);

Return value

< 0: Invalid parameter or file system error.
==FS_CHECKDISK_RETVAL_OK:

No errors found.
==FS_CHECKDISK_RETVAL_RETRY:
 An error has be found and repaired, retry is required.
== FS_CHECKDISK_RETVAL_ABORT:

User specified an abort of disk checking operation through callback.
== FS_CHECKDISK_RETVAL_MAX_RECURSE:

Maximum recursion level reached.

Additional Information

This function can be used to check if there are any errors on a specific volume and if
necessary, repair the found errors. Typically, the buffer should be larger than 4
Kbyte. The minimum size of this buffer can be calculated using the following formula:

NumBytes = 12 * (BytesPerSector * 8) / BitsPerATEntry

The callback function is used to notify the user about the error that occurred and to
ask whether the error should be fixed or not. To get a detailed information string of
the error that occurred, the parameter ErrCode can be passed to

Parameter Description

sVolumeName Volume name as a string.

pBuffer
IN: Buffer that will be used by the function as temporary stor-
age.
OUT: ---

BufferSize Size of the specified buffer in bytes.
MaxRecursionLevel The maximum directory level the function should check.

pfOnError
Pointer to a callback function which is invoked in case of an
error.

Table 4.71: FS_CheckDisk() parameter list

Parameter Description

NumBytes Required buffer size in bytes
BytesPerSector Size of a logical sector in bytes

BitsPerATEntry

Size of an allocation table entry in bits:
� 12 - FAT12
� 16 - FAT16
� 32 - FAT32
� 32 - EFS

Table 4.72: Buffer size computation parameters

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

119

FS_CheckDisk_ErrCode2Text(). The return value of the callback function indicates
which action should be performed for the encountered error. For more information
see FS_CHECKDISK_ON_ERROR_CALLBACK on page 150.

The contents of the lost cluster chains the user decides to save are copied to files
named FILE<FileIndex>.CHK in directories named FOUND.<DirIndex>. FileIndex is
a 0-based 4 digit decimal number and DirIndex is a 0-based 3 decimal number. The
first directory will have the name �FOUND.000�, the second �FOUND.001�, etc. The fist
file in the directory will have the name �FILE0000.CHK�, the second �FILE0001.CHK�,
etc.

Before checking the disk the function will close all opened file handles. During the
checking it is not allowed to access the medium.

Example

#include <stdarg.h>
#include "FS.h"

static U32 _aBuffer[5000];

/***
*
* _OnError
*/
int _OnError(int ErrCode, ...) {
 va_list ParamList;
 const char * sFormat;
 char c;
 char ac[1000];

 sFormat = FS_CheckDisk_ErrCode2Text(ErrCode);
 if (sFormat) {
 va_start(ParamList, ErrCode);
 vsprintf(ac, sFormat, ParamList);
 printf("%s\n", ac);
 }
 if (ErrCode != FS_ERRCODE_CLUSTER_UNUSED) {
 printf(" Do you want to repair this? (y/n/a) ");
 } else {
 printf(" * Convert lost cluster chain into file (y)\n"
 " * Delete cluster chain (d)\n"
 " * Do not repair (n)\n"
 " * Abort (a) ");
 printf("\n");
 }
 c = getchar();
 printf("\n");
 if ((c == 'y') || (c == 'Y')) {
 return FS_CHECKDISK_ACTION_SAVE_CLUSTERS;
 } else if ((c == 'a') || (c == 'A')) {
 return FS_CHECKDISK_ACTION_ABORT;
 } else if ((c == 'd') || (c == 'D')) {
 return FS_CHECKDISK_ACTION_DELETE_CLUSTERS;
 }
 return FS_CHECKDISK_ACTION_DO_NOT_REPAIR; // Do not fix.
}

/***
*
* MainTask
*/
void MainTask(void) {
 int r;

 FS_Init();
 r = FS_CheckDisk("", &_aBuffer[0], sizeof(_aBuffer), 5, _OnError);
 while (r == FS_CHECKDISK_RETVAL_RETRY) {
 ;
 }
}

120 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.9.2 FS_CheckDisk_ErrCode2Text()
Description

Returns an error string to a specific check-disk error code.

Prototype
const char * FS_FAT_CheckDisk_ErrCode2Text(int ErrCode);

Return value

A pointer to a statically allocated string holding the error text.

Additional information

The following error codes are defined as

Typically, this function is used in the callback function for the error handling that is
used by FS_CheckDisk(). See FS_CheckDisk() on page 118 for an example.

Parameter Description

ErrCode Check-disk error code.
Table 4.73: FS_CheckDisk_ErrCode2Text() parameter list

Permitted values for the parameter ErrCode

FS_CHECKDISK_ERRCODE_0FILE
A file of size zero has allo-
cated cluster(s).

FS_CHECKDISK_ERRCODE_SHORTEN_
CLUSTER

A cluster chain for a spe-
cific file is longer than its
file size.

FS_CHECKDISK_ERRCODE_CROSSLINKED_
CLUSTER

A cluster is cross-linked
(used for multiple files /
directories)

FS_CHECKDISK_ERRCODE_FEW_CLUSTER
Too few clusters allocated
to file.

FS_CHECKDISK_ERRCODE_CLUSTER_
UNUSED

A cluster is marked as
used, but not assigned to
a file or directory.

FS_CHECKDISK_ERRCODE_CLUSTER_
NOT_EOC

A cluster is not marked as
end-of-chain.

FS_CHECKDISK_ERRCODE_INVALID_
CLUSTER

A cluster is not a valid
cluster.

FS_CHECKDISK_ERRCODE_INVALID_
DIRECTORY_ENTRY

A directory entry is
invalid.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

121

4.9.3 FS_CreateMBR()
Description

Stores a Master Boot Record to the sector 0 of a specified volume.

Prototype
int FS_CreateMBR(const char * sVolumeName,
 FS_PARTITION_INFO * pPartInfo,
 int NumPartitions);

Return value

== 0: MBR created.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

The function overwrites any information stored in the sector 0 of the volume. The
partition entries are stored in the order specified in the pPartInfo array:
pPartInfo[0] is the first partition, pPartInfo[1] is the second one, etc. If the Type
field of the FS_PARTITION_INFO structure is set to 0 the function will determine the
partition type and the CHS addresses (Type, StartAddr and EndAddr) automatically
using the values stored in the StartSector and NumSector fields.

Example

This example creates a MBR with 2 partitions. The first partition is bootable. All
parameters are explicitly configured. The second partition is not bootable and the
type and CHS addresses are computed by the function.

void CreateMBRSample(void) {
 FS_PARTITION_INFO aPartInfo[2];

 memset(aPartInfo, 0, sizeof(aPartInfo));
 //
 // First partition.
 //
 aPartInfo[0].IsActive = 1;
 aPartInfo[0].StartSector = 10;
 aPartInfo[0].NumSectors = 100000;
 aPartInfo[0].Type = 6;
 aPartInfo[0].StartAddr.Cylinder = 0;
 aPartInfo[0].StartAddr.Head = 0;
 aPartInfo[0].StartAddr.Sector = 11;
 aPartInfo[0].EndAddr.Cylinder = 538;
 aPartInfo[0].EndAddr.Head = 1;
 aPartInfo[0].EndAddr.Sector = 10;
 //
 // Second partition.
 //
 aPartInfo[1].StartSector = 200000;
 aPartInfo[1].NumSectors = 10000;
 FS_CreateMBR("", aPartInfo, 2);
}

Parameter Description

sVolumeName
IN: Volume name. If the empty string is specified, the first
device in the volume table will be used. NULL is not allowed.
OUT: ---

pPartInfo
IN: List of partition entries to create.
OUT: ---

NumPartitions Number of partition entries to create.
Table 4.74: FS_CreateMBR() parameter list

122 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.9.4 FS_FileTimeToTimeStamp()
Description

Converts a given FS_FILE_TIME structure to a timestamp.

Prototype
void FS_FileTimeToTimeStamp(const FS_FILETIME * pFileTime,
 U32 * pTimeStamp);

Additional Information

Refer to FS_FILETIME on page 153 to get information about the FS_FILETIME data
structure.

Parameter Description

pFileTime
Pointer to a data structure of type FS_FILETIME, that holds the data
to be converted.

pTimeStamp Pointer to a U32 variable to store the timestamp.
Table 4.75: FS_FileTimeToTimeStamp() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

123

4.9.5 FS_FreeSectors()
Description

Informs the storage layer about unused sectors.

Prototype
int FS_FreeSectors(const char * pVolumeName);

Return value

== 0: Operation executed successfully.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

The function checks each entry of the allocation table and if it is not used informs the
storage layer that the sectors assigned to the cluster do not store valid data. This
information is used by the NAND and NOR driver to optimize the internal copy pro-
cess of a data block.

Parameter Description

pVolumeName Volume on which to perform the operation.
Table 4.76: FS_FreeSectors() parameter list

124 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.9.6 FS_GetFileSize()
Description

Gets the current file size of a file.

Prototype
U32 FS_GetFileSize(FS_FILE * pFile);

Return Value

>= 0: File size in bytes (0 - 0xFFFFFFFE).
== 0xFFFFFFFF: In case of any error.

Parameter Description

pFile Pointer to a data structure of type FS_FILE.
Table 4.77: FS_GetFileSize() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

125

4.9.7 FS_GetMaxSectorSize()
Description

Returns the size of the configured logical sector.

Prototype
U32 FS_GetMaxSectorSize(void);

Return Value

Size of a logical sector in bytes.

126 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.9.8 FS_GetNumFilesOpen()
Description

Returns the number of opened files.

Prototype
int FS_GetNumFilesOpen(void);

Return Value

Number of opened file handles.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

127

4.9.9 FS_GetNumVolumes()
Description

Retrieves the number of available volumes.

Prototype
int FS_GetNumVolumes(void);

Return Value

The number of available volumes.

Additional Information

This function can be used to get the name of each available volume. Refer to
FS_GetVolumeName() on page 135 for getting more information.

128 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.9.10 FS_GetPartitionInfo()
Description

Returns information about a disk partition.

Prototype
int FS_GetPartitionInfo(const char * sVolumeName,
 FS_PARTITION_INFO * pPartInfo,
 U8 PartIndex);

Return Value

== 0: Partition information returned.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

The information is read from the Master Boot Record (MBR) stored on sector 0 of the
volume. An error is returned if no MBR is present on the storage medium. If the Type
field of the FS_PARTITION_INFO structure is 0, the partition entry is not valid.

Example

This sample show how to list the contents of the partition list stored in the Master
Boot Record. Only the valid entries are displayed.

void PartitionInfoSample(void) {
 int iPart;
 FS_PARTITION_INFO PartInfo;

 for (iPart = 0; iPart < FS_NUM_PARTITIONS; ++iPart) {
 FS_GetPartitionInfo(““, &PartInfo, iPart);
 if (PartInfo.Type) {
 printf(" Index: %u\n"
 " StartSector: %lu\n"
 " NumSectors: %lu\n"
 " Type: %u\n"
 " IsActive: %u\n"
 " FirstCylinder: %u\n"
 " FirstHead: %u\n"
 " FirstSector: %u\n"
 " LastCylinder: %u\n"
 " LastHead: %u\n"
 " LastSector: %u\n\n", iPart,
 PartInfo.StartSector,
 PartInfo.NumSectors,
 PartInfo.Type,
 PartInfo.IsActive,
 PartInfo.StartAddr.Cylinder,
 PartInfo.StartAddr.Head,
 PartInfo.StartAddr.Sector,
 PartInfo.EndAddr.Cylinder,
 PartInfo.EndAddr.Head,
 PartInfo.EndAddr.Sector);
 }
 }
}

Parameter Description

sVolumeName
IN: Volume name. If the empty string is specified, the first device in
the volume table will be used. NULL is not allowed.
OUT: ---

pPartInfo
IN: ---
OUT: Information about partition

PartIndex Index of in the partition table to read from (0-3).
Table 4.78: FS_GetPartitionInfo() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

129

4.9.11 FS_GetVolumeFreeSpace()
Description

Gets amount of free space on a specific volume.

Prototype
U32 FS_GetVolumeFreeSpace(const char * sVolumeName);

Return Value

> 0: Amount of free space in bytes. Free space larger than 4 GB is reported as
0xFFFFFFFF (the maximum value of a U32).
== 0: If the volume cannot be found.

Additional Information

Note that free space larger than four Gbytes is reported as 0xFFFFFFFF because a U32
cannot represent bigger values. The function FS_GetVolumeInfo() can be used for
larger spaces. If you do not need to know if there is more than 4 GB of free space
available, you can still reliably use FS_GetVolumeFreeSpace().

Valid values for sVolumeName have the following structure:

[DevName:[UnitNum:]]

where:

� DevName is the name of a device. If not specified, the first device in the volume
table will be used.

� UnitNum is the number of the unit of the device. If not specified, unit 0 will be
used.

Note that to specify UnitNum, also DevName has to be specified.

Parameter Description

sVolumeName Pointer to a string that specifies the volume name.
Table 4.79: FS_GetVolumeFreeSpace() parameter list

130 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.9.12 FS_GetVolumeFreeSpaceKB()
Description

Gets amount of free space on a specific volume in kilo bytes.

Prototype
U32 FS_GetVolumeFreeSpaceKB(const char * sVolumeName);

Return Value

> 0: Amount of free space in kilo bytes.
== 0: If the volume cannot be found.

Additional Information

Valid values for sVolumeName have the following structure:

[DevName:[UnitNum:]]

where:

� DevName is the name of a device. If not specified, the first device in the volume
table will be used.

� UnitNum is the number of the unit of the device. If not specified, unit 0 will be
used.

Note that to specify UnitNum, also DevName has to be specified.

Parameter Description

sVolumeName Pointer to a string that specifies the volume name.
Table 4.80: FS_GetVolumeFreeSpaceKB() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

131

4.9.13 FS_GetVolumeInfo()
Description

Gets volume information, that is the number of clusters (total and free), sectors per
cluster, and bytes per sector. The function collects volume information and stores it
into the given FS_DISK_INFO structure.

Prototype
int FS_GetVolumeInfo(const char * sVolumeName,
 FS_DISK_INFO * pInfo);

Return Value

== 0: If volume information could be retrieved successfully.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

Valid values for sVolumeName have the following structure:

[DevName:[UnitNum:]]

where:

� DevName is the name of a device. If not specified, the first device in the volume
table will be used.

� UnitNum is the number of the unit of the device. If not specified, unit 0 will be
used.

Note that to specify UnitNum, also DevName has to be specified.

Example

#include "FS.h"
#include <stdio.h>

void MainTask(void) {
 FS_DISK_INFO Info;

 if (FS_GetVolumeInfo("ram:", &Info) == -1) {
 printf("Failed to get volume information.\n");
 } else {
 printf("Number of total clusters = %d\n"
 "Number of free clusters = %d\n"
 "Sectors per cluster = %d\n"
 "Bytes per sector = %d\n",
 Info.NumTotalClusters,
 Info.NumFreeClusters,
 Info.SectorsPerCluster,
 Info.BytesPerSector);
 }
}

Parameter Description

sVolumeName Volume name as a string.
pInfo Pointer to a FS_DISK_INFO structure.

Table 4.81: FS_GetVolumeInfo() parameter list

132 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.9.14 FS_GetVolumeInfoEx()
Description

Returns information about the volume into the given FS_DISK_INFO structure.

Prototype
int FS_GetVolumeInfoEx(const char * sVolumeName,
 FS_DISK_INFO * pInfo,

 int Flags);

Return Value

== 0: If volume information could be retrieved successfully.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

Valid values for sVolumeName have the following structure:

[DevName:[UnitNum:]]

where:

� DevName is the name of a device. If not specified, the first device in the volume
table will be used.

� UnitNum is the number of the unit of the device. If not specified, unit 0 will be
used.

Note that to specify UnitNum, also DevName has to be specified.

Example

#include "FS.h"
#include <stdio.h>

void VolumeInfoSample(void) {
 int r;
 FS_DISK_INFO Info;
 const char * sFSType;

 r = FS_GetVolumeInfoEx("", &Info, FS_DISKINFO_FLAG_FREE_SPACE);
 if (r) {
 printf("Failed to get volume information.\n");
 } else {
 switch (Info.FSType) {
 case FS_TYPE_FAT12:
 sFSType = "FAT12";
 break;
 case FS_TYPE_FAT16:
 sFSType = "FAT16";
 break;
 case FS_TYPE_FAT32:
 sFSType = "FAT32";
 break;
 case FS_TYPE_EFS:
 sFSType = "EFS";
 break;
 default:

Parameter Description

sVolumeName Volume name as a string.
pInfo Pointer to a FS_DISK_INFO structure.
Flags Bitmask which controls what add. information should be returned.

Table 4.82: FS_GetVolumeInfoEx() parameter list

Permitted values for parameter Flags

FS_DISKINFO_FLAG_FREE_SPACE
Information is returned about the
number of free clusters.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

133

 sFSType = "Unknown";
 break;
 }
 sFSType = "";
 printf("Number of total clusters: %d\n"
 "Number of free clusters: %d\n"
 "Sectors per cluster: %d\n"
 "Bytes per sector: %d\n"
 "Number of entries in root: %d\n"
 "File system type: %s\n"
 "Formatted acc. to SD spec.: %s\n",
 Info.NumTotalClusters,
 Info.NumFreeClusters,
 Info.SectorsPerCluster,
 Info.BytesPerSector,
 Info.NumRootDirEntries,
 sFSType,
 Info.IsSDFormatted ? "Yes" : "No");
 }
}

134 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.9.15 FS_GetVolumeLabel()
Description

Returns a volume label name if one exists.

Prototype
int FS_GetVolumeLabel(const char * sVolumeName,
 char * pVolumeLabel
 unsigned VolumeLabelSize);

Return Value

== 0: Volume label stored in the output buffer.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Parameter Description

sVolumeName Volume name as a string.
pVolumeLabel Pointer to a buffer to receive the volume label.
pVolumeLabelSize Size of the buffer which can used to store pVolumeLabel.

Table 4.83: FS_GetVolumeLabel() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

135

4.9.16 FS_GetVolumeName()
Description

Retrieves the name of the specified volume index.

Prototype
int FS_GetVolumeName(int Index,
 char * pBuffer,
 int BufferSize);

Return Value

If the function succeeds, the return value is the length of the string copied to
pBuffer, excluding the terminating null character, in bytes.
If the pBuffer buffer is too small to contain the volume name, the return value is the
size of the buffer required to hold the volume name plus the terminating null charac-
ter. Therefore, if the return value is greater than BufferSize, make sure to call the
function again with a buffer that is large enough to hold the volume name.

Example

void ShowAvailableVolumes(void) {
 int NumVolumes;
 int i;
 int BufferSize;
 char acVolume[12];

 BufferSize = sizeof(acVolume);
 NumVolumes = FS_GetNumVolumes();
 FS_X_Log("Available volumes:\n");
 for (i = 0; i < NumVolumes; i++) {
 if (FS_GetVolumeName(i, &acVolume[0], BufferSize) < BufferSize) {
 FS_X_Log(acVolume);
 FS_X_Log("\n");
 }
 }
}

Parameter Description

Index Index number of the volume.

pBuffer
Pointer to a buffer that receives the null-terminated string for the
volume name.

BufferSize
Size of the buffer to receive the null terminated string for the vol-
ume name.

Table 4.84: FS_GetVolumeName() parameter list

136 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.9.17 FS_GetVolumeSize()
Description

Gets the total size of a specific volume.

Prototype
U32 FS_GetVolumeSize(const char * sVolumeName);

Return Value

Volume size in bytes. Volume sizes larger than 4 Gbyte are truncated to 0xFFFFFFFF
(the maximum value of a U32).

Additional Information

Note that volume sizes larger than 4 Gbytes are reported as 0xFFFFFFFF because a
U32 cannot represent bigger values. The function FS_GetVolumeInfo() can be used
for larger media. If you do not need to know if the total space is bigger than 4
Gbytes, you can still reliably use FS_GetVolumeSize().

Valid values for sVolumeName have the following structure:

[DevName:[UnitNum:]]

where:

� DevName is the name of a device. If not specified, the first device in the volume
table will be used.

� UnitNum is the number of the unit of the device. If not specified, unit 0 will be
used.

Note that to specify UnitNum, also DevName has to be specified.

Parameter Description

sVolumeName Volume name as a string.
Table 4.85: FS_GetVolumeSize() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

137

4.9.18 FS_GetVolumeSizeKB()
Description

Gets the total size of a specific volume in kilo bytes.

Prototype
U32 FS_GetVolumeSizeKB(const char * sVolumeName);

Return Value

> 0: Amount of free space in kilo bytes.
== 0: If the volume cannot be found.

Additional Information

Valid values for sVolumeName have the following structure:

[DevName:[UnitNum:]]

where:

� DevName is the name of a device. If not specified, the first device in the volume
table will be used.

� UnitNum is the number of the unit of the device. If not specified, unit 0 will be
used.

Note that to specify UnitNum, also DevName has to be specified.

Parameter Description

sVolumeName Volume name as a string.
Table 4.86: FS_GetVolumeSizeKB() parameter list

138 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.9.19 FS_GetVolumeStatus()
Description

Returns the status of a volume.

Prototype
int FS_GetVolumeStatus(const char * sVolumeName);

Return Value

Parameter Description

sVolumeName Volume name as a string.
Table 4.87: FS_GetVolumeStatus() parameter list

Return value Description

FS_MEDIA_STATE_UNKNOWN The volume state is unknown.
FS_MEDIA_NOT_PRESENT A volume is not present.
FS_MEDIA_IS_PRESENT A volume is present.

Table 4.88: FS_GetVolumeStatus() - list of return values

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

139

4.9.20 FS_IsVolumeMounted()
Description

Returns if a volume was successfully mounted and has correct file system informa-
tion.

Prototype
int FS_IsVolumeMounted(const char * sVolumeName);

Return Value

== 1: If volume information is mounted.
== 0: In case of error, for example if the volume could not be found, is not detected,
 or has incorrect file system information.

Example

#include "FS.h"
#include <stdio.h>

void MainTask(void) {
 if (FS_IsVolumeMounted("ram:")) {
 printf("Volume is already mounted.\n");
 } else {
 printf("Volume is not mounted.\n");
 }
}

Parameter Description

sVolumeName Volume name as a string.
Table 4.89: FS_IsVolumeMounted() parameter list

140 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.9.21 FS_Lock()
Description

Claims the exclusive access to file system.

Prototype
void FS_Lock(void);

Additional information

The execution of the task that calls this function is suspended until the exclusive
access to file system can be granted. Typically used by an application when driver
specific functions are called from different tasks. These functions are usually not pro-
tected against concurrent accesses. No other task can perform file system operations
until FS_Unlock() is called. If FS_OS_LOCKING is not set to 1, the function does noth-
ing.

Note: The file system API functions are multitasking safe. Explicit locking using
FS_Lock()/FS_Unlock() is not required.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

141

4.9.22 FS_LockVolume()
Description

Claims the exclusive access to a given volume.

Prototype
void FS_LockVolume(const char * sVolumeName);

Additional information

The execution of the task that calls this function is suspended until the exclusive
access to file system can be granted. If FS_OS_LOCKING is not set to 2, the function
does nothing.

Note: The file system API functions are multitasking safe. Explicit locking using
FS_LockVolume()/FS_UnlockVolume() is not required.

Parameter Description

sVolumeName Volume name as a string.

142 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.9.23 FS_SetBusyLEDCallback()
Description

Specifies callback function to control an LED which shows the state of a specific vol-
ume.

Prototype
void FS_SetBusyLEDCallback(const char * sVolumeName,
 FS_BUSY_LED_CALLBACK * pfBusyLEDCallback);

Additional Information

If you intend to show any volume read/write activity, use this function to set the busy
indication for the desired volume.

Example

#include "FS.h"

static void _cbBusyLED(U8 OnOff) {
 if (OnOff) {
 HW_SetLED();
 } else {
 HW_ClrLED();
 }
}

void MainTask(void) {
 FS_FILE * pFile;

 FS_Init();
 FS_SetBusyLEDCallback(“ram:”, _cbBusyLED);
 pFile = FS_FOpen(“ram:\\file.txt“, “w“);
 FS_FClose(pFile);
}

Parameter Description

sVolumeName Volume name as a string.

pfBusyLEDCallback
Callback function which is invoked when the LED status should
be changed.

Table 4.90: FS_SetBusyLEDCallback() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

143

4.9.24 FS_SetMemAccessCallback()
Description

Registers a function which should be called before any read and write operation to
check if a data buffer can be used in 0-copy operation.

Prototype
void FS_SetMemAccessCallback(const char * sVolumeName,
 FS_MEMORY_IS_ACCESSIBLE_CALLBACK * pfIsAccessibleCallback);

Additional Information

This function is available only if the sources are compiled with the
FS_SUPPORT_CHECK_MEMORY switch is set to 1. The file system operations are opti-
mized to avoid the copying of data being written or read. Where possible, 0-copy
operations are used. Only a pointer to data being written or read is passed between
the file system layers. By registering a callback function an application can control
whether a 0-copy operation is allowed or not. This can be useful, for example, if the
HW layer uses DMA to transfer the data and the DMA controller can not access a cer-
tain memory region. In such a case the callback should return 0 to inform the file
system to buffer the data internally.

Example

#include "FS.h"

static int _cbIsMemoryAccessible(void * p, U32 NumBytes) {
 if ((U32)p > 0x100000uL) {
 return 1; // 0-copy allowed.
 } else {
 return 0; // 0-copy not allowed
 }
}

void MainTask(void) {
 FS_FILE * pFile;

 FS_Init();
 FS_SetMemAccessCallback(“ram:”, _cbIsMemoryAccessible);
 pFile = FS_FOpen(“ram:\\file.txt“, “w“);
 if (pFile) {
 FS_FWrite(“Test\n“, 5, 1, pFile);
 }
 FS_FClose(pFile);
}

Parameter Description

sVolumeName Volume name as a string.
pfIsAccessibleCallback Pointer to a function which performs the checking.

Table 4.91: FS_SetMemAccessCallback() parameter list

144 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.9.25 FS_SetVolumeLabel()
Description

Sets a label to a specific volume.

Prototype
int FS_SetVolumeLabel(const char * sVolumeName,
 char * pVolumeLabel);

Return Value

== 0: On Success.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Parameter Description

sVolumeName Volume name as a string.

pVolumeLabel
Pointer to a buffer with the new volume label.
NULL indicates, that the volume label should be deleted.

Table 4.92: FS_GetVolumeLabel() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

145

4.9.26 FS_TimeStampToFileTime()
Description

Converts a given timestamp to a FS_FILE_TIME structure.

Prototype
void FS_TimeStampToFileTime(U32 TimeStamp,
 FS_FILETIME * pFileTime);

Additional Information

A TimeStamp is a packed value with the following format:

Parameter Description

TimeStamp Timestamp to be converted.

pFileTime
Pointer to a data structure of type FS_FILETIME to store the con-
verted timestamp.

Table 4.93: FS_TimeStampToFileTime() parameter list

Bits Description

0-4 Second divided by 2
5-10 Minute (0 - 59)
11-15 Hour (0 - 23)
16-20 Day of month (1 - 31)
21-24 Month (January -> 1, February -> 2, etc.)
25-31 Year offset from 1980. Add 1980 to get current year.

Table 4.94: FS_TimeStampToFileTime() - timestamp format description

146 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.9.27 FS_Unlock()
Description

Releases the exclusive access to file system.

Prototype
void FS_Unlock(void);

Additional information

Should be called after FS_Lock() to give other task access to file system. If
FS_OS_LOCKING is not set to 1, the function does nothing.

Note: The file system API functions are multitasking safe. Explicit locking using
FS_Lock()/FS_Unlock() is not required.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

147

4.9.28 FS_UnlockVolume()
Description

Releases the exclusive access to a given volume.

Prototype
void FS_UnlockVolume(const char * sVolumeName);

Additional information

The execution of the task that calls this function is suspended until the exclusive
access to file system can be granted. If FS_OS_LOCKING is not set to 2, the function
does nothing.

Note: The file system API functions are multitasking safe. Explicit locking using
FS_LockVolume()/FS_UnlockVolume() is not required.

Parameter Description

sVolumeName Volume name as a string.

148 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.9.29 FS_BUSY_LED_CALLBACK
Description

Callback function invoked when the LED status should be changed.

Prototype
typedef void (FS_BUSY_LED_CALLBACK)(U8 OnOff);

Additional information

Refer to FS_SetBusyLEDCallback() on page 142 for more information.

Parameter Description

OnOff
LED status
!=0 LED on
==0 LED off

Table 4.95: FS_BUSY_LED_CALLBACK parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

149

4.9.30 FS_MEMORY_IS_ACCESSIBLE_CALLBACK
Description

Callback function invoked at the beginning of a read or write operation to check if a
0-copy operation can be performed on the data buffer.

Prototype
typedef int FS_MEMORY_IS_ACCESSIBLE_CALLBACK(void * p, U32 NumBytes);

Return value

==0 The driver can not access the data buffer directly
==1 Data buffer can be passed to device driver

Additional information

Refer to FS_SetMemAccessCallback() on page 143 for more information.

Parameter Description

p
IN: Data buffer to check.
OUT: ---

NumBytes Number of bytes of data buffer to be checked.
Table 4.96: FS_MEMORY_IS_ACCESSIBLE_CALLBACK parameter list

150 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.9.31 FS_CHECKDISK_ON_ERROR_CALLBACK
Description

Callback invoked when an error occurs during a disk check.

Prototype
typedef int FS_CHECKDISK_ON_ERROR_CALLBACK(int ErrCode, ...);

Return value

==FS_CHECKDISK_ACTION_DO_NOT_REPAIR Do not repair the error
==FS_CHECKDISK_ACTION_SAVE_CLUSTERS Save lost cluster chain to file
==FS_CHECKDISK_ACTION_ABORT Abort disk checking
==FS_CHECKDISK_ACTION_DELETE_CLUSTERS Delete cluster chain

Additional information

Depending on the error type, additional parameters are passed to this function. They
can be used in ca call to a sprinf()-like function to create a text error message. For
more information see FS_CheckDisk() on page 118.

Parameter Description

ErrCode Value which indicates the type of error.
Table 4.97: FS_CHECKDISK_ON_ERROR_CALLBACK parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

151

4.9.32 FS_CHS_ADDR
Description

This structure stores information about the position on a disk.

Prototype
typedef struct {
 U16 Cylinder;
 U8 Head;
 U8 Sector;
}
FS_CHS_ADDR;

Members Description

Cylinder Cylinder number.
Head Head number.
Sector Sector number.

Table 4.98: FS_CHS_ADDR - list of structure elements

152 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.9.33 FS_DISK_INFO
Description

This structure stores information about a volume.

Prototype
typedef struct {
 U32 NumTotalClusters;
 U32 NumFreeClusters;
 U16 SectorsPerCluster;
 U16 BytesPerSector;
 U16 NumRootDirEntries;
 U16 FSType;
 U8 IsSDFormatted;
}
FS_DISK_INFO;

Members Description

NumTotalClusters Number of clusters on the medium.
NumFreeClusters Number of clusters that are not used
SectorsPerCluster Number of sectors in a cluster
BytesPerSector Number of bytes in a sector

NumRootDirEntries
Number of directory entries in the root directory. In case of
FAT32 and EFS partitions, where the size of the root directory
is not limited, it is always 0xFFFF.

FSType

Partition type. Can be one of:
� FS_TYPE_FAT12
� FS_TYPE_FAT16
� FS_TYPE_FAT32
� FS_TYPE_EFS

IsSDFormatted Set to 1 if the volume is formatted acc. to SD specifications.
Table 4.99: FS_DISK_INFO - list of structure elements

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

153

4.9.34 FS_FILETIME
Description

The FS_FILETIME structure represents a timestamp using individual members for the
month, day, year, weekday, hour, minute, and second. This can be useful for getting
or setting a timestamp of a file or directory.

Prototype
typedef struct {
 U16 Year;
 U16 Month;
 U16 Day;
 U16 Hour;
 U16 Minute;
 U16 Second;
} FS_FILETIME;

Members Description

Year Represents the year. The year must be greater than 1980.
Month Represents the month, where January = 1, February = 2, etc.
Day Represents the day of the month (1 - 31).
Hour Represents the hour of the day (0 - 23).
Minute Represents the minute of the hour (0 - 59).
Second Represents the second of the minute (0 - 59).

Table 4.100: FS_FILETIME - list of structure elements

154 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.9.35 FS_PARTITION_INFO
Description

This structure stores information about a partition.

Prototype
typedef struct {
 U32 NumSectors;
 U32 StartSector;
 FS_CHS_ADDR StartAddr;
 FS_CHS_ADDR EndAddr;
 U8 Type;
 U8 IsActive;
}
FS_PARTITION_INFO;

Members Description

NumSectors Total number of sectors in the partition.
StartSector Absolute address of the first sector in the partition.
StartAddr Address of the first sector in the partition in CHS format.
EndAddr Address of the last sector in the partition in CHS format.
Type Type of the partition.
IsActive Set to 1 if the partition is bootable.

Table 4.101: FS_PARTITION_INFO - list of structure elements

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

155

4.10 Storage layer functions

4.10.1 FS_STORAGE_Clean()
Description

Performs garbage collection on a storage medium.

Prototype
int FS_STORAGE_Clean(const char * sVolumeName);

Return value

== 0: Storage medium cleaned.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional information

The function can be used only on storage layers managed by the file system. Typi-
cally, these are the volumes mounted on NAND flash and NOR flash devices. All the
blocks/sectors which contain invalid data are erased. Depending on the storage type
the function can block for a long period of time preventing the access of other tasks
to file system. For the situations where this is not desired, an alternative function is
provided which performs only one garbage collection step. Refer to
FS_STORAGE_CleanOne() on page 156 for more information. The operations per-
formed by the driver are documented in the relevant �Garbage collection� section.
Not all the device drivers support this functionality. The function can be called from a
different task than the task performing the file access operations.

Example

void CleanSample(void) {
 FS_FILE * pFile;

 //
 // Perform garbage collection on the storage medium.
 //
 FS_STORAGE_Clean("");
 //
 // The write to file is fast since no garbage collection is required.
 //
 pFile = FS_FOpen("file.txt", "w");
 if (pFile) {
 FS_Write(pFile, "Test", 4);
 FS_FClose(pFile);
 }
}

Parameter Description

sVolumeName
IN: Volume name. If the empty string is specified, the first
device in the volume table will be used. NULL is not allowed.
OUT: ---

Table 4.102: FS_STORAGE_Clean() parameter list

156 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.10.2 FS_STORAGE_CleanOne()
Description

Performs a single garbage collection step on a storage medium.

Prototype
int FS_STORAGE_CleanOne(const char * sVolumeName,
 int * pMore);

Return value

== 0: Clean operation successful.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional information

The function can be used only on storage layers managed by the file system. Typi-
cally, these are the volumes mounted on NAND flash and NOR flash devices. Usually,
one block/sector which contain invalid data is erased. The operations performed by
the driver are documented in the relevant �Garbage collection� section. Not all the
device drivers support this functionality. The function can be called from a different
task than the task performing the file access operations.

Example
void CleanOneSample(void) {
 FS_FILE * pFile;
 int More;

 //
 // Perform garbage collection on the storage medium.
 //
 More = 0;
 do {
 FS_STORAGE_CleanOne("", &More);
 } while (More);
 //
 // The write to file is fast since no garbage collection is required.
 //
 pFile = FS_FOpen("file.txt", "w");
 if (pFile) {
 FS_Write(pFile, "Test", 4);
 FS_FClose(pFile);
 }
}

Parameter Description

sVolumeName
IN: Volume name. If the empty string is specified, the first
device in the volume table will be used. NULL is not allowed.
OUT: ---

pMore
IN: ---
OUT: !=0 medium has not been cleaned completely
 ==0 medium is completely clean

Table 4.103: FS_STORAGE_CleanOne() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

157

4.10.3 FS_STORAGE_FreeSectors()
Description

Informs the driver about unused sectors.

nt FS_STORAGE_FreeSectors(const char * sVolumeName,
 U32 FirstSector,
 U32 NumSectors);

Return value

==0: Sectors freed
!=0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional information

Typically called by the application to mark the data sectors as not used. The NAND
and NOR driver use this information to optimize relocation of data blocks. The data of
the sectors marked as not used are not copied anymore which improves the write
performance. This is equivalent to trim command for SSDs (Solid State Drives).

Parameter Description

sVolumeName
IN: Volume name. If not specified, the first device in the vol-
ume table will be used.
OUT: ---

FirstSector Index of the first sector which is no longer used
NumSectors Number of sectors not used anymore

Table 4.104: FS_STORAGE_FreeSectors() parameter list

158 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.10.4 FS_STORAGE_GetCleanCnt()
Description

Returns the number of clean operations which should be performed before all invalid
data on the storage medium is erased.

int FS_STORAGE_GetCleanCnt(const char * sVolumeName,
 U32 * pCnt);

Return value

== 0: OK, number of clean operations returned.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Parameter Description

sVolumeName
IN: Volume name. If not specified, the first device in the vol-
ume table will be used.
OUT: ---

pCnt
IN: ---
OUT: Number of clean operations

Table 4.105: FS_STORAGE_GetCleanCnt() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

159

4.10.5 FS_STORAGE_GetCounters()
Description

Returns the device status.

Prototype
void FS_STORAGE_GetCounters(FS_STORAGE_COUNTERS * pStat);

Parameter Description

pStat
IN: ---
OUT: Contents of statistic counters.

Table 4.106: FS_STORAGE_GetCounters() parameter list

160 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.10.6 FS_STORAGE_GetDeviceInfo()
Description

Returns the device status.

Prototype
int FS_STORAGE_GetDeviceInfo (const char * sVolumeName,
 FS_DEV_INFO * pDevInfo);

Return Value

== 0: OK
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Parameter Description

sVolumeName Name of the device to check.
pDeviceInfo Pointer to a data structure of type FS_DEV_INFO.

Table 4.107: FS_STORAGE_GetDeviceInfo() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

161

4.10.7 FS_STORAGE_Init()
Description

This function only initializes the driver and OS if necessary.

Prototype
void FS_STORAGE_Init(void);

Return value

The return value is the number of drivers can be used at the same time. These num-
ber of drivers is relevant for the high-level initialization function FS_Init().
FS_Init() uses these information to allocate the sector buffers which are necessary
for a file system operation.

Additional information

The function initializes the storage layer of a driver. If you use FS_STORAGE_Init()
instead of FS_Init(), only the storage layer functions like
FS_STORAGE_ReadSector() or FS_STORAGE_WriteSector() are available. This means
that the file system can be used as a pure sector read/write software. This can be
useful when using the file system as a USB mass storage client driver.

162 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.10.8 FS_STORAGE_ReadSector()
Description

Reads a sector from a device.

Prototype
int FS_STORAGE_ReadSector(const char * sVolumeName,
 const void * pData,
 U32 SectorIndex);

Return value

== 0: Sector data read.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Parameter Description

sVolumeName
Volume name. If not specified, the first device in the volume
table will be used.

pData Pointer to a buffer where the read data will be stored.
SectorIndex Index of the sector from which data should be read.

Table 4.108: FS_STORAGE_ReadSector() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

163

4.10.9 FS_STORAGE_ReadSectors()
Description

Reads multiple sectors from a device.

Prototype
int FS_STORAGE_ReadSectors(const char * sVolumeName,
 void * pData,
 U32 FirstSector,
 U32 NumSectors);

Return value

== 0: Sector data read.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Parameter Description

sVolumeName
Volume name. If not specified, the first device in the volume
table will be used.

pData Pointer to a data buffer where the read data should be stored.
FirstSector First sector to read.
NumSectors Number of sectors which should be read.

Table 4.109: FS_STORAGE_ReadSectors() parameter list

164 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.10.10 FS_STORAGE_RefreshSectors()
Description

Rewrites one or more sectors with the original data.

Prototype
int FS_STORAGE_RefreshSectors(const char * sVolumeName,
 U32 FirstSector,
 U32 NumSectors,
 void * pBuffer,
 U32 NumBytes);

Return value

== 0: Sector data refreshed.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional information

Typically called to prevent the loss of data when the sector data is not modified for
long periods of time. This can be useful to handle read disturbs of NAND flashes or
errors cause by the data reaching the retention limit. Refer to Read disturbs on
page 230 for more information.

Example

static U32 _aBuffer[2048 / 4];

void SectorRefresSample(void) {
 int r;
 //
 // Refresh the first 100 sectors of the storage medium.
 //
 r = FS_STORAGE_RefreshSectors("", 0, 100, _aBuffer, sizeof(_aBuffer));
 if (r) {
 printf("Sectors 0-99 have been refreshed.\n");
 }
}

Parameter Description

sVolumeName
IN: Volume name. If not specified, the first device in the vol-
ume table will be used.
OUT: ---

FirstSector Index of the first sector to be refreshed
NumSectors Number of sectors to be refreshed

pBuffer
Buffer to be used as storage for the read sectors. Must be at
least one sector large.

NumBytes Number of bytes in the buffer.
Table 4.110: FS_STORAGE_RefreshSectors() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

165

4.10.11 FS_STORAGE_ResetCounters()
Description

Sets the statistic counters of the storage layer to 0.

Prototype
void FS_STORAGE_ResetCounters(void);

166 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.10.12 FS_STORAGE_Sync()
Description

Writes cached data to the storage medium and sends a command to the driver to
finalize all pending tasks.

Prototype
void FS_STORAGE_Sync(const char * sVolumeName);

Parameter Description

sVolumeName
Volume name. If not specified, the first device in the volume table
will be used.

Table 4.111: FS_STORAGE_Sync() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

167

4.10.13 FS_STORAGE_SyncSectors()
Description

Writes cached sector data to storage medium.

nt FS_STORAGE_SyncSectors(const char * sVolumeName,
 U32 FirstSector,
 U32 NumSectors);

Return value

==0: Sectors synchronized
!=0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional information

When called on a RAID volume it updates the contents of the spcified sectors on the
secondary storage with the contents of the corresponding sectors on the primary
storage if the sector data is different.

Parameter Description

sVolumeName
IN: Volume name. If not specified, the first device in the vol-
ume table will be used.
OUT: ---

FirstSector Index of the first sector to be synchronized
NumSectors Number of sectors to be synchronized

Table 4.112: FS_STORAGE_SyncSectors() parameter list

168 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.10.14 FS_STORAGE_Unmount()
Description

Unmounts a given volume at the driver layer. The function also sends an unmount
command to the driver, and marks the volume as unmounted and uninitialized.

Prototype
void FS_STORAGE_Unmount(const char * sVolumeName);

Parameter Description

sVolumeName
sVolumeName is the name of a volume. If not specified, the first
device in the volume table will be used.

Table 4.113: FS_STORAGE_Unmount() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

169

4.10.15 FS_STORAGE_WriteSector()
Description

Writes one sector to a device.

Prototype
int FS_STORAGE_WriteSector(const char * sVolumeName,
 const void * pData,
 U32 SectorIndex);

Return value

== 0: Sector data written.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Parameter Description

sVolumeName
Volume name. If not specified, the first device in the volume
table will be used.

pData Pointer to the data which should be written to the device.
SectorIndex Index of the sector to which data should be written.

Table 4.114: FS_STORAGE_WriteSector() parameter list

170 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.10.16 FS_STORAGE_WriteSectors()
Description

Writes multiple sectors to a device.

Prototype
int FS_STORAGE_WriteSectors (const char * sVolumeName,
 const void * pData,
 U32 FirstSector,
 U32 NumSectors)

Return value

== 0: Sector data written.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Parameter Description

sVolumeName
Volume name. If not specified, the first device in the volume
table will be used.

pData Pointer to the data which should be written to the device.
FirstSector Start sector of the write operation.
NumSectors Number of sectors that should be written.

Table 4.115: FS_STORAGE_WriteSectors() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

171

4.10.17 Structure FS_STORAGE_COUNTERS
Description

This structure describes the statistic counters of the storage layer.

Prototype
typedef struct {
 U32 ReadOperationCnt;
 U32 ReadSectorCnt;
 U32 ReadSectorCachedCnt;
 U32 WriteOperationCnt;
 U32 WriteSectorCnt;
 U32 WriteSectorCntCleaned;
 U32 ReadSectorCntMan;
 U32 ReadSectorCntDir;
 U32 WriteSectorCntMan;
 U32 WriteSectorCntDir;
} FS_STORAGE_COUNTERS;

Members Description

ReadOperationCnt Total number of read operations.
ReadSectorCnt Total number of sectors read.
ReadSectorCachedCnt Number of times a sector was found in cache.
WriteOperationCnt Total number of write operations.
WriteSectorCnt Total number of sectors written.

WriteSectorCntCleaned
Number of sectors written by the cache module to storage
in order to make room for other data.

ReadSectorCntMan Number of management sectors read (before cache).

ReadSectorCntDir
Number of directory sectors (which store directory entries)
read (before cache).

WriteSectorCntMan Number of management sectors written (before cache).

WriteSectorCntDir
Number of directory sectors (which store directory entries)
written (before cache).

Table 4.116: FS_STORAGE_COUNTERS - list of structure elements

172 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.11 FAT related functions

4.11.1 FS_FAT_GrowRootDir()
Description

Enlarges the default size of the root directory of a FAT32 volume.

Prototype
U32 FS_FAT_GrowRootDir (const char * sVolumeName, U32 NumAddEntries);

Return value

>= 0: Number of entries added.
== 0: Clusters after root directory are not free.
== 0xFFFFFFFF: An error has occurred.

Additional Information

This function has to be called after formatting the volume. If the function is not
called after format or called for a FAT12/16 volume the function will fail. In opposite
to FAT12 and FAT16 which have a fixed root directory size, the root directory of a
FAT32 formatted device can be of variable size. By default, one cluster is reserved for
the root directory entries. Therefore, it can speed up performance to reserve addi-
tional clusters for root directory entries after formatting the medium.

Parameter Description

pVolumeName Name of the device.
NumAddEntries Numbers of directories entries to be added.

Table 4.117: FS_FAT_GrowRootDir() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

173

4.11.2 FS_FormatSD()
Description

Performs a high-level format of a device according to the SD Specification - File sys-
tem specification.

Prototype
int FS_FormatSD (const char * pVolumeName);

Return value

== 0: Format was successful.
!= 0: Error code indicating the failure reason.

Refer to FS_ErrorNo2Text() on page 177.

Additional Information

For further information refer to SD Specification - Part 2 - File System Specification
(May 9, 2006, www.sdcard.org).

Parameter Description

pVolumeName Name of the device to format.
Table 4.118: FS_FormatSD() parameter list

174 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.11.3 FS_FAT_SupportLFN()
Description

Adds long file name support to the file system.

Prototype
void FS_FAT_SupportLFN(void);

Additional Information

The FAT file system was not designed for long file name (LFN) support, limiting
names to twelve characters (8.3). LFN support may be added to any of the FAT file
systems, but there are legal issues that must be settled with Microsoft before end
applications make use of this feature. Long file names are inherent to this proprietary
file system relieving it of any legal issues.

Note: The LFN package is required to support long file names.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

175

4.11.4 FS_FAT_DisableLFN()
Description

Disables the support for long file names for the FAT file system.

Prototype
void FS_DisableLFN(void);

176 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.12 Error handling functions

4.12.1 FS_ClearErr()
Description

Clears the error status of a file.

Prototype
void FS_ClearErr(FS_FILE * pFile);

Additional Information

This routine should be called after you have detected an error so that you can check
for success of the next file operations.

Example

void MainTask(void) {
 FS_FILE *pFile;
 int Err;

 pFile = FS_FOpen("test.txt", "r");
 if (pFile != 0) {
 Err = FS_FError(pFile);
 if (Err != FS_ERR_OK) {
 FS_ClearErr(pFile);
 }
 FS_FClose(pFile);
 }
}

Parameter Description

pFile Pointer to a data structure of type FS_FILE.
Table 4.119: FS_ClearErr() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

177

4.12.2 FS_ErrorNo2Text()
Description

Retrieves text for a given error code.

Prototype
const char * FS_ErrorNo2Text (int ErrCode);

Return value

Returns the string according to the ErrCode.

Additional information

The following error codes are available:

Parameter Description

ErrCode The returned error code.
Table 4.120: FS_ErrorNo2Text() parameter list

Code Description

FS_ERRCODE_OK No error.
FS_ERRCODE_EOF End-of-file has been reached.

FS_ERRCODE_VOLUME_FULL
Unable to write data because
there is no more space on the
media.

FS_ERRCODE_INVALID_PARA
An emFile function has been
called with an illegal parameter.

FS_ERRCODE_WRITE_ONLY_FILE
A read operation has been made
on a file open for writing only.

FS_ERRCODE_READ_ONLY_FILE
A write operation has been made
on a file open for reading only.

FS_ERRCODE_READ_FAILURE
An error occurred during a read
operation.

FS_ERRCODE_WRITE_FAILURE
An error occurred during a write
operation.

FS_ERRCODE_FILE_IS_OPEN Trying to delete an opened file.

FS_ERRCODE_PATH_NOT_FOUND
Path to file or directory not
found.

FS_ERRCODE_FILE_DIR_EXISTS
A file or directory with the same
name already exists.

FS_ERRCODE_NOT_A_FILE
The API function operates only on
files.

FS_ERRCODE_TOO_MANY_FILES
_OPEN

Trying to open more files at once
than the trial version allows.

FS_ERRCODE_INVALID_FILE
_HANDLE

The file handle is no longer valid.

FS_ERRCODE_VOLUME_NOT_FOUND
The volume name specified in a
path is does not exist.

FS_ERRCODE_READ_ONLY_VOLUME
Trying to write to a volume
mounted in read-only mode.

FS_ERRCODE_VOLUME_NOT
_MOUNTED

Trying access a volume which is
not mounted.

FS_ERRCODE_NOT_A_DIR
The API function operates only on
directories.

FS_ERRCODE_FILE_DIR_NOT
_FOUND

File or directory not found.

178 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

Example

void MainTask(void) {
 FS_FILE *pFile;
 int ErrCode;

 ErrCode = FS_FOpenEx("test.txt", "r", &pFile);
 if (ErrCode) {
 FS_X_Log("Open file error: ");
 FS_X_Log(FS_ErrorNo2Text(ErrCode));
 }
}

FS_ERRCODE_NOT_SUPPORTED
Functionality not supported by
the active file system type.

FS_ERRCODE_CLUSTER_NOT_FREE
Trying to allocate a cluster which
is not free.

FS_ERRCODE_INVALID_CLUSTER
_CHAIN

Detected a shorter than expected
cluster chain.

FS_ERRCODE_STORAGE_NOT
_PRESENT

Trying to access a removable
storage which is not inserted.

FS_ERRCODE_BUFFER_NOT
_AVAILABLE

No more sector buffers available.

FS_ERRCODE_STORAGE_TOO
_SMALL

Not enough sectors on the stor-
age medium.

FS_ERRCODE_STORAGE_NOT
_READY

Storage device can not be
accessed.

FS_ERRCODE_BUFFER_TOO_SMALL
Sector buffer smaller than sector
size of storage medium.

FS_ERRCODE_INVALID_FS
_FORMAT

Storage medium is not formatted
or the format is not valid.

FS_ERRCODE_INVALID_FS_TYPE
The type of file system is invalid
or not configured.

FS_ERRCODE_FILENAME_TOO
_LONG

The name of the file is too long.

FS_ERRCODE_VERIFY_FAILURE Data verification failure.

FS_ERRCODE_DIR_NOT_EMPTY
Trying to delete a directory which
is not empty.

FS_ERRCODE_IOCTL_FAILURE
Error while executing a driver
control command.

FS_ERRCODE_INVALID_MBR
Invalid information in the Master
Boot Record.

Code Description

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

179

4.12.3 FS_FEof()
Description

Tests for end-of-file on a given file pointer.

Prototype
int FS_FEof (FS_FILE * pFile);

Return value

== 0: If the end of file has not been reached.
== 1: If the end of file has been reached.

Additional Information

The FS_FEof function determines whether the end of a given file pointer has been
reached. When end of file is reached, read operations return an end-of-file indicator
until the file pointer is closed or until FS_FSeek, or FS_ClearErr is called against it.

Example

int ReadFile(FS_File * pFile, char * pBuffer, int NumBytes) {
 FS_FILE * pFile;
 char acBuffer[100];
 char acLog[100];
 int Count;
 int Total;
 I16 Error;

 Total = 0;
 pFile = FS_FOpen("default.txt", "r");
 if (pFile == NULL) {
 FS_X_ErrorOut("Could not open file.");’
 }
 /* Cycle until end of file reached: */
 while (!FS_FEof(pFile)) {
 Count = FS_Read(pFile, &acBuffer[0], sizeof(acBuffer));
 Error = FS_FError(pFile);
 if (Error) {
 sprintf(acLog, "Could not read from file:\nReason = %s",
 FS_ErrorNo2Text(Error));
 FS_X_ErrorOut(acLog);
 break;
 }
 /* Total up actual bytes read */
 Total += Count;
 }
 sprintf(acLog, "Number of read bytes = %d\n", Total);
 FS_X_Log(acLog);
 FS_FClose(pFile);
}

Parameter Description

pFile Pointer to a data structure of type FS_FILE.
Table 4.121: FS_FEof() parameter list

180 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.12.4 FS_FError()
Description

Returns the current error status of a file.

Prototype
I16 FS_FError (FS_FILE * pFile);

Return value

FS_ERR_OK if no errors.
A value not equal to FS_ERR_OK if a file operation caused an error.

Additional Information

The return value is not FS_ERR_OK only when a file operation caused an error and the
error was not cleared by calling FS_ClearErr() or any other operation that clears the
previous error status.

Example

void MainTask(void) {
 FS_FILE *pFile;

 pFile = FS_FOpen("test.txt", "r");
 if (pFile != 0) {
 I16 Err;
 Err = FS_FError(pFile);
 FS_FClose(pFile);
 }
}

Parameter Description

pFile Pointer to a data structure of type FS_FILE.
Table 4.122: FS_FError() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

181

4.13 Obsolete functions
This section contains reference information for obsolete functions.

4.13.1 FS_CloseDir()
Description

Closes a directory referred to by the parameter pDir.

Prototype
int FS_CloseDir (FS_DIR * pDir);

Return Value

== 0: If the directory was successfully closed.
== -1: In case of any error.

Example

void MainTask(void) {
 FS_DIR *pDir;
 FS_DIRENT *pDirEnt;

 pDir = FS_OpenDir(""); /* Open the root directory of default device */
 if (pDir) {
 do {
 char acDirName[20];
 pDirEnt = FS_ReadDir(pDir);
 FS_DirEnt2Name(pDirEnt, acDirName); /* Get name of the current DirEntry */
 if ((void*)pDirEnt == NULL) {
 break; /* No more files or directories */
 }
 sprintf(_acBuffer," %s\n", acName);
 FS_X_Log(_acBuffer);
 } while (1);
 FS_CloseDir(pDir);
 } else {
 FS_X_ErrorOut("Unable to open directory\n");
}

Parameter Description

pDir Pointer to a data structure of type FS_DIR.
Table 4.123: FS_CloseDir() parameter list

182 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.13.2 FS_ConfigUpdateDirOnWrite()
Description

Configures if the file system should update the directory entry on date write.

Prototype
void FS_ConfigUpdateDirOnWrite(char OnOff);

Additional Information

Use the FS_SetFileWriteMode() function instead.

Parameter Description

OnOff
==1 means enable update directory after write (Default).
==0 means do not update directory.

Table 4.124: FS_ConfigUpdateDirOnWrite() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

183

4.13.3 FS_DirEnt2Attr()
Description

Retrieves the attributes of the directory entry referred to by pDirEnt.

Prototype
void FS_DirEnt2Attr (FS_DIRENT * pDirEnt,
 U8 * pAttr);

Additional Information

These attributes are available:

pDirEnt should point to a valid FS_DIRENT structure. FS_DirEnt2Attr() checks if
the pointer is valid. To get a valid pointer, FS_ReadDir() should be called before
using FS_DirEnt2Attr(). Refer to FS_ReadDir() on page 191 for more information.

Example

void MainTask(void) {
 FS_DIR *pDir;
 FS_DIRENT *pDirEnt;
 char acBuffer[200];
 pDir = FS_OpenDir(""); /* Open root directory of default device */
 if (pDir) {
 do {
 char acName[20];
 U8 Attr;
 pDirEnt = FS_ReadDir(pDir);
 FS_DirEnt2Name(pDirEnt, acName);
 FS_DirEnt2Attr(pDirEnt, &Attr);
 if ((void*)pDirEnt == NULL) {
 break; /* No more files */
 }
 sprintf(_acBuffer," %s %s Attributes: %s%s%s%s\n", acName,
 (Attr & FS_ATTR_DIRECTORY) ? "(Dir)" : " ",
 (Attr & FS_ATTR_ARCHIVE) ? "A" : "-",
 (Attr & FS_ATTR_READ_ONLY) ? "R" : "-",
 (Attr & FS_ATTR_HIDDEN) ? "H" : "-",
 (Attr & FS_ATTR_SYSTEM) ? "S" : "-");
 FS_X_Log(acBuffer);
 } while (1);
 FS_CloseDir(pDir);
 } else {
 FS_X_ErrorOut("Unable to open directory\n");
 }
}

Parameter Description

pDirEnt Pointer to a directory entry, read by FS_ReadDir().
pAttr Pointer to U8 variable in which the attributes should be stored.

Table 4.125: FS_DirEnt2Attr() parameter list

Parameter Description

FS_ATTR_DIRECTORY pDirEnt is a directory.
FS_ATTR_ARCHIVE pDirEnt has the ARCHIVE attribute set.
FS_ATTR_READ_ONLY pDirEnt has the READ ONLY attribute set.
FS_ATTR_HIDDEN pDirEnt has the HIDDEN attribute set.
SYSTEM pDirEnt has the SYSTEM attribute set.

Table 4.126: FS_DirEnt2Attr() - list of possible attributes

184 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.13.4 FS_DirEnt2Name()
Description

Retrieves the name of the directory entry referred to by pDirEnt.

Prototype
void FS_DirEnt2Name (FS_DIRENT * pDirEnt,
 char * pBuffer);

Additional Information

If pDirEnt and pBuffer are valid, the name of the directory is copied to the buffer
that pBuffer points to. Otherwise pBuffer is NULL.
pDirEnt should point to a valid FS_DIRENT structure. FS_DirEnt2Name() checks if
the pointers are valid. To get a valid pointer, FS_ReadDir() should be called before
using FS_DirEnt2Name(), otherwise pBuffer is NULL. Refer to FS_ReadDir() on
page 191 for more information.

Example

void MainTask(void) {
 char acDirName[20];
 FS_DIR *pDir ;
 FS_DIRENT *pDirEnt ;

 pDir = FS_OpenDir(""); /* Open root directory of default device */
 pDirEnt = FS_ReadDir(pDir); /* Read the first directory entry */
 FS_DirEnt2Name(pDirEnt, acDirName);
 FS_X_Log(acDirName);
}

Parameter Description

pDirEnt Pointer to a directory entry, read by FS_ReadDir().
pBuffer Pointer to the buffer that will receive the text.

Table 4.127: FS_DirEnt2Name() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

185

4.13.5 FS_DirEnt2Size()
Description

Returns the size in bytes of the directory entry referred to pDirEnt.

Prototype
U32 FS_DirEnt2Size (FS_DIRENT * pDirEnt);

Return value

File size in bytes.
0 in case of any error.

Additional Information

If pDirEnt is valid, the size of the directory entry will be returned. Otherwise the
return value is 0.
pDirEnt should point to a valid FS_DIRENT structure. FS_DirEnt2Name() checks if
the pointers are valid. To get a valid pointer, FS_ReadDir() should be called before
using FS_DirEnt2Size(). Refer to FS_ReadDir() on page 191 for more information.

Example

void MainTask(void) {
 U32 FileSize;
 FS_DIR *pDir ;
 FS_DIRENT *pDirEnt ;

 pDir = FS_OpenDir(""); /* Open root directory of default device */
 pDirEnt = FS_ReadDir(pDir); /* Read the first directory entry */
 FileSize = FS_DirEnt2Size(pDirEnt);
 if (FileSize) {
 char ac[50] ;
 sprintf(ac, "File size = %lu\n", FileSize);
 FS_X_Log(ac) ;
}

Parameter Description

pDirEnt Pointer to a directory entry, read by FS_ReadDir().
Table 4.128: FS_DirEnt2Size() parameter list

186 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.13.6 FS_DirEnt2Time()
Description

Returns the timestamp of the directory entry referred to by pDirEnt.

Prototype
U32 FS_DirEnt2Size (FS_DIRENT * pDirEnt);

Return value

The timestamp of the current directory entry.

Additional Information

If pDirEnt is valid, the timestamp of the directory entry will be returned. Otherwise,
the return value is 0.
pDirEnt should point to a valid FS_DIRENT structure. FS_DirEnt2Name() checks if
the pointer is valid. To get a valid pointer, FS_ReadDir() should be called before
using FS_DirEnt2Size(). Refer to FS_ReadDir() on page 191 for more information.
A timestamp is a packed value with the following format.

To convert a timestamp to a FS_FILETIME structure, use the function
FS_TimeStampToFileTime().

Example

void MainTask(void) {
 U32 TimeStamp;
 FS_DIR * pDir ;
 FS_DIRENT * pDirEnt ;
 char acLog[100] ;
 char acFileName[40];
 FS_FILETIME FileTime;

 pDir = FS_OpenDir(""); /* Open root directory of default device */
 pDirEnt = FS_ReadDir(pDir); /* Read the first directory entry */
 FS_DirEnt2Name(pDirEnt, &acFileName[0]);
 TimeStamp = FS_DirEnt2Time(pDirEnt);
 FS_TimeStampToFileTime(TimeStamp, &FileTime);
 sprintf(ac, "File time of %s: %d-.2d-%.2d %.2d:%.2d:%.2d",
 acFileName,
 FileTime.Year, FileTime.Month, FileTime.Day,
 FileTime.Hour, FileTime.Minute, FileTime.Second);
 FS_X_Log(ac);
}

Parameter Description

pDirEnt Pointer to a directory entry, read by FS_ReadDir().
Table 4.129: FS_DirEnt2Time() parameter list

Bits Description

0-4 Second divided by 2
5-10 Minute (0 - 59)
11-15 Hour (0-23)
16-20 Day of month (1-31)
21-24 Month (January -> 1, February -> 2, etc.)
25-31 Year offset from 1980. Add 1980 to get current year.

Table 4.130: FS_DirEnt2Time() - timestamp format description

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

187

4.13.7 FS_GetDeviceInfo()
Description

Returns the device status.

Prototype
int FS_GetDeviceInfo(const char * sVolumeName,
 FS_DEV_INFO * pDevInfo);

Additional information

This function is obsolete. Use instead FS_STORAGE_GetDeviceInfo() on page 160.

Return Value

==0: Ok
==-1: Device is not ready or a general error has occurred.

Parameter Description

sVolumeName Name of the device to check.
pDeviceInfo Pointer to a data structure of type FS_DEV_INFO.

Table 4.131: FS_GetDeviceInfo() parameter list

188 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.13.8 FS_GetNumFiles()
Description

Returns the number of files in a directory opened by FS_OpenDir().

Prototype
U32 FS_GetNumFiles (FS_DIR * pDir);

Return value

Number of files in a directory.
0xFFFFFFFF as return value indicates an error.

Additional Information

If pDir is valid, the number of files in the directory will be returned. To get a valid
pointer, FS_OpenDir() should be called before using FS_GetNumFiles(). Refer to
FS_OpenDir() on page 190 for more information.

Example

void NumFilesInDirectory(void) {
 U32 NumFilesInDir;
 FS_DIR *pDir ;

 pDir = FS_OpenDir(""); /* Open root directory of default device */
 NumFilesInDir = FS_GetNumFiles(pDir);
 if (NumFilesInDir) {
 char ac[50] ;
 sprintf(ac, "NumFilesInDir = %lu\n", NumFilesInDir);
 FS_X_Log(ac) ;
 }
}

Parameter Description

pDir Pointer to a FS_FILE data structure.
Table 4.132: FS_GetNumFiles() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

189

4.13.9 FS_InitStorage()
Description

This function only initializes the driver and OS if necessary.

Prototype
void FS_InitStorage (void);

Return value

The return value indicates the caller how many drivers can be used at the same time.
The function will accordingly allocate the sector buffers that are necessary for a file
system operation.

Additional information

If FS_InitStorage() is used to initialize a driver only the hardware layer functions
FS_ReadSector(), FS_WriteSector(), and FS_GetDeviceInfo() are available.

This function is obsolete. Use instead FS_STORAGE_Init() on page 161.

190 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.13.10 FS_OpenDir()
Description

Opens an existing directory for reading.

Prototype
FS_DIR *FS_OpenDir (const char * pDirname);

Return value

Returns the address of an FS_DIR data structure if the directory was opened.
In case of any error the return value is 0.

Additional Information

A fully qualified directory name looks like:

[DevName:[UnitNum:]][DirPathList]DirectoryName

where:

� DevName is the name of a device, for example �ram� or �mmc�. If not specified, the
first device in the device table will be used.
UnitNum is the number for the unit of the device. If not specified, unit 0 will be
used. Note that it is not allowed to specify UnitNum if DevName has not been spec-
ified.

� DirPathList is a complete path to an existing subdirectory. The path must start
and end with a '\' character. Directory names in the path are separated by '\'. If
DirPathList is not specified, the root directory on the device will be used.

� DirectoryName and all other directory names have to follow the standard FAT
naming conventions (for example 8.3 notation), if support for long file names is
not enabled.

To open the root directory, simply use an empty string for pDirName.

Example

FS_DIR *pDir;

void FSTask1(void) {
 /* Open directory test - default driver on default device */
 pDir = FS_OpenDir("test");
}

void FSTask2(void) {
 /* Open root directory - RAM device driver on default device */
 pDir = FS_OpenDir("ram:");
}

Parameter Description

pDirName Fully qualified directory name.
Table 4.133: FS_OpenDir() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

191

4.13.11 FS_ReadDir()
Description

Reads next directory entry in directory specified by pDir.

Prototype
FS_DIRENT *FS_ReadDir (FS_DIR * pDir);

Return value

Returns a pointer to a directory entry.
If there are no more entries in the directory or in case of any error, 0 is returned.

Example

Refer to FS_CloseDir() on page 181.

Parameter Description

pDir Pointer to an opened directory.
Table 4.134: FS_ReadDir() parameter list

192 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.13.12 FS_ReadSector()
Description

Reads a sector from a device.

Prototype
int FS_ReadSector(const char * sVolumeName,
 const void * pData,
 U32 SectorIndex);

Return value

== 0: On success
!= 0: On error

Additional information

This function is obsolete. Use instead FS_STORAGE_ReadSector() on page 162.

Parameter Description

sVolumeName Volume name.
pData Pointer to a data buffer where the read data should be stored.
SectorIndex Index of the sector from which data should be read.

Table 4.135: FS_ReadSector() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

193

4.13.12.1FS_RewindDir()
Description

Sets the current pointer for reading a directory entry to the first entry in the direc-
tory.

Prototype
void FS_RewindDir (FS_DIR * pDir);

Example

void MainTask(void) {
 FS_DIR *pDir;
 FS_DIRENT *pDirEnt;
 char acDirName[20];

 pDir = FS_OpenDir(""); /* Open the root directory of default device */
 if (pDir) {
 do {
 char acDirName[20];
 pDirEnt = FS_ReadDir(pDir);
 FS_DirEnt2Name(pDirEnt, acDirName); /* Get name of the current DirEntry */
 if ((void*)pDirEnt == NULL) {
 break; /* No more files or directories */
 }
 sprintf(_acBuffer," %s\n", acName);
 FS_X_Log(_acBuffer);
 } while (1);
 /* rewind to 1st entry */
 FS_RewindDir(dirp);
 /* display directory again */
 do {
 pDirEnt = FS_ReadDir(pDir);
 FS_DirEnt2Name(pDirEnt, acDirName); /* Get name of the current DirEntry */
 if ((void*)pDirEnt == NULL) {
 break; /* No more files or directories */
 }
 sprintf(_acBuffer," %s\n", acName);
 FS_X_Log(_acBuffer);
 } while (1);
 FS_CloseDir(pDir);
 }
 else {
 FS_X_ErrorOut("Unable to open directory\n");
 }
}

Parameter Description

pDir Pointer to directory structure.
Table 4.136: FS_RewindDir() parameter list

194 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

4.13.13 FS_UnmountLL()
Description

Unmounts a given volume at driver layer. Sends an unmount command to the driver,
marks the volume as unmounted and uninitialized.

Prototype
void FS_Unmount (const char * sVolumeName);

Additional information

This function is obsolete. Use instead FS_STORAGE_Init() on page 161.

Parameter Description

sVolumeName
sVolumeName is the name of a volume. If not specified, the first
device in the volume table will be used.

Table 4.137: FS_UnmountLL() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

195

4.13.14 FS_WriteSector()
Description

Writes a sector to a device.

Prototype
int FS_WriteSector(const char * sVolumeName,
 const void * pData,
 U32 SectorIndex);

Return value

== 0: On success
!= 0: On error

Additional information

This function is obsolete. Use instead FS_STORAGE_Init() on page 104.

Parameter Description

sVolumeName Volume name.
pData Pointer to the data which should be written to the device.
SectorIndex Index of the sector to which data should be written.

Table 4.138: FS_WriteSector() parameter list

196 CHAPTER 4 API functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

197

Chapter 5

Optimizing performance -
Caching and buffering

This chapter gives an introduction into emFile�s cache handling. Furthermore, it con-
tains the function description and an example.

198 CHAPTER 5 Optimizing performance - Caching and buffering

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

5.1 Introduction
A cache is a storage area where frequently used data can be stored for fast access.
In many cases, this can enhance the average execution time. Applications which do
not use a cache data will always be read from the storage medium even if it has been
used before. A cache stores accessed and processed data. If the data should be pro-
cessed again, it will be copied out of the cache instead of refetching it from the stor-
age medium. This is called a �hit�. When the data is not present in the cache and
must be read from the storage it is called a �miss�.

Write cache and journaling

Do not use a write cache when the journaling is enabled. The journaling will not work
properly if any form of write cache is configured. More detailed information can be
found in the section Journaling and write caching on page 512.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

199

5.2 Types of caches
emFile supports the usage of different cache modules as listed in the following table:

Cache module Description

FS_CACHE_ALL
This module is a pure read cache. All sectors that are read
from a volume are cached. This module does not need to be
configured.

FS_CACHE_MAN
This module is also a pure read cache. In contrast to the
FS_CACHE_ALL, this module does only cache the manage-
ment sector of a file system (for example, the FAT sectors).

FS_CACHE_RW

FS_CACHE_RW is a configurable cache module. This module
can be either used as read, write or as read/write cache.
Additionally, the sectors that should be cached are also con-
figurable.

FS_CACHE_RW_QUOTA
FS_CACHE_RW_QUOTA is a configurable cache module. This
module can be either used as read, write or as read/write
cache.

FS_CACHE_MULTI_WAY
Configurable cache module which can be used as read, write
or read/write cache. The associativity level is also config-
urable.

Table 5.1: Cache types

200 CHAPTER 5 Optimizing performance - Caching and buffering

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

5.3 Cache API functions
The following functions are required to enable, configure and control the emFile
cache modules:

Function Description

FS_AssignCache() Adds a cache to a specific device.

FS_CACHE_Clean()
Cleans the caches and writes dirty sectors
to the volume.

FS_CACHE_Invalidate() Removes all the entries from the cache.

FS_CACHE_SetAssocLevel()
Sets the associativity level of a
FS_CACHE_MULTI_WAY cache module.

FS_CACHE_SetMode() Sets the mode for the cache.

FS_CACHE_SetQuota()
Sets the quotas for the different sector
types in the FS_CACHE_RW_QUOTA cache
module.

Table 5.2: emFile cache functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

201

5.3.1 FS_AssignCache()
Description

Adds a cache to a specific volume.

Prototype
I32 FS_AssignCache(const char * pVolumeName,
 void * pCacheData,
 U32 NumBytes
 FS_INIT_CACHE * pfInit);

Return value

> 0: Buffer is used as cache for the specified device.
== 0: Buffer cannot be used as cache for this device.

Additional Information

To disable the cache for a specific device, call FS_AssignCache() with NumBytes set
to 0. In this case the return value will be 0.
There are four different available cache modules that can be assigned to a specific
device. These modules are the following:

Parameter Description

pVolumeName
Name of the volume for which the cache should be enabled/dis-
abled. If not specified, the first volume will be used.

pCacheData Pointer to a buffer that should be used as cache.
NumBytes Size of the specified buffer in bytes.

pfInit

Pointer to the initialization function of the desired cache module.
The following values can be used:
FS_CACHE_ALL
FS_CACHE_MAN
FS_CACHE_RW
FS_CACHE_RW_QUOTA
FS_CACHE_MULTI_WAY

Table 5.3: FS_AssignCache() parameter list

Cache module Description

FS_CACHE_ALL

This module is a pure read cache. All sec-
tors that are read from a volume are
cached. This module does not need to be
configured.
Caching is enabled right after calling
FS_AssignCache().

FS_CACHE_MAN

This module is also a pure read cache. In
contrast to the FS_CACHE_ALL, this module
does only cache the management sector of
a file system (for example FAT sectors).
Caching is enabled right after calling
FS_AssignCache().

FS_CACHE_RW

FS_CACHE_RW is a configurable cache mod-
ule. This module can be either used as read,
write or as read/write cache. Additionally,
the sectors that should be cached are also
configurable. Refer to FS_CACHE_SetMode()
to configure the FS_CACHE_RW module.

202 CHAPTER 5 Optimizing performance - Caching and buffering

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

The function expects the size of the cache buffer to be specified in bytes. A part of
this buffer is used by the cache module as management data. The following defines
can help an application allocate a cache buffer large enough to store a given number
of sectors:

All the above macros take the following two arguments:

Example

#include "FS.h"

#define CACHE_SIZE FS_SIZEOF_CACHE_ALL(200, 512)

static char _acCache[CACHE_SIZE]; // Allocate RAM for cache buffer

void Function(void) {
 //
 // Assign a cache to the first available device
 //
 FS_AssignCache("", _acCache, sizeof(_acCache), FS_CACHE_ALL);
 //
 // Do some work
 //
 DoWork();
 //
 // Disable the read cache
 //
 FS_AssignCache("", 0, 0, 0);
}

FS_CACHE_RW_QUOTA

FS_CACHE_RW_QUOTA is a configurable cache
module. This module can be either used as
read, write or as read/write cache. To con-
figure the cache module properly,
FS_CACHE_SetMode() and
FS_CACHE_SetQuota need to be called. Oth-
erwise the functionality inside the cache is
disabled.

FS_CACHE_MULTI_WAY

It is a configurable cache module which can
be used as read, write or read/write cache.
The associativity level is also configurable
and is by default 2.

Define Description

FS_SIZEOF_CACHE_ALL()
Computes the size in bytes of a
FS_CACHE_ALL cache buffer.

FS_SIZEOF_CACHE_MAN()
Computes the size in bytes of a
FS_CACHE_MAN cache buffer.

FS_SIZEOF_CACHE_RW()
Computes the size in bytes of a
FS_CACHE_RW cache buffer.

FS_SIZEOF_CACHE_RW_QUOTA()
Computes the size in bytes of a
FS_CACHE_QUOTA cache buffer.

FS_SIZEOF_CACHE_MULTI_WAY()
Computes the size in bytes of a
FS_CACHE_MULTI_WAY cache
buffer.

Parameter Description

NumSectors The number of sectors to store in the cache.
SectorSize Size of a logical sector in bytes.

Table 5.4: Cache size parameter list

Cache module Description

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

203

5.3.2 FS_CACHE_Clean()
Description

Cleans a cache if sectors that are marked as dirty need to be written to the device.

Prototype
void FS_CACHE_Clean(const char * pVolumeName);

Additional Information

Because only write or read/write caches need to be cleaned, this function should be
called for volumes where the FS_CACHE_RW module is assigned. The other cache mod-
ules ignore the cache clean operation.
Cleaning of the cache is also performed when the volume is unmounted through
FS_Unmount() or disabling or reassigning the cache through FS_AssignCache().

Parameter Description

pVolumeName
Name of the volume for which the cache should be cleaned. If not
specified, the first volume will be used.

Table 5.5: FS_CACHE_Clean() parameter list

204 CHAPTER 5 Optimizing performance - Caching and buffering

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

5.3.3 FS_CACHE_Invalidate()
Description

Removes all the sectors from the cache.

Prototype
void FS_CACHE_Invalidate(const char * pVolumeName);

Additional Information

This function does not write the sectors marked as dirty to device. After calling
FS_CACHE_Invalidate() the contents of dirty sectors are lost.

Parameter Description

pVolumeName
Name of the volume for which the cache should be invalidated. If
not specified, the first volume will be used.

Table 5.6: FS_CACHE_Invalidate() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

205

5.3.4 FS_CACHE_SetAssocLevel()
Description

Configures the number of entries (ways) in the cache which can store the contents of
the same sector.

Prototype
int FS_CACHE_SetAssocLevel(const char * pVolumeName,
 int AssocLevel);

Return value

== 0 Associativity level configured
!= 0 An error occurred

Additional Information

This function makes sense only for FS_CACHE_MULTI_WAY cache modules. Calling the
function on any other cache module types returns an error. The cache replacement
policy uses the associativity level to decide where to store the contents of a sector in
the cache. Caches with higher associativity levels tend to have a higher hit rates.

Parameter Description

pVolumeName
Name of the volume for which the cache should be configured. If
not specified, the first volume will be used.

AssocLevel
Number of entries in the cache as power of 2 (1 for 2-way associa-
tive, 2 for 4-way associative, etc.)

Table 5.7: FS_CACHE_SetAssocLevel() parameter list

206 CHAPTER 5 Optimizing performance - Caching and buffering

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

5.3.5 FS_CACHE_SetMode()
Description

Sets the mode for the cache.

Prototype
int FS_CACHE_SetMode(const char * pVolumeName,
 int TypeMask,
 int ModeMask);

Return value

== 0: Setting the mode of the cache module was successful.
== -1: Setting the mode of the cache module was not successful.

Additional Information

This function is only usable with the FS_CACHE_RW and FS_CACHE_RW_QUOTA module,
after the FS_CACHE_RW cache has been assigned to a volume. The cache module
needs to be configured with this function. Otherwise, neither read nor write opera-
tions are cached.

Parameter Description

pVolumeName
Name of the volume for which the cache should be configured. If
not specified, the first volume will be used.

TypeMask
Specifies the sector types that should be cached. This parameter
can be an OR-combination of the following sector type mask.

ModeMask
Specifies the cache mode that should be used. Use one of the fol-
lowing parameters as cache mode mask.

Table 5.8: FS_CACHE_SetMode() parameter list

Permitted values for parameter TypeMask (OR-combinable)

FS_SECTOR_TYPE_MASK_DATA Caches all data sectors.
FS_SECTOR_TYPE_MASK_DIR Caches all directory sectors.
FS_SECTOR_TYPE_MASK_MAN Caches all management sectors.

FS_SECTOR_TYPE_MASK_ALL

Caches all sectors by an OR-combina-
tion of:
FS_SECTOR_TYPE_MASK_DATA
FS_SECTOR_TYPE_MASK_DIR
FS_SECTOR_TYPE_MASK_MAN

Permitted values for parameter ModeMask (OR-combinable)

FS_CACHE_MODE_R
Sectors of types defined in TypeMask
are copied to cache when read from
volume.

FS_CACHE_MODE_WT
Sectors of types defined in TypeMask
are copied to cache and also written to
the volume. (write through cache)

FS_CACHE_MODE_WB
Sector types defined in TypeMask are
lazily written back to the device.
(write back cache)

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

207

5.3.6 FS_CACHE_SetQuota()
Description

Sets the quotas for the different sector types in the CacheRW_Quota cache module.

Prototype
int FS_CACHE_SetMode (const char * pVolumeName,
 int TypeMask,
 U32 NumSectors);

Return value

== -1: Setting the quota of the cache module was not successful.
== 0: Setting the quota of the cache module was successful.

Additional Information

This function is currently only usable with the FS_CACHE_RW_QUOTA module. After the
FS_CACHE_RW_QUOTA cache has been assigned to a volume and the cache mode has
been set, the quotas for the different sector types need to be configured with this
function. Otherwise neither read nor write operations are cached.

Example

#include "FS.h"

#define CACHE_SIZE FS_SIZEOF_CACHE_RW_QUOTA(200, 512)

static char _acCache[CACHE_SIZE]; // Allocate RAM for cache buffer

void MainTask(void) {
 //

Parameter Description

pVolumeName
Name of the volume for which the cache should be configured. If
not specified, the first volume will be used.

TypeMask
Specifies the sector types that should be cached. This parameter
can be an OR-combination of the following sector type mask.

NumSectors
Specifies the number of sectors each sector type that is defined by
TypeMask should reserve.

Table 5.9: FS_CACHE_SetQuota() parameter list

Permitted values for parameter TypeMask (OR-combinable)

FS_SECTOR_TYPE_MASK_DATA Caches all data sectors.
FS_SECTOR_TYPE_MASK_DIR Caches all directory sectors.
FS_SECTOR_TYPE_MASK_MAN Caches all management sectors.

FS_SECTOR_TYPE_MASK_ALL

All sectors are cached.
This is an OR-combination of
FS_SECTOR_TYPE_MASK_DATA
FS_SECTOR_TYPE_MASK_DIR
FS_SECTOR_TYPE_MASK_MAN

208 CHAPTER 5 Optimizing performance - Caching and buffering

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

 // Assign a cache to the first available device
 //
 FS_AssignCache("", _acCache, sizeof(_acCache), FS_CACHE_RW_QUOTA);
 //
 // Set the FS_CACHE_RW module to cache all sectors
 // Sectors are cached for read and write. Write back operation to volume
 // are delayed.
 //
 FS_CACHE_SetMode("", FS_SECTOR_TYPE_MASK_ALL, FS_CACHE_MODE_FULL);
 //
 // Set the quotas for directory and data sector types
 // in the CACHE_RW_QUOTA module to 10 sectors each
 //
 FS_CACHE_SetQuota("", FS_SECTOR_TYPE_MASK_DATA | FS_SECTOR_TYPE_MASK_DIR, 10);
 //
 // Do some work
 //
 DoWork();
 FS_CACHE_Clean("");
 DoOtherWork();
 //
 // Disable the cache.
 //
 FS_AssignCache("", 0, 0, 0);
}

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

209

5.3.7 FS_CACHE_SetAssocLevel()
Description

Configures the number of entries (ways) in the cache which can store the contents of
the same sector.

Prototype
int FS_CACHE_SetAssocLevel(const char * pVolumeName,
 int AssocLevel);

Return value

== 0 Associativity level configured
!= 0 An error occurred

Additional Information

This function makes sense only for FS_CACHE_MULTI_WAY cache modules. Calling the
function on any other cache module types returns an error. The cache replacement
policy uses the associativity level to decide where to store the contents of a sector in
the cache. Caches with higher associativity levels tend to have a higher hit rates.

Parameter Description

pVolumeName
Name of the volume for which the cache should be configured. If
not specified, the first volume will be used.

AssocLevel
Number of entries in the cache as power of 2 (1 for 2-way associa-
tive, 2 for 4-way associative, etc.)

Table 5.10: FS_CACHE_SetAssocLevel() parameter list

210 CHAPTER 5 Optimizing performance - Caching and buffering

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

5.4 Example applications
This example applications can be used to check the gain of performance with enabled
cache. The following example applications are available:

The listed performance values depend on the compiler options, the compiler version,
the used CPU, the storage medium and the defined cache size. The performance val-
ues presented in the tables below have been measured on a system as follows:

5.4.1 Example application: FS_50Files.c
Note: The example application FS_50Files.c uses the time measurement function
OS_GetTime() of embOS, Segger�s Real Time Operating System. For more informa-
tion about embOS, refer to www.segger.com.

The application step by step:
1. Initialize the file system.
2. Perform ma high-level format if required.
3. Create 50 files without a cache.
4. Write the time which was required for creation in the terminal I/O window.
5. Enable a read and write cache.
6. Create 50 files with the enabled read and write cache.
7. Write the time which was required for creation in the terminal I/O window.
8. Flush the cache.
9. Write the time which was required for flushing in the terminal I/O window.
10. Disable the cache.
11. Create again 50 files without a cache.
12. Write the time which was required for creation in the terminal I/O window.

Terminal output:

Cache disabled
Creation of 50 files took: 685 ms
Cache enabled
Creation of 50 files took: 43 ms
Cache flush took: 17 ms
Cache disabled
Creation of 50 files took: 687 ms

Function Description

FS_50Files.c
Table 5.11: emFile cache example applications

Detail Description

CPU ATMEL AT91SAM7S256
Tool chain IAR Embedded Workbench for ARM V4.41A
Model ARM7, Thumb instructions, no interwork
Compiler options Highest speed optimization
Storage medium SD card

Table 5.12: ARM7 sample configuration

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

211

5.4.1.1 Source code listing: FS_50Files.c

#include <stdio.h>
#include <string.h>
#include "FS.h"
#include "RTOS.h"

/***
*
* Defines configurable
*
**
*/
#define NUM_FILES 50

/***
*
* Static data
*
**
*/
static U32 _aCache[0x400];
static char _aacFileName[NUM_FILES][13];

/***
*
* Static code
*
**
*/
/***
*
* _CreateFiles
*/
static void _CreateFiles(void) {
 int i;
 U32 Time;
 FS_FILE * pFile[NUM_FILES];

 Time = OS_GetTime();
 for (i = 0; i < NUM_FILES; i++) {
 pFile[i] = FS_FOpen(&_aacFileName[i][0], "w");
 }
 Time = OS_GetTime() - Time;
 printf("Creation of %d files took: %d ms\n", NUM_FILES, Time);
 for (i = 0; i < NUM_FILES; i++) {
 FS_FClose(pFile[i]);
 }
}

/***
*
* Public code
*
**
*/

/***
*
* MainTask
*/
void MainTask(void);
void MainTask(void) {
 const char * sVolName = "";
 int i;
 U32 Time;

 //
 // Initialize file system
 //
 FS_Init();
 //
 // Check if low-level format is required
 //
 FS_FormatLLIfRequired("");
 //
 // Check if volume needs to be high level formatted.
 //
 if (FS_IsHLFormatted("") == 0) {
 printf("High level formatting\n");
 FS_Format("", NULL);

212 CHAPTER 5 Optimizing performance - Caching and buffering

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

 }
 //
 // Prepare strings in advance
 //
 for (i = 0; i < NUM_FILES; i++) {
 sprintf(&_aacFileName[i][0], "file%.2d.txt", i);
 }
 //
 // Create and measure the time used to create the files.
 //
 printf("Cache disabled\n");
 _CreateFiles();
 //
 // Create and measure the time used to create the files.
 // R/W CACHE enabled.
 //
 FS_AssignCache(sVolName, _aCache, sizeof(_aCache), FS_CACHE_RW);
 FS_CACHE_SetMode(sVolName, FS_SECTOR_TYPE_MASK_ALL, FS_CACHE_MODE_WB);
 printf("Cache enabled\n");
 _CreateFiles();
 Time = OS_GetTime();
 FS_CACHE_Clean(sVolName);
 Time = OS_GetTime() - Time;
 printf("Cache flush took: %d ms", Time);
 //
 // Create and measure the time used to create the files.
 // R/W CACHE disabled.
 //
 printf("Cache disabled\n");
 FS_AssignCache(sVolName, NULL, 0, NULL);
 _CreateFiles();

 while(1);
}

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

213

Chapter 6

Device drivers

emFile has been designed to cooperate with any kind of hardware. To use specific
hardware with emFile, a so-called device driver for that hardware is required. The
device driver consists of basic I/O functions for accessing the hardware and a global
table that holds pointers to these functions.

214 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.1 General information

6.1.1 Default device driver names
By default the following identifiers are used for each driver.

Note: FS_MMC_CM_Driver4Atmel is deprecated. Use FS_MMC_CardMode_Driver
instead.

To add a driver to emFile, FS_AddDevice() should be called with the proper identifier
to mount the device driver to emFile before accessing the device or its units. Refer to
FS_AddDevice() on page 59 for detailed information.

6.1.2 Unit number
Most driver functions as well as most of the underlying hardware functions receive
the unit number as the first parameter. The unit number allows differentiation
between the different instances of the same device types. If there are for example 2
NAND flashes which operate as 2 different devices, the first one is identified as unit
0, the second one as unit 1. If there is just a single instance (as in most systems),
the unit parameter can be ignored by the underlying hardware functions.

6.1.3 Hardware layer
Some drivers, such as the MMC/SD drivers or the NAND driver, require a hardware
layer. The implementation of this hardware layer is user responsibility. The hardware
layer can be implemented in different ways:

� polled mode
� interrupt driven

6.1.3.1 Polled mode
In the polled mode the software actively queries the completion of the I/O operation.
No operating system is required to implement the driver.

Driver (Device) Identifier Name

Hard disk/CompactFlash FS_IDE_Driver "ide:"

MMC/SD (SPI mode) FS_MMC_SPI_Driver "mmc:"

MMC/SD (card mode) FS_MMC_CardMode_Driver "mmc:"

MMC/SD (card mode for ATMEL MCUs) FS_MMC_CM_Driver4Atmel "mmc:"

NAND flash and ATMEL's DataFlash FS_NAND_Driver "nand:"

NOR flash (sector map) FS_NOR_Driver "nor:"

RAM disk FS_RAMDISK_Driver "ram:"

WINDrive FS_WINDRIVE_Driver "win:"

NOR flash (block map) FS_NOR_BM_Driver "nor:"

NAND flash for SLCs and MLCs FS_NAND_UNI_Driver "nand:"
Table 6.1: List of default device driver labels

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

215

Example

/*--
File : HWLayer_PolledDriven.c
Purpose : Sample hardware layer to demonstrate the fundamentals
 of an polled driven hardware layer
---------------------------END-OF-HEADER------------------------------
*/
#include "FS.h"
#include "FS_OS.h"

/***
*
* FS_HW_Write
*
* Function description
* FS hardware layer function. Writes a specified number of bytes via SPI
*/
void FS_HW_Write(U8 Unit, const U8 * pData, int NumBytes) {
 //
 // Start transmission using DMA
 //
 // TBD by implementer

 //
 // Make sure transmission is completed (in case interrupt came to early)
 //
 while (_IsCompleted()); // TBD by implementer
}

/*************************** End of file ****************************/

6.1.3.2 Interrupt driven hardware layer
In the interrupt driven mode the completion of an I/O operation is signaled through
an interrupt. This mode requires the support of an operating system.

Example

/*--
File : HWLayer_InterruptDriven.c
Purpose : Sample hardware layer to demonstrate the fundamentals
 of an interrupt driven hardware layer
---------------------------END-OF-HEADER------------------------------
*/
#include "FS.h"
#include "FS_OS.h"

/**
*
* _IrqHandler
*/
static void _IrqHandler(void) {
 //
 // Disable further interrupts
 //
 // TBD by implementer

 //
 // Signal (wake) the task waiting
 //
 FS_OS_SIGNAL();
}

/***
*
* FS_HW_Write
*
* Function description
* FS hardware layer function. Writes a specified number of bytes via SPI
*/
void FS_HW_Write(U8 Unit, const U8 * pData, int NumBytes) {

216 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

 //
 // Start transmission using DMA
 //
 // TBD by implementer

 //
 // For larger blocks of data, enable "transmission complete" interrupt
 // and suspend task to save CPU time (if an OS is present)
 //
 if (NumBytes >= 512) {
 // Enable interrupt: TBD by implementer
 FS_OS_WAIT(1000); // Suspend task with timeout
 }
 //
 // Make sure transmission is completed (in case interrupt came to early)
 //
 while (_IsCompleted()); // TBD by implementer
}

/*************************** End of file ****************************/

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

217

6.2 RAM disk driver
emFile comes with a simple RAM disk driver that makes it possible to use a portion of
your system RAM as drive for data storage. This can be very helpful to examine your
system performance and may also be used as a in-system test procedure.

6.2.1 Supported hardware
The RAM driver can be used with every target with enough RAM. The size of the disk
is defined as the number of sectors reserved for the drive.

6.2.2 Theory of operation
A RAM disk is a portion of memory that you allocate to use as a partition. The RAM
disk driver takes some of your memory and pretends that it is a hard drive that you
can format, mount, save files to, etc.

Remember that every bit of RAM is important for the well being of your system and
the bigger your RAM disk is, the less memory there is available for your system.

6.2.3 Fail-safe operation
When power is lost, the data of the RAM drive is typically lost as well except for sys-
tems with Battery backup for the RAM used as storage device.

For this reason, fail-safety is relevant only for systems which provide such battery
backup.

Unexpected Reset

In case of an unexpected reset the data will be preserved. However, if the Power fail-
ure / unexpected Reset interrupts a write operation, the data of the sector may con-
tain partially invalid data.

Power failure

Power failure causes an unexpected reset and has the same effects.

6.2.4 Wear leveling
The RAM disk driver does not require wear leveling.

218 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.2.5 Configuring the driver

6.2.5.1 Adding the driver to emFile
To add the driver, use FS_AddDevice() with the driver label FS_RAMDISK_Driver.
This function has to be called from within FS_X_AddDevices(). Refer to
FS_X_AddDevices() on page 472 for more information.

Example

FS_AddDevice(&FS_RAMDISK_Driver);

6.2.5.2 FS_RAMDISK_Configure()
Description

Configures a single RAM disk instance. This function has to be called from within
FS_X_AddDevices() after adding an instance of the RAMDisk driver. Refer to
FS_X_AddDevices() on page 472 for more information.

Prototype
void FS_RAMDISK_Configure(U8 Unit,
 void * pData,
 U16 BytesPerSector,
 U32 NumSectors);

Additional information

The size of the disk is defined as the number of sectors reserved for the drive. Each
sector consists of 512 bytes. The minimum value for NumSectors is 7. BytesPerSec-
tor defines the size of each sector on the RAM disk. A FAT file system needs a mini-
mum sector size of 512 bytes.

Parameter Description

Unit Unit number (0�N).
pData Pointer to a data buffer.
BytesPerSector Number of bytes per sector.
NumSectors Number of sectors.

Table 6.2: FS_RAMDISK_Configure() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

219

Example

/***
*
* FS_X_AddDevices
*
* Function description
* This function is called by the FS during FS_Init().
* It is supposed to add all devices, using primarily FS_AddDevice().
*
* Note
* (1) Other API functions
* Other API functions may NOT be called, since this function is called
* during initialisation. The devices are not yet ready at this point.
*/
void FS_X_AddDevices(void) {
 void * pRamDisk = NULL;

 FS_AssignMemory(&_aMemBlock[0], sizeof(_aMemBlock));
 //
 // Allocate memory for the RAM disk
 //
 pRamDisk = FS_Alloc(RAMDISK_NUM_SECTORS * RAMDISK_BYTES_PER_SECTOR);
 //
 // Add driver
 //
 FS_AddDevice(&FS_RAMDISK_Driver);
 //
 // Configure driver
 //
 FS_RAMDISK_Configure(0, pRamDisk, RAMDISK_BYTES_PER_SECTOR, RAMDISK_NUM_SECTORS);
 //
 // Configure a file buffer for reading.
 //
 FS_ConfigFileBufferDefault(512, 0);
}

220 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.2.6 Hardware functions
The RAM disk driver does not need any hardware function.

6.2.7 Additional information

6.2.7.1 Formatting
A RAM disk is unformatted after each startup. Exceptions from this rule are RAM
disks, which are memory backed up with a battery.

You have to format every unformatted RAM disk with the FS_Format() function,
before you can store data on it. If you use only one RAM disk in your application
FS_FORMAT() can be called with an empty string as device name. For example,
FS_Format("", NULL);

If you use more then one RAM disk, you have to specify the device name. For exam-
ple, FS_FORMAT("ram:0:", NULL); for the first device and FS_FORMAT("ram:1:",
NULL); for the second. Refer to FS_Format() on page 111 for more detailed informa-
tion about the high-level format function of emFile.

6.2.8 Performance and resource usage

6.2.8.1 Performance
These performance measurements are in no way complete, but they give an approxi-
mation of the length of time required for common operations on various targets. The
tests were performed as described in Performance on page 502.

All values are in Mbytes/sec.

Device
CPU

speed
W R

Atmel AT91SAM9261 200 MHz 128.0 128.0
LogicPD LH79520 51 MHz 20.0 20.0

Table 6.3: Performance values for sample configurations

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

221

6.3 NAND flash driver
emFile supports the use of NAND flashes. Two optional drivers for NAND flashes are
available:

� SLC1 driver - works only with SLC flashes which require 1-bit error correction. It
also supports the ATMEL�s DataFlashes.

� Universal driver - works with all modern SLC and MLC NAND flashes. It can use
the ECC engine build into NAND flashes to correct bit errors.

To use the drivers in your system, you will have to provide basic I/O functions for
accessing your flash device.

How to select which driver to use

The first factor is the type of device used. ATMEL�s DataFlashes are supported only by
the SLC1 driver. NAND flashes are supported by both drivers.

The bit error correction requirements of the NAND flash is the next factor. It indicates
how many bit errors the error correcting code (ECC) must be able to detect and cor-
rect. If the NAND flash requires only 1-bit correction capability then the SLC1 driver
can be used. The SLC1 driver will perform the bit error detection and correction. For
more than 1-bit correction capability the Universal driver is required. In order to use
the Universal driver, the following conditions must be met:

� Page size of minimum 2048 bytes.
More specifically: the size spare area corresponding to 512 bytes in the data area
must be greater than 16. For more information about the internals of a NAND
flash, refer to NAND flash organization on page 222.

� Hardware support for error correction.
Either a NAND flash with internal ECC engine or another way to compute the ECC
in hardware (MCU, FPGA, etc.)

� The ECC must not exceed 8 bytes in size.

Multiple driver configuration

Both drivers store management information to spare area of a page. The layout and
the content of this information is different for each driver which means that data
written using one driver is not recognized when read using the other one. If an appli-
cation used the SLC1 driver to write to NAND flash it can not use the Universal driver
to access it. The application should decide at runtime in the FS_X_AddDevices()
function which driver to configure. emFile supports the configuration of a driver
based on the type of NAND flash connected to host. For an example, refer to
FS_NAND_PHY_ReadDeviceId() on page 308.

222 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1 SLC1 driver - FS_NAND_Driver
This driver for NAND flashes requires very little RAM, it can work with sector sizes of
512 bytes or 2 Kbytes (small sectors even on large page NAND flashes) and is
extremely efficient. The driver is designed to support one or multiple SLC (Single
Level Cell) NAND flashes which require 1-bit ECC. The NAND flash driver can also be
used to access ATMEL's DataFlash chips.

This section first describes which devices are supported and describes all hardware
access functions required by the NAND flash driver.

6.3.1.1 NAND flash organization
A NAND flash is a serial-type memory device which utilizes the I/O pins for both
address and data input/output as well as for command inputs. The erase and pro-
gram operations are automatically executed. To store data on the NAND flash device,
it has to be low-level formatted.

NAND flashes consist of a number of blocks. Every block contains a number of pages,
typically 64. The pages can be written to individually, one at a time. When writing to
a page, bits can only be written from 1 to 0. Only whole blocks (all pages in the
block) can be erased. Erasing means bringing all memory bits in all pages of the
block to logical 1.

Small NAND flashes (up to 256 Mbytes) have a page size of 528 bytes, 512 for data
+ 16 spare bytes for storing relevant information (ECC, etc.) to the page. Large
NAND devices (256 Mbytes or more) have a page size of 2112 bytes, 2048 bytes for
data + 64 bytes for storing relevant information to the page.

For example, a typical NAND flash with a size of 256 Mbytes has 2048 blocks of 64
pages of 2112 bytes (2048 bytes for data + 64 bytes).

P0 P1 P63P62

P0 P1 P63P62

...

...

Block 0

Block n

Data Area

Spare Area

NAND flash organization

...

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

223

6.3.1.2 Supported hardware

6.3.1.2.1 Tested and compatible NAND flashes

In general, the driver supports almost all Single-Level Cell NAND flashes (SLC). This
includes NAND flashes with page sizes of 512+16 and 2048+64 bytes.

The table below shows the NAND flashes that have been tested or are compatible
with a tested device:

Manufacturer Device Page size [Bytes] Size [Bits]

Hynix

HY27xS08281A 512+16 16Mx8
HY27xS08561M 512+16 32Mx8
HY27xS08121M 512+16 64Mx8
HY27xA081G1M 512+16 128Mx8

Samsung

K9F6408Q0xx
K9F6408U0xx

512+16
512+16

8Mx8
8Mx8

K9F2808Q0xx
K9F2808U0xx

512+16
512+16

16Mx8
16Mx8

K9F5608Q0xx
K9F5608D0xx
K9F5608U0xx

512+16
512+16
512+16

32Mx8
32Mx8
32Mx8

K9F1208Q0xx
K9F1208D0xx
K9F1208U0xx
K9F1208R0xx

512+16
512+16
512+16
512+16

64Mx8
64Mx8
64Mx8
64Mx8

K9K1G08R0B
K9K1G08B0B
K9K1G08U0B
K9K1G08U0M
K9T1GJ8U0M

512+16
512+16
512+16
512+16
512+16

128Mx8
128Mx8
128Mx8
128Mx8
128Mx8

ST-Microelectronics

NAND128R3A
NAND128W3A

512+16
512+16

16Mx8
16Mx8

NAND256R3A
NAND256W3A

512+16
512+16

32Mx8
32Mx8

NAND512R3A
NAND512W3A

512+16
512+16

64Mx8
64Mx8

NAND01GR3A
NAND01GW3A

512+16
512+16

128Mx8
128Mx8

Toshiba

TC5816BFT 512+16 2Mx8
TC58V32AFT 512+16 4Mx8
TC58V64BFTx 512+16 8Mx8
TC58256AFT
TC582562AXB

512+16
512+16

32Mx8
32Mx8

TC58512FTx 512+16 64Mx8
TH58100FT 512+16 256Mx8

Hynix

HY27UF082G2M 2048+64 256Mx8
HY27UF084G2M 2048+64 512Mx8
HY27UG084G2M 2048+64 512Mx8
HY27UG084GDM 2048+64 512Mx8

Table 6.4: List of supported NAND flashes

224 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

Support for devices not in this list

Most other NAND flash devices are compatible with one of the supported devices.
Thus, the driver can be used with these devices or may only need a little modifica-
tion, which can be easily done. Get in touch with us, if you have questions about sup-
port for devices not in this list.

6.3.1.2.2 Tested and compatible DataFlash chips

The NAND flash driver fully supports the ATMEL DataFlash®/DataFlash Cards series
up to 128 MBit. Currently the following devices are supported:

Note: DataFlash chips with a page size that is power of 2 are not supported by
this driver.

Micron

MT29F2G08AAB
MT29F2G08ABD
MT29F4G08AAA
MT29F4G08BAB
MT29F2G16AAD

2048+64
2048+64
2048+64
2048+64
2048+64

256Mx8
256Mx8
512Mx8
512Mx8
128Mx16

Samsung

K9F1G08x0A
K9F2G08U0M
K9K2G08R0A
K9K2G08U0M
K9F4G08U0M
K9F8G08U0M

2048+64
2048+64
2048+64
2048+64
2048+64
2048+64

256Mx8
256Mx8
256Mx8
256Mx8
512Mx8
1024Mx8

ST-Microelectronics

NAND01GR3B
NAND01GW3B
NAND02GR3B
NAND02GW3B
NAND04GW3

2048+64
2048+64
2048+64
2048+64
2048+64

128Mx8
128Mx8
256Mx8
256Mx8
512Mx8

Manufacturer Device

ATMEL

AT45DB011B
AT45DB021B
AT45DB041B
AT45DB081B
AT45DB161B
AT45DB321C
AT45BR3214B
AT45DCB002
AT45DCB002
AT45DB642D
AT45DB1282

Table 6.5: List of supported serial flash devices

Manufacturer Device Page size [Bytes] Size [Bits]

Table 6.4: List of supported NAND flashes

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

225

6.3.1.2.3 Pin description - NAND flashes

6.3.1.2.4 Pin description - DataFlashes

DataFlash chips are commonly used when low pin count and easy data transfer are
required. DataFlash devices use the following pins:

Pin Driver (Device)

CE
CHIP ENABLE
The CE input enables the device. Signal is active low. If the signal is
inactive, device is in standby mode.

WE
WRITE ENABLE
The WE input controls writes to the I/O port. Commands, address and
data are latched on the rising edge of the WE pulse.

RE
READ ENABLE
The RE input is the serial data-out control. When active (low) the
device outputs data.

CLE

COMMAND LATCH ENABLE
The CLE input controls the activating path for commands sent to the
command register. When active high, commands are latched into the
command register through the I/O ports on the rising edge of the WE
signal.

ALE

ADDRESS LATCH ENABLE
The ALE input controls the activating path for address to the internal
address registers. Addresses are latched on the rising edge of WE with
ALE high.

WP
WRITE PROTECT
Typically connected to VCC (recommended), but may also be connected
to port pin.

R/B

READY/BUSY OUTPUT
The R/B output indicates the status of the device operation. When low,
it indicates that a program, erase or read operation is in process. It
returns to high state when the operation is completed. It is an open
drain output. Should be connected to a port pin with pull-up. If avail-
able a port pin which can trigger an interrupt should be used.

I/O0- I/O7

DATA INPUTS/OUTPUTS
The I/O pins are used to input command, address and data, and to out-
put data during read operations.

I/O8- I/O15
DATA INPUTS/OUTPUTS
I/O8-I/O15 16-bit flashes only.

Table 6.6: NAND flash pin description

Pin Meaning

CS
ChipSelect
This pin selects the DataFlash device. The device is
selected, when CS pin is driven low.

Table 6.7: DataFlash chip pin function description

226 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

Additionally the following requirements need to be fulfilled by your host system:

� Data transfer width is 8 bit.
� Chip Select (CS) sets the card active at low-level and inactive at high level.
� Clock signal must be generated by the target system. The serial flash chips are

always in slave mode.
� Bit order requires most significant bit (MSB) to be sent out first.

To setup all these requirements, the NAND flash driver will call the function
FS_DF_HW_X_Init(), therefore the function FS_DF_HW_X_Init() can be used to ini-
tialize the SPI bus. Refer to FS_DF_HW_X_Init() on page 269 for further details.

SCLK

Serial Clock
The SCLK pin is an input-only pin and is used to con-
trol the flow of data to and from the DataFlash. Data is
always clocked into the device on the rising edge of
SCLK and clocked out of the device on the falling edge
of SCLK.

SI

Serial Data In
The SI pin is an input-only pin and is used to transfer
data into the device. The SI pin is used for all data
input including opcodes and address sequences.

SO
Serial Data Out
This SO pin is an output pin and is used to transfer
data serially out of the device.

Pin Meaning

Table 6.7: DataFlash chip pin function description

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

227

6.3.1.2.5 Sample block schematics

6.3.1.3 Theory of operation
NAND flash devices are divided into physical blocks and physical pages. One physical
block is the smallest erasable unit; one physical page is the smallest writable unit.
Small block NAND flashes contain multiple pages. One block contain typically 16 / 32
/ 64 pages per block. Every page has a size of 528 bytes (512 data bytes + 16 spare
bytes). Large block NAND Flash devices contain blocks made up of 64 pages, each
page containing 2112 bytes (2048 data bytes + 64 spare bytes).

The driver uses the spare bytes for the following purposes:

1. To check if the data status byte and block status are valid.
If they are valid the driver uses this sector. When the driver detects a bad sector, the
whole block is marked as invalid and its content is copied to a non-defective block.

2. To store/read an ECC (Error Correction Code) for data reliability.
When reading a sector, the driver also reads the ECC stored in the spare area of
the sector, calculates the ECC based on the read data and compares the ECCs. If
the ECCs are not identical, the driver tries to recover the data, based on the read
ECC.

NAND
Flash 1

(optional)

WP

NAND
Flash 0

R/B
WE
RE
CLE
ALE
CE0
CE1

R/B
WE
RE
CLE
ALE
CE1

WP

CPU

NAND
Flash n

(optional)

WP
R/B
WE
RE
CLE
ALE
CEn

I / O

CEn

...

228 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

When writing to a page the ECC is calculated based on the data the driver has to
write to the page. The calculated ECC is then stored in the spare area.

6.3.1.3.1 Error correction code (ECC)

The emFile NAND driver is highly speed optimized and offers a better error detection
and correction than a standard memory controller ECC. The ECC is capable of single
bit error correction and 2-bit random detection. When a block for which the ECC is
computed has 2 or more bit errors, the data cannot be corrected.

Standard memory controllers compute an ECC for the complete blocksize (512 / 2048
bytes). The emFile NAND driver computes the ECC for data chunks of 256 bytes (e.g.
a page with 2048 bytes is divided into 8 parts of 256 bytes), so the probability to
detect and also correct data errors is much higher. This enhancement is realized with
a very good performance. The ECC computation of the emFile NAND driver is highly
optimized, so that a performance of 18 Mbytes/second can be achieved with an ARM7
based MCU running at 48 MHz.

We suggest the use of the emFile NAND driver without enabling the hardware ECC of
the memory controller, because the performance of the driver is very high and the
error correction is much better if it is controlled from driver side.

6.3.1.3.2 Software structure

The NAND Flash driver is split up into different layers, which are shown in the illus-
tration below.

It is possible to use the NAND driver with custom hardware. If port pins or a simple
memory controller are used for accessing the flash memory, only the hardware layer
needs to be ported, normally no changes to the physical layer are required. If the
NAND driver should be used with a special memory controller (for example special
FPGA implementations), the physical layer needs to be adapted. In this case, the
hardware layer is not required, because the memory controller manages the hard-
ware access.

6.3.1.4 Fail-safe operation
The emFile NAND flash driver is fail-safe which means that the driver makes only
atomic actions and takes the responsibility that the data managed by the file system
is always valid. In case of a power loss or a power reset during a write operation, it is
always assured that only valid data is stored to NAND flash. If the power loss inter-
rupts the write operation, the old data will be kept and the data is not corrupted.

NAND driver

Logical Layer

NAND driver

Physical Layer

User provided

Hardware Layer

NAND driver

Logical Layer

User provided

Physical Layer

Port pin
(any hardware, simple

memory controller)

Memory controller
(e.g. special FPGA
implementations)

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

229

In case of a power loss the fail-safe operation is only guaranteed if the NAND flash is
able to fully complete the last command it received from the CPU.

Below is an oscilloscope capture which shows an example power down sequence
meeting the requirements needed for a fail-safe operation of a NAND flash.

� VCC is the main power supply voltage.
� RESET is a signal driven high by a program running on the CPU. This signal goes

low when the CPU stops running indicating the point in time when the last com-
mand could have been sent to NAND flash.

� VCCmin is the minimum supply voltage required for the NAND flash to properly
operate.

� Tmax is the time it takes for the longest NAND flash operation to complete which
is 2 ms for the NAND flash used in the test.

As it can be seen in the picture the supply voltage stays above VCCmin long enough
to allow for any NAND flash command to finish.

6.3.1.5 Wear leveling
Wear leveling is supported by the driver. The procedure ensures that the number of
erase cycles remains approximately for all the blocks. The maximum allowed erase
count difference is runtime configurable and is by default 5000.

6.3.1.6 Partial writes
Most of the NAND devices allow a write operation to change an arbitrary number of
bytes starting from any byte offset inside a page. A write operation that does not
change all the bytes in page is called partial write or partial programming. The driver
makes extensively use of this feature to increase the write speed and to reduce the
RAM usage. But there is a limitation of this method imposed by the NAND technology.
The manufacturer does not guarantee the integrity of the data if a page is partially

230 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

written more than a number of times without an intermediate erase operation. The
maximum number of partial writes is usually 4. Exceeding the maximum number of
partial writes does not lead automatically to the corruption of data in that page but it
will increase the probability of a bit error. The driver will be able to correct the bit
error using the ECC. For some combinations of logical sector size and NAND page size
the driver might exceed this limit. The table below summarizes the maximum number
of partial writes performed by the driver:

6.3.1.7 Read disturbs
Read disturbs are bit errors which occur when a large number of read operations
(several hundred thousand to one million) are preformed on a NAND flash block with-
out being erased in between. These errors must be handled by the application by
rewriting the data. It can be done using the FS_STORAGE_RefreshSectors() storage
layer API function which is able to refresh several sectors in a single call.

6.3.1.8 Configuring the driver

6.3.1.8.0.1 Adding the driver to emFile

To add the driver, use FS_AddDevice() with the driver label FS_NAND_Driver or
FS_NAND_UNI_Driver. This function has to be called from within FS_X_AddDevices().
Refer to FS_X_AddDevices() on page 472 for more information.

Example
void FS_X_AddDevices(void) {
 FS_AssignMemory(&_aMemBlock[0], sizeof(_aMemBlock));
 FS_AddDevice(&FS_NAND_Driver);
 FS_NAND_SetPhyType(0, &FS_NAND_PHY_x8); // Set the physical
 // interface of the NAND flash
 FS_NAND_SetBlockRange(0, 2, 128); // Skip 2 blocks (256 Kbytes in case of 2K
 // device)
 // Size is 128 blocks
 // For 2k devices, this means
 // 2 Kbytes * 64 * 128 = 16 Mbytes
}

6.3.1.8.1 Specific configuration functions

NAND page size
[bytes]

Logical sector size
[bytes]

Maximum number of partial
writes

512 512 4
2048 2048 4
2048 1024 5
2048 512 8

Table 6.8: Maximum number of partial writes

Routine Explanation

FS_NAND_SetPhyType()
Configures the physical type of NAND
device.

FS_NAND_SetBlockRange()
Configures the range of physical blocks
managed by the driver.

FS_NAND_SetMaxEraseCntDiff()
Configures the threshold for the wear-lev-
eling.

FS_NAND_SetOnFatalErrorCallback()
Configures a function to be invoked when
the driver encounters a fatal error.

FS_NAND_SetNumWorkBlocks() Configures the number of work blocks.
Table 6.9: FS_NAND_Driver - list of configuration functions.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

231

6.3.1.8.1.1 FS_NAND_SetPhyType()

Description

Sets the physical type of the device. NAND flash is organized in pages of either 512
or 2048 bytes and has an 8-bit or 16-bit interface. The driver needs to know the cor-
rect combination of page and interface width.

Prototype
void FS_NAND_SetPhyType(U8 Unit,

 const FS_NAND_PHY_TYPE * pPhyType);

Parameter Meaning

Unit Unit number.

pPhyType
IN: Physical type of device.
OUT: ---

Table 6.10: FS_NAND_SetPhyType() parameter list

Permitted values for parameter pPhyType

FS_NAND_PHY_512x8
Supports NAND flash devices with 512
bytes per page and 8-bit width

FS_NAND_PHY_2048x8
Supports NAND flash devices with 2048
bytes per page and 8-bit width

FS_NAND_PHY_2048x16
Supports NAND flash devices with 2048
bytes per page and 16-bit width

FS_NAND_PHY_4096x8
Supports NAND flash devices with 4096
bytes per page and 8-bit width

FS_NAND_PHY_x

Supports the following NAND flash
devices:

� 512 bytes per page and 8-bit
width

� 2048 bytes per page and 8-bit
width

� 2048 bytes per page and 16-
bit width

FS_NAND_PHY_x8

Supports the following NAND flash
devices:

� 512 bytes per page and 8-bit
width

� 2048 bytes per page and 8-bit
width

FS_NAND_PHY_DataFlash

Supports ATMEL DataFlashes. The physi-
cal layer driver accesses these chips
using the SPI mode. To use the driver
with ATMEL DataFlash chips in your sys-
tem, you will have to provide basic I/O
functions which are divergent to the
hardware functions of the other physical
layers. Refer to Hardware layer on
page 253 for detailed information.

FS_NAND_PHY_ONFI

Supports NAND flash devices which are
compatible to ONFI specification. ONFI
(Open NAND Flash Interface) is an stan-
dard aimed at increasing the compatibil-
ity between NAND devices. More
information can be found at
www.onfi.org

FS_NAND_PHY_SPI
Supports NAND flash devices with SPI
serial interface.

http://www.onfi.org
http://www.onfi.org

232 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

Additional information

This function needs to be called for every NAND device added.

Example

Refer to Adding the driver to emFile on page 230 for an example.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

233

6.3.1.8.1.2 FS_NAND_SetBlockRange()

Description

Sets a limit for which blocks of the NAND flash can be controlled by the driver.

Prototype
void FS_NAND_SetBlockRange(U8 Unit,
 U16 FirstBlock,
 U16 MaxNumBlocks);

Additional information
This function is optional. By default, the driver controls all blocks of the NAND flash,
making the entire NAND flash available. If a part of the NAND flash should be used
for another purpose (for example to store the application program used by a boot-
loader) and therefore is not controlled by the driver, this function can be used. Limit-
ing the number of blocks used by the driver also reduces the amount of memory used
by the driver.

Note: The read optimization of the FS_NAND_PHY_2048x8 physical layer must be
disabled when this function is used to divide the same NAND flash device into 2 or
more partitions. It can be done by calling the FS_NAND_2048x8_DisableReadCache()
function.

Example

Refer to Adding the driver to emFile on page 230 for an example.

Parameter Meaning

Unit Unit number.

FirstBlock
Zero-based index of the first block to use.
Specifies the number of blocks at the beginning of the device to
skip. 0 means that no blocks are skipped.

MaxNumBlocks
Maximum number of blocks to use.
0 means use all blocks after FirstBlock.

Table 6.11: FS_NAND_SetBlockRange() parameter list

234 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1.8.1.3 FS_NAND_SetMaxEraseCntDiff()

Description

Sets the maximum difference between block erase counts that triggers the active
wear leveling.

Prototype
void FS_NAND_SetMaxEraseCntDiff(U8 Unit,
 U32 EraseCntDiff);

Additional information
This function controls how the driver performs the wear leveling. The wear leveling
algorithm chooses first the next available block from the list of free blocks. Then the
difference between the erase count of the chosen block and the lowest erase count of
used blocks is computed. If this value is greater than EraseCntDiff the block with
the lowest erase count is freed and made available for use.

Parameter Meaning

Unit Unit number.
EraseCntDiff Maximum allowed difference between the erase counts.

Table 6.12: FS_NAND_SetMaxEraseCntDiff() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

235

6.3.1.8.1.4 FS_NAND_SetOnFatalErrorCallback()

Description

Registers a function that should be invoked when a fatal error occurs.

Prototype
void FS_NAND_SetOnFatalErrorCallback(
 FS_NAND_ON_FATAL_ERROR_CALLBACK * pfOnFatalError);

Additional information

The type of the callback function is defined as follows:

typedef int FS_NAND_ON_FATAL_ERROR_CALLBACK(
 FS_NAND_FATAL_ERROR_INFO * pFatalErrorInfo);

The parameter is a structure defined like this:

typedef struct {
 U8 Unit;
} FS_NAND_FATAL_ERROR_INFO;

Unit is the number of NAND driver that encountered the fatal error.

If the callback function returns a 0 the driver marks the NAND flash as read-only. In
this state all further write operations are rejected by the driver with an error. A low-
level format is required to make the NAND flash writable. The callback function can
also return a 1 in which case the medium is not marked as read-only.

Parameter Meaning

pfOnFatalError Pointer to callback function.
Table 6.13: FS_NAND_SetOnFatalErrorCallback() parameter list

236 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1.8.1.5 FS_NAND_SetNumWorkBlocks()

Description

Sets number of work blocks the driver uses for write operations.

Prototype
void FS_NAND_SetNumWorkBlocks(U8 Unit,
 U32 NumWorkBlocks);

Additional information
Work blocks are physical blocks which the driver uses to temporarily store the data
written to NAND flash. This function can be used to change the number of work
blocks according to the requirements of an application. Usually, the write perfor-
mance of the NAND driver improves when the number work blocks is increased.
Please note that increasing the number of work blocks will also increase the RAM
usage. By default, the NAND driver allocates 10% from the total number of blocks
available but no more than 10 blocks. The minimum number of work blocks allocated
by default depends whether journaling is used or not. If the journal is active the 4
work blocks are allocated else 3.

Parameter Meaning

Unit Unit number.
NumWorkBlocks Number of work blocks.

Table 6.14: FS_NAND_SetNumWorkBlocks() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

237

6.3.1.9 Physical layer
There is normally no need to change the physical layer of the NAND driver, only the
hardware layer has to be adapted.

In some special cases, when the low-level hardware routines provided by the driver
are not compatible with the target hardware (e.g. special FPGA implementations of a
memory controller), the physical layer has to be adapted.

6.3.1.9.1 Available physical layers

The following physical layers are available. Refer to Configuring the driver on
page 230 for detailed information about how to add the required physical layer to
your application.

Available physical layers

FS_NAND_PHY_512x8
Supports NAND devices with 512 bytes per page and 8-
bit width

FS_NAND_PHY_2048x8
Supports NAND devices with 2048 bytes per page and 8-
bit width

FS_NAND_PHY_2048x16
Supports NAND devices with 2048 bytes per page and
16-bit width

FS_NAND_PHY_4096x8
Supports NAND devices with 4096 bytes per page and 8-
bit width

FS_NAND_PHY_x

Supports the following NAND devices:
� 512 bytes per page and 8-bit width
� 2048 bytes per page and 8-bit width
� 2048 bytes per page and 16-bit width
� 4096 bytes per page and 8-bit width

FS_NAND_PHY_x8

Supports the following NAND devices:
� 512 bytes per page and 8-bit width
� 2048 bytes per page and 8-bit width
� 4096 bytes per page and 8-bit width

Table 6.15: Available physical layers

NAND driver

Logical Layer

NAND driver

Physical Layer

User provided

Hardware Layer

NAND driver

Logical Layer

User provided

Physical Layer

Port pin
(any hardware, simple

memory controller)

Memory controller
(e.g. special FPGA
implementations)

238 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1.9.2 Physical layer functions

If there is a reason to change the physical layer anyhow, the functions which have to
be changed are organized in a function table. The function table is implemented in a
structure of type FS_NAND_PHY_TYPE.

typedef struct FS_NAND_PHY_TYPE {
 int (*pfEraseBlock) (U8 Unit,
 U32 Block);
 int (*pfInitGetDeviceInfo) (U8 Unit,
 FS_NAND_DEVICE_INFO * pDevInfo);
 int (*pfIsWP) (U8 Unit);
 int (*pfRead) (U8 Unit,
 U32 PageNo,
 void * pData,
 unsigned Off,
 unsigned NumBytes);
 int (*pfReadEx) (U8 Unit,
 U32 PageNo,
 void * pData,
 unsigned Off,
 unsigned NumBytes,
 void * pSpare,
 unsigned OffSpare,
 unsigned NumBytesSpare);
 int (*pfWrite) (U8 Unit,
 U32 PageNo,
 const void * pData,
 unsigned Off,
 unsigned NumBytes);
 int (*pfWriteEx) (U8 Unit,
 U32 PageNo,
 const void * pData,
 unsigned Off,
 unsigned NumBytes,
 const void * pSpare,
 unsigned OffSpare,
 unsigned NumBytesSpare);
 int (*pfEnableECC) (U8 Unit);
 int (*pfDisableECC) (U8 Unit);
 int (*pfConfigureECC) (U8 Unit,
 U8 NumBitsCorrectable,
 U16 BytesPerECCBlock);
 int (*pfCopyPage) (U8 Unit,
 U32 PageNoSrc,
 U32 PageNoDest);
} FS_NAND_PHY_TYPE;

FS_NAND_PHY_DataFlash

Supports ATMEL DataFlashes. The physical layer driver
accesses these chips using the SPI mode. To use the
driver with ATMEL DataFlash chips in your system, you
will have to provide basic I/O functions which are diver-
gent to the hardware functions of the other physical lay-
ers. Refer to Hardware layer on page 253 for detailed
information.

FS_NAND_PHY_ONFI
Supports NAND flash devices which are compatible to
ONFI specification.

FS_NAND_PHY_SPI Supports NAND flash devices with SPI serial interface.

Available physical layers

Table 6.15: Available physical layers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

239

If the physical layer should be modified, the following members of the structure
FS_NAND_PHY_TYPE have to be adapted:

Routine Explanation

(*pfEraseBlock)() Erases a chosen block of the device.

(*pfInitGetDeviceInfo)()
Initializes the devices and retrieves the device infor-
mation.

(*pfIsWP)() Checks if the device is write protected.
(*pfRead)() Reads data from the device.
(*pfReadEx)() Reads data from the device and the spare area.
(*pfWrite)() Writes data to the device.
(*pfWriteEx)() Writes data to the device and the spare area.
(*pfEnableECC)() Enables the HW ECC.
(*pfDisableECC)() Disables the HW ECC.
(*pfConfigureECC)() Configures the HW ECC.
(*pfCopyPage)() Copies the contents of one page to an other one.

Table 6.16: NAND device driver physical layer functions

240 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1.9.2.1 (*pfEraseBlock)()

Description

Erases one block of the device. A block is the smallest erasable unit.

Prototype
int (*pfEraseBlock) (U8 Unit, U32 PageIndex);

Return value

== 0: On success, block erased.
==-1: In case of an error.

Parameter Meaning

Unit Unit number (0�N).

PageIndex

Zero-based index of the first page in the block to be erased.
If the device has 64 pages per block, then the following values are
permitted:
PageIndex == 0 -> block 0,
PageIndex == 64 -> block 1,
PageIndex == 128 -> block 2,
etc.

Table 6.17: (*pfEraseBlock)() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

241

6.3.1.9.2.2 (*pfInitGetDeviceInfo)()

Description

Initializes hardware layer, resets NAND flash and tries to identify the NAND flash. If
the NAND flash can be handled, FS_NAND_DEVICE_INFO is filled.

Prototype
int (*pfInitGetDeviceInfo) (U8 Unit,
 FS_NAND_DEVICE_INFO * pDevInfo) {

Return value

== 0: On success.
== 1: In case of an error.

Parameter Meaning

Unit Unit number (0�N).
pDevInfo Pointer to a structure of type FS_NAND_DEVICE_INFO.

Table 6.18: (*pfInitGetDeviceInfo)() parameter list

242 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1.9.2.3 (*pfIsWP)()

Description

Checks if the device is write protected. This is done by reading bit 7 of the status
register. Typical reason for write protection is that either the supply voltage is too low
or the /WP-pin is active (low).

Prototype
int (*pfIsWP)(U8 Unit);

Return value

== 0: Device is not write protected.
== 1: Device is write protected.

Parameter Meaning

Unit Unit number (0�N).
Table 6.19: (*pfIsWP)() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

243

6.3.1.9.2.4 (*pfRead)()

Description

This function can be used to read from the data or spare area of the device. The
spare area is assumed to be located right after the main area.

Prototype
int (*pfRead) (U8 Unit,
 U32 PageIndex,
 void * pData,
 unsigned Off,
 unsigned NumBytes);

Return value

== 0: Data successfully transferred.
!= 0: An error has occurred.

Additional information

If the parameter Off is smaller than the page size, the data area is accessed. An off-
set greater than the page size indicates that the spare area should be accessed.

Parameter Meaning

Unit Unit number (0...N).

PageIndex
Zero-based index of page to be read. Needs to be smaller than page
size.

pData Pointer to a buffer for read data.
Off Byte offset within the page.
NumBytes Number of bytes to read

Table 6.20: (*pfRead)() parameter list

244 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1.9.2.5 (*pfReadEx)()

Description

Reads from both the data and the spare area of a page.

Prototype
int (*pfReadEx) (U8 Unit,
 U32 PageIndex,
 void * pData,
 unsigned Off,
 unsigned NumBytes,
 void * pSpare,
 unsigned OffSpare,
 unsigned NumBytesSpare);

Return value

== 0: Data successfully transferred.
!= 0: An error has occurred.

Parameter Meaning

Unit Unit number (0...N).
PageIndex Number of page that should be read.
pData Pointer to a buffer for read data.

Off
Byte offset within the page, which needs to be smaller than the
page size.

NumBytes Number of bytes to read.
pSpare Pointer to a buffer for spare data.

OffSpare

Offset from the start of the spare area to the point where spare
data should be read. First byte of the spare area has the same off-
set as the page size.
Example:
Page size: 512
OffSpare == 512 -> First byte of spare area
OffSpare == 513 -> Second byte of spare area
Page size: 2048
OffSpare == 2048 -> First byte of spare area
OffSpare == 2049 -> Second byte of spare area

NumBytesSpare Number of spare bytes to read.
Table 6.21: (*pfReadEx)() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

245

6.3.1.9.2.6 (*pfWrite)()

Description

Writes data into a complete or a part of a page. This code is identical for main mem-
ory and spare area; the spare area is located right after the main area.

Prototype
int (*pfWrite) (U8 Unit,
 U32 PageIndex,
 const void * pData,
 unsigned Off,
 unsigned NumBytes);

Return value
== 0: Data successfully transferred.
!= 0: An error has occurred.

Parameter Meaning

Unit Unit number (0...N).
PageIndex Zero-based index of page to be written.
pData Pointer to a buffer of data which should be written.

Off
Byte offset within the page, which needs to be smaller than the
page size.

NumBytes Number of bytes which should be written.
Table 6.22: (*pfWrite)() parameter list

246 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1.9.2.7 (*pfWriteEx)()

Description

Writes data to 2 parts of a page. Typically used to write both the data and spare area
of a page in one step.

Prototype
int (*pfWriteEx) (U8 Unit,
 U32 PageIndex,
 const void * pData,
 unsigned Off,
 unsigned NumBytes,
 const void * pSpare,
 unsigned OffSpare,
 unsigned NumBytesSpare);

Return value

== 0: Data successfully transferred.
!= 0: An error has occurred.

Parameter Meaning

Unit Unit number (0...N).
PageIndex Number of page that should be written.
pData Pointer to a buffer of data which should be written.

Off
Byte offset within the page, which needs to be smaller than the
page size.

NumBytes Number of bytes to write.
pSpare Pointer to a buffer data which should be written to the spare area.

OffSpare

Offset from the start of the spare area to the point where spare
data should be written. First byte of the spare area has the same
offset as the page size.
Example:
Page size: 512
OffSpare == 512 -> First byte of spare area
OffSpare == 513 -> Second byte of spare area
Page size: 2048
OffSpare == 2048 -> First byte of spare area
OffSpare == 2049 -> Second byte of spare area

NumBytesSpare Number of spare bytes to write.
Table 6.23: (*pfWriteEx)() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

247

6.3.1.9.2.8 (*pfEnableECC)()

Description

This function activates the HW ECC.

Prototype
int (*pfEnableECC)(U8 Unit);

Return value

==0: HW ECC enabled.
!= 0: An error has occurred.

Additional information

With the HW ECC enabled the (*pfRead)() and (*pfReadEx)() functions will return
corrected data. The function is called only by the Universal NAND driver.

Parameter Meaning

Unit Unit number (0...N).
Table 6.24: (*pfEnableECC)() parameter list

248 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1.9.2.9 (*pfDisableECC)()

Description

This function deactivates the HW ECC.

Prototype
int (*pfDisableECC)(U8 Unit);

Return value

==0: HW ECC disabled.
!= 0: An error has occurred.

Additional information

With the HW ECC disabled the (*pfRead)() and (*pfReadEx)() functions will return
uncorrected data. The function is called only by the Universal NAND driver.

Parameter Meaning

Unit Unit number (0...N).
Table 6.25: (*pfDisableECC)() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

249

6.3.1.9.2.10 (*pfConfigureECC)()

Description

This function configures the HW ECC.

Prototype
int (*pfConfigureECC)(U8 Unit,
 U8 NumBitsCorrectable,
 U16 BytesPerECCBlock);

Return value

==0: HW ECC configured.
!= 0: An error has occurred.

Additional information

This function is optional and is called only by the Universal NAND driver. It must be
implemented only when the NAND flash device is interfaced to a NAND flash control-
ler with HW ECC. The NAND flash controller should be configured to correct Num-
BitsCorrectable bit errors over BytesPerECCBlock bytes of data and spare area.

Parameter Meaning

Unit Unit number (0...N).
NumBitsCorrectable Number of error bits the HW ECC should correct.
BytesPerECCBlock The ECC is computed over this number of bytes.

Table 6.26: (*pfConfigureECC)() parameter list

250 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1.9.2.11 (*pfCopyPage)()

Description

Copies the contents of an entire NAND page (including the spare area) to an other
page.

Prototype
int (*pfCopyPage)(U8 Unit, U32 PageNoSrc, U32 PageNoDest);

Return value

==0: Page copied.
!= 0: An error occurred.

Additional information

This function is optional and is called only by the Universal NAND driver. It has to be
implemented only when the NAND flash device supports HW ECC. The page should be
copied by reading the source page to internal register of NAND flash device followed
by a write to destination page.

Parameter Meaning

Unit Unit number (0...N).
PageNoSrc Index of the source page.
PageNoDest Index of the destination page.

Table 6.27: (*pfCopyPage)() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

251

6.3.1.9.2.12 FS_NAND_DEVICE_INFO

Description

This structure stores information about a NAND device.

Prototype
typedef struct FS_NAND_DEVICE_INFO {
 U8 BPP_Shift;
 U8 PPB_Shift;
 U16 NumBlocks;
 U16 BytesPerSpareArea;
 FS_NAND_ECC_INFO ECC_Info;
} FS_NAND_DEVICE_INFO;

Members Description

BPP_Shift
Number of bytes in a page. Usually 9 (512 bytes) or 11 (2048
bytes).

PPB_Shift
Number of pages in NAND flash block. Usually 6 (64 pages) or
7 (128 pages).

NumBlocks Number of NAND blocks.

BytesPerSpareArea
Number of bytes in the spare area. Usually 16 for 512 byte
pages or 64 for 2048 byte pages. If 0 the NAND driver com-
putes it from the page size as: BPP_Shift / 32

ECC_Info
Information about the ECC requirements. Usually taken from
the ONFI parameters.

Table 6.28: FS_NAND_DEVICE_INFO - list of structure elements

252 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1.9.2.13 FS_NAND_ECC_INFO

Description

This structure stores information about error correction requirements.

Prototype
typedef struct {
 U8 NumBitsCorrectable;
 U8 ldBytesPerBlock;
} FS_NAND_ECC_INFO;

Members Description

NumBitsCorrectable Number of bits the ECC should be able to correct.

ldBytesPerBlock
ECC must be computed over this number of data bytes.
Usually 9 (512 bytes). In addition, the ECC should protect
4 bytes of spare area starting from byte offset 2.

Table 6.29: FS_NAND_ECC_INFO - list of structure elements

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

253

6.3.1.10 Hardware layer

6.3.1.10.1 Hardware functions - NAND flash

Routine Explanation

FS_NAND_HW_X_SetAddrMode() CLE low and ALE high for the specified device.
FS_NAND_HW_X_SetCmdMode() CLE high and ALE low for the specified device.
FS_NAND_HW_X_SetDataMode() CLE low and ALE low for the specified device.
FS_NAND_HW_X_DisableCE() Disables CE.
FS_NAND_HW_X_EnableCE() Enables CE.
FS_NAND_HW_X_WaitWhileBusy() Waits while the device is busy.

FS_NAND_HW_X_Read_x8()
For 8-bit NAND flashes:
Reads data from the NAND flash device.

FS_NAND_HW_X_Read_x16()
For 16-bit NAND flashes:
Reads data from the NAND flash device.

FS_NAND_HW_X_Write_x8()
For 8-bit NAND flashes:
Writing data to the NAND flash, using the I/O 0-7
lines of the NAND flash device.

FS_NAND_HW_X_Write_16()
For 16-bit NAND flashes:
Writing data to the NAND flash, using the I/O 0-
15 lines of the NAND flash device.

FS_NAND_HW_X_Init_x8()
For 8-bit NAND flashes:
Initializes the NAND flash device.

FS_NAND_HW_X_Init_x16()
For 16-bit NAND flashes:
Initializes the NAND flash device.

Table 6.30: NAND device driver hardware layer functions

254 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1.10.1.1 FS_NAND_HW_X_SetAddrMode()

Description

Sets CLE low and ALE high for the specified device.

Prototype
void FS_NAND_HW_X_SetAddrMode (U8 Unit);

Additional Information

This function is called to start the address data transfer.

Example

void FS_NAND_HW_X_SetAddrMode(U8 Unit) {
 FS_USE_PARA(Unit);
 /* CLE low, ALE high */
 NAND_CLR_CLE();
 NAND_SET_ALE();}
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.31: FS_NAND_HW_X_SetAddrMode() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

255

6.3.1.10.1.2 FS_NAND_HW_X_SetCmdMode()

Description

Sets CLE high and ALE low for the specified device.

Prototype
void FS_NAND_HW_X_SetCmdMode (U8 Unit);

Additional Information

This function is called to start the command transfer.

Example

void FS_NAND_HW_X_SetCmdMode(U8 Unit) {
 FS_USE_PARA(Unit);
 /* CLE high, ALE low */
 NAND_SET_CLE();
 NAND_CLR_ALE();
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.32: FS_NAND_HW_X_SetCmdMode() parameter list

256 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1.10.1.3 FS_NAND_HW_X_SetDataMode()

Description

Sets CLE low and ALE low for the specified device.

Prototype
void FS_NAND_HW_X_SetDataMode (U8 Unit);

Additional Information

This function is called to the start data transfer.

Example

void FS_NAND_HW_X_SetData(U8 Unit) {
 FS_USE_PARA(Unit);
 /* CLE low, ALE low */
 NAND_CLR_CLE();
 NAND_CLR_ALE();
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.33: FS_NAND_HW_X_SetDataMode() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

257

6.3.1.10.1.4 FS_NAND_HW_X_DisableCE()

Description

Disables NAND CE.

Prototype
void FS_NAND_HW_X_DisableCE (U8 Unit);

Parameter Description

Unit Unit number (0�N).
Table 6.34: FS_NAND_HW_X_DisableCE() parameter list

258 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1.10.1.5 FS_NAND_HW_X_EnableCE()

Description

Enables NAND CE.

Prototype
void FS_NAND_HW_X_EnableCE (U8 Unit);

Example

/***
*
* FS_NAND_HW_X_EnableCE
*/
void FS_NAND_HW_X_EnableCE(U8 Unit) {
 PIOB_CODR = (1 << 18); // Enable NAND CE
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.35: FS_NAND_HW_X_EnableCE() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

259

6.3.1.10.1.6 FS_NAND_HW_X_WaitWhileBusy()

Description

Checks whether the device is busy.

Prototype
int FS_NAND_HW_X_WaitWhileBusy (U8 Unit,
 unsigned us);

Return value

0 if the device is not busy.
Any other value means that an operation is pending.

Additional Information

If your hardware allows you to monitor the nR/B line, you can use the status of that
line and return when the device is not busy. Otherwise, the function should return 1.
In this case, the physical layer will perform a software-status-check of the device or
wait for the time required by the current operation.

Example

int FS_NAND_HW_X_WaitWhileBusy(U8 Unit, unsinged us) {
 int IsReady;
 do {
 IsReady = NAND_GET_RDY() ? 0 : 1;
 } while(IsReady == 0);
 return IsReady;
}

Parameter Meaning

Unit Unit number (0�N).
us Time in µs to wait.

Table 6.36: FS_NAND_HW_X_WaitWhileBusy() parameter list

260 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1.10.1.7 FS_NAND_HW_X_Read_x8()

Description

Reads data from an 8-bit NAND flash device, using the I/O 0-7 lines.

Prototype
void FS_NAND_HW_X_Read_x8 (U8 Unit,
 U8 * pBuffer,
 unsigned NumBytes);

Additional Information

When reading from the device, usually you will not have to take care of handling the
RE line because that is done automatically by the hardware.
If you do have to control the RE line, make sure that timing is according to your
NAND flash device specification.

Example

void FS_NAND_HW_X_Read_x8(U8 Unit, U8 * pBuffer, unsigned NumBytes) {
 SET_DATA2INPUT();
 do {
 NAND_CLR_RE(); /* RE is active low */
 NAND_GET_DATA(*pBuffer);
 pBuffer++;
 NAND_SET_RE(); /* disable RE */
 } while (--NumBytes);
}

Parameter Meaning

Unit Unit number (0�N).
pBuffer Pointer to a buffer to store the read data.
NumBytes Number of bytes that should be stored into the buffer.

Table 6.37: FS_NAND_HW_X_Read_x8() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

261

6.3.1.10.1.8 FS_NAND_HW_X_Read_x16()

Description

Reads data from a 16-bit NAND flash device, using the I/O 0-15 lines.

Prototype
void FS_NAND_HW_X_Read_x16 (U8 Unit,
 U8 * pBuffer,
 unsigned NumBytes);

Additional Information

When reading from the device, usually you will not have to take care of handling the
RE line because that is done automatically by the hardware.
If you do have to control the RE line, make sure that timing is according to your
NAND flash device specification.

Parameter Meaning

Unit Unit number (0�N).
pBuffer Pointer to a buffer to store the read data.
NumBytes Number of bytes that should be stored into the buffer.

Table 6.38: FS_NAND_HW_X_Read_x16() parameter list

262 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1.10.1.9 FS_NAND_HW_X_Write_x8()

Description

Writes data to an 8-bit NAND flash, using the I/O 0-7 lines of the NAND flash device.

Prototype
void FS_NAND_HW_X_Write_x8 (U8 Unit,
 const U8 * pBuffer,
 unsigned NumBytes);;

Additional Information

When writing data to the device, usually you will not have to take care of handling
the WE line because that is done automatically by the hardware.
If you do have to control the WE line, make sure that timing is according to your
NAND flash device specifications.

Example

void FS_NAND_HW_X_Write_x8(U8 Unit, U8 * pBuffer, unsigned NumBytes) {
 SET_DATA2OUTPUT();
 do {
 NAND_CLR_WE(); /* WE is active low */
 NAND_SET_DATA(*pBuffer);
 pBuffer++;
 NAND_SET_WE(); /* disable WE */
 } while (--NumBytes);
 }

Parameter Meaning

Unit Unit number (0�N).
pBuffer Pointer to a buffer of data which should be written.
NumBytes Number of bytes that should be transferred to the NAND flash.

Table 6.39: FS_NAND_HW_X_Write_x8() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

263

6.3.1.10.1.10 FS_NAND_HW_X_Write_x16()

Description

Writing data to a 16-bit NAND flash, using the I/O 0-15 lines of the NAND flash
device.

Prototype
void FS_NAND_HW_X_Write_x16 (U8 Unit,
 const U8 * pBuffer,
 unsigned NumBytes);;

Additional Information

When writing data to the device, usually you will not have to take care of handling
the WE line because that is done automatically by the hardware.
If you do have to control the WE line, make sure that timing is according to your
NAND flash device specifications.

Parameter Meaning

Unit Unit number (0�N).
pBuffer Pointer to a buffer of data which should be written.
NumBytes Number of bytes that should be transferred to the NAND flash.

Table 6.40: FS_NAND_HW_X_Write_x16() parameter list

264 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1.10.1.11 FS_NAND_HW_X_Init_x8()

Description

Initializes a NAND flash device with an 8-bit interface.

Prototype
void FS_NAND_HW_X_Init_x8 (U8 Unit);

Additional Information

This function is called before any access to the NAND flash device is made. Use this
function to initialize the hardware.

Example

int FS_NAND_HW_X_Init_x8(U8 Unit) {
 FS_USE_PARA(Unit);
 _Timer2Config();
 _NANDFlashInit();
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.41: FS_NAND_HW_X_Init_x8() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

265

6.3.1.10.1.12 FS_NAND_HW_X_Init_x16()

Description

Initializes a NAND flash device with a 16-bit interface.

Prototype
void FS_NAND_HW_X_Init_x16 (U8 Unit);

Additional Information

This function is called before any access to the NAND flash device is made. Use this
function to initialize the hardware.

Parameter Meaning

Unit Unit number (0�N).
Table 6.42: FS_NAND_HW_X_Init_x16() parameter list

266 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1.10.2 Hardware functions - ATMEL DataFlash

Routine Explanation

Control line functions

FS_DF_HW_X_EnableCS()
Activates chip select signal (CS) of the
DataFlash chip.

FS_DF_HW_X_DisableCS()
Deactivates chip select signal (CS) of the
DataFlash chip.

FS_DF_HW_X_Init() Initializes the SPI hardware.
Data transfer functions

FS_DF_HW_X_Read()
Receives a number of bytes from the
DataFlash.

FS_DF_HW_X_Write()
Sends a number of bytes to the
DataFlash.

Table 6.43: DataFlash device driver hardware functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

267

6.3.1.10.2.1 FS_DF_HW_X_EnableCS()

Description

Activates chip select signal (CS) of the specified DataFlash.

Prototype
void FS_DF_HW_X_EnableCS (U8 Unit);

Additional Information

The CS signal is used to address a specific DataFlash chip connected to the SPI.
Enabling is equal to setting the CS line to low.

Example

void FS_DF_HW_X_EnableCS(U8 Unit) {
 SPI_CLR_CS();
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.44: FS_DF_HW_X_EnableCS() parameter list

268 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1.10.2.2 FS_DF_HW_X_DisableCS()

Description

Deactivates chip select signal (CS) of the specified DataFlash.

Prototype
void FS_DF_HW_X_DisableCS (U8 Unit);

Additional Information

The CS signal is used to address a specific DataFlash connected to the SPI. Disabling
is equal to setting the CS line to high.

Example

void FS_DF_HW_X_DisableCS(U8 Unit) {
 SPI_SET_CS();
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.45: FS_DF_HW_X_DisableCS() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

269

6.3.1.10.2.3 FS_DF_HW_X_Init()

Description

Initializes the SPI hardware.

Prototype
int FS_DF_HW_X_Init (U8 Unit);

Return value

== 0 Initialization was successful.
== 1 Initialization failed.

Additional Information

The FS_DF_HW_X_Init() can be used to initialize the SPI hardware. As described in
the previous section. The SPI should be initialized as follows:

� 8-bit data length
� MSB should be sent out first
� CS signal should be initially high
� The set clock frequency should not exceed the max clock frequency that are

specified by the Serial Flash devices (Usually: 20MHz).

Example

void FS_DF_HW_X_Init(U8 Unit) {
 SPI_SETUP_PINS();
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.46: FS_DF_HW_X_Init() parameter list

270 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1.10.2.4 FS_DF_HW_X_Read()

Description

Receives a number of bytes from the DataFlash.

Prototype
void FS_DF_HW_X_Read (U8 Unit,
 U8 * pData,
 int NumBytes);

Example

void FS_DF_HW_X_Read (U8 Unit, U8 * pData, int NumBytes) {
 do {
 c = 0;
 bpos = 8; /* get 8 bits */
 do {
 SPI_CLR_CLK();
 c <<= 1;
 if (SPI_DATAIN()) {
 c |= 1;
 }
 SPI_SET_CLK();
 } while (--bpos);
 *pData++ = c;
 } while (--NumBytes);
}

Parameter Meaning

Unit Unit number (0�N).
pData Pointer to a buffer for data to be receive.
NumBytes Number of bytes to receive.

Table 6.47: FS_DF_HW_X_Read() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

271

6.3.1.10.2.5 FS_DF_HW_X_Write()

Description

Sends a number of bytes from memory buffer to the dedicated DataFlash.

Prototype
void FS_DF_HW_X_Write (U8 Unit,
 const U8 * pData,
 int NumBytes);

Example

void FS_DF_HW_X_Write(U8 Unit, const U8 * pData, int NumBytes) {
 int i;
 U8 mask;
 U8 data;
 for (i = 0; i < NumBytes; i++) {
 data = pData[i];
 mask = 0x80;
 while (mask) {
 if (data & mask) {
 SPI_SET_DATAOUT();
 } else {
 SPI_CLR_DATAOUT();
 }
 SPI_CLR_CLK();
 SPI_DELAY();
 SPI_SET_CLK();
 SPI_DELAY();
 mask >>= 1;
 }
 }
 SPI_SET_DATAOUT(); /* default state of data line is high */
}

Parameter Meaning

Unit Unit number (0�N).
pData Pointer to a buffer for data to be receive.
NumBytes Number of bytes to be written.

Table 6.48: FS_DF_HW_X_Write() parameter list

272 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1.10.3 Hardware functions - SPI NAND flash

Routine Explanation

FS_NAND_HW_SPI_X_Delay()
Blocks the execution for the specified
number of milliseconds.

FS_NAND_HW_SPI_X_DisableCS()
Deactivates chip select signal (CS) of the
NAND flash.

FS_NAND_HW_SPI_X_EnableCS()
Activates chip select signal (CS) of the
NAND flash.

FS_NAND_HW_SPI_X_Init() Initializes the SPI interface.

FS_NAND_HW_SPI_X_Read()
Receives a number of bytes from the
NAND flash.

FS_NAND_HW_SPI_X_Write()
Sends a number of bytes to the NAND
flash.

Table 6.49: Hardware functions - SPI NAND flash

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

273

6.3.1.10.3.1 FS_NAND_HW_SPI_X_Delay()

Description

Blocks the execution for the specified number of milliseconds.

Prototype
void FS_NAND_HW_SPI_X_Delay(U8 Unit, int ms);

Additional information

The function is called after a reset command is sent to NAND flash. The routine can
delay longer that the number of milliseconds specified.

Parameter Meaning

Unit Unit number (0-based).
ms Number of milliseconds to wait.

Table 6.50: FS_NAND_HW_SPI_X_Delay() parameter list

274 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1.10.3.2 FS_NAND_HW_SPI_X_DisableCS()

Description

Disables the access to NAND flash.

Prototype
void FS_NAND_HW_SPI_X_DisableCS(U8 Unit);

Additional information

Typically, the CS signal is active low which means that the CS signal must be held
high to disable the NAND flash. The NAND flash ignores any command sent with the
CS signal disabled.

Parameter Meaning

Unit Unit number (0-based).
Table 6.51: FS_NAND_HW_SPI_X_DisableCS() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

275

6.3.1.10.3.3 FS_NAND_HW_SPI_X_EnableCS()

Description

Enables the access to NAND flash.

Prototype
void FS_NAND_HW_SPI_X_EnableCS(U8 Unit);

Additional information

Typically, the CS signal is active low which means that the CS signal must be held low
to enable the NAND flash.

Parameter Meaning

Unit Unit number (0-based).
Table 6.52: FS_NAND_HW_SPI_X_EnableCS() parameter list

276 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1.10.3.4 FS_NAND_HW_SPI_X_Init()

Description

Performs the initialization of SPI interface.

Prototype
void FS_NAND_HW_SPI_X_Init(U8 Unit);

Additional information

This function is called before any other function of the HW layer. It should be used to
initialize the HW.

Parameter Meaning

Unit Unit number (0-based).
Table 6.53: FS_NAND_HW_SPI_X_Init() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

277

6.3.1.10.3.5 FS_NAND_HW_SPI_X_Read()

Description

Receives a number of bytes form NAND flash via SPI.

Prototype
void FS_NAND_HW_SPI_X_Read(U8 Unit, void * pData, unsigned NumBytes);

Parameter Meaning

Unit Unit number (0-based).

pData
IN: ---
OUT: Data received from NAND flash

NumBytes Number of bytes to be received
Table 6.54: FS_NAND_HW_SPI_X_Read() parameter list

278 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1.10.3.6 FS_NAND_HW_SPI_X_Write()

Description

Sends a number of bytes to NAND flash via SPI.

Prototype
void FS_NAND_HW_SPI_X_Write(U8 Unit, const void * pData, unsigned NumBytes);

Parameter Meaning

Unit Unit number (0-based).

pData
IN: Data to be sent to NAND flash
OUT: ---

NumBytes Number of bytes to be sent
Table 6.55: FS_NAND_HW_SPI_X_Write() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

279

6.3.1.11 Additional driver functions

Routine Explanation

FS_NAND_GetDiskInfo() Delivers information about NAND flash.

FS_NAND_GetBlockInfo()
Delivers information about a physical block of NAND
flash.

Table 6.56: FS_NAND_Driver - list of additional functions.

280 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1.11.1 FS_NAND_GetDiskInfo()

Description

Returns information about the NAND flash.

Prototype
void FS_NAND_GetDiskInfo(U8 Unit, FS_NAND_DISK_INFO * pDiskInfo);

Example

void ShowDiskInfo(U32 Unit) {
 FS_NAND_DISK_INFO DiskInfo;

 printf("Retrieving disk information for nand:%d:\n", Unit);
 FS_NAND_GetDiskInfo((U8)Unit, &DiskInfo);
 printf(" NumPhyBlocks = %d\n"
 " NumLogBlocks = %d\n"
 " NumPagesPerBlock = %d\n"
 " NumSectorsPerBlock = %d\n"
 " BytesPerPage = %d\n"
 " BytesPerSector = %d\n"
 " NumUsedPhyBlocks = %d\n"
 " NumBadPhyBlocks = %d\n"
 " EraseCntMin = %u\n"
 " EraseCntMax = %u\n"
 " EraseCntAvg = %u\n"
 " IsWriteProtected = %d\n"
 " HasFatalError = %d\n"
 " ErrorType = %d\n"
 " ErrorSectorIndex = %d\n", DiskInfo.NumPhyBlocks,
 DiskInfo.NumLogBlocks,
 DiskInfo.NumPagesPerBlock,
 DiskInfo.NumSectorsPerBlock,
 DiskInfo.BytesPerPage,
 DiskInfo.BytesPerSector,
 DiskInfo.NumUsedPhyBlocks,
 DiskInfo.NumBadPhyBlocks,
 DiskInfo.EraseCntMin,
 DiskInfo.EraseCntMax,
 DiskInfo.EraseCntAvg,
 DiskInfo.IsWriteProtected,
 DiskInfo.HasFatalError,
 DiskInfo.ErrorType,
 DiskInfo.ErrorSectorIndex);
}

Parameter Meaning

Unit Unit number of driver.

pDiskInfo
IN: ---
OUT: Information about NAND flash.

Table 6.57: FS_NAND_GetDiskInfo() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

281

6.3.1.11.2 FS_NAND_GetBlockInfo()

Description

Returns information about a physical block of NAND flash.

Prototype
void FS_NAND_GetBlockInfo(U8 Unit,
 U32 PhyBlockIndex,
 FS_NAND_BLOCK_INFO * pBlockInfo);

Example

void _ShowBlockInfo(U32 Unit, U32 PhyBlockIndex) {
 FS_NAND_BLOCK_INFO BlockInfo;

 printf("Retrieving block information for nand:%d:, block index: 0x%.8x\n",
 Unit, PhyBlockIndex);
 FS_NAND_GetBlockInfo((U8)Unit, PhyBlockIndex, &BlockInfo);
 printf(" sType = %s\n"
 " EraseCnt = 0x%.8x\n"
 " lbi = %d\n"
 " NumSectorsBlank = %d\n"
 " NumSectorsECCCorrectable = %d\n"
 " NumSectorsErrorInECC = %d\n"
 " NumSectorsECCError = %d\n"
 " NumSectorsInvalid = %d\n"
 " NumSectorsValid = %d\n", BlockInfo.sType,
 BlockInfo.EraseCnt,
 BlockInfo.lbi,
 BlockInfo.NumSectorsBlank,
 BlockInfo.NumSectorsECCCorrectable,
 BlockInfo.NumSectorsErrorInECC,
 BlockInfo.NumSectorsECCError,
 BlockInfo.NumSectorsInvalid,
 BlockInfo.NumSectorsValid);
}

Parameter Meaning

Unit Unit number of driver.
PhyBlockIndex Index of the physical block.

pDiskInfo
IN: ---
OUT: Information about the physical block.

Table 6.58: FS_NAND_GetBlockInfo() parameter list

282 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1.11.3 FS_NAND_DISK_INFO

Description

The structure contains information about the NAND flash.

Declaration
typedef struct {
 U32 NumPhyBlocks;
 U32 NumLogBlocks;
 U32 NumUsedPhyBlocks;
 U32 NumBadPhyBlocks;
 U32 NumPagesPerBlock;
 U32 NumSectorsPerBlock;
 U32 BytesPerPage;
 U32 BytesPerSector;
 U32 EraseCntMin;
 U32 EraseCntMax;
 U32 EraseCntAvg;
 U8 IsWriteProtected;
 U8 HasFatalError;
 U8 ErrorType;
 U32 ErrorSectorIndex;
} FS_NAND_DISK_INFO;

Members Description

NumPhyBlocks
Number of physical NAND flash blocks managed by the
driver.

NumLogBlocks Number of blocks available to file system.
NumUsedPhyBlocks Number of physical blocks currently in use.
NumBadPhyBlocks Number of physical blocks marked as bad.
NumPagesPerBlock Number of pages in a NAND flash block. Typ. 64 or 256.
NumSectorsPerBlock Number of file system sectors that fit in a NAND flash block.
BytesPerPage Number of bytes in a NAND flash page. Typ. 512 or 2048.
BytesPerSector Number of bytes in a file system sector.
EraseCntMin Smallest erase count from all the physical blocks.
EraseCntMax Greatest erase count from all the physical blocks.
EraseCntAvg Average erase count from all the physical blocks.

IsWriteProtected
Set to 1 to indicate that the file system is not allowed to
write to NAND flash.

HasFatalError
Set to 1 to indicate that the data stored to NAND flash is
corrupted.

ErrorType Type of fatal error encountered.
ErrorSectorIndex Index of the physical sector where the fatal error occurred.

Table 6.59: FS_NAND_DISK_INFO - list of structure elements

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

283

6.3.1.11.4 FS_NAND_BLOCK_INFO

Description

The structure contains information about the NAND flash.

Declaration
typedef struct {
 U32 EraseCnt;
 U32 lbi;
 U16 NumSectorsBlank;
 U16 NumSectorsValid;
 U16 NumSectorsInvalid;
 U16 NumSectorsECCError;
 U16 NumSectorsECCCorrectable;
 U16 NumSectorsErrorInECC;
 const char * sType;
 U8 Type;
} FS_NAND_BLOCK_INFO;

Members Description

EraseCnt Number of times the block has been erased.

lbi Logical index of the physical block.
NumSectorsBlank Number of sectors that were not written yet.
NumSectorsValid Number of sectors that contain valid data.
NumSectorsInvalid Number of sectors that have been invalidated.

NumSectorsECCError
Number of sectors where more bit errors are present
than the ECC is not able to correct.

NumSectorsECCCorrectable
Number of sectors where bit errors were found and
corrected.

NumSectorsErrorInECC
Number of sectors where bit errors were found in the
ECC itself.

sType
Pointer to a 0 terminated string holding the block
type.

Type

Type of data block. Can take one of these values:
� NAND_BLOCK_TYPE_UNKNOWN
� NAND_BLOCK_TYPE_BAD
� NAND_BLOCK_TYPE_EMPTY
� NAND_BLOCK_TYPE_WORK
� NAND_BLOCK_TYPE_DATA

Table 6.60: FS_NAND_BLOCK_INFO - list of structure elements

284 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1.12 Test hardware
The SEGGER "NAND-Flash EVAL" board is an easy to use and cost effective testing
tool designed to evaluate the features and the performance of the emFile NAND
driver.

The NAND driver can be used with emFile or emUSB-Device, in which case the board
behaves like a Mass Storage Device (USB-Stick).

Common evaluation boards are usually used to perform these tests but this approach
brings several disadvantages. Software and hardware development tools are required
to build and load the application into the target system. Moreover, the tests are
restricted to the type of NAND flash which is soldered on the board.

The "NAND-Flash EVAL" board was designed to overcome these limitations and pro-
vides the user with an affordable alternative.

The main feature is that the NAND flash is not directly soldered on the board. A 48-
pin TSOP socket is used instead which allows the user to experiment with different
types of NAND flashes. This helps finding the right NAND flash for an application and
thus reducing costs.

A further important feature is that the "NAND-Flash EVAL" board comes preloaded
with a USB-MSD application. When connected to a PC over USB, the board shows up
as a removable storage on the host operating system. Performance and functionality
tests of NAND flash can be performed in this way without the need of an expensive
development environment. All current operating systems will recognize the board out
of the box.

Trial software packages

The "NAND-Flash EVAL" board comes with a ready to use USB-MSD application in
binary form. emFile is provided in object code form together with a start project
which can be easily modified to create custom applications. For programming and
debugging a JTAG debug probe like J-Link is required. The package also contains the
schematics of the board.

Feature list
� Atmel ATSAM3U4C ARM Cortex-M3 microcontroller
� NAND flash socket
� 2 color LED
� 20-pin JTAG header
� High speed USB interface

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

285

� USB powered

286 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.1.13 Performance and resource usage

6.3.1.13.1 ROM usage

The ROM usage depends on the compiler options, the compiler version and the used
CPU. The memory requirements of the NAND driver presented in the tables below
have been measured on a system as follows: ARM7, IAR Embedded workbench
V4.41A, Thumb mode, Size optimization.

In addition, one of the following physical layers is required:

6.3.1.13.2 Static RAM usage

Static RAM usage is the amount of RAM required by the driver for variables inside of
the driver. The number of bytes can be seen in a compiler list file

Static RAM usage of driver: 32 bytes

6.3.1.13.3 Runtime RAM usage

Runtime RAM usage is the amount of RAM allocated by the driver at runtime. The
amount required depends on the runtime configuration and the connected device.

The approximately RAM usage for the NAND driver can be calculated as follows:

Every NAND device requires:
160 + 2 * NumberOfUsedBlocks + 4 * SectorsPerBlock + 1.04 * MaxSectorSize

Example: 2 GBit NAND flash with 2K pages, 2048 blocks used, 512-byte sectors

One block consists of 64 pages, each page holds 4 sectors of 512 bytes.

SectorsPerBlock = 256
NumberOfUsedBlocks = 2048
MaxSectorSize = 512

RAM usage = (160 + 2 * 2048 + 4 * 256 + 1.04 * 512) bytes
RAM usage = 5813 bytes

Example: 2 GBit NAND flash with 2K pages, 2048 blocks used, 2048-byte sec-
tors

One block consists of 64 pages, each page holds 1 sector of 2048 bytes.

Module
ROM

[Kbytes]

emFile NAND driver 4.5

Physical layer Description
ROM

[Kbytes]

FS_NAND_PHY_512x8
Physical layer for small NAND devices with an 8-
bit interface. 1.1

FS_NAND_PHY_2048x8
Physical layer for large NAND devices with an 8-
bit interface. 1.0

FS_NAND_PHY_2048x16
Physical layer for large NAND devices with an
16-bit interface. 1.0

FS_NAND_PHY_x8
Physical layer for large and small NAND devices
with an 8-bit interface. 2.3

FS_NAND_PHY_x
Physical layer for large and small NAND devices
with an 8-bit or 16-bit interface. 3.3

FS_NAND_PHY_ONFI
Physical layer for NAND flashes which support
ONFI. 1.5

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

287

SectorsPerBlock = 64
NumberOfUsedBlocks = 2048
MaxSectorSize = 2048

RAM usage = (160 + 2 * 2048 + 4 * 64 + 1.04 * 2048) bytes
RAM usage = 6642bytes

Example: 512 MBit NAND flash with 512 pages, 4096 blocks used, 512-byte sec-
tors

One block consists of 64 pages, each page holds 1 sector of 512 bytes.

SectorsPerBlock = 32
NumberOfUsedBlocks = 8192
MaxSectorSize = 512

RAM usage = (160 + 2 * 4096 + 4 * 32 + 1.04 * 512) bytes
RAM usage = 9013 bytes

6.3.1.13.4 Performance

These performance measurements are in no way complete, but they give an approxi-
mation of the length of time required for common operations on various targets. The
tests were performed as described in Performance on page 502.

All values are in Mbytes/sec.

Device
CPU

speed
Medium W R

Atmel AT91SAM7S 48 MHz NAND flash with 512 bytes per page
using Port mode. 0.8 2.0

Atmel AT91SAM7S 48 MHz
NAND flash with 2048 bytes per
page and a sector size of 512 bytes
using Port mode.

0.7 2.0

Atmel AT91SAM7S 48 MHz

NAND flash with 2048 bytes per
page and a sector size of 2048 bytes
using the built-in NAND controller/
external bus-interface.

1.3 2.3

Atmel AT91SAM7SE 48 MHz

NAND flash with 2048 bytes per
page and a sector size of 512 bytes
using the built-in NAND controller/
external bus-interface.

1.6 3.1

Atmel AT91SAM7SE 48 MHz

NAND flash with 2048 bytes per
page and a sector size of 2048 bytes
using the built-in NAND controller/
external bus-interface.

3.8 5.9

Atmel AT91SAM9261 200 MHz

NAND flash with 2048 bytes per
page and a sector size of 512 bytes
using the built-in NAND controller/
external bus-interface.

2.3 6.5

Atmel AT91SAM9261 200 MHz

NAND flash with 2048 bytes per
page and a sector size of 2048 bytes
using the built-in NAND controller/
external bus-interface.

5.1 9.8

Table 6.61: Performance values for sample configurations

288 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

Atmel AT91SAM9G45 384 MHz

NAND flash with 2048 bytes per
page and a sector size of 2048 bytes
using the built-in NAND controller/
external bus-interface.

4.7 12.4

Atmel AT91SAM3U 96 MHz

NAND flash with 2048 bytes per
page and a sector size of 2048 bytes
using the built-in NAND controller/
external bus-interface.

5 5.9

Atmel AT91SAM3U 96 MHz

NAND flash with 2048 bytes per
page and a sector size of 512 bytes
using the built-in NAND controller/
external bus-interface.

2.3 4.7

Device
CPU

speed
Medium W R

Table 6.61: Performance values for sample configurations

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

289

6.3.1.14 FAQs
Q: Are Multi-Level Cell NAND flashes (MLCs) supported?
A: Yes, the Universal NAND driver does support MLCs.

Q: Are NAND flashes with 4-Kbytes pages supported?
A: Yes, they are supported. The FS_NAND_PHY_4096x8 physical layer should be used.

290 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.2 Universal driver - FS_NAND_UNI_Driver
This driver for NAND flashes is designed to support SLC and MLC NAND flashes. It
can correct multiple bit errors by using the internal ECC of NAND flashes or by calling
ECC computation routines provided by the application. The ECC protects the sector
data and the driver management data stored in the spare area of a page. Sector size
is equal to page size and must be at least 2048 bytes. Smaller sector sizes are possi-
ble using an additional file system layer. The driver requires very little RAM and is
extremely efficient.

This section first describes which devices are supported and describes all hardware
access functions required by the NAND flash driver.

6.3.2.1 Supported hardware
In general, the driver supports almost all Single-Level Cell NAND flashes (SLC) with a
page size greater than 2048+64 bytes.

The table below shows the NAND flashes that have been tested or are compatible
with a tested device:

Support for devices not in this list

Most other NAND flash devices are compatible with one of the supported devices.
Thus, the driver can be used with these devices or may only need a little modifica-
tion, which can be easily done. Get in touch with us, if you have questions about sup-
port for devices not in this list.

Manufacturer Device
Page size

[Bytes]
Size

[Bits]
Internal

ECC

Hynix

HY27UF082G2M 2048+64 256Mx8 no
HY27UF084G2M 2048+64 512Mx8 no
HY27UG084G2M 2048+64 512Mx8 no
HY27UG084GDM 2048+64 512Mx8 no

Micron

MT29F2G08AAB
MT29F2G08ABD
MT29F4G08AAA
MT29F4G08BAB
MT29F2G16AAD
MT29F2G08ABAEA
MT29F8G08ABABA
MT29F1G01AAADD
MT29F2G01AAAED
MT29F4G01AAADD

2048+64
2048+64
2048+64
2048+64
2048+64
2048+64
4069+224
2048+64
2048+64
2048+64

256Mx8
256Mx8
512Mx8
512Mx8
128Mx16
2Gx8
8Gx8
1Gx1
2Gx1
4Gx1

no
no
no
no
no
yes
no
yes
yes
yes

Samsung

K9F1G08x0A
K9F2G08U0M
K9K2G08R0A
K9K2G08U0M
K9F4G08U0M
K9F8G08U0M

2048+64
2048+64
2048+64
2048+64
2048+64
2048+64

256Mx8
256Mx8
256Mx8
256Mx8
512Mx8
1024Mx8

no
no
no
no
no
no

ST-Microelectronics

NAND01GR3B
NAND01GW3B
NAND02GR3B
NAND02GW3B
NAND04GW3

2048+64
2048+64
2048+64
2048+64
2048+64

128Mx8
128Mx8
256Mx8
256Mx8
512Mx8

no
no
no
no
no

Table 6.62: List of supported NAND flashes

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

291

Additional information

For a description of the NAND flash hardware interface, refer to Pin description -
NAND flashes on page 225. Sample schematics showing how to connect more than
one NAND flash to a single MCU can be found on the chapter Sample block schemat-
ics on page 227.

6.3.2.2 Theory of operation
NAND flash devices are divided into physical blocks and physical pages. One physical
block is the smallest erasable unit; one physical page is the smallest writable unit.
Large block NAND Flash devices contain blocks made up of 64 pages, each page con-
taining 2112 bytes (2048 data bytes + 64 spare bytes). The first page of a block is
reserved for management data.

The driver uses the spare bytes for the following purposes:

1. To check if the block is valid.
If they are valid the driver uses this sector. When the driver detects a bad sector, the
whole block is marked as invalid and its content is copied to a non-defective block.

2. To store/load management information
This includes the mapping of pages to logical sectors, the number of times a
block has been erased and whether a page contains valid data or not.

3. To store/load an ECC (Error Correction Code) for data reliability.
When reading a sector, the driver also reads the ECC stored in the spare area of
the sector, calculates the ECC based on the read data and compares the ECCs. If
the ECCs are not identical, the driver tries to recover the data, based on the read
ECC.
When writing to a page the ECC is calculated based on the data the driver has to
write to the page. The calculated ECC is then stored in the spare area.

6.3.2.2.1 Software structure

The NAND Flash driver is split up into different layers, which are shown in the illus-
tration below.

It is possible to use the NAND driver with custom hardware. If port pins or a simple
memory controller are used for accessing the flash memory, only the hardware layer
needs to be ported, normally no changes to the physical layer are required. If the
NAND driver should be used with a special memory controller (for example special
FPGA implementations), the physical layer needs to be adapted. In this case, the
hardware layer is not required, because the memory controller manages the hard-
ware access.

NAND driver

Logical Layer

NAND driver

Physical Layer

User provided

Hardware Layer

NAND driver

Logical Layer

User provided

Physical Layer

Port pin
(any hardware, simple

memory controller)

Memory controller
(e.g. special FPGA
implementations)

292 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.2.3 Fail-safe operation
The emFile NAND driver is fail-safe. That means that the driver makes only atomic
actions and takes the responsibility that the data managed by the file system is
always valid. In case of a power loss or a power reset during a write operation, it is
always assured that only valid data is stored in the flash. If the power loss interrupts
the write operation, the old data will be kept and the data is not corrupted.

For additional information, refer to Fail-safe operation on page 228.

6.3.2.4 Wear leveling
Wear leveling is supported by the driver. The procedure ensures that the number of
erase cycles remains approximately for all the blocks. The maximum allowed erase
count difference is runtime configurable and is by default 5000.

6.3.2.5 Partial writes
The driver writes only once in any page of the NAND flash between two block erase
cycles. The number of partial writes is 1 making the driver conform with any SLC/
MLC device.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

293

6.3.2.6 Configuring the driver

6.3.2.6.1 Adding the driver to emFile

To add the driver, use FS_AddDevice() with the driver label FS_NAND_UNI_Driver.
This function has to be called from within FS_X_AddDevices(). Refer to
FS_X_AddDevices() on page 472 for more information.

Example
void FS_X_AddDevices(void) {
 FS_AssignMemory(&_aMemBlock[0], sizeof(_aMemBlock));
 FS_AddDevice(&FS_NAND_UNI_Driver);
 //
 // Set the physical interface of the NAND flash.
 //
 FS_NAND_UNI_SetPhyType(0, &FS_NAND_PHY_ONFI);
 //
 // Configure the driver to use the internal ECC of NAND flash for error correction.
 //
 FS_NAND_UNI_SetECCHook(0, &FS_NAND_ECC_HW_NULL);
}

6.3.2.6.2 Specific configuration functions

Routine Explanation

FS_NAND_UNI_SetPhyType()
Configures the physical type of NAND
device.

FS_NAND_UNI_SetBlockRange()
Configures the range of physical
blocks managed by the driver.

FS_NAND_UNI_SetMaxEraseCntDiff()
Configures the threshold for the wear-
leveling.

FS_NAND_UNI_SetOnFatalErrorCallback()
Configures a function to be invoked
when the driver encounters a fatal
error.

FS_NAND_UNI_SetNumWorkBlocks() Configures the number of work blocks.
FS_NAND_UNI_SetECCHook() Configures the ECC algorithm.

Table 6.63: FS_NAND_UNI_Driver - list of configuration functions.

294 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.2.6.2.1 FS_NAND_UNI_SetPhyType()

Description

Sets the physical type of the device. NAND flash is organized in pages of either 512
or 2048 bytes and has an 8-bit or 16-bit interface. The driver needs to know the cor-
rect combination of page and interface width.

Prototype
void FS_NAND_UNI_SetPhyType(U8 Unit,
 const FS_NAND_PHY_TYPE * pPhyType);

For additional information, refer to FS_NAND_SetPhyType() on page 231.

Parameter Meaning

Unit Unit number.

pPhyType
IN: Physical type of device.
OUT: ---

Table 6.64: FS_NAND_UNI_SetPhyType() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

295

6.3.2.6.2.2 FS_NAND_UNI_SetBlockRange()

Description

Sets a limit for which blocks of the NAND flash can be controlled by the driver.

Prototype
void FS_NAND_UNI_SetBlockRange(U8 Unit,
 U16 FirstBlock,
 U16 MaxNumBlocks);

For additional information, refer to FS_NAND_SetBlockRange() on page 233.

Parameter Meaning

Unit Unit number.

FirstBlock
Zero-based index of the first block to use.
Specifies the number of blocks at the beginning of the device to
skip. 0 means that no blocks are skipped.

MaxNumBlocks
Maximum number of blocks to use.
0 means use all blocks after FirstBlock.

Table 6.65: FS_NAND_UNI_SetBlockRange() parameter list

296 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.2.6.2.3 FS_NAND_UNI_SetMaxEraseCntDiff()

Description

Sets the maximum difference between block erase counts that triggers the active
wear leveling.

Prototype
void FS_NAND_UNI_SetMaxEraseCntDiff(U8 Unit,
 U32 EraseCntDiff);

For additional information, refer to FS_NAND_SetMaxEraseCntDiff() on page 234.

Parameter Meaning

Unit Unit number.
EraseCntDiff Maximum allowed difference between the erase counts.

Table 6.66: FS_NAND_UNI_SetMaxEraseCntDiff() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

297

6.3.2.6.2.4 FS_NAND_UNI_SetOnFatalErrorCallback()

Description

Registers a function that should be invoked when a fatal error occurs.

Prototype
void FS_NAND_UNI_SetOnFatalErrorCallback(
 FS_NAND_ON_FATAL_ERROR_CALLBACK * pfOnFatalError);

For additional information, refer to FS_NAND_SetOnFatalErrorCallback() on
page 235.

Parameter Meaning

pfOnFatalError Pointer to callback function.
Table 6.67: FS_NAND_UNI_SetOnFatalErrorCB() parameter list

298 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.2.6.2.5 FS_NAND_UNI_SetNumWorkBlocks()

Description

Sets number of work blocks the driver uses for write operations.

Prototype
void FS_NAND_UNI_SetNumWorkBlocks(U8 Unit,
 U32 NumWorkBlocks);

For additional information, refer to FS_NAND_SetNumWorkBlocks() on page 236.

Parameter Meaning

Unit Unit number (0 based).
NumWorkBlocks Number of work blocks.

Table 6.68: FS_NAND_UNI_SetNumWorkBlocks() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

299

6.3.2.6.2.6 FS_NAND_UNI_SetECCHook()

Description

Configures the ECC algorithm to be used by the NAND driver.

Prototype
void FS_NAND_UNI_SetECCHook(U8 Unit, const FS_NAND_ECC_HOOK * pECCHook);

Additional information

This function allows an application to configure the functions which the driver should
call to compute and correct the bit errors. Following ECC algorithms are provided by
the driver:

By default, the driver uses the FS_NAND_ECC_1BIT ECC algorithm. The application
must provide an ECC algorithm for the cases where the NAND flash has no ECC
engine and a better error correction is required than provided by the default algo-
rithm. The algorithm can be implemented in software or it can use a dedicated ECC
hardware if available on the target system. For details about the computation rou-
tines, refer to FS_NAND_ECC_HOOK on page 300.

Parameter Meaning

Unit Unit number (0 based)

pECCHook
IN: Pointer to a FS_NAND_ECC_HOOK structure containing the API
functions and the attributes of ECC algorithm.
OUT: ---

Table 6.69: FS_NAND_UNI_SetECCHook() parameter list

Values for parameter pECCHook

FS_NAND_ECC_HW_NULL
This is a pseudo algorithm. It requests
the driver to use the internal HW ECC of
NAND flash.

FS_NAND_ECC_HW_4BIT

This is a pseudo algorithm an it should
be used with physical layers which pro-
vide ECC error correction. For example
when the physical layer uses a dedi-
cated NAND flash controller with HW
ECC. When used the pseudo algorithm
requests the physical layer to use 4-bit
error correction

FS_NAND_ECC_SW_1BIT

This is an algorithm which is able to cor-
rect 1 bit errors and detect 2 bit errors.
More specifically it can correct 1 bit
errors on each 256 byte stripe of the
512 data area and a 1 bit errors on the
4 bytes of spare area.

300 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.2.6.2.7 FS_NAND_ECC_HOOK

Description

The structure contains pointers to API functions and attributes related to ECC algo-
rithm.

Declaration
typedef struct {
 void (*pfCompute) (const U32 * pData, U8 * pSpare);
 int (*pfApply) (U32 * pData, U8 * pSpare);
 unsigned NumBitsCorrectable;
} FS_NAND_ECC_HOOK;

Additional information

The ECC is always computed over a 512 byte data area and 4 byte spare area. pData
points to a data area of 512 bytes and pSpare points to whole 16 byte spare area.
The spare area is organized as follows:

The (*pfCompute)() function calculates the ECC. It is called when data is written to
NAND flash. The ECC covers the whole data area and 4 bytes of spare area from byte
offset 4. The function stores the resulted 8 byte ECC to pSpare at byte offset 8.

The error checking and correction is performed by the (*pfApply)() function. This
function is called when data is read from NAND flash. First, the routine calculates the
ECC in the same way (*pfCompute)() function does. Then it compares the calculated
ECC against the 8 byte ECC loaded from the byte offset 8 of pSpare. If the ECC val-
ues are equal there are no bit errors and the function returns. Else the function
determines whether the errors can be corrected and if so, it corrects them in the
pData and pSpare buffers. Following values can be returned:

Parameter Meaning

pfCompute
Pointer to a function which computes the ECC over a block
of 516 bytes.

pfApply
Pointer to a function which checks and corrects the ECC
protected data.

NumBitsCorrectable
Number of bits the ECC algorithm is able to correct in a 516
byte block.

Table 6.70: FS_NAND_ECC_HOOK - list of structure elements

Byte offset Meaning

0-3 Reserved

4-7
4 bytes of data which must be protected by ECC. The
driver stores here management information. This area
is used only by the driver.

7-15

8 bytes of ECC. The (*pfCompute)() function stores
here the calculated ECC of the data and spare areas.
The (*pfApply)() loads The ECC is loaded from this
location by the (*pfApply)() function which per-
forms the error checking and correction. This area is
used only by the ECC routines.

Value Meaning

0 No error detected.
1 Bit errors corrected. Data is OK.
2 Error in ECC detected. Data is OK.
3 Uncorrectable bit error. Data is corrupted.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

301

6.3.2.7 Physical layer
There is normally no need to change the physical layer of the NAND driver, only the
hardware layer has to be adapted.

In some special cases, when the low-level hardware routines provided by the driver
are not compatible with the target hardware (e.g. special FPGA implementations of a
memory controller), the physical layer has to be adapted.

6.3.2.7.1 Available physical layers

The following physical layers are available. Refer to Configuring the driver on
page 230 for detailed information about how to add the required physical layer to
your application.

For a description of the physical layer functions, refer to Physical layer functions on
page 238.

Available physical layers

FS_NAND_PHY_2048x8
Supports NAND flash devices with 2048 bytes per page
and 8-bit width

FS_NAND_PHY_2048x16
Supports NAND flash devices with 2048 bytes per page
and 16-bit width

FS_NAND_PHY_4096x8
Supports NAND flash devices with 4096 bytes per page
and 8-bit width

FS_NAND_PHY_x

Supports the following NAND flash devices:
� 512 bytes per page and 8-bit width
� 2048 bytes per page and 8-bit width
� 2048 bytes per page and 16-bit width
� 4096 bytes per page and 8-bit width

FS_NAND_PHY_x8

Supports the following NAND flash devices:
� 512 bytes per page and 8-bit width
� 2048 bytes per page and 8-bit width
� 4096 bytes per page and 8-bit width

FS_NAND_PHY_ONFI
Supports NAND flash devices compliant with the ONFI
specification.

FS_NAND_PHY_SPI Supports NAND flash devices with SPI serial interface.
Table 6.71: Available physical layers

NAND driver

Logical Layer

NAND driver

Physical Layer

User provided

Hardware Layer

NAND driver

Logical Layer

User provided

Physical Layer

Port pin
(any hardware, simple

memory controller)

Memory controller
(e.g. special FPGA
implementations)

302 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.2.8 Hardware layer
The driver uses the same hardware layer as the SLC1 driver. For additional informa-
tion, refer to Hardware functions - NAND flash on page 253.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

303

6.3.2.9 Additional driver functions

Routine Explanation

FS_NAND_UNI_GetDiskInfo() Delivers information about NAND flash.

FS_NAND_UNI_GetBlockInfo()
Delivers information about a physical block of
NAND flash.

Table 6.72: FS_NAND_UNI_Driver - list of additional functions.

304 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.2.9.1 FS_NAND_UNI_GetDiskInfo()

Description

Returns information about the NAND flash.

Prototype
void FS_NAND_UNI_GetDiskInfo(U8 Unit, FS_NAND_DISK_INFO * pDiskInfo);

Example

For an example, refer to FS_NAND_GetDiskInfo() on page 280.

Parameter Meaning

Unit Unit number of driver.

pDiskInfo
IN: ---
OUT: Information about NAND flash.

Table 6.73: FS_NAND_UNI_GetDiskInfo() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

305

6.3.2.9.2 FS_NAND_UNI_GetBlockInfo()

Description

Returns information about a physical block of NAND flash.

Prototype
void FS_NAND_UNI_GetBlockInfo(U8 Unit,
 U32 PhyBlockIndex,
 FS_NAND_BLOCK_INFO * pBlockInfo);

Example

void _ShowBlockInfo(U32 Unit, U32 PhyBlockIndex) {
 FS_NAND_BLOCK_INFO BlockInfo;
 const char * sType;

 printf("Retrieving block information for nand:%d:, block index: 0x%.8x\n",
 Unit, PhyBlockIndex);
 FS_NAND_GetBlockInfo((U8)Unit, PhyBlockIndex, &BlockInfo);
 switch (BlockInfo.Type) {
 case NAND_BLOCK_TYPE_BAD:
 sType = "Bad block";
 break;
 case NAND_BLOCK_TYPE_EMPTY:
 sType = "Block not in use";
 break;
 case NAND_BLOCK_TYPE_WORK:
 sType = "Work block";
 break;
 case NAND_BLOCK_TYPE_DATA:
 sType = "Data block";
 break;
 case NAND_BLOCK_TYPE_UNKNOWN:
 default:
 sType = "Unknown";
 break;
 }
 printf(" sType = %s\n"
 " EraseCnt = 0x%.8x\n"
 " lbi = %d\n"
 " NumSectorsBlank = %d\n"
 " NumSectorsECCCorrectable = %d\n"
 " NumSectorsErrorInECC = %d\n"
 " NumSectorsECCError = %d\n"
 " NumSectorsInvalid = %d\n"
 " NumSectorsValid = %d\n", sType,
 BlockInfo.EraseCnt,
 BlockInfo.lbi,
 BlockInfo.NumSectorsBlank,
 BlockInfo.NumSectorsECCCorrectable,
 BlockInfo.NumSectorsErrorInECC,
 BlockInfo.NumSectorsECCError,
 BlockInfo.NumSectorsInvalid,
 BlockInfo.NumSectorsValid);
}

Parameter Meaning

Unit Unit number of driver.
PhyBlockIndex Index of the physical block.

pDiskInfo
IN: ---
OUT: Information about the physical block.

Table 6.74: FS_NAND_UNI_GetBlockInfo() parameter list

306 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.2.10 Test hardware
For more information, refer to Test hardware on page 284.

6.3.2.11 Performance and resource usage

6.3.2.11.1 ROM usage

The ROM usage depends on the compiler options, the compiler version and the used
CPU. The memory requirements of the NAND driver presented in the tables below
have been measured on a system as follows: ARM7, IAR Embedded workbench
V4.41A, Thumb mode, Size optimization.

In addition, one of the following physical layers is required:

6.3.2.11.2 Static RAM usage

Static RAM usage is the amount of RAM required by the driver for variables inside of
the driver. The number of bytes can be seen in a compiler list file

Static RAM usage of the NAND driver: 32 bytes

6.3.2.11.3 Runtime RAM usage

Runtime RAM usage is the amount of RAM allocated by the driver at runtime. The
amount required depends on the runtime configuration and the connected device.

The approximately RAM usage for the NAND driver can be calculated as follows:

Every NAND flash device requires:

Module
ROM

[Kbytes]

emFile Universal NAND driver 7.9

Physical layer Description
ROM

[Kbytes]

FS_NAND_PHY_2048x8
Physical layer for large page NAND flash
devices with an 8-bit interface. 1.0

FS_NAND_PHY_2048x16
Physical layer for large page NAND flash
devices with an 16-bit interface. 1.0

FS_NAND_PHY_4096x8
Physical layer for NAND flash devices with an
8-bit interface and 4096 bytes per page. 0.9

FS_NAND_PHY_x8
Physical layer for large and small NAND
devices with an 8-bit interface. 2.3

FS_NAND_PHY_x
Physical layer for large and small NAND
devices with an 8-bit or 16-bit interface. 3.3

FS_NAND_PHY_ONFI
Physical layer for NAND flash devices which
support ONFI. 1.5

FS_NAND_PHY_SPI
Physical layer for NAND flash devices with an
SPI serial interface. 1.2

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

307

MemAllocated = 148 + 2 * NumBlocks
 + ((PagesPerBlock - 1) + 18) * NumWorkBlocks
 + 1.04 * PageSize

Example: 2 GBit NAND flash with 2K pages

One block consists of 64 pages, each page holds 1 sector of 2048 bytes.

PagesPerBlock = 64
NumBlocks = 2048
NumWorkBlocks = 4
PageSize = 2048

MemAllocated = 148 + 2 * 2048 + (64 - 1 + 18) * 4 + 1.04 * 2048
 = 148 + 4096 + 324 + 2129
 = 6397 bytes

6.3.2.11.4 Performance

These performance measurements are in no way complete, but they give an approxi-
mation of the length of time required for common operations on various targets. The
tests were performed as described in Performance on page 502.

All values are in Mbytes/sec.

Parameter Description

MemAllocated Number of bytes allocated.
NumBlocks Number of blocks in the NAND flash.

NumWorkBlocks

Number of physical sectors the driver reserves as tempo-
rary storage for the written data. Typically 3 physical sec-
tors or the number specified in the call to the
FS_NAND_UNI_SetNumWorkBlocks() configuration function

PageSize Number of bytes in a page.
Table 6.75: Runtime RAM usage parameters for FS_NAND_UNI_Driver

Device
CPU

speed
Medium W R

Atmel AT91SAM3U 96 MHz

NAND with 2048 bytes per page and
a sector size of 2048 bytes with
internal ECC enabled using the built-
in NAND controller/external bus-
interface.

1.6 7.5

Atmel AT91SAM7S 48MHz

NAND with 2048 bytes per page and
a sector size of 2048 bytes, 1-bit
ECC, controller/external bus-inter-
face.

1.5 5.5

Table 6.76: Performance values for sample configurations

308 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.3 Additional Information
Low-level format

Before using the NAND flash as a storage device, a low-level format has to be per-
formed. Refer to FS_FormatLow() on page 113 and FS_FormatLLIfRequired() on
page 112 for detailed information about low-level format.

6.3.4 Additional physical layer functions

6.3.4.0.1 FS_NAND_PHY_ReadDeviceId()

Description

Executes the READ ID command to read information from NAND flash.

Prototype
void FS_NAND_PHY_ReadDeviceId(U8 Unit, U8 * pId, U32 NumBytes);

Additional information

This function can be used to query the type of NAND flash connected to host. It can
be called from the function FS_X_AddDevices() as it invokes only functions of the
NAND HW layer. No instance of NAND driver is required.

Example

This example shows how an application can configure at runtime different NAND driv-
ers based on the type of the NAND flash.

Routine Explanation

FS_NAND_PHY_ReadDeviceId()
Reads the ID information from NAND
flash.

FS_NAND_PHY_ReadONFIPara()
Reads the ONFI parameters from NAND
flash.

FS_NAND_2048x8_EnableReadCache() Activates the read page optimization.
FS_NAND_2048x8_DisableReadCache() Deactivates the read page optimization.
FS_NAND_SPI_EnableReadCache() Activates the read page optimization.
FS_NAND_SPI_DisableReadCache() Deactivates the read page optimization.

Table 6.77: List of additional physical layer functions.

Parameter Meaning

Unit Unit number of HW layer.

pId
IN: ---
OUT: Information about NAND flash.

NumBytes Number of bytes to read.
Table 6.78: FS_NAND_PHY_ReadDeviceId() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

309

/***
*
* FS_X_AddDevices
*
* Function description
* This function is called by the FS during FS_Init().
* It is supposed to add all devices, using primarily FS_AddDevice().
*
* Note
* (1) Other API functions
* Other API functions may NOT be called, since this function is called
* during initialisation. The devices are not yet ready at this point.
*/
void FS_X_AddDevices(void) {
 U8 Id;

 FS_AssignMemory(_aMemBlock, sizeof(_aMemBlock));
 //
 // Read the first byte of the identification array
 // which stores the manufacturer type.
 //
 FS_NAND_PHY_ReadDeviceId(0, &Id, sizeof(Id));
 if (Id == 0xEC) {
 //
 // Found a Samsung NAND flash. Use the SLC1 NAND driver.
 // ECC is performed by the NAND driver
 //
 FS_AddDevice(&FS_NAND_Driver);
 FS_NAND_SetPhyType(0, &FS_NAND_PHY_2048x8);
 } else if (Id == 0x2C) {
 //
 // Found a Micron NAND flash. Use the Universal NAND driver.
 // The ECC is performed by the NAND flash.
 //
 FS_AddDevice(&FS_NAND_UNI_Driver);
 FS_NAND_UNI_SetPhyType(0, &FS_NAND_PHY_ONFI);
 FS_NAND_UNI_SetECCHook(0, &FS_NAND_ECC_HW_NULL);
 } else {
 //
 // NAND flash from another manufacturer, Use auto-identification.
 //
 FS_AddDevice(&FS_NAND_Driver);
 FS_NAND_SetPhyType(0, &FS_NAND_PHY_x8);
 }
}

310 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.4.0.2 FS_NAND_PHY_ReadONFIPara()

Description

Reads ONFI parameters from NAND flash.

Prototype
int FS_NAND_PHY_ReadONFIPara(U8 Unit, void * pPara);

Return value

==0 ONFI parameters read.
!=0 NAND flash does not support ONFI or an error occurred.

Additional information

This function can be used to read the ONFI information stored in a NAND flash. It can
be called from the function FS_X_AddDevices() as it invokes only functions of the
NAND hardware layer. No instance of NAND driver is required. The pPara parameter
can be NULL in which case the function returns 0 when the NAND flash is ONFI com-
patible.

Example

This example shows how an application can configure at runtime different NAND driv-
ers based on the type of the NAND flash.

/***
*
* FS_X_AddDevices
*
* Function description
* This function is called by the FS during FS_Init().
* It is supposed to add all devices, using primarily FS_AddDevice().
*
* Note
* (1) Other API functions
* Other API functions may NOT be called, since this function is called
* during initialisation. The devices are not yet ready at this point.
*/
void FS_X_AddDevices(void) {
 int r;

 FS_AssignMemory(_aMemBlock, sizeof(_aMemBlock));
 //
 // Check whether the NAND flash supports ONFI.
 //
 r = FS_NAND_PHY_ReadONFIPara(0, NULL);
 if (r) {
 //
 // Found a NAND flash which does not support ONFI.
 //
 FS_AddDevice(&FS_NAND_Driver);
 FS_NAND_SetPhyType(0, &FS_NAND_PHY_2048x8);
 } else {
 //
 // Found a NAND flash which supports ONFI.
 //
 FS_AddDevice(&FS_NAND_UNI_Driver);
 FS_NAND_UNI_SetPhyType(0, &FS_NAND_PHY_ONFI);
 FS_NAND_UNI_SetECCHook(0, &FS_NAND_ECC_HW_NULL);
 }
}

Parameter Meaning

Unit Unit number of HW layer.

pPara
IN: ---
OUT: Read ONFI parameters. It must be at least 256 bytes large.

Table 6.79: FS_NAND_PHY_ReadONFIPara() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

311

6.3.4.0.3 FS_NAND_2048x8_EnableReadCache()

Description

Activates the read page optimization.

Prototype
void FS_NAND_2048x8_EnableReadCache(U8 Unit);

Additional information

A page read operation consists of 2 steps. On the first step the page data is read
from memory array to internal page register of NAND flash device. On the second
step the data is transferred from internal page register of NAND flash device to host
CPU. With the optimization enabled the first step is skipped when possible.

The optimization is enabled by default and should be disabled if 2 or more instances
of NAND driver are configured to access the same NAND flash device.

Parameter Meaning

Unit Unit number of physical layer.
Table 6.80: FS_NAND_2048x8_EnableReadCache() parameter list

312 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.4.0.4 FS_NAND_2048x8_DisableReadCache()

Description

Deactivates the read page optimization.

Prototype
void FS_NAND_2048x8_DisableReadCache(U8 Unit);

Additional information

For additional information, refer to FS_NAND_2048x8_EnableReadCache() on
page 311.

Parameter Meaning

Unit Unit number of physical layer.
Table 6.81: FS_NAND_2048x8_DisableReadCache() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

313

6.3.4.0.5 FS_NAND_SPI_EnableReadCache()

Description

Activates the read page optimization of the FS_NAND_PHY_SPI physical layer.

Prototype
void FS_NAND_SPI_EnableReadCache(U8 Unit);

Additional information

For additional information, refer to FS_NAND_2048x8_EnableReadCache() on
page 311.

Parameter Meaning

Unit Unit number of physical layer.
Table 6.82: FS_NAND_SPI_EnableReadCache() parameter list

314 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.3.4.0.6 FS_NAND_SPI_DisableReadCache()

Description

Deactivates the read page optimization of the FS_NAND_PHY_SPI physical layer.

Prototype
void FS_NAND_SPI_DisableReadCache(U8 Unit);

Additional information

For additional information, refer to FS_NAND_2048x8_EnableReadCache() on
page 311.

Parameter Meaning

Unit Unit number of physical layer.
Table 6.83: FS_NAND_SPI_DisableReadCache() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

315

6.4 NOR flash driver
emFile supports the use of NOR flashes. Two optional drivers for NOR flashes are
available:

� Sector map driver - optimized for read/write speed.
� Block map driver - optimized for reduced RAM usage.

They can work with almost any NOR flash and are extremely efficient. The difference
between the drivers consists in the way they are managing the mapping of file sys-
tem sectors to NOR flash storage.

The Sector map driver was designed with the goal to access the data fast at a time
when the NOR flashes had a relatively small capacity. To achieve this, the driver
maintains a mapping table at sector granularity. This approach has been proven to be
efficient, but modern NOR flashes with capacities over 1MB the RAM usage of the
driver increases. This is the reason why the Block map driver was developed.

The design goal of the Block map driver was to use as few RAM as possible. The
driver maps blocks of file system sectors to NOR storage. In this way the RAM
requirements of the driver are kept to a minimum.

6.4.1 Sector map driver - FS_NOR_Driver
This section describes the NOR driver which is optimized for fast write speed. It
works by mapping single logical sectors to locations on the NOR flash memory.

6.4.1.1 Supported hardware
The NOR flash drivers can be used with almost any NOR flash. This includes NOR
flashes with 1x8-bit and 1x16-bit parallel interfaces, as well as 2x16-bit interfaces in
parallel, as well as serial NOR flashes.

Requirements

To be more precise, any NOR flash which fulfills the following requirements:

� Minimum of 2 physical sectors. At least 2 sectors need to be identical in size.
� Physical sectors need to be at least 2048 bytes each.
� Physical sectors do not need to be uniform

(for example, 8 * 8 Kbytes + 3 * 64 Kbytes is permitted).
� Flash needs to be re-writable without erase: The same location can be written to

multiple times without erase, as long as only 1-bits are converted to 0-bits.
� Erase clears all bits in a physical sector to 1.

Physical layer

The driver requires a physical layer for the flash device.

The following physical layers are available:

� FS_NOR_PHY_CFI_1x16 - CFI compliant parallel NOR flash with 1x16-bit inter-
face

� FS_NOR_PHY_CFI_2x16 - CFI compliant parallel NOR flash with 2x16-bit inter-
face

� FS_NOR_PHY_ST_M25 - Serial flash (ST M25Pxx family)
� FS_NOR_PHY_SFDP - Serial flash compliant with the JEDEC JESD216 standard.
� Physical layer template

Common flash interface (CFI)

The NOR flash drivers can be used with any CFI-compliant 16-bit chip. The Common
Flash Memory Interface (CFI) is an open specification which may be implemented
freely by flash memory vendors in their devices. It was developed jointly by Intel,
AMD, Sharp, and Fujitsu.

316 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

The idea behind CFI was the interchangeability of current and future flash memory
devices offered by different vendors. If you use only CFI compliant flash memory
chips, you are able to use one driver for different flash products by reading identify-
ing information out of the flash chip itself.

The identifying information for the device, such as memory size, byte/word configu-
ration, block configuration, necessary voltages, and timing information, is stored
directly on the chip.

6.4.1.1.1 Tested and compatible NOR flashes

In general, the drivers supports almost all serial and parallel NOR flashes which fulfill
the listed requirements. This includes NOR flashes with 1x8-bit, 1x16-bit and 2x16-
bit interfaces.

The table below shows the serial NOR flashes that have been tested or are compati-
ble with a tested device:

The table below shows the parallel NOR flashes that have been tested or are compat-
ible with a tested device:

Support for devices not available in this list

Most other NOR flash devices are compatible with one of the supported devices. Thus
the driver can be used with these devices or may only need a little modification,
which can be easily done. Get in touch with us, if you have questions about support
for devices not in this list.

Manufacturer Device Size

ST Microelectronics

M25P40
M25P80
M25P16
M25P32
M25P128

4 Mbit (512 Kbytes)
8 Mbit (1Mbytes)
16 Mbit (2Mbytes)
32 Mbit (4Mbytes)
128 Mbit (16Mbytes)

Micron N25Q064
N25Q256

64 Mbit (8Mbytes)
256 Mbit (32Mbytes)

Numonyx M25P64 64 Mbit (8Mbytes)
Winbond W25Q64 64 Mbit (8Mbytes)

Macronix MX25L256
MX66L51235F

256 Mbit (32Mbytes)
512 Mbit (64Mbytes)

Table 6.84: List of supported serial NOR flashes

Manufacturer Device Size [Bits]

Intel Intel 28FxxxP30
Intel 28FxxxP33

64 Mbytes - 1 Gbytes
64 Mbytes - 512 Mbytes

ST-Microelectronics

M28W160
M28W320
M28W640
M29F080
M29W160
M29W320
M29W640
M58LW064

16 Mbytes (1 Mbytes x 16)
32 Mbytes (2 Mbytes x 16)
64 Mbytes (4 Mbytes x 16)
8 Mbytes (1 Mbytes x 8)
16 Mbytes (2 Mbytes x 8 or 1 Mbytes x 16)
32 Mbytes (4 Mbytes x 8 or 2 Mbytes x 16)
64 Mbytes (8 Mbytes x 8 or 4 Mbytes x 16)
64 Mbytes (8 Mbytes x 8, 4Mbytes x 16)

Micron

MT28F128
MT28F256
MT28F320
MT28F640

128 Mbytes
256 Mbytes
32 Mbytes
64 Mbytes

Table 6.85: List of supported parallel NOR flashes

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

317

6.4.1.2 Theory of operation
Differentiating between �logical sectors� or �blocks� and �physical sectors� is very
essential to understand this section. A logical sector/block is the base unit of any file
system, its usual size is 512 bytes. A physical sector is an array of bytes on the flash
chip that are erased together (typically between 2 Kbytes - 128 Kbytes). The flash
chip driver is an abstraction layer between these two types of sectors.

Every time a logical sector is being updated, it is marked as invalid and the new con-
tent of this sector is written into another area of the flash. The physical address and
the order of physical sectors can change with every write access. Hence, there can-
not exist a direct relation between the sector number and its physical location.

The flash driver manages the logical sector numbers by writing it into special head-
ers. It does not matter to the upper layer were the logical sector is stored or how
much flash memory is used as a buffer. All logical sectors (starting with Sector #0)
do always exist and are always available for user access.

6.4.1.2.1 Using the same NOR flash for code and data

Most NOR flashes cannot be read out during a program, erase or identify operation.
This means that code cannot be read from the NOR flash during a program or erase
operation. If code which resides in the same NOR flash used for data storage is exe-
cuted during program or erase, a program crash is almost certain.

There are multiple options to solve this:

1. Use multiple NOR flashes. Use one flash for code and one for data.
2. Use a NOR flash with multiple banks, which allows reading Bank A while Bank B is

being programmed.
3. Make sure the hardware routines which program, erase or identify the NOR flash

are located in RAM and interrupts are disabled.

318 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.4.1.2.2 Physical interfaces

A device can consist of a single or two identical CFI compliant flash interfaces with a
16-bit interface. The most common is a CFI compliant NOR flash chip with a 16-bit
interface.

Beside this solution, emFile supports two CFI compliant NOR flash chips with a 16-bit
interface which are connected to the same address bus.

The emFile NOR flash driver supports both options.

D0...D15

Address bus

NOR
flash

CPU

D0...D15

D16...D31

Address bus

NOR
flash

NOR
flash

CPU

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

319

6.4.1.2.3 Software structure

The NOR flash driver is divided into different layers, which are shown in the illustra-
tion below.

It is possible to use the NOR flash drivers also with serial NOR flashes. Only the hard-
ware layer needs to be ported. Normally no changes to the physical layer are
required. If the physical layer needs to be adapted, a template is available.

6.4.1.3 Fail-safe operation
The emFile NOR driver is fail-safe. That means that the driver makes only atomic
actions and takes the responsibility that the data managed by the file system is
always valid. In case of power loss or power reset during a write operation it is
always assured that only valid data is stored in the flash. If the power loss interrupts
the write operation, the old data will be kept and not corrupted.

6.4.1.4 Wear leveling
Wear leveling is supported by the driver. Wear leveling makes sure that the number
of erase cycles remains approximately equal for each sector. Maximum erase count
difference is set to 5. This value specifies a maximum difference of erase counts for
different physical sectors before the wear leveling uses the sector with the lowest
erase count.

6.4.1.5 Garbage collection
The driver performs the garbage collection automatically. When data is written to
storage medium and there are no more free logical sectors left new free logical sec-
tors are created. A physical sector is erased and the valid logical sectors of an other
physical sector are copied to it. This operation can take a potentially long time affect-
ing the write performance. For applications which require maximum write throughput
the garbage collection can be triggered explicitly. Typically, the operation can be per-
formed when the file system is idle.

Two API functions are provided: FS_STORAGE_Clean() and FS_STORAGE_CleanOne().
They can be called directly from the task which is performing the write or from a
background task. The FS_STORAGE_Clean() function blocks until all the invalid logical
sectors are converted to free logical sectors. A write operation following the call of
this function runs at maximum speed. The other function, FS_STORAGE_CleanOne(),

NOR driver

Logical Layer

NOR driver

Physical Layer

User provided

Hardware Layer

NOR driver

Logical Layer

NOR driver

Physical Layer

Serial NOR flashes Parallel CFI compliant
NOR flashes

(1x16-bit or 2x16-bit
interfaces)

320 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

converts the invalid sectors of a single physical sector. Depending on the number of
invalid logical sectors, several calls to this function are required to clean up the whole
storage medium.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

321

6.4.1.6 Configuring the driver

6.4.1.6.1 Adding the driver to emFile

To add the driver, use FS_AddDevice() with the driver label FS_NOR_Driver. This
function has to be called from FS_X_AddDevices(). Refer to FS_X_AddDevices() on
page 472 for more information.

Example

FS_AddDevice(&FS_NOR_Driver);

6.4.1.6.2 Configuration API

Routine Explanation

FS_NOR_Configure() Configures the NOR flash.
FS_NOR_SetPhyType() Sets the physical type of NOR device.
FS_NOR_SetSectorSize() Sets the size of a logical sector.
FS_NOR_SPI_Configure() Configures manually a SPI NOR flash.

FS_NOR_CFI_SetAddrGap()
Defines a discontinuity in the address space
of the CFI NOR flash.

Table 6.86: FS_NOR_Driver - list of configuration functions

322 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.4.1.6.2.1 FS_NOR_Configure()

Description

Configures the NOR flash drive. Needs to be called for CFI flashes. Typically, this
function has to be called from FS_X_AddDevices() after adding the device driver to
file system. Refer to FS_X_AddDevices() on page 472 for more information.

Prototype
void FS_NOR_Configure(U8 Unit,
 U32 BaseAddr,
 U32 StartAddr,
 U32 NumBytes);

Additional information

If your consists of two identical CFI compliant NOR flash chips with 16 bit interface
FS_NOR_Configure() configures both flash chips. Refer to FS_NOR_SetPhyType() on
page 324 for more information about the different physical type of your device.

Example

Configuration with a single NOR flash devices:

void FS_X_AddDevices(void) {
 FS_AssignMemory(&_aMemBlock[0], sizeof(_aMemBlock));
 //
 // Add driver
 //
 FS_AddDevice(&FS_NOR_Driver);
 //
 // Set physical type, single CFI compliant NOR flash chips with 16 bit interface
 //
 FS_NOR_SetPhyType(0, &FS_NOR_PHY_CFI_1x16);
 //
 // Configure a single NOR flash interface (2 Mbytes)
 //
 FS_NOR_Configure(0, 0x1000000, 0x1000000, 0x200000);
}

Configuration with 2 identical NOR flash devices:

void FS_X_AddDevices(void) {
 //
 // Add driver
 //
 FS_AddDevice(&FS_NOR_Driver);
 //
 // Set physical type, 2 identical CFI compliant NOR flash chips
 // with 16 bit interface
 //
 FS_NOR_SetPhyType(0, &FS_NOR_PHY_CFI_2x16);
 //

Parameter Description

Unit Unit number (0�N).

BaseAddr
Base address of the NOR flash chip. This is the address of the first
byte of the NOR flash.

StartAddr
Start address of the NOR flash disk. This is the address of the first
byte of the NOR flash to be used as flash disk. It needs to be >=
BaseAddr.

NumBytes

Specifies the size of the NOR flash device in bytes. The size of the
flash disk will be:
min(NumBytes, DeviceSize - (StartAddr - BaseAddr)
where DeviceSize is the size of the NOR flash found.

Table 6.87: FS_NOR_Configure() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

323

 // Configure two NOR flash interfaces (2 Mbytes each)
 //
 FS_NOR_Configure(0, 0x1000000, 0x1000000, 0x400000);
}

Configuration with 2 different NOR flash devices:

void FS_X_AddDevices(void) {
 FS_AssignMemory(&_aMemBlock[0], sizeof(_aMemBlock));
 //
 // Add and configure the first NOR driver. Volume name "nor:0:"
 // Set physical type, single CFI compliant NOR flash chips with 16 bit interface.
 //
 FS_AddDevice(&FS_NOR_Driver);
 FS_NOR_SetPhyType(0, &FS_NOR_PHY_CFI_1x16);
 FS_NOR_Configure(0, 0x1000000, 0x1000000, 0x200000);
 //
 // Add and configure the second NOR driver. Volume name "nor:1:"
 // Set physical type, single CFI compliant NOR flash chips with 16 bit interface.
 //
 FS_AddDevice(&FS_NOR_Driver);
 FS_NOR_SetPhyType(1, &FS_NOR_PHY_CFI_1x16);
 FS_NOR_Configure(1, 0x4000000, 0x4000000, 0x200000);
}

void main(void) {
 FS_Init();
 //
 // Format first volume.
 //
 FS_FormatLLIfRequired("nor:0:");
 if (FS_IsHLFormatted("nor:0:") == 0) {
 FS_Format("nor:0:", NULL);
 }
 //
 // Format second volume.
 //
 FS_FormatLLIfRequired("nor:1:");
 if (FS_IsHLFormatted("nor:1:") == 0) {
 FS_Format("nor:1:", NULL);
 }
}

324 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.4.1.6.2.2 FS_NOR_SetPhyType()

Description

Sets the physical type of the device. The NOR flash driver comes with different phys-
ical interfaces. The most common is a CFI compliant NOR flash chip with a 16 bit
interface. A device can consist of a single or two identical CFI compliant flash inter-
faces with a 16 bit interface. Set pPhyType to FS_NOR_PHY_CFI_1x16 if you use a sin-
gle NOR flash chip. If your device consists of two identical NOR flash chips, set
pPhyType to FS_NOR_PHY_CFI_2x16.

This function has to be called from within FS_X_AddDevices() after adding the
device driver to file system. Refer to FS_X_AddDevices() on page 472 for more infor-
mation.

Prototype
void FS_NOR_SetPhyType(U8 Unit, const FS_NOR_PHY_TYPE * pPhyType);

Additional information

If you want to access special flash devices (for example, the internal NOR flash of a
microcontroller), you can define your own physical type. Use the supplied template
NOR_Phy_Template.c for the implementation. The template is located in the \Sam-
ple\Driver\NOR\ directory.

Note: Most NOR flashes cannot be read out during a program, erase or identify
operation. This means that code cannot be read from the NOR flash during a program
or erase operation. If code which resides in the same NOR flash used for data storage
is executed during program or erase, a program crash is almost certain. To avoid
this, you have to make sure that routines which program, erase or identify are
located in RAM and interrupts are disabled. The responsibility therefor is on user
side.

Example

Refer to FS_NOR_Configure() on page 322 for an example of usage.

Parameter Meaning

Unit Unit number (0�N).
pPhyType Pointer to physical type.

Table 6.88: FS_NOR_SetPhyType() parameter list

Permitted values for parameter pPhyType

FS_NOR_PHY_CFI_1x16
One CFI compliant NOR flash chip with
16 bit interface.

FS_NOR_PHY_CFI_2x16
Two CFI compliant NOR flash chip with
16 bit interfaces.

FS_NOR_PHY_ST_M25 Serial NOR flashes.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

325

6.4.1.6.2.3 FS_NOR_SetSectorSize()

Description

Configures the size of a logical sector on the NOR flash drive. Typically, this function
has to be called from FS_X_AddDevices() after adding the device driver to file sys-
tem. Refer to FS_X_AddDevices() on page 472 for more information.

Prototype
void FS_NOR_SetSectorSize(U8 Unit,
 U16 SectorSize);

Additional information

The logical sector size must be equal or less than the logical sector size of the file
system. This is typically 512 bytes or the value configured in the call to API function
FS_SetMaxSectorSize().

6.4.1.6.2.4 FS_NOR_SPI_Configure()

Description

Specifies the parameters of a NOR flash connected over SPI.

Prototype
void FS_NOR_SPI_Configure(U8 Unit, U32 SectorSize, U16 NumSectors);

Additional information

Calling of this function is optional. The physical layer tries to auto-detect the capacity
of device. It uses the value of the 3rd byte returned in response to a Read Identifica-
tion (0x9F) command. The following mapping table is used:

It is required to call this function, only if the device does not identify itself with one
of the above device IDs. SectorSize must be set to the size of the storage area
erased by the Block Erase (0xD8) command. NumSectors is the device capacity in
bytes divided by SectorSize.

Parameter Description

Unit Unit number.
SectorSize Number of bytes in a logical sector.

Table 6.89: FS_NOR_SetSectorSize() parameter list

Parameter Description

Unit Unit number (0 based).
SectorSize Number of bytes in a physical sector.
NumSectors Number of physical sectors in the NOR flash.

Table 6.90: FS_NOR_SPI_Configure() parameter list

3rd byte in
response

Device size
[Mbits]

0x11 1
0x12 2
0x13 4
0x14 8
0x15 16
0x16 32
0x17 64
0x18 128

Table 6.91: NOR SPI device IDs

326 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

Example

/***
*
* FS_X_AddDevices
*
* Function description
* This function is called by the FS during FS_Init().
* It is supposed to add all devices, using primarily FS_AddDevice().
*
* Note
* (1) Other API functions
* Other API functions may NOT be called, since this function is called
* during initialisation. The devices are not yet ready at this point.
*/
void FS_X_AddDevices(void) {
 FS_AssignMemory(&_aMemBlock[0], sizeof(_aMemBlock));
 //
 // Add driver.
 //
 FS_AddDevice(&FS_NOR_Driver);
 //
 // Confgure manually a 16Mbit SPI NOR flash.
 //
 FS_NOR_SetPhyType(0, &FS_NOR_PHY_ST_M25);
 FS_NOR_SPI_Configure(0, 0x10000, 32);
 FS_NOR_Configure(0, 0, 0, 0x10000 * 32);
}

6.4.1.6.2.5 FS_NOR_CFI_SetAddrGap()

Description

Defines a discontinuity in the address space of NOR flash.

Prototype
void FS_NOR_CFI_SetAddrGap(U8 Unit, U32 StartAddr, U32 NumBytes);

Additional information

Any access to an address equal to or greater than StartAddr is offset by NumBytes.
StartAddr and NumBytes should be aligned to physical sector boundaries.

Parameter Description

Unit Unit number (0 based).
StartAddr Address of the first byte in the gap.
NumBytes Number of bytes in the gap.

Table 6.92: FS_NOR_CFI_SetAddrGap() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

327

Example

#define ALLOC_SIZE 0x400000
#define FLASH_BASE_ADDR 0x80000000
#define FLASH_START_ADDR 0x80000000
#define FLASH_SIZE 0x00400000
#define FLASH_GAP_START_ADDR 0x80200000
#define FLASH_GAP_SIZE 0x00200000

/***
*
* FS_X_AddDevices
*
* Function description
* This function is called by the FS during FS_Init().
* It is supposed to add all devices, using primarily FS_AddDevice().
*
* Note
* (1) Other API functions
* Other API functions may NOT be called, since this function is called
* during initialisation. The devices are not yet ready at this point.
*/
void FS_X_AddDevices(void) {
 FS_AssignMemory(&_aMemBlock[0], sizeof(_aMemBlock));
 //
 // Add and configure the driver for a 4MB NOR flash.
 //
 FS_AddDevice(&FS_NOR_Driver);
 FS_NOR_SetPhyType(0, &FS_NOR_PHY_CFI_1x16);
 FS_NOR_Configure(0, FLASH_BASE_ADDR, FLASH_START_ADDR, FLASH_SIZE);
 //
 // Configure a 2MB gap in the address space of NOR flash.
 //
 FS_NOR_CFI_SetAddrGap(0, FLASH_GAP_START_ADDR, FLASH_GAP_SIZE);
}

6.4.1.6.3 Sample configurations

In the following some sample configurations how to create multiple volumes, logical
volumes etc., using the NOR driver are shown. All configuration steps have to be per-
formed inside the FS_X_AddDevices() function. For more information about the
FS_X_AddDevices() function, please refer to FS_X_AddDevices() on page 472.

Creating multiple volumes on a single NOR flash chip

The following example illustrates how to create multiple volumes on a single NOR
flash chip. In this sample we create 2 volumes on one NOR flash.

//
// Config: 1 NOR flash, where NOR flash size -> 2 MB
// 2 volumes, , where volume 0 size -> 1MB, volume 1 -> 0.5MB
//
#define FLASH_BASE_ADDR 0x80000000

#define FLASH_VOLUME_0_START_ADDR 0x80000000
#define FLASH_VOLUME_0_SIZE 0x00100000 // 1 MByte

#define FLASH_VOLUME_1_START_ADDR 0x80100000
#define FLASH_VOLUME_1_SIZE 0x00080000 // 0.5 MByte

//
// Volume 0
//
FS_AddDevice(&FS_NOR_Driver);
FS_NOR_SetPhyType(0, &FS_NOR_PHY_CFI_1x16);
FS_NOR_Configure(0, FLASH_BASE_ADDR, FLASH_VOLUME_0_START_ADDR,
FLASH_VOLUME_0_SIZE);
//
// Volume 1
//
FS_AddDevice(&FS_NOR_Driver);
FS_NOR_SetPhyType(1, &FS_NOR_PHY_CFI_1x16);
FS_NOR_Configure(1, FLASH_BASE_ADDR, FLASH_VOLUME_1_START_ADDR,

328 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

FLASH_VOLUME_1_SIZE);

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

329

Creating multiple volumes with multiple NOR flash chips

The following example illustrates how to create multiple volumes on multiple NOR
flash chips. In this sample we create 2, each on one NOR flash.

//
// Config: 2 NOR flash chips, where NOR flash 0 size -> 2 MB, NOR flash 1 -> 16MB
// 2 volumes, volume 0 size -> complete NOR 0, volume 1 -> complete NOR 1
//
#define FLASH0_BASE_ADDR 0x80000000
#define FLASH_VOLUME_0_START_ADDR FLASH0_BASE_ADDR
#define FLASH_VOLUME_0_SIZE 0xFFFFFFFF // Use the complete flash

#define FLASH1_BASE_ADDR 0x40000000
#define FLASH_VOLUME_1_START_ADDR FLASH1_BASE_ADDR
#define FLASH_VOLUME_1_SIZE 0xFFFFFFFF // Use the complete flash

//
// Volume 0
//
FS_AddDevice(&FS_NOR_Driver);
FS_NOR_SetPhyType(0, &FS_NOR_PHY_CFI_1x16);
FS_NOR_Configure(0,
 FLASH0_BASE_ADDR,
 FLASH_VOLUME_0_START_ADDR,
 FLASH_VOLUME_0_SIZE
);
//
// Volume 1
//
FS_AddDevice(&FS_NOR_Driver);
FS_NOR_SetPhyType(1, &FS_NOR_PHY_CFI_1x16);
FS_NOR_Configure(1,
 FLASH1_BASE_ADDR,
 FLASH_VOLUME_1_START_ADDR,
 FLASH_VOLUME_1_SIZE
);

330 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

Creating volumes which spread over multiple NOR flash chips

The following example illustrates how to create a volume which spreads over multiple
NOR flash chips. This is achieved by using the logical volume functions. In this sam-
ple a logical volume which spreads over 2 NOR flash chips is created.

//
// Config: 2 NOR flash chips, where NOR flash 0 size -> 2 MB, NOR flash 1 -> 16MB
// 1 volume, where volume is NOR flash 0 + NOR flash 1
//
#define FLASH0_BASE_ADDR 0x80000000
#define FLASH_VOLUME_0_START_ADDR FLASH0_BASE_ADDR
#define FLASH_VOLUME_0_SIZE 0xFFFFFFFF // Use the complete flash

#define FLASH1_BASE_ADDR 0x40000000
#define FLASH_VOLUME_1_START_ADDR FLASH1_BASE_ADDR
#define FLASH_VOLUME_1_SIZE 0xFFFFFFFF // Use the complete flash

//
// Create physical device 0, this device will not be visible as a volume
//
FS_AddPhysDevice(&FS_NOR_Driver);
FS_NOR_SetPhyType(0, &FS_NOR_PHY_CFI_1x16);
FS_NOR_Configure(0,
 FLASH0_BASE_ADDR,
 FLASH_VOLUME_0_START_ADDR,
 FLASH_VOLUME_0_SIZE
);
//
// In order to know whether the volume is low-level-formatted, we do the check here.
// When the device is added to the logical volume,
// a single check for low-level-format can not be performed.
//
if (FS_NOR_IsLLFormatted(0) == 0) {
 FS_NOR_FormatLow(0);
}
//
// Create physical device 1, this device will not be visible as a volume
//
FS_AddPhysDevice(&FS_NOR_Driver);
FS_NOR_SetPhyType(1, &FS_NOR_PHY_CFI_1x16);
FS_NOR_Configure(1,
 FLASH1_BASE_ADDR,
 FLASH_VOLUME_1_START_ADDR,
 FLASH_VOLUME_1_SIZE
);
//
// In order to know whether the volume is low-level-formatted, we do the check here.
// When the device is added to the logical volume,
// a single check for low-level-format can not be performed.
//
if (FS_NOR_IsLLFormatted(1) == 0) {
 FS_NOR_FormatLow(1);
}
//
// Now create a logical volume, containing the physical devices
//
FS_LOGVOL_Create("LogVol");
FS_LOGVOL_AddDevice("LogVol", &FS_NOR_Driver, 0, 0, 0);
FS_LOGVOL_AddDevice("LogVol", &FS_NOR_Driver, 1, 0, 0);

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

331

6.4.1.7 Physical layer
There is normally no need to change the physical layer of the NOR driver, only the
hardware layer has to be adapted if a non CFI compliant NOR flash chip is used in
your hardware.

In some special cases, when the low-level hardware routines provided by the driver
are not compatible with the target hardware the physical layer has to be adapted.

6.4.1.7.1 Available physical layers

The following physical layers are available. Refer to Configuring the driver on
page 321 for detailed information about how to add the required physical layer to
your application.

6.4.1.7.2 Physical layer functions

If there is a reason to change the physical layer anyhow, the functions which have to
be changed are organized in a function table. The function table is implemented in a
structure of type FS_NOR_PHY_TYPE.

struct FS_NOR_PHY_TYPE {
 int (*pfWriteOff) (U8 Unit, U32 Off, const void * pSrc, U32 Len);
 int (*pfReadOff) (U8 Unit, void * pDest, U32 Off, U32 Len);
 int (*pfEraseSector) (U8 Unit, unsigned int SectorIndex);
 void (*pfGetSectorInfo)(U8 Unit, unsigned int SectorIndex, U32 * pOff, U32 * pLen);
 int (*pfGetNumSectors)(U8 Unit);
 void (*pfConfigure) (U8 Unit, U32 BaseAddr, U32 StartAddr, U32 NumBytes);
 void (*pfOnSelectPhy) (U8 Unit);
 void (*pfDeInit) (U8 Unit);
} FS_NOR_PHY_TYPE;

Available physical layers

FS_NOR_PHY_CFI_1x16 One CFI compliant NOR flash chip with 16 bit interface.
FS_NOR_PHY_CFI_2x16 Two CFI compliant NOR flash chip with 16 bit interfaces.
FS_NOR_PHY_ST_M25 Serial NOR flashes.

FS_NOR_PHY_SFDP
Serial NOR flash compliant with the JEDEC JESD216
standard.

Table 6.93: Available physical layer

NOR driver

Logical Layer

NOR driver

Physical Layer

User provided

Hardware Layer

NOR driver

Logical Layer

NOR driver

Physical Layer

Serial NOR flashes Parallel CFI compliant
NOR flashes

(1x16-bit or 2x16-bit
interfaces)

332 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

If the physical layer should be modified, the following members of the structure
FS_NOR_PHY_TYPE have to be adapted:

Routine Explanation

(*pfWriteOff)() Writes data into any section of the flash.

(*pfReadOff)()
Reads data from the given offset of the
flash.

(*pfEraseSector)() Erases one sector.

(*pfGetSectorInfo)()
Returns the offset and length of the given
sector.

(*pfGetNumSectors)() Returns the number of flash sectors.
(*pfConfigure)() Configures a single instance of the driver.
(*pfOnSelectPhy)() Retrieves information from flash.

Table 6.94: Physical layer hardware functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

333

6.4.1.7.2.1 (*pfWriteOff)()

Description

This routine writes data into any section of the flash. It does not check if this section
has been previously erased; this is in the responsibility of the user program. Data
written into multiple sectors at a time can be handled by this routine.

Prototype
int (*pfWriteOff) (U8 Unit,
 U32 Off,
 const void * pSrc,
 unsigned NumBytes);

Return value
== 0: Data successfully transferred.
!= 0: An error has occurred.

Parameter Meaning

Unit Unit number (0...N).
Off Zero-based byte offset.
pSrc Pointer to a buffer of data which should be written.
NumBytes Number of bytes which should be written.

Table 6.95: (*pfWriteOff)() parameter list

334 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.4.1.7.2.2 (*pfReadOff)()

Description

Reads data from the given offset of the flash.

Prototype
int (*pfReadOff) (U8 Unit,
 const void * pDest,
 U32 Off,
 unsigned NumBytes);

Return value
== 0: Data successfully transferred.
!= 0: An error has occurred.

Parameter Meaning

Unit Unit number (0...N).
pDest Pointer to a buffer of data which should be read.
Off Zero-based byte offset.
NumBytes Number of bytes which should be written.

Table 6.96: (*pfReadOff)() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

335

6.4.1.7.2.3 (*pfEraseSector)()

Description

Erases one sector.

Prototype
int (*pfEraseSector) (U8 Unit,
 U32 SectorIndex);

Return value
== 0: OK. Sector is erased.
!= 0: An error has occurred; sector might not be erased.

Parameter Meaning

Unit Unit number (0...N).
SectorIndex zero-based index.

Table 6.97: (*pfEraseSector)() parameter list

336 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.4.1.7.2.4 (*pfGetSectorInfo)()

Description

Returns the offset and length of the given sector.

Prototype
void (*pfGetSectorInfo) (U8 Unit,
 U32 SectorIndex,
 U32 * pOff,
 U32 * pLen);

Parameter Meaning

Unit Unit number (0...N).
SectorIndex Zero-based sector index.
pOff Buffer to store the offset of the specified sector.
pLen Buffer to store the length of the specified sector.

Table 6.98: (*pfGetSectorInfo)() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

337

6.4.1.7.2.5 (*pfGetNumSectors)()

Description

Returns the number of flash sectors.

Prototype
int (*pfGetNumSectors) (U8 Unit);

Return value
Number of flash sectors.

Parameter Meaning

Unit Unit number (0...N).
Table 6.99: (*pfGetNumSectors)() parameter list

338 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.4.1.7.2.6 (*pfConfigure)()

Description

Configures a single instance of the driver.

Prototype
void (*pfConfigure) (U8 Unit,
 U32 BaseAddr,
 U32 StartAddr,
 U32 NumBytes);

Parameter Meaning

Unit Unit number (0...N).
BaseAddr Base address of the flash.
StartAddr Start address that should be used for the device.
NumBytes Number of bytes which should be used for the device.

Table 6.100: (*pfConfigure)() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

339

6.4.1.7.2.7 (*pfOnSelectPhy)()

Description

This function might be neccessary to retrieve the information from flash. It is called
right after selection of the physical layer.

Prototype
void (*pfOnSelectPhy) (U8 Unit);

Parameter Meaning

Unit Unit number (0...N).
Table 6.101: (*pfOnSelectPhy)() parameter list

340 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.4.1.8 Hardware functions
Depending on the used NOR flash type and the corresponding physical layer, different
hardware functions are required. CFI compliant NOR flashes do not need any hard-
ware function, refer to Hardware functions - Serial NOR flashes on page 340 for
detailed information about the hardware functions required by the physical layer for
serial NOR flashes.

6.4.1.8.1 Hardware functions - CFI compliant chips

The NOR flash driver for CFI compliant chips does not need any hardware function.

6.4.1.8.2 Hardware functions - Serial NOR flashes

Routine Explanation

Control line functions

FS_NOR_SPI_HW_X_EnableCS()
Activates chip select signal (CS) of the serial
NOR flash chip.

FS_NOR_SPI_HW_X_DisableCS()
Deactivates chip select signal (CS) of the
DataFlash chip.

FS_NOR_SPI_HW_X_Init() Initializes the SPI hardware.
Data transfer functions

FS_NOR_SPI_HW_X_Read()
Receives a number of bytes from the serial
NOR flash.

FS_NOR_SPI_HW_X_Write()
Sends a number of bytes to the serial NOR
flash.

FS_NOR_SPI_HW_X_Read_x2()
Receives a number of bytes from the serial
NOR flash using 2 data lines.

FS_NOR_SPI_HW_X_Write_x2()
Sends a number of bytes to the serial NOR
flash using 2 data lines.

FS_NOR_SPI_HW_X_Read_x4()
Receives a number of bytes from the serial
NOR flash using 4 data lines.

FS_NOR_SPI_HW_X_Write_x4()
Sends a number of bytes to the serial NOR
flash using 4 data lines.

Table 6.102: Serial NOR flash device driver hardware functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

341

6.4.1.8.2.1 FS_NOR_SPI_HW_X_EnableCS()

Description

Activates chip select signal (CS) of the specified serial NOR flash.

Prototype
void FS_NOR_SPI_HW_X_EnableCS (U8 Unit);

Additional Information

The CS signal is used to address a specific serial NOR flash chip connected to the SPI.
Enabling is equal to setting the CS line to low.

Example

/* Excerpt from NOR SPI hardware layer for Atmel AT91SAM9261. */

void FS_NOR_SPI_HW_X_EnableCS(U8 Unit) {
 _SPI_CLR_CS();
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.103: FS_NOR_SPI_HW_X_EnableCS() parameter list

342 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.4.1.8.2.2 FS_NOR_SPI_HW_X_DisableCS()

Description

Deactivates chip select signal (CS) of the specified serial NOR flash chip.

Prototype
void FS_NOR_SPI_HW_X_DisableCS (U8 Unit);

Additional Information

The CS signal is used to address a specific serial NOR flash connected to the SPI. Dis-
abling is equal to setting the CS line to high.

Example

/* Excerpt from NOR SPI hardware layer for Atmel AT91SAM9261. */

void FS_NOR_SPI_HW_X_DisableCS(U8 Unit) {
 _SPI_SET_CS();
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.104: FS_NOR_SPI_HW_X_DisableCS() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

343

6.4.1.8.2.3 FS_NOR_SPI_HW_X_Init()

Description

Initializes the SPI hardware.

Prototype
int FS_NOR_SPI_HW_X_Init (U8 Unit);

Return value

== 0 Initialization was successful.
== 1 Initialization failed.

Example

/* Excerpt from NOR SPI hardware layer for Atmel AT91SAM9261. */

void FS_NOR_SPI_HW_X_Init(U8 Unit) {
 _SPI_SETUP_PINS();
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.105: FS_NOR_SPI_HW_X_Init() parameter list

344 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.4.1.8.2.4 FS_NOR_SPI_HW_X_Read()

Description

Receives a number of bytes from the serial NOR flash chip.

Prototype
void FS_NOR_SPI_HW_X_Read (U8 Unit,
 U8 * pData,
 int NumBytes);

Example

/* Excerpt from NOR SPI hardware layer for Atmel AT91SAM9261. */

void FS_NOR_SPI_HW_X_Read (U8 Unit, U8 * pData, int NumBytes) {
 do {
 SPI_TDR = 0xff;
 while ((SPI_SR & (1 << 9)) == 0);
 while ((SPI_SR & (1 << 0)) == 0);
 *pData++ = SPI_RDR;
 } while (--NumBytes);
}

Parameter Meaning

Unit Unit number (0�N).
pData Pointer to a buffer for data to be receive.
NumBytes Number of bytes to receive.

Table 6.106: FS_NOR_SPI_HW_X_Read() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

345

6.4.1.8.2.5 FS_NOR_SPI_HW_X_Write()

Description

Sends a number of bytes to the card.

Prototype
void FS_NOR_SPI_HW_X_Write (U8 Unit,
 const U8 * pData,
 int NumBytes);

Example
/* Excerpt from NOR SPI hardware layer for Atmel AT91SAM9261. */

void FS_NOR_SPI_HW_X_Write(U8 Unit, const U8 * pData, int NumBytes) {
 do {
 SPI_TDR = *pData++;
 while ((SPI_SR & (1 << 9)) == 0);
 } while (--NumBytes);
}

Parameter Meaning

Unit Unit number (0�N).
pData Pointer to a buffer for data to be receive.
NumBytes Number of bytes to be written.

Table 6.107: FS_NOR_SPI_HW_X_Write() parameter list

346 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.4.1.8.2.6 FS_NOR_SPI_HW_X_Read_x2()

Description

Receives a number of bytes from the serial NOR flash using 2 data lines.

Prototype
void FS_NOR_SPI_HW_X_Read_x2(U8 Unit,
 U8 * pData,
 int NumBytes);

Additional information

This function reads 2 data bits of data on each clock period. Typically, the data is
transferred via the DataOut and DataIn lines of the NOR flash where the even num-
bered bits of a byte are sent on the DataIn line. The function is called only by the
FS_NOR_PHY_SFDP physical layer.

Parameter Meaning

Unit Unit number (0�N).
pData Pointer to a buffer for data to be receive.
NumBytes Number of bytes to receive.

Table 6.108: FS_NOR_SPI_HW_X_Read_x2() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

347

6.4.1.8.2.7 FS_NOR_SPI_HW_X_Write_x2()

Description

Sends a number of bytes to serial NOR flash using 2 data lines.

Prototype
void FS_NOR_SPI_HW_X_Write_x2(U8 Unit,
 const U8 * pData,
 int NumBytes);

Additional information

This function writes 2 data bits of data on each clock period. Typically, the data is
transferred via the DataOut and DataIn of the NOR flash where the even numbered
bits of a byte are sent on the DataIn line. The function is called only by the
FS_NOR_PHY_SFDP physical layer.

Parameter Meaning

Unit Unit number (0�N).
pData Pointer to a buffer for data to be receive.
NumBytes Number of bytes to be written.

Table 6.109: FS_NOR_SPI_HW_X_Write_x2() parameter list

348 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.4.1.8.2.8 FS_NOR_SPI_HW_X_Read_x4()

Description

Receives a number of bytes from the serial NOR flash using 4 data lines.

Prototype
void FS_NOR_SPI_HW_X_Read_x4(U8 Unit,
 U8 * pData,
 int NumBytes);

Additional information

This function reads 4 data bits of data on each clock period. Typically, the data is
transferred via the DataOut, DataIn, WP, and Hold lines of the NOR flash. A byte is
read as follows: bits 0 and 4 are sent on the DataIn line, bits 1 and 5 on the DataOut
line, bits 3 and 6 on the WP line, and bits 3 and 7 on the Hold line. The function is
called only by the FS_NOR_PHY_SFDP physical layer.

Parameter Meaning

Unit Unit number (0�N).
pData Pointer to a buffer for data to be receive.
NumBytes Number of bytes to receive.

Table 6.110: FS_NOR_SPI_HW_X_Read_x4() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

349

6.4.1.8.2.9 FS_NOR_SPI_HW_X_Write_x4()

Description

Sends a number of bytes to serial NOR flash using 4 data lines.

Prototype
void FS_NOR_SPI_HW_X_Write_x4(U8 Unit,
 const U8 * pData,
 int NumBytes);

Additional information

This function writes 4 data bits of data on each clock period. Typically, the data is
transferred via the DataOut, DataIn, WP, and Hold lines of the NOR flash. A byte is
written as follows: bits 0 and 4 are sent on the DataIn line, bits 1 and 5 on the
DataOut line, bits 3 and 6 on the WP line, and bits 3 and 7 on the Hold line. The func-
tion is called only by the FS_NOR_PHY_SFDP physical layer.

6.4.1.9 Additional information
Low-level format

Before using the NOR flash as storage device. A low-level format has to be per-
formed. Refer to FS_FormatLow() on page 113 and FS_FormatLLIfRequired() on
page 112 for detailed information about low-level formatting.

Further reading

For more technical details about CFI compliant flash memory, check the documents
and specifications that are available free of charge:

� Common Flash Interface (CFI) and Command Sets
Intel - Application Note 646 - April 2000

� Common Flash Memory Interface Specification
AMD - Revision 2.0 - December 1, 2001

6.4.1.10 Additional driver functions

Parameter Meaning

Unit Unit number (0�N).
pData Pointer to a buffer for data to be receive.
NumBytes Number of bytes to be written.

Table 6.111: FS_NOR_SPI_HW_X_Write_x4() parameter list

Routine Explanation

FS_NOR_GetDiskInfo() Returns information about NOR flash.
FS_NOR_GetSectorInfo() Returns information about a physical sector.

Table 6.112: FS_NOR_Driver - list of additional functions

350 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.4.1.10.1 FS_NOR_GetDiskInfo()

Description

Returns information about the flash disk.

Prototype
void FS_NOR_GetDiskInfo(U8 Unit, FS_NOR_DISK_INFO * pDiskInfo);

Additional information

Refer to FS_NOR_DISK_INFO on page 353 for more information about the structure
elements.

Parameter Description

Unit Unit number.
pDiskInfo Pointer to a structure of type FS_NOR_DISK_INFO.

Table 6.113: FS_NOR_GetDiskInfo() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

351

6.4.1.10.2 FS_NOR_GetSectorInfo()

Description

Returns info about a particular physical sector.

Prototype
void FS_NOR_GetSectorInfo(U8 Unit,
 U32 PhysSectorIndex,
 FS_NOR_SECTOR_INFO * pSectorInfo);

Additional information

Refer to FS_NOR_SECTOR_INFO on page 354 for more information about the struc-
ture elements.

Example

/***
*
* ShowDiskInfo
*
*/
void ShowDiskInfo(FS_NOR_DISK_INFO* pDiskInfo) {
 char acBuffer[80];

 FS_X_Log("Disk Info: \n");
 FS_NOR_GetDiskInfo(0, pDiskInfo);
 sprintf(acBuffer," Physical sectors: %d\n"
 " Logical sectors : %d\n"
 " Used sectors: %d\n", pDiskInfo->NumPhysSectors,
 pDiskInfo->NumLogSectors,
 pDiskInfo->NumUsedSectors);
 FS_X_Log(acBuffer);
}

/***
*
* ShowSectorInfo
*/
void ShowSectorInfo(FS_NOR_SECTOR_INFO* pSecInfo, U32 PhysSectorIndex) {
 char acBuffer[400];

 FS_X_Log("Sector Info: \n");
 FS_NOR_GetSectorInfo(0, PhysSectorIndex, pSecInfo);
 sprintf(acBuffer," Physical sector No. : %d\n"
 " Offset : %d\n"
 " Size : %d\n"
 " Erase Count : %d\n"
 " Used logical sectors : %d\n"
 " Free logical sectors : %d\n"
 " Erasable logical sectors: %d\n", PhysSectorIndex,
 pSecInfo->Off,
 pSecInfo->Size,
 pSecInfo->EraseCnt,
 pSecInfo->NumUsedSectors,
 pSecInfo->NumFreeSectors,
 pSecInfo->NumEraseableSectors);
 FS_X_Log(acBuffer);
}

/***
*
* MainTask
*/
void MainTask(void) {
 U32 i, j;
 char ac[0x400];

Parameter Description

Unit Unit number.
PhysSectorIndex Index of physical sector.
pDiskInfo Pointer to a structure of type FS_NOR_DISK_INFO.

Table 6.114: FS_NOR_GetSectorInfo() parameter list

352 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

 FS_NOR_DISK_INFO DiskInfo;
 FS_NOR_SECTOR_INFO SecInfo;

 FS_FILE * pFile;
 FS_Init();
 FS_FormatLLIfRequired("");
 for(i = 0; i < strlen(ac); i++) {
 ac[i] = 'A';
 }
 //
 // Check if volume needs to be high-level formatted.
 //
 if (FS_IsHLFormatted("") == 0) {
 printf("High level formatting\n");
 FS_Format("", NULL);
 }
 ShowDiskInfo(&DiskInfo);
 for (i = 0; i < 1000; i++) {
 pFile = FS_FOpen("Test.txt","w");
 if(pFile != 0) {
 FS_Write(pFile, &ac, strlen(ac));
 FS_FClose(pFile);
 printf("Loop cycle: %d\n", i);
 for(j = 0; j < DiskInfo.NumPhysSectors; j++) {
 ShowSectorInfo(&SecInfo, j);
 }
 }
 }
 while(1);
}

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

353

6.4.1.10.3 FS_NOR_DISK_INFO

Description

The structure contains information about the NOR flash.

Declaration
typedef struct {
 U32 NumPhysSectors;
 U32 NumLogSectors;
 U32 NumUsedSectors;
} FS_NOR_DISK_INFO;

Members Description

NumPhysSectors Number physical sectors of the chip.
NumLogSectors Number of logical sectors of the chip.
NumUsedSectors Number of used sectors of the chip.

Table 6.115: FS_NOR_DISK_INFO - list of structure elements

354 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.4.1.10.4 FS_NOR_SECTOR_INFO

Description

The structure contains physical and logical sector information.

Declaration

typedef struct {
 U32 Off;
 U32 Size;
 U32 EraseCnt;
 U16 NumUsedSectors;
 U16 NumFreeSectors;
 U16 NumEraseableSectors;
} FS_NOR_SECTOR_INFO;

Members Description

Off Offset of the physical sector.
Size Size of the physical sector.
EraseCnt Erase count of sector.
NumUsedSectors Number of used logical sector inside the physical sector.
NumFreeSectors Number of free logical sector inside the physical sector.
NumEraseableSectors Number of erasable logical sector inside the physical sector.

Table 6.116: FS_NOR_SECTOR_INFO - list of structure elements

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

355

6.4.1.11 Performance and resource usage
This section describes the ROM and RAM (static + dynamic) RAM usage of the emFile
NOR driver.

6.4.1.11.1 ROM usage

The ROM usage depends on the compiler options, the compiler version, the used CPU
and the physical layer which is used. The memory requirements of the NOR driver
have been measured on a system as follows: ARM7, IAR Embedded workbench
V5.50.1, Thumb mode, Size optimization.

In addition, one of the following physical layers is required:

6.4.1.11.2 Static RAM usage

Static RAM usage is the amount of RAM required by the driver for static variables
inside the driver. The number of bytes can be seen in a compiler list file

6.4.1.11.3 Runtime (dynamic) RAM usage

Runtime (dynamic) RAM usage is the amount of RAM allocated by the driver at runt-
ime. The amount required depends on the runtime configuration and the connected
device. The approximately RAM usage of the NOR flash driver can be calculated as
follows:

MemAllocated = 500 + 2 * FlashSize / LogSectorSize

Module
ROM

[Kbytes]

emFile sector map NOR driver 4.0

Physical layer Description
ROM

[Kbytes]

FS_NOR_PHY_ST_M25
Physical layer for SPI NOR flash devices (ST
M25Pxx family). 1.1

FS_NOR_PHY_CFI_1x16
Physical layer for CFI-compliant parallel NOR
flash devices with a configuration of 1x16 (1
chip, 16-bits buswidth)

2.1

FS_NOR_PHY_CFI_2x16
Physical layer for CFI-compliant parallel NOR
flash devices with a configuration of 2x16 (2
chips, 16-bits buswidth)

1.5

Module
RAM

[bytes]

emFile sector map NOR driver 20
Physical layer: SPI 50
Physical layer: CFI 1x16 100
Physical layer: CFI 2x16 100

Parameter Description

MemAllocated Number of bytes allocated.
FlashSize Size in bytes of a NOR flash.

LogSectorSize
Size in bytes of a file system sector. Typically 512 bytes or
the value set in the call to FS_SetMaxSectorSize() configu-
ration function.

Table 6.117: Runtime RAM usage parameters for FS_NOR_Driver

356 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

The following table lists the approximate amount of RAM required for different combi-
nations of NOR flash size and logical sector size:

Note: When choosing a bigger logical sector size keep in mind that the RAM
usage of the file system increases as more space is needed for the sector buffers.
There is an optimal logical sector size that depends on the flash size. For a 1Mbyte
flash memory the ideal configuration is 1Kbyte sectors.

6.4.1.11.4 Performance

These performance measurements are in no way complete, but they give an approxi-
mation of the length of time required for common operations on various targets. The
tests were performed as described in Performance on page 502.

All values are in Kbytes/sec

6.4.1.12 FAQs
Q: How many physical sectors are reserved by the driver?
A: The driver reserves 2 physical sectors for its internal use.

Logical sector size

512 bytes 1024 bytes 2048 bytes

Flash Size

1Mbyte 4.6Kbyte 2.5Kbyte 1.5Kbyte

2Mbyte 8.7Kbyte 4.6Kbyte 2.5Kbyte

4Mbyte 16.8Kbyte 8.7Kbyte 4.6Kbyte

8Mbyte 33.2Kbyte 16.8Kbyte 8.7Kbyte
Table 6.118: Runtime RAM usage examples for FS_NOR_Driver

Device
CPU

speed
Medium W R

ST STR912 96 MHz Winbond W25Q32BV (SPI) 75 2625

NXP LPC2478 57.6MHz SST SST39VF201 (CFI, 16-bit, with-
out "write burst") 53.5 2560

ST STM32F103 72MHz ST M29W128 (CFI, 16-bit, with
"write burst") 60.4 8000

ST STM32F103 72MHz ST M25P64 (SPI) 62.8 1125
Table 6.119: Performance values for FS_NOR_Driver

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

357

6.4.2 Block map - FS_NOR_BM_Driver
This section describes the NOR driver which is optimized for reduced RAM usage. It
works by mapping blocks of logical sectors to locations on the NOR flash memory.

6.4.2.1 Supported hardware
The NOR flash drivers can be used with almost any NOR flash. This includes NOR
flashes with 1x8-bit and 1x16-bit parallel interfaces, as well as 2x16-bit interfaces in
parallel, as well as serial NOR flashes.

For additional information, refer to Supported hardware on page 315.

6.4.2.2 Theory of operation
Differentiating between �logical sectors� or �blocks� and �physical sectors� is very
essential to understand this section. A logical sector/block is the base unit of any file
system, its usual size is 512 bytes. A physical sector is an array of bytes on the flash
chip that are erased together (typically between 2 Kbytes - 128 Kbytes). The flash
chip driver is an abstraction layer between these two types of sectors.

The driver maintains a table that maps ranges of logical sectors, called logical blocks,
to physical sectors on the NOR flash. The number of logical sectors in a logical block
depends on how many logical sectors fit in a physical sector. Every time a logical sec-
tor is being updated, its content is written to a special physical sector called work
block. A work block is a temporary storage for the modified data of logical sectors. A
work block is later converted into a data block when an empty work block is allo-
cated.

For additional information, refer to Using the same NOR flash for code and data on
page 317 and Physical interfaces on page 318.

6.4.2.2.1 Software structure

The NOR flash driver is divided into different layers, which are shown in the illustra-
tion below.

It is possible to use the NOR flash drivers also with serial NOR flashes. Only the hard-
ware layer needs to be ported. Normally no changes to the physical layer are
required. If the physical layer needs to be adapted, a template is available.

NOR driver

Logical Layer

NOR driver

Physical Layer

User provided

Hardware Layer

NOR driver

Logical Layer

NOR driver

Physical Layer

Serial NOR flashes Parallel CFI compliant
NOR flashes

(1x16-bit or 2x16-bit
interfaces)

358 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.4.2.3 Fail-safe operation
The emFile NOR driver is fail-safe. That means that the driver makes only atomic
actions and takes the responsibility that the data managed by the file system is
always valid. In case of power loss or power reset during a write operation it is
always assured that only valid data is stored in the flash. If the power loss interrupts
the write operation, the old data will be kept and not corrupted.

6.4.2.4 Wear leveling
Wear leveling is supported by the driver. Wear leveling makes sure that the number
of erase cycles remains approximately equal for each sector. Maximum erase count
difference is set by default to 5000. This value specifies a maximum difference of
erase counts for different physical sectors before the wear leveling uses the sector
with the lowest erase count.

6.4.2.5 Configuring the driver

6.4.2.5.1 Adding the driver to emFile

To add the driver, use FS_AddDevice() with the driver label FS_NOR_BM_Driver. This
function has to be called from FS_X_AddDevices(). Refer to FS_X_AddDevices() on
page 472 for more information.

Example

FS_AddDevice(&FS_NOR_BM_Driver);

6.4.2.5.2 Configuration API

Routine Explanation

FS_NOR_BM_Configure() Configures the NOR flash.
FS_NOR_BM_SetPhyType() Sets the physical type of NOR device.
FS_NOR_BM_SetSectorSize() Sets the size of a logical sector.

FS_NOR_BM_SetMaxEraseCntDiff()
Configures the threshold for the wear-level-
ing.

FS_NOR_BM_SetNumWorkBlocks() Sets the number of work blocks.
Table 6.120: FS_NOR_BM_Driver - list of configuration functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

359

6.4.2.5.2.1 FS_NOR_BM_Configure()

Description

Configures the NOR flash drive. Needs to be called for CFI flashes. Typically, this
function has to be called from FS_X_AddDevices() after adding the device driver to
file system. Refer to FS_X_AddDevices() on page 472 for more information.

Prototype
void FS_NOR_BM_Configure(U8 Unit,
 U32 BaseAddr,
 U32 StartAddr,
 U32 NumBytes);

Additional information

The driver is designed to work only with physical sectors of the same size. If the con-
figured memory area contains physical sectors of different sizes the driver chooses
the range containing the highest number of physical sectors of the same size. From
the selected physical sectors several are reserved for internal use: 1 to store the for-
mat information, 1 for the copy operations and 1 for each configured work block.

Example

For configuration examples, refer to FS_NOR_Configure() on page 322.

Parameter Description

Unit Unit number (0�N).

BaseAddr
Base address of the NOR flash chip. This is the address of the first
byte of the NOR flash.

StartAddr
Start address of the NOR flash disk. This is the address of the first
byte of the NOR flash to be used as flash disk. It needs to be >=
BaseAddr.

NumBytes

Specifies the size of the NOR flash device in bytes. The size of the
flash disk will be:
min(NumBytes, DeviceSize - (StartAddr - BaseAddr)
where DeviceSize is the size of the NOR flash found.

Table 6.121: FS_NOR_BM_Configure() parameter list

360 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.4.2.5.2.2 FS_NOR_BM_SetPhyType()

Description

Sets the physical type of the device. The NOR flash driver comes with different phys-
ical interfaces. The most common is a CFI compliant NOR flash chip with a 16 bit
interface. A device can consist of a single or two identical CFI compliant flash inter-
faces with a 16 bit interface. Set pPhyType to FS_NOR_PHY_CFI_1x16 if you use a sin-
gle NOR flash chip. If your device consists of two identical NOR flash chips, set
pPhyType to FS_NOR_PHY_CFI_2x16.

This function has to be called from within FS_X_AddDevices() after adding the
device driver to file system. Refer to FS_X_AddDevices() on page 472 for more infor-
mation.

Prototype
void FS_NOR_BM_SetPhyType(U8 Unit, const FS_NOR_PHY_TYPE * pPhyType);

For additional information, refer to FS_NOR_SetPhyType() on page 324.

Parameter Meaning

Unit Unit number (0�N).
pPhyType Pointer to physical type.

Table 6.122: FS_NOR_BM_SetPhyType() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

361

6.4.2.5.2.3 FS_NOR_BM_SetSectorSize()

Description

Configures the size of a logical sector on the NOR flash drive. Typically, this function
has to be called from FS_X_AddDevices() after adding the device driver to file sys-
tem. Refer to FS_X_AddDevices() on page 472 for more information.

Prototype
void FS_NOR_BM_SetSectorSize(U8 Unit,
 U16 SectorSize);

For additional information, refer to FS_NOR_SetSectorSize() on page 325.

Parameter Description

Unit Unit number.
SectorSize Number of bytes in a logical sector.

Table 6.123: FS_NOR_BM_SetSectorSize() parameter list

362 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.4.2.5.2.4 FS_NOR_BM_SetMaxEraseCntDiff()

Description

Configures the maximum difference between the number of erase cycles of two any
physical sectors. This value is used by the wear-leveling algorithm to decide which
physical sector to erase.

Prototype
void FS_NOR_BM_SetMaxEraseCntDiff(U8 Unit,
 U16 EraseCntDiff);

Additional information

Each physical sector stores the number of times it has been erased since the last
low-level format. This count is used by the driver to ensure that the physical sectors
are equally-well used. When a write operation required a new physical sector, the
driver takes the next free one. It then computes the difference between the erase
count of the chosen physical sector and the minimum erase count of all physical sec-
tors. When the difference is greater than the value configured by this function the
physical sector with the minimum erase count is selected as the next physical sector
to write to.

Parameter Description

Unit Unit number.
EraseCntDiff Maximum difference between erase counts.

Table 6.124: FS_NOR_BM_SetMaxEraseCntDiff() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

363

6.4.2.5.2.5 FS_NOR_BM_SetNumWorkBlocks()

Description

Number of logical blocks to be used as temporarily storage for the data written to
NOR flash.

Prototype
void FS_NOR_BM_SetNumWorkBlocks(U8 Unit,
 U16 NumWorkBlocks);

Additional information
Work blocks are physical sectors which the driver uses to temporarily store the data
written to NOR flash. This function can be used to change the number of work blocks
according to the requirements of an application. Usually, the write performance of
the driver improves when the number work blocks is increased. Please note that
increasing the number of work blocks will also increase the RAM usage. By default,
the driver allocates 10% from the total number of blocks available but no more than
10 blocks. The minimum number of work blocks allocated by default depends
whether journaling is used or not. If the journal is active the 4 work blocks are allo-
cated else 3.

Parameter Description

Unit Unit number.
NumWorkBlocks Number of work blocks the driver should use for write operations.

Table 6.125: FS_NOR_BM_SetNumWorkBlocks() parameter list

364 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.4.2.6 Physical layer
There is normally no need to change the physical layer of the NOR driver, only the
hardware layer has to be adapted if a non CFI compliant NOR flash chip is used in
your hardware.

In some special cases, when the low-level hardware routines provided by the driver
are not compatible with the target hardware the physical layer has to be adapted.

6.4.2.6.1 Available physical layers

The following physical layers are available. Refer to Configuring the driver on
page 358 for detailed information about how to add the required physical layer to
your application.

For a detailed description of the physical layer functions, refer to Physical layer on
page 331.

Available physical layers

FS_NOR_PHY_CFI_1x16 One CFI compliant NOR flash chip with 16 bit interface.
FS_NOR_PHY_CFI_2x16 Two CFI compliant NOR flash chip with 16 bit interfaces.
FS_NOR_PHY_ST_M25 Serial NOR flashes.

Table 6.126: Available physical layer

NOR driver

Logical Layer

NOR driver

Physical Layer

User provided

Hardware Layer

NOR driver

Logical Layer

NOR driver

Physical Layer

Serial NOR flashes Parallel CFI compliant
NOR flashes

(1x16-bit or 2x16-bit
interfaces)

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

365

6.4.2.7 Hardware functions
Depending on the used NOR flash type and the corresponding physical layer, different
hardware functions are required. CFI compliant NOR flashes do not need any hard-
ware function, refer to Hardware functions on page 340 for detailed information
about the hardware functions required by the physical layer for serial NOR flashes.

6.4.2.8 Additional information
Low-level format

Before using the NOR flash as storage device. A low-level format has to be per-
formed. Refer to FS_FormatLow() on page 113 and FS_FormatLLIfRequired() on
page 112 for detailed information about low-level formatting.

Further reading

For more technical details about CFI compliant flash memory, check the documents
and specifications that are available free of charge:

� Common Flash Interface (CFI) and Command Sets
Intel - Application Note 646 - April 2000

� Common Flash Memory Interface Specification
AMD - Revision 2.0 - December 1, 2001

6.4.2.9 Additional driver functions

Routine Explanation

FS_NOR_BM_GetDiskInfo() Returns information about NOR flash.
FS_NOR_BM_ReadOff() Reads data from NOR flash memory.

Table 6.127: FS_NOR_BM_Driver - list of configuration functions

366 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.4.2.9.1 FS_NOR_BM_GetDiskInfo()

Description

Returns information about the NOR flash.

Prototype
void FS_NOR_BM_GetDiskInfo(U8 Unit, FS_NOR_BM_DISK_INFO * pDiskInfo);

Additional information

Refer to Structure FS_NOR_BM_DISK_INFO on page 369 for more information about
the structure elements.

Parameter Description

Unit Unit number.
pDiskInfo Pointer to a structure of type FS_NOR_DISK_INFO.

Table 6.128: FS_NOR_BM_GetDiskInfo() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

367

6.4.2.9.2 FS_NOR_BM_GetSectorInfo()

Description

Returns info about a particular physical sector.

Prototype
void FS_NOR_GetSectorInfo(U8 Unit,
 U32 PhysSectorIndex,
 FS_NOR_BM_SECTOR_INFO * pSectorInfo);

Additional information

Refer to FS_NOR_SECTOR_INFO on page 354 for more information about the struc-
ture elements.

Parameter Description

Unit Unit number.
PhysSectorIndex Index of physical sector.
pDiskInfo Pointer to a structure of type FS_NOR_BM_DISK_INFO.

Table 6.129: FS_NOR_BM_GetSectorInfo() parameter list

368 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.4.2.9.3 FS_NOR_BM_ReadOff()

Description

Reads data from NOR flash memory.

Prototype
int FS_NOR_BM_ReadOff(U8 Unit, void * pData, U32 Off, U32 NumBytes)

Return value

==0 OK
!=0 An error occurred

Additional information

This function can be used to dump a part or the whole contents of a NOR flash. It
works even if the NOR flash is not low-level formatted.

Parameter Description

Unit Unit number.

pData
IN: ---
OUT: Data read from NOR flash memory,

Off Byte offset from the configured base address.
NumBytes Number of bytes to read

Table 6.130: FS_NOR_BM_ReadOff() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

369

6.4.2.9.4 Structure FS_NOR_BM_DISK_INFO

Description

The structure contains information about the NOR flash.

Declaration
typedef struct {
 U16 NumPhySectors;
 U16 NumLogBlocks;
 U16 NumUsedPhySectors;
 U16 LSectorsPerPSector;
 U16 BytesPerSector;
 U32 EraseCntMax;
 U32 EraseCntMin;
 U32 EraseCntAvg;
 U8 HasFatalError;
 U8 ErrorType;
 U16 ErrorPSI;
} FS_NOR_DISK_INFO;

Members Description

NumPhysSectors Number physical sectors on the NOR flash.
NumLogBlock Number of logical blocks on the NOR flash.
NumUsedPhySectors Number of used physical sectors.
LSectorsPerPSector Number of logical sectors stored in a physical sector.
BytesPerSector Number of bytes in a logical sector.
EraseCntMax Maximum erase count of all physical sectors.
EraseCntMin Minimum erase count of all physical sectors.
EraseCntAvg Average erase count.
HasFatalError Set to 1 if the driver detected a fatal error.
ErrorType Type of fatal error occurred.
ErrorPSI Index of physical sector where the error occurred.

Table 6.131: FS_NOR_BM_DISK_INFO - list of structure elements

370 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.4.2.9.5 FS_NOR_BM_SECTOR_INFO

Description

The structure contains physical and logical sector information.

Declaration

typedef struct {
 U32 Off;
 U32 Size;
 U32 EraseCnt;
 U16 lbi;
 U8 Type;
} FS_NOR_SECTOR_INFO;

Members Description

Off Offset of the first byte relative to begin of NOR flash.
Size Size of the physical sector in bytes.
EraseCnt Number of times the physical sector has been erased.
lbi Index of the logical block stored in the physical sector.
Type Type of data stored in the physical sector.

Table 6.132: FS_NOR_BM_SECTOR_INFO - list of structure elements

Permitted values for Types

FS_NOR_BLOCK_TYPE_UNKNOWN
The type of data stored to physi-
cal sector is unknown.

FS_NOR_BLOCK_TYPE_DATA
The physical sector contains valid
data block.

FS_NOR_BLOCK_TYPE_WORK
The physical sector contains a
work block.

FS_NOR_BLOCK_TYPE_EMPTY_
ERASED

The physical sector is blank.

FS_NOR_BLOCK_TYPE_EMPTY_
NOT_ERASED

The physical sector contains old
and invalid data.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

371

6.4.2.10 Performance and resource usage
This section describes the ROM and RAM (static + dynamic) RAM usage of the emFile
NOR driver.

6.4.2.10.1 ROM usage

The ROM usage depends on the compiler options, the compiler version, the used CPU
and the physical layer which is used. The memory requirements of the NOR driver
have been measured on a system as follows: ARM7, IAR Embedded workbench
V5.50.1, Thumb mode, Size optimization.

In addition, one of the following physical layers is required:

6.4.2.10.2 Static RAM usage

Static RAM usage is the amount of RAM required by the driver for static variables
inside the driver. The number of bytes can be seen in a compiler list file

6.4.2.10.3 Runtime (dynamic) RAM usage

Runtime (dynamic) RAM usage is the amount of RAM allocated by the driver at runt-
ime. The amount required depends on the runtime configuration and the connected
device. The approximately amount of RAM required by the driver can be computed
using the following formula:

MemAllocated = 84
 + (24 + PhySectorSize / LogSectorSize) * NumWorkBlocks

 + 1.5 * NumPhySectors

Module
ROM

[Kbytes]

emFile block map NOR driver: 5.5

Physical layer Description
ROM

[Kbytes]

FS_NOR_PHY_ST_M25
Physical layer for SPI NOR flash devices (ST
M25Pxx family). 1.1

FS_NOR_PHY_CFI_1x16
Physical layer for CFI-compliant parallel NOR
flash devices with a configuration of 1x16 (1
chip, 16-bits buswidth)

2.1

FS_NOR_PHY_CFI_2x16
Physical layer for CFI-compliant parallel NOR
flash devices with a configuration of 2x16 (2
chips, 16-bits buswidth)

1.5

Module
RAM

[bytes]

emFile block map NOR driver: 72
Physical layer: SPI 50
Physical layer: CFI 1x16 100
Physical layer: CFI 2x16 100

Parameter Description

MemAllocated Number of bytes allocated.
PhySectorSize Size in bytes of a NOR flash physical sector.

Table 6.133: Runtime RAM usage parameters for FS_NOR_BM_Driver

372 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.4.2.10.4 Performance

These performance measurements are in no way complete, but they give an approxi-
mation of the length of time required for common operations on various targets. The
tests were performed as described in Performance on page 502.

All values are in Kbytes/sec

LogSectorSize
Size in bytes of a file system sector. Typically 512 bytes or
the value set in the call to FS_SetMaxSectorSize() configu-
ration function.

NumWorkBlocks

Number of physical sectors the driver reserves as tempo-
rary storage for the written data. Typically 3 physical sec-
tors or the number specified in the call to the
FS_NOR_BM_SetNumWorkBlocks() configuration function

NumPhySectors Number of physical sectors managed by the driver.

Device
CPU

speed
Medium W R

NXP LPC2478 57.6MHz SST SST39VF201 (CFI, 16-bit, with-
out "write burst") 45.5 2064

ST STM32F103 72MHz ST M25P64 (SPI) 59.3 1110
Table 6.134: Performance values for FS_NOR_BM_Driver

Parameter Description

Table 6.133: Runtime RAM usage parameters for FS_NOR_BM_Driver

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

373

6.5 MMC/SD card driver
emFile supports the use of MultiMediaCard (MMC) and SecureDigital (SD) cards
through the use of optional drivers. MMC/SD cards are mechanically small, remov-
able mass storage devices. The main design goal of these devices are to provide a
very low cost mass storage product, implemented as a card with a simple controlling
unit, and a compact, easy-to-implement interface. These requirements lead to a
reduction of the functionality of each card to an absolute minimum. In order to have
a flexible design, MMC/SD cards are designed to be used in different I/O modes:

� SPI mode
� card mode

Separate drivers are available for both of these modes. The drivers
require very little RAM and are extremely efficient. To use one of
these drivers, you need first to select one according to the access
mode. Then you need to configure the selected MMC/SD driver and
provide basic I/O functions for accessing your card reader hardware.

This section describes how to enable each of these drivers and what
hardware access functions these drivers require.

6.5.1 Supported hardware
The following card types are supported:

� MMC: MMC, RS-MMC, RS-MMC DV, MMCplus, MMCmobile, MMCmicro, eMMC
� SD: SD, miniSD, microSD, SDHC, SDXC (FAT32 formatted)

Note: The MMC cards conforming with the version 4.x (MMC-
plus, MMCmobile, MMCmicro, eMMC) work only with the card mode
driver as they don�t support the SPI mode.

The difference between MMC and SD cards are that SD cards can
operate with a higher clock frequency. In normal mode the clock
range can be between 0 and 25MHz, whereas MMCs can only oper-
ate up to 20MHz. The newer MMC cards that adhere to the version
4.x of the MMC system specification can also operate at higher fre-
quencies up to 26MHz. In high speed mode an SD card can operate
with a clock frequency up to 50MHz. The MMC cards conforming to
the 3.x standard or lower didn�t have a high speed mode. The 4.x
improved this and allows the MMC cards to operate with a clock
frequency of up to 52MHz in high speed mode.

Additionally SD cards have a write protect switch, which can be
used to lock the data on the card.

MMC and SD cards also differ in the number of pins. SD cards have
typically more pins than MMCs. Which pins are used depends on
which mode is configured.

In card mode

MMC cards use a seven pin interface: command, clock, data and 3
power lines. In contrast to the MMC cards, SD cards use a 9 pin
interface: command, clock, 1 or 4 data lines and 3 power lines. The
MMC cards version 4.x can have 1, 4 or 8 data lines.

In SPI mode

Both card systems use the same pin interface: chip select, data input, data output,
clock and 3 power lines.

374 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.5.1.1 Pin description for MMC/SD card in Card mode

Pin
No.

Name Type Description

1
CD/
DAT[3]

Input/Output
using push
pull drivers

Card Detect / Data line [Bit 3]
After power up this line is input with 50-kOhm pull-up
resistor. This can be used for card detection; relevant
only for SD cards. The pull-up resistor is disabled after
the initialization procedure for using this line as DAT3,
Data line [Bit 3], for data transfer.

2 CMD Push Pull

Command/Response
CMD is a bidirectional command channel used for card
initialization and data transfer commands. The CMD
signal has two operation modes: open-drain for initial-
ization mode and push-pull for fast command transfer.
Commands are sent from the MultiMediaCard bus mas-
ter (card host controller) to the card and responses
are sent from the cards to the host.

3 VSS Power supply Supply voltage ground.

4 VDD Power supply Supply voltage.

5 CLK Input

Clock signal
With each cycle of this signal an one bit transfer on the
command and data lines is done. The frequency may
vary between zero and the maximum clock frequency.

6 VSS2 Power supply Supply voltage ground.

7 DAT0
Input/Output
using push
pull drivers

Data line [Bit 0]
DAT is a bidirectional data channel. The DAT signal
operates in push-pull mode. Only one card or the host
is driving this signal at a time.
Relevant only for SD cards: For data transfers, this
line is the Data line [Bit 0].

8 DAT1
Input/Output
using push
pull drivers

Data line [Bit 1]
On MMC card this line does not exist.
Relevant only for SD cards: For data transfer, this line
is the Data line [Bit 1]. Connect an external pull-up
resistor to this data line even if only DAT0 is to be
used. Otherwise, non-expected high current consump-
tion may occur due to the floating inputs of DAT1.

9 DAT2
Input/Output
using push
pull drivers

Data line [Bit 2]
On MMC card this line does not exist.
Relevant only for SD cards: For data transfer, this line
is the Data line [Bit 2]. Connect an external pull-up
resistor to this data line even if only DAT0 is to be
used. Otherwise, non-expected high current consump-
tion may occur due to the floating inputs of DAT2.

10 DAT4
Input/Output
using push
pull drivers

Data line [Bit 4]
Relevant only for eMMC cards. Not used for data trans-
fers over four data lines. For data transfer over eight
data lines, this line is carries the bit 5. On SD cards
this line does not exist.

Table 6.135: MMC/SD card pin description (card mode)

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

375

11 DAT5
Input/Output
using push
pull drivers

Data line [Bit 5]
Relevant only for eMMC cards. Not used for data trans-
fers over four data lines. For data transfer over eight
data lines, this line is carries the bit 5. On SD cards
this line does not exist.

12 DAT6
Input/Output
using push
pull drivers

Data line [Bit 6]
Relevant only for eMMC cards. Not used for data trans-
fers over four data lines. For data transfer over eight
data lines, this line is carries the bit 6. On SD cards
this line does not exist.

13 DAT7
Input/Output
using push
pull drivers

Data line [Bit 7]
Relevant only for eMMC cards. Not used for data trans-
fers over four data lines. For data transfer over eight
data lines, this line is carries the bit 7. On SD cards
this line does not exist.

Pin
No.

Name Type Description

1 DAT2
Input/Output
using push
pull drivers

Data line [Bit 2]
On MMC card this line does not exist.
Relevant only for SD cards: For data transfer, this line
is the Data line [Bit 2]. Connect an external pull-up
resistor to this data line even if only DAT0 is to be
used. Otherwise, non-expected high current consump-
tion may occur due to the floating inputs of DAT2.

2
CD/
DAT[3]

Input/Output
using push
pull drivers

Card Detect / Data line [Bit 3]
After power up this line is input with 50-kOhm pull-up
resistor. This can be used for card detection; relevant
only for SD cards. The pull-up resistor is disabled after
the initialization procedure for using this line as DAT3,
Data line [Bit 3], for data transfer.

3 CMD Push Pull

Command/Response
CMD is a bidirectional command channel used for card
initialization and data transfer commands. The CMD
signal has two operation modes: open-drain for initial-
ization mode and push-pull for fast command transfer.
Commands are sent from the MultiMediaCard bus mas-
ter (card host controller) to the card and responses
are sent from the cards to the host.

4 VDD Power supply Supply voltage

5 CLK Input

Clock signal
With each cycle of this signal an one bit transfer on the
command and data lines is done. The frequency may
vary between zero and the maximum clock frequency.

Table 6.136: microSD card pin description (card mode)

Pin
No.

Name Type Description

Table 6.135: MMC/SD card pin description (card mode)

376 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

Additional information
� External pull-up resistors must be connected to all data lines even it they are not

used. Otherwise, non-expected high current consumption may occur due to the
floating of these inputs.

6 VSS Power supply Supply ground

7 DAT0
Input/Output
using push
pull drivers

Data line [Bit 0]
DAT is a bidirectional data channel. The DAT signal
operates in push-pull mode. Only one card or the host
is driving this signal at a time.
Relevant only for SD cards: For data transfers, this
line is the Data line [Bit 0].

8 DAT1
Input/Output
using push
pull drivers

Data line [Bit 1]
On MMC card this line does not exist.
Relevant only for SD cards: For data transfer, this line
is the Data line [Bit 1]. Connect an external pull-up
resistor to this data line even if only DAT0 is to be
used. Otherwise, non-expected high current consump-
tion may occur due to the floating inputs of DAT1.

Pin
No.

Name Type Description

Table 6.136: microSD card pin description (card mode)

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

377

Sample schematic for MMC/SD card in Card mode

6.5.1.2 Pin description for MMC/SD card in SPI mode

Pin
No.

Name Type Description

1 CS Input
Chip Select
It sets the card active at low-level and inactive at
high level.

2
DataIn
(MOSI) Input Data Input (Master Out Slave In)

Transmits data to the card.

3 VSS Supply ground Power supply ground
Supply voltage ground.

4 VDD Supply voltage Supply voltage

5 SCLK Input
Clock signal
It must be generated by the target system. The
card is always in slave mode.

6 VSS2 Supply ground Supply ground

7
DataOut
(MISO) Output Data Output (Master In Slave Out)

Line to transfer data to the host.

8 Reserved Not used

The reserved pin is a floating input. Therefore,
connect an external pull-up resistor to it. Other-
wise, non-expected high current consumption
may occur due to the floating input.

9 Reserved Not used

The reserved pin is a floating input. Therefore,
connect an external pull-up resistor to it. Other-
wise, non-expected high current consumption
may occur due to the floating input.

Table 6.137: MMC/SD card pin description (SPI mode)

Host

7

6
5
4
3
2
1

9

8

CMD

CLK

CD/DAT3

DAT0
DAT1

DAT2

RDAT1 RDAT0 RCMD RCD/DAT3 RDAT2

378 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

Additional information
� The data transfer width is 8 bits.
� Data should be output on the falling edge and must remain valid until the next

period. Rising edge means data is sampled (i.e. read).
� The bit order requires most significant bit (MSB) to be sent out first.
� Data polarity is normal, which means a logical �1� is represented with a high

level on the data line and a logical �0� is represented with low-level.
� MMC/SD cards support different voltage ranges. Initial voltage should be 3.3V.

Power control should be considered when creating designs using the MMC and/or SD
cards. The ability to have software power control of the cards makes the design more
flexible and robust. The host will be able to turn power to the card on or off indepen-
dent of whether the card is inserted or removed. This can improve card initialization
when there is a contact bounce during card insertion. The host waits a specified time
after the card is inserted before powering up the card and starting the initialization
process. Also, if the card goes into an unknown state, the host can cycle the power
and start the initialization process again. When card access is unnecessary, allowing
the host to power-down the bus can reduce the overall power consumption.

Pin
No.

Name Type Description

1 Reserved Not used

The reserved pin is a floating input. There-
fore, connect an external pull-up resistor to
it. Otherwise, non-expected high current
consumption may occur due to the floating
input.

2 CS Input
Chip Select
It sets the card active at low-level and inac-
tive at high level.

3
DataIn
(MOSI) Input Data Input (Master Out Slave In)

Transmits data to the card.
4 VDD Supply voltage Supply voltage

5 SCLK Input
Clock signal
It must be generated by the target system.
The card is always in slave mode.

6 VSS Supply ground Supply ground

7
DataOut
(MISO) Output Data Output (Master In Slave Out)

Line to transfer data to the host.

8 Reserved Not used

The reserved pin is a floating input. There-
fore, connect an external pull-up resistor to
it. Otherwise, non-expected high current
consumption may occur due to the floating
input.

Table 6.138: microSD card pin description (SPI mode)

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

379

Sample schematic for MMC/SD card in SPI mode

6.5.2 Theory of operation
The Serial Peripheral Interface (SPI) bus is a very loose de facto standard for control-
ling almost any digital electronics that accepts a clocked serial stream of bits. SPI
operates in full duplex (sending and receiving at the same time).

6.5.3 Fail-safe operation
Unexpected Reset

The data will be preserved.

Power failure

Power failure can be critical: If the card does not have sufficient time to complete a
write operation, data may be lost. Countermeasures: make sure the power supply for
the card drops slowly.

6.5.4 Wear leveling
MMC/SD cards are controlled by an internal controller, this controller also handles
wear leveling. Therefore, the driver does not need to handle wear-leveling.

6.5.5 Configuration

6.5.5.1 Adding the driver to emFile
To add the driver use FS_AddDevice() with either the driver label
FS_MMC_SPI_Driver or FS_MMC_CardMode_Driver. This function has to be called from
within FS_X_AddDevices(). Refer to FS_X_AddDevices() on page 472 for more infor-
mation.

Example

SPI mode: FS_AddDevice(&FS_MMC_SPI_Driver);

Card mode: FS_AddDevice(&FS_MMC_CardMode_Driver);

Host

7

6
5
4
3
2
1

9

8

MOSI

SCLK

CS

MISO

RMISO RMOSI RCS

380 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.5.5.2 Enable 4-bit mode (card mode only)
To enable the 4-bit mode of the card mode driver, call FS_MMC_CM_Allow4bitMode().
Refer to FS_MMC_CM_Allow4bitMode() on page 417 for detailed information.

6.5.5.3 Cyclic redundancy check (CRC)
The cyclic redundancy check (CRC) is a method to produce a checksum. The check-
sum is a small, fixed number of bits against a block of data. The checksum is used to
detect errors after transmission or storage. A CRC is computed and appended before
transmission or storage, and verified afterwards by the recipient to confirm that no
changes occurred on transit. CRC is a good solution for error detection, but reduces
the transmission speed, because a CRC checksum has to be computed for every data
block which will be transmitted.

The following functions can be used for controlling CRC calculation in emFile.

Function Description

CRC configuration

FS_MMC_ActivateCRC()
Activates the CRC functionality in SPI
mode.

FS_MMC_DeactivateCRC()
Deactivates the CRC functionality in SPI
mode. By default, CRC is deactivated.

Table 6.139: SPI mode configuration functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

381

6.5.5.4 FS_MMC_ActivateCRC()
Description

Activates the cyclic redundancy check.

Prototype
void FS_MMC_ActivateCRC(void);

Additional information

By default, the cyclic redundancy check is deactivated for speed reasons. The driver
supports cyclic redundancy check both for all transmissions and just for critical trans-
missions. You can activate and deactivate the cyclic redundancy check as it fits to the
requirements of your application.

382 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.5.5.5 FS_MMC_DeactivateCRC()
Description

Deactivates the cyclic redundancy check.

Prototype
void FS_MMC_DeactivateCRC(void);

Additional information

By default, the cyclic redundancy check is deactivated for speed reasons. The driver
supports cyclic redundancy check both for all transmissions and just for critical trans-
missions. You can activate and deactivate the cyclic redundancy check as it fits to the
requirements of your application.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

383

6.5.6 Hardware functions - SPI mode

Routine Explanation

Control line functions

FS_MMC_HW_X_EnableCS()
Activates chip select signal (CS) of the speci-
fied card slot.

FS_MMC_HW_X_DisableCS()
Deactivates chip select signal (CS) of the
specified card slot.

Operation condition detection and adjusting

FS_MMC_HW_X_SetMaxSpeed()
Sets the SPI clock speed. The value is repre-
sented in thousand cycles per second (kHz).

FS_MMC_HW_X_SetVoltage()
Sets the operating voltage range for the Mul-
tiMedia & SD card slot.

Medium status functions

FS_MMC_HW_X_IsWriteProtected()
Checks the status of the mechanical write
protection of a SD card.

FS_MMC_HW_X_IsPresent() Checks whether a card is present or not.
Data transfer functions

FS_MMC_HW_X_Read() Receives a number of bytes from the card.
FS_MMC_HW_X_Write() Sends a number of bytes to the card.

Table 6.140: SPI mode hardware functions

384 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.5.6.1 FS_MMC_HW_X_EnableCS()
Description

Activates chip select signal (CS) of the specified card slot.

Prototype
void FS_MMC_HW_X_EnableCS(U8 Unit);

Additional Information

The CS signal is used to address a specific card slot connected to the SPI. Enabling is
equal to setting the CS line to low-level.

Example

void FS_MMC_HW_X_EnableCS(U8 Unit) {
 SPI_CLR_CS();
}

Parameter Meaning

Unit Unit number (0-based).
Table 6.141: FS_MMC_HW_X_EnableCS() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

385

6.5.6.2 FS_MMC_HW_X_DisableCS()
Description

Deactivates chip select signal (CS) of the specified card slot.

Prototype
void FS_MMC_HW_X_DisableCS(U8 Unit);

Additional Information

The CS signal is used to address a specific card slot connected to the SPI. Disabling is
equal to setting the CS line to high.

Example

void FS_MMC_HW_X_DisableCS(U8 Unit) {
 SPI_SET_CS();
}

Parameter Meaning

Unit Unit number (0-based).
Table 6.142: FS_MMC_HW_X_DisableCS() parameter list

386 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.5.6.3 FS_MMC_HW_X_SetMaxSpeed()
Description

Sets the maximum SPI speed. If the hardware is unable to use this speed, a lower
frequency can always be selected. The value is given in kHz.

Prototype
U16 FS_MMC_HW_X_SetMaxSpeed(U8 Unit,
 U16 MaxFreq);

Return value

Actual frequency in thousand cycles per second (kHz)
0 if the frequency could not be set.

Additional Information

Make sure your SPI interface never generates a higher clock than MaxFreq specifies.
You can always run MultiMedia & SD cards at lower or equal, but never on higher fre-
quencies. The initial frequency must be 400kHz or less. If the precise frequency is
unknown (typical for implementation using port-pins �bit-banging�), the return value
should be less than the maximum frequency, leading to longer timeout values, which
is in general unproblematic. You have to return the actual clock speed of your SPI
interface, because emFile needs the actual frequency to calculate timeout values.

Example using port pins

#define MMC_MAXFREQUENCY 400

U16 FS_MMC_HW_X_SetMaxSpeed(U8 Unit, U16 MaxFreq) {
 _Init();
 return MMC_MAXFREQUENCY; /* We are not faster than this */
}

Example using SPI mode

U16 FS_MMC_HW_X_SetMaxSpeed(U8 Unit, U16 MaxFreq) {
 U32 InFreq;
 U32 SPIFreq;

 if (MaxFreq < 400) {
 MaxFreq = 400;
 }
 SPIFreq = 1000 * MaxFreq;
 if (SPIFreq >= 200000) {
 InFreq = 48000000;
 }
 _sbcr = (InFreq + SPIFreq - 1) / SPIFreq;
 _InitSPI();
 return MaxFreq; /* We are not faster than this */
}

Parameter Meaning

Unit Unit number (0-based).
MaxFreq Clock speed (kHz) between host and card.

Table 6.143: FS_MMC_HW_X_SetMaxSpeed() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

387

6.5.6.4 FS_MMC_HW_X_SetVoltage()
Description

Sets the operating voltage range for the MultiMedia & SD card slot.

Prototype
char FS_MMC_HW_X_SetVoltage(U8 Unit,
 U16 Vmin,
 U16 Vmax);

Return value

== 1: Card slot works within the given range.
== 0: Card slot cannot provide a voltage within given range.

Additional Information

The values are in mill volts (mV). 1mV is 0.001V. All cards work with the initial volt-
age of 3.3V. If you want to save power you can adjust the card slot supply voltage
within the given range of Vmin and Vmax.

Example

#define FS__MMC_DEFAULTSUPPLYVOLTAGE 3300 /* example means 3.3V */

char FS_MMC_HW_X_SetVoltage(U8 Unit, U16 Vmin, U16 Vmax) {
 /* voltage range check */
 char r;
 if((Vmin <= MMC_DEFAULTSUPPLYVOLTAGE) && (Vmax >= MMC_DEFAULTSUPPLYVOLTAGE)) {
 r = 1;
 } else {
 r = 0;
 }
 return r;
}

Parameter Meaning

Unit Unit number (0-based).
Vmin Minimum supply voltage in mV.
Vmax Maximum supply voltage in mV.

Table 6.144: FS_MMC_HW_X_SetVoltage() parameter list

388 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.5.6.5 FS_MMC_HW_X_IsWriteProtected()
Description

Checks the status of the mechanical write protection of a SD card.

Prototype
char FS_MMC_HW_X_IsWriteProtected(U8 Unit);

Return value

== 0: If the card is not write protected.
== 1: Means that the card is write protected.

Additional Information

MultiMedia cards do not have mechanical write protection switches and should always
return 0. If you are using SD cards, be aware that the mechanical switch does not
really protect the card physically from being overwritten; it is the responsibility of
the host to respect the status of that switch.

Example

char FS_MMC_HW_X_IsWriteProtected(U8 Unit) {
 return 0; /* If the card slot has no write switch detector, return 0 */
}

Parameter Meaning

Unit Unit number (0-based).
Table 6.145: FS_MMC_HW_X_IsWriteProtected() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

389

6.5.6.6 FS_MMC_HW_X_IsPresent()
Description

Checks whether a card is present or not.

Prototype
char FS_MMC_HW_X_IsPresent(U8 Unit);

Return value

Additional Information

Usually, a card slot provides a hardware signal that can be used for card presence
determination. The sample code below is for a specific hardware that does not have
such a signal. Therefore, the presence of a card is unknown and you have to return
FS_MEDIA_STATE_UNKNOWN. Then emFile tries reading the card to figure out if a valid
card is inserted into the slot.

Example

char FS_MMC_HW_X_IsPresent(U8 Unit) {
 return FS_MEDIA_STATE_UNKNOWN;
}

Parameter Meaning

Unit Unit number (0-based).
Table 6.146: FS_MMC_HW_X_IsPresent() parameter list

Return value Description

FS_MEDIA_STATE_UNKNOWN The card state is unknown.
FS_MEDIA_NOT_PRESENT A card is not present.
FS_MEDIA_IS_PRESENT A card is present.

Table 6.147: FS_MMC_HW_X_IsPresent() - list of return values

390 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.5.6.7 FS_MMC_HW_X_Read()
Description

Receives a number of bytes from the card.

Prototype
void FS_MMC_HW_X_Read(U8 Unit,
 U8 * pData,
 int NumBytes);

Additional Information

This function is used to read a number of bytes from the card to buffer memory.
According to SD specification DOUT (MOSI) signal must be driven high during the
data transfer, otherwise the SD card will not work properly.

Example

void FS_MMC_HW_X_Read(U8 Unit, U8 * pData, int NumBytes) {
 do {
 c = 0;
 bpos = 8; /* get 8 bits */
 do {
 SPI_CLR_CLK();
 c <<= 1;
 if (SPI_DATAIN()) {
 c |= 1;
 }
 SPI_SET_CLK();
 } while (--bpos);
 *pData++ = c;
 } while (--NumBytes);
}

Timing diagram for read access

Parameter Meaning

Unit Unit number (0-based).
pData Pointer to a buffer for data to receive.
NumBytes Number of bytes to receive.

Table 6.148: FS_MMC_HW_X_Read() parameter list

SPI_DIN

Data is changed by the CPU on the falling edge of SPI_CLK

Data is read by the CPU on the rising edge of SPI_CLK

D7

(From SD/MMC Data Output)

D6 D5 D4 D3 D2 D1 D0

SPI_CLK

SPI_CS

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

391

6.5.6.8 FS_MMC_HW_X_Write()
Description

Sends a number of bytes to the card.

Prototype
void FS_MMC_HW_X_Write(U8 Unit,
 const U8 * pData,
 int NumBytes);

Additional Information

This function is used to send a number of bytes from a memory buffer to the card.

Example

void FS_MMC_HW_X_Write(U8 Unit, const U8 * pData, int NumBytes) {
 int i;
 U8 mask;
 U8 data;
 for (i = 0; i < NumBytes; i++) {
 data = pData[i];
 mask = 0x80;
 while (mask) {
 if (data & mask) {
 SPI_SET_DATAOUT();
 } else {
 SPI_CLR_DATAOUT();
 }
 SPI_CLR_CLK();
 SPI_DELAY();
 SPI_SET_CLK();
 SPI_DELAY();
 mask >>= 1;
 }
 }
 SPI_SET_DATAOUT(); /* default state of data line is high */
}

Timing diagram for write access

Parameter Meaning

Unit Unit number (0-based).
pData Pointer to a buffer that contains the data to be written to the card.
NumBytes Number of bytes to write.

Table 6.149: FS_MMC_HW_X_Write() parameter list

SPI_DIN

Data is changed by the CPU on the falling edge of SPI_CLK

Data is read by the CPU on the rising edge of SPI_CLK

D7

(To Data Input of SD/MMC)

D6 D5 D4 D3 D2 D1 D0

SPI_CLK

SPI_CS

392 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.5.7 Hardware functions - Card mode

Routine Explanation

Operation condition detection and adjusting

FS_MMC_HW_X_SetMaxSpeed()
Sets the output clock speed. The value is
represented in thousand cycles per sec-
ond (kHz).

FS_MMC_HW_X_SetResponseTimeOut()
Sets the card host controller timeout
value for receiving response from card.

FS_MMC_HW_X_SetReadDataTimeOut()
Sets the card host controller timeout
value for receiving data from card.

FS_MMC_HW_X_SetHWBlockLen()
Sets the card host controller block size
value for a block.

FS_MMC_HW_X_SetHWNumBlocks()
Tells the card host controller how many
block will be transferred to or received
from card.

Medium status functions

FS_MMC_HW_X_IsWriteProtected()
Checks the status of the mechanical write
protection of a card.

FS_MMC_HW_X_IsPresent() Checks whether a card is present or not.
Data transfer functions

FS_MMC_HW_X_GetResponse()
Retrieves the response after sending a
command to the card.

FS_MMC_HW_X_ReadData()
Receives a number of bytes from the
card.

FS_MMC_HW_X_SendCmd()
Sends and setups the controller to send a
specific command to card.

FS_MMC_HW_X_WriteData() Writes a number of block to the card.
Time functions

FS_MMC_HW_X_Delay() Waits for a specific time in ms.
Table 6.150: Card mode hardware functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

393

6.5.7.1 FS_MMC_HW_X_SetMaxSpeed()
Description

Sets the maximum output clock speed. If the hardware is unable to use this speed, a
lower frequency can always be selected. The value is given in kHz.

Prototype
U16 FS_MMC_HW_X_SetMaxSpeed(U8 Unit,
 U16 MaxFreq);

Return value

Actual frequency in thousand cycles per second (kHz)
0 if the frequency could not be set.

Additional Information

Make sure your card host controller never generates a higher clock than MaxFreq
specifies. You can always run the cards at lower or equal, but never on higher fre-
quencies. The initial frequency must be 400kHz or less. You have to return the actual
clock speed of your hardware interface, because emFile needs the actual frequency
to calculate timeout values.

Example

U16 FS_MMC_HW_X_SetMaxSpeed(U8 Unit, U16 MaxFreq) {
 U32 Prediv;
 U32 Rate;

 if (Freq <= 400) {
 Prediv = 8; // HCLK / 8, where HCLK is 100MHz. -> SDClock = 12.5 MHz
 Rate = 5; // Card clock frequency = SDClock / (1 << Rate) = 390kHz.
 } else {
 Prediv = 5; // HCLK / 5, where HCLK is 100MHz, SDClock = 20 MHz
 Rate = 0; // Card clock frequency = SDClock / (1 << Rate) = 20 MHz.
 }
 __SDMMC_PREDIV = (1 << 5) // Use Poll mode instead of DMA
 | (1 << 4) // Enable the Controller
 | (Prediv & 0x0f); // Set the predivisor value
 __SDMMC_RATE = Rate; // Set rate value
 return Freq;
}

Parameter Meaning

Unit Unit number (0-based).
MaxFreq Clock speed (kHz) between host and card.

Table 6.151: FS_MMC_HW_X_SetMaxSpeed() parameter list

394 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.5.7.2 FS_MMC_HW_X_SetResponseTimeOut()
Description

Sets the timeout of card host controller for receiving response from card.

Prototype
void FS_MMC_HW_X_SetResponseTimeOut(U8 Unit,
 int Value);

Example

void FS_MMC_HW_X_SetResponseTimeOut(U8 Unit, int Value) {
 __SDMMC_RES_TO = Value; // Set the timeout for Card Response
}

Parameter Meaning

Unit Unit number (0-based).

Value
Number of output clock cycles to wait before a response timeout
occurs.

Table 6.152: FS_MMC_HW_X_SetResponseTimeOut() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

395

6.5.7.3 FS_MMC_HW_X_SetReadDataTimeOut()
Description

Sets the timeout of card host controller for receiving data from card.

Prototype
void FS_MMC_HW_X_SetReadDataTimeOut(U8 Unit,
 int Value);

Example

void FS_MMC_HW_X_SetReadDataTimeOut(U8 Unit, int Value) {
 __SDMMC_READ_TO = Value; // Set the read timeout
}

Parameter Meaning

Unit Unit number (0-based).

Value
Number of card clock cycles to wait before a read data timeout
occurs.

Table 6.153: FS_MMC_HW_X_SetReadDataTimeOut() parameter list

396 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.5.7.4 FS_MMC_HW_X_SetHWBlockLen()
Description

Sets the card host controller block size value for a block.

Prototype
void FS_MMC_HW_X_SetHWBlockLen(U8 Unit,
 U16 BlockSize);

Additional Information

Card host controller sends data to or receives data from the card in block chunks.
This function typically sets the card host controller's block length register.

Example

void FS_MMC_HW_X_SetHWBlockLen(U8 Unit, U16 BlockSize) {
 __SDMMC_BLK_LEN = BlockSize;
}

Parameter Meaning

Unit Unit number (0-based).
BlockSize Block size given in number of bytes.

Table 6.154: FS_MMC_HW_X_SetHWBlockLen() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

397

6.5.7.5 FS_MMC_HW_X_SetHWNumBlocks()
Description

Tells the card host controller how many block will be transferred to or received from
card.

Prototype
void FS_MMC_HW_X_SetHWNumBlocks (U8 Unit,
 U16 NumBlocks);

Additional Information

Before sending the command to read or write data from or to the card. This functions
tells the card host controller, how many blocks need to be transferred/received.

Example

void FS_MMC_HW_X_SetHWNumBlocks(U8 Unit, U16 NumBlocks) {
 __SDMMC_NUM_BLK = NumBlocks;
}

Parameter Meaning

Unit Unit number (0-based).
NumBlocks Number of blocks to be transferred.

Table 6.155: FS_MMC_HW_X_SetHWNumBlocks() parameter list

398 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.5.7.6 FS_MMC_HW_X_IsWriteProtected()
Description

Checks the status of the mechanical write protection of a card.

Prototype
int FS_MMC_HW_X_IsWriteProtected(U8 Unit);

Return value

== 0: If the card is not write protected.
== 1: Means that the card is write protected.

Additional Information

MultiMedia cards do not have mechanical write protection switches and should always
return 0. If you are using SD cards, be aware that the mechanical switch does not
really protect the card physically from being overwritten; it is the responsibility of
the host to respect the status of that switch.

Example

int FS_MMC_HW_X_IsWriteProtected(U8 Unit) {
 return 0; /* Card slot has no write switch detector, return 0 */
}

Parameter Meaning

Unit Unit number (0-based).
Table 6.156: FS_MMC_HW_X_IsWriteProtected() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

399

6.5.7.7 FS_MMC_HW_X_IsPresent()
Description

Checks whether a card is present or not.

Prototype
int FS_MMC_HW_X_IsPresent(U8 Unit);

Return value

Additional Information

Usually, a card slot provides a hardware signal that can be used for card presence
determination. The sample code below is for a specific hardware that does not have
such a signal. Therefore, the presence of a card is unknown and you have to return
FS_MEDIA_STATE_UNKNOWN. Then emFile tries reading the card to figure out if a valid
card is inserted into the slot.

Example

int FS_MMC_HW_X_IsPresent(U8 Unit) {
 __GPIO_PFDD &= ~(1 << 5); // Set PE.5 as input for card detect signal
 return ((__GPIO_PFD >> 5) & 1) ? FS_MEDIA_NOT_PRESENT : FS_MEDIA_IS_PRESENT;
}

Parameter Meaning

Unit Unit number (0-based).
Table 6.157: FS_MMC_HW_X_IsPresent() parameter list

Return value Meaning

FS_MEDIA_STATE_UNKNOWN State of the media is unknown.
FS_MEDIA_NOT_PRESENT No card is present.
FS_MEDIA_IS_PRESENT Card is present.

Table 6.158: FS_MMC_HW_X_IsPresent() - list of return values

400 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.5.7.8 FS_MMC_HW_X_GetResponse()
Description

Retrieves the card response to a sent command.

Prototype
int FS_MMC_HW_X_GetResponse(U8 Unit,
 void * pBuffer,
 U32 Size);

Return value

Additional information
The MMC/SD card standard describes the structure of a response in terms of bit units
with bit 0 being the first transmitted over the CMD line. The following table shows
you at which byte offsets the response should be stored into pBuffer:

Note: In the case of card

Parameter Meaning

Unit Unit number (0-based).

pBuffer
IN: ---
OUT: response bytes.

NumBytes Response size in bytes.
Table 6.159: FS_MMC_HW_X_GetResponse() parameter list

Return value Meaning

FS_MMC_CARD_NO_ERROR All data have been read successfully.

FS_MMC_CARD_RESPONSE_TIMEOUT
Card did not send the response in appropriate
time.

FS_MMC_CARD_RESPONSE_CRC_ERROR
The received response failed the CRC check of
card host controller.

Table 6.160: FS_MMC_HW_X_GetResponse() - list of return values

Byte offset Bit range (48-bit) Bit range (136-bit)

0 47-40 135-128
1 39-32 127-120
2 31-24 119-112
3 23-16 111-104
4 15-8 103-96
5 7-0 95-88
6 - 87-80
7 - 79-72
8 - 71-64
9 - 63-56
10 - 55-48
11 - 47-40
12 - 39-32
13 - 31-24
14 - 23-16
15 - 15-8
16 - 7-0

Table 6.161: FS_MMC_HW_X_GetResponse() - mapping of response bits into buffer

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

401

Note: Some card controllers forward only the payload of a response, i.e. the first
and the last byte, which carry control and checking information, are discarded. In
this case you need not set the missing bytes in the pBuffer.

Example

int FS_MMC_HW_X_GetResponse(U8 Unit, void * pBuffer, U32 Size) {
 U16 * pResponse;
 U32 Index;
 U32 Status;

 pResponse = (U16 *) pBuffer;
 // Wait for response
 while (1) {
 Status = __SDMMC_STATUS;
 if (Status & MMC_STATUS_CLOCK_DISABLED) {
 _StartMMCClock(Unit);
 }
 if (Status & MMC_STATUS_END_COMMAND_RESPONSE) {
 break;
 }
 if (Status & MMC_STATUS_RESPONSE_TIMEOUT) {
 return FS_MMC_CARD_RESPONSE_TIMEOUT;
 }
 if (Status & MMC_STATUS_RESPONSE_CRC_ERROR) {
 return FS_MMC_CARD_RESPONSE_CRC_ERROR;
 }
 }
 // Read the necessary number of response words from the response FIFO
 for (Index = 0; Index < (Size/ 2); Index++) {
 pResponse[Index] = __SDMMC_RES_FIFO;
 }
 return FS_MMC_CARD_NO_ERROR;
}

402 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.5.7.9 FS_MMC_HW_X_ReadData()
Description

Receives a number of bytes from the card.

Prototype
int FS_MMC_HW_X_ReadData(U8 Unit,
 void * pBuffer,
 unsigned NumBytes,
 unsigned NumBlocks);

Return value

Additional Information

This function is used to read the data is coming from MMC/SD card to the host con-
troller through the DAT0 line or DAT[0:3] lines.

Example

int FS_MMC_HW_X_ReadData(U8 Unit, void * pBuffer, unsigned NumBytes,
 unsigned NumBlocks) {
 U16 * pBuf = (U16 *)pBuffer;
 int i;
 do {
 i = 0;
 // Wait until transfer is complete
 while ((__SDMMC_STATUS & MMC_STATUS_FIFO_FULL) == 0);
 if (__SDMMC_STATUS & MMC_STATUS_READ_CRC_ERROR) {
 return FS_MMC_CARD_READ_CRC_ERROR;
 }
 if (__SDMMC_STATUS & MMC_STATUS_READDATA_TIMEOUT) {
 return FS_MMC_CARD_READ_TIMEOUT;
 }
 // Continue reading data until FIFO is empty
 while(((__SDMMC_STATUS & MMC_STATUS_FIFO_EMPTY) == 0) && (i < (NumBytes >> 1))) {
 // Any data in the FIFO
 if ((__SDMMC_STATUS & MMC_STATUS_FIFO_EMPTY) == 0) {
 *pBuf = __SDMMC_DATA_FIFO;
 pBuf++;
 i++;
 }
 }
 } while (--NumBlocks);
 return 0;
}

Parameter Meaning

Unit Unit number (0-based).

pBuffer
IN: ---
OUT: received data.

NumBytes Number of bytes to receive.
NumBlocks Number of blocks to receive.

Table 6.162: FS_MMC_HW_X_ReadData() parameter list

Return value Meaning

FS_MMC_CARD_NO_ERROR All data have been read successfully.
FS_MMC_CARD_READ_TIMEOUT Card did not send the data in appropriate time.

FS_MMC_CARD_READ_CRC_ERROR
The received response failed the CRC check of
card host controller.

Table 6.163: FS_MMC_HW_X_ReadData() - list of return values

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

403

6.5.7.10 FS_MMC_HW_X_SendCmd()
Description

Sends a command to card.

Prototype
void FS_MMC_HW_X_SendCmd (U8 Unit,
 unsigned Cmd,
 unsigned CmdFlags,
 unsigned ResponseType,
 U32 Arg);

Additional Information

This function should send the command specified by Cmd. Each command may have
additional command flags. One or a combination of these is possible:

Most of the commands require a response from the card. The type of the expected
response can be one of the following:

Parameter Meaning

Unit Unit number (0-based).

Cmd
Command to be sent to the card. This is the command number from
the SD card specification.

CmdFlags Additional command flags, that are necessary for this command.

ResponseType
Specifies the response format that is expected after sending this
command.

Arg Argument sent with command.
Table 6.164: FS_MMC_HW_X_SendCmd() parameter list

Command Flag Meaning

FS_MMC_CMD_FLAG_DATATRANSFER
This flags tells the card controller, that the sent
command initiate a data transfer.

FS_MMC_CMD_FLAG_WRITETRANSFER
This flags tells the card controller, that the sent
command initiate a data transfer and will write to
the card.

FS_MMC_CMD_FLAG_SETBUSY
The card may be in busy state after sending this
command. The card host controller may wait
after the card ready for next command.

FS_MMC_CMD_FLAG_INITIALIZE
The card host controller should send the initial-
ization sequence to the card.

FS_MMC_CMD_FLAG_USE_SD4MODE

This tells the card host controller to use all four
data lines DAT[0:3] rather than only DAT0 line.
Note, that this command flag is only set when
FS_MMC_SUPPORT_4BIT_MODE is set.

FS_MMC_CMD_FLAG_STOP_TRANS
The card host controller shall stop transferring
data to the card.

Table 6.165: FS_MMC_HW_X_SendCmd() - list of possible command flags

Response Type Meaning

FS_MMC_RESPONSE_FORMAT_NONE No response is expected from card.
Table 6.166: FS_MMC_HW_X_SendCmd() - list of possible responses

404 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

If the specified command expects a response, FS_MMC_HW_X_GetResponse() will be
called after FS_MMC_HW_X_SendCmd().

Example

void FS_MMC_HW_X_SendCmd(U8 Unit, unsigned Cmd, unsigned CmdFlags,
 unsigned ResponseType, U32 Arg) {
 U32 CmdCon;
 _StopMMCClock(Unit);
 CmdCon = ResponseType;
 if (CmdFlags & FS_MMC_CMD_FLAG_DATATRANSFER) { /* If data transfer */
 CmdCon |= (1 << 8) /* Set big endian flag for data transfers
 since this is how the data is in the 16-bit fifo */
 | (1 << 2); // Set DATA_EN
 }
 if (CmdFlags & FS_MMC_CMD_FLAG_WRITETRANSFER) { /* Abort transfer ? */
 CmdCon |= (1 << 3); // Set WRITE bit
 }
 if (CmdFlags & FS_MMC_CMD_FLAG_SETBUSY) { /* Set busy ? */
 CmdCon |= (1 << 5); // Set ABORT bit
 }
 if (CmdFlags & FS_MMC_CMD_FLAG_INITIALIZE) { /* Init ? */
 CmdCon |= (1 << 6); // Set ABORT bit
 }
 if (CmdFlags & FS_MMC_CMD_FLAG_USE_SD4MODE) { /* 4 bit mode ? */
 CmdCon |= (1 << 7); // Set WIDE bit
 }
 if (CmdFlags & FS_MMC_CMD_FLAG_STOP_TRANS) { /* Abort transfer ? */
 CmdCon |= (1 << 13); // Set ABORT bit
 }
 __SDMMC_CMD = Cmd;
 __SDMMC_CMDCON = CmdCon;
 __SDMMC_ARGUMENT = Arg;
 _StartMMCClock(Unit);
}

FS_MMC_RESPONSE_FORMAT_R1
Response type 1 is expected from card. (48 Bit
data stream is sent by card through the CMD
line.)

FS_MMC_RESPONSE_FORMAT_R2
Response type 2 is expected from card. (136 Bit
data stream is sent by card through the CMD
line.)

FS_MMC_RESPONSE_FORMAT_R3
Response type 3 is expected from card. (48 Bit
data stream is sent by card through the CMD
line.)

Response Type Meaning

Table 6.166: FS_MMC_HW_X_SendCmd() - list of possible responses

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

405

6.5.7.11 FS_MMC_HW_X_WriteData()
Description

Writes a number of blocks to the card.

Prototype
int FS_MMC_HW_X_WriteData(U8 Unit,
 const void * pBuffer,
 unsigned NumBytes,
 unsigned NumBlocks);

Return value

Additional Information

This function is used to write a specified number of blocks to the card. Each block is
NumBytes long.

Example

int FS_MMC_HW_X_WriteData(U8 Unit, const void * pBuffer,
 unsigned NumBytes, unsigned NumBlocks) {
 int i;
 const U16 * pBuf;
 pBuf = (const U16 *)pBuffer;
 do {
 while((__SDMMC_STATUS & MMC_STATUS_FIFO_EMPTY) == 0);
 for (i = 0; i < (NumBytes >> 1); i++) {
 __SDMMC_DATA_FIFO = *pBuf++;
 }
 _StartMMCClock(Unit);
 if (__SDMMC_STATUS & MMC_STATUS_WRITE_CRC_ERROR) {
 return FS_MMC_CARD_WRITE_CRC_ERROR;
 }
 } while (--NumBlocks);
 // Wait until transfer operation has ended
 while ((__SDMMC_STATUS & MMC_STATUS_DATA_TRANFER_DONE) == 0);
 // Wait until write operation has ended
 while ((__SDMMC_STATUS & MMC_STATUS_DATA_PROGRAM_DONE) == 0);
 return 0;
}

Parameter Meaning

Unit Unit number (0-based).

pBuffer
IN: Data to send.
OUT: ---

NumBytes Number of bytes for each block to send.
NumBlocks Number of blocks to send.

Table 6.167: FS_MMC_HW_X_WriteData() parameter list

Return Flag Meaning

FS_MMC_CARD_NO_ERROR
All data have been sent successfully and card has
programmed the data.

FS_MMC_CARD_WRITE_CRC_ERROR
During the data transfer to the card a CRC error
occurred.

Table 6.168: FS_MMC_HW_X_WriteData() - list of return values

406 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.5.7.12 FS_MMC_HW_X_Delay()
Description

Waits for a specific time in ms.

Prototype
void FS_MMC_HW_X_Delay(int ms);

Additional Information

The delay specified is a minimum delay. The actual delay is permitted to be longer.
This can be helpful when using an RTOS. Every RTOS has a delay API function, but
the accuracy is typically 1 tick, which is 1 ms in most cases. Therefore, a delay of 1
tick is typically between 0 and 1 ms. To compensate for this, the equivalent of 1 tick
(typically 1) should be added to the delay parameter before passing it to an RTOS
delay function.

Example

void FS_MMC_HW_X_Delay(int ms) {
 OS_Delay(ms + 1); // Make sure we delay at least <ms> milliseconds
}

Parameter Meaning

ms Milliseconds to wait.
Table 6.169: FS_MMC_HW_X_Delay() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

407

6.5.8 Hardware functions - Card mode for ATMEL devices
Note: FS_MMC_CM_Driver4Atmel is deprecated. Use FS_MMC_CardMode_Driver
instead.

Routine Description

Operation condition detection and adjusting

FS_MCI_HW_EnableClock()
Enable/disable the master clock of the
MCI module.

FS_MCI_HW_EnableISR()
Install the ISR handler of the MCI mod-
ule.

FS_MCI_HW_GetMCIInfo()
Used to get the base address of the MCI
module and which MCI slot.

FS_MCI_HW_GetMClk() Returns the MCLK of an AT91SAM9x.

FS_MCI_HW_Init()
This function shall initialize all necessary
hardware modules that depend on the
MCI.

Medium status functions
FS_MCI_HW_IsCardPresent() Checks whether a card is present or not.

FS_MCI_HW_IsCardWriteProtected()
Checks the status of the mechanical write
protection of a SD card.

Cache handling functions
FS_MCI_HW_CleanDCacheRange() Clean data cache range.
FS_MCI_HW_InvalidateDCache() Invalidate data cache.

Table 6.170: Card mode for ATMEL hardware functions

408 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.5.8.1 FS_MCI_HW_EnableClock()
Description

Enables or disables the master clock of the MCI module. This is done by setting the
appropriate bit in the PMC_PCER/PMC_PCDR register.

Prototype
void FS_MCI_HW_EnableClock(U8 Unit,
 Unsigned OnOff);

Example

/***
*
* FS_MCI_HW_EnableClock
*
* Function description:
* This function shall enable or disable the master clock of the
* MCI module. This is done by setting the appropiate bit in the
* PMC_PCER/PMC_PCDR register.
*
* Parameters:
* Unit - MCI Card unit that shall be used
* OnOff - 1 - Enable the clock
* 0 - Disable the clock
*
*/
void FS_MCI_HW_EnableClock(U8 Unit, unsigned OnOff) {
 if (OnOff) {
 WRITE_SFR_REG(PMC_BASE, PMC_PCER, (1 << MCI_ID)); // Enable the MCI
 // peripheral clock.
 } else {
 WRITE_SFR_REG(PMC_BASE, PMC_PCDR, (1 << MCI_ID)); // Disable the MCI
 // peripheral clock.
 }
}

Parameter Description

Unit Unit number (0-based).

OnOff
1: Enable the clock
0: Disable the clock

Table 6.171: FS_MCI_HW_EnableClock() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

409

6.5.8.2 FS_MCI_HW_EnableISR()
Description

Installs the ISR handler of the MCI module.

Prototype
void FS_MCI_HW_EnableISR(U8 Unit,
 ISR_FUNC * pISRHandler);

Additional Information

The ISR handler is defined in the header file MMC_MCI_HW.h:

typedef void(ISR_FUNC)(void);

Example

/***
*
* FS_MCI_HW_EnableISR
*
* Function description:
* The function is called during initialization to install the
* ISR handler of the MCI module.
*
* Parameters:
* Unit - MCI Card unit that shall be used
* pISRHandler - Pointer to the ISR handler that shall be installed.
*
*/
void FS_MCI_HW_EnableISR(U8 Unit, ISR_FUNC * pISRHandler) {
 //
 // Install interrupt service routine
 //
 OS_ARM_InstallISRHandler(MCI_ID, pISRHandler);
 OS_ARM_EnableISR(MCI_ID);
}

Parameter Description

Unit Unit number (0-based).
pISRHandler Pointer to the ISR handler that shall be installed.

Table 6.172: FS_MCI_HW_EnableISR() parameter list

410 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.5.8.3 FS_MCI_HW_GetMCIInfo()
Description

Gets the base address of the MCI module and the information which slot is used.

Prototype
void FS_MCI_HW_GetMCIInfo(U8 Unit,
 ISR_FUNC * pISRHandler);

Additional Information

The MCI_INFO structure is defined in the header file MMC_MCI_HW.h. It has the follow-
ing elements:

typedef struct {
 U32 BaseAddr;
 U32 Mode;
} MCI_INFO;

Example

/***
*
* FS_MCI_HW_GetMCIInfo
*
* Function description:
* This function is used to get the base address of the MCI module
* and which MCI slot shall be used.
*
* Parameters:
* Unit - MCI Card unit that shall be used
* pInfo - Pointer a MCI_INFO structure that shall be filled
* by this function.
*
*/
void FS_MCI_HW_GetMCIInfo(U8 Unit, MCI_INFO * pInfo) {
 if (pInfo) {
 pInfo->BaseAddr = (U32)MCI_BASE_ADDR;
 pInfo->Mode = MCI_SD_SLOTB;
 }
}

Parameter Description

Unit Unit number (0-based).
pISRHandler Pointer a MCI_INFO structure.

Table 6.173: FS_MCI_HW_GetMCIInfo() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

411

6.5.8.4 FS_MCI_HW_GetMClk()
Description

Returns the master clock in Hz.

Prototype
void FS_MCI_HW_GetMClk(U8 Unit);

Example

/***
*
* FS_MCI_HW_GetMClk
*
* Function description:
* The internal MCLK of an AT91SAM9x that was configured shall be returned.
*
* Parameters:
* Unit - MCI Card unit that shall be used
*
* Return value:
* The AT91 master clock (MCLK) given in Hz.
*
*/
U32 FS_MCI_HW_GetMClk(U8 Unit) {
 return MCLK;
}

Parameter Description

Unit Unit number (0-based).
Table 6.174: FS_MCI_HW_GetMClk() parameter list

412 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.5.8.5 FS_MCI_HW_Init()
Description

Initializes all necessary hardware modules.

Prototype
void FS_MCI_HW_Init(U8 Unit);

Example

/***
*
* FS_MCI_HW_Init
*
* Function description:
* This function shall initialize all necessary hardware modules
* that depend on the MCI.
* In normal cases PIO configuration needs to be done.
*
* Parameters:
* Unit - MCI Card unit that shall be used
*
*/
void FS_MCI_HW_Init(U8 Unit) {
 // Configure SDcard pins
 _ConfigurePIO(_SDPins, COUNTOF(_SDPins));
}

Parameter Description

Unit Unit number (0-based).
Table 6.175: FS_MCI_HW_Init() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

413

6.5.8.6 FS_MCI_HW_IsCardPresent()
Description

Checks whether a card is present or not.

Prototype
char FS_MMC_HW_X_IsPresent(U8 Unit);

Return value

Additional Information

Usually, a card slot provides a hardware signal that can be used for card presence
determination. The example code below is for a specific hardware that does not have
such a signal. Therefore, the presence of a card is unknown and you have to return
FS_MEDIA_STATE_UNKNOWN. Then emFile tries reading the card to figure out if a valid
card is inserted into the slot.

Example

/***
*
* FS_MCI_HW_IsCardPresent
*
* Function description:
* Returns whether a card is inserted or not.
* When a card detect pin is not available. The function shall return
* FS_MEDIA_STATE_UNKNOWN. The driver above will check, whether there
* a valid card
*
* Parameters:
* Unit - MCI Card unit that shall be used
*
* Return value:
* FS_MEDIA_STATE_UNKNOWN - Card state is unknown, no card detect pin available
* FS_MEDIA_NOT_PRESENT - No Card is inserted in slot.
* FS_MEDIA_IS_PRESENT - Card is inserted in slot.
*/
int FS_MCI_HW_IsCardPresent(U8 Unit) {
 U8 r;
 r = FS_MEDIA_STATE_UNKNOWN;
 if (CARD_DETECT_PIN_AVAILABLE) {
 r = READ_SFR_REG(CARD_DETECT_PIN_PIO_BASE, PIO_PDSR)
 & (1 << CARD_DETECT_PIN) ? FS_MEDIA_NOT_PRESENT : FS_MEDIA_IS_PRESENT;
 }
 return r;
}

Parameter Description

Unit Unit number (0-based).
Table 6.176: FS_MCI_HW_IsCardPresent() parameter list

Return value Description

FS_MEDIA_STATE_UNKNOWN The card state is unknown.
FS_MEDIA_NOT_PRESENT A card is not present.
FS_MEDIA_IS_PRESENT A card is present.

Table 6.177: FS_MCI_HW_IsCardPresent() - list of return values

414 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.5.8.7 FS_MCI_HW_IsCardWriteProtected()
Description

Checks the status of the mechanical write protection of a SD card.

Prototype
char FS_MCI_HW_IsCardWriteProtected(U8 Unit);

Return value

== 0: If the card is not write protected.
== 1: Means that the card is write protected.

Additional Information

MultiMedia cards do not have mechanical write protection switches and should always
return 0. If you are using SD cards, be aware that the mechanical switch does not
really protect the card physically from being overwritten; it is the responsibility of
the host to respect the status of that switch.

Example

/***
*
* FS_MCI_HW_IsCardWriteProtected
*
* Function description:
* Checks whether a card is write protected or not.
*
* Parameters:
* Unit - MCI Card unit that shall be used
*
* Return value:
* 0 - Card is not write protected.
* 1 - Card is write protected.
*
*/
U8 FS_MCI_HW_IsCardWriteProtected(U8 Unit) {
 U8 r;
 r = 0;
 if (WRITE_PROTECT_PIN_AVAILABLE) {
 r = READ_SFR_REG(WRITE_PROTECT_PIN_PIO_BASE, PIO_PDSR)
 & (1 << WRITE_PROTECT_PIN) ? 0 : 1;
 }
 return r;
}

Parameter Description

Unit Unit number (0-based).
Table 6.178: FS_MCI_HW_IsCardWriteProtected() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

415

6.5.8.8 FS_MCI_HW_CleanDCacheRange()
Description

Used to clean a range in the data cache memory to ensure that the data is written
from the data cache into the memory. This function can be empty if data cache is not
used.

Prototype
void FS_MCI_HW_CleanDCacheRange(void * p,
 unsigned NumBytes);

Example

/***
*
* FS_MCI_HW_CleanDCacheRange
*
* Parameters:
* p - Pointer to the region that shall be flushed from cache.
* NumBytes - Number of bytes to flush
*
*/
void FS_MCI_HW_CleanDCacheRange(void * p, unsigned NumBytes) {
 OS_ARM_DCACHE_CleanRange(p, NumBytes);
}

Parameter Description

p Pointer to the region that shall be flushed from cache.
NumBytes Number of bytes to flush.

Table 6.179: FS_MCI_HW_CleanDCacheRange() parameter list

416 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.5.8.9 FS_MCI_HW_InvalidateDCache()
Description

Used to invalidate a memory area in the data cache. Invalidating means, mark all
entries in the specified area as invalid. Invalidation forces re-reading the data from
memory into the cache, when the specified area is accessed again. This function can
be empty if data cache is not used.

Prototype
void FS_MCI_HW_InvalidateDCache(void * p,
 unsigned NumBytes);

Example

/***
*
* FS_MCI_HW_InvalidateDCache
*
* Parameters:
* p - Pointer to the buffer that shall be invalidated in cache.
* NumBytes - Number of bytes to invalidate
*
*/
void FS_MCI_HW_InvalidateDCache(void * p, unsigned NumBytes) {
 OS_ARM_DCACHE_InvalidateRange(p, NumBytes);
}

Parameter Description

p Pointer to the region that shall be flushed from cache.
NumBytes Number of bytes to flush.

Table 6.180: FS_MCI_HW_InvalidateDCache() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

417

6.5.9 Additional information
For more technical details about MMC and SD cards, check the documents and speci-
fications available on the following internet web pages:

www.jedec.org

www.sdcard.org

6.5.10 Additional driver functions

6.5.10.1 FS_MMC_CM_Allow4bitMode()
Description

Allows the driver to use 4 data lines (4-bit mode) when exchanging data with SD and
eMMC cards.

Prototype
void FS_MMC_CM_Allow4bitMode(U8 Unit, U8 OnOff);

Additional information

This function shall only be used when configuring the driver in FS_X_AddDevices().
Refer to FS_X_AddDevices() on page 472 for more information. The 4-bit mode is
disabled by default.

6.5.10.2 FS_MMC_CM_Allow8bitMode()
Description

Allows the driver to use 8 data lines when exchanging data with eMMC cards.

Prototype
void FS_MMC_CM_Allow8bitMode(U8 Unit, U8 OnOff);

Additional information

This function shall only be used when configuring the driver in FS_X_AddDevices().
Refer to FS_X_AddDevices() on page 472 for more information. The data transfer
over 8 data lines is disabled by default. It has no effect when used with SD cards.

6.5.10.3 FS_MMC_CM_AllowHighSpeedMode()
Description

Allows the driver to use the highest communication speed the card supports.

Parameter Description

Unit Unit number (0-based).

OnOff
1 enable 4-bit mode.
0 disable 4-bit mode.

Table 6.181: FS_MMC_CM_Allow4bitMode() parameter list

Parameter Description

Unit Unit number (0-based).

OnOff
1 enable 8-bit data transfer.
0 disable 8-bit data transfer.

Table 6.182: FS_MMC_CM_Allow8bitMode() parameter list

http://www.jedec.org/
http://www.sdcard.org/

418 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

Prototype
void FS_MMC_CM_AllowHighSpeedMode(U8 Unit, U8 OnOff);

Additional information

This function shall only be used when configuring the driver in FS_X_AddDevices().
Refer to FS_X_AddDevices() on page 472 for more information. The high speed mode
is disabled by default. The maximum communication speed is typically 50MHz for SD
cards and 52MHz for eMMC cards.

6.5.10.4 FS_MMC_CM_GetCardId()
Description

Reads the contents of the CID register.

Prototype
int FS_MMC_CM_GetCardId(U8 Unit, MMC_CARD_ID * pCardId);

Additional information

The CID (Card Identification) register stores information which can be used to
uniquely identify the card such as the serial number, product name and manufacturer
ID.

Example

The following example shows how to read and interpret the contents of the CID reg-
ister.

void SampleGetCardID(void) {
 U8 ManId;
 char acOEMId[2 + 1];
 char acProductName[5 + 1];
 U8 ProductRevMajor;
 U8 ProductRevMinor;
 U32 ProductSN;
 U8 MfgMonth;
 U16 MfgYear;
 U16 MfgDate;
 U8 * p;
 MMC_CARD_ID CardId;

 FS_MMC_CM_GetCardId(0, &CardId);
 p = CardId.aData;
 ++p; // Skip the start of message.
 ManId = *p++;
 strncpy(acOEMId, (char *)p, 2);
 acOEMId[2] = '\0';
 p += 2;
 strncpy(acProductName, (char *)p, 5);
 acProductName[5] = '\0';
 p += 5;
 ProductRevMajor = *p >> 4;
 ProductRevMinor = *p++ & 0xF;
 ProductSN = (U32)*p++ << 24;

Parameter Description

Unit Unit number (0-based).

OnOff
1 enable high speed mode.
0 disable high speed mode.

Table 6.183: FS_MMC_CM_AllowHighSpeedMode() parameter list

Parameter Description

Unit Unit number (0-based).

pCardId
IN: ---
OUT: CID register contents

Table 6.184: FS_MMC_CM_GetCardId() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

419

 ProductSN |= (U32)*p++ << 16;
 ProductSN |= (U32)*p++ << 8;
 ProductSN |= (U32)*p++;
 MfgDate = (U16)*p++;
 MfgDate |= (U16)*p++;
 MfgMonth = (U8)(MfgDate & 0xF);
 MfgYear = MfgDate >> 4;
 printf("SD card info:\n");
 printf(" Manufacturer Id: 0x%02x\n"
 " OEM/Application Id: %s\n"
 " Product name: %s\n"
 " Product revision: %lu.%lu\n"
 " Product serial number: 0x%08lx\n"
 " Manufacturing date: %lu-%lu\n", ManId,
 acOEMId,
 acProductName,
 (U32)ProductRevMajor,
 (U32)ProductRevMinor,
 ProductSN,
 (U32)MfgMonth, (U32)MfgYear);
}

420 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.5.11 Performance and resource usage

6.5.11.1 ROM usage
The ROM usage depends on the compiler options, the compiler version and the used
CPU. The memory requirements of the MMC/SD driver have been measured on a sys-
tem as follows: ARM7, IAR Embedded workbench V4.41A, Thumb mode, Size optimi-
zation.

6.5.11.2 Static RAM usage
Static RAM usage is the amount of RAM required by the driver for variables inside of
the driver. The number of bytes can be seen in a compiler list file

Static RAM usage of the SD card driver in SPI mode: 12 bytes
Static RAM usage of the SD card driver in card mode: 12 bytes

6.5.11.3 Performance
These performance measurements are in no way complete, but they give an approxi-
mation of the length of time required for common operations on various targets. The
tests were performed as described in Performance on page 502.

All values are in Mbytes/sec.

6.5.12 Troubleshooting
If the driver test fails or if the card cannot be accessed at all, please follow the trou-
ble shooting guidelines below.

6.5.12.1 SPI mode troubleshooting guide
Verify SPI configuration

If an SPI is used, you should verify that it is set up as follows:

� 8 bits per transfer
� Most significant bit first
� Data changes on falling edge
� Data is sampled on rising edge.

Module
ROM

[Kbytes]

emFile SD card SPI mode driver 2.8
emFile SD card mode driver 3.9

Device
CPU

speed
Medium W R

Atmel AT91SAM7S 48 MHz MMC/SD using SPI with 24MHz 2.3 2.3

Atmel AT91SAM9261 178 MHz MMC/SD driver using SPI with 24
MHz. 2.3 2.5

Atmel AT91SAM9263 200 MHz MMC/SD card mode driver using card
controller with 25 MHz. 10.0 9.3

LogicPD LH79520 51 MHz MMC using SPI with 12MHz 0.5 1.3

NXP LPC2478 57 MHz MMC/SD card mode driver using card
controller with 25 MHz. 2.4 3.1

NXP LPC3250 208 MHz MMC/SD card mode driver using card
controller with 25 MHz. 3.9 8.4

Toshiba TMPA910 192 MHz MMC/SD card mode driver using card
controller with 25 MHz. 3.9 8.4

Table 6.185: Performance values for sample configurations

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

421

Verify signals during initialization of the card

The oscilloscope has been set up as follows:

Trigger: Single, falling edge of CS

To check if your implementation of the hardware layer works correct, compare your
output of the relevant lines (SCLK, CS, MISO, MOSI) with the correct output which is
shown in the following screenshots. The output of your card should be similar.

In the example, MISO has a pull-up and a pull-down of equal value. This means that
the MISO signal level is at 50% (1.65V) when the output of the card is inactive. On
other target hardware, the inactive level can be low (in case a pull-down is used) or
high (if a pull-up is used).

Color Description

RED MOSI - Master Out Slave In (Pin 2)
PURPLE MISO - Master In Slave Out (Pin 7)
GREEN CLK - Clock (Pin 5)
YELLOW CS - Chip Select (Pin 1)

Table 6.186: Screenshot descriptions

422 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

Initial communication sequence

The initial communication sequence consists of the following three parts:

1. Outputs 10 dummy bytes with CS disabled, MOSI = 1.
2. Sets CS low and send a 6-byte command (GO_IDLE_STATE command).
3. Receives two bytes, sets CS high and outputs 1 dummy byte with CS disabled,

MOSI = 1.

Overview

The screenshot shows the data flow of a correct initialization. It has been captured
with an oscilloscope.

Verify command transfer (Step 2)

After sending 8 dummy bytes to the card, CS is activated and the GO_IDLE_STATE
command is sent to the card. The first byte is 0x40 or b01000000. You can see (and
should verify that MOSI changes on the falling edge of CLK. The GO_IDLE_STATE com-
mand is the reset command. It sets the card into idle state regardless of the current
card state.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

423

Check output of card (Step 3)

The card responses to the command with two bytes. The SD Card Association defines
that the first byte of the response should always be ignored. The second byte is the
answer from the card. The answer to GO_IDLE_STATE command should be 0x01. This
means that the card is in idle state.

If your card does not return 0x01, check your initialization sequence. After the com-
mand sequence CS has to be deselected.

424 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.5.13 Test hardware
On some evaluation boards the pins required for measuring are not accessible, so
that an oscilloscope or logic analyzer cannot capture the outputs. An adapter which
can be inserted between the card slot and the card, is the best solution in those situ-
ations.

An example adapter is shown below and is available from Segger.

Adapter schematics

Use the schematic below to build an compatible adapter.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

425

6.6 CompactFlash card and IDE driver
emFile supports the use of CompactFlash & IDE devices. An optional generic driver
for CompactFlash & IDE devices is available.

To use the driver with your specific hardware, you will have to provide basic I/O func-
tions for accessing the ATA I/O registers. This section describes all these routines.

6.6.1 Supported Hardware
emFile's CompactFlash & IDE device driver can be used to access most ATA HD drives
or CompactFlash storage cards also known as CF using true IDE or Memory card
mode.

426 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

 True IDE mode pin functions

Signal
name

Dir Pin Description

A2-A0 I 18, 19,
20

Only A[2:0] are used to select one of eight registers in
the Task File, the remaining address lines should be
grounded by the host.

PDIAG I/O 46 This input / output is the Pass Diagnostic signal in the
Master / Slave handshake protocol.

DASP I/O 45 This input/output is the Disk Active/Slave Present sig-
nal in the Master/Slave handshake protocol.

CD1, CD2 O 26, 25

These Card Detect pins are connected to ground on
the CompactFlash Storage Card or CF+ Card. They are
used by the host to determine that the CompactFlash
Storage Card or CF+ Card is fully inserted into its
socket.

CS0, CS1 I 7, 32
CS0 is the chip select for the task file registers while
CS1 is used to select the Alternate Status Register and
the Device Control Register.

CSEL I 39

This internally pulled up signal is used to configure this
device as a Master or a Slave when configured in True
IDE Mode. When this pin is grounded, the device is
configured as a Master. When the pin is open, the
device is configured as a Slave.

D15 - D00 I/O

27 - 31
47 - 49
2 - 6
21 - 23

All Task File operations occur in byte mode on the low
order bus D00-D07 while all data transfers are 16 bit
using D00-D15.

GND -- 1, 5 Ground.

IORD I 34

This is an I/O Read strobe generated by the host. This
signal gates I/O data onto the bus from the Compact-
Flash Storage Card or CF+ Card when the card is con-
figured to use the I/O interface.

IOWR I 35

I/O Write strobe pulse is used to clock I/O data on the
Card Data bus into the CompactFlash Storage Card or
CF+ Card controller registers when the CompactFlash
Storage Card or CF+ Card is configured to use the I/O
interface. The clocking will occur on negative to posi-
tive edge of the signal (trailing edge).

OE (ATA
SEL) I 9 To enable True IDE Mode this input should be grounded

by the host.
INTRQ O 37 Signal is the active high interrupt request to the host.

REG I 44 This input signal is not used and should be connected
to VCC by the host.

RESET I 41 This input pin is the active low hardware reset from
the host.

VCC -- 13, 38 +5V, +3.3V power.

VS1, VS2 O 33, 4

Voltage Sense Signals. -VS1 is grounded so that the
CompactFlash Storage Card or CF+ Card CIS can be
read at 3.3 volts and -VS2 is reserved by PCMCIA for a
secondary voltage.

IORDY O 42 This output signal may be used as IORDY.

WE I 36 This input signal is not used and should be connected
to VCC by the host.

IOIS16 O 24 This output signal is asserted low when the device is
expecting a word data transfer cycle.

Table 6.187: True IDE pin functions

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

427

Sample block schematic

Memory card mode pin functions

Signal
name

Dir Pin Description

A10 - A0 I

8, 10, 11, 1
2, 14, 15, 1
6, 17, 18, 1
9, 20

These address lines along with the -REG signal are
used to select the following: the I/O port address
registers within the CompactFlash Storage Card or
CF+ Card, the memory mapped port address regis-
ters within the CompactFlash Storage Card or CF+
Card, a byte in the card's information structure and
its configuration control and status registers.

BVD1 I/O 46 This signal is asserted high, as BVD1 is not sup-
ported.

BVD2 I/O 45 This signal is asserted high, as BVD2 is not sup-
ported.

Table 6.188: Pin functions in memory card mode

MPU

Open

Open

Open

GND

VCC

For card detection

IDE interface/
IDE Controller

A0-2

D0-15

CS0

CS1

IORD

IOWR

RESET

IORDY

INTRQ

IOIS16

A0-2

D0-15

CE0

CE1

IORD

IOWR

RESET

IORDY

INTRQ

IOIS16

DASP

PDIAG

INPACK

A3-10

CSEL

OE (ATASEL)

GND

WE

REG

VCC

CD1

CD2

VS1

VS2

Compact Flash
Card

CSEL = 1
(Master Mode)

428 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

CD1, CD2 O 26, 25

These Card Detect pins are connected to ground on
the CompactFlash Storage Card or CF+ Card. They
are used by the host to determine that the Com-
pactFlash Storage Card or CF+ Card is fully inserted
into its socket.

CE1, CE2 I 7, 32

These input signals are used both to select the card
and to indicate to the card whether a byte or a word
operation is being performed. -CE2 always accesses
the odd byte of the word. We recommend connect-
ing these pins together.

CSEL I 39 This signal is not used for this mode, but should be
grounded by the host.

D15 - D00 I/O

27 - 31
47 - 49
2 - 6
21 - 23

These lines carry the Data, Commands and Status
information between the host and the controller.
D00 is the LSB of the Even Byte of the Word. D08 is
the LSB of the Odd Byte of the Word.

GND -- 1, 5 Ground.
INPACK O 43 This signal is not used in this mode.
IORD I 34 This signal is not used in this mode.
IOWR I 35 This signal is not used in this mode.

OE (ATA
SEL) I 9

This is an Output Enable strobe generated by the
host interface. It is used to read data from the
CompactFlash Storage Card or CF+ Card in Memory
Mode and to read the CIS and configuration regis-
ters.

READY O 37

In Memory Mode, this signal is set high when the
CompactFlash Storage Card or CF+ Card is ready to
accept a new data transfer operation and is held low
when the card is busy. At power up and at Reset,
the READY signal is held low (busy) until the Com-
pactFlash Storage Card or CF+ Card has completed
its power up or reset function. No access of any
type should be made to the CompactFlash Storage
Card or CF+ Card during this time.Note, however,
that when a card is powered up and used with
+RESET continuously disconnected or asserted, the
reset function of this pin is disabled and conse-
quently the continuous assertion of +RESET will not
cause the READY signal to remain continuously in
the busy state.

REG I 44

This signal is used during Memory Cycles to distin-
guish between Common Memory and Register
(Attribute) Memory accesses. High for Common
Memory, Low for Attribute Memory. To use it with
emFile, this signal should be high.

RESET I 41

When the pin is high, this signal Resets the Com-
pactFlash Storage Card or CF+ Card. The Compact-
Flash Storage Card or CF+ Card is reset only at
power up if this pin is left high or open from power-
up.

VCC -- 13, 38 +5 V, +3.3 V power.

VS1, VS2 O 33, 4

Voltage Sense Signals. -VS1 is grounded so that the
CompactFlash Storage Card or CF+ Card CIS can be
read at 3.3 volts and -VS2 is reserved by PCMCIA
for a secondary voltage.

Signal
name

Dir Pin Description

Table 6.188: Pin functions in memory card mode (Continued)

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

429

Sample block schematic

WAIT O 42

The -WAIT signal is driven low by the CompactFlash
Storage Card or CF+ Card to signal the host to
delay completion of a memory or I/O cycle that is in
progress.

WE I 36

This is a signal driven by the host and used for
strobing memory write data to the registers of the
CompactFlash Storage Card or CF+ Card when the
card is configured in the memory interface mode.

WP O 24

The CompactFlash Storage Card or CF+ Card does
not have a write protect switch. This signal is held
low after the completion of the reset initialization
sequence.

Signal
name

Dir Pin Description

Table 6.188: Pin functions in memory card mode (Continued)

CFVCC

A020

A119

A218

A317

A416

A515

A614

A712

A811

A910

A108

D0 21

D1 22

D2 23

D3 2

D4 3

D5 4

D6
D7 6

D8 47

D9 48

D10 49

D11 27

D12 28

D13 29

D14 30

D15 31

GND 50GND 1

VS133 VS240

VCC 13VCC 38

CD2 25CD1 26

CE1_CS07

CE2_CS132

OE_ATASEL9

WE36

RESET 41

REG44 INTRQ_IREQ37

IOCS16_WP 24

WAIT_IORDY 42

STSCHG_PDIAG 46

SPKR_DASP 45

IORD34

IOWR35

INPK 43

CSEL39

10u/6,3V

CFGND

CFA1
CFA2
CFA3

CFRD

CFWRL

CFCS

CFGND

CFGND

CFVCC

CFVCC

CFGND

CFRDY

CFRES

CFD0
CFD1
CFD2
CFD3
CFD4
CFD5
CFD6
CFD7
CFD8
CFD9
CFD10
CFD11
CFD12
CFD13
CFD14
CFD15

100n

100n

100n

CFVCC

1010k

CFGND

5

430 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.6.2 Theory of operation

6.6.2.1 CompactFlash
CompactFlash is a mechanically small, removable mass storage device. The Com-
pactFlash Storage Card contains a single chip controller and flash memory module(s)
in a matchbox-sized package with a 50-pin connector consisting of two rows of 25
female contacts each on 50 mil (1.27 mm) centers. The controller interfaces with a
host system allowing data to be written to and read from the flash memory mod-
ule(s).

Figure 6.1: CompactFlash schematic

There are two different Compact Flash Types, namely CF Type I and CF Type II.
The only difference between CF Type I and CF Type II cards is the card thickness. CF
Type I is 3.3 mm thick and CF Type II cards are 5mm thick. A CF Type I card will
operate in a CF Type I or CF Type II slot. A CF Type II card will only fit in a CF Type II
slot. The electrical interfaces are identical. CompactFlash is available in both CF Type
I and CF Type II cards, though predominantly in CF Type I cards. The Microdrive is a
CF Type II card. Most CF I/O cards are CF Type I, but there are some CF Type II I/O
cards.

CompactFlash cards are designed with flash technology, a
nonvolatile storage solution that does not require a battery to
retain data indefinitely.
The CompactFlash card specification version 2.0 supports
data rates up to 16MB/sec and capacities up to 137GB.
CF cards consume only five percent of the power required by
small disk drives.

CompactFlash cards support both 3.3V and 5V operation and can be interchanged
between 3.3V and 5V systems. This means that any CF card can operate at either
voltage. Other small form factor flash cards may be available to operate at 3.3V or
5V, but any single card can operate at only one of the voltages.
CF+ data storage cards are also available using magnetic disk (IBM Microdrive).

Controller
Flash

Module(s)
Control

Data
In/Out

Compact Flash Card

Host
Interface

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

431

Modes of operation (interface modes)

Compact Flash cards can operate in three modes:

� Memory card mode
� I/O Card mode
� True IDE mode

Supported modes of operation (interface modes)

Currently, TRUE IDE and MEMORY CARD mode are supported.

432 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

Memory card mode pin functions

Signal
name

Dir Pin Description

A10 - A0 I

8, 10, 11, 1
2, 14, 15, 1
6, 17, 18, 1
9, 20

These address lines along with the -REG signal are
used to select the following: the I/O port address
registers within the CompactFlash Storage Card or
CF+ Card, the memory mapped port address regis-
ters within the CompactFlash Storage Card or CF+
Card, a byte in the card's information structure and
its configuration control and status registers.

BVD1 I/O 46 This signal is asserted high, as BVD1 is not sup-
ported.

BVD2 I/O 45 This signal is asserted high, as BVD2 is not sup-
ported.

CD1, CD2 O 26, 25

These Card Detect pins are connected to ground on
the CompactFlash Storage Card or CF+ Card. They
are used by the host to determine that the Com-
pactFlash Storage Card or CF+ Card is fully inserted
into its socket.

CE1, CE2 I 7, 32

These input signals are used both to select the card
and to indicate to the card whether a byte or a word
operation is being performed. -CE2 always accesses
the odd byte of the word. We recommend connect-
ing these pins together.

CSEL I 39 This signal is not used for this mode, but should be
grounded by the host.

D15 - D00 I/O

27 - 31
47 - 49
2 - 6
21 - 23

These lines carry the Data, Commands and Status
information between the host and the controller.
D00 is the LSB of the Even Byte of the Word. D08 is
the LSB of the Odd Byte of the Word.

GND -- 1, 5 Ground.
INPACK O 43 This signal is not used in this mode.
IORD I 34 This signal is not used in this mode.
IOWR I 35 This signal is not used in this mode.

OE (ATA
SEL) I 9

This is an Output Enable strobe generated by the
host interface. It is used to read data from the
CompactFlash Storage Card or CF+ Card in Memory
Mode and to read the CIS and configuration regis-
ters.

READY O 37

In Memory Mode, this signal is set high when the
CompactFlash Storage Card or CF+ Card is ready to
accept a new data transfer operation and is held low
when the card is busy. At power up and at Reset,
the READY signal is held low (busy) until the Com-
pactFlash Storage Card or CF+ Card has completed
its power up or reset function. No access of any
type should be made to the CompactFlash Storage
Card or CF+ Card during this time.Note, however,
that when a card is powered up and used with
+RESET continuously disconnected or asserted, the
reset function of this pin is disabled and conse-
quently the continuous assertion of +RESET will not
cause the READY signal to remain continuously in
the busy state.

Table 6.189: Pin functions in memory card mode

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

433

REG I 44

This signal is used during Memory Cycles to distin-
guish between Common Memory and Register
(Attribute) Memory accesses. High for Common
Memory, Low for Attribute Memory. To use it with
emFile, this signal should be high.

RESET I 41

When the pin is high, this signal Resets the Com-
pactFlash Storage Card or CF+ Card. The Compact-
Flash Storage Card or CF+ Card is reset only at
power up if this pin is left high or open from power-
up.

VCC -- 13, 38 +5 V, +3.3 V power.

VS1, VS2 O 33, 4

Voltage Sense Signals. -VS1 is grounded so that the
CompactFlash Storage Card or CF+ Card CIS can be
read at 3.3 volts and -VS2 is reserved by PCMCIA
for a secondary voltage.

WAIT O 42

The -WAIT signal is driven low by the CompactFlash
Storage Card or CF+ Card to signal the host to
delay completion of a memory or I/O cycle that is in
progress.

WE I 36

This is a signal driven by the host and used for
strobing memory write data to the registers of the
CompactFlash Storage Card or CF+ Card when the
card is configured in the memory interface mode.

WP O 24

The CompactFlash Storage Card or CF+ Card does
not have a write protect switch. This signal is held
low after the completion of the reset initialization
sequence.

Signal
name

Dir Pin Description

Table 6.189: Pin functions in memory card mode (Continued)

434 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

Sample block schematic

CFVCC

A020

A119

A218

A317

A416

A515

A614

A712

A811

A910

A108

D0 21

D1 22

D2 23

D3 2

D4 3

D5 4

D6
D7 6

D8 47

D9 48

D10 49

D11 27

D12 28

D13 29

D14 30

D15 31

GND 50GND 1

VS133 VS240

VCC 13VCC 38

CD2 25CD1 26

CE1_CS07

CE2_CS132

OE_ATASEL9

WE36

RESET 41

REG44 INTRQ_IREQ37

IOCS16_WP 24

WAIT_IORDY 42

STSCHG_PDIAG 46

SPKR_DASP 45

IORD34

IOWR35

INPK 43

CSEL39

10u/6,3V

CFGND

CFA1
CFA2
CFA3

CFRD

CFWRL

CFCS

CFGND

CFGND

CFVCC

CFVCC

CFGND

CFRDY

CFRES

CFD0
CFD1
CFD2
CFD3
CFD4
CFD5
CFD6
CFD7
CFD8
CFD9
CFD10
CFD11
CFD12
CFD13
CFD14
CFD15

100n

100n

100n

CFVCC

1010k

CFGND

5

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

435

6.6.2.2 IDE (ATA) Drives
Just like Compact Flash cards, ATA drives have a built-in controller to drive and con-
trol the mechanical hardware in a drive. Actually there are two types of connecting
ATA drives. 5.25 and 3.5 inch drives are using a 40 pin male interface to connect to
an IDE controller. 2.5 and 1.8 inch drives, mostly used in Notebooks and embedded
systems, have a 50 pin male interface.

Modes of operation (interface modes)

ATA drives can operate in a variety of different modes:

� PIO (Programmed I/O)
� Multiword DMA
� Ultra DMA

Supported modes of operation (interface modes)

Currently, only PIO mode through TRUE IDE is supported.

ATA drives: True IDE mode pin functions

Refer to True IDE mode pin functions on page 426 for information.

ATA drives: Hardware interfaces

6.6.3 Fail-safe operation
Unexpected Reset

The data will be preserved.

Power failure

Power failure can be critical: If the card does not have sufficient time to complete a
write operation, data may be lost. Countermeasures: make sure the power supply for
the card drops slowly.

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

Ground

DD8

DD9

DD10

DD11

DD12

DD13

DD14

DD15

key (no pin)

Ground

Ground

Ground

SPSYNC:CSEL

Ground

IOCS16Ð

PDIAGÐ

DA2

CS3FXÐ

Ground

Pin Pin SignalSignal

RESETÐ

DD7

DD6

DD5

DD4

DD3

DD2

DD1

DD0

Ground

DMARQ

DIOWÐ

DIORÐ

IORDY

DMACKÐ

INTRQ

DA1

DA0

CS1FXÐ

DASPÐ

Pin

A

C

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

Pin

B

D

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

Signal / use

master/slave jumper

master/slave jumper

no pin

Ground

DD8

DD9

DD10

DD11

DD12

DD13

DD14

DD15

key (no pin)

Ground

Ground

Ground

SPSYNC:CSEL

Ground

IOCS16–

PDIAG–

DA2

CS3FX–

Ground

+5V (motor)

Type

Signal / use

master/slave jumper

master/slave jumper

no pin

RESET–

DD7

DD6

DD5

DD4

DD3

DD2

DD1

DD0

Ground

DMARQ

DIOW–

DIOR–

IORDY

DMACK–

INTRQ

DA1

DA0

CS1FX–

DASP–

+5V (logic)

+Ground

436 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.6.4 Wear-leveling
CompactFlash card are controlled by an internal controller, this controller also han-
dles wear leveling. Therefore, the driver does not need to handle wear-leveling.

6.6.5 Configuring the driver

6.6.5.1 Adding the driver to emFile
To add the driver, use FS_AddDevice() with the driver label FS_IDE_Driver. This
function has to be called from within FS_X_AddDevices(). Refer to
FS_X_AddDevices() on page 472 for more information.

Example

FS_AddDevice(&FS_IDE_Driver);

6.6.5.2 FS_IDE_Configure()
Description

Configures the IDE/CF drive. This function has to be called from FS_X_AddDevices().
FS_IDE_Configure() can be called before or after adding the device driver to the file
system. Refer to FS_X_AddDevices() on page 472 for more information.

Prototype
void FS_IDE_Configure(U8 Unit, U8 IsSlave);

Additional information

This function only needs to be called when the device does not use the default IDE
master/slave configuration. By default, all even units (0,2,4...) are master, all odd
units are slave (1, 3, 5...).

Example

Configure 2 different IDE/CF devices:

void FS_X_AddDevices(void) {
 FS_AssignMemory(&_aMemBlock[0], sizeof(_aMemBlock));
 //
 // Add 2 instances of the IDE driver
 //
 FS_AddDevice(&FS_IDE_Driver);
 FS_AddDevice(&FS_IDE_Driver);
 //
 // Set the first unit as MASTER
 //
 FS_IDE_Configure(0, 0);
 //
 // Set the second unit as MASTER
 //
 FS_IDE_Configure(1, 0);
}

Parameter Description

Unit Unit number (0�N).
ISSlave Specifies whether the unit is connected

Table 6.190: FS_IDE_Configure() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

437

6.6.6 Hardware functions

Routine Explanation

Control line function
FS_IDE_HW_Reset() Resets the bus interface.
FS_IDE_HW_Delay400ns() Waits 400ns.
FS_IDE_HW_IsPresent() Checks if a device is present.

ATA I/O register access functions

FS_IDE_HW_ReadReg()
Reads an IDE register. Data from the IDE
register are read 16-bit wide.

FS_IDE_HW_WriteReg()
Write an IDE register. Data to the IDE
register are written 16-bit wide.

FS_IDE_HW_ReadData() Reads data from the IDE data register.
FS_IDE_HW_WriteData() Writes data to the IDE data register.

Table 6.191: CompactFlash / IDE device driver functions

438 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.6.6.1 FS_IDE_HW_Reset()
Description

Resets the bus interface.

Prototype
void FS_IDE_HW_Reset (U8 Unit);

Additional Information

This function is called, when the driver detects a new media is present. For ATA HD
drives, there is no action required and this function can be empty.

Example

void FS_IDE_HW_X_Reset(U8 Unit) {
 FS_USE_PARA(Unit);
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.192: FS_IDE_HW_Reset() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

439

6.6.6.2 FS_IDE_HW_Delay400ns()
Description

Waits 400ns.

Prototype
void FS_IDE_HW_Delay400ns (U8 Unit);

Additional Information

FS_IDE_HW_X_Delay400ns() is always called when a command is sent or parameters
are set in the IDE/CF drive. The integrated logic may need a delay of 400ns.
When using slow IDE/CF drives with fast processors this function should guarantee
that a delay of 400ns is kept.
However this function may be empty if you intend to use fast drives (Modern CF-
Cards and IDE drives are faster than 400ns when executing commands.)

Example

void FS_IDE_HW_X_Delay400ns(U8 Unit) {
 FS_USE_PARA(Unit);
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.193: FS_IDE_HW_Delay400ns() parameter list

440 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.6.6.3 FS_IDE_HW_IsPresent()
Description

Checks if the device is connected.

Prototype
U8 FS_IDE_HW_IsPresent (U8 Unit);

Return value

== 1: Device is connected.
== 0: Device is not connected.

Example

int FS_IDE_HW_IsPresent(U8 Unit) {
 FS_USE_PARA(Unit);
 return 1;
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.194: FS_IDE_HW_IsPresent() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

441

6.6.6.4 FS_IDE_HW_ReadReg()
Description

Reads an IDE register. Data from the IDE register are read 16-bit wide.

Prototype
U16 FS_IDE_HW_ReadReg (U8 Unit,
 unsigned AddrOff);

Return value

Data read from the IDE register.

Example

U16 FS_IDE_HW_ReadReg(U8 Unit, unsigned AddrOff) {
 volatile U16 * pIdeReg;

 FS_USE_PARA(Unit);
 pIdeReg = _Getp(AddrOff);
 return *pIdeReg;
}

Parameter Meaning

Unit Unit number (0�N).
AddrOff Address offset that specifies which IDE register should be read.

Table 6.195: FS_IDE_HW_ReadReg() parameter list

442 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.6.6.5 FS_IDE_HW_WriteReg()
Description

Writes an IDE register. Data to the IDE register are written 16-bit wide.

Prototype
void FS_IDE_HW_WriteReg (U8 Unit,
 unsigned AddrOff,
 U16 Data);

Example

void FS_IDE_HW_WriteReg(U8 Unit, unsigned AddrOff, U16 Data) {
 volatile U16 * pIdeReg;

 FS_USE_PARA(Unit);
 pIdeReg = _Getp(AddrOff);
 *pIdeReg = Data;
}

Parameter Meaning

Unit Unit number (0�N).
AddrOff Address offset that specifies which IDE register should be written.
Data Value that should be written to the register.

Table 6.196: FS_IDE_HW_WriteReg() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

443

6.6.6.6 FS_IDE_HW_ReadData()
Description

Reads data from the IDE data register.

Prototype
void FS_IDE_HW_ReadData (U8 Unit,
 U16 pData,
 unsigned NumBytes);

Example

void FS_IDE_HW_ReadData(U8 Unit, U8 * pData, unsigned NumBytes) {
 unsigned NumItems;
 volatile U16 * pIdeReg;
 U16 * pData16;

 pIdeReg = _Getp(AddrOff);
 NumItems = NumBytes >> 1;
 pData16 = (U16 *)pData;
 do {
 *pData16++ = *pIdeReg;
 } while (--NumItems);
}

Parameter Meaning

Unit Unit number (0�N).
pData Pointer to a read buffer.
NumBytes Number of bytes that should be read.

Table 6.197: FS_IDE_HW_ReadData() parameter list

444 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.6.6.7 FS_IDE_HW_WriteData()
Description

Writes data to the IDE data register.

Prototype
void FS_IDE_HW_WriteData (U8 Unit,
 U16 Data,
 unsigned NumBytes);

Example

void FS_IDE_HW_WriteData(U8 Unit, const U8 * pData, unsigned NumBytes) {
 unsigned NumItems;
 volatile U16 * pIdeReg;
 U16 * pData16;

 pIdeReg = _Getp(AddrOff);
 NumItems = NumBytes >> 1;
 pData16 = (U16 *)pData;
 do {
 *pIdeReg = *pData16++;
 } while (--NumItems);
}

Parameter Meaning

Unit Unit number (0�N).
pData Pointer to a buffer of data which should be written.
NumBytes Number of bytes that should be read.

Table 6.198: FS_IDE_HW_WriteData() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

445

6.6.7 Additional information
The emFile's generic CompactFlash & IDE device driver can be used to access most
ATA HD drives or CompactFlash storage cards also known as CF using true IDE or
Memory card mode. For details on CompactFlash cards, check the specification,
which is available at:

 http://www.compactflash.org/

Information about the AT Attachment interface can be found at the Technical Com-
mittee T13, who is responsible for the ATA standard:

 http://www.t13.org/

6.6.8 Performance and resource usage

6.6.8.1 ROM usage
The ROM usage depends on the compiler options, the compiler version, and the used
CPU. The memory requirements of the IDE/CF driver displayed in the table have been
measured on a system as follows: ARM7, IAR Embedded Workbench V4.41A, Thumb
mode, Size optimization.

6.6.8.2 Static RAM usage
Static RAM usage is the amount of RAM required by the driver for variables inside the
driver. The number of bytes can be seen in a compiler list file

Static RAM usage of the IDE/CF driver: 24 bytes.

6.6.8.3 Performance
These performance measurements are in no way complete, but they give an approxi-
mation of the length of time required for common operations on various targets. The
tests were performed as described in Performance on page 502.

All values are in Mbytes/sec.

Module
ROM

[Kbytes]

emFile IDE/CF driver 1.6

Device
CPU

speed
Medium W R

LogicPD LH79520 51 MHz IDE mem-mapped 1.4 1.7

Cogent EP7312 74 MHz CompacFlash card,
True IDE mode 1.9 2.5

Cogent EP7312 74 MHz HDD, True IDE mode 1.7 2.4
Table 6.199: Performance values for sample configurations

446 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.7 WinDrive driver
The purpose of this driver is to run emFile for test and simulation purposes on a PC
running Windows. Refer to the chapter Getting started on page 27 for a sample using
the WinDrive driver.

6.7.1 Supported hardware
This driver is compatible with use any Windows logical driver on a Windows NT sys-
tem.

Be aware, that Win9X is not supported, because it cannot access logical
drives with �CreateFile�.

6.7.2 Theory of operation
emFile supports in this version FAT and EFS file systems only. NTFS logical drives
cannot be accessed by emFile. It can be used either to store/access files on a floppy
disk or using an USB-Card reader for accessing flash cards. It works also on FAT for-
matted hard disks or partitions.

Note: Do not use this driver on partitions containing important data. It is prima-
rily meant to be used for evaluation purposes. Problems may occur if the program
using emFile is debugged or terminated using the task manager.

6.7.3 Fail-safe operation
Although not important since the driver is not designed to be used in an embedded
device, the data is normally safe. Data safety is handled by the underlying operating
system and hardware.

6.7.4 Wear leveling
The driver does not need wear leveling.

6.7.5 Configuring the driver

6.7.5.1 Adding the driver to emFile
To add the driver use FS_AddDevice() with the driver label FS_WINDRIVE_Driver.
This function has to be called from within FS_X_AddDevices(). Refer to
FS_X_AddDevices() on page 472 for more information.

Example

FS_AddDevice(&FS_WINDRIVE_Driver);

6.7.5.2 WINDRIVE_Configure()
Description

Configures a windows drive instance. This function has to be called from within
FS_X_AddDevices() after adding an instance of the Windrive driver. Refer to
FS_X_AddDevices() on page 472 for more information.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

447

Prototype
void WINDRIVE_Configure(U8 Unit, const char * sDriveName);

Additional information

If sDriveName is NULL a configuration dialog will be opened to select which drive
should be used.

6.7.6 Hardware functions
The WinDrive driver does not need any hardware functions.

6.7.7 Additional information
None.

Parameter Description

Unit Unit number (0�n).

sDriveName
Pointer to string which contains the windows drive name.
For example:"\\\\.\\a:"

Table 6.200: FS_Windrive_Configure() parameter list

448 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.8 Writing your own driver
If you are going to use emFile with your own hardware, you may have to write your
own device driver. This section describes which functions are required and how to
integrate your own device driver into emFile.

6.8.1 Device driver functions
This section provides descriptions of the device driver functions required by emFile.
Note that the names used for these functions are not really relevant for emFile
because the file system accesses them through a function table.

Routine Explanation

AddDevice() Adds a device to file system.
GetName() Returns the name of the device.
GetNumUnits() Returns the number of units.
GetStatus() Returns the Status of the device.
InitMedium() Initializes the device.
IoCtl() Executes a special command on a device.
Read() Reads data from a device.
Write() Writes data to a device.

Table 6.201: Device driver functions

Storage Layer

Device Driver
Function Table

GetName

Call function in
table

Read

AddDevice GetStatus

GetNumUnits

InitMedium

IoCtlWrite

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

449

6.8.2 Device driver function table
emFile uses function tables to call the appropriate driver function for a device.

Data structure
typedef struct {
 const char * (*pfGetName) (U8 Unit);
 int (*pfAddDevice) (void);
 int (*pfRead) (U8 Unit,
 U32 SectorNo,
 void * pBuffer,
 U32 NumSectors);
 int (*pfWrite) (U8 Unit,
 U32 SectorNo,
 const void * pBuffer,
 U32 NumSectors,
 U8 RepeatSame);
 int (*pfIoCtl) (U8 Unit,
 I32 Cmd,
 I32 Aux,
 void * pBuffer);
 int (*pfInitMedium) (U8 Unit);
 int (*pfGetStatus) (U8 Unit);
 int (*pfGetNumUnits) (void);
} FS_DEVICE_TYPE;

Elements of FS_DEVICE_TYPE

Example

/* sample implementation taken from the RAM device driver */

const FS_DEVICE_TYPE FS_RAMDISK_Driver = {
 _GetDriverName,
 _AddDevice,
 _Read,
 _Write,
 _IoCtl,
 NULL,
 _GetStatus,
 _GetNumUnits
};

Element Meaning

pfGetName Pointer to a function that returns the name of the driver.
pfRead Pointer to the device read sector function.
pfWrite Pointer to the device write sector function.
pfIoCtl Pointer to the device IoCtl function.
pfInitMedium Pointer to the medium initialization function. (optional)
pfGetStatus Pointer to the device status function.
pfGetNumUnits Pointer to a function that returns the number of available devices.

Table 6.202: FS_DEVICE_TYPE - List of structure member variables

450 CHAPTER 6 Device drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

6.8.3 Integrating a new driver
There is an empty skeleton driver called generic in the Sample\Driver\DriverTem-
plate\ folder. This driver can be easily modified to get any block oriented storage
device working with the file system.

To add the driver to emFile, FS_AddDevice() should be called from within
FS_X_AddDevices() to mount the device driver to emFile before accessing the device
or its units. Refer to FS_X_AddDevices() on page 472 for more information.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

451

Chapter 7

Logical drivers

Optional software components located between file system layer and device driver
layer which extend the functionality of emFile.

452 CHAPTER 7 Logical drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

7.1 General information

7.1.1 Default logical driver names
By default the following identifiers are used for each driver.

To add a logical driver to emFile, FS_AddDevice() should be called with the proper
identifier. Refer to FS_AddDevice() on page 59 for detailed information.

7.1.2 Unit number
Most driver functions receive the unit number as the first parameter. The unit number
allows distinction between the different instances of the same driver type.

Driver (Logical) Identifier Name

Storage partitioning FS_DISKPART_Driver "diskpart:"

Encryption FS_CRYPT_Driver "crypt:"

Sector read-ahead FS_READAHEAD_Driver "rah:"

Sector size adapter FS_SECSIZE_Driver "secsize:"

Sector write buffer FS_WRBUF_Driver "wrbuf:"

RAID FS_RAID1_Driver "raid:"
Table 7.1: List of default logical driver labels

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

453

7.2 Disk partition driver
This logical driver can be used to access storage medium partitions as defined in a
Master Boot Record (MBR). MBR contains information about how the storage medium
is divided and an optional machine code for bootstrapping PC-compatible computers.
It is always stored on the first physical sector of the storage medium. The partition-
ing information is stored in a partition table which contains 4 entries each 16 byte
large. Each entry stores the following information about the partition:

The driver uses only the information stored in a valid partition table entry. Invalid
partition table entries are ignored. The position and the size of the partition are
taken from the last 2 fields. The cylinder/head/sector information and the partition
type are also ignored.

A separate volume is assigned to each driver instance. The volumes can be accessed
using the following names: "diskpart:0:", "diskpart:1:", etc.

Note: This logical driver is not required if an application should access only the
first storage medium partition, as emFile will use this partition by default.

7.2.1 Configuring the driver
To add the driver, use FS_AddDevice() with the driver identifier set to
FS_DISKPART_Driver. This function has to be called from within FS_X_AddDevices().
Refer to FS_X_AddDevices() on page 472 for more information.

7.2.1.1 FS_DISKPART_Configure()
Description

Configures an instance of the logical driver. This function has to be called from within
FS_X_AddDevices() after adding the logical driver instance. Refer to
FS_X_AddDevices() on page 472 for more information.

Prototype
void FS_DISKPART_Configure(U8 Unit,
 const FS_DEVICE_TYPE * pDevice,
 U8 DeviceUnit,
 U8 PartIndex);

Offset
[bytes]

Size
[byte]

Description

0 1

Partition status:
� 0x80 - bootable
� 0x00 - non-bootable
� else - invalid

1 3 First sector in the partition as cylinder/head/sector address
4 1 Partition type
5 3 Last sector in the partition as cylinder/head/sector address
8 4 First sector in the partition as logical block address
12 4 Number of sectors in the partition

Table 7.2: Partition table entry layout

Parameter Description

Unit Unit number of the instance to configure.
Table 7.3: FS_DISKPART_Configure() parameter list

454 CHAPTER 7 Logical drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

Additional information

The function does not access the storage medium. It simply stores the parameters to
driver instance. The size and the position of the partition is read from MBR on the
first access to storage medium.

Example

This example demonstrates how to configure emFile to access the first 2 MBR parti-
tions of an SD card.

#define ALLOC_SIZE 2048 // Size of emFile memory pool

static U32 _aMemBlock[ALLOC_SIZE / 4];

/***
*
* FS_X_AddDevices
*
* Function description
* This function is called by the FS during FS_Init().
* It is supposed to add all devices, using primarily FS_AddDevice().
*
* Note
* (1) Other API functions
* Other API functions may NOT be called, since this function is called
* during initialisation. The devices are not yet ready at this point.
*/
void FS_X_AddDevices(void) {
 U8 DeviceUnit;
 U8 PartIndex;
 U8 Unit;

 FS_AssignMemory(_aMemBlock, sizeof(_aMemBlock));
 //
 // Add SD/MMC card device driver.
 //
 DeviceUnit = 0;
 FS_AddPhysDevice(&FS_MMC_CardMode_Driver);
 //
 // Configure logical driver to access the first MBR partition.
 // Partition will be mounted as volume “diskpart:0:“.
 //
 PartIndex = 0;
 Unit = 0;
 FS_AddDevice(&FS_DISKPART_Driver);
 FS_DISKPART_Configure(Unit, &FS_MMC_CardMode_Driver, DeviceUnit, PartIndex);
 //
 // Configure logical driver to access the second MBR partition.
 // Partition will be mounted as volume “diskpart:1:“.
 //
 PartIndex = 1;
 Unit = 1;
 FS_AddDevice(&FS_DISKPART_Driver);
 FS_DISKPART_Configure(Unit, &FS_MMC_CardMode_Driver, DeviceUnit, PartIndex);
}

pDevice
IN: Device driver used to access the storage medium
OUT: ---

DeviceUnit Unit number of device driver.

PartIndex
Index in the partition table of the partition to be accessed. 0 is the
fist partition, 1 is the second, etc.

Parameter Description

Table 7.3: FS_DISKPART_Configure() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

455

7.2.2 Performance and resource usage

7.2.2.1 ROM usage
The ROM usage depends on the compiler options, the compiler version and the used
CPU. The memory requirements of the driver presented in the tables below have
been measured using the following system: Cortex-M4, IAR Embedded Workbench
V6.30, Size optimization.

7.2.2.2 Static RAM usage
Static RAM usage is the amount of RAM required by the driver for variables inside of
the driver. The number of bytes can be seen in a compiler list file.

Static RAM usage of driver: 20 bytes

7.2.2.3 Runtime RAM usage
Runtime RAM usage is the amount of RAM allocated by the driver at runtime.

Runtime RAM usage of driver: 18 bytes

Module
ROM

[kBytes]

emFile Disk partition driver 1.5

456 CHAPTER 7 Logical drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

7.3 Encryption driver
This is an additional logical driver which can be used to protect the file system data
against unauthorized access. The data is encrypted using a very efficient implemen-
tation of the Data Encryption Standard and of the Advanced Encryption Standard
(AES) algorithm. AES algorithms are provided for 128-bit and 256-bit key lengths.

The logical driver can be used with both FAT and EFS file systems and with any sup-
ported storage medium.

A separate volume is assigned to each driver instance. The volumes can be accessed
using the following names: "crypt:0:", "crypt:1:", etc.

Theory of operation

The sector data is transformed to make it unreadable for anyone which tries to read
it directly. The operation which makes the data unreadable is called encryption and is
performed when the file system writes the sector data. When the contents of a sector
is read the reversed operation takes place which makes the data readable. This is
called decryption. Both operations use a cryptographic algorithm and a key to trans-
form the data. The same key is used for encryption and decryption. Without the
knowledge of the key it is not possible to decrypt the data.

7.3.1 Configuring the driver
To add the driver, call FS_AddDevice() with the driver identifier set to
FS_CRYPT_Driver. This function has to be called from within FS_X_AddDevices().
Refer to FS_X_AddDevices() on page 472 for more information.

7.3.1.1 FS_CRYPT_Configure()
Description

Configures a driver instance. The function must be called from within
FS_X_AddDevices() after the creation of driver instance. Refer to
FS_X_AddDevices() on page 472 for more information.

Prototype
void FS_CRYPT_Configure(U8 Unit,
 const FS_DEVICE_TYPE * pDevice,
 U8 DeviceUnit,
 const FS_CRYPT_ALGO_TYPE * pAlgoType,
 void * pContext,
 const U8 * pKey);

Parameter Description

Unit Unit number of the driver instance to configure.

pDevice
IN: Device driver used to access the storage medium
OUT: ---

DeviceUnit Unit number of device driver.

pAlgoType
IN: Type of encryption algorithm
OUT: ---

pContext
IN: Data specific to inception algorithm
OUT: ---

pKey
IN: Password for data encryption/decryption
OUT: ---

Table 7.4: FS_CRYPT_Configure() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

457

Additional information

The pContext memory location is passed to as parameter to encryption/decryption
routines. It should remain valid from the moment the driver is configured until the
FS_DeInit() function is called.

The number of bytes in pKey array should match the size of the key required by the
encryption algorithm.

Example

This example demonstrates how to configure emFile to secure the data of an SD card
using the AES algorithm with 128-bit key.

#define ALLOC_SIZE 2048 // Size of emFile memory pool

static U32 _aMemBlock[ALLOC_SIZE / 4];
static FS_AES_CONTEXT _Context;

/***
*
* FS_X_AddDevices
*
* Function description
* This function is called by the FS during FS_Init().
* It is supposed to add all devices, using primarily FS_AddDevice().
*
* Note
* (1) Other API functions
* Other API functions may NOT be called, since this function is called
* during initialisation. The devices are not yet ready at this point.
*/
void FS_X_AddDevices(void) {
 U8 DeviceUnit;
 U8 PartIndex;
 U8 Unit;

 U8 aPass[16] = {'s', 'e', 'c', 'r', 'e', 't'};

 FS_AssignMemory(_aMemBlock, sizeof(_aMemBlock));
 //
 // Add SD/MMC card device driver.
 //
 DeviceUnit = 0;
 FS_AddPhysDevice(&FS_MMC_CardMode_Driver);
 FS_MMC_CM_Allow4bitMode(0, 1);
 //
 // Add the encryption driver. The storage can be accessed as volume “crypt:0:“.
 //
 Unit = 0;
 FS_AddDevice(&FS_CRYPT_Driver);
 FS_CRYPT_Configure(Unit,
 &FS_MMC_CardMode_Driver,
 DeviceUnit,
 &FS_CRYPT_ALGO_AES128,
 &_Context,
 aPass);
}

Permitted values for parameter pAlgoType

FS_CRYPT_ALGO_DES DES encryption using a 56-bit key.
FS_CRYPT_ALGO_AES128 AES encryption using a 128-bit key.
FS_CRYPT_ALGO_AES256 AES encryption using a 256-bit key.

458 CHAPTER 7 Logical drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

7.3.2 Performance and resource usage

7.3.2.1 ROM usage
The ROM usage depends on the compiler options, the compiler version and the used
CPU. The memory requirements of the driver presented in the tables below have
been measured using the following system: Cortex-M4, IAR Embedded Workbench
V6.30, Size optimization.

In addition, one of the following cryptographic algorithms is required:

7.3.2.2 Static RAM usage
Static RAM usage is the amount of RAM required by the driver for variables inside of
the driver. The number of bytes can be seen in a compiler list file.

Static RAM usage of driver: 24 bytes

7.3.2.3 Runtime RAM usage
Runtime RAM usage is the amount of RAM allocated by the driver at runtime. The
amount required depends on the runtime configuration and on the selected encryp-
tion algorithm.

Every driver instance requires 16 bytes. In addition the context of the AES encryption
algorithm requires 480 bytes and of the DES encryption algorithm 128 bytes.

7.3.2.4 Performance
These performance measurements are in no way complete, but they give an approxi-
mation of the length of time required for common operations on various targets. The
tests were performed as described in Performance on page 502.

All values are in kBytes/sec.

Module
ROM

[Kbytes]

emFile Encryption driver 1.3

Physical layer Description
ROM

[Kbytes]

FS_CRYPT_ALGO_DES DES encryption algorithm. 3.2
FS_CRYPT_ALGO_AES128 AES encryption algorithm using an 128-bit key. 12.0
FS_CRYPT_ALGO_AES256 AES encryption algorithm using a 256-bit key. 12.0

Device
CPU

speed
Medium W R

ST STM32F207 96 MHz SD card as storage medium using
AES with an 128-bit key 639 661

Freescale Kinetis K60 120 MHz NAND flash interfaced via 8-bit bus
using AES with an 128-bit key. 508 550

Table 7.5: Performance values for sample configurations

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

459

7.4 Sector read-ahead driver
The driver reads in advance more sectors than requested and caches them to pro-
vided buffer. The maximum number of sectors which fit in the buffer are read at
once. If the requested sectors are present in the buffer the driver returns the cached
sector contents and the storage medium is not accessed. The driver should be used
on SD/MMC/eMMC storage mediums where reading single sectors is less efficient
than reading all the sectors at once. By default the driver is not active. The file sys-
tem activates the driver when the allocation table is searched for free clusters. This
will improve performance in the case where the whole allocation table needs to be
scanned. To activate the support for read-ahead in the file system the
FS_SUPPORT_READ_AHEAD define must be set to 1 in FS_Conf.h. Both FAT and EFS file
systems support read-ahead.

7.4.1 Configuring the driver
To add the driver, call FS_AddDevice() with the driver identifier set to
FS_READAHEAD_Driver. This function has to be called from within
FS_X_AddDevices(). Refer to FS_X_AddDevices() on page 472 for more information.

7.4.1.1 FS_READAHEAD_Configure()
Description

Configures an instance of the logical driver. This function has to be called from within
FS_X_AddDevices() after adding the logical driver instance. Refer to
FS_X_AddDevices() on page 472 for more information.

Prototype
void FS_READAHEAD_Configure(U8 Unit,
 const FS_DEVICE_TYPE * pDevice,
 U8 DeviceUnit,
 U32 * pData,
 U32 NumBytes);

Additional information

The read buffer should be at least one sector large.

Example

This example demonstrates how to configure the access to an SD card.

Parameter Description

Unit Unit number of the driver instance to configure.

pDevice
IN: Device driver used to access the storage medium
OUT: ---

DeviceUnit Unit number of device driver.
pData Buffer to store the sector data read from storage medium.
NumBytes Number of bytes in the read buffer.

Table 7.6: FS_READAHEAD_Configure() parameter list

460 CHAPTER 7 Logical drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

#define ALLOC_SIZE 2048 // Size of emFile memory pool
#define BUFFER_SIZE 4096

static U32 _aMemBlock[ALLOC_SIZE / 4];
static U32 _aReadBuffer[BUFFER_SIZE / 4];

/***
*
* FS_X_AddDevices
*
* Function description
* This function is called by the FS during FS_Init().
* It is supposed to add all devices, using primarily FS_AddDevice().
*
* Note
* (1) Other API functions
* Other API functions may NOT be called, since this function is called
* during initialisation. The devices are not yet ready at this point.
*/
void FS_X_AddDevices(void) {

 FS_AssignMemory(_aMemBlock, sizeof(_aMemBlock));
 //
 // Add SD/MMC card device driver.
 //
 FS_AddPhysDevice(&FS_MMC_CardMode_Driver);
 //
 // Add and configure the read-ahead driver. Volume name: “rah:0:“
 //
 FS_AddDevice(&FS_READAHEAD_Driver);
 FS_READAHEAD_Configure(0, &FS_MMC_CardMode_Driver, 0,
 _aReadBuffer, sizeof(_aReadBuffer));
}

7.4.2 Performance and resource usage

7.4.2.1 ROM usage
The ROM usage depends on the compiler options, the compiler version and the used
CPU. The memory requirements of the driver presented in the tables below have
been measured using the following system: Cortex-M4, IAR Embedded Workbench
V6.30, Size optimization.

7.4.2.2 Static RAM usage
Static RAM usage is the amount of RAM required by the driver for variables inside of
the driver. The number of bytes can be seen in a compiler list file.

Static RAM usage of driver: 20 bytes

7.4.2.3 Runtime RAM usage
Runtime RAM usage is the amount of RAM allocated by the driver at runtime.

Runtime RAM usage of driver: 30 bytes

7.4.2.4 Performance
The detection of free space is 2 times faster when a 4KB read ahead buffer is used
(measured on 4GB SD card formatted with 4KB clusters).

Module
ROM

[kBytes]

emFile Read-ahead driver 1.4

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

461

7.5 Sector size adapter driver
The logical driver supports the access to a storage medium using a sector size differ-
ent than that of the underlying layer (typically a storage driver). The sector size of
logical driver is configurable and can be larger or smaller than the sector size of the
below layer.

Typically, the logical driver is placed between the file system and a storage driver and
it is configured with a sector size smaller than that of the storage layer to help
reduce the RAM usage of the internal sector buffers of the file system.

7.5.1 Configuring the driver
To add the driver, call FS_AddDevice() with the driver identifier set to
FS_SECSIZE_Driver. This function has to be called from within FS_X_AddDevices().
Refer to FS_X_AddDevices() on page 472 for more information.

7.5.1.1 FS_SECSIZE_Configure()
Description

Configures an instance of the logical driver. This function has to be called from within
FS_X_AddDevices() after adding the logical driver instance. Refer to
FS_X_AddDevices() on page 472 for more information.

Prototype
void FS_SECSIZE_Configure(U8 Unit,
 const FS_DEVICE_TYPE * pDevice,
 U8 DeviceUnit,
 U16 BytesPerSector);

Additional information

The sector size should be a power of 2 value.

Example

This example demonstrates how to configure the logical driver to access a NAND
flash via the Universal NAND driver.

Parameter Description

Unit Unit number of the driver instance to configure.

pDevice
IN: Device driver used to access the storage medium
OUT: ---

DeviceUnit Unit number of device driver.
BytesPerSector Sector size in bytes presented to file system.

Table 7.7: FS_SECSIZE_Configure() parameter list

462 CHAPTER 7 Logical drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

#define ALLOC_SIZE 0x8000 // Size of emFile memory pool

static U32 _aMemBlock[ALLOC_SIZE / 4];

/***
*
* FS_X_AddDevices
*
* Function description
* This function is called by the FS during FS_Init().
* It is supposed to add all devices, using primarily FS_AddDevice().
*
* Note
* (1) Other API functions
* Other API functions may NOT be called, since this function is called
* during initialisation. The devices are not yet ready at this point.
*/
void FS_X_AddDevices(void) {

 FS_AssignMemory(_aMemBlock, sizeof(_aMemBlock));
 //
 // Add NAND flash device driver.
 //
 FS_AddPhysDevice(&FS_NAND_UNI_Driver);
 FS_NAND_UNI_SetPhyType(0, &FS_NAND_PHY_ONFI);
 FS_NAND_UNI_SetECCHook(0, &FS_NAND_ECC_HW_NULL);
 //
 // Add sector conversion logical driver.
 //
 FS_AddDevice(&FS_SECSIZE_Driver);
 FS_SECSIZE_Configure(0, &FS_NAND_UNI_Driver, 0, 512);
}

7.5.2 Performance and resource usage

7.5.2.1 ROM usage
The ROM usage depends on the compiler options, the compiler version and the used
CPU. The memory requirements of the driver presented in the tables below have
been measured using the following system: Cortex-M4, IAR Embedded Workbench
V6.30, Size optimization.

7.5.2.2 Static RAM usage
Static RAM usage is the amount of RAM required by the driver for variables inside of
the driver. The number of bytes can be seen in a compiler list file.

Static RAM usage of driver: 20 bytes

7.5.2.3 Runtime RAM usage
Runtime RAM usage is the amount of RAM allocated by the driver at runtime.

Runtime RAM usage of driver: 30 bytes + sector size of storage driver if it is larger
than the sector size configured for the logical driver.

Module
ROM

[kBytes]

emFile Sector size driver 1.1

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

463

7.6 Sector write buffer driver
This driver has been designed to help improving the write performance of the file
system. It operates by temporarily storing the sector data to RAM which takes signif-
icantly less time than writing it directly to a storage. The sector data is written later
to storage at the request of the application or when the internal buffer is full. The
sectors are written to storage in the same order in which they were written by the file
system.

Some of the advantages of using this driver are:

� a file system write operation blocks for a very short period of time
� the number write operations is reduced when the same sector is written in suc-

cession
� the driver can be used with activated Journal since the write order is preserved

The internal buffer can be cleaned from application by calling the
FS_STORAGE_Sync() API function. The function blocks until all sectors stored in the
internal buffer are written to storage. Typically, this function should be called from a
low priority task when the application does not access the file system.

7.6.1 Configuring the driver
To add the driver, call FS_AddDevice() with the driver identifier set to
FS_WRBUF_Driver. This function has to be called from within FS_X_AddDevices().
Refer to FS_X_AddDevices() on page 472 for more information.

7.6.1.1 FS_WRBUF_Configure()
Description

Configures an instance of the logical driver. This function has to be called from within
FS_X_AddDevices() after adding the logical driver instance. Refer to
FS_X_AddDevices() on page 472 for more information.

Prototype
void FS_WRBUF_Configure(U8 Unit,
 const FS_DEVICE_TYPE * pDevice,
 U8 DeviceUnit,
 void * pBuffer,
 U32 NumBytes);

Additional information

The FS_SIZEOF_WRBUF() define can be used to compute the number of bytes
required to store a given number of sectors. The first parameter specifies the number
of sectors while the second one represents the size of the sector in bytes.

Example

This example demonstrates how to configure the logical driver to access a NOR flash
via the NOR flash block-mode driver.

Parameter Description

Unit Unit number of the driver instance to configure.

pDevice
IN: Device driver used to access the storage medium
OUT: ---

DeviceUnit Unit number of device driver.
pBuffer Memory to store the sector list.
NumBytes Number of bytes allocated for the sector list.

Table 7.8: FS_WRBUF_Configure() parameter list

464 CHAPTER 7 Logical drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

#define ALLOC_SIZE 0x1000 // Size of emFile memory pool

static U32 _aMemBlock[ALLOC_SIZE / 4];
static U32 _aWriteBuffer[FS_SIZEOF_WRBUF(8, 512) / 4];

/***
*
* FS_X_AddDevices
*
* Function description
* This function is called by the FS during FS_Init().
* It is supposed to add all devices, using primarily FS_AddDevice().
*
* Note
* (1) Other API functions
* Other API functions may NOT be called, since this function is called
* during initialisation. The devices are not yet ready at this point.
*/
void FS_X_AddDevices(void) {

 FS_AssignMemory(_aMemBlock, sizeof(_aMemBlock));
 //
 // Add and configure the NOR flash driver.
 //
 FS_AddPhysDevice(&FS_NOR_BM_Driver);
 FS_NOR_BM_SetPhyType(0, &FS_NOR_PHY_ST_M25);
 FS_NOR_BM_Configure(0, 0, 0, 0x100000uL);
 //
 // Add and configure the write buffer driver.
 //
 FS_AddDevice(&FS_WRBUF_Driver);
 FS_WRBUF_Configure(0, &FS_MMC_CardMode_Driver, 0,
 _aWriteBuffer, sizeof(_aWriteBuffer));
}

7.6.2 Performance and resource usage

7.6.2.1 ROM usage
The ROM usage depends on the compiler options, the compiler version and the used
CPU. The memory requirements of the driver presented in the tables below have
been measured using the following system: Cortex-M4, IAR Embedded Workbench
V6.30, Size optimization.

7.6.2.2 Static RAM usage
Static RAM usage is the amount of RAM required by the driver for variables inside of
the driver. The number of bytes can be seen in a compiler list file.

Static RAM usage of driver: 20 bytes

7.6.2.3 Runtime RAM usage
Runtime RAM usage is the amount of RAM allocated by the driver at runtime.

Runtime RAM usage of driver: 32 bytes.

Module
ROM

[kBytes]

emFile Sector write buffer driver 1.2

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

465

7.7 RAID1 driver
The driver provides increased data integrity by keeping a copy of each sector data. It
uses a primary (main) storage and a secondary (mirror) storage. The data is written
to both primary and secondary storage and is read from the primary storage. In case
of a read error the data is recovered by reading it from the secondary storage.

The driver can be configured to store the data on a single volume or on two separate
volumes. In the case a single volume is configured the first half is used as primary
storage. When using two volumes they do not need to have the same number of sec-
tors. The number of sectors available to file system will be that of the smallest vol-
ume. It is required that both volumes have the same sector size. If necessary the
sector size can be adapted using the SECSIZE logical driver. For more information
refer to Sector size adapter driver on page 461.

NAND flash error recovery

The Universal NAND driver can make use of the RAID driver to avoid a data loss when
an ECC error happens during a read operation. This feature is by default disabled and
it can be enabled at compile time by setting the FS_NAND_ENABLE_ERROR_RECOVERY
switch to 1 in FS_Conf.h.

Sector data synchronization

A sudden reset which interrupts a write operation can lead to an inconsistency where
the data of the last written sector is stored only to primary storage but not to sec-
ondary storage. After restart the file system will continue to operate correctly but in
case of an read error affecting this sector old data is read from secondary storage
which might cause a data corruption. This situation can be prevented by synchroniz-
ing all the sectors on the storage. The application can perform the synchronization by
calling the FS_STORAGE_SyncSectors() API function in a low priority task or after the
file system initialization. For an example refer to FS_RAID1_SetSyncBuffer() on
page 468.

7.7.1 Configuring the driver

7.7.1.1 FS_RAID1_Configure()
Description

Configures an instance of the logical driver. This function has to be called from within
FS_X_AddDevices() after adding the logical driver instance. Refer to
FS_X_AddDevices() on page 472 for more information.

Prototype
void FS_RAID1_Configure(U8 Unit,
 const FS_DEVICE_TYPE * pPrimaryDeviceType,
 U8 PrimaryDeviceUnit,
 const FS_DEVICE_TYPE * pSecondaryDeviceType,
 U8 SecondaryDeviceUnit);;

Parameter Description

Unit Unit number of the driver instance to configure.
pPrimaryDeviceType Device driver used to access the main storage medium.
PrimaryDeviceUnit Unit number of primary device driver.
pSecondaryDeviceType Device driver used to access the mirror storage medium.
SecondaryDeviceUnit Unit number of secondary device driver.

Table 7.9: FS_RAID1_Configure() parameter list

466 CHAPTER 7 Logical drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

Additional information

If the same device type and unit number is specified for the primary and the second-
ary storage the first half of the storage medium will be used for the primary (main)
storage while the second half will be used for the secondary (mirror) storage.

Example

The following example shows how to configure RAID on a single volume.

#define ALLOC_SIZE 0x8000 // Size of the memory pool in bytes

static U32 _aMemBlock[ALLOC_SIZE / 4]; // Memory pool used for
 // semi-dynamic allocation.

/***
*
* FS_X_AddDevices
*
* Function description
* This function is called by the FS during FS_Init().
* It is supposed to add all devices, using primarily FS_AddDevice().
*
* Note
* (1) Other API functions
* Other API functions may NOT be called, since this function is called
* during initialization. The devices are not yet ready at this point.
*/
void FS_X_AddDevices(void) {
 //
 // Give the file system some memory to work with.
 //
 FS_AssignMemory(&_aMemBlock[0], sizeof(_aMemBlock));
 //
 // Set the file system sector size.
 //
 FS_SetMaxSectorSize(2048);
 //
 // Add and configure the first NAND driver.
 //
 FS_AddDevice(&FS_NAND_UNI_Driver);
 FS_NAND_UNI_SetPhyType(0, &FS_NAND_PHY_ONFI);
 FS_NAND_UNI_SetECCHook(0, &FS_NAND_ECC_HW_NULL);
 //
 // Add and configure the RAID driver.
 //
 FS_AddDevice(&FS_RAID1_Driver);
 FS_RAID1_Configure(0, &FS_NAND_UNI_Driver, 0, &FS_NAND_UNI_Driver, 0);
}

The next example demonstrates how to configure a RAID on 2 separate volumes.

#define ALLOC_SIZE 0x8000 // Size of the memory pool in bytes

static U32 _aMemBlock[ALLOC_SIZE / 4]; // Memory pool used for
 // semi-dynamic allocation.

/***
*
* FS_X_AddDevices
*
* Function description
* This function is called by the FS during FS_Init().
* It is supposed to add all devices, using primarily FS_AddDevice().
*
* Note
* (1) Other API functions
* Other API functions may NOT be called, since this function is called
* during initialization. The devices are not yet ready at this point.
*/
void FS_X_AddDevices(void) {
 //
 // Give the file system some memory to work with.
 //
 FS_AssignMemory(&_aMemBlock[0], sizeof(_aMemBlock));
 //
 // Set the file system sector size.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

467

 //
 FS_SetMaxSectorSize(2048);
 //
 // Add and configure the NAND driver for the primary storage.
 //
 FS_AddDevice(&FS_NAND_UNI_Driver);
 FS_NAND_UNI_SetPhyType(0, &FS_NAND_PHY_ONFI);
 FS_NAND_UNI_SetECCHook(0, &FS_NAND_ECC_HW_NULL);
 //
 // Add and configure the NAND driver for the secondary storage.
 //
 FS_AddDevice(&FS_NAND_UNI_Driver);
 FS_NAND_UNI_SetPhyType(1, &FS_NAND_PHY_ONFI);
 FS_NAND_UNI_SetECCHook(1, &FS_NAND_ECC_HW_NULL);
 //
 // Add and configure the RAID driver.
 //
 FS_AddDevice(&FS_RAID1_Driver);
 FS_RAID1_Configure(0, &FS_NAND_UNI_Driver, 0, &FS_NAND_UNI_Driver, 1);
}

7.7.1.2 FS_RAID1_SetSectorRanges()
Description

Specifies an area which should be used as storage.

Prototype
void FS_RAID1_SetSectorRanges(U8 Unit,
 U32 NumSectors,
 U32 PrimaryStartSector,
 U32 SecondaryStartSector);

Additional information

This function is optional and it must be called from within FS_X_AddDevices() after
adding the logical driver instance. Refer to FS_X_AddDevices() on page 472 for more
information. An error is reported when trying to access the RAID volume if the sector
range is invalid or it does not fit into device.

Example

This example configures a RAID volume of 10000 sectors. The primary storage starts
at sector index 0 and the secondary storage at sector index 10000.

Parameter Description

Unit Unit number of the driver instance to configure.
NumSectors Number of the sectors to be used a storage.
PrimaryStartSector Index of the first sector to be used on the primary storage.

SecondaryStartSector
Index of the first sector to be used on the secondary stor-
age.

Table 7.10: FS_RAID1_SetSectorRanges() parameter list

468 CHAPTER 7 Logical drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

#define ALLOC_SIZE 0x8000 // Size of the memory pool in bytes

static U32 _aMemBlock[ALLOC_SIZE / 4]; // Memory pool used for
 // semi-dynamic allocation.

/***
*
* FS_X_AddDevices
*
* Function description
* This function is called by the FS during FS_Init().
* It is supposed to add all devices, using primarily FS_AddDevice().
*
* Note
* (1) Other API functions
* Other API functions may NOT be called, since this function is called
* during initialization. The devices are not yet ready at this point.
*/
void FS_X_AddDevices(void) {
 //
 // Give the file system some memory to work with.
 //
 FS_AssignMemory(&_aMemBlock[0], sizeof(_aMemBlock));
 //
 // Set the file system sector size.
 //
 FS_SetMaxSectorSize(2048);
 //
 // Add and configure the first NAND driver.
 //
 FS_AddDevice(&FS_NAND_UNI_Driver);
 FS_NAND_UNI_SetPhyType(0, &FS_NAND_PHY_ONFI);
 FS_NAND_UNI_SetECCHook(0, &FS_NAND_ECC_HW_NULL);
 //
 // Add and configure the RAID driver.
 //
 FS_AddDevice(&FS_RAID1_Driver);
 FS_RAID1_Configure(0, &FS_NAND_UNI_Driver, 0, &FS_NAND_UNI_Driver, 0);
 FS_RAID1_SetSectorRanges(0, 10000, 0, 10000);
}

7.7.1.3 FS_RAID1_SetSyncBuffer()
Description

Provides a buffer for the synchronization operation.

Prototype
void FS_RAID1_SetSyncBuffer(U8 Unit,
 void * pBuffer,
 U32 NumBytes);

Additional information

This function is optional and it must be called from within FS_X_AddDevices() after
adding the logical driver instance. Refer to FS_X_AddDevices() on page 472 for more
information. The buffer must be large enough to hold the data of at least 2 sectors
else the synchronization operation will fail. A larger buffer allows the driver to read/
write several sectors a once which increases the performance of the synchronization
operation.

Example

The following example configures a synchronization buffer of 16KB.

Parameter Description

Unit Unit number of the driver instance to configure.
pBuffer Pointer to a memory location to be used as buffer.
NumBytes Number of bytes in the buffer.

Table 7.11: FS_RAID1_SetSyncBuffer() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

469

#define ALLOC_SIZE 0x8000 // Size of the memory pool in bytes
#define BUFFER_SIZE 0x8000 // Size of the sync buffer in bytes

static U32 _aMemBlock[ALLOC_SIZE / 4]; // Memory pool used for
 // semi-dynamic allocation.
static U32 _aSyncBuffer[BUFFER_SIZE / 4]; // Buffer for the RAID synchronization.

/***
*
* FS_X_AddDevices
*
* Function description
* This function is called by the FS during FS_Init().
* It is supposed to add all devices, using primarily FS_AddDevice().
*
* Note
* (1) Other API functions
* Other API functions may NOT be called, since this function is called
* during initialization. The devices are not yet ready at this point.
*/
void FS_X_AddDevices(void) {
 //
 // Give the file system some memory to work with.
 //
 FS_AssignMemory(&_aMemBlock[0], sizeof(_aMemBlock));
 //
 // Set the file system sector size.
 //
 FS_SetMaxSectorSize(2048);
 //
 // Add and configure the first NAND driver.
 //
 FS_AddDevice(&FS_NAND_UNI_Driver);
 FS_NAND_UNI_SetPhyType(0, &FS_NAND_PHY_ONFI);
 FS_NAND_UNI_SetECCHook(0, &FS_NAND_ECC_HW_NULL);
 //
 // Add and configure the RAID driver.
 //
 FS_AddDevice(&FS_RAID1_Driver);
 FS_RAID1_Configure(0, &FS_NAND_UNI_Driver, 0, &FS_NAND_UNI_Driver, 0);
 FS_RAID1_SetSyncBuffer(0, _aSyncBuffer, sizeof(_aSyncBuffer));
}

The following sample function can be used to synchronize the RAID volume after an
unexpected reset.

/***
*
* _SyncRAID
*
* Function description
* Performs RAID synchronization, Should be called from a low-priority task
* in order to minimize the effect on the normal file system activity.
*/
static void _SyncRAID(void) {
 U32 iSector;
 FS_DEV_INFO DevInfo;

 //
 // Get the number of sectors on the storage.
 //
 FS_STORAGE_GetDeviceInfo("", &DevInfo);
 //
 // Synchronize one sector at a time to avoid
 // blocking the file system for a too long time.
 //
 for (iSector = 0; iSector < DevInfo.NumSectors; ++iSector) {
 FS_STORAGE_SyncSectors("", iSector, 1);
 }
}

470 CHAPTER 7 Logical drivers

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

7.7.2 Performance and resource usage

7.7.2.1 ROM usage
The ROM usage depends on the compiler options, the compiler version and the used
CPU. The memory requirements of the driver presented in the tables below have
been measured using the following system: Cortex-M4, IAR Embedded Workbench
V6.30, Size optimization.

7.7.2.2 Static RAM usage
Static RAM usage is the amount of RAM required by the driver for variables inside of
the driver. The number of bytes can be seen in a compiler list file.

Static RAM usage of driver: 20 bytes

7.7.2.3 Runtime RAM usage
Runtime RAM usage is the amount of RAM allocated by the driver at runtime.

Runtime RAM usage of driver: 48 bytes.

Module
ROM

[kBytes]

emFile RAID1 driver 1.5

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

471

Chapter 8

Configuration of emFile

emFile can be used without the need for changing any of the compile time flags. All
compile time configuration flags are preconfigured with valid values, which matches
the requirements of the most applications. Device drivers can be added at runtime.

The default configuration of emFile can be changed via compile time flags which can
be added to FS_Conf.h. This is the main configuration file for the file system.

Every driver folder includes a configuration file (e.g. FS_ConfigRamDisk.c) with
implementations of runtime configuration functions explained in this chapter. The
configuration files are a good start, to run emFile �out of the box�.

472 CHAPTER 8 Configuration of emFile

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

8.1 Runtime configuration
Every driver folder includes a configuration file (e.g. FS_ConfigRamDisk.c) with
implementations of runtime configuration functions explained in this chapter. These
functions can be customized.

8.1.1 Driver handling
FS_X_AddDevices() is called by the initialization of the file system from FS_Init().
This function should help to bundle the process of adding and configuring the driver.

8.1.1.1 FS_X_AddDevices()
Description

Helper function called by FS_Init() to add devices to the file system and configure
them.

Prototype
void FS_X_AddDevices(void);

Example

/***
*
* FS_X_AddDevices
*/
void FS_X_AddDevices(void) {
 void * pRamDisk;

 FS_AssignMemory(_aMemBlock[0], sizeof(_aMemBlock));
 //
 // Allocate memory for the RAM disk
 //
 pRamDisk = FS_Alloc(RAMDISK_NUM_SECTORS * RAMDISK_BYTES_PER_SECTOR);
 //
 // Add driver
 //
 FS_AddDevice(&FS_RAMDISK_Driver);
 //
 // Configure driver
 //
 FS_RAMDISK_Configure(0, pRamDisk, RAMDISK_BYTES_PER_SECTOR, RAMDISK_NUM_SECTORS);
}

For a detailed description of the function used in this example, refer to File system
configuration functions on page 59.

8.1.2 System configuration

8.1.2.1 FS_X_GetTimeDate()
Description

Returns the current time and date.

Prototype
U32 FS_X_OS_GetTimeDate(void);

Return value

Current time and date as U32 in a format suitable for the file system.

Additional Information

The format of the time is arranged as follows:
Bit 0-4: 2-second count (0-29)
Bit 5-10: Minutes (0-59)

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

473

Bit 11-15: Hours (0-23)
Bit 16-20: Day of month (1-31)
Bit 21-24: Month of year (1-12)
Bit 25-31: Number of years since 1980 (0-127)

Example

U32 FS_X_GetTimeDate(void) {
 U32 r;
 U16 Sec, Min, Hour, Day, Month, Year;

 Sec = FS_X_GET_SECOND();
 Min = FS_X_GET_MINUTE();
 Hour = FS_X_GET_HOUR();
 Day = FS_X_GET_DAY();
 Month = FS_X_GET_MONTH();
 Year = FS_X_GET_YEAR();

 r = Sec / 2 + (Min << 5) + (Hour << 11);
 r |= (Day + (Month << 5) + (Year << 9)) << 16;
 return r;
}

8.1.2.2 FS_X_Panic()
Description

Handler for unrecoverable errors.

Prototype
void FS_X_Panic(int ErrorCode);

Additional Information

Typically, the function is called when the file system runs out of memory or when
invalid parameters are passed to some API functions. Compiled in only when debug-
ging is turned on (FS_DEBUG_LEVEL greater than 0). The default implementation is an
endless loop.

8.1.2.3 Logging functions
Logging is used in higher debug levels only. The typical target build does not use log-
ging and does therefore not require any of the logging functions. For a release build
without logging the functions may be eliminated from configuration file to save some
space. (If the linker is not function aware and eliminates unreferenced functions
automatically). Refer to the chapter Debugging on page 491 for further information
about the different logging functions.

Parameter Description

ErrorCode Type of fatal error.
Table 8.1: FS_X_Panic() parameter list

474 CHAPTER 8 Configuration of emFile

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

8.2 Compile time configuration
The following types of configuration macros exist:

Binary switches “B”

Switches can have a value of either 0 or 1, for deactivated and activated respectively.
Actually, anything other than 0 works, but 1 makes it easier to read a configuration
file. These switches can enable or disable a certain functionality or behavior.
Switches are the simplest form of configuration macros.

Numerical values “N”

Numerical values are used somewhere in the code in place of a numerical constant. A
typical example is the configuration of the sector size of a storage medium.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

475

8.2.1 General file system configuration

Type Macro Default Description

B FS_SUPPORT_FAT 1 Defines if emFile should use the
FAT file system layer.

B FS_SUPPORT_EFS 0 Defines if emFile should use the
optional EFS file system layer.

B FS_SUPPORT_CACHE 1

Determines whether
FS_AssignCache() can be used.
FS_AssignCache() allows runtime
assignment of a cache. Refer to
FS_AssignCache() on page 201 for
further information.

Note: FS_AssignCache() needs to
be called to activate the cache
functionality for a specific device.

B FS_MULTI_HANDLE_SAFE 0
If you intend to open a file simul-
taneously for read/write, set this
macro to 1.

String FS_DIRECTORY_DELIMITER �\\�
Defines the character/string that
should be used to delimit directo-
ries in a path.

N FS_DRIVER_ALIGNMENT 4 Defines the minimum alignment in
bytes a driver needs.

B FS_USE_FILE_BUFFER 1

Disables/Enables file buffer sup-
port. File buffers make file access
faster when reading/writing files in
small chunks. When using file
buffers, emFile requires a bit more
ROM and RAM. By default, file
buffers are enabled in emFile, but
not used, since the buffer size has
to be configured before they can
be used. For more information
about how to configure the file
buffers, please refer to
FS_ConfigFileBufferDefault() on
page 62.

B FS_SUPPORT_DEINIT 0

Allows to deinitialize the file sys-
tem. This can be useful when
device may not longer use the file
system and the resources shall be
used for other purposes.
ON: FS_DeInit() is enabled and
will free all resource that have
been used, including all memory
block that have been used. For
more information about
FS_DeInit() please refer to
FS_DeInit() on page 52.
OFF: FS_DeInit() is disabled and
therefore resources are not freed.

Table 8.2: General file system configuration macros

476 CHAPTER 8 Configuration of emFile

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

B FS_SUPPORT_EXT_MEM_MANAGER 0

Defines whether the internal or an
external memory allocation func-
tion should be used.
ON: The file system shall use
external memory allocation rou-
tines. These routines shall be set
by calling the function
FS_SetMemHandler().
OFF: The internal memory alloca-
tion routines of the file system
should be used.

B FS_VERIFY_WRITE 0

Verify every write sector opera-
tion (tests the driver and hard-
ware). This switch should always
be off for production code. It is
normally switched on only when
investigating driver problems.

B FS_SUPPORT_CHECK_MEMORY 0

Selects if the access to data buff-
ers passed to device driver should
be checked for 0-copy operations.
The check is performed by a call-
back function registered by invok-
ing FS_SetMemAccessCallback().
ON: On each read/write operation
the registered callback function is
invoked to check if a 0-copy oper-
ation can be performed.
OFF: No checking is performed. If
possible, the data buffer is passed
directly to device driver (0-copy
operations).

Type Macro Default Description

Table 8.2: General file system configuration macros

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

477

8.2.2 FAT configuration
The current version of emFile supports FAT12/FAT16/FAT32.

Type Macro Default Description

B FS_FAT_SUPPORT_FAT32 1 To enable support for FAT32
media, define this macro to 1.

B FS_FAT_USE_FSINFO_SECTOR 1

When retrieving the free disk
amount on large FAT32 volumes,
this may take a long time, since
the FAT table can extend to many
Mbytes. To improve this, this
macro should be set to 1. This will
enable the feature of using the
FAT32 specific FSInfo sector. This
sector stores the information of
the free clusters that are available
and the last known free cluster.
ON: Higher speed, Bigger code.
OFF: Lower speed, Smaller code.

B FS_FAT_OPTIMIZE_DELETE 1

When deleting a large contiguous
file on a FAT system, it may take
some time to delete the FAT
entries for the file. This macro set
to 1 enables a sequence to accel-
erate this operation.
ON: Higher speed, Bigger code.
OFF: Lower speed, Smaller code.

B FS_FAT_SUPPORT_UTF8 0

When using the LFN package, the
file/directory name is stored as
Unicode string. This macros
enables the support for accessing
such files and directories, where
characters in the file/directory
name are others than the standard
Latin characters such as Greek or
Cyrillic. To open such a file the
string should be UTF-8 encoded.

B FS_MAINTAIN_FAT_COPY 0 Enables the update of the second
FAT allocation table.

Table 8.3: FAT configuration macros

478 CHAPTER 8 Configuration of emFile

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

8.2.3 EFS configuration

8.2.4 OS support
emFile can be used with operating systems. For no OS support at all, set all of them
to 0. If you need support for an additional OS, you will have to provide functions
described in the chapter OS integration on page 481.

Default setting of emFile is not configured for a multitasking environment.

Type Macro Default Description

B FS_EFS_CASE_SENSITIVE 0
If EFS file/directory operations
should be case sensitive, define
this macro to 1.

Table 8.4: EFS configuration macros

Type Macro Default Description

N FS_OS_LOCKING 0

Set this to 1 determines that an
operating system should be used.
When using an operating system,
generally every file system opera-
tion is locked by a semaphore.
When this macro is defined to 1
only one lock is used to lock each
file system function (Coarse lock
granularity). If FS_OS_LOCKING is
defined to 2 the file system locks
on every critical file system opera-
tion. (Fine lock granularity). Fine
lock granularity requires more
semaphores.

Table 8.5: Operating system support macros

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

479

8.2.5 Debugging
emFile can be configured to generate useful debug information which can help you
analyze a potential problem. You can control the amount of generated information by
changing the value of the FS_DEBUG_LEVEL define.

The following table lists the permitted values for FS_DEBUG_LEVEL:

emFile outputs the debug information in text form using logging routines (see
Debugging on page 491). These routines can be left empty as they are not required
for the proper function of emFile. This is typically the case for release (production)
builds which usually use the lowest debug level.

The following table lists the logging functions and on which debug level they are
active:

8.2.6 Miscellaneous configurations

Value Symbolic name Explanation

0 FS_DEBUG_LEVEL_NOCHECK No runtime checks are performed.

1 FS_DEBUG_LEVEL_CHECK_PARA
Parameter checks are performed to avoid
crashes. (Default for target system)

2 FS_DEBUG_LEVEL_CHECK_ALL
Parameter checks and consistency checks
are performed.

3 FS_DEBUG_LEVEL_LOG_ERRORS Errors are recorded.

4 FS_DEBUG_LEVEL_LOG_WARNINGS
Errors and warnings are recorded.
(Default for PC-simulation)

5 FS_DEBUG_LEVEL_LOG_ALL
Errors, warnings and messages are
recorded.

Table 8.6: Debug level macros

Function Debug level Explanation

FS_X_ErrorOut() >= 3 Fatal errors.
FS_X_Warn() >= 4 Warnings.
FS_X_Log() >= 5 Execution trace.

Table 8.7: Logging functions

Type Macro Default Description

B FS_NO_CLIB 0

Setting this macro to 1, emFile
does not use the standard C
library functions (such as strcmp()
etc.) that come with the compiler.

Table 8.8: Miscellaneous configuration macros

480 CHAPTER 8 Configuration of emFile

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

8.2.7 Sample configuration
The emFile configuration file FS_Conf.h is located in the \Config directory of your
shipment. emFile compiles and runs without any problem with the default settings. If
you want to change the default configuration, insert the corresponding macros in the
delivered FS_Conf.h.

/***
* SEGGER MICROCONTROLLER GmbH & Co. KG *
* Solutions for real time microcontroller applications *
**
* *
* (c) 2002 - 2007 SEGGER MICROCONTROLLER GmbH & Co. KG *
* *
* Internet: www.segger.com Support: support@segger.com *
* *
**

**** emFile file system for embedded applications ****
emFile is protected by international copyright laws. Knowledge of the
source code may not be used to write a similar product. This file may
only be used in accordance with a license and should not be re-
distributed in any way. We appreciate your understanding and fairness.

--
File : FS_Conf.h
Purpose : emFile compile-time configuration settings
---------------------------END-OF-HEADER------------------------------
*/
#ifndef _FS_CONF_H_
#define _FS_CONF_H_

#define FS_DEBUG_LEVEL 1
#define FS_MAX_SECTOR_SIZE 512

#endif /* Avoid multiple inclusion */

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

481

Chapter 9

OS integration

emFile is suitable for any multithreaded environment. To ensure that different tasks
can access the file system concurrently, you need to implement a few operating sys-
tem-dependent functions.

For embOS and MS Windows, you will find implementations of these functions in the
file system's source code. This chapter provides descriptions of the functions
required to fully support emFile in multithreaded environments. If you do not use an
OS, or if you do not make file access from different tasks, you can leave these func-
tions empty.

You may also add date and time support functions for use by the FAT file system. The
sample implementations provided with emFile use ANSI C standard functions to
obtain the correct date and time.

482 CHAPTER 9 OS integration

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

9.1 OS layer API functions
To use emFile with an operating system set the define FS_OS_LOCKING to 1 for coarse
lock granularity (or alternatively to 2 for file lock granularity) in FS_Conf.h. Set this
to 1 determines that an operating system should be used. When using an operating
system, generally every file system operation is locked by a semaphore. When this
macro is defined to 1 only one lock is used to lock each file system function (Coarse
lock granularity). If FS_OS_LOCKING is defined to 2 the file system locks on every crit-
ical file system operation. (Fine lock granularity). Fine lock granularity requires more
semaphores. You have to implement the following functions to integrate emFile into
your operating system. Samples for the implementation of an operating system can
be found in the directory \Sample\OS\.

Example

/***
* SEGGER MICROCONTROLLER GmbH & Co. KG *
* Solutions for real time microcontroller applications *
**
* *
* (c) 2006 SEGGER MICROCONTROLLER GmbH & Co. KG *
* *
* Internet: www.segger.com Support: support@segger.com *
* *
**

**** emFile file system for embedded applications ****
emFile is protected by international copyright laws. Knowledge of the
source code may not be used to write a similar product. This file may
only be used in accordance with a license and should not be re-
distributed in any way. We appreciate your understanding and fairness.
--
File : FS_Conf.h
Purpose : File system configuration
---------------------------END-OF-HEADER------------------------------
*/

#ifndef _FS_CONF_H_
#define _FS_CONF_H_

#define FS_OS_LOCKING 1
#endif /* Avoid multiple inclusion */

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

483

9.1.1 FS_X_OS_Init()
Description

Initializes the OS resources. Specifically, you will need to create at least NumLocks
binary semaphores.

Prototype
void FS_X_OS_Init(unsigned NumLocks);

Additional Information

This function is called by FS_Init(). You should create all resources required by the
OS to support multithreading of the file system.

Parameter Meaning

NumLocks Number of binary semaphores/mutexes that should be created.
Table 9.1: FS_X_OS_Init() parameter list

484 CHAPTER 9 OS integration

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

9.1.2 FS_X_OS_DeInit()
Description

Frees the OS resources.

Prototype
void FS_X_OS_DeInit(void);

Additional Information

This function is optional and is called by FS_DeInit() which is only available when
FS_SUPPORT_DEINIT is set to 1. You should delete all resources what were required
by the OS to support multithreading of the file system.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

485

9.1.3 FS_X_OS_Lock()
Description

Locks a specific file system operation.

Prototype
void FS_X_OS_Lock(unsigned LockIndex);

Additional Information

This routine is called by the file system before it accesses the device or before using
a critical internal data structure. It blocks other threads from entering the same crit-
ical section using a resource semaphore/mutex until FS_X_OS_Unlock() has been
called with the same LockIndex.
When using a real time operating system, you normally have to increment a counting
resource semaphore.

Parameter Meaning

LockIndex
Index number of the binary semaphore/mutex created before in
FS_X_OS_Init().

Table 9.2: FS_X_OS_Lock() parameter list

486 CHAPTER 9 OS integration

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

9.1.4 FS_X_OS_Unlock()
Description

Unlocks a file system operation.

Prototype
void FS_X_OS_Unlock(unsigned LockIndex);

Additional Information

This routine is called by the file system after accessing the device or after using a
critical internal data structure. When using a real time operating system, you nor-
mally have to decrement a counting resource semaphore.

Parameter Meaning

LockIndex
Index number of the binary semaphore/mutex created before in
FS_X_OS_Init().

Table 9.3: FS_X_OS_Unlock() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

487

9.1.5 FS_X_OS_Wait()
Description

Blocks the calling task for a specified time or until the file system event is triggered.

Prototype
void FS_X_OS_Wait(int Timeout);

Additional Information

The file system has only one event which is created at the initialization in the
FS_X_OS_Init() function and later released in FS_X_OS_DeInit(). The event can be
triggered by calling FS_X_OS_Signal(). This routine is not called directly by the file
system but it can be used to implement event-driven HW layers in a portable way.

Parameter Meaning

Timeout
Number of OS ticks the function should wait for the event to be sig-
naled.

Table 9.4: FS_X_OS_Wait() parameter list

488 CHAPTER 9 OS integration

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

9.1.6 FS_X_OS_Signal()
Description

Signals the file system event.

Prototype
void FS_X_OS_Signal(void);

Additional Information

Typically, this routine is called from an interrupt to wake-up the task which is blocked
in a call to FS_X_OS_Wait() function. This routine is not called directly by the file
system but it can be used to implement event-driven HW layers in a portable way.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

489

9.1.7 FS_X_OS_GetTime()
Description

Returns the number of OS ticks elapsed since the start of OS.

Prototype
U32 FS_X_OS_GetTime(void);

Return value

Number of OS ticks elapsed since the start of OS.

Additional Information

Typically, this function is called for performance measurements. An OS tick is usually
1ms long.

490 CHAPTER 9 OS integration

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

9.1.8 Examples
OS interface routine for embOS

The following example shows an adaptation for embOS (excerpt from file
FS_X_embOS.c located in the folder \FS\OS\):

#include "FS_Int.h"
#include "FS_OS.h"
#include "RTOS.h"

static OS_RSEMA * _FS_Sema;

void FS_X_OS_Lock(unsigned LockIndex) {
 OS_RSEMA * pSema;

 pSema = _paSema + LockIndex;
 OS_Use(pSema);
}

void FS_X_OS_Unlock(unsigned LockIndex) {
 OS_RSEMA * pSema;

 pSema = _paSema + LockIndex;
 OS_Unuse(pSema);
}

void FS_X_OS_Init(unsigned NumLocks) {
 unsigned i;
 OS_RSEMA * pSema;

 _paSema = (OS_RSEMA *)FS_AllocZeroed(NumLocks* sizeof(OS_RSEMA));
 pSema =_paSema;
 for (i = 0; i < NumLocks; i++) {
 OS_CREATERSEMA(pSema++);
 }
}

OS interface routines for uC/OS

The following example shows an adaptation for µC/OS (excerpt from file
FS_X_uCOS_II.c located in the folder \Sample\OS\):

#include "FS_Int.h"
#include "FS_OS.h"
#include "ucos_ii.h"

static OS_EVENT **FS_SemPtrs;

void FS_X_OS_Init (unsigned nlocks) {
 unsigned i;
 OS_EVENT **p_sem;

 FS_SemPtrs = (OS_EVENT **)FS_AllocZeroed(nlocks * sizeof(OS_EVENT *));
 p_sem = FS_SemPtrs;

 for(i = 0; i < nlocks; i++) {
 *p_sem = OSSemCreate(1);
 p_sem += 1;
 }
}

void FS_X_OS_Unlock (unsigned index) {
 OS_EVENT *p_sem;

 p_sem = *(FS_SemPtrs + index);
 OSSemPost(p_sem);
}

void FS_X_OS_Lock (unsigned index) {
 INT8U err;
 OS_EVENT *p_sem;

 p_sem = *(FS_SemPtrs + index);
 OSSemPend(p_sem, 0, &err);
}

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

491

Chapter 10

Debugging

For debug purpose the functions in this chapter are helpful. The functions display
information on a display or through a serial communication port.

492 CHAPTER 10 Debugging

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

10.1 FS_X_Log()
Description

Outputs debug information from emFile. This function has to integrated into your
application if FS_DEBUG_LEVEL >= 5. Refer to section Debugging on page 479 of the
Configuration chapter for further information about the different debug-level.

Prototype
void FS_X_Log (const char * s);

Example

/* sample using ANSI C printf function */

U16 FS_X_Log(const char* s) {
 printf("%s", s);
}

Parameter Meaning

s Pointer to the string to be sent.
Table 10.1: FS_X_Log() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

493

10.2 FS_X_Warn()
Description

Outputs warnings from emFile. This function has to integrated into your application if
FS_DEBUG_LEVEL >= 4. Refer to section Debugging on page 479 of the Configuration
chapter for further information about the different debug-level.

Prototype
void FS_X_Warn (const char * s);

Example

/* sample using ANSI C printf function */

U16 FS_X_Warn(const char* s) {
 printf("%s", s);
}

Parameter Meaning

s Pointer to the string to be sent.
Table 10.2: FS_X_Warn() parameter list

494 CHAPTER 10 Debugging

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

10.3 FS_X_ErrorOut()
Description

Outputs errors from emFile. This function has to integrated into your application if
FS_DEBUG_LEVEL >= 3. Refer to section Debugging on page 479 of the Configuration
chapter for further information about the different debug-level.

Prototype
void FS_X_ErrorOut (const char * s);

Example

/* sample using ANSI C printf function */

U16 FS_X_ErrorOut(const char* s) {
 printf("%s", s);
}

Parameter Meaning

s Pointer to the string to be sent.
Table 10.3: FS_X_ErrorOut() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

495

10.4 Troubleshooting
If you are used to C-like file operations, you already know the fopen() function. In
emFile, there is an equivalent function called FS_FOpen(). You specify a name, an
access mode and if this kind of file access is allowed and no error occurs, you get a
pointer to a file handle in return. For more information about the parameters refer to
FS_FOpen() on page 73: Open a file

FS_FILE * pfile;
pfile = FS_FOpen("test.txt","r");
if (pFile == 0) {
 return -1; /* report error */
} else {
 return 0; /* file system is up and running! */
}

If this pointer is zero after calling FS_FOpen(), there was a problem opening the file.
There are basically some common reasons why this could happen:

� The file or path does not exist
� The drive could not be read or written
� The drive contains an invalid BIOS parameter block or partition table

These faults can be caused by corrupted media. To verify the validity of your
medium, either check if the medium is physically okay or check the medium with
another operation system (for example Windows).

But there are also faults that are relatively seldom but also possible:

� A compiler/linker error has occurred
� Stack overflow
� Memory failure
� Electro-magnetic influence (EMC, EMV, ESD)

To find out what the real reason for the error is, you may just try reading and writing
a raw sector. Here is an example function that tries writing a single sector to your
device. After reading back and verifying the sector data, you know if sectored access
to the device is possible and if your device is working.

#define BYTES_PER_SECTOR 512 // Should match the sector size of storage medium

int WriteSector(void) {
 U8 acBufferOut[BYTES_PER_SECTOR];
 U8 acBufferIn[BYTES_PER_SECTOR];
 U32 SectorIndex;
 int r;
 int i;

 //
 // Do not write on the first sectors. They contain
 // information about partitioning and media geometry.
 //
 SectorIndex = 80;
 //
 // Fill the buffer with data.
 //
 for (i = 0; i < BYTES_PER_SECTOR; i++) {
 acBufferOut[i] = i % 256;
 }
 //
 // Write one sector.
 //
 r = FS_STORAGE_WriteSector("", acBufferOut, SectorIndex);
 if (r) {
 FS_X_Log("Cannot write to sector.\n");
 return -1;
 }
 //
 // Read back the sector contents.

496 CHAPTER 10 Debugging

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

 //
 r = FS_STORAGE_ReadSector("", acBufferIn, SectorIndex);
 if (r) {
 FS_X_Log("Cannot read from sector.\n");
 return -1;
 }
 //
 // Compare the sector contents.
 //
 for (i = 0; i < BYTES_PER_SECTOR; i++) {
 if (acBufferIn[i] != acBufferOut[i]) {
 FS_X_Log("Sector not correctly written.\n");
 return -1;
 }
 }
 return 0;
}

If you still receive no valid file pointer although the sectors of the device is accessible
and other operating systems report the device to be valid, you may have to take a
look into the running system by stepping through the function FS_FOpen().

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

497

Chapter 11

Performance and resource usage

498 CHAPTER 11 Performance and resource usage

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

11.1 Memory footprint
The file system is designed to fit many kinds of embedded design requirements. Sev-
eral features can be excluded from a build to get a minimal system that can effi-
ciently access any FAT media.

The operation area of emFile is very different and the memory requirements (RAM
and ROM) differs in depending on the used features. The following section will show
the memory requirements of different modules which are used in typical applications.

Note that the values are valid for the given configuration. Features can affect the size
of others. For example, if FAT32 is deactivated, the format function gets smaller
because the 32 bit specific part of format is not added into the compilation.

11.1.1 System
The following table shows the hardware and the toolchain details of the project:

11.1.2 File system configuration
The following excerpts of FS_Conf.h shows the used configuration options:

#define FS_OS_LOCKING 0 // Disable OS support
#define FS_SUPPORT_FAT 1 // Support the FAT file system if enabled
#define FS_DEBUG_LEVEL 0 // Set debug level

11.1.3 Sample project
We use the following code to calculate the memory resources of commonly used
functions. You can easily reproduce the measurement when you compile the following
sample. Build the application listed below and generate a linker listing to get the
memory requirements of an application which only includes startup code and the
empty main() function. Afterwards, set the value of the macro STEP to 1 to get the
memory requirement of the minimum file system. Subtract the ROM requirements
from STEP==0 from the ROM requirements of STEP==1 to get the exact ROM require-
ments of a minimal file system. Increment the value of the macro STEP to include
more file system functions and repeat your calculation.

#include "FS.h"’
#include "FS_Int.h"

/**
*
* defines, configurable
*
***/
#define STEP 0 // Change this line to adjust which portions of code are linked

/***
*
* Public code

Detail Description

CPU ARM7
Tool chain IAR Embedded Workbench for ARM V4.41A
Model ARM7, Thumb instructions; no interwork;
Compiler
options Highest size optimization;

Device driver
Empty dummy driver. For information about the memory usage of a
specific emFile device driver refer to the Unit number section of the
respective driver in the Device drivers on page 213.

Table 11.1: ARM7 sample configuration

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

499

*
***/

/***
*
* main
*/
void main(void) {
#if STEP >= 1 // Step 1: Minimum file system
 FS_FILE * pFile;
 FS_Init();
 pFile = FS_FOpen("File.txt", "w");
#endif
#if STEP >= 2 // Step 2: Write a file
 FS_Write(pFile, "Test", 4);
#endif
#if STEP >= 3 // Step 3: Remove a file
 FS_Remove("File.txt");
#endif
#if STEP >= 4 // Step 4: Open a directory
 FS_FIND_DATA fd;
 FS_FindFirstFile(&fd, "\\YourDir\\", "File.txt", 8);
 FS_FindClose(&fd);
#endif
#if STEP >= 5 // Step 5: Create a directory
 FS_MkDir ("");
#endif
#if STEP >= 6 // Step 6: Add long file name support
 FS_FAT_SupportLFN();
#endif
#if STEP >= 7 // Step 7: Low-level format a medium
 FS_FormatLow("");
#endif
#if STEP >= 8 // Step 8: High-level format a medium
 FS_Format("", NULL);
#endif
#if STEP >= 9 // Step 9: Assign cache - Cache module: FS_CACHE_ALL
 FS_AssignCache("", NULL, 0, FS_CACHE_ALL);
// FS_AssignCache("", NULL, 0, FS_CACHE_MAN);
// FS_AssignCache("", NULL, 0, FS_CACHE_RW);
// FS_AssignCache("", NULL, 0, FS_CACHE_RW_QUOTA);
#endif
#if STEP >= 10 // Step 10: Checkdisk
 FS_FAT_CheckDisk("", NULL, 0, 0, NULL);
#endif
#if STEP >= 11 // Step 11: Get device info
 FS_GetDeviceInfo("", NULL);
#endif
#if STEP >= 12 // Step 12: Get the size of a file
 FS_GetFileSize(NULL);
#endif
#if STEP >= 1 // Step 1: Minimum file system
 FS_FClose(pFile);
#endif
}

500 CHAPTER 11 Performance and resource usage

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

11.1.4 Static ROM requirements
The following table shows the ROM requirement of the used functions:

Summary

A simple system will typically use around 10 KByte of ROM. To compute the overall
ROM requirements, the ROM requirements of the driver need to be added.

11.1.4.1 ROM requirements for long filename support
This section describes the additional ROM usage of emFile if the long filename sup-
port is used. Please note that long filename support is not part of the emFile FAT
packet, but is sold separately.

RAM requirements for long filename support

The long filename support of emFile does not require any additional RAM.

Description
ROM

[Kbytes]

Step 1: File system core (without driver)
 Contains the following functionality:
 Init / Configuration
 Open file

7.0

Step 2: Read file 1.1
Step 3: Write file 1.1
Step 4: Remove file 0.1
Step 5: Open directory 0.5
Step 6: Create directory 0.5
Step 7: Long file name support 2.0
Step 8: Low-level format a medium 0.2
Step 9: High-level format a medium 1.8
Step 10: Assign a cache - FS_CACHE_ALL 0.4
 Assign a cache - FS_CACHE_MAN 0.7
 Assign a cache - FS_CACHE_RW 0.7
 Assign a cache - FS_CACHE_RW_QUOTA 1.0
Step 11: Checkdisk 3.3
Step 12: Get device info 0.1
Step 13: Get the size of a file 0.1

Module
ROM

[Kbytes]

emFile LFN 2.2

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

501

11.1.5 Static RAM requirements
The static RAM requirement of the file system without any driver is around 150 bytes.

11.1.6 Dynamic RAM requirements
During the initialization emFile will dynamically allocate memory depending on the
number of added devices, the number of simultaneously opened files and the OS
locking type:

Note: FS_FILE and FS_FILE_OBJ structures can be allocated even after initializa-
tion depending on how many files are simultaneously opened.

11.1.7 RAM usage example
For example, a small file system application with the following configuration:

� only one file is opened at a time
� no operating system support
� using the SD card driver

requires approximately 1300 bytes.

Type Size [Bytes] Count

FS_FILE 16
Maximum number of simulta-
neously open files. Depends
on application, minimum is 1.

FS_FILE_OBJ 40
Maximum number of simulta-
neously open files. Depends
on application, minimum is 1.

FS_VOLUME 88
Number of FS_AddDevice()
calls.

No operating system should be used: FS_OS_LOCKING == 0

FS_SECTOR_BUFFER
8 + SectorSize
By default, SectorSize is 512
bytes.

2

OS should be used: FS_OS_LOCKING == 1

FS_SECTOR_BUFFER
8 + SectorSize
By default, SectorSize is 512
bytes.

2

OS_LOCKS sizeof(SEMAPHORE) 1
OS should be used. Every critical operations is locked: FS_OS_LOCKING == 2

FS_SECTOR_BUFFER
8 + SectorSize
By default, SectorSize is 512
bytes.

2 * Number of used drivers

OS_LOCKS 1 + sizeof(SEMAPHORE) Number of used drivers
DRIVER_LOCK_TABLE 16 Number of used drivers

502 CHAPTER 11 Performance and resource usage

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

11.2 Performance
A benchmark is used to measure the speed of the software on available targets. This
benchmark is in no way complete, but it gives an approximation of the length of time
required for common operations on various targets. You can find the measurement
results in the chapter describing the individual drivers.

11.2.1 Description of the performance tests
The performance tests are executed as described and in the order below.
Performance test procedure:

1. Format the drive.
2. Create and open a file for writing.

W: Start measuring of write performance.
3. Write a multiple of 8 Kbytes.

W: Stop measuring of write performance.
4. Close the file
5. Reopen the file.

R: Start measuring of read performance.
6. Read a multiple of 8 Kbytes.

R: Stop measuring of read performance.
7. Close the file
8. Show the performance results.

The performance tests can be reproduced. Include FS_PerformanceSimple.c
(located in the folder .\Sample\API) into your project. Compile and run the project
on your target hardware.

11.2.2 How to improve the performance
If you find that the performance of emFile on your hardware is not what you expect
there are several ways you can improve it.

Use the proper write mode

The default behavior of the file system is to update the allocation table and the direc-
tory entry after each write operation. If several write operations are performed
between the opening and the closing of the file it is recommended to set the write
mode to FS_WRITEMODE_MEDIUM or FS_WRITEMODE_FAST to increase the performance.
In these modes the allocation table and the directory entry are updated only when
the file is closed. Refer to FS_SetFileWriteMode() on page 68 to learn how the write
mode can be configured. Please note that these write modes can not be used when
the journaling is enabled.

Write multiple of sector size

The file system implements a 0-copy mechanism in which the data written to a file
using the FS_FWrite() and FS_Write() functions is passed directly to the device driver
if the data is written at a sector boundary and the number of bytes written is a mul-
tiple of sector size. In any other case the file system uses a read-modify-write oper-
ation which increases the number of I/O operations and reduces the performance.
The file system makes sure that the contents of a file always begins at a sector
boundary.

Use the file buffer

It is recommended to activate the file buffering when the application reads and
writes amounts of data smaller than the sector size. Refer to
FS_ConfigFileBufferDefault() on page 62 to see how this can be done. The file buffer
is a small cache which helps reducing the number of times storage medium is
accessed and thus increasing the performance. Please note that a file buffer in write
mode can not be used when the journaling is enabled.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

503

Use a sector cache

The sector cache can be enabled to increase the overall performance of the file sys-
tem. For more information refer to Optimizing performance - Caching and buffering
on page 197.

Configure a read-ahead driver

The read-ahead driver is useful when a storage medium is used which is more effi-
cient when several sectors are read or written at once. This includes storage media
such as CompactFlash cards, SD and MMC cards and USB sticks. Normally, the file
system reads the allocation table one sector at a time. If configured, the file system
activates the read-ahead driver at run time when the allocation table is accessed
reducing, for example, the time it takes to determine the amount of free space. For
more information refer to Sector read-ahead driver on page 459.

Optimize the hardware layer

Ensure that the routines of the hardware layer are fast. How you do that depends on
your compiler. Some compilers have the option to define a function as running from
RAM which is faster compared to running it from flash.

Use the FS_OPTIMIZE macro

The definitions of time critical functions in emFile are prefixed with the macro
FS_OPTIMIZE. As default it expands to nothing. You can use this macro to enable the
compiler optimization only for these functions. How you define this macro depends
on your compiler.

504 CHAPTER 11 Performance and resource usage

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

505

Chapter 12

Journaling (Add-on)

This chapter documents and explains emFile�s journaling add-on. Journaling is an
extension to emFile that makes the file system layer fail-safe.

506 CHAPTER 12 Journaling (Add-on)

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

12.1 Introduction
emFile Journaling is an additional component which sits on top of the file system and
makes the file system layer fail-safe. File systems without journaling support (for
example, FAT) are not fail-safe. Journaling means that a file system logs all changes
to a journal before committing them to the main file system.

Driver fail-safety

Data can be lost in case of unexpected Reset in either the file system Layer (FAT or
EFS) or in the driver layer. The entire system is fail-safe only if BOTH layers are fail-
safe. The journaling add-on makes only the file system layer fail-safe. For fail-safety
of the driver layer, refer to Device drivers on page 213.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

507

12.2 Features
� Non fail-safe file systems will be fail-safe.
� Fully compatible to standard file system implementations (e.g. FAT)
� Every storage solution can be used.

No reformat required.
� Multiple write accesses to the storage medium can be combined in user applica-

tion.

508 CHAPTER 12 Journaling (Add-on)

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

12.3 Backgrounds
emFile is typically used with non fail-safe file systems like FAT. Loss of data can occur
in either the driver layer or the file system layer. The driver layer is typically fail-safe
so the only place for typical data loss is the file system layer. The file system can be
corrupted through an interrupted write access for example in the event of power fail-
ure or system crash. This is by design of FAT and true for all implementations from
any vendor. The emFile journaling add-on adds journaling to the file system layer.

The goal of this additional layer is to guarantee a file system that is always in a con-
sistent state. Operations on File System Layer are mostly not atomic. For example, a
single call of FS_FWrite() to write data into a new file causes the execution of the
following three Storage Layer operations:

1. Allocate cluster and update FAT
2. Write user data
3. Update directory entry

An unexpected interrupt (such as a power failure) in this process can corrupt the file
system. To prevent such corruptions the Journaling Layer stores every write access
to achieve an always consistent state of the file system. All changes to the file sys-
tem are stored in a journal. The data stored in the journal is copied into the file sys-
tem only if the File System Layer operation has been finished without interruption.
This procedure guarantees an always consistent state of the file system, because an
interruption of the copy process leads not to data loss. The interrupted copy process
will be restarted after a restart of the target.

12.3.1 File System Layer error scenarios
The following table lists the possible error scenarios:

Moment of error State Data

1. Journal empty. Consistent ---
2. While writing into journal. Consistent Lost
3. While finalizing of the journal. Consistent Lost
4. After finalization. Consistent Obtained
Table 12.1: Error scenarios

File System Layer

Storage Layer

Application Layer

Hardware Layer

e
m

F
ile

File System APIStorage API
API Layer

Device Driver
(CF / IDE / MMC / NAND / NOR / SD /...)

Driver Layer

Journaling (optional)

FAT / EFS

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

509

12.3.2 Write optimization
The journaling add-on has been optimized for write performance. When data is writ-
ten at the end of a file, which is usually the case in the most applications, only the
management information (allocation table and directory entry) goes through journal.
The file contents are written directly to final destination on the storage medium, thus
improving the write performance. The fail-safety of the File System Layer is not
affected as the file contents overwrites storage blocks which are not allocated to any
file. The optimization is disabled as soon as a file or directory is deleted during a
journaling transaction. This is done in order to make sure that the data of the deleted
file or directory is contained in case of an unexpected reset.

5. While copying from journal into file sys-
tem. Consistent Obtained

6. After copy process, before invalidating of
the journal. Consistent Obtained

7. While invalidating of the journal. Consistent Obtained

Moment of error State Data

Table 12.1: Error scenarios

510 CHAPTER 12 Journaling (Add-on)

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

12.4 How to use journaling

12.4.1 What do I need to do to use journaling?
Using journaling is very simple from a user perspective.

You have to

1. Enable journaling in the emFile configuration.
Refer to Configuration on page 512 for detailed information.

2. Call FS_JOURNAL_Create() after formatting the volume.
Refer to FS_JOURNAL_Create() on page 515 for detailed information.

That's it. Everything else is done by the emFile Journaling extension.

12.4.2 How can I use journaling in my application?
Journaling can also be used in your application. You can combine multiple write
accesses in your application. Start the section that should use the journal with a call
of FS_JOURNAL_Begin() and finish the section with a call of FS_JOURNAL_End() to
assure that only all write operations of the section or non will be executed.

Example
void FailSafeSample(void) {
 FS_FILE * pFile;

 //
 // Create journal on first device of the volume.
 // Size: 200 KBytes.
 //
 FS_JOURNAL_Create("", 200 * 1024);
 //
 // Begin an operations which have to be be fail-safe.
 // All following steps will be stored into journal.
 //
 FS_JOURNAL_Begin("");
 pFile = FS_FOpen(“File001.txt”, "w");
 if (pFile) {
 FS_Write(pFile, "Test...", 7);
 FS_FClose(pFile);
 }
 pFile = FS_FOpen(“File002.txt”, "w");
 if (pFile) {
 FS_Write(pFile, "Another Test...", 15);
 FS_FClose(pFile);
 }
 //
 // End an operation which has to be be fail-safe.
 // Data will be copied from journal into file system.
 //
 FS_JOURNAL_End("");
}

12.4.3 Keeping the consistency of file contents
The journaling can be used to make sure that the contents of the whole file are con-
sistent. This means that after recovering from an unexpected reset, which occurred
during the writing, the file will contain either the previous data or the new data but
not a combination of both. It also applies to the particular case were the application
writes to an empty file. The only condition that must be satisfied is for the file system
to generate 1 journaling transaction. This can be realized by surrounding the write
operation within FS_JOURNAL_Begin()/FS_JOURNAL_End(). Here is an example code:

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

511

void WriteWholeFileSample1(void) {
 U8 aBuffer[128];
 FS_FILE * pFile;

 pFile = FS_FOpen(“File.txt”, "w");
 if (pFile) {
 FS_JOURNAL_Begin("");
 memset(aBuffer, ’a’, sizeof(aBuffer));
 FS_Write(pFile, aBuffer, sizeof(aBuffer));
 memset(aBuffer, ’b’, sizeof(aBuffer));
 FS_Write(pFile, aBuffer, sizeof(aBuffer));
 //
 // Changes are committed in a single journaling transaction
 // assuming the journal is large enough to store all the changes.
 //
 FS_JOURNAL_End("");
 FS_FClose(pFile);
 }
}

The advantage of this method is that a relatively small writing buffer can be used.

Another possibility is to use a buffer large enough to store the contents of the entire
file and to call FS_FWrite()/FS_Write() 1 time with this buffer as parameter. Exam-
ple code follows:

void WriteWholeFileSample2(void) {
 U8 aBuffer[256];
 FS_FILE * pFile;

 pFile = FS_FOpen(“File.txt”, "w");
 if (pFile) {
 memset(aBuffer, ’a’, 128);
 memset(&aBuffer[128], ’b’, 128);
 //
 // Upon function return the changes are committed
 // in a single journaling transaction assuming the journal is large enough.
 //
 FS_Write(pFile, aBuffer, sizeof(aBuffer));
 FS_FClose(pFile);
 }
}

Both methods require that the journaling is large enough to store all the changes
made to the storage medium. When writing to a file which is not empty the journal
should be able to store the management data and the file contents. If the file is
empty a smaller journal is required to store only the management data. In this case
the contents of the file are written directly to the place on the storage where the data
should actually be stored.

512 CHAPTER 12 Journaling (Add-on)

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

12.5 Configuration
The following types of configuration macros exist:

Binary switches “B”

Switches can have a value of either 0 or 1, for deactivated and activated respectively.
Actually, anything other than 0 works, but 1 makes it easier to read a configuration
file. These switches can enable or disable a certain functionality or behavior.
Switches are the simplest form of configuration macros.

12.5.1 Journaling file system configuration
The configuration of emFile can be changed via compile time flags which can be
added to FS_Conf.h. FS_Conf.h is the main configuration file for the file system.

For detailed information about the configuration of emFile, refer to Configuration of
emFile on page 471.

12.5.2 Journaling and write caching
It is recommended to disable any form of write caching when the journaling is
enabled. A write cache buffers temporarily the data in RAM to increase the write
throughput. If a power failure occurs, the data stored in the write cache is lost. After
the target restart, the journaling is no more be able to recover the data of the last
write operation. The optimal operation of journaling is achieved if the file system is
configured as follows:

� Write cache should be disabled.
If your application uses a cache, make sure it is a read cache. This is always true
for the FS_CACHE_ALL and the FS_CACHE_MAN cache types which are pure read
caches. For the FS_CACHE_RW and FS_CACHE_RW_QUOTA cache types the
FS_CACHE_SetMode() function must be called to configure them as read caches.
For detailed information about the configuration and usage of caches, refer to
Optimizing performance - Caching and buffering on page 197.

� Directory entries should be updated after each write.
Call the FS_ConfigUpdateDirOnWrite() function with the OnOff parameter set
to 1 to activate this feature.

� Write mode should be set to �safe�.
To configure this, call the FS_SetFileWriteMode() function with the WriteMode
parameter set to FS_WRITEMODE_SAFE.

� Write buffer should be disabled.
Make sure the FS_USE_FILE_BUFFER define is set to 0.

Type Macro Default Description

B FS_SUPPORT_JOURNAL 0 Defines if emFile should enable
journaling for the used file system.

Table 12.2: Journaling configuration macros

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

513

12.6 Journaling API
The table below lists the available API functions within their respective categories.

Function Description

FS_JOURNAL_Begin() Start data caching in the journal.
FS_JOURNAL_Create() Creates the journal.
FS_JOURNAL_CreateEx() Creates the journal.
FS_JOURNAL_Disable() Deactivates the journal.
FS_JOURNAL_Enable() Activates the journal.
FS_JOURNAL_End() End data caching in the journal.

Table 12.3: emFile Journaling API function overview

514 CHAPTER 12 Journaling (Add-on)

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

12.6.1 FS_JOURNAL_Begin()
Description

Starts the data buffering in the journal. This means all relevant data is written to the jour-
nal, instead of the �real destination�.

Prototype
int FS_JOURNAL_Begin(const char * sVolumeName);

Return value

==0 Transaction opened
!=0 Error code indicating the failure reason

Refer to FS_ErrorNo2Text() on page 177.

Example

Refer to How can I use journaling in my application? on page 510.

Parameter Description

sVolumeName
IN: name of a volume. If not specified, the first device in the vol-
ume table will be used.
OUT: ---

Table 12.4: FS_JOURNAL_Begin() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

515

12.6.2 FS_JOURNAL_Create()
Description

Creates the journal.

Prototype
int FS_JOURNAL_Create(const char * sVolumeName,
 U32 NumBytes);

Return value

== 0: O.K., journal created
== 1: O.K., journal already exists
else: Error code indicating the failure reason

Refer to FS_ErrorNo2Text() on page 177.

Additional information

The size of the journal file can be computed by using this formula:

JournalSize = 3 * BytesPerSector + (16 + BytesPerSector) * NumSectors

The number of sectors the journal file should be able to store depends on the file sys-
tem operations performed by the application. The table below can be used to com-
pute the number of sectors which are changed during a specific file system operation.

Parameter Description

sVolumeName
IN: name of a volume. If not specified, the first device in the vol-
ume table will be used.
OUT: ---

NumBytes Sets the size of the journal.
Table 12.5: FS_JOURNAL_Create() parameter list

Parameter Description

JournalSize
Size of the journal file in bytes. This value should be passed as
second parameter to FS_JOURNAL_Create().

BytesPerSector Size of the logical sector in bytes.
NumSectors Number of sectors the journal should be able to store.

Table 12.6: Parameters for journal size computation

Function Number of sectors

FS_FClose() 1 sector if the file has been modified else no sectors.
FS_FOpen() 1 sector when creating the file else no sectors.
FS_FWrite() see FS_Write() below
FS_SyncFile() 1 sector if the file has been modified else no sectors.

FS_Write()

Uses the remaining free space on the journal. 2 sectors
and about 9 percent are reserved for allocation table
and directory entry updates. The remaining sectors are
used to store the actual data. If more data is written as
the free space in the journal file the operation is split
into several journal transactions.

FS_Rename() 1 sector
FS_SetFileAttributes() 1 sector
FS_SetFileTime() 1 sector
FS_SetFileTimeEx() 1 sector
FS_MkDir() 2 sectors + SectorsPerCluster
FS_RmDir() 2 sectors
FS_SetVolumeLabel() 1 sector

Table 12.7: Number of sectors modified by API functions

516 CHAPTER 12 Journaling (Add-on)

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

Example

Refer to How can I use journaling in my application? on page 510.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

517

12.6.3 FS_JOURNAL_CreateEx()
Description

Creates the journal.

Prototype
int FS_JOURNAL_CreateEx(const char * sVolumeName,
 U32 NumBytes,
 U8 SupportFreeSector);

Return value

== 0: O.K., journal created
== 1: O.K., journal already exists
else: Error code indicating the failure reason

Refer to FS_ErrorNo2Text() on page 177.

Additional information

Refer to FS_JOURNAL_Create() on page 515.

Parameter Description

sVolumeName
IN: name of a volume. If not specified, the first device in the
volume table will be used.
OUT: ---

NumBytes Sets the size of the journal.

SupportFreeSector
Set to 1 if the storage driver should be informed about
unused sectors.

Table 12.8: FS_JOURNAL_CreateEx() parameter list

518 CHAPTER 12 Journaling (Add-on)

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

12.6.4 FS_JOURNAL_Disable()
Description

Deactivates the journal.

Prototype
int FS_JOURNAL_Disable(const char * sVolumeName);

Return value

==0 Journal disabled
!=0 Error code indicating the failure reason

Refer to FS_ErrorNo2Text() on page 177.

Additional information

Following the call to this function, the modifications made to storage medium are not
fail-safe anymore. The function can be called at any time after the file system inital-
ization. It closes any pending journal transactions and it does nothing if the journal is
already disabled. The journal remains disabled if the corresponding volume is re-
mounted but it is activated if file system re-initialized. The FS_JOURNAL_Enable()
function can be used to explicitly activate the journal.

Parameter Description

sVolumeName
IN: name of a volume. If not specified, the first device in the vol-
ume table will be used.
OUT: ---

Table 12.9: FS_JOURNAL_Disable() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

519

12.6.5 FS_JOURNAL_Enable()
Description

Activates the journal.

Prototype
int FS_JOURNAL_Enable(const char * sVolumeName);

Return value

==0 Journal enabled
!=0 Error code indicating the failure reason

Refer to FS_ErrorNo2Text() on page 177.

Additional information

Calling of this function is optional. The journal is activated by default when the file
system is initialized.

Parameter Description

sVolumeName
IN: name of a volume. If not specified, the first device in the vol-
ume table will be used.
OUT: ---

Table 12.10: FS_JOURNAL_Enable() parameter list

520 CHAPTER 12 Journaling (Add-on)

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

12.6.6 FS_JOURNAL_End()
Description

Ends the data buffering in the journal. This means all journal data should be written to the
real destination.

Prototype
int FS_JOURNAL_End(const char * sVolumeName);

Return value

==0 Transaction closed
!=0 Error code indicating the failure reason

Refer to FS_ErrorNo2Text() on page 177.

Example

Refer to How can I use journaling in my application? on page 510.

Parameter Description

sVolumeName
IN: name of a volume. If not specified, the first device in the vol-
ume table will be used.
OUT: ---

Table 12.11: FS_JOURNAL_End() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

521

12.7 Performance and resource usage
In this section the RAM (static and dynamic) and ROM resource usage of the journal-
ing add-on is described.

12.7.1 ROM usage
The ROM usage depends on the compiler options, the compiler version and the used
CPU. The memory requirements of the journaling have been measured on a system
as follows: ARM7, IAR Embedded workbench V5.50.1, Thumb mode, Size optimiza-
ion.

12.7.2 Static RAM usage
Static RAM usage is the amount of RAM required by the journal module for static
variables. The number of bytes can be seen in a compiler list file:

Static RAM usage of the journaling add-on: 16 bytes

12.7.3 Runtime (dynamic) RAM usage
Runtime (dynamic) RAM usage is the amount of RAM allocated by the journaling add-
on at runtime. The amount required depends the journal size and on the number of
volumes on which the journaling add-on is enabled.

The approximately runtime RAM usage for the journaling add-on can be calculated as
follows:

MemAllocated = (JournalSize / (BytesPerSector + 16) * 4 + 56)
 * NumVolumes

12.7.4 Performance
These performance measurements are in no way complete, but they give an approxi-
mation of the length of time required for common operations on various targets. The
tests were performed as described in Performance on page 502.

All values are in Kbytes/sec.

Module
ROM

[Kbytes]

emFile journal 1.9

Parameter Description

MemAllocated Number of bytes allocated.

JournalSize
Size of the journal file in bytes. This is the second argument
specified in the call to FS_JOURNAL_Create().

BytesPerSector Size of a file system sector in bytes.
NumVolumes Number of volumes on which the journaling is active.

Table 12.12: Runtime RAM usage parameters for journaling add-on

Device
CPU

speed
Medium W R

NXP LPC2478 57.6MHz SST39VF201 (1x16 bit, no "burst
write") 5.6 2534

ST STM32F103 72MHz M29W128 (1x16, with "write burst",
64 bytes) 18.5 7877

Table 12.13: Performance values for sample configurations

522 CHAPTER 12 Journaling (Add-on)

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

12.8 FAQs
Q: Can a journal be created when other files are already present on the disk?
A: Yes. The journal saves its data in a normal file called Journal.dat. If there is

enough space left on the medium there is no problem to create the journal even if
other files are present.

Q: Can a journal can be re-created?
A: Yes. Follow this procedure to recreate the journal:

- remove Journal.dat file
- unmount the file system
- mount the file system
- re-create the journal

Q: Can a journal be deleted?
A: Yes, by deleting the Journal.dat file.

Q: What if the journal isn't big enough?
A: If the journal is not big enough the data already stored on the journal is saved to

the real location on the medium and an error message is generated.

Q: Can multiple tasks use a journal at the same time?
A: Yes, the journal is multitasking safe.

Q: Can FS_JOURNAL_Begin() and FS_JOURNAL_End() be nested?
A: Yes. There is a reference counter that is incremented with each invocation of

FS_JOURNAL_Begin() and is decremented when FS_JOURNAL_End() is called.
When the reference counter reaches zero the data is transferred from journal to
the real destination on the medium and the journal is cleared.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

523

Chapter 13

Encryption (Add-on)

This chapter documents and explains emFile�s encryption add-on. Encryption is an
extension to emFile which allows for the data to be stored in a secure way.

524 CHAPTER 13 Encryption (Add-on)

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

13.1 Introduction
emFile Encryption is an additional component which can be used to secure the data
of the entire volume or of individual files. Without encryption support all the data is
stored in a readable form. Using the encryption the data can be made unreadable
before being stored using a key. Without the knowledge of the key it is not possible
to make the data readable again.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

525

13.2 Features
� Can be used with both FAT and EFS file systems.
� All storage types such as NAND, NOR, SD/MMC/CompactFlash cards are sup-

ported.
� Only minor changes of application are required.
� DES and AES with 128-bit and 256-bit key lengths are supported.
� Encryption of entire media or of individual files.
� A tool available to decrypt/encrypt files on a PC.

526 CHAPTER 13 Encryption (Add-on)

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

13.3 How to use encryption

13.3.1 What do I need to do to use file encryption?
Using file encryption is very simple from a user perspective.

You have to:

1. Enable file encryption in the emFile configuration.
Refer to Compile time configuration on page 527 for detailed information.

2. Call FS_CRYPT_Prepare() to initialize an encryption object. It must be performed
only once. Refer to FS_CRYPT_Prepare() on page 529 for detailed information.

3. Open a file and call FS_SetEncryptionObject() to assign the encryption object
to file handle. Refer to FS_SetEncryptionObject() on page 532 for detailed infor-
mation.

That's it. Everything else is done by the emFile Encryption extension.

Example

This sample function opens a file and writes a text message to it. The file contents is
encrypted using the DES encryption algorithm. The changes required to an applica-
tion to support encryption are marked in magenta.

void FileEncryptionSample(void) {
 FS_FILE * pFile;
 const U8 aKey[8] = {1, 2, 3, 4};
 FS_CRYPT_OBJ CryptObj;
 static FS_DES_CONTEXT _Context;
 static int _IsInited;

 //
 // Create the encryption object. It contains all the necessary information
 // for the encryption/decryption of data. This step must be performed only once.
 //
 if (_IsInited == 0) {
 FS_CRYPT_Prepare(&CryptObj, &FS_CRYPT_ALGO_DES, &_Context, 512, aKey);
 _IsInited = 1;
 }
 pFile = FS_FOpen("cipher.bin", "w");
 if (pFile) {
 //
 // Assign the created encryption object to file handle.
 //
 FS_SetEncryptionObject(pFile, &CryptObj);
 //
 // Write data to file using encryption.
 //
 FS_Write(pFile, "This message has been encrypted using SEGGER emFile.\n", 53);
 FS_FClose(pFile);
 }
}

13.3.2 How can I use volume encryption?
Refer to Encryption driver on page 456.

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

527

13.4 Compile time configuration
The following types of configuration macros exist:

Binary switches “B”

Switches can have a value of either 0 or 1, for deactivated and activated respectively.
Actually, anything other than 0 works, but 1 makes it easier to read a configuration
file. These switches can enable or disable a certain functionality or behavior.
Switches are the simplest form of configuration macros.

The configuration of emFile can be changed via compile time flags which can be
added to FS_Conf.h. FS_Conf.h is the main configuration file for the file system.

For detailed information about the configuration of emFile, refer to Configuration of
emFile on page 471.

Type Macro Default Description

B FS_SUPPORT_ENCRYPTION 0
Specifies whether support for the
file encryption should be compiled
in or not.

Table 13.1: Encryption configuration macros

528 CHAPTER 13 Encryption (Add-on)

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

13.5 Encryption API
The table below lists the available API functions within their respective categories.

Function Description

FS_CRYPT_Prepare() Initializes an encryption object.
FS_CRYPT_Decrypt() Decrypts data on PC.
FS_CRYPT_Encrypt() Encrypts data on PC.
FS_SetEncryptionObject() Assigns an encryption object to a file handle.

Table 13.2: emFile Encryption API function overview

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

529

13.5.1 FS_CRYPT_Prepare()
Description

Initializes an encryption object which contains all the informations necessary for the
encryption/decryption of a file.

Prototype
void FS_CRYPT_Prepare(FS_CRYPT_OBJ * pCryptObj,
 const FS_CRYPT_ALGO_TYPE * pAlgoType,
 void * pContext,
 U32 BytesPerBlock,
 const U8 * pKey);

Additional information

The following encryption algorithms are defined:

The pContext parameter points to a structure of type FS_DES_CONTEXT when the
FS_CRYPT_ALGO_DES algorithm is used or to FS_AES_CONTEXT structure when the
FS_CRYPT_ALGO_AES128 or the FS_CRYPT_ALGO_AES256 are specified. The context
pointer is saved to object structure and must point to a valid memory location as long
as the encryption object is in use.

The BytesPerBlock parameter is a power of 2 value which should be smaller than or
equal to the sector size of the volume which stores the file. A block size of 512 bytes
is a good value.

The size of pKey byte depends on the algorithm type:

The encryption object can be shared between different files.

Example

Refer to What do I need to do to use file encryption? on page 526.

Parameter Description

pCryptObj
IN: ---
OUT: Encryption object to be initialized

pAlgoType
IN: Type of encryption algorithm
OUT: ---

pContext
IN: Context of encryption algorithm
OUT: ---

BytesPerBlock Number of bytes to encrypt at once.

pKey
IN: The encryption/decryption password
OUT: ---

Table 13.3: FS_CRYPT_Prepare() parameter list

Permitted values for the parameter pAlgoType

FS_CRYPT_ALGO_DES
Data Encryption Standard with 56-bit
key length

FS_CRYPT_ALGO_AES128
Advanced Encryption Standard with
128-bit key length

FS_CRYPT_ALGO_AES256
Advanced Encryption Standard with
256-bit key length

Algorithm type pKey size [bytes]

FS_CRYPT_ALGO_DES 8
FS_CRYPT_ALGO_AES128 16
FS_CRYPT_ALGO_AES256 32

530 CHAPTER 13 Encryption (Add-on)

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

13.5.2 FS_CRYPT_Decrypt()
Description

Decrypts one or more blocks of data.

Prototype
void FS_CRYPT_Decrypt(const FS_CRYPT_OBJ * pCryptObj,
 U8 * pDest,
 const U8 * pSrc,
 U32 NumBytes,
 U32 * pBlockIndex);

Additional information

The function should be used on a PC to decrypt a file encrypted on a target sys-
tem. On a target system the data is decrypted automatically by the file system.
pBlockIndex parameter can be used to start the decryption at an arbitrary block
index inside the file. The size of the block is the value passed to BytesPerBlock in a
call to FS_CRYPT_Prepare() which initialized the encryption object.

Example

For an example take a look at the source of the FSFileEncrypter.exe tool located in
the Windows\FS_FileEncrypter\Src folder of the emFile shipment.

Parameter Description

pCryptObj
IN: Encryption object to be used for the decrypt operation
OUT: ---

pDest
IN: ---
OUT: Decrypted data

pSrc
IN: Data to be decrypted
OUT: ---

NumBytes Number of bytes to decrypt

pBlockIndex
IN: Index of the first block to decrypt
OUT: Index of the next block to decrypt

Table 13.4: FS_CRYPT_Decrypt() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

531

13.5.3 FS_CRYPT_Encrypt()
Description

Encrypts one or more blocks of data.

Prototype
void FS_CRYPT_Encrypt(const FS_CRYPT_OBJ * pCryptObj,
 U8 * pDest,
 const U8 * pSrc,
 U32 NumBytes,
 U32 * pBlockIndex);

Additional information

The function should be used on a PC to encrypt a file encrypted on a target system.
On a target system the data is encrypted automatically by the file system when the
application writes to file. pBlockIndex parameter can be used to start the encryption
at an arbitrary block index inside the file. The size of the block is the value passed to
BytesPerBlock in a call to FS_CRYPT_Prepare() which initialized the encryption
object.

Example

For an example take a look at the source of the FSFileEncrypter.exe tool located in
the Windows\FS_FileEncrypter\Src folder of the emFile shipment.

Parameter Description

pCryptObj
IN: Encryption object to be used for the decrypt operation
OUT: ---

pDest
IN: ---
OUT: Encrypted data

pSrc
IN: Data to be encrypted
OUT: ---

NumBytes Number of bytes to encrypt

pBlockIndex
IN: Index of the first block to encrypt
OUT: Index of the next block to encrypt

Table 13.5: FS_CRYPT_Encrypt() parameter list

532 CHAPTER 13 Encryption (Add-on)

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

13.5.4 FS_SetEncryptionObject()
Description

Assigns an encryption object to a file handle.

Prototype
void FS_SetEncryptionObject(FS_FILE * pFile,
 FS_CRYPT_OBJ * pCryptObj);

Additional information

The function must be called right after the file is opened before any read or write
operation. The pointer to encryption object is saved internally by emFile. This means
that the memory it points to should be valid until the file is closed or until the
FS_SetEncryptionObject() is called again with pCryptObj set to NULL.

Example

What do I need to do to use file encryption? on page 526.

Parameter Description

pFile
IN: Handle to opened file.
OUT: ---

pCryptObj
IN: ---
OUT: Encryption object to be initialized.

Table 13.6: FS_SetEncryptionObject() parameter list

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

533

13.6 Encryption tool
emFile comes with command line tools to allow the encryption/decryption of files on
a PC. Due to export regulations of encryption software two separate executable are
provided: FSFileEncrypter.exe and FSFileEncrypterES.exe. which support differ-
ent encryption strengths. FSFileEncrypter.exe supports only the encryption algo-
rithms with a key smaller than or equal to 56-bit which includes the DES algorithm.
Encryption/decryption with any key strength can be done using the FSFileEncryp-
terES.exe executable. The tool supports the DES and AES encryption algorithms.

13.6.1 Using the file encryption tools
The tools can be invoked directly form the command line or via a batch file. To use
the tools directly a terminal window must be opened first. On the command line the
name of the executable, either FSFileEncrypter.exe or FSFileEncrypterES.exe,
should be input first followed by optional and required arguments. By pressing the
Enter key the tool will perform encryption or decryption as specified.

Below is a screenshot of the FSFileEncrypter.exe decrypting the contents of the
des.bin file to des.txt file. The encryption algorithm is DES as specified with the -a
option. Information about the decrypting process is shown on the terminal. In case of
an error a message is displayed and the executable returns with a status of 1. No
destination file is created in this case.

13.6.2 Command line options
Parameters which can be omitted when invoking the tools from the command line.

13.6.2.1 -a
Description

Selects the encryption algorithm. Default encryption algorithm is DES.

Syntax

-a <AlgoType>

534 CHAPTER 13 Encryption (Add-on)

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

Additional information

The following table lists all valid values for <AlgoType>:

Example

Shows how to encrypt the contents of the file plain.txt file to cipher.bin file using
the DES algorithm. The encryption key is the string �secret�.

C:>FSFileEncrypter -a DES secret plain.txt cipher.bin

13.6.2.2 -b
Description

Sets the size of the encryption block. Default block size is 512 bytes.

Syntax

-b <BlockSize>

Additional information

The parameter should be a power of 2 value and represents the number of bytes in
the block. It should be equal to the BytesPerBlock passed in the call to
FS_CRYPT_Prepare() function which initializes the encryption object on the target
system.

Example

Shows how to encrypt the contents of the file plain.txt file to cipher.bin file using
the DES algorithm. The encryption key is the string �secret� and the size of the
encryption block is 2048 bytes.

C:>FSFileEncrypter -b 2048 secret plain.txt cipher.bin

13.6.2.3 -d
Description

Performs decryption. Default is encryption.

Syntax

-d

Example

Shows how to decrypt the contents of the file cipher.bin file to plain.txt file
using the DES algorithm. The encryption key is the string �secret�.

FSFileEncrypter -d secret cipher.bin plain.txt

13.6.2.4 -h
Description

Show the usage message and exit.

Syntax

-h

Permitted values for parameter <AlgoType>

DES Data Encryption Standard, 56-bit key length

AES128
Advanced Encryption Standard, 128-bit key length
(supported only by FSFileEncrypterES.exe)

AES256
Advanced Encryption Standard, 256-bit key length
(supported only by FSFileEncrypterES.exe)

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

535

Example

C:>FSFileEncrypterES -h
DESCRIPTION
 File encryption/decryption utility for SEGGER emFile.
USAGE
 FSFileEncrypterES [-a <AlgoType>] [-b <BlockSize>]
 [-d] [-h] [-q] [-v] <Key> <SrcFile> <DestFile>
OPTIONS
 -a <AlgoType> Type of the encryption algorithm. AlgoType can be one of:
 DES Data Encryption Standard, 56-bit key length
 AES128 Advanced Encryption Standard, 128-bit key length
 AES256 Advanced Encryption Standard, 256-bit key length
 Default is DES.
 -b <BlockSize> Number of bytes to be encrypted/decrypted at once.
 BlockSize must be a power of 2 value. When encrypting a file
 BlockSize should be smaller than or equal to the sector size
 of the file system volume. When decrypting a file, BlockSize
 should be equal to the value used to encrypt the file.
 Default is 512 bytes.
 -d Perform decryption. Default is encryption.
 -h Show this help information.
 -q Do not show log messages.
 -v Show version information.
ARGUMENTS
 <Key> Encryption/decryption key as ASCII string. Non-printable
 characters can be specified as 2 hexadecimal characters
 prefixed by the sequence '\x'.
 Ex: the key value 1234 can be specified as \x04\xD2.
 <SrcFile> Path to file to be encrypted/decrypted.
 <DestFile> Path to encrypted/decrypted file.

13.6.2.5 -q
Description

Do not show log information. Default is to log messages to console.

Syntax

-q

13.6.2.6 -v
Description

Show version information and exit.

Syntax

-v

Example

C:>FSFileEncrypterES -v
SEGGER FS File Encrypter (Extra Strong) V1.01a ('?' or '-h' for help)
Compiled on Sep 4 2012 16:18:23

13.6.3 Command line arguments
Mandatory parameters which must be specified on the command line in the order
they are described below.

13.6.3.1 <Key>
Description

A string which specifies the encryption key. Non-printable characters can be input in
hexadecimal form by prefixing them with the string �\x�. The key is case sensitive.

536 CHAPTER 13 Encryption (Add-on)

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

Example

The file plain.txt is encrypted using DES and the result is saved to cipher.bin.
The password looks like this in binary form: 0x70 0x61 0x73 0x73 0x01 0x02 0x03
0x04.

C:>FSFileEncrypterES pass\x01\x02\x03\x04 plain.txt cipher.bin

13.6.3.2 <SrcFile>
Description

Path to the file to read from.

Additional information

It specifies the plain text file in case when encryption is performed. When decrypting
the parameter specifies the cipher text file. The parameters <SrcFile> and <Dest-
File> must specify 2 different files.

Example

Shows how to encrypt the contents of the file plain.txt file to cipher.bin file using
the AES encryption algorithm. plain.txt is the source file.

C:>FSFileEncrypterES -a AES128 pass plain.txt cipher.bin

13.6.3.3 <DestFile>
Description

Path to the file to write to.

Additional information

It specifies the cipher text file in case when encryption is performed. When decrypt-
ing the parameter specifies the plain text file. The parameters <SrcFile> and <Dest-
File> must specify 2 different files.

Example

Shows how to decrypt the contents of the file cipher.bin file to plain.txt file using
the AES encryption algorithm. plain.txt is the destination file.

C:>FSFileEncrypterES -d -a AES256 pass cipher.bin plain.txt

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

537

13.7 Performance and resource usage
In this section the RAM (static and dynamic) and ROM resource usage of the file
encryption is described. Refer to Performance and resource usage on page 458 for
the performance and resource usage of volume encryption.

13.7.1 ROM usage
The ROM usage depends on the compiler options, the compiler version and the used
CPU. The memory requirements of the journaling have been measured on a system
as follows: Cortex-M, IAR Embedded Workbench V6.30, Size optimization.

In addition, one of the following cryptographic algorithms is required:

13.7.2 Static RAM usage
Static RAM usage is the amount of RAM required by the journal module for static
variables. No static RAM is used by the file encryption.

13.7.3 Runtime (dynamic) RAM usage
Runtime (dynamic) RAM usage is the amount of RAM allocated by the file encryption
at runtime. The file encryption requires one sector buffer for the encryption/decryp-
tion of data. By default, the size of the sector buffer is 512 and can be configured
using the FS_SetMaxSectorSize().

13.7.4 Performance
These performance measurements are in no way complete, but they give an approxi-
mation of the length of time required for common operations on various targets. The
tests were performed as described in Performance on page 502.

All values are in Kbytes/sec.

Module
ROM

[Kbytes]

emFile File Encryption 0.4

Physical layer Description
ROM

[Kbytes]

FS_CRYPT_ALGO_DES DES encryption algorithm. 3.2
FS_CRYPT_ALGO_AES128 AES encryption algorithm using an 128-bit key. 12.0
FS_CRYPT_ALGO_AES256 AES encryption algorithm using a 256-bit key. 12.0

Device
CPU

speed
Medium W R

Freescale Kinetis K60 120 MHz NAND flash interfaced via 8-bit bus
using AES with an 128-bit key. 522 553

ST STM32F4 96 MHz SD card as storage medium using
AES with an 128-bit key 500 530

Table 13.7: Performance values for sample configurations

538 CHAPTER 13 Encryption (Add-on)

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

539

Chapter 14

Porting emFile 2.x to 3.x

540 CHAPTER 14 Porting emFile 2.x to 3.x

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

14.1 Differences from version 2.x to 3.x
Most of the differences from emFile version 2.x to version 3.x are internal. The API of
emFile version 2.x is a subset of the API of version 3.x. Only few functions are com-
pletely removed. Refer to section API differences on page 540 for a complete over-
view of the removed and obsolete functions.

emFile version 3 has a new driver handling. You can include drivers and allocate the
required memory for the accordant driver without the need to recompile the whole
file system. Refer to Configuration of emFile on page 471 for detailed information
about the integration of a driver into emFile. For detailed information to the emFile
device drivers, refer to the chapter Device drivers on page 213.

Because of these differences, we recommend to start with a new file system project
and include your application code, if the start project runs without any problem.
Refer to the chapter Running emFile on target hardware on page 33 for detailed
information about the best way to start the work with emFile version 3.x.

The following sections gives an overview about the changes from emFile version 2.x.
to emFile version 3 in table form.

14.2 API differences

In emFile version 3 is the header file FS_Api.h renamed to FS.h, therefore change
the name of the file system header file in your application.

Function Description

Changed functions

FS_GetFreeSpace()
Number of parameters reduced. Parameter
DevIndex removed.

FS_GetTotalSpace()
Number of parameters reduced. Parameter
DevIndex removed.

Removed functions
FS_Exit() Should be removed from your application

source code.FS_CheckMediumPresent()

Obsolete directory handling functions
FS_CloseDir()

The directory handling has been changed in
emFile version 3.x. The functions should be
replaced. Refer to FS_FindClose() on
page 104 for an example of the new way of
directory handling.

FS_DirEnt2Attr()

FS_DirEnt2Name()

FS_DirEnt2Size()

FS_DirEnt2Time()

FS_GetNumFiles()

FS_OpenDir()

FS_ReadDir()

FS_RewindDir()

Obsolete file system extended functions

FS_IoCtl()

FS_IoCtl() should not be used in emFile
version 3.x. Use FS_IsLLFormatted() to
check if a low-level format is required and
FS_GetDeviceInfo() to get the device
information.

Table 14.1: Differences between emFile v.2.x / v.3.x - API differences

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

541

14.3 Configuration differences
The configuration of emFile version 3.x has been simplified compared to emFile v2.x.
emFile v3.x can be used �out of the box�. You can use it without the need for chang-
ing any of the compile time flags. All compile time configuration flags are preconfig-
ured with valid values, which matches the requirements of the most applications.

A lot of the compile time flags of emFile v.2.x are removed and replaced with runtime
configuration function.

Removed/replaced configuration macros

In version 3.x
removed macros

In version 3.x
used macros

File system configuration
FS_MAXOPEN --

FS_POSIX_DIR_SUPPORT --

FS_DIR_MAXOPEN FS_NUM_DIR_HANDLES

FS_DIRNAME_MAX --

FS_SUPPORT_BURST --

FS_DRIVER_ALIGNMENT --

FAT configuration macros

FS_FAT_SUPPORT_LFN
Replaced by FS_FAT_SupportLFN(). Refer
to FS_FAT_SupportLFN() on page 174 for
more information.

Table 14.2: Differences between emFile v.2.x / v.3.x - removed/replaced configuration macros

542 CHAPTER 14 Porting emFile 2.x to 3.x

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

14.4 Device driver

14.4.1 Renamed drivers

14.4.2 Integrating a device driver into emFile
In version 2.x, you have to enable a device driver with a macro which has to be set
has to be set in the emFile configuration file FS_Conf.h and recompile your file sys-
tem project. emFile version 3.x is run time configurable, so that you can add all
device drivers by calling the FS_AddDevice() function with the proper parameter for
the accordant driver.

14.4.3 RAM disk driver differences

Refer to the section RAM disk driver on page 217 for detailed information about the
RAM disk driver in emFile version 3.x.

Old driver names Driver names in emFile version 3.x

NAND2K
In emFile version 3.x, the NAND driver could be used to
access small and large block NAND flashes similarly. The
driver is therefore renamed from NAND2K to NAND.

SMC

In emFile version 3, the SMC / small block NAND driver is
integrated in the NAND driver. The NAND driver could be
used to access small and large block NAND flashes simi-
larly.

SFLASH The serial flash driver is renamed into DataFlash driver.
FLASH FLASH driver renamed to NOR flash driver.

Table 14.3: Differences between emFile v.2.x / v.3.x - list of renamed device drivers

In version 3.x
removed macros

Alternative

FS_USE_FLASH_DRIVER FS_AddDevice(&FS_NOR_Driver)

FS_USE_IDE_DRIVER FS_AddDevice(&FS_IDE_Driver)

FS_USE_MMC_DRIVER
FS_AddDevice(&FS_MMC_SPI_Driver)
FS_AddDevice(&FS_MMC_CardMode_Driver)

FS_USE_RAMDISK_DRIVER FS_AddDevice(&FS_RAMDISK_Driver)

FS_USE_SFLASH_DRIVER FS_AddDevice(&FS_DataFlash_Driver)

FS_USE_SMC_DRIVER FS_AddDevice(&FS_NAND_Driver)

FS_USE_NAND2K_DRIVER FS_AddDevice(&FS_NAND_Driver)

FS_USE_WINDRIVE_DRIVER FS_AddDevice(&FS_WINDRIVE_Driver)
Table 14.4: Differences between emFile v.2.x / v.3.x - adding a driver

In version 3.x
removed macros

Alternative

FS_USE_RAMDISK_DRIVER FS_AddDevice(&FS_RAMDISK_Driver)

FS_RAMDISK_NUM_SECTORS FS_RAMDISK_Configure() - Refer to
FS_RAMDISK_Configure() on page 218 for detailed infor-
mation.

FS_RAMDISK_MAXUNIT

FS_RAMDISK_ADDR

FS_RAMDISK_SECTOR_SIZE
Table 14.5: Differences between emFile v.2.x / v.3.x - removed RAMDISK macros

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

543

14.4.4 NAND driver differences

Refer to the section NAND flash driver on page 221 for detailed information about the
NAND driver in emFile version 3.x.

In version 3.x
removed macros

Alternative

FS_USE_NAND2K_DRIVER FS_AddDevice(&FS_NAND_Driver)

FS_NAND2K_MAXUNIT FS_NAND_SetPhyType() - Refer to
FS_NAND_SetPhyType() on page 231 for detailed infor-
mation.
FS_NAND_SetBlockRange() - Refer to
FS_NAND_SetBlockRange() on page 233 for detailed
information.

FS_NAND2K_MAX_NUM_PHY_
BLOCKS

Table 14.6: Differences between emFile v.2.x / v.3.x - removed NAND driver macros

Hardware interface version 2.x Hardware interface version 3.x

FS_NAND2K_HW_X_SetAddr() FS_NAND_HW_X_SetAddrMode()

FS_NAND2K_HW_X_SetCmd() FS_NAND_HW_X_SetCmdMode()

FS_NAND2K_HW_X_SetData() FS_NAND_HW_X_SetDataMode()

FS_NAND2K_HW_X_SetStandby() FS_NAND_HW_X_SetStandby()

FS_NAND2K_HW_X_WaitWhileBusy() FS_NAND_HW_X_WaitWhileBusy()

FS_NAND2K_HW_X_IsWriteProtected() FS_NAND_HW_X_IsWriteProtected()

FS_NAND2K_HW_X_Read() FS_NAND_HW_X_Read()

FS_NAND2K_HW_X_Write() FS_NAND_HW_X_Write()

FS_NAND2k_HW_X_Delayus() FS_NAND_HW_X_Delayus()

FS_NAND2K_HW_X_Init() FS_NAND_HW_X_Init()

-- FS_NAND_HW_X_DisableCE()

-- FS_NAND_HW_X_EnableCE()
Table 14.7: Differences between emFile v.2.x / v.3.x - IDE driver hardware interface differences

544 CHAPTER 14 Porting emFile 2.x to 3.x

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

14.4.5 NAND driver differences

Refer to the section NAND flash driver on page 221 for detailed information about the
NAND driver in emFile version 3.x.

14.4.6 MMC driver differences

Refer to the section MMC/SD card driver on page 373 for detailed information about
the MMC driver in emFile version 3.x.

In version 3.x
removed macros

Alternative

FS_USE_SMC_DRIVER FS_AddDevice(&FS_NAND_Driver)

FS_SMC_MAXUNIT FS_NAND_SetPhyType() - Refer to
FS_NAND_SetPhyType() on page 231 for detailed infor-
mation.
FS_NAND_SetBlockRange() - Refer to
FS_NAND_SetBlockRange() on page 233 for detailed
information.

FS_SMC_HW_SUPPORT_BSYL
INE_CHECK

Table 14.8: Differences between emFile v.2.x / v.3.x - adding a driver

Hardware interface version 2.x Hardware interface version 3.x

FS_SMC_HW_X_SetAddr()

In emFile version 3, the SMC / small
block NAND driver is integrated in the
NAND driver. The NAND driver could be
used to access small and large block
NAND flashes similarly.
Refer to NAND flash driver on page 221
for detailed information about the NAND
driver in emFile version 3.x

FS_SMC_HW_X_SetCmd()

FS_SMC_HW_X_SetData()

FS_SMC_HW_X_SetStandby()

FS_SMC_HW_X_VccOff()

FS_SMC_HW_X_VccOn()

FS_SMC_HW_X_ChkBusy()

FS_SMC_HW_X_ChkCardIn()

FS_SMC_HW_X_ChkPower()

FS_SMC_HW_X_ChkStatus()

FS_SMC_HW_X_ChkWP()

FS_SMC_HW_X_DetectStatus()

FS_SMC_HW_X_InData()

FS_SMC_HW_X_OutData()

FS_SMC_HW_X_ChkTimer()

FS_SMC_HW_X_SetTimer()

FS_SMC_HW_X_StopTimer()

FS_SMC_HW_X_WaitTimer()
Table 14.9: Differences between emFile v.2.x / v.3.x - IDE driver hardware interface differences

In version 3.x
removed macros

Alternative

FS_USE_MMC_DRIVER FS_AddDevice(&FS_MMC_CardMode_Driver)

FS_MMC_USE_SPI_MODE FS_AddDevice(&FS_MMC_SPI_Driver)

FS_MMC_MAXUNIT --

FS_USE_CRC FS_MMC_ActivateCRC() / FS_MMC_DeactivateCRC()

FS_MMC_SUPPORT_4BIT_MODE --
Table 14.10: Differences between emFile v.2.x / v.3.x - removed MMC macros

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

545

14.4.7 CF/IDE driver differences

In version 3.x is the hardware interface of the CF/IDE driver simplified. Only 6 hard-
ware functions have to implemented.

Refer to the section CompactFlash card and IDE driver on page 425 for detailed infor-
mation about the CF/IDE driver in emFile version 3.x.

In version 3.x
removed macros

Alternative

FS_USE_IDE_DRIVER FS_AddDevice(&FS_IDE_Driver)

FS_IDE_MAXUNIT --
Table 14.11: Differences between emFile v.2.x / v.3.x - removed CF/IDE macros

Hardware interface version 2.x Hardware interface version 3.x

FS_IDE_HW_X_HWReset() FS_IDE_HW_X_HWReset()

FS_IDE_HW_X_Delay400ns() FS_IDE_HW_X_Delay400ns()

FS_IDE_HW_X_GetAltStatus() --

FS_IDE_HW_X_GetCylHigh() --

FS_IDE_HW_X_GetCylLow() --

FS_IDE_HW_X_GetData() FS_IDE_HW_X_ReadData()

FS_IDE_HW_X_GetError() --

FS_IDE_HW_X_GetSectorCount() --

FS_IDE_HW_X_GetSectorNo() --

FS_IDE_HW_X_GetStatus() --

FS_IDE_HW_X_SetCommand() --

FS_IDE_HW_X_SetCylHigh() --

FS_IDE_HW_X_SetCylLow() --

FS_IDE_HW_X_SetData() FS_IDE_HW_X_WriteData()

FS_IDE_HW_X_SetDevControl() --

FS_IDE_HW_X_SetDevice() --

FS_IDE_HW_X_SetFeatures() --

FS_IDE_HW_X_SetSectorCount() --

FS_IDE_HW_X_SetSectorNo() --

FS_IDE_HW_X_DetectStatus() --

-- FS_IDE_HW_X_ReadReg()

-- FS_IDE_HW_X_WriteReg()
Table 14.12: Differences between emFile v.2.x / v.3.x - CF/IDE driver hardware interface differences

546 CHAPTER 14 Porting emFile 2.x to 3.x

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

14.4.8 Flash / NOR flash differences

Refer to the section NOR flash driver on page 315 for detailed information about the
NOR flash driver in emFile version 3.x.

14.4.9 Serial Flash / DataFlash differences

Note: The DataFlash support is integrated into the NAND flash driver since ver-
sion 3.10. Refer to NAND flash driver on page 221 for detailed information.

14.4.10 Windrive differences

Refer to the section WinDrive driver on page 446 for detailed information about the
Windrive driver in emFile version 3.x.

In version 3.x
removed macros

Alternative

FS_USE_FLASH_DRIVER FS_AddDevice(&FS_NOR_Driver)

FS_FLASH_MAX_ERASE_CNT_DIFF

FS_NOR_Configure() - Refer to
FS_NOR_Configure() on page 322 for detailed
information.
FS_NOR_SetPhyType() - Refer to
FS_NOR_SetPhyType() on page 324 for
detailed information.

FS_FLASH_NUM_FREE_SECTORCACHE

FS_FLASH_CHECK_INFO_SECTOR

FLASH_BASEADR

FLASH_USER_START

FLASH_BYTEMODE

FLASH_RELOCATECODE

FS_FLASH_CAN_REWRITE

FS_FLASH_LINE_SIZE

FS_FLASH_SECTOR_SIZE
Table 14.13: Differences between emFile v.2.x / v.3.x - removed Flash / NOR flash macros

In version 3.x
removed macros

Alternative

FS_USE_SFLASH_DRIVER FS_AddDevice(&FS_DataFlash_Driver);

FS_SFLASH_MAXUNIT --
Table 14.14: Differences between emFile v.2.x / v.3.x - removed Serial Flash / DataFlash macros

In version 3.x
removed macros

Alternative

FS_WD_DEV0NAME FS_Windrive_Configure() - Refer to
WINDRIVE_Configure() on page 446 for
detailed information.FS_WD_DEV1NAME

Table 14.15: Differences between emFile v.2.x / v.3.x - removed Windrive macros

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

547

14.5 OS Integration

In version 3.x
removed macros

In version 3.x
used macros

OS configuration macros

FS_OS_LOCKING_PER_FILE Removed. If you want to use emFile version
3.x with an RTOS, define FS_OS_LOCKING in
your FS_Conf.h. Refer to OS integration on
page 481 for information about he functions
which has to be implemented to use emFile
with an RTOS.

FS_OS_EMBOS

FS_OS_UCOS_II

FS_OS_WINDOWS

FS_OS

Table 14.16: Differences between emFile v.2.x / v.3.x - removed/replaced configuration macros

Function Description

Changed functions

FS_X_OS_Init()
In emFile version 3.x gets FS_X_OS_Init()
an additional parameter. Refer to
FS_X_OS_Init()

Removed functions
FS_X_OS_ Exit() --

Time and date functions
FS_X_OS_GetDate() In emfile version 3.x is only one version

used to handle the time and date function-
ality. Refer to FS_X_GetTimeDate() on
page 472 for more information.

FS_X_OS_GetDateTime()

Table 14.17: Differences between emFile v.2.x / v.3.x - Changes in the OS interface

548 CHAPTER 14 Porting emFile 2.x to 3.x

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

549

Chapter 15

FAQs

You can find in this chapter a collection of frequently asked questions (FAQs)
together with answers.

550 CHAPTER 15 FAQs

UM02001 User & Reference Guide for emFile © 2002 - 2015 SEGGER Microcontroller GmbH & Co. KG

15.1 FAQs
Q: Is my data safe, when an unexpected RESET occurs?
A: In general, the data which is already on the medium is safe. If a read operation is

interrupted, this is completely harmless. If a write operation is interrupted, the
data written in this operation may or may not be stored on the medium, depending
on when the unexpected RESET occurred. In any case, the data which was on the
media prior to the write operation is not affected; directory entries are not messed
up, the file-allocation-table is kept in order. This is true if your storage medium is
not affected by the RESET, meaning that it is able to complete a pending write
operation. (Which is typically the case with Flash memory cards other than SMC)

Q: I use FAT and I can only create a limited number of root directory entries. Why?
A: With FAT12 and FAT16 the root directory is special because it has a fixed size. Dur-

ing media format one can determine the size, but once formatted this value is con-
stant and determines the number of entries the root directory can hold. FAT32
does not have this limitation and the root directory's size can be variable.

Microsoft's �FAT32 File System Specification� says on page 22: �For FAT12 and
FAT16 media, the root directory is located in a fixed location on the disk immedi-
ately following the last FAT and is of a fixed size in sectors computed from the
BPB_RootEntCnt value [...] For FAT32, the root directory can be of variable size
and is a cluster chain, just like any other directory is.�. Here BPB_RootEntCnt
specifies the count of 32-byte directory entries in the root directory and as the
citation says, the number of sectors is computed from this value.

In addition, which file system is used depends on the size of the medium, that is
the number of clusters and the cluster size, where each cluster contains one or
more sectors. Using small cluster sizes (for example cluster size = 512 bytes) one
can use FAT32 on media with more than 32 MB. (FAT16 can address at least 216
clusters with a 512 byte cluster size. That is 65536 * 512 = 33554432 bytes =
32768 KB = 32 MB). If the media is smaller than or equal to 32 MB or the cluster
size is greater than 512 bytes, FAT32 cannot be used.

To actually set a custom root directory size for FAT12/FAT16 one can use the
emFile API function int FS_Format(const char * pDevice, FS_FORMAT_INFO *
pFormatInfo); where FS_FORMAT_INFO is declared as:

typedef struct {
 U16 SectorsPerCluster;
 U16 NumRootDirEntries;
 FS_DEV_INFO * pDevInfo;
} FS_FORMAT_INFO;

Set NumRootDirEntries to the desired number of root directory entries you want
to store.

UM02001 User & Reference Guide for emFile © 2002 - 2014 SEGGER Microcontroller GmbH & Co. KG

551

Index

A
Add device driver source to project38
Add template for hardware routines39
API functions

Directory functions 103
error-handling 176
Extended functions 118
FAT related functions 172
file access ..72
file positioning82
file system control 50, 59
Formatting a medium 110
Obsolete functions 181
Operations on file86

ATA drives
Hardware 435
Hardware interface 435
Modes of operation 435
Pin functions 435
Supported modes of operation 435
True IDE mode 435

B
Build ..37
Build the project and test it37

C
Cache functions

FS_AssignCache() 201
FS_Cache_Clean()203�205, 209
FS_CACHE_SetMode() 206
FS_CACHE_SetQuota() 207

CF/IDE
FS_IDE_HW_ReadData() 443
FS_IDE_HW_ReadReg() 441
FS_IDE_HW_WriteData() 444
FS_IDE_HW_WriteReg() 442

Checkdisk error codes120, 529
CompactFlash

Hardware 430
Memory CARD mode427, 432
Modes of operation 431

Pin functions426
Supported modes of operation431

CRC ...380
Creating a simple project without emFile 35

D
DataFlash HW

FS_DF_HW_X_DisableCS268
FS_DF_HW_X_EnableCS267
FS_DF_HW_X_Write 271, 273�278

Debugging
FS_X_ErrorOut494
FS_X_Log492
FS_X_Warn493

Device drivers
default names 214, 452
function table for449
integrating your own450

Directory functions
FS_FindClose()103�104
FS_FindFirstFile()105
FS_FindNextFile()106
FS_MkDir()107
FS_RmDir()108
Structure FS_FIND_DATA 109, 171

E
EFS configuration478
emFile

Add directories 37
Add files .. 36
Configuration of 38
features of 20
installing ... 28
Integrating into your system 34
layers ... 21

Error code ...177
Error handling

FS_ClearErr()176
FS_ErrorNo2Text()177
FS_FEof()179
FS_FError()180

552 Index

UM02001 User & Reference Guide for emFile © 2002 - 2014 SEGGER Microcontroller GmbH & Co. KG

Extended functions
FS_FileTimeToTimeStamp() 122�123
FS_GetFileSize() 124
FS_GetNumVolumes() 127
FS_GetVolumeFreeSpace() 129�130
FS_GetVolumeInfo() 131�132
FS_GetVolumeName() 135
FS_GetVolumeSize() 136�137
FS_GetVolumeStatus() 138
FS_IsVolumeMounted() 139
FS_SetBusyLEDCallback() 142
FS_SetVolumeLabel() 144
FS_TimeStampToFileTime() 126
FS_WriteSector() 195
Structure FS_FILETIME 153

F
FAQs ... 549
FAT configuration 477
FAT related functions

FS_FAT_CheckDisk() 118
FS_FAT_CheckDisk_ErrCode2Text() ... 120
FS_FAT_SupportLFN() 174
FS_FormatSD() 173

File access
FS_FClose()72, 80
FS_FOpen()73, 76
FS_FRead() 77
FS_FWrite() 78
FS_Read() 79
FS_Write() 81

File positioning
FS_FSeek() 82
FS_FTell() .. 83
FS_GetFilePos() 84
FS_SetFilePos() 85

File System API 21
File system configuration

FS_AddDevice() 59
FS_AddPhysDevice() 60
FS_AssignMemory() 61
FS_LOGVOL_AddDevice() 66
FS_LOGVOL_Create() 65
FS_SetMaxSectorSize() 71
FS_SetMemHandler() 70

File system control
FS_Init() .. 51
FS_InitStorage() 189
FS_Mount() 50, 53�54
FS_SetAutoMount() 55
FS_UnmountForced() 58
FS_UnmountLL() 194
Unmount ... 57

Formatting a medium
FormatLow() 113
FS_Format() 111
FS_FormatLLIfRequired() 112
FS_IsHLFormatted() 114
FS_IsLLFormatted() 115
Structure FS_DEV_INFO 117
Structure FS_FORMAT_INFO 116, 151�153

FS_DeInit() .. 52
Function table, for device drivers 449

I
IDE/CF HW

FS_IDE_HW_Delay400ns() 439
FS_IDE_HW_IsPresent() 440
FS_IDE_HW_Reset() 438

Include files ..37
Initializing the file system24

L
Layer

API Layer ...21
Driver ..22
File System Layer22
Hardware Layer22
Storage Layer22

M
Microsoft compiler28
Miscellaneous configurations 479
MMC .. 373
MMC card mode

pin description 374
MMC CardMode HW

FS_MMC_HW_X_Delay 406
FS_MMC_HW_X_GetResponse 400
FS_MMC_HW_X_IsPresent 399
FS_MMC_HW_X_IsWriteProtected 398
FS_MMC_HW_X_ReadData 402
FS_MMC_HW_X_SendCmd 403
FS_MMC_HW_X_SetHWBlockLen 396
FS_MMC_HW_X_SetHWNumBlocks 397
FS_MMC_HW_X_SetMaxSpeed 393
FS_MMC_HW_X_SetReadDataTimeOut 395
FS_MMC_HW_X_SetResponseTimeOut 394
FS_MMC_HW_X_WriteData 405

MMC SPI HW
FS_MMC_HW_X_DisableCS 385
FS_MMC_HW_X_EnableCS ..381�382, 384
FS_MMC_HW_X_IsPresent 389
FS_MMC_HW_X_IsWriteProtected 388
FS_MMC_HW_X_Read 390
FS_MMC_HW_X_SetMaxSpeed 386
FS_MMC_HW_X_SetVoltage 387
FS_MMC_HW_X_Write 391

MMC SPI mode
pin description 377

Multimedia & SD card device driver 373
MultiMedia Card 373

N
NAND flash driver

NAND flash device driver221, 290
Pin description 225
Supported hardware223, 290

NAND HW
FS_NAND_HW_X_DisableCE() 257

NOR flash driver315, 357
Configuration321, 358
Supported hardware315, 357

O
Obsolete functions

FS_CloseDir() 181
FS_DirEnt2Attr() 183
FS_DirEnt2Name() 184
FS_DirEnt2Size() 185
FS_DirEnt2Time() 186

UM02001 User & Reference Guide for emFile © 2002 - 2014 SEGGER Microcontroller GmbH & Co. KG

Index 553

FS_GetNumFiles() 188
FS_OpenDir() 190
FS_ReadDir() 191
FS_RewindDir() 193

Operations on file
FS_CopyFile() 86�87
FS_GetFileAttributes() 88, 91
FS_GetFileTime()89
FS_GetFileTimeEx()90
FS_Move() ..92
FS_Remove()93
FS_Rename()94
FS_SetEndOfFile() 95, 99
FS_SetFileAttributes()96
FS_SetFileTime()97
FS_SetFileTimeEx()98
FS_Truncate() 100
FS_Verify() 101�102

OS integration 481
API functions 482
Examples 490
FS_X_OS_Init 483�484
FS_X_OS_Lock 485
FS_X_OS_Unlock 486�489

OS support 478

S
Sample configuration 480
Sample project

building ..28
debugging ..28

SD Card ... 373
Search path, configuration of37
SecureDigital Card 373
Source code, Generic36
Storage API ..21
Syntax, conventions used11

T
Troubleshooting 495

W
WinDrive disk driver 446

Configuration 446

554 Index

UM02001 User & Reference Guide for emFile © 2002 - 2014 SEGGER Microcontroller GmbH & Co. KG

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Segger Microcontroller:

 2.50.04 2.50.02

http://www.mouser.com/segger
http://www.mouser.com/access/?pn=2.50.04
http://www.mouser.com/access/?pn=2.50.02

	About this document
	Table of Contents
	Introduction to emFile
	1.1 What is emFile
	1.2 Features
	1.3 Basic concepts
	1.3.1 emFile structure
	1.3.2 Choice of file system type: FAT vs. EFS
	1.3.3 Fail safety
	1.3.4 Wear leveling

	1.4 Implementation notes
	1.4.1 File system configuration
	1.4.2 Runtime memory requirements
	1.4.3 Initializing the file system

	1.5 Development environment (compiler)

	Getting started
	2.1 Installation
	2.2 Using the Windows sample
	2.2.1 Building the sample program
	2.2.2 Stepping through the sample
	2.2.3 Further source code examples

	Running emFile on target hardware
	3.1 Step 1: Creating a simple project without emFile
	3.2 Step 2: Adding emFile to the start project
	3.3 Step 3: Adding the device driver
	3.3.1 Adding the device driver source to project
	3.3.2 Adding hardware routines to project

	3.4 Step 4: Activating the driver
	3.4.1 Modifying the runtime configuration

	3.5 Step 5: Adjusting the RAM usage

	API functions
	4.1 API function overview
	4.2 File system control functions
	4.2.1 FS_AddOnExitHandler()
	4.2.2 FS_Init()
	4.2.3 FS_DeInit()
	4.2.4 FS_Mount()
	4.2.5 FS_MountEx()
	4.2.6 FS_SetAutoMount()
	4.2.7 FS_Sync()
	4.2.8 FS_Unmount()
	4.2.9 FS_UnmountForced()

	4.3 File system configuration functions
	4.3.1 FS_AddDevice()
	4.3.2 FS_AddPhysDevice()
	4.3.3 FS_AssignMemory()
	4.3.4 FS_ConfigFileBufferDefault()
	4.3.5 FS_FAT_ConfigMaintainFATCopy()
	4.3.6 FS_FAT_ConfigUseFSInfoSector()
	4.3.7 FS_LOGVOL_Create()
	4.3.8 FS_LOGVOL_AddDevice()
	4.3.9 FS_SetFileBufferFlags()
	4.3.10 FS_SetFileWriteMode()
	4.3.11 FS_SetFileWriteModeEx()
	4.3.12 FS_SetMemHandler()
	4.3.13 FS_SetMaxSectorSize()

	4.4 File access functions
	4.4.1 FS_FClose()
	4.4.2 FS_FOpen()
	4.4.3 FS_FOpenEx()
	4.4.4 FS_FRead()
	4.4.5 FS_FWrite()
	4.4.6 FS_Read()
	4.4.7 FS_SyncFile()
	4.4.8 FS_Write()

	4.5 File positioning functions
	4.5.1 FS_FSeek()
	4.5.2 FS_FTell()
	4.5.3 FS_GetFilePos()
	4.5.4 FS_SetFilePos()

	4.6 Operations on files
	4.6.1 FS_CopyFile()
	4.6.2 FS_CopyFileEx()
	4.6.3 FS_GetFileAttributes()
	4.6.4 FS_GetFileTime()
	4.6.5 FS_GetFileTimeEx()
	4.6.6 FS_ModifyFileAttributes()
	4.6.7 FS_Move()
	4.6.8 FS_Remove()
	4.6.9 FS_Rename()
	4.6.10 FS_SetEndOfFile()
	4.6.11 FS_SetFileAttributes()
	4.6.12 FS_SetFileTime()
	4.6.13 FS_SetFileTimeEx()
	4.6.14 FS_SetFileSize()
	4.6.15 FS_Truncate()
	4.6.16 FS_Verify()
	4.6.17 FS_WipeFile()

	4.7 Directory functions
	4.7.1 FS_CreateDir()
	4.7.2 FS_FindClose()
	4.7.3 FS_FindFirstFile()
	4.7.4 FS_FindNextFile()
	4.7.5 FS_MkDir()
	4.7.6 FS_RmDir()
	4.7.7 Structure FS_FIND_DATA

	4.8 Formatting a medium
	4.8.1 FS_Format()
	4.8.2 FS_FormatLLIfRequired()
	4.8.3 FS_FormatLow()
	4.8.4 FS_IsHLFormatted()
	4.8.5 FS_IsLLFormatted()
	4.8.6 FS_FORMAT_INFO
	4.8.7 FS_DEV_INFO

	4.9 Extended functions
	4.9.1 FS_CheckDisk()
	4.9.2 FS_CheckDisk_ErrCode2Text()
	4.9.3 FS_CreateMBR()
	4.9.4 FS_FileTimeToTimeStamp()
	4.9.5 FS_FreeSectors()
	4.9.6 FS_GetFileSize()
	4.9.7 FS_GetMaxSectorSize()
	4.9.8 FS_GetNumFilesOpen()
	4.9.9 FS_GetNumVolumes()
	4.9.10 FS_GetPartitionInfo()
	4.9.11 FS_GetVolumeFreeSpace()
	4.9.12 FS_GetVolumeFreeSpaceKB()
	4.9.13 FS_GetVolumeInfo()
	4.9.14 FS_GetVolumeInfoEx()
	4.9.15 FS_GetVolumeLabel()
	4.9.16 FS_GetVolumeName()
	4.9.17 FS_GetVolumeSize()
	4.9.18 FS_GetVolumeSizeKB()
	4.9.19 FS_GetVolumeStatus()
	4.9.20 FS_IsVolumeMounted()
	4.9.21 FS_Lock()
	4.9.22 FS_LockVolume()
	4.9.23 FS_SetBusyLEDCallback()
	4.9.24 FS_SetMemAccessCallback()
	4.9.25 FS_SetVolumeLabel()
	4.9.26 FS_TimeStampToFileTime()
	4.9.27 FS_Unlock()
	4.9.28 FS_UnlockVolume()
	4.9.29 FS_BUSY_LED_CALLBACK
	4.9.30 FS_MEMORY_IS_ACCESSIBLE_CALLBACK
	4.9.31 FS_CHECKDISK_ON_ERROR_CALLBACK
	4.9.32 FS_CHS_ADDR
	4.9.33 FS_DISK_INFO
	4.9.34 FS_FILETIME
	4.9.35 FS_PARTITION_INFO

	4.10 Storage layer functions
	4.10.1 FS_STORAGE_Clean()
	4.10.2 FS_STORAGE_CleanOne()
	4.10.3 FS_STORAGE_FreeSectors()
	4.10.4 FS_STORAGE_GetCleanCnt()
	4.10.5 FS_STORAGE_GetCounters()
	4.10.6 FS_STORAGE_GetDeviceInfo()
	4.10.7 FS_STORAGE_Init()
	4.10.8 FS_STORAGE_ReadSector()
	4.10.9 FS_STORAGE_ReadSectors()
	4.10.10 FS_STORAGE_RefreshSectors()
	4.10.11 FS_STORAGE_ResetCounters()
	4.10.12 FS_STORAGE_Sync()
	4.10.13 FS_STORAGE_SyncSectors()
	4.10.14 FS_STORAGE_Unmount()
	4.10.15 FS_STORAGE_WriteSector()
	4.10.16 FS_STORAGE_WriteSectors()
	4.10.17 Structure FS_STORAGE_COUNTERS

	4.11 FAT related functions
	4.11.1 FS_FAT_GrowRootDir()
	4.11.2 FS_FormatSD()
	4.11.3 FS_FAT_SupportLFN()
	4.11.4 FS_FAT_DisableLFN()

	4.12 Error handling functions
	4.12.1 FS_ClearErr()
	4.12.2 FS_ErrorNo2Text()
	4.12.3 FS_FEof()
	4.12.4 FS_FError()

	4.13 Obsolete functions
	4.13.1 FS_CloseDir()
	4.13.2 FS_ConfigUpdateDirOnWrite()
	4.13.3 FS_DirEnt2Attr()
	4.13.4 FS_DirEnt2Name()
	4.13.5 FS_DirEnt2Size()
	4.13.6 FS_DirEnt2Time()
	4.13.7 FS_GetDeviceInfo()
	4.13.8 FS_GetNumFiles()
	4.13.9 FS_InitStorage()
	4.13.10 FS_OpenDir()
	4.13.11 FS_ReadDir()
	4.13.12 FS_ReadSector()
	4.13.12.1 FS_RewindDir()

	4.13.13 FS_UnmountLL()
	4.13.14 FS_WriteSector()

	Optimizing performance - Caching and buffering
	5.1 Introduction
	5.2 Types of caches
	5.3 Cache API functions
	5.3.1 FS_AssignCache()
	5.3.2 FS_CACHE_Clean()
	5.3.3 FS_CACHE_Invalidate()
	5.3.4 FS_CACHE_SetAssocLevel()
	5.3.5 FS_CACHE_SetMode()
	5.3.6 FS_CACHE_SetQuota()
	5.3.7 FS_CACHE_SetAssocLevel()

	5.4 Example applications
	5.4.1 Example application: FS_50Files.c
	5.4.1.1 Source code listing: FS_50Files.c

	Device drivers
	6.1 General information
	6.1.1 Default device driver names
	6.1.2 Unit number
	6.1.3 Hardware layer
	6.1.3.1 Polled mode
	6.1.3.2 Interrupt driven hardware layer

	6.2 RAM disk driver
	6.2.1 Supported hardware
	6.2.2 Theory of operation
	6.2.3 Fail-safe operation
	6.2.4 Wear leveling
	6.2.5 Configuring the driver
	6.2.5.1 Adding the driver to emFile
	6.2.5.2 FS_RAMDISK_Configure()

	6.2.6 Hardware functions
	6.2.7 Additional information
	6.2.7.1 Formatting

	6.2.8 Performance and resource usage
	6.2.8.1 Performance

	6.3 NAND flash driver
	6.3.1 SLC1 driver - FS_NAND_Driver
	6.3.1.1 NAND flash organization
	6.3.1.2 Supported hardware
	6.3.1.3 Theory of operation
	6.3.1.4 Fail-safe operation
	6.3.1.5 Wear leveling
	6.3.1.6 Partial writes
	6.3.1.7 Read disturbs
	6.3.1.8 Configuring the driver
	6.3.1.9 Physical layer
	6.3.1.10 Hardware layer
	6.3.1.11 Additional driver functions
	6.3.1.12 Test hardware
	6.3.1.13 Performance and resource usage
	6.3.1.14 FAQs

	6.3.2 Universal driver - FS_NAND_UNI_Driver
	6.3.2.1 Supported hardware
	6.3.2.2 Theory of operation
	6.3.2.3 Fail-safe operation
	6.3.2.4 Wear leveling
	6.3.2.5 Partial writes
	6.3.2.6 Configuring the driver
	6.3.2.7 Physical layer
	6.3.2.8 Hardware layer
	6.3.2.9 Additional driver functions
	6.3.2.10 Test hardware
	6.3.2.11 Performance and resource usage

	6.3.3 Additional Information
	6.3.4 Additional physical layer functions

	6.4 NOR flash driver
	6.4.1 Sector map driver - FS_NOR_Driver
	6.4.1.1 Supported hardware
	6.4.1.2 Theory of operation
	6.4.1.3 Fail-safe operation
	6.4.1.4 Wear leveling
	6.4.1.5 Garbage collection
	6.4.1.6 Configuring the driver
	6.4.1.7 Physical layer
	6.4.1.8 Hardware functions
	6.4.1.9 Additional information
	6.4.1.10 Additional driver functions
	6.4.1.11 Performance and resource usage
	6.4.1.12 FAQs

	6.4.2 Block map - FS_NOR_BM_Driver
	6.4.2.1 Supported hardware
	6.4.2.2 Theory of operation
	6.4.2.3 Fail-safe operation
	6.4.2.4 Wear leveling
	6.4.2.5 Configuring the driver
	6.4.2.6 Physical layer
	6.4.2.7 Hardware functions
	6.4.2.8 Additional information
	6.4.2.9 Additional driver functions
	6.4.2.10 Performance and resource usage

	6.5 MMC/SD card driver
	6.5.1 Supported hardware
	6.5.1.1 Pin description for MMC/SD card in Card mode
	6.5.1.2 Pin description for MMC/SD card in SPI mode

	6.5.2 Theory of operation
	6.5.3 Fail-safe operation
	6.5.4 Wear leveling
	6.5.5 Configuration
	6.5.5.1 Adding the driver to emFile
	6.5.5.2 Enable 4-bit mode (card mode only)
	6.5.5.3 Cyclic redundancy check (CRC)
	6.5.5.4 FS_MMC_ActivateCRC()
	6.5.5.5 FS_MMC_DeactivateCRC()

	6.5.6 Hardware functions - SPI mode
	6.5.6.1 FS_MMC_HW_X_EnableCS()
	6.5.6.2 FS_MMC_HW_X_DisableCS()
	6.5.6.3 FS_MMC_HW_X_SetMaxSpeed()
	6.5.6.4 FS_MMC_HW_X_SetVoltage()
	6.5.6.5 FS_MMC_HW_X_IsWriteProtected()
	6.5.6.6 FS_MMC_HW_X_IsPresent()
	6.5.6.7 FS_MMC_HW_X_Read()
	6.5.6.8 FS_MMC_HW_X_Write()

	6.5.7 Hardware functions - Card mode
	6.5.7.1 FS_MMC_HW_X_SetMaxSpeed()
	6.5.7.2 FS_MMC_HW_X_SetResponseTimeOut()
	6.5.7.3 FS_MMC_HW_X_SetReadDataTimeOut()
	6.5.7.4 FS_MMC_HW_X_SetHWBlockLen()
	6.5.7.5 FS_MMC_HW_X_SetHWNumBlocks()
	6.5.7.6 FS_MMC_HW_X_IsWriteProtected()
	6.5.7.7 FS_MMC_HW_X_IsPresent()
	6.5.7.8 FS_MMC_HW_X_GetResponse()
	6.5.7.9 FS_MMC_HW_X_ReadData()
	6.5.7.10 FS_MMC_HW_X_SendCmd()
	6.5.7.11 FS_MMC_HW_X_WriteData()
	6.5.7.12 FS_MMC_HW_X_Delay()

	6.5.8 Hardware functions - Card mode for ATMEL devices
	6.5.8.1 FS_MCI_HW_EnableClock()
	6.5.8.2 FS_MCI_HW_EnableISR()
	6.5.8.3 FS_MCI_HW_GetMCIInfo()
	6.5.8.4 FS_MCI_HW_GetMClk()
	6.5.8.5 FS_MCI_HW_Init()
	6.5.8.6 FS_MCI_HW_IsCardPresent()
	6.5.8.7 FS_MCI_HW_IsCardWriteProtected()
	6.5.8.8 FS_MCI_HW_CleanDCacheRange()
	6.5.8.9 FS_MCI_HW_InvalidateDCache()

	6.5.9 Additional information
	6.5.10 Additional driver functions
	6.5.10.1 FS_MMC_CM_Allow4bitMode()
	6.5.10.2 FS_MMC_CM_Allow8bitMode()
	6.5.10.3 FS_MMC_CM_AllowHighSpeedMode()
	6.5.10.4 FS_MMC_CM_GetCardId()

	6.5.11 Performance and resource usage
	6.5.11.1 ROM usage
	6.5.11.2 Static RAM usage
	6.5.11.3 Performance

	6.5.12 Troubleshooting
	6.5.12.1 SPI mode troubleshooting guide

	6.5.13 Test hardware

	6.6 CompactFlash card and IDE driver
	6.6.1 Supported Hardware
	6.6.2 Theory of operation
	6.6.2.1 CompactFlash
	6.6.2.2 IDE (ATA) Drives

	6.6.3 Fail-safe operation
	6.6.4 Wear-leveling
	6.6.5 Configuring the driver
	6.6.5.1 Adding the driver to emFile
	6.6.5.2 FS_IDE_Configure()

	6.6.6 Hardware functions
	6.6.6.1 FS_IDE_HW_Reset()
	6.6.6.2 FS_IDE_HW_Delay400ns()
	6.6.6.3 FS_IDE_HW_IsPresent()
	6.6.6.4 FS_IDE_HW_ReadReg()
	6.6.6.5 FS_IDE_HW_WriteReg()
	6.6.6.6 FS_IDE_HW_ReadData()
	6.6.6.7 FS_IDE_HW_WriteData()

	6.6.7 Additional information
	6.6.8 Performance and resource usage
	6.6.8.1 ROM usage
	6.6.8.2 Static RAM usage
	6.6.8.3 Performance

	6.7 WinDrive driver
	6.7.1 Supported hardware
	6.7.2 Theory of operation
	6.7.3 Fail-safe operation
	6.7.4 Wear leveling
	6.7.5 Configuring the driver
	6.7.5.1 Adding the driver to emFile
	6.7.5.2 WINDRIVE_Configure()

	6.7.6 Hardware functions
	6.7.7 Additional information

	6.8 Writing your own driver
	6.8.1 Device driver functions
	6.8.2 Device driver function table
	6.8.3 Integrating a new driver

	Logical drivers
	7.1 General information
	7.1.1 Default logical driver names
	7.1.2 Unit number

	7.2 Disk partition driver
	7.2.1 Configuring the driver
	7.2.1.1 FS_DISKPART_Configure()

	7.2.2 Performance and resource usage
	7.2.2.1 ROM usage
	7.2.2.2 Static RAM usage
	7.2.2.3 Runtime RAM usage

	7.3 Encryption driver
	7.3.1 Configuring the driver
	7.3.1.1 FS_CRYPT_Configure()

	7.3.2 Performance and resource usage
	7.3.2.1 ROM usage
	7.3.2.2 Static RAM usage
	7.3.2.3 Runtime RAM usage
	7.3.2.4 Performance

	7.4 Sector read-ahead driver
	7.4.1 Configuring the driver
	7.4.1.1 FS_READAHEAD_Configure()

	7.4.2 Performance and resource usage
	7.4.2.1 ROM usage
	7.4.2.2 Static RAM usage
	7.4.2.3 Runtime RAM usage
	7.4.2.4 Performance

	7.5 Sector size adapter driver
	7.5.1 Configuring the driver
	7.5.1.1 FS_SECSIZE_Configure()

	7.5.2 Performance and resource usage
	7.5.2.1 ROM usage
	7.5.2.2 Static RAM usage
	7.5.2.3 Runtime RAM usage

	7.6 Sector write buffer driver
	7.6.1 Configuring the driver
	7.6.1.1 FS_WRBUF_Configure()

	7.6.2 Performance and resource usage
	7.6.2.1 ROM usage
	7.6.2.2 Static RAM usage
	7.6.2.3 Runtime RAM usage

	7.7 RAID1 driver
	7.7.1 Configuring the driver
	7.7.1.1 FS_RAID1_Configure()
	7.7.1.2 FS_RAID1_SetSectorRanges()
	7.7.1.3 FS_RAID1_SetSyncBuffer()

	7.7.2 Performance and resource usage
	7.7.2.1 ROM usage
	7.7.2.2 Static RAM usage
	7.7.2.3 Runtime RAM usage

	Configuration of emFile
	8.1 Runtime configuration
	8.1.1 Driver handling
	8.1.1.1 FS_X_AddDevices()

	8.1.2 System configuration
	8.1.2.1 FS_X_GetTimeDate()
	8.1.2.2 FS_X_Panic()
	8.1.2.3 Logging functions

	8.2 Compile time configuration
	8.2.1 General file system configuration
	8.2.2 FAT configuration
	8.2.3 EFS configuration
	8.2.4 OS support
	8.2.5 Debugging
	8.2.6 Miscellaneous configurations
	8.2.7 Sample configuration

	OS integration
	9.1 OS layer API functions
	9.1.1 FS_X_OS_Init()
	9.1.2 FS_X_OS_DeInit()
	9.1.3 FS_X_OS_Lock()
	9.1.4 FS_X_OS_Unlock()
	9.1.5 FS_X_OS_Wait()
	9.1.6 FS_X_OS_Signal()
	9.1.7 FS_X_OS_GetTime()
	9.1.8 Examples

	Debugging
	10.1 FS_X_Log()
	10.2 FS_X_Warn()
	10.3 FS_X_ErrorOut()
	10.4 Troubleshooting

	Performance and resource usage
	11.1 Memory footprint
	11.1.1 System
	11.1.2 File system configuration
	11.1.3 Sample project
	11.1.4 Static ROM requirements
	11.1.4.1 ROM requirements for long filename support

	11.1.5 Static RAM requirements
	11.1.6 Dynamic RAM requirements
	11.1.7 RAM usage example

	11.2 Performance
	11.2.1 Description of the performance tests
	11.2.2 How to improve the performance

	Journaling (Add-on)
	12.1 Introduction
	12.2 Features
	12.3 Backgrounds
	12.3.1 File System Layer error scenarios
	12.3.2 Write optimization

	12.4 How to use journaling
	12.4.1 What do I need to do to use journaling?
	12.4.2 How can I use journaling in my application?
	12.4.3 Keeping the consistency of file contents

	12.5 Configuration
	12.5.1 Journaling file system configuration
	12.5.2 Journaling and write caching

	12.6 Journaling API
	12.6.1 FS_JOURNAL_Begin()
	12.6.2 FS_JOURNAL_Create()
	12.6.3 FS_JOURNAL_CreateEx()
	12.6.4 FS_JOURNAL_Disable()
	12.6.5 FS_JOURNAL_Enable()
	12.6.6 FS_JOURNAL_End()

	12.7 Performance and resource usage
	12.7.1 ROM usage
	12.7.2 Static RAM usage
	12.7.3 Runtime (dynamic) RAM usage
	12.7.4 Performance

	12.8 FAQs

	Encryption (Add-on)
	13.1 Introduction
	13.2 Features
	13.3 How to use encryption
	13.3.1 What do I need to do to use file encryption?
	13.3.2 How can I use volume encryption?

	13.4 Compile time configuration
	13.5 Encryption API
	13.5.1 FS_CRYPT_Prepare()
	13.5.2 FS_CRYPT_Decrypt()
	13.5.3 FS_CRYPT_Encrypt()
	13.5.4 FS_SetEncryptionObject()

	13.6 Encryption tool
	13.6.1 Using the file encryption tools
	13.6.2 Command line options
	13.6.2.1 -a
	13.6.2.2 -b
	13.6.2.3 -d
	13.6.2.4 -h
	13.6.2.5 -q
	13.6.2.6 -v

	13.6.3 Command line arguments
	13.6.3.1 <Key>
	13.6.3.2 <SrcFile>
	13.6.3.3 <DestFile>

	13.7 Performance and resource usage
	13.7.1 ROM usage
	13.7.2 Static RAM usage
	13.7.3 Runtime (dynamic) RAM usage
	13.7.4 Performance

	Porting emFile 2.x to 3.x
	14.1 Differences from version 2.x to 3.x
	14.2 API differences
	14.3 Configuration differences
	14.4 Device driver
	14.4.1 Renamed drivers
	14.4.2 Integrating a device driver into emFile
	14.4.3 RAM disk driver differences
	14.4.4 NAND driver differences
	14.4.5 NAND driver differences
	14.4.6 MMC driver differences
	14.4.7 CF/IDE driver differences
	14.4.8 Flash / NOR flash differences
	14.4.9 Serial Flash / DataFlash differences
	14.4.10 Windrive differences

	14.5 OS Integration

	FAQs
	15.1 FAQs

	Index

