Advanced Robotics
with the Toddler

Downloaded from Elcodis.com electronic components distributor

Student Guide

VERSION 1.3

PARALLAX 7

http://elcodis.com/parts/844626/27311.html

WARRANTY

Parallax Inc. warrants its products against defects in materials and workmanship for a period of 90 days from receipt
of product. If you discover a defect, Parallax Inc. will, at its option, repair or replace the merchandise, or refund the
purchase price. Before returning the product to Parallax, call for a Return Merchandise Authorization (RMA)
number. Write the RMA number on the outside of the box used to return the merchandise to Parallax. Please enclose
the following along with the returned merchandise: your name, telephone number, shipping address, and a description
of the problem. Parallax will return your product or its replacement using the same shipping method used to ship the
product to Parallax.

14-DAY MONEY BACK GUARANTEE

If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a
full refund. Parallax Inc. will refund the purchase price of the product, excluding shipping/handling costs. This
guarantee is void if the product has been altered or damaged. See the Warranty section above for instructions on
returning a product to Parallax.

COPYRIGHTS AND TRADEMARKS

This documentation is copyright 2002-2004 by Parallax Inc. By downloading or obtaining a printed copy of this
documentation or software you agree that it is to be used exclusively with Parallax products. Any other uses are not
permitted and may represent a violation of Parallax copyrights, legally punishable according to Federal copyright or
intellectual property laws. Any duplication of this documentation for commercial uses is expressly prohibited by
Parallax Inc. Duplication for educational use is permitted, subject to the following Conditions of Duplication:
Parallax Inc. grants the user a conditional right to download, duplicate, and distribute this text without Parallax's
permission. This right is based on the following conditions: the text, or any portion thereof, may not be duplicated for
commercial use; it may be duplicated only for educational purposes when used solely in conjunction with Parallax
products, and the user may recover from the student only the cost of duplication.

This text is available in printed format from Parallax Inc. Because we print the text in volume, the consumer price is
often less than typical retail duplication charges.

BASIC Stamp, Stamps in Class, Board of Education, SumoBot, and SX-Key are registered trademarks of Parallax,
Inc. If you decide to use registered trademarks of Parallax Inc. on your web page or in printed material, you must
state that "(registered trademark) is a registered trademark of Parallax Inc.” upon the first appearance of the
trademark name in each printed document or web page. Boe-Bot, HomeWork Board, Parallax, the Parallax logo, and
Toddler are trademarks of Parallax Inc. If you decide to use trademarks of Parallax Inc. on your web page or in
printed material, you must state that "(trademark) is a trademark of Parallax Inc.”, “upon the first appearance of the
trademark name in each printed document or web page. Other brand and product names are trademarks or registered
trademarks of their respective holders.

ISBN 1-928982-14-X

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

DISCLAIMER OF LIABILITY

Parallax Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of
warranty, or under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of
equipment or property, or any costs of recovering, reprogramming, or reproducing any data stored in or used with
Parallax products. Parallax Inc. is also not responsible for any personal damage, including that to life and health,
resulting from use of any of our products. You take full responsibility for your BASIC Stamp application, no matter
how life-threatening it may be.

INTERNET DISCUSSION LISTS

We maintain active web-based discussion forums for people interested in Parallax products. These lists are accessible
from www.parallax.com via the Support — Discussion Groups menu. These are the forums that we operate from our
web site:

. BASIC Stamps — This list is widely utilized by engineers, hobbyists and students who share their
BASIC Stamp projects and ask questions.

. Stamps in Class® — Created for educators and students, subscribers discuss the use of the Stamps in
Class curriculum in their courses. The list provides an opportunity for both students and educators to
ask questions and get answers.

e Parallax Educators —Exclusively for educators and those who contribute to the development of
Stamps in Class. Parallax created this group to obtain feedback on our curricula and to provide a
forum for educators to develop and obtain Teacher’s Guides.

. Parallax Translators — The purpose of this list is to provide a conduit between Parallax and those
who translate our documentation to languages other than English. Parallax provides editable Word
documents to our translating partners and attempts to time the translations to coordinate with our
publications.

e Toddler Robot — A customer created this discussion list to discuss applications and programming of
the Parallax Toddler robot.

. SX Chips and Tools — Discussion of programming the SX microcontroller with Parallax assembly
language tools and 3rd party BASIC and C compilers.

. Javelin Stamp — Discussion of application and design using the Javelin Stamp, a Parallax module
that is programmed using a subset of Sun Microsystems’ Java® programming language.

ERRATA

While great effort is made to assure the accuracy of our texts, errors may still exist. If you find an error, please let us
know by sending an email to editor@parallax.com. We continually strive to improve all of our educational materials
and documentation, and frequently revise our texts. Occasionally, an errata sheet with a list of known errors and
corrections for a given text will be posted to our web site, www.parallax.com. Please check the individual product
page’s free downloads for an errata file.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Table of Contents - Page i

Table of Contents

[=3 = T = SRRSO PPRRRR %
WHY 1€A5N 10 WaIK? ... e e e e e e s aaee Y
Educational Concepts from the TOAAIErcccuiviiiiee e %
Audience and TeacCher's GUIAEccoiiiiiiiiiie e Vi
FOreign TranSIatioNScc.uuuiiiiie e e e e s s e e e e e e s s eennbraeeeaaeeas Vi
Toddler DISCUSSION GIOUP ...cccoiiiuiiiiiiieeeeaesiitiietee e e e e ssiittreee e e e s s sbbbbreeeeesssssabbaeeeeaessnnnnnes Vi
Special CONTIBULOISviiiii i e s vii
Parts Required for Chapters #8 and #9ccoviiiiiiii e Vi

Chapter #1: Assembling the Toddler RODOt ..., 1
Meet the Newest Member of the Familyccccvviiiei i 1
Let’'s BUIld the TOAAIETcoiiiiiiee e 2

0T S 2 L To [N 11 = o PR 2
Step #1: Install Top Tilt Servo in Bodyccvuvviiiiiiiiiii e 3
Step #2: Install Stride Servo in Body BOMOMcccveiiiiiiiiieeee e 4
Step #3: Electrically CeNter SEIVOS......cccoiviiiiiiiiiiii e 5
Step #4: InStall SErVO HOIMNSoiiiee e 8
Step #5: Install Brass Wire Keepers on Stride Servo........cccccvvviiviiiieeeeeeiiiiiiiieeeeeen 9
Step #6: INStall TOP PIALEcoooieiiie e 10
Step #7: Install Body ROUS fOr LEQSccoiiiiiiiiiiiiiei et 11
Step #8: Slide Legs onto Toddler Body ... 12
Step #9: Secure Legs to Toddler BOAYuuvvviieiiiiiiiiiiieee e 13
Step #10: Assemble Stride LINKAGESooouvviiiiiiieiiiiiieee e 14
Step #11: AttACH ANKIESvviiiii i 16
Step #12: AHACH FEEL ... 17
Step #13: Install Ball JOINEScooiiiiiiiiiic e 18
Step #14: Install TiltiNg ROGSocoiiiiieiiee e 20
Step #15: INStall Battery BOX.......ocuviiiiiieeii ittt inraeee e 22
Step #16: Install StaNdOFTSoviiii e 24
Step #17: Connect Toddler Board to Battery Packcccccccevvivviieeiieee i 25
Step #18: Install 4 AA BAttErIESuvviiiiieiiiiiiiiiee e 26
Step #19: Mount TOddIEr BOArdcciiiiiiiiiiiee et e e e eessrre e e e e snrreee e e 27
Step #20: Center Servos Again and Make AdJUStMENTScuvvvvveeeeiiniiiiiiieneeees 28

Chapter #2: Taking Your FirSt StEPS ...cooiiiiiiiiiie e 29
Simple Control and Your First Program.............oocvviiieeeeiiiiiiiiiee e essiiieeee e e snnnneens 29
SEIrVO CONLIOI BASICSevveieiirieee ittt ettt et e e e s e e e 29

HOW 8 SEIVO WOTKS ..ottt ettt e et enb e e e nbe e e snnes 29
Time Measurement and Voltage LEeVeIlS.........c.uvvviiiiiiiiiiiiiiiee e 30
Many Ways to Move the TOAAIEreviiiiiiiiiiieee e 32

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page ii - Advanced Robotics with the Toddler

APProach #1: Brute FOICEcciiiiiiiiiiiee e e ettt e e e e e e e e s s anrraneaaae s 32
Approach #2: Data TabIescouuiviiiiie e 32
Approach #3: State TranSItioNS..........uiieiiiiiiiiiiee e 33
THEOrY Of OPEIALION.......ci ittt e e e e e e e s 33
Activity #1: Basic Walking Movements: Brut€ FOICEcccuvveeeeeeeiiiiiiiiieeee e 36
Activity #2: Walking Backwards: Brute FOICecccccvviiiiiiiiiiiiiee e 45
Activity #3: Using a DATA Table to Store MOVEMENTScvvvveeeeeeiiiiiiiieee e 50
Activity #4: Using State Transitions FOr MOVEMENLSccvvvveeiieiiiiiiiiieeee e 56
CRAIIENGES. ... e e e e s e e e e e e e e e aane 64
Chapter #3: TUINING ATOUNG ...oiiiiiiii e e e e e e e e e s nreeee e e e e e ennns 65
S 11 JS] e [TaTo T U TP PR PO PPPPPPR 65
ACLiVity #1: MaKING @ TUIM .ot e e e e e e e e e s s e e e e e e e s s ennrreees 65
ACLiVity #2: DIffEreNt TUIMNS .o 71
(01 g = 11 1= g T T R PPRPRR 72
Chapter #4: Coordinated WalKingc.cevvviieoiiiiiiiiiece s 73
Multiple Tables for Many ACLONS.oiuiiiiiiiie e aaee 73
Activity #1: WhHICh TabI? ... e 73
Activity #2: Figure 8s and Square DanCingcccuvevieeeeiiiiiiiiiieee e eesiiieeee e 79
(01 g = 111 g T T PR PPRPRR 88
Chapter #5: FOHOWING Light.. ..o e 89
Bringing Your Creature 10 LIfe e 89
Activity #1: Building and Testing Photosensitive EYescccccceeeeviiiiiieni e 90
Programming to Measure the ReSIStanCe............cccoeviviiiiiiiieeni e 92

How the Photoresistor Display WOTKS..........cooiuiiiiiiie e 95
ACLiVity #2: A LIt COMPASS .. .uviiiiiiiiiiiiiiiiiit ettt 96
Programming the Toddler to Point at the Lightccccoviiieei i, 96

How the Light COmMPass WOIKS..........uuiiiiiiiiiiiiiiiie e 102
Activity #3: FOIOWING The Lightcccoooiiiiiiiee e 104
How the Light Follower Program WOrKSc.c.cevviiiiiiiiiiiicece e 110
CRAIIENGES. ...t e e a e 111
Chapter #6: Object Avoidance with Infraredccccooeeeiiiiiinn e, 113
Wireless ODJECt DELECHIONuvviieiieii ittt e e 113
Infrared Headlights for TOAAIENcoovvvieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 114

The FREQOUT THCK .eiiuiiiie ittt ettt ettt 115
Activity #1: Building and Testing the New IR Transmitter/Detectorcceeeennn. 117
TeStNG the IR PAIISuviiiiiiii i r e e 118

How the IR Pairs Display Program WOrKSccccoiniiiiiieiieinniiieee e 120
Activity #2: Object Detection and AVOIdaNCe............ueevvieiiiiiiiiiiiie e 121
Sampling Between MOVEMENTSccccviiiiiiiieeee e 121

(01 o= 11 1= T TS PR 123

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Table of Contents - Page iii

Chapter #7: Staying on the Tabl€.......ccoooiiiiii e 123
What's @ FrEQUENCY SWEEP? ...ccciiiiiiieiiee e e e eesiitt et e e e e e e st e e e e e e s s bt ae e e e e e e s s snabaaeeaaaeeas 123
Activity #1: Testing the FreqQUENCY SWEEP.........uuuviiiiiiiiiiiiieeee et 123
Programming the IR DiStance GaUQEcuveeeeiiiiiiiiiieeeeeeeiiiiiieee e e e e e ssinneeeee e e 123
Activity #2: The Drop Off DELECIONcuviiiiiiiiiiiiiiiiee st 123
AlIaSEd VAriabIESueviiiiiii i 123
Activity #3: Toddler SNAadOW WAIKETcooiiiiiiiiiie it 123
Programming the Toddler Shadow Walkerccccovviieee i 123
(04 gF= 11 1=T 0T T P PRTP PP 123
Chapter #8: Real-Time Programmingcccccverreeeiiiiiiiiiieeee e e eesivnnee e e e e e s snnnnnnees 123
What is Meant By REaI-TIMEccoiiiiiiiiec et s e e e e 123
A Processor’'s Got To Know Its Own LimitationsS............eeoveveeeriiieeeiiiie e 123
Where’s Real Time in TOAAIEI?.......coooiiiiiiiee e 123
Activity #1: Building and Testing Toddler Toes and Infrared Circuit.............ccccceeeeenn. 123
Activity #2: Finite State Machine Real-Time Walker...........cccccccvviiiiiinii e, 123
Finite State MaChINeooiiiiii e 123
Commented OUE DEBUGSccuuviiiiieieiiiiiiiiee ettt e e e e e st e e e e e s s ssnnanneeaaee s 123
State INAICAIOr LEDSoooiiiiiiiiiiii ettt 123
[T I 411 o o PSPPSR 123
(04 gF= 11 1=T 0T T PP PRTPPPP 123
Chapter #9: Acceleration-Based MOtiON ..o 123
Measuring TOddIEr'S INCIINEccciiiiiiiiee e e e 123
More On Real-Time TECHNIQUESoocuiiiiiiiie i 123
Activity #1: Building and Testing the Tilt SENSOr...........cvvviiiieiiiiee e 123
NOISE FILEI ..t e e nree e e e 123
Activity #2: Integrated Sensor Walking Programccccvveeeeeiiiiciiieeee e sciiiieeee e 123
What's the ProbIEmM? ... 123

CRAIIENGES ... 123

Appendix A: Parts Listing and SOUICEScviiiiiiiiiiiiiiie e 123

Appendix B: Toddler PCB SChematiC.........cc.uviiiiiiieiiiiiie e 123

Appendix C: Blue Bell DesSigns CO-ProCESSONccciiiiiiiiiiiiee it 123

T 1= PR 123

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Preface - Page v

Preface

WHY LEARN TO WALK?

Walking robots are relatively unexplored in the area of hobby and education. The reason
for this is that they have inherent design limitations such as their ability to handle diverse
terrain including stairs; they require more complex programming algorithms and sensor-
based feedback; and interdependency between software and hardware requires some
critical thinking to obtain the desired actions.

This may be one of the reasons most of our robots have wheels. However, people have a
natural tendency to appreciate a walking robot: they seem more like human beings; they
offer more entertainment value because they’re fun to watch; and to make a biped robot
walk successfully is a challenge worthy enough to pursue the concept. If you succeed
with the Parallax Toddler robot we’d consider you a well-trained roboticist.

Aside from programming, walkers have real applications on difficult terrain. Robots with
multiple legs and multiple degrees of freedom ultimately handle more complex terrain.

The Toddler robot simplifies the walking robot concept. While the Toddler certainly
won’t be caring for the elderly, bringing you a drink from the kitchen, vacuuming the
house or driving you to the store, it will provide a first exposure to the concept of a
programmable biped. Through this text you’ll discover the complexities and rewards
associated with learning to program a walking robot. Walking robots introduce embedded
control in a positive, fun and friendly way.

EDUCATIONAL CONCEPTS FROM THE TODDLER

Educators ask Parallax what they will learn from our different curriculum. The Toddler is
considered an advanced robotics project and introduces the following concepts:

e Dependencies between mechanical and electrical systems and the ability to tune
hardware or adjust software to obtain desired results

e Advanced programming skills with the BASIC Stamp 2. An efficient Toddler
program makes use of Stamp programming tricks with the DATA statement and
EEPROM pointers, program routines that are reused and “configured” prior to
execution, variable aliasing, general sound programming practices (constant/variable

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page vi - Advanced Robotics with the Toddler

definitions that allow for program customization in just a few places rather than
throughout an entire program)

e Advanced robotic programming techniques including real-time programming,
subsumption architecture and state machines.

e A step-wise process which starts with the basics and builds to something more
complex and ultimately more useful

If you need help, call or e-mail Parallax for technical support. We’d be pleased to help
get your Toddler walking the way you want it to.

AUDIENCE AND TEACHERS GUIDE

Students as young as 14 years old should be able to build and program the Parallax
Toddler. Because of the Toddler’s more extensive mechanical system and more complex
programming we believe that the youngest student to have success with this kit would
probably be about 12 years old. If you have experience otherwise please let us know at
stampsinclass@parallax.com. The Advanced Robotics with the Toddler text presently has
no teacher’s guide. Based on demand we may elect to produce the answers to challenge
questions posed in this text.

FOREIGN TRANSLATIONS

Parallax educational texts may be translated to other languages with our permission (e-
mail stampsinclass@parallax.com). If you plan on doing any translations please contact
us so we can provide the correctly-formatted MS Word documents, images, etc. We also
maintain a discussion group for Parallax translators which you may join from
www.parallax.com via the Support — Discussion Groups menu. This will ensure that you
are kept current on our frequent text revisions.

TODDLER DISCUSSION GROUP

Parallax customer Mike G. Otis started the Toddler Robot discussion group. You can
subscribe to this group for free from www.parallax.com via the Support — Discussion
Groups menu. Discussion includes different bipedal robots and how they operate,
customizing to the Toddler with different sensor and hardware, and sharing of new
PBASIC code. Many pictures, files and interesting links have been posted on this
discussion group.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Preface - Page vii

SPECIAL CONTRIBUTORS

Parallax designed the Toddler mechanics, yet we recognize that the first time we have
seen the two-servo concept employed for a walking robot is United Kingdom robotics
designer David Buckley’s “Big Foot”. Though the core concept of a two-servo walker
now seems simple, we recognize that Mr. Buckley created the ingenious use of two
servos for a walker. Big Foot is a plywood kit available through Milford Instruments
(www.milinst.com) of the United Kingdom. David Buckley endorses the Parallax
Toddler robot and contributed to the Toddler design as part of our team.

This text was jointly authored by Parallax, Inc., Harry Lewis (www.bluebelldesign.com)
and Bill Wong of Pennsylvania. Harry makes a BASIC Stamp™~ co-processor for robotics
which is featured in the appendix. Bill is an editor with Electronic Design magazine and a
serious BASIC Stamp robotics enthusiast. His daughter has won County, State and Intel
Science Fair awards with her maze solving robotic projects.

PARTS REQUIRED FOR CHAPTERS #8 AND #9

The Toddler Robot Kit (#27310 or #27311) you have received includes all the
components for Chapters 1 through 7. Chapters 8 and 9 require additional parts you may
purchase from Parallax. Though we aim to make the kit as complete as possible,
including the additional parts would have simply raised the price of the Toddler kit and
reduced the number of users who could purchase the robot. Here is what you will need
for Chapters 8 and 9, should you decide to do the final experiments:

e Chapter #8: Toddler Bumper Switch Toes (Parallax #27312)
o Chapter #9: Memsic 2125 Accelerometer (Parallax #28017)

The last two chapters demonstrate some of the most interesting Toddler projects, such as
state machine programming, subsumption architecture and real-time sensor feedback.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #1: Assembling the Toddler Robot - Page 1

Chapter #1. Assembling the Toddler Robot

MEET THE NEWEST MEMBER OF THE FAMILY

No matter how easy it looks, you’ll soon realize that the mechanical movements and
BASIC Stamp” code required to make a two-servo biped move in a distinct fashion is
more complex than its rolling counterpart, the Parallax Boe-Bot robot. In fact, the
Toddler’s finished construction uses more sensors for feedback. This includes infrared
emitters/detectors for objects seen at a distance; bumper switches (“Toddler Toes”)
should infrared not “see” the object, and an accelerometer for determining the tilt
parameters.

The Toddler is capable of doing everything a rolling robot can do if you’ve got the
patience to tune the mechanics and software. Not only is the robot more entertaining than
a rolling robot, you’ll become a more proficient programmer as you learn to exploit the
BASIC Stamp’s capabilities. The Toddler will show you how to design a PBASIC
program that uses constants and variables, program pointers and EEPROM access for
data storage. A well-designed program means you can easily tune the software for the
right mechanical control in just a few places rather than rewriting your entire program.

The Toddler’s motion is from two servo motors (the type normally used in remote
controlled airplanes). The Toddler’s top servo motor is used to rotate the robot's center of
gravity back and forth over the two feet, and the bottom motor moves both legs back and
forth. The legs use a simple parallel linkage to the ankles that keeps the feet parallel to
the ground. Both legs are linked together through the same motor so that as one leg move
forward, the other moves backwards.

By controlling one motor at a time the robot can move forward, backward, and turn either
left or right. By blending the control of both motors the robot can do move in a more
coordinated fashion with smooth movements.

A surface-mounted BASIC Stamp 2 module controls the Toddler’s servo motors and

sensors. The BASIC Stamp 2 is used throughout the Stamps in Class educational series
and provides plenty of program space, speed and memory for use with a Toddler.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 2 - Advanced Robotics with the Toddler

LET'S BUILD THE TODDLER

The Toddler may be assembled a number of ways depending on the surface on which the
robot walks, the type of additions you make with sensors and hardware and the speed
which you program the robot to walk. The default assembly method is appropriate for
hard, level surfaces and will be used to demonstrate code throughout this text.

Tools Required

You will need the following tools to build the Toddler:
e Screwdriver (included in kit)
e 5/32” L-key wrench (included in kit)

o Small pliers

Parts are most easily identified by looking in Appendix A where we have a complete parts
listing, and by looking at the parts picture on the last page of the text.

f N Parts missing from your kit will be replaced by Parallax free of charge. We have a QA/QC

\._® _/ program but occasionally we make mistakes. If we left a part out of your kit contact us
immediately. If you break parts or want additional hardware for your customized Toddler you
can order any piece of this kit from our Component Shop (www.parallax.com under
“Products/Component Shop”).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #1: Assembling the Toddler Robot - Page 3

Step #1: Install Top “Tilt” Servo in Body

The following parts are required for this step:

e (4)4/40 3/8” long pan-head machine screws

e (4)4/40 nuts

e (1) Toddler Body

e (1) Toddler Servo Motor

Remove the servo horns from both servo splines by loosening the black screw. You will

need these again shortly so put them aside.

Install the servo in the Toddler Body with the shaft oriented towards the bottom of the
body as shown Figure 1-1. Position the servo squarely. Using four (4) 4/40 3/8” pan-head
machine screws and (4) 4/40 nuts, screw the tilt servo into the body. The easiest way to
do this is to hold the nut with one finger while turning the screwdriver with the other
hand.

Figure 1-1
Install Tilt Servo in Body

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 4 - Advanced Robotics with the Toddler

Step #2: Install “ Stride Servo in Body Bottom

The following parts are required for this step:

e (4)4/40 3/8” long pan-head machine screws
e (4)4/40 nuts

e (1) Toddler Servo Motor

Install the bottom servo with the shaft oriented towards the front of the robot as shown in
Figure 1-2. Using four (4) 4/40 3/8” machine screws and (4) 4/40 nuts, screw the stride
servo into the body.

Figure 1-2
Install Stride Servo in
Body

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #1: Assembling the Toddler Robot - Page 5

Step #3: Electrically Center Servos

The following parts are required for this step:

e Battery pack
e (4) AA Batteries (not included)
e Serial Cable (RS-232 DB-9 and straight-through)

e BASIC Stamp software installed and running on your computer

The servos should be “centered” prior to any further Toddler assembly. This will ease
any fine-tuning adjustments by allowing them to be made only in software. Don’t skip
this step — it will make future adjustments easier.

Plug the two servos into the Toddler printed circuit board “X6 and X7” connectors. The
“B” label on the header connects to the black servo lead. Next, place a jumper wires
between the Vsl and Vss above the breadboard. Place another jumper wire between Vs2
and Vss on the same header. This connects the servo grounds to the BASIC Stamp’s
ground as shown in Figure 1-3

Why are the servo grounds Vsl and Vs2 connected to Vss? The Toddler printed circuit
o board is identical to another Parallax robot controller: the SumoBot. With the SumoBot, it is
possible to be pushing forward while your competitor is actually backing you off the ring.
- Monitoring each servo’s ground connection with an A/D converter lets you identify this
situation and execute an escape movement.

AV

Next, install four batteries in the battery pack. Put the power switch in Position 0. The
battery pack’s white wire lead connects to the Toddler board’s “+” terminal block and the
black wire lead connects to the “-* terminal block. Use a screwdriver to connect these
wires.

Using the serial cable, connect the Toddler board to the serial port of your computer.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 6 - Advanced Robotics with the Toddler

©|:ﬁ:|ixs "Toddler” O

Vin \{s1 JVss @ X9

g Xt X12 =
X7 P15
ooooo P14
@ X6 x10|20000 P13
T ooooo P12
8 910 ooooo P11
ooooo P10
(= = = 2§ goooo P9
ooooo
ﬁX4 ooooo
s« | SEE 5
X3 P5
m ooooo

Downloaded from Elcodis.com electronic components distributor

-P15 + - P14

Figure 1-3
Toddler Servo Centering
Setup

a. Plug servos into the
X6 and X7 connector.

b. Connect Vs1 to Vss
and Vs2 to Vss.

c. Install batteries and
connect battery pack
to the X1 jack.

d. Plug in serial cable
and connect to PC.

http://elcodis.com/parts/844626/27311.html

Chapter #1: Assembling the Toddler Robot - Page 7

The Toddler has a three-position power switch. The state of each position is shown
below. The three-position switch has a middle position that powers the entire circuit
except servos. A complete schematic of the Toddler is included in Appendix B.

Position 0 — No Power
Position 1 — Power to everything except servos

Position 2 — Everything is powered

Place the power switch in Position 2. The next step is to program the BASIC Stamp.

/’_‘ The three-position power switch will prove to be very useful in future chapters. You will be
! | able to “debug” your Toddler's sensors without having your robot walk away. This will let you
- isolate the robot’s subsystems.

Open the BASIC Stamp Windows editor. Write or load the following piece of code that
will center both servos:

L [Title J-----cmmmmmmm oo m oo oo oo
Toddler Program 1.1 - Servo Centering.bs2

Electrically center Toddler servos during robot construction

{$sTAamMP BS2}

{$pBASIC 2.5}

I ===== [Deegleratileng |==

TiltServo CON 13 ' Tilting servo on P13
StrideServo CON 12 ' Stride servo on P12

I ===== [Wedm REUEIRNE | ==

Center: ' Center servos with 1500 us pulses
PULSOUT TiltServo, 750
PULSOUT StrideServo, 750
PAUSE 25 ' Wait 25 ms

GOTO Center ' Repeat

/’\ Toddler source code is available for download from www.parallax.com. In our other
(! | Stamps in Class texts the code is usually typed by the student, but the listings in advanced
- Toddler programs are quite long; loading them will save time.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 8 - Advanced Robotics with the Toddler

Download your code using the Run/Run menu or by pressing the P button on the toolbar.
This program runs in an endless loop. When the servos stop moving (this will happen
almost instantaneously) move the power switch to off (position 0). Disconnect the servos
from the Toddler board. Remove the batteries from the battery box and disconnect the
leads from the Toddler’s screw terminal.

Step #4: Install Servo Horns

The following parts are required for this step:
e Two straight servo horns
e (2) Small black screws to hold horn to servo

The servo horns should be installed as straight as the spline notches allow without turning
the motor from its centered position (Figure 1-4). Secure each servo horn with the small
black Phillips head screw using a screwdriver. The screws were removed from the servo
spline in Steps 1 and 2.

Figure 1-4

Both servo horns are
installed on centered
Servos.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #1: Assembling the Toddler Robot - Page 9

Step #5: Install Brass Wire Keepers on Stride Servo

The following parts are required for this step:

e (2) Brass wire keepers (brass holder, set screw and holding grommet — also called E-
Z connectors)

Attach the two brass wire keepers on the outermost holes of the stride servo’s control
horn (the white two-arm plastic piece attached to the servo in Figure 1-5). Using pliers,
press the rubber “keeper” onto the post of the brass wire keeper. Put the two small screws
into the threads of the brass wire keeper so they don’t get lost (Figure 1-6

Figure 1-5
Install brass wire keepers
on the stride servo only.

Figure 1-6

Put the two set screws
back into the brass wire
keeper so they don't get
lost.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 10 - Advanced Robotics with the Toddler

Step #6: Install Top Plate

The following parts are required for this step:
e Toddler Top Plate

e (4)4/40 3/8” flathead machine screws

e (4)4/40 nuts

The top plate is most easily installed by turning the Toddler body upside down as shown
in Figure 1-7. Position a 4/40 nut over the hole and insert a 4/40 3/8” flathead screw
through the top plate from the bottom. Hold the nut with one hand and tighten the screw
with the other hand. Repeat process for three more holes. Note: This step uses the
“flathead” countersunk 4/40 screws, not the flat “panhead” screws with the round top.

Figure 1-7
Install the Top Plate with
the flathead screws.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #1: Assembling the Toddler Robot - Page 11

Step #7: Install Body Rods for Legs

The following parts are required for this step:
e (2)3/16” 3” long stainless steel rods
e (4) plastic washers

Slide the two 3” 3/16” stainless steel rods through the two holes in the Toddler’s body
(Figure 1-8). Slide a plastic washer over each rod. This washer will keep the Toddler’s
legs from rubbing against the body.

Figure 1-8

Slide two rods into body
and install four plastic
washers.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 12 - Advanced Robotics with the Toddler

Step #8: Slide Legs onto Toddler Body

The following parts are required for this step:
e (4) Toddler legs

Slide the four Toddler legs onto the ends of the stainless steel rods going through the
body (Figure 1-9).

Figure 1-9
Slide four legs onto body

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #1: Assembling the Toddler Robot - Page 13

Step #9: Secure Legs with Collars

The following parts are required for this step:
e (4)3/16” collars with setscrew
o L hex-key wrench in collar package

Find the package of 3/16” metal collars and L-key. Slide the collars onto the stainless
steel rod. Tighten each collar using the L-key wrench as shown in Figure 1-10. If the
setscrew doesn’t seem to tighten, slightly angle the wrench to prevent stripping of the set
screw or wrench. The legs should move freely against the body without binding. If the
legs are too tight against the body the servos will strain and the Toddler won’t walk well.

Figure 1-10

Use the 3/16” metal
collars. Be sure legs
move fairly freely against
the body.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 14 - Advanced Robotics with the Toddler

Step #10: Assemble Stride Linkages

The following parts are required for this step:

e (2) 4/40 plastic wire keepers (also called E-Z adjust horn brackets)
e (2) 3/8” 4/40 panhead machine screws

e (2) brass right-angle wires

This is a two step process.

First, insert a 3/8” 4/40 panhead screw through the holes on the rear left leg Figure 1-11.
Tighten the screw into the plastic right-angle bracket. Repeat for the process for the rear
right leg. Leave the screws loose enough so the bracket and screw can rotate on the leg.
Rotate the body 180 degrees.

Figure 1-11
Attach the 4/40
plastic wire
keepers with a
3/8” 4/40 screw.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #1: Assembling the Toddler Robot - Page 15

Using the two right-angle brass wires, slide the straight end through the brass wire keeper
hole Figure 1-12. Insert the short end through the top of the plastic right-angle bracket.
Tighten the screw to hold the wire.

Adjust the linkages so the legs are vertical, not slanted to either side. Electrically center
the servos again if necessary if the servo was accidentally moved. Repeat for the other
rear side.

Figure 1-12
Slide four legs
onto body.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 16 - Advanced Robotics with the Toddler

Step #11: Attach Ankles

The following parts are required for this step:
e (2) ankle parts
e (4)4/40 ¥4” panhead machine screws

Attach the ankles to the legs using four 4/40 '4” screws (Figure 1-13). The longer part of
the ankle should be oriented towards the back of the Toddler’s body. This placement
moves the weight of the robot forward and provides better overall control.

Figure 1-13
Attach ankles.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #1: Assembling the Toddler Robot - Page 17

Step #12: Attach Feet

The following parts are required for this step:
e Toddler left foot
Toddler right foot

(4) 4/40 stainless steel alan-cap screws

3/32” hex L-key wrench

Line up the ankle into the foot’s 3rd hole from the instep (Figure 1-14). If it is too tight
slightly bend the tabs of the feet outward.

Attach the left ankle to the left foot using two plastic 4/40 screws and the 3/32” L-key
wrench. These screws have a round head that acts as a bearing surface on the robot’s foot.
Repeat for the right side. Ensure free tilting of each foot before proceeding to the next
step.

N

¥
=

Figure 1-14
Attach feet with Allen-cap
screws.

- |

N
\

X o -

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 18 - Advanced Robotics with the Toddler

Step #13: Install Ball Joints

The following parts are required for this step:
e (4) ball joints (ball joint with post, nut)

Install a ball joint on the outermost hole of each foot (Figure 1-15). Securing the nut may
require a small wrench to tighten the ball joint unless you have a pair of needle nose
pliers. One way to do this is to hold the nut with a finger and turn the ball joint until tight.
Don't grip the ball with pliers as this can damage it and prevent it turning freely in its
plastic socket when assembled.

Figure 1-15
Install ball joints on feet.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #1: Assembling the Toddler Robot - Page 19

Install two ball joints on the tilting servo control horn (Figure 1-16). Use the outermost n
two holes for these ball joints.

Figure 1-16
Install ball joints on servo
horn.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 20 - Advanced Robotics with the Toddler

Step #14: Install Tilting Rods

The following parts are required for this step:
e (2).090” diameter 5.4” stainless steel rod, 2/56 thread on each end
e (4) ball joint plastic cups with 2/56 thread

Thread two plastic ball joint cups onto the ends of the 5.4” stainless steel rod. Place the
rod next to the control horn and foot for sizing. To properly position the ball joints make
the finished piece about 1/16” longer than it needs to be as the robot stands straight up;
this ensures that the out step of the feet will be firm on the ground and aids with turning.

When you’ve got the length about right, snap the rod onto the foot and servo control horn
(Figure 1-17

Figure 1-17
Install tilt rods.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #1: Assembling the Toddler Robot - Page 21

Repeat for the other side.

There is an easy way to remove the ball cups from the ball joint. If you need to make
adjustments simply place a screwdriver between the ball cup and the Toddler’s foot and
carefully pry (snap) it off. It should pop off and can be pressed back on after you make a
few turns to adjust.

/"‘\ Toddler Tuning Tips: Toddler functions best when its body is shifted slightly toward the
(! | rear feet. Also, with both servos centered verify that the Toddler’s feed are flat on the ground
-’ or that the outsteps are angled slightly downward.

When you’re done with this step your robot should look like the one shown in Figure 1-
18. The Toddler functions best when its body is shifted slightly toward the rear feet.

When you pick up the robot, verify that the robot’s feet are flat on the ground, or that the

outsteps are angled slightly downward. Electronically center the servos with the BASIC
Stamp again if needed to tune the hardware again.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 22 - Advanced Robotics with the Toddler

Figure 1-18
Final installation of tilt
rods

Step #15: Install Battery Pack

The following parts are required for this step:

e Battery pack

e (2)4/40 3/8” long flathead countersunk machine screws

e (2)4/40 nuts

Stand the Toddler up on its feet.

Install the plastic battery pack using two 4/40 3/8” flathead screws and nuts (Figure 1-

19). The flathead screws will be countersunk into the battery pack when tightened. The
screws should be out of the way of the batteries.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #1: Assembling the Toddler Robot - Page 23

Figure 1-19
Install Battery Pack.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 24 - Advanced Robotics with the Toddler

Step #16: Install Standoffs

The following parts are required for this step:

e (4) 1” female/female 4/40 standoffs

e (4)4/40 V4" panhead machine screws

Using four 4/40 "4 screws install the four 1 standoffs on the top plate (Figure 1-20).

Figure 1-20
Install standoffs on top
plate.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #1: Assembling the Toddler Robot - Page 25

Step #17: Connect Toddler Board to Battery Pack

The following parts are required for this step:
o Toddler BASIC Stamp printed circuit board

The battery pack’s white lead connects to the Toddler board’s + terminal. The other lead
connects to the — terminal. Using a screwdriver secure both wires (Figure 1-21).

Figure 1-21
Connect Toddler board to
battery pack.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 26 - Advanced Robotics with the Toddler

Step #18: Install 4 AA Batteries

The following parts are required for this step:
e (4) AA batteries (not included in your kit)

Install 4 AA batteries (Figure 1-22). Slide the Toddler’s switch to Position 1 to verify that
power is properly connected. The green power light will turn on.

Figure 1-22
Install 4AA batteries.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #1: Assembling the Toddler Robot - Page 27

Step #19: Mount Toddler Board

The following parts are required for this step:
e (4)4/40 Y4 panhead machine screws

Using four 4/40 %4 panhead machine screws mount the Toddler board on the top of the
standoffs (Figure 1-23). Connect the bottom servo (stride) to P12 on the Toddler board.
Connect the front servo (tilt) to P13 on the Toddler board.

Figure 1-23
Completed Toddler

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 28 - Advanced Robotics with the Toddler

Step #20: Center Servos Again and Make Adjustments

As a final step, repeat Step #3 to center the servos. The Toddler should stand flat on the
ground with both feet aligned. When you pick the robot up, the feet outsteps should be
slightly tilted downward. Adjustments can be made to the ball joints. The easiest way to
remove the ball joint from the socket is to carefully pry it away from the foot with the
screwdriver. Toddlers also walk best when their legs are not vertical — tilt them back one
or two degrees so the center of gravity is closer to the middle of the feet.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #2: Taking Your First Steps - Page 29

Chapter #2: Taking Your First Steps

SIMPLE CONTROL AND YOUR FIRST PROGRAM

Making the Toddler walk requires some patience — the Toddler has 36 different
individual movements. In this experiment you’ll learn how to make the robot walk
forward and backward by writing several routines.

After forward and backward movements are mastered we’ll try making some turns in
Chapter #3. You’ll see that linking movements requires attention to the previous step
your Toddler took. For example, you can only move your left leg forward if it is off the
ground.

When the basics are mastered, you’ll learn to store movements and sub-movements in
EEPROM and write more efficient code. All of this section is “open-loop” — that means
there’s no feedback to determine whether or not you have instructed your Toddler to lean
too far left or right or even to look for obstacles.

Servo Control Basics

How a Servo Works

Hobby servos are very popular for controlling the steering and throttle systems in radio-
controlled cars, boats, and planes. These servos are designed to control the position of
something such as a steering flap on a radio-controlled airplane. Their range of motion is
typically 90° to 270°, and they are great for applications where inexpensive, accurate
high-torque positioning motion is required. The position of these servos is controlled by
an electronic signal called a pulse train, which you’ll get some first hand experience with
shortly. Hobby servos have built-in mechanical stoppers to prevent them from turning
beyond the 90° or 270° range of motion. A hobby servo also has internal mechanical
linkages for position feedback so that the electronic circuit that controls the DC motor
inside the servo knows where to turn to in response to a pulse train. The Toddler uses
unmodified servos which rotate through a range of motion about equal to 270°.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 30 - Advanced Robotics with the Toddler

Time Measurements and Voltage Levels

Throughout this student guide, amounts of time will be referred to in units of seconds (s),
milliseconds (ms), and microseconds (us). Seconds are abbreviated with the lower-case
letter “s”. So, one second is written as 1 s. Milliseconds are abbreviated as ms, and it
means one one-thousandth of a second. One microsecond is one one-millionth of a
second. Table 2-1 shows how Milliseconds and Microseconds equate in terms of both
fractions and scientific notation.

Table 2-1: Milliseconds and Microseconds

s=1x107 s

1 =
M= 1000

lus=—————s=1x10"s

A voltage level is measured in volts, which is abbreviated with an upper case V. The
Toddler board has sockets labeled Vss, Vdd, and Vin. Vss is called the system ground or
reference voltage. When the battery pack is plugged in, Vss is connected to its negative
terminal. Vin is unregulated 6 V (from four AA batteries), and it is connected to the
positive terminal of the battery pack. Vdd is regulated to 5 V by the Toddler’s onboard
voltage regulator, and it will be used with Vss to supply power to circuits built on the
Toddler’s breadboard (Table 2-2).

Table 2-2: Voltages and Toddler PCB Labels

Vss =0V (ground)
Vdd = 5V (regulated)
Vin = 6 V (unregulated)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #2: Taking Your First Steps - Page 31

The control signal the BASIC Stamp sends to the servo’s control line is called a “pulse
train,” and an example of one is shown in Figure 2-1. The BASIC Stamp can be
programmed to produce this waveform using any of its I/O pins. In this example, the
BASIC Stamp sends a 1500 us pulse to P12 (stride servo) and P13 (tilt servo). When the
pulse is done being executed the signal pin is low. Then, the BASIC Stamp sends a 25 ms

pause.
TiltServo 1500us 1500 us 1500us 1500 us 1500 us
P) I) i \
0VvDC — — ‘ 1 | ﬂ—I_L
+—> <+
" 25ms | 25ms | [25ms |
first pulse last pulse
StrideServo 1500 us 1500 us 1500us 1500 us 1500us
4>}}<7 4% +7 4>} Fﬁ 4>}}<7 4>} +7
+5WDC — — J |_| |—| |—| |—|
ovee | || T | |
e e E—
| 25ms | | 25ms | | 25ms |
first pulse last pulse

Figure 2-1: Example Servo Pulse Train Centers Servo

This pulse train has a 1500 us high time and a 25 ms low time. The high time is the main
ingredient for controlling a servo’s motion, and it is most commonly referred to as the
pulse width. Since these pulses go from low to high (0 V to 5 V) for a certain amount of

time, they are called positive pulses. Negative pulses would involve a resting state that’s
high with pulses that drop low.

The ideal pause between servo pulses can be about 10-40 ms without adversely affecting
the servo’s performance.

’/’.‘\‘ The PULSOUT command The BASIC Stamp 2's PULSOUT command works in increments
(1) of2microseconds. For example, the following snippet of code makes a 1500 us pulse:

PULSOUT 13, 750 ‘1.5 ms pulse on P13

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 32 - Advanced Robotics with the Toddler

Many Ways to Move the Toddler

Programming is a cross between an art and science. There are usually many different
ways a program can be written to get the same effect. Some are more efficient in program
size and others are more efficient in performance.

In this chapter, we look at a number of different actions the Toddler can perform
including walking forward and backward. The Toddler robot can make 36 different
movements. These different movements must be linked together in order to walk. Each
movement has a selection of possible precedent movements and a selection of possible
follow-up movements.

We will also take a look at a number of different programs that perform these functions
using different approaches. We present three approaches for programming the Toddler’s
movements. Most will prefer the last method. It uses more complicated programming
techniques but it is more flexible and easier to use. Experienced programmers will want
to jump right to the last approach but it is worth checking out all three.

Approach #1: Brute Force

This approach uses explicit subroutines for each movement. Calling these routines
performs complex movements. It provides an obvious way of controlling the Toddler but
enumerating all 36 movements consumes lots of precious program space. It also makes
changes unwieldy. For example, implementing variable speed movements requires
changes to all movement routines.

Approach #2: Data Tables

One obvious approach to consolidating 36 similar routines is to determine commonality
within the routines and generating one or more routines that perform the same functions
within certain parameters. Putting the parameters into data tables is one way to do this.
Tables tend to be more concise in terms of construction compared to more explicit
routines because the tables only contain parameters.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #2: Taking Your First Steps - Page 33

Approach #3: State Transitions

The pata tables approach is really a consolidation of the first and second approach. The
programmer must remember where the robot’s feet are and call the appropriate routine or
fill in the table with the proper parameters. The state transition approach is different
because the Toddler keeps track of where its feet are. Transition actions are now used to
move from one state to another. There are basically three tilt and three stride actions.
That is significantly less than the 36 movements used in the other approaches.

Theory of Operation

Humans take to walking naturally but the actual act is extremely complex. It requires the
coordinated actions of muscles and these actions are controlled by a very complex brain
with a very sophisticated array of inputs from vision to touch. The Toddler is at the other
end of the spectrum. It has only two control servos with a limited range of motion and
essentially no feedback. Although the Toddler will not learn to walk of its own accord, it
can be programmed relatively easily once you understand the basics.

Humans usually walk using a controlled fall. The body tilts slightly forward and a leg is
moved in front to stop the fall. The process is repeated as the person proceeds to move
forward. The effect is more noticeable when a person is running. It is easy to see why a
person falls on the ground if they misstep.

It is possible for humans to shuffle along like the Toddler. In this case the foot is placed
in front and the body is pulled along but it is hard to do. Try it. Tilting your body forward
makes it easier but this is essentially a controlled fall.

The Toddler can fall over but its movement is done via shuffling and balance. This is
necessary because of the limited range of movement. Essentially the Toddler can lean to
either side or stand flat with both feet on the floor. Either the left or right foot can be in
front, in which case the other is in the back, or they can be side-by-side. There are
essentially 9 basic foot orientations and there are 4 transitions from each orientation to
another valid orientation for a total of 36 transitions or movements.

Even with this limited range of actions, the Toddler can move about a flat surface with
relative ease. Its restrictions do limit the Toddler to two basic kinds of movements
though: walking in a straight line and pivoting. Still, this can get the Toddler from point
A to point B.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 34 - Advanced Robotics with the Toddler

Walking is essentially a four phase process.

Tilt to one side

Move the leg that is not on the ground
Tilt to the other side

Move the leg that is not on the ground

po o

This process essentially takes one step. The direction the leg moves controls the
direction, and the distance traveled is controlled by how far the legs are moved. The
speed of the Toddler depends on how fast the actions are performed and how far the legs
move.

Assuming the Toddler is not programmed to tilt too far in one direction, it will remain
balanced. This means the process can be stopped and restarted later at any point. This
differs from humans in a controlled fall because the foot must be there to stop the fall.

Momentum plays a key part in writing programs to control the Toddler. The servo motors
provide precise leg position control. They can move the legs slowly or quickly and can
stop them at any location along the way. The Toddler also remains balanced even when
tilted far to one side but this limit is difficult to attain when moving quickly because of
momentum. If you speed up the leg movement, the amount of momentum the leg has
increases. Trying to stop it at the balance limit is only possible if the leg has little
momentum. Too much momentum at that point and the Toddler falls over.

For turns the Toddler can only pivot. It does not have a knee or hip joint like a human.
The Toddler’s feet always face forward so it cannot turn its feet to change direction. This
does not restrict the Toddler to straight line motion though. By pivoting, the Toddler can
move from Point A to Point B in a straight line, pivot in the direction of Point C and then
walk in that direction to Point C.

Pivoting is also a four-phase process.

Tilt to one side

Move the leg that is not on the ground
Put both feet on the ground

Move the legs opposite of each other

poow

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #2: Taking Your First Steps - Page 35

This process works because of friction. The actual pivot occurs in the last phase where
both feet are on the ground. Essentially one leg pulls the Toddler forward while the other
pulls it backward. This causes the Toddler to pivot. The amount of rotation is a factor of
leg placement and the level of friction between the Toddler’s feet and the surface it is on.
Low friction results in minimal pivoting. Too much friction and the Toddler can fall over.

The Toddler is essentially restricted to flat surfaces. The type of surface affects the
amount of friction between the Toddler and the surface. Wood, hard carpet and kitchen
linoleum floors are a good surface while ice and rubber are not. Dense carpet works well.
Putting different surfaces on the bottom of the Toddler’s feet can increase the level of
friction. This is typically done using tape (electrical, maybe even a small piece of grip
tape). There are not hard rules on choosing surfaces and increasing friction so
experiment. You may have to adjust the program controlling to the Toddler to take into
account the surface. For example, you cannot assume that two pivot actions will turn the
Toddler 90 degrees.

This brings up the issue of accuracy. The Toddler does a good job of moving but it is
relatively inaccurate in its movements compared to its wheeled cousin, the Boe-Bot. If
the Toddler goes six steps forward and six steps back it will not wind up in exactly the
same spot. It may be close but it is unlikely to be exact. Add some turns and all bets are
off. Getting the Toddler to walk in a square is next to impossible. It is easy to program
the commands to walk in a square but due to friction and the mechanical accuracy of the
Toddler’s movements, the Toddler will probably not walk over its own footsteps. Unless
you’ve tried to add encoders to a wheeled robot or tried to solve a maze, the Toddler’s
relative limitations of repeatability are of little concern.

For most experiments, accuracy is not an issue. It is possible to track the Toddler’s
orientation using the optional Compass AppMod but tracking distance moved is a
daunting task at best. These problems are beyond the scope of this book but great areas
for investigation. Answering the question “where is my robot?” is one of the most
challenging hobby and educational endeavors, whether it uses wheels or legs.

The lack of articulated legs prevents the Toddler from walking over obstacles. The
Toddler cannot handle a grade of any significance so stay away from ramps. The Toddler
can avoid obstacles by going around them. In later experiments, we examine obstacle
detection using infrared devices included with the Toddler.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 36 - Advanced Robotics with the Toddler

ACTIVITY #1: BASIC WALKING MOVEMENTS: BRUTE FORCE

The Toddler is a walking robot so getting it moving is a good starting point.
Figure 2-2 shows a possible order of operation for taking a few steps forward.

Movement O: Movement 1: Movement 2:
Starting Position Lean Right from Start Lean Right; Left Forward

Movement 3: Movement 4: Movement 5:
Lean Left, Right Back Lean Left, Right Forward Lean Right, Left Back

Movement 6:
Lean Right, Left Forward

Figure 2-2: First Steps Movement Patterns

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #2: Taking Your First Steps - Page 37

Once the Toddler has walked Movements 0, 1 and 2 the process of Movements 3, 4, 5
and 6 can repeat to walk in a straight line. The code to perform the first three movements
is shown in the following pages. Movements 1 and 2 are almost identical except that one
adjusts the tilt and the other the stride. Movements 1, 3 and 5 would use the same code
with different values. The same is true for movements 2, 4 and 6.

The mo routine is unique. It is designed to place the feet of the Toddler on the ground and
next to each other regardless of where feet are when the routine starts. This can result in a
jerking motion if the legs are not already in or close to this point.

The M1 and M2 routines are representative examples of all the other movement routines in
the program. The M1 movement tilts the Toddler to the right. To do so, it sends pulses to
both servos. It sends the same pulse width to the stride motor so it remains stationary and
the feet do not move forward or backwards. The tilt servo is sent pulses that progressively
change in width causing the tilt servo to rotate which in turn causes the Toddler to lean.

The M2 routine does the same thing but in this case the tilt servo is held stationary while
the stride servo is driven by a set of different width pulses causing one leg to move ahead
of the other.

The program uses constant named definitions for the range of servo pulse width limit
values while the examples with small snippets of code use numeric constant values. The
effect is the same but the named constants minimize changes to the program when
experimenting with different values.

The For...NEXT loop uses a sSTEP modifier in the following pictorial examples. This STEP

does not refer to the number of physical Toddler steps taken in the routine, but an
increment to the pulse sent to the servo to send it through the desired range of motion.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 38 - Advanced Robotics with the Toddler

Starting Position Ending Position

Movement 0 BASIC Stamp Code

MO :

FOR Pulses = 1 TO 100 STEP 5
PULSOUT TiltServo, 750
PULSOUT StrideServo, 750
PAUSE 25

NEXT

Movement O Timing Diagram

TiltServo 1500 us 1500 us 1500 us 1500 us 1500 us
+5VDC — —
ovbc - — |
R E—
| 25ms | | 25ms | [25ms |
first pulse last pulse
StrideServo 1500 us 1500 us 1500 us 1500 us 1500 us
+5VDC — — |—| |—|
ovbc — — | ‘ ‘
D — «—>
[25ms | [25ms | [25ms |
first pulse ‘ last pulse

Figure 2-3: Movement 0 Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Starting Position

Movement 1 BASIC Stamp Code
M1:

FOR Pulses = 750 TO 620 STEP 5
PULSOUT TiltServo, Pulses
PULSOUT StrideServo, 750
PAUSE 25

NEXT

Movement 1 Timing Diagram

TiltServo 1500 us 1490 us 1480 us
S
+5VDC — — |—| |—|
evee J] |
R — R —
| 25ms | | 25ms |
first pulse
StrideServo 1500 us 1500 us 1500 us
S
PSR I |
ovbc — — ‘ L ‘
R — R
[25ms | | 25ms |
first pulse

Figure 2-4: Movement 1 Example

Downloaded from Elcodis.com electronic components distributor

Chapter #2: Taking Your First Steps - Page 39

Ending Position

1250 us 1240 us

\ |
-+
[25ms |

last pulse

1500 us 1500 us
I

»‘ ‘+ »‘ ‘«

\ |
-+
[25ms |

last pulse

http://elcodis.com/parts/844626/27311.html

Page 40 - Advanced Robotics with the Toddler

Starting Position

Ending Position

Movement 2 BASIC Stamp Code
M2:

FOR Pulses = 750 TO 850 STEP 5

PULSOUT TiltServo, 620

PULSOUT StrideServo, Pulses
PAUSE 25

NEXT

Movement 2 Timing Diagram
TiltServo 1240 us 1240 us 1240 us 1240 us
(I

—> - ‘ +‘}« I !

1240 us

| - ! > -
+5VDC

S 3 Iy I s 1 I

I
-+

E

-+ D EEe—
[25ms | | 25ms | [25ms |
first pulse

last pulse
StrideServo 1500 us 1510 us 1520 us
e e

1700 us
| ™ }* *} }* *} }«

+5VDC — J |—| |—|

ovDC - |

-

[25ms | |

\ \

-+ T

25 ms | | 25ms |
first pulse

last pulse

1690 us

Figure 2-5: Movement 2 Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #2: Taking Your First Steps - Page 41

An example program that performs all the movements for walking forward is shown is
shown below. It is possible to adjust the different constants in the program to make the
robot walk faster or take bigger steps. Be careful of large changes because the Toddler
can fall over. More on that later.

This program also cleans up its movement so both feet are centered and flat on the floor
when it is done. This makes starting other programs easier since the feet are in a known
position.

e [Title J-----cmmmmmmm oo m oo oo oo
' Toddler Program 2.1 - First Steps Forward.bs2

' Run Movement Patters MO to M8 to take several steps

' {$sTAMP BS2}

' {$PBASIC 2.5}

L [Declarations J------------c-mmmmm oo -
TiltStep CON 5 ' TiltServo step size
StrideStep CON 5 ' StrideServo step size
MoveDelay CON 25 ' in micrcoseconds
RightTilt CON 620 ' Tilt limits

CenterTilt CON 750

LeftTilt CON 880

RightForward CON 650 ' Stride limits
StrideCenter CON 750

LeftForward CON 850

StrideServo CON 12 ' Stride servo on P12
TiltServo CON 13 ' Tilt servo on P13
MoveLoop VAR Nib ' Repeat movements

Pulses VAR Word ' Pulse variable

L [Initialization J-------c--ommmmmm oo e oo

L [Main Routine J------commmmm oo oo oo
' Take three full steps.

Main Program:

GOSUB MO ' center servos
GOSUB M1 ' tilt right
GOSUB M2 ' step left

FOR MovelLoop = 1 to 3

GOSUB M3 ' tilt left
GOSUB M4 ' step right

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 42 - Advanced Robotics with the Toddler

GOSUB M5 ' tilt right
GOSUB M6 ' step left
NEXT
GOSUB M3 ' tilt left
GOSUB M7 ' center feet
GOSUB M8 ' center servos
END
R [Subroutines J-----------coooom oo
MO :

FOR Pulses = 1 TO 100 STEP StrideStep
PULSOUT TiltServo, CenterTilt
PULSOUT StrideServo, StrideCenter
PAUSE MoveDelay

NEXT

RETURN

M1:
FOR Pulses = CenterTilt TO RightTilt STEP TiltStep
PULSOUT TiltServo, Pulses
PULSOUT StrideServo, StrideCenter
PAUSE MoveDelay
NEXT
RETURN

M2 :
FOR Pulses = StrideCenter TO LeftForward STEP StrideStep
PULSOUT TiltServo, RightTilt
PULSOUT StrideServo, Pulses
PAUSE MoveDelay
NEXT
RETURN

M3:
FOR Pulses = RightTilt TO LeftTilt STEP TiltStep
PULSOUT TiltServo,Pulses
PULSOUT StrideServo, LeftForward
PAUSE MoveDelay
NEXT
RETURN

M4 :
FOR Pulses = LeftForward TO RightForward STEP StrideStep
PULSOUT TiltServo,LeftTilt
PULSOUT StrideServo, Pulses
PAUSE MoveDelay
NEXT
RETURN

M5:

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #2: Taking Your First Steps - Page 43

FOR Pulses = LeftTilt TO RightTilt STEP TiltStep
PULSOUT TiltServo, Pulses
PULSOUT StrideServo, RightForward
PAUSE MoveDelay

NEXT

RETURN

M6 :
FOR Pulses = RightForward TO LeftForward STEP StrideStep
PULSOUT TiltServo,RightTilt
PULSOUT StrideServo, Pulses
PAUSE MoveDelay
NEXT
RETURN

M7 :
FOR Pulses = LeftForward TO StrideCenter STEP StrideStep
PULSOUT TiltServo,LeftTilt
PULSOUT StrideServo, Pulses
PAUSE MoveDelay
NEXT
RETURN

M8 :
FOR Pulses = LeftTilt TO CenterTilt STEP TiltStep
PULSOUT TiltServo, Pulses
PULSOUT StrideServo, StrideCenter
PAUSE MoveDelay
NEXT
RETURN

Note that the program is downloaded to the Toddler using the serial cable with the power
switch in either the download (1) or run (2) position. The cable can remain connected to
the Toddler while it is walking if there is sufficient length to allow it to move freely about
the PC. You may want to hold the cable near the Toddler as it does make it slightly less
stable. The power on the Toddler should be turned off when disconnecting the cable. The
Toddler can then walk on its own when the power is turned on since the program is
downloaded into non-volatile memory. You can also program the Toddler with the switch
in Position 1, hold the reset button and move it to Position 2 so it will walk.

Three constants could be modified to make it walk quicker: MoveDelay and TiltStep
and stridestep. Decreasing MoveDelay means there will be less pause between the
servo pulses. Increasing TiltStep and StrideStep means the servo pulse width
changes will be larger (making for fewer pulses to complete the step).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 44 - Advanced Robotics with the Toddler

If the Toddler isn’t starting with both feet firmly planted squarely on the ground, or if you
would like to experiment with larger step distances you could modify the CenterTilt
and strideCenter values. This would result in a need to also modify the right and left
limits for both the tilt and stride.

Your Turn
Modify the code in the example. Try the following:
\/ Adjust the TiltStep and StrideStep values to smaller numbers. Observe how
the Toddler behaves. Adjust the same constants to larger numbers and make

some observations. Can you envision the servo timing diagram and explain why
the Toddler behaves differently?

V' Decrease the MoveDelay value to a smaller number and make observations. Find
the right combination of MoveDelay, TiltStep and StrideStep that makes
your Toddler walk the way you want it to. Save these values for future programs.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #2: Taking Your First Steps - Page 45

ACTIVITY #2: WALKING BACKWARDS: BRUTE FORCE H

The Toddler robot can walk backward as well as forward but it is not simply a matter of
using the steps in the prior program in reverse order. The Toddler moves in the reverse
fashion but the functions necessary to do this will be different. With just over half a
dozen routines, the last sample program is relatively simple. Changing it to handling a
different direction is not too difficult. Keep in mind that the two other approaches to
performing these tasks are presented later in this chapter.

In the prior program, the subroutine for each step was numbered sequentially. In this
program, the steps will be slightly different so we can use different routine names. The
starting movement is the same as the prior program but the second step will be
Movement 9 that matches the M9 routine.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 46 - Advanced Robotics with the Toddler

Movement O: Movement 1: Movement 9:
Starting Position Lean Right from Start Lean Right; Left Back

Movement 10: Movement 11: Movement 12:
Lean Left, Left Back Lean Left, Right Back Lean Right, Right Back

Movement 13:
Lean Right, Left Back

Figure 2-6: First Steps — in Reverse

As with the forward walking program, the Toddler starts with Movements 0, 1 and 9. The
process of Movements 10, 11, 12 and 13 can repeat to walk in a straight line but

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #2: Taking Your First Steps - Page 47

backwards. An example program is shown is shown below. Adjust the different constants
in the program to make your robot walk faster or take bigger steps. The program also
cleans up its movement so both feet are centered and flat on the floor.

Note that the routines with the same name have been extracted from the first sample
program. A program that used this approach but required more sophisticated actions
would need more routines with the potential of requiring all 36.

I ===== [TMiligl@ |===
' Toddler Program 2.2 - Walking Backwards.bs2

' Run Movement Patters M9 to M13 to walk backwards

' {$sTAMP BS2}

' {$PBASIC 2.5}

L [Declarations J------c--mmmmm oo oo
TiltStep CON 5 ' TiltServo step size

StrideStep CON 5 ' StrideServo step size

MoveDelay CON 20 ' in micrcoseconds

RightTilt CON 620 ' Tilt limits

CenterTilt CON 750

LeftTilt CON 880

RightForward CON 650 ' Stride limits

StrideCenter CON 750

LeftForward CON 850

StrideServo CON 12 ' Stride servo on P12

TiltServo CON 13 ' Tilt servo on P13

MoveLoop VAR Nib ' Repeat movements

Pulses VAR Word ' Pulse variable

L [Initialization J--------mm oo oo oo

I ===== [Wedm REUEIANE | ==

Main Program:

GOSUB MO ' center servos
GOSUB M1 ' tilt right
GOSUB M9 ' step back

FOR MoveLoop = 1 to 3

GOSUB M10 ' tilt left
GOSUB M11 ' step left
GOSUB M12 ' tilt right
GOSUB M13 ' step right

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 48 - Advanced Robotics with the Toddler

NEXT
GOSUB M10 ' tilt left
GOSUB M14 ' center feet
GOSUB M8 ' center servos
END
I o===== [SuerouitimeE || ===============c=s=s========c====s==c==-==c=s=o=======
MO :

FOR Pulses = 1 TO 100 STEP StrideStep
PULSOUT TiltServo, CenterTilt
PULSOUT StrideServo, StrideCenter
PAUSE MoveDelay

NEXT

RETURN

M1:
FOR Pulses = CenterTilt TO RightTilt STEP TiltStep
PULSOUT TiltServo, Pulses
PULSOUT StrideServo, StrideCenter
PAUSE MoveDelay
NEXT
RETURN

M8 :
FOR Pulses = LeftTilt TO CenterTilt STEP TiltStep
PULSOUT TiltServo,Pulses
PULSOUT StrideServo, StrideCenter
PAUSE MoveDelay
NEXT
RETURN

M9 :
FOR Pulses = StrideCenter TO RightForward STEP StrideStep
PULSOUT TiltServo, RightTilt
PULSOUT StrideServo, Pulses
PAUSE MoveDelay
NEXT
RETURN

M10:
FOR Pulses = RightTilt TO LeftTilt STEP TiltStep
PULSOUT TiltServo, Pulses
PULSOUT StrideServo, RightForward
PAUSE MoveDelay
NEXT
RETURN

M11:
FOR Pulses = RightForward TO LeftForward STEP StrideStep

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #2: Taking Your First Steps - Page 49

PULSOUT TiltServo,LeftTilt
PULSOUT StrideServo, Pulses
PAUSE MoveDelay

NEXT

RETURN

M12:
FOR Pulses = LeftTilt TO RightTilt STEP TiltStep
PULSOUT TiltServo, Pulses
PULSOUT StrideServo, LeftForward
PAUSE MoveDelay
NEXT
RETURN

M13:
FOR Pulses = LeftForward TO RightForward STEP StrideStep
PULSOUT TiltServo,RightTilt
PULSOUT StrideServo, Pulses
PAUSE MoveDelay
NEXT
RETURN

M14:
FOR Pulses = RightForward TO StrideCenter STEP StrideStep
PULSOUT TiltServo,LeftTilt
PULSOUT StrideServo, Pulses
PAUSE MoveDelay
NEXT
RETURN

Your Turn

Try the following:

\ Experiment with the constants in the program by changing them to the following
values. Explain why the Toddler’s behavior is different.

TiltStep CON 2 ' TiltServo step size
StrideStep CON 2 ' StrideServo step size
MoveDelay CON 12 ' in micrcoseconds

V' Write a program where the Toddler walks forward, then backward to the starting
position.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 50 - Advanced Robotics with the Toddler

ACTIVITY #3: USING A DATA TABLE TO STORE MOVEMENTS

The length of the two prior programs is similar but more complex programs could grow
larger simply because more movement routines would be necessary. Moving information
in tables is an excellent way of simplifying the programming task. This next sample
application employs both fixed size and variable length tables.

Table data is stored using the BASIC Stamp’s DATA command. This command lets you
write data to the Stamp’s EEPROM during program download. If used correctly, it can
make your PBASIC programs much more efficient and shorter, too.

The DATA command is shown with many examples in the BASIC Stamp Programming
Manual, available on www.parallax.com for download or in a printed format. The basics are
the following:

e DATA <can be written in byte (8-bitf and word (16-bit) sizes

A The BASIC Stamp 2's EEPROM stores DATA from numeric location 0 and builds
(1) towards location 2048. Your PBASIC program is stored from 2048 and writes backwards
\-/ towards location O.
e The PBASIC editor does not detect occurrences when you overwrite your own code with
DATA.

e Once you download and run Toddler Program 2.3 — First Steps Forward Using
Tables.bs2 you can choose Run | Memory Map to see how DATA and program is stored
in the EEPROM.

This example uses two types of entries to develop walking movements. The following
table entries are a list of movements that comprise the given motion. For example, we
know from the prior two programs that M1 followed by an M2 movement will start the
Toddler off walking. Then, after this is done movements 3, 4, 5, and 6 can repeat
themselves so the Toddler can walk straight.

StartForward DATA 1, 2, 0
WalkForward DATA 3, 4, 5, 6, 0
FinishForward DATA 3, 7, 8, 0

The BASIC Stamp’s EEPROM stores the byte-sized value 1 in location 0, the value 2 in
location 1, the value 0 in location 3, the value 3 in location 4 and so on.

The variable length tables are used to store a sequence of movements. This allows

complex movements to be of arbitrary length. The tables are accessed using the PBASIC
READ command.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #2: Taking Your First Steps - Page 51

The Movement contains data that is used to tilt or stride the Toddler. Each movement has
a starting and ending tilt and stride value. In this DATA table, M1 is actually an address for
the storage of centerTilt. Because the above three lines of code had 12 byte-sized
entries, the CenterTilt word-size constant will be stored across EEPROM locations 12
and 13 (the starting EEPROM location is 0, not 1).

The worD modifier is used because the constants are all greater than 255 — the value of a

byte.

M1 DATA WORD CenterTilt, WORD RightTilt,

WORD StrideCenter, WORD StrideCenter
M2 DATA WORD RightTilt, WORD RightTilt,

WORD StrideCenter, WORD LeftForward
M3 DATA WORD RightTilt, WORD LeftTilt,

WORD LeftForward, WORD LeftForward
M4 DATA WORD LeftTilt, WORD LeftTilt,

WORD LeftForward, WORD RightForward
M5 DATA WORD LeftTilt, WORD RightTilt,

WORD RightForward, WORD RightForward
M6 DATA WORD RightTilt, WORD RightTilt,

WORD RightForward, WORD LeftForward
M7 DATA WORD LeftTilt, WORD LeftTilt,

WORD LeftForward, WORD StrideCenter
M8 DATA WORD LeftTilt, WORD CenterTilt,

WORD StrideCenter, WORD StrideCenter

Only eight (8) movements are employed in this program but it is easy to see how all 36
movements could be easily added to the table. Storing the movements in EEPROM using
DATA requires much less code space than the “brute force” first example.

The program’s management of these routines is handled in the Main Program: and
Movement: routines. The Main Program: routine starts by calling the M0 routine, which
centers the Toddler’s stride and tilt so both feet are place squarely on the surface.

On return, the Mx variable is loaded with the value of startForward, which is actually
address 0 given by the DATA statement. In the Movement : routine the value of EEPROM
address is READ and stored in Dx. Dx now equals 1. Mx is incremented by one for the next
loop.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 52 - Advanced Robotics with the Toddler

The first time through the program the Lookup table looks up index 1, storing the address
of M1 in the variable px. Then, four word values are read from the px address and stored
consecutively in the TiltStart, TiltEnd, StrideStart and StrideEnd variables.
These values are now used in the PULSOUT command to develop a movement.

The line of code:
IF TiltStart = TiltEnd THEN MovementStride

detects an instance when Toddler does not change the tilt, but only moves a leg forward.
In this case, the previous TiltStart value is used to hold the tilting servo steady and
only a stride occurs.

- [Title Jocommmmmm oo oo oo oo -
! Toddler Program 2.3: First Steps Forward Using Tables

' Movement routines stored in EEPROM using DATA statement

' {$sTAMP BS2}

' {$PBASIC 2.5}

77777 [I/O0 Definitions J----------ccooommmmo oo
' Connect Vsl and Vs2 to Vss to ground both servos

StrideServo CON 12 ' Stride servo

TiltServo CON 13 ' Tilt servo

I ===== [Comgtanits [===
TiltStep CON 10 ' TiltServo step size
StrideStep CON 10 ' StrideServo step size
MoveDelay CON 14 ' Servo pause (ms)
RightTilt CON 625 ' Tilt limits

CenterTilt CON 750

LeftTilt CON 875

RightForward CON 600 ' Stride limits
StrideCenter CON 750

LeftForward CON 900

L [Variables J------mmmmm oo oo oo
MoveLoop VAR Nib ' Loop for repeat movements
Pulses VAR Word ' Pulse variable

Dx VAR Pulses ' Stores Mx movement index
Mx VAR Word ' Movement index

TiltStart VAR Word ' Start tilt value

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

TiltEnd VAR
StrideStart VAR
StrideEnd VAR

[EEPROM Data

]

1
1

Extend WalkForward w

1

Chapter #2: Taking Your First Steps - Page 53

Word ' End tilt wvalue
Word ' Start stride value
Word ' End stride value

Indicates which movement routines are executed to comprise steps

ith 3, 4, 5, 6, for longer walks

The number 0 marks the end of a list

StartForward DATA 1, 2, 0
WalkForward DATA 3, &, 5, 6,3, 4, 5, 6,3, 4, 5, 6,3, 4, 5, 6,3, 4, 5,
6, 0
FinishForward DATA 3, 7, 8, 0
' Movement routines
M1 DATA WORD CenterTilt, WORD RightTilt,
WORD StrideCenter, WORD StrideCenter
M2 DATA WORD RightTilt, WORD RightTilt,
WORD StrideCenter, WORD LeftForward
M3 DATA WORD RightTilt, WORD LeftTilt,
WORD LeftForward, WORD LeftForward
M4 DATA WORD LeftTilt, WORD LeftTilt,
WORD LeftForward, WORD RightForward
M5 DATA WORD LeftTilt, WORD RightTilt,
WORD RightForward, WORD RightForward
M6 DATA WORD RightTilt, WORD RightTilt,
WORD RightForward, WORD LeftForward
M7 DATA WORD LeftTilt, WORD LeftTilt,
WORD LeftForward, WORD StrideCenter
M8 DATA WORD LeftTilt, WORD CenterTilt,
WORD StrideCenter, WORD StrideCenter
L [Main Routine J------c--mmmmmmm i m o
Main_Program:
GOSUB MO ' Center servos
Mx = StartForward
'DEBUG ? Mx
GOSUB Movement
FOR MoveLoop = 1 to 3
Mx = WalkForward
GOSUB Movement
NEXT
Mx = FinishForward
GOSUB Movement
END
I o===== [Suerouitimeg [|=================s=s==c=====c====s====s-==c=s=o=======

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 54 - Advanced Robotics with the Toddler

Movement :
READ Mx, Dx ' Read state table number
Mx = Mx + 1
'DEBUG "Movement routine = ", DEC Mx,cr
IF Dx = 0 THEN DoReturn ' Skip if no more states
LOOKUP Dx, [M1, M1, M2, M3, M4, M5, M6, M7, M8],Dx
READ Dx, WORD TiltStart, WORD TiltEnd,

WORD StrideStart, WORD StrideEnd' Read table entry; store
IF TiltStart = TiltEnd THEN MovementStride
FOR Pulses = TiltStart TO TiltEnd STEP TiltStep
PULSOUT TiltServo, Pulses
PULSOUT StrideServo, StrideStart
PAUSE MoveDelay
NEXT
GOTO Movement

MovementStride:
FOR Pulses = StrideStart TO StrideEnd STEP StrideStep
PULSOUT TiltServo, TiltStart
PULSOUT StrideServo, Pulses
PAUSE MoveDelay
NEXT
GOTO Movement

L MO: Move feet to initial center position -----

MO :

FOR Pulses = 1 TO 100 STEP StrideStep
PULSOUT TiltServo, CenterTilt
PULSOUT StrideServo, StrideCenter
PAUSE MoveDelay

NEXT

DoReturn:
RETURN

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #2: Taking Your First Steps - Page 55

Adding support for walking backward is easier with this program. Three things need to
be changed. First, the extra movement entries must be added to the fixed size table and
the LookuP command. Second, a variable length table must be added for stepping through
a backward foot-step. Finally, the table name and a call to the movement routine must be
added. This is significantly better than adding more routines to the program.

Your Turn

Try the following:

\ Modify the TiltStep, StrideStep and MoveDelay constants so the Toddler
walks as smooth as possible, but not necessarily quickly.

V' Modify the walkForward data so that the Toddler walks additional steps.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 56 - Advanced Robotics with the Toddler

ACTIVITY #4: USING STATE TRANSITIONS FOR MOVEMENTS

Now we take a look at a completely different way of handling movement control. The
prior two approaches essentially required the programming to string together a series of
subroutine calls in the proper order. In those cases, the programmer knew what the prior
state was and would only use movement routines that were relevant. It was relatively
simple for the basic actions examined thus far but it gets very tedious as the actions
become more complex.

The state transition approach presented here changes the kinds of routines used from ones
that have a known starting and ending state to routines that indicate a desired ending
state. The program keeps track of the current state and adjusts accordingly. The reason
that this approach simplifies things is that there are really only two kinds of actions, tilt
and stride, that the Toddler can perform and only three logical orientations with each of
these for a total of nine states. Figure 2-7 shows these states.

Stridk

Figure 2-7: State Transition Approach

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #2: Taking Your First Steps - Page 57

Each circle represents a state. The center shows the orientation of the Toddler’s legs and E
body. The arrow indicates the front of the Toddler. The dark background in a rectangle

indicates that a leg is on the floor. The white background indicates the leg is in the air.

The two letters at the top of the circle provide a representation for the Toddler
positioning. The first letter indicates the tilt (T) and the second indicates stride (S) or

what foot is in front. The letters can be L, C, or R. C indicates the respect servo motor is

centered. For the tilt, C indicates both feet are on the ground. For stride, C indicates that

both feet are inline along the center of the body’s axis. The reason for naming each state

will become apparent soon.

There are also bi-directional arrows showing valid transitions from one state to another.
The label on the line indicates the type of change that occurs. The Pivot designation is the
same as Stride but we make the distinction because this will cause the Toddler to pivot.

Nine states, each with four possible transitions yields 36 distinct transitions. If the
transition routines are labeled using their starting and ending state names with the format
TSxTS then movement M0 is CCxRC as it starts with both legs together in state cc and ends
up leaning to the right in state rc. Using this naming convention makes programming
easier in the prior examples with the code looking like this.

77777 [Main Code J----------mmmmm i m oo e
' Take three full steps.

Main Program:

GOSUB MO ' center servos
GOSUB CCxRC ' tilt right
GOSUB RCxXRL ' step left

FOR MoveLoop = 1 to 3

GOSUB RLxLL ' tilt left
GOSUB LLxLR ' step right
GOSUB LRxRR ' tilt right
GOSUB RRxXRL ' step left
NEXT
GOSUB RLXLL ' tilt left
GOSUB LLxLC ' center feet
GOSUB LCxCC ' center servos

END

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 58 - Advanced Robotics with the Toddler

The advantage of the name change is obvious. The last two letters of the prior routine are
the starting two letters of the next routine.

Of course, this is still relatively cryptic and without the comments the actions would
definitely be confusing. The problem is that this approach requires knowledge of the prior
state.

Now take a look at the next sample code snippet. It does away with the comments (not
always a good idea but fine for this discussion) and the routines being called indicate
what action is being performed.

77777 [Main Code J----=-----mmmmm i m oo e e
' Take three full steps.

Main Program:
GOSUB MO ' center servos

GOSUB TiltRight
GOSUB StrideLeft

FOR MoveLoop = 1 to 3
GOSUB TiltLeft
GOSUB StrideRight
GOSUB TiltRight
GOSUB StrideLeft

NEXT

GOSUB TiltLeft

GOSUB StrideCenter

GOSUB TiltCenter
END

So what happened? You need to take a look at the next program listing to see how these
routines were implemented but essentially two variables, CurrentTilt and
CurrentStride, were added to keep track of where the feet are. The routine simply
applies the designated change.

There are only six routines that need to be used. These can be applied in any order
although only four will cause a change at any time.

Why? Because two of the six will cause the Toddler to stay in the state that it is currently
in. For example, if the Toddler is tilting to the left then calling the TiltLeft routine will

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #2: Taking Your First Steps - Page 59

leave it in the same position. There will be a delay while it executes the routine but it
turns out to be a very short period of time. It is not noticeable when watching the Toddler
move.

The following program implements the routines used in the prior code snippet but it
retains some of the ideas employed in the last full program listing (Program 2.3) that used
tables. They are still worthwhile although they are used in a slightly different fashion
here. This program essentially connects the two prior complete program listings in that it
lets the programmer connect a series of movements which are read from a paTa table yet
it also reads the commands from an EEPROM. You will notice after you modify this
program how the State Transition Approach figure applies.

To aid in your understanding of what the different DATA codes mean see Table 2-3.

Table 2-3: State Table Codes
TR tilt right
SL stride left
TL tilt left
SR stride right
TC tilt center
XX end of table

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 60 - Advanced Robotics with the Toddler

oo [Title Qoo oo mmmm oo oo oo
' Toddler Program 2.4: First Steps Forward with State Transitions

' Keeps track of starting and ending states

' {s$sTAMP BS2}

' {$PBASIC 2.5}

R [I/O Definitions J----------------mmm oo

TiltServo CON 13 ' Tilt servo on P12
StrideServo CON 12 ' Stride servo on P13

L [Constants J------commmmmmmm e e
MoveDelay CON 12 ' in micrcoseconds
StrideStep CON 5 ' StrideServo step size
TiltStep CON 5 ' TiltServo step size
RightTilt CON 620 ' Tilt limits

CenterTilt CON 750

LeftTilt CON 880

RightStride CON 650 ' Stride limits
CenterStride CON 750

LeftStride CON 850

L [Variables J--------ommmmm oo oo oo -
MoveLoop VAR Nib ' Loop for repeat movements
Pulses VAR Word ' Pulse variable
CurrentTilt VAR Word

CurrentStride VAR Word

NewValue VAR Word

Dx VAR Pulses

Mx VAR Word

oo [EEPROM Data] -=--- = - - mm o mmm oo oo oo
' Take three full steps.

' The following state tables are lists of movement state numbers.
' A xx indicates the end of a list.
' These are used with the Movement routine.

TL CON 0
TC CON 1
TR CON 2
SL CON 3

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #2: Taking Your First Steps - Page 61

' read next action

SC CON 4
SR CON 5
blod CON 255
WalkForward DATA TR, SL, TL, SR, XX
WalkBackward DATA TR, SR, TL, SL, xx
TurnLeft DATA TL, SR, TC, SL, xx
FinishForward DATA TR, SC, TC, xx
I ===== [Main Routine]
1
Main Program:
GOSUB ResetCC
FOR MoveLoop = 1 to 3
Mx = WalkForward
GOSUB Movement
NEXT
FOR MoveLoop = 1 to 3
Mx = TurnLeft
GOSUB Movement
NEXT
FOR MoveLoop = 1 to 3
Mx = WalkBackward
GOSUB Movement
NEXT
Mx = FinishForward
GOSUB Movement
END
L [Subroutines
L Movement: Move feet using DATA table referenced by Mx
T
' Input: Mx = table index, table ends in xx
Movement :
READ Mx, Dx
Mx = Mx + 1
IF Dx = xx THEN MovementDone '

GOSUB DoMovement
GOTO Movement

DoMovement :

skip if end of list

' execute movement
' loop until done

BRANCH Dx, [TiltLeft,TiltCenter,TiltRight, StrideLeft,

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 62 - Advanced Robotics with the Toddler

StrideCenter, StrideRight]
' fall through if invalid

' index
MovementDone :
RETURN
' ---- Movement routines can be called directly ----
TiltLeft:
NewValue = LeftTilt
GOTO MovementTilt
TiltCenter:
NewValue = CenterTilt
GOTO MovementTilt
TiltRight:
NewValue = RightTilt
MovementTilt:
FOR Pulses = CurrentTilt TO NewValue STEP TiltStep
PULSOUT TiltServo, Pulses
PULSOUT StrideServo, CurrentStride
PAUSE MoveDelay
NEXT
CurrentTilt = NewValue
RETURN
StrideLeft:
NewValue = LeftStride
GOTO MovementStride
StrideCenter:
NewValue = CenterStride
GOTO MovementStride
StrideRight:
NewValue = RightStride
MovementStride:
FOR Pulses = CurrentStride TO NewValue STEP StrideStep
PULSOUT TiltServo, CurrentTilt

PULSOUT StrideServo, Pulses
PAUSE MoveDelay
NEXT

CurrentStride = NewValue
RETURN

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #2: Taking Your First Steps - Page 63

L Move feet to initial center position ----- E
ResetCC:

CurrentTilt = CenterTilt
CurrentStride = CenterStride

FOR Pulses = 1 TO 100 STEP StrideStep
PULSOUT TiltServo, CenterTilt
PULSOUT StrideServo, CenterStride
PAUSE MoveDelay

NEXT

DoReturn:
RETURN

Ok, we cheated. There is a little turning done in the program and that will be covered in
more detail in the next experiment. The reason for including it here is that the pivot
action is not explicitly done by a routine. Instead the general movement routine handles
all actions. The pivot action is defined within the TurnLeft table.

The variable table handling is also changed to allow access to the six action functions like
TiltLeft. Each is implemented as a routine that exits via a RETURN instruction. This is
why the DoMovement routine is called via GosuB rather than putting the BRANCH
statement within a loop.

Also note the refinement with the r.ookup statement. The named constant xx is used to
terminate a variable length table. The value 255 is out of range for the values used and it
allows the first value to be 0.

This approach will be the one used in subsequent programs in the book. Extending tables
like walkForward should be significantly easier since there are only six valid values. It is
also possible to conserve space by using only 4 bits to store each value but this makes
table definition and extraction very difficult due to limitations of PBASIC. Still, it is an
option should a program become code-space constrained.

Your Turn

V' Run the example code.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 64 - Advanced Robotics with the Toddler

CHALLENGES

V' Increase the walking speed and determine the maximum speed before the
Toddler falls over.

V' Determine whether the Toddler operates the same on different surfaces such as
carpet, wood and tile.

V' The Toddler can start moving its left or right foot first. Try changing the
programs so that it moves the opposite foot first.

V' Have the Toddler perform a little dance using a more complex series of steps

such as moving the foot in the air forward and backward a few times.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #3: Turning Around - Page 65

Chapter #3: Turning Around

SLIP SLIDING TURNS

The Toddler is a bit stiff. It can only move its feet forward and backward but it cannot
turn its feet relative to its body. This doesn’t stop it from being able to turn. While
walking in a straight line for the Toddler is somewhat similar to a person, turning is very
different. The closest thing to turning like the Toddler for a person is trying to turn on ice
with flat shoes.

The process of turning right on ice is relatively simple. Put your left foot forward and
place it on the ground. Pull the left foot towards you. Pull it back and you pivot to the
right. If the ice is wet and slippery then it may take a number of attempts to turn 90
degrees. Put the right foot forward to turn left.

The standard Toddler does not do well on ice but it uses the same principle on other
surfaces. The Toddler’s feet are smooth metal that provides the slick surface. Turning
works best when the surface the Toddler stands on provides some friction. If the surface
is too slippery then it is possible to modify the Toddler’s feet to provide more friction.
This is typically done using tape that has a rougher surface than the Toddler’s metal feet.
The entire foot need not be covered. There only needs to be enough coverage to add
friction for the turn. The tape should not have an affect on straight-line movement.

ACTIVITY #1: MAKING A TURN

The Toddler turns by placing both feet flat on the ground and sliding them in opposite
directions. Moving the feet in opposite directions is somewhat counterproductive because
some of the forces are in opposite directions. The actual movement is more of a pivot
than a turn.

The Toddler pivots only a small fraction of a circle at a time. It may take five to ten
movements to turn 90 degrees (unless you put a small piece of grip tape on the feet), and
twice that to turn around. The basic turning process is four movements like those shown
in Figure 3-1. A left turn works the same way except the tilt and leg movements are
reversed.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 66 - Advanced Robotics with the Toddler

Movement 1 Movement 2

Figure 3-1: Walking in a Circle (right hand turns)

The first three movements place the left foot in front while the pivoting action occurs in
the last movement. The following program performs this process multiple times. It
performs both a right and a left turn. The key addition to Program 2.4 is the TurnRight
table entry. The next section addresses two other entries that are presented in this
program. These are wideTurnLeft and PivotRight.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #3: Turning Around - Page 67

L [Title J------mmmmmmm oo oo oo
' Toddler Program 3.1: Turning

' Demonstrates basic turning process which requires four movements

' {$sSTAMP BS2}

' {$PBASIC 2.5}

e [/0 Definitions J--------------"-"—~—~—~—~—~—~—~—~—~—~—~—~ "~~~ __________

TiltServo CON 13 ' Tilt servo on P12
StrideServo CON 12 ' Stride servo on P13

I coces N Cen s Fantc I e e e R L L L L
MoveDelay CON 15 ' in micrcoseconds

TiltStep CON 5 ' TiltServo step size
StrideStep CON 5 ' StrideServo step size
RightTilt CON 620 ' Tilt limits

CenterTilt CON 750

LeftTilt CON 880

RightStride CON 650 ' Stride limits
CenterStride CON 750

LeftStride CON 850

I ===== [Verigloled |[===
MoveLoop VAR Nib ' Loop for repeat movements
Pulses VAR Word ' Pulse variable
CurrentTilt VAR Word

CurrentStride VAR Word

NewValue VAR Word

Dx VAR Pulses

Mx VAR Word

' The following state tables are lists of movement state numbers.
' A xx indicates the end of a list.
' These are used with the Movement routine.

TL CON 0
TC CON 1
TR CON 2
SL CON 3
SC CON 4
SR CON 5

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 68 - Advanced Robotics with the Toddler

XX CON 255

WalkForward DATA TR, SL, TL, SR, xxX

WalkBackward DATA TR, SR, TL, SL, XX

TurnLeft DATA TL, SR, TC, SL, xx

WideTurnLeft DATA TL, SR, TC, SL, TR, SL, TL, SR, xx
TurnRight DATA TR, SL, TC, SR, xx

PivotRight DATA TR, SL, TC, SR, TL, SL, TC, SR, xx
FinishForward DATA TR, SC, TC, xx

I ===== [Wedm REUEIRNE | ==

Main Program:
GOSUB ResetCC

FOR MoveLoop = 1 to 5
Mx = TurnRight
GOSUB Movement

NEXT

FOR MoveLoop = 1 to 5
Mx = TurnLeft
GOSUB Movement
NEXT

FOR MovelLoop = 1 to 5
Mx = PivotRight
GOSUB Movement

NEXT

FOR MoveLoop = 1 to 5
Mx = WideTurnLeft
GOSUB Movement

NEXT

Mx = FinishForward

GOSUB Movement
END

----- Movement : Move feet using DATA table referenced by Mx -----
' Input: Mx = table index, table ends in xx

Movement :

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #3: Turning Around - Page 69

READ Mx, Dx ' read next action
Mx = Mx + 1

IF Dx = xx THEN MovementDone ' skip if end of list

GOSUB DoMovement ' execute movement

GOTO Movement ' loop until done
DoMovement :

BRANCH Dx, [TiltLeft,TiltCenter,TiltRight, StrideLeft,
StrideCenter, StrideRight]
' will fall through if
' invalid index
MovementDone :
RETURN

' ---- Movement routines can be called directly ----

TiltLeft:
NewValue = LeftTilt
GOTO MovementTilt

TiltCenter:
NewValue = CenterTilt
GOTO MovementTilt

TiltRight:
NewValue = RightTilt

MovementTilt:
FOR Pulses = CurrentTilt TO NewValue STEP TiltStep
PULSOUT TiltServo, Pulses

PULSOUT StrideServo, CurrentStride
PAUSE MoveDelay
NEXT

CurrentTilt = NewValue
RETURN

StrideLeft:
NewValue = LeftStride
GOTO MovementStride

StrideCenter:
NewValue = CenterStride
GOTO MovementStride

StrideRight:
NewValue = RightStride

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 70 - Advanced Robotics with the Toddler

MovementStride:
FOR Pulses = CurrentStride TO NewValue STEP StrideStep
PULSOUT TiltServo, CurrentTilt

PULSOUT StrideServo, Pulses
PAUSE MoveDelay
NEXT

CurrentStride = NewValue
RETURN
L Move feet to initial center position -----
ResetCC:
CurrentTilt = CenterTilt
CurrentStride = CenterStride
FOR Pulses = 1 TO 100 STEP StrideStep
PULSOUT TiltServo, CenterTilt
PULSOUT StrideServo, CenterStride
PAUSE MoveDelay
NEXT

DoReturn:
RETURN

Your Turn
V' Run the example code.

V' Modify the code so the Toddler first pivots left, then right.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #3: Turning Around - Page 71

ACTIVITY #2: DIFFERENT TURNS

The basic turns will get the Toddler where it wants to go but there are many variations on
this theme. For example, turning in place can be useful in tight places. The PivotRight
table entry shows how this can be done. In this case pivoting is accomplished by
performing one turning movement by moving the leg forward. This is immediately
followed with the same type of movement but it starts by stepping backward first. The
combination results in two turn actions and a new orientation while leaving the Toddler
in approximately the same position.

The other table entry included in the program is wideTurnLeft. This takes the Toddler
around a circle with a wider radius. The trick is adding a forward step after each turning
action. A close look at the Toddler’s path will show that the movement is not really an
arc but rather the perimeter of a polygon with rounded corners. Still, this is close enough
to an arc that most people will think the Toddler is going around a circle.

Hopefully the simplicity of the state transition approach is apparent with Program 3.1. It
is identical to Program 2.4 except for the additional tables and calls that utilize these
tables.

Your Turn

V' Modify Program 3.1 to execute different styles of turns.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 72 - Advanced Robotics with the Toddler

CHALLENGES

V' Only a few turning variations were presented in the sample programs. Add the
table entries needed to perform the actions not included.

V' The Toddler is symmetrical in construction and movement. It can make a turn
going forwards or backwards. Create a program that can perform the actions
presented but going backwards instead.

V' Full leg movements were used in the sample applications. Determine what
happens if the movements are shorter. For example, instead of moving from state
CR to CL, try moving from CR to cc.

V' WideTurnLeft turns the Toddler to the left but the turn radius is wider than

TurnLeft. Make the Toddler’s turn even wider. Hint: there are two ways of
doing this. One is related to forward movement. The other is related to turn
movement.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #4: Coordinated Walking - Page 73

Chapter #4. Coordinated Walking

MULTIPLE TABLES FOR MANY ACTIONS

Walking and turning are useful operations but they don’t get the Toddler very far. It is
possible to string together a number of actions using multiple GosuB statements but this
can get tedious. It is also less efficient than the approach presented in this experiment.

The program in Chapter #3 used tables to store a series of basic movements. More
complex actions can be done using very long tables but an alternative is to utilize these
tables from a higher-level table. Instead of indicating whether the Toddler leans left or
right, a movement table will include actions such as turn right, walk backward 10 steps,
pivot left and walk forward 10 steps.

The second activity in this experiment uses this approach to move the Toddler in more
complex paths than the earlier experiments, but first we take a look at how to determine if
a table is part of one set or another. This will allow the Movement routine to determine
whether a table is a basic set of movement commands or if the table contains more
complex commands. The Movement routine can then process the commands accordingly.

ACTIVITY #1: WHICH TABLE?

There are advantages to using high-level actions with the Toddler such as making a left
turn versus low-level actions such as leaning left and moving the left foot forward. Both
are needed and prior examples have shown how low level actions can be combined in
tables to provide a higher level of abstraction. Taking this approach to the next level
requires a different set of tables whose elements reference the lower level tables.

Using two types of tables is possible using two different routines but there is an
advantage to using a single routine for both. This allows a program to freely mix the use
of these two types of tables in the program. The program in this activity shows how this
can be done. The approach is then used in the next activity’s program.

This program does not make the Toddler walk but it does use the BASIC Stamp to run
the program. It uses the BASIC Stamp Editor’s Debug Terminal to display the output
generated by DEBUG statements in the program. Most programmers familiar with the
BASIC Stamp will already know about the DEBUG statement but check out the BASIC

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 74 - Advanced Robotics with the Toddler

Stamp Manual if you are not. Also, the serial cable will remain connected to the Toddler
for this experiment.

This program assumes that two kinds of tables will be used with the program and that
each type of table will be in its own area of the program memory. There is no restriction
that tables be adjacent, only that they be above or below the address boundary that is
designated by the BasicMovements constant declaration.

Advanced Advanced tables are located
Movement before the BasicMovements
Tables constant.
BasicMovements Basic Basic tables are located after
Movement the BasicMovements
Tables constant.

| Main program |

Table 4-1: Coordinated Walking Table Structure

The program uses a Movement routine that has the index of the table in the mx variable. It
uses the DEBUG statement to output a string in the Debug Terminal on the PC that
indicates whether index is for an advanced or basic movement. In the next activity, the
Movement routine will be replaced by one that actually interprets the tables to make the
Toddler move.

Understanding how data is stored in the BASIC Stamp’s EEPROM is very helpful. If you
choose Run — Memory Map you will see that data builds from EEPROM address 0
towards 2048. On the other hand, your PBASIC program is stored from location 2048
and builds downward to location 0. This is shown graphically in Figure 4-1.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #4: Coordinated Walking - Page 75

Memory Map - EEPROM 14% Full (Toddler Program 4.1 Which Table.bs2) 5[
EEPROM Map RAM Map
DI1I2|3|4|5|6|?|BIBIAIBICIDIEIFIA - B41z12NM038 76543210
F
000[07 03 03 01 FF 07 04 04 01 FF 03 01 FF 06 01 FF_| s OO T
010|01 02 03 00 OS5 FF 01 02 03 00 OS5 FF 01 00 05 01 DIF!S:. CCITTITTIIITTI T 111
020|023 00 05 02 03 FF 01 02 03 01 05 02 03 00 05 FF REGD: Il
030|023 00 05 01 03 02 05 01 03 FF 03 02 03 01 05 00 REG1:
040|03 01 05 FF 01 02 04 01 FF 00 00 00 00 00 00 00 Egggf
050 REG:
el REGE:
070 REGE:
ogn REGY:
oo =
L= REG1D:
0B0 REGT1:
0cno REG1Z:
- % RAM Legend
—— B -Fin: [-Byte [-Bit
[OF0) LI I -word [- Mibble [- Unused
EEPROM Legend————————
[~ Display ASCI [- -Undef. Data [- Program
= -Def. Dat - Unused
[J-Welh BeE -l Source Code IToddIer Program 4. j

Figure 4-1: EEPROM Memory Map for “Which Table” Program

Note that the DaTa statement stores data from location 0 and the PBASIC program builds
from location 2048 towards 0. Slide the yellow box in the “Condensed EEPROM Map”
down to change the viewing area in the “Detailed EEPROM Map” so you can see your
PBASIC program. Figure 4-2 shows the DEBUG output from the program.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 76 - Advanced Robotics with the Toddler

Debug Terminal #1

R ™ RTS
R @& CTS

Com Port: Baud R ate: Parity: Data Bits: Flow Contral: @12
&

| SRR | S (S A | N (N (R (=,

Eapture...l Macros...l Pauze | Clear | Cloze |

Figure 4-2: Debug Terminal shows EEPROM pointer Mx.

————— [Title J-----mmmmmmmm oo o oo oo oo oo -
' Toddler Program 4.1: Which Table

' Demonstrates basic and advanced tables

' {$sTAMP BS2}

' {$PBASIC 2.5}

I ===== [CongitamEs | ===
' The following state tables are lists of movement state numbers.

' A xx indicates the end of a list.
' These are used with the Movement routine.

TL CON 0
TC CON 1
TR CON 2
SL CON 3
SC CON 4
SR CON 5
XX CON 255 ' Movement table limit
' entry may be increased.
bFinish CON 0
bForward CON 1
bBackward CON 2
bLeftTurn CON 3
bRightTurn CON 4
bPivotLeft CON 5
bPivotRight CON 6

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

VAR

EEPROM Data

' ---- Advanced Movement Tables

' Used for

LeftSemicircle DATA
RightSemicircle DATA

WalkForward3 DATA
WalkForward8 DATA
N Balshile

' movement tables.

BasicMovements CON
Forward DATA
Backward DATA
LeftTurn DATA
RightTurn DATA
PivotLeft DATA
PivotRight DATA
Finish DATA

Movement Tables
' These tables can contain movement support codes used

Chapter #4: Coordinated Walking

bLeftTurn, bLeftTurn, bForward,
bRightTurn, bRightTurn, bForward,

XX
XX

bForward, xx
bForward, xx

in the advanced

Forward

1, TR, SL, TL, SR, xx

1, TR, SL, TL, SR, xx

1, TL, SR, TC, SL, TL, SR, TR, SL, xx
1, TR, SL, TC, SR, TR, SL, TL, SR, xx
3, TL, SR, TC, SL, TR, SR, TC, SL, xx
3, TR, SL, TC, SR, TL, SL, TC, SR, xx
1, TR, SC, TC, xx

' movement tables to develop the walking routines for your Toddler.

Main Program:
Mx = LeftSemicircle
GOSUB Movement

Mx = WalkForward3
GOSUB Movement

Mx = PivotRight
GOSUB Movement

Mx = WalkForward8
GOSUB Movement

Mx = Finish

Downloaded from Elcodis.com electronic components distributor

- Page 77

----- [Main Code J-------mommmmmmmmmm oo oo m oo -

' Walking routine is defined by the Mx value. Mix the basic and advanced

http://elcodis.com/parts/844626/27311.html

Page 78 - Advanced Robotics with the Toddler

GOSUB Movement
END

L [Subroutines J------------------ -

Movement :
IF Mx >= BasicMovements THEN BasicMovementTable

DEBUG "EEPROM address ", dec Mx," is an ADVANCED movement table.",cr
RETURN

BasicMovementTable:
DEBUG "EEPROM address ", dec Mx," is a BASIC movement table.",cr
RETURN

This approach to memory partitioning takes into account that PBASIC allocates space for
DATA statements in the order that they appear in the program. Not all programming
languages do this so the technique should only be applied when the appropriate support is
available. It is handy in this instance because other approaches to differentiating data are
more cumbersome. This approach can be prone to programmer errors if the tables are not
grouped properly but keeping the tables relatively close to each other in the program text
makes it easy to spot such problems.

Your Turn
V' Run the example code.

V' Understand how the EEPROM address displayed in the Debug Terminal
correlates to an advanced or basic movement table.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #4: Coordinated Walking - Page 79

ACTIVITY #2: FIGURE 8S AND SQUARE DANCING

Now we take a look at making the Toddler execute more complex movements using the
dual table types presented in Activity #1. One set of tables handles low-level actions such
as tilting and leg movements. The second set of tables handles higher-level actions such
as turning a corner and walking in a large circle.

In this Activity, the program makes the Toddler walk in a Figure 8 and a large square.
The use of a high-level action table allows easy creation of more complex movement
sequences. In this case, the use of higher level sequences like LeftSemicircle cause
the Toddler to execute a large number of basic foot movements.

The program implements a more sophisticated version of the Movement routine than
found in prior Activities. In this case, the Mx variable can contain an index for either a
basic or an advanced table. The Movement routine will execute the appropriate table. The
decoding process is a bit complex so we have included pEBUG statements to help present
the execution process. The DEBUG statements are actually comments in the listing but they
can be changed by doing a “Replace All” in the editor from “ ' DEBUG” to “DEBUG”. The
converse will change the lines back to comments.

The DEBUG statements are only useful when the Toddler is connected to the PC since the
display of information is done on the PC. While it is possible to keep the Toddler
connected to the PC while it is walking, these more advanced movement sequences move
the Toddler in large areas. A laptop or a long serial cable may be necessary to handle
these larger movement areas.

What we have found useful is to instead use the DEBUG version while running the Toddler
with the power switch in the download mode. In this case, the Toddler’s servos do not
move but the program continues to execute. The DEBUG statements show what the
Toddler would be doing if the power switch was in the RUN mode (Position 2).

When running in the download mode, the Toddler will continue to send pulses to the
servos even though the servos receive no power and hence do not rotate. The delay does
slow down debug presentation though. It is possible to add a RETURN statement
immediately after the DoMovement label to eliminate this thereby making the debug
process go faster. Just make sure to comment out or remove the RETURN statement or the
Toddler will not move. Now for the code.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 80 - Advanced Robotics with the Toddler

I [Title J-----mmmmmmmm oo oo oo oo -
' Toddler Program 4.2: Advanced Walking

' Demonstrates the use of basic and advanced tables for figure 8s

' {s$sTAMP BS2}

' {$PBASIC 2.5}

TiltServo CON 13 ' Tilt servo on P12
StrideServo CON 12 ' Stride servo on P13

LineFeed CON 10 ' Line Feed

I o===== [Comgtames | ===================s=s============s==c==-==c=s=s=======
MoveDelay CON 18 ' in milliseconds

TiltStep CON 5 ' TiltServo step size
RightTilt CON 620 ' Tilt limits was 620
CenterTilt CON 750 ' was 750

LeftTilt CON 880 ' was 880

StrideStep CON 5 ' StrideServo step size
RightStride CON 650 ' Stride limits was 650
CenterStride CON 750 ' was 750

LeftStride CON 850 ' was 850

L e [Variables J---------c-occoommmm oo oo me oo
FigureLoop VAR Nib

MoveLoop VAR Byte ' Loop for repeat movements
MoveLoopLimit VAR Byte

SubMoveLoop VAR Byte ' Loop for repeat submovements
SubMoveLoopLmt VAR Byte

Pulses VAR Word ' Pulse variable

CurrentTilt VAR Word

CurrentStride VAR Word

NewValue VAR Word

Dx VAR Pulses

Mx VAR Word

MxCurrent VAR Word

Sx VAR Word

SxCurrent VAR Word

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #4: Coordinated Walking - Page 81

------ Movement Support Codes

' The following state tables are lists of movement state numbers.
' A xx indicates the end of a list.
' These are used with the Movement routine.

TL
TC
TR

SL
SC
SR

XX

CON
CON
CON

CON
CON
CON

CON

o

IS

255

————— Movement Value Tables ------

' These can be used with the Movement routine.
' The tables can contain Basic Movement Codes.

' Note: ALL movement tables must be in this section

LeftSemicircle
RightSemicircle

WalkForward3
WalkForward8
WalkForwardl
WalkBackward8
PivotLeft4

DATA
DATA

DATA
DATA
DATA
DATA
DATA

7, bLeftTurn, DbLeftTurn, DbForward, xx
7, bRightTurn, bRightTurn, bForward, xx

3, bForward, xx

8, bForward, xx

1, bForward, xx

8, bBackward, xx

4, bPivotLeft, bForward, xx

—————— Basic Movement Codes ------

' Used in Movement tables.
' Referenced below using LOOKUP statement.

bFinish
bForward
bBackward
bLeftTurn
bRightTurn
bPivotLeft
bPivotRight

CON
CON
CON
CON
CON
CON
CON

Downloaded from Elcodis.com electronic components distributor

o Ul WNPRE O

—————— Basic Movement Tables ------

http://elcodis.com/parts/844626/27311.html

Page 82 - Advanced Robotics with the Toddler

' These tables can contain Movement Support Codes.

BasicMovements CON Forward

Forward DATA 1, TR, SL, TL, SR, XX

Backward DATA 1, TR, SR, TL, SL, XX

LeftTurn DATA 1, TL, SR, TC, SL, TL, SR, TR, SL, xx
RightTurn DATA 1, TR, SL, TC, SR, TR, SL, TL, SR, xx
PivotLeft DATA 3, TL, SR, TC, SL, TR, SR, TC, SL, xx
PivotRight DATA 3, TR, SL, TC, SR, TL, SL, TC, SR, xx
Finish DATA 1, TR, SC, TC, xx

GOSUB ResetCC

'DEBUG "Forward = ", HEX Forward, CR,LineFeed

'DEBUG "Backward = ", HEX Backward, CR,LineFeed

'DEBUG "LeftTurn = ", HEX LeftTurn, CR,LineFeed

'DEBUG "RightTurn = ", HEX RightTurn, CR,LineFeed

'DEBUG "PivotLeft = ", HEX PivotLeft, CR,LineFeed

'DEBUG "PivotRight = ", HEX PivotRight, CR,LineFeed

'DEBUG "LeftSemicircle = ", HEX LeftSemicircle, CR,LineFeed
'DEBUG "RightSemicircle = ", HEX RightSemicircle, CR,LineFeed
'DEBUG "WalkForward3 = ", HEX WalkForward3, CR,LineFeed
'DEBUG "WalkForward8 = ", HEX WalkForward8, CR,LineFeed
'DEBUG "WalkForwardl = ", HEX WalkForwardl, CR,LineFeed
'DEBUG "WalkBackward8 = ", HEX WalkBackward8, CR,LineFeed
'DEBUG "PivotLeft4 = ", HEX PivotLeft4, CR,LineFeed

'DEBUG "Finish = ", HEX Finish, CR,LineFeed

I ===== [Meilm Cogle |[===
Main Program:
GOSUB ResetCC
' Make a Figure 8
FOR FigureLoop = 1 TO 5
Mx = LeftSemicircle

GOSUB Movement

Mx = WalkForward3
GOSUB Movement

Mx = RightSemicircle
GOSUB Movement

Mx = WalkForward3

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #4: Coordinated Walking - Page 83

GOSUB Movement

NEXT

' Make a big polygon

FOR FigureLoop = 1 TO 5
Mx = PivotRight
GOSUB Movement

Mx = WalkForward8
GOSUB Movement

NEXT

Mx = Finish
GOSUB Movement

I ===== [Stlsreutingg ||===

L Movement: Move feet using DATA table referenced by Mx -----

END

1

' Input: Mx
' or

' Mx
1

' Note: All
Movement :

= movement table index, table ends in xx
= submovement table index, table ends in xx

submovement tables come after the movment tables in this file.

IF Mx < BasicMovements THEN SetupMovement
'DEBUG cr, "use submovements",cr

Sx = Mx ' setup for submovement table only
GOSUB StartSubMovement ' one pass through submovement table
RETURN

SetupMovement :
READ Mx, MoveLoopLimit ' read movement table repeat count
Mx = Mx + 1

StartMovement :
FOR MoveLoop = 1 TO MoveLoopLimit
'DEBUG cr,cr, hex (Mx-1), " Start Movement ", dec MoveLoop, " of "
'DEBUG dec MoveLoopLimit,cr
MxCurrent = Mx ' start of movements

MovementLoop :
READ MxCurrent, Sx ' read next submovment byte
MxCurrent = MxCurrent + 1
'DEBUG cr, " SX = ", dec Sx, " movement"

IF Sx = xx THEN MovementDone

' skip 1if end of list

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 84 - Advanced Robotics with the Toddler

LOOKUP Sx, [Finish, Forward, Backward,LeftTurn,RightTurn,
PivotLeft, PivotRight], Sx
' lookup submovement table index
GOSUB StartSubMovement
GOTO MovementLoop

MovementDone :
NEXT
RETURN

StartSubMovement : ' start executing submovement table
READ Sx, SubMoveLoopLmt
' read submovement table repeat count
Sx = Sx + 1

FOR SubMoveLoop = 1 TO SubMoveLoopLmt

'DEBUG cr, " SX = ", hex (Sx-1), " submovement ", dec SubMoveLoop
'DEBUG " of ", dec SubMoveLoopLmt, " "
SxCurrent = Sx

SubMovementLoop :
READ SxCurrent, Dx ' read next submovement action
SxCurrent = SxCurrent + 1

IF Dx = xx THEN SubMovementDone

' skip if end of list
GOSUB DoMovement ' execute movement
GOTO SubMovementLoop

SubMovementDone :
NEXT
RETURN

DoMovement :
BRANCH Dx, [TiltLeft,TiltCenter,TiltRight,StrideLeft,
StrideCenter, StrideRight]
' will fall through if invalid index
RETURN

' ---- Movement routines can be called directly as subroutines

TiltLeft:
NewValue = LeftTilt
'DEBUG "TL, "
GOTO MovementTilt

TiltCenter:

NewValue = CenterTilt
'DEBUG "TC, "

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #4: Coordinated Walking - Page 85

GOTO MovementTilt

TiltRight:
NewValue = RightTilt
'DEBUG "TR, "
MovementTilt:
FOR Pulses = CurrentTilt TO NewValue STEP TiltStep
PULSOUT TiltServo, Pulses

PULSOUT StrideServo, CurrentStride
PAUSE MoveDelay
NEXT

CurrentTilt = NewValue
RETURN

StrideLeft:
NewValue = LeftStride
'DEBUG "SL, "
GOTO MovementStride

StrideCenter:
NewValue = CenterStride
'DEBUG "SC, "
GOTO MovementStride

StrideRight:
NewValue = RightStride
'DEBUG "SR, "

MovementStride:
FOR Pulses = CurrentStride TO NewValue STEP StrideStep
PULSOUT TiltServo, CurrentTilt
PULSOUT StrideServo, Pulses
PAUSE MoveDelay
NEXT

CurrentStride = NewValue
RETURN

L Move feet to initial center position -----

ResetCC:
CurrentTilt = CenterTilt
CurrentStride = CenterStride
'DEBUG "resetCC", CR, LineFeed

FOR Pulses = 1 TO 500 STEP StrideStep
PULSOUT TiltServo, CenterTilt
PULSOUT StrideServo, CenterStride
PAUSE MoveDelay

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 86 - Advanced Robotics with the Toddler

NEXT

DoReturn:
RETURN

The Main_ Program now executes so the Toddler performs two large movements: a figure
8 and a square. The Movement routine is called to execute high-level tables that include
commands such as left turn. The bLeftTurn value is used in the table because the paTa
statement is only storing bytes in this example. These values are used with a Lookup
statement in the Movement routine to select the appropriate low level table to use for
basic movements. One high-level table entry causes the Toddler to execute many low
level movements.

The Movement routine still handles low-level tables using the technique outlined in
Activity #1. For example, the Finish table uses only a few basic movements. If the
Movement routine did not handle both types of tables then either a low level routine
would have to be called or a high level table would have to be created.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #4: Coordinated Walking - Page 87

Your Turn
V' Run the example program.

V' Modify the code so the Toddler executes the same pattern in a smaller
geographic area.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 88 - Advanced Robotics with the Toddler

CHALLENGES

VA challenge in Chapter #4 asked to extend the movement routine so it could

handle repetitions of subsections in a table as in.

SpecialMovement DATA 4, TL, SR, TC,
DATA 2. TR, SL, TL,
DATA 2. TL, SR, TC,

XX
XX
XX

SL,
SR,
SL,

Provide this same type of facility for both types of movement tables.

v Implement the prior challenge. Then reduce the multiple calls to Movement

shown below

Mx = LeftSemicircle
GOSUB Movement

Mx = WalkForward3
GOSUB Movement

Mx = RightSemicircle
GOSUB Movement

Mx = WalkForward3
GOSUB Movement

to the following

Mx = Figure$8
GOSUB Movement

Hint:

The Figure 8 table will be a combination of the four tables listed above.

V' Generate a set of symmetrical useful high level and low level movement tables.
High level movements might include TurnAroundLeft, TurnAroundRight,
WalkForwardlFoot, and WalkBackwardlFoot. Low level movements might
include ReversePivotRight and ReversePivotLeft.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #5: Following Light - Page 89

Chapter #5: Following Light

BRINGING YOUR CREATURE TO LIFE

The photoresistors in your kit can be used to make your Toddler detect variations in light
level. With some programming, your Toddler can be transformed into a photophile (a
creature attracted to light), or a photophobe (a creature that tries to avoid light).

To sense the presence and intensity of light you’ll build a couple of photoresistor circuits
on your Toddler. A photoresistor is a light-dependent resistor (LDR) that covers the
spectral sensitivity similar to that of the human eye. The active elements of these
photoresistors are made of Cadmium Sulfide (CdS). Light enters into the semiconductor
layer applied to a ceramic substrate and produces free charge carriers. A defined
electrical resistance is produced that is inversely proportional to the illumination
intensity. In other words, darkness produces high resistance, and high illumination
produces very small amounts of resistance.

The specific photoresistors included in the Toddler kit are from EG&G Vactec
(#VT935G). If you need additional photoresistors they are available from Parallax’s
Component Shop as well as from many electronic component suppliers. See Appendix A:
Toddler Parts Lists and Sources. The specifications of these photoresistors are shown in

Table 5-1.
Resistance (Ohms) Pe'ak Response Time
10 Lux 2850K Dark Spectral Vinax @ 1fc
Response (ms, typ.)
Min | Typ. | Max. | Min. | Sec. nm Rise (1-1/e)| Fall (1/e)
20K | 29.0K| 38K | 1M 10 550 100 35 5

Table 5-1: EG&G Vactec Photoresistor Specifications

Luminance is a scientific name for the measurement of incident light. The unit of
measurement of luminance is commonly the "foot-candle" in the English system and the
"lux" in the metric system. While using the photoresistors we won't be concerned about
lux levels, just whether or not luminance is higher or lower in certain directions. The
Toddler can be programmed to use the relative light intensity information to make

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 90 - Advanced Robotics with the Toddler

navigation decisions. For more information about light measurement with a
microcontroller, take a look at the Applied Sensors experiment “Light on Earth and Data
Logging”.

ACTIVITY #1: BUILDING AND TESTING PHOTOSENSITIVE EYES

Figure 5-1 shows the capacitors and photoresistor used in this experiment along with
their schematic symbols. Both capacitors are nonpolar, meaning that terminals 1 and 2 as
shown may be swapped without affecting the circuit. In addition to the capacitors, you’ll
also need two (2) 220 ohm resistors (color code red-red-brown).

Parts Required

(2) Photoresistors

(2) 0.1 uF capacitors

(2) 0.01 uF capacitors

(2) 220 ohm resistors (not pictured)
(misc.) jumper wires

1
y
@
2 2

1 pF {/‘ :

n— -

.01 pF 4 ;

n— -+

Figure 5-1: Photoresistor and Capacitor Circuit Symbols and Parts

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #5: Following Light - Page 91

Figure 5-2 and Figure 5-3 show the resistor/capacitor (RC) circuit for each photoresistor.
A photoresistor is an analog device. Its value varies continuously as luminance, another
analog value, varies. The photoresistor’s resistance is very low when its light-sensitive
surface is placed in direct sunlight. As the light level decreases, the photoresistor’s
resistance increases. In complete darkness, the photoresistor’s value can increase to more
than 1 M Ohm. Even through the photoresistor is analog; its response to light is
nonlinear. This means if the input source (luminance) varies at a constant rate, the
photoresistor’s value does not necessarily vary at a constant rate.

P11 - P4 P15 + - P14
X7E (]
O
X6] L
o 0 Ot &
O oog
B 910 O] P10
X5 S m] ? oooo|M po
B g7 osMo8d| |ooooo
oD x4 Oooo0o| |ooooo @ |]:|[[|
B 23 Ooo0o0o0| |ooooo =
X3 0ooo00| |ooooo|Mes
B 10 0oooo| |0oooo|Bes i
0ooo00| |ooooo|Mes
QoD <2 ooooo| |[ooooo|Mes I |
00000l _|oooo0 (M pei® =
@ 00000 oooOO|Mpogy we
OOo0o00 00000 =
il B PARALAX 3
www.parallaxinc.com

Figure 5-2: Light Following Pictorial

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 92 - Advanced Robotics with the Toddler

+5V +5V
Iu_m uF 0.01 uF
220
P10
220
P15 AN
left right
photo photo
resistor resistor
Vss Vss

Figure 5-3: Light Following Schematic

Programming to Measure the Resistance

The circuit in Figure 5-2 and Figure 5-3 was designed for use with the PBASIC RCTIME
command. This command can be used with an RC circuit where one value, either R or C,
varies while the other remains constant. The RcTIME command lends itself to measuring
the variable values because it takes advantage of a time varying property of RC circuits.

For one of the RC circuits, the first step in setting up the RCTIME measurement is
charging the lower plate of the capacitor to 5 V. Setting the I/O pin connected to the
lower capacitor plate by the 220 ohm resistor high for a few ms takes care of this. Next,
the ReTIME command can be used to take the measurement of the time it takes the lower
plate to discharge from 5 to 1.4 V. Why 1.4 V? Because that’s the BASIC Stamp 1/O
pin’s threshold voltage. When the voltage at an I/O pin set to input is above 1.4 V, the
value in the input register bit connected to that I/O pin is “1.” When the voltage is below
1.4 V, the value in the input register bit is “0.”

In this circuit RCTIME measures the time it takes the voltage at the lower plate of the

capacitor in one of the photoresistor circuits to drop from 5 to 1.4 V. This discharge is
directly proportional to the photoresistor’s resistance. Since this resistance varies with

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #5: Following Light - Page 93

luminance (exposure to varying levels of light), so does the time. By measuring this time,
relative light exposure can be inferred. See the BASIC Stamp Manual for a detailed
discussion of RCTIME.

The rRecTIME command changes the 1/0 pin from output to input. As soon as the I/0 pin
becomes an input, the voltage at the lower plate of the capacitor starts to fall according to
the time equation just discussed. The BASIC Stamp starts counting in 2 us increments
until the voltage at the capacitor’s lower plate drops below 1.4 V.

(1 \l Photoresistors work best in lower light levels while seeking natural light. Direct sunlight is
\é/ too bright for the photoresistor circuits.

Run Program Listing 5.1. It demonstrates how to use the RcTIME command to read the
photoresistors. This program makes use of the Debug Terminal, so leave the serial cable
connected to the Toddler board while the program is running.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 94 - Advanced Robotics with the Toddler

1

1

1

1

[Title J--ommmmmmm oo oo oo oo
Toddler Program 5.1: Photoresistor RCTime Display

Displays the R/C discharge time for two photoresistor circuits

{$sTAamMP BsS2}

{$pPBASIC 2.5}

LPhotoCircuit CON 10

RPhotoCircuit CON 14

I ===== [Veriglhleg | ===
LPhotoVval VAR Word ! Stores measured RC times
RPhotoVal VAR Word ' of photoresistors.

L [Initialization J---------------"--"-—“-“ -
DEBUG CLS ' Open, clear Debug window

Measure RC time for left photoresistor.

HIGH LPhotoCircuit

PAUSE 3 !
RCTIME LPhotoCircuit,1l,LPhotoVal '

Set to output-high.
Pause for 3 ms.
Measure R/C time on left

Measure RC time for right photoresistor.

HIGH RPhotoCircuit

PAUSE 3 '
RCTIME RPhotoCircuit,1l,RPhotoVval '

Set to output-high.
Pause for 3 ms
Measure R/C time on right

Display RC time measurements using Debug Terminal.

DEBUG HOME, "Left = ", DEC5 LPhotovVal, " Right = ", DEC5 RPhotoVal, cr

LOOP

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #5: Following Light - Page 95

How The Photoresistor Display Works

Two word variables, RPhotoval and LPhotoval are declared for storing the RC time
values of the left and right photoresistors. The main routine then measures and displays
the RC times for each RC circuit. The code for reading the right RC circuit is shown
below. First, the I/O pin RPhotoCircuit is set to output-high. Next, a 3 ms pause allows
enough time for the capacitor to charge. After 3 ms, the lower plate of the capacitor is
close enough to 5 V and is ready for the RC time measurement. The RCTIME command
measures the RC time on I/O pin RPhotoCircuit, with a beginning state of “1” (5 V),
and stores the result in the RPhotoval variable. Remember, the value stored in
RPhotoVal is a number. This number tells how many 2 us increments passed before the
voltage at the lower plate of the capacitor passed below the I/O pin’s 1.4 V threshold.

HIGH RPhotoCircuit ' Set to output-high.

PAUSE 3 ' Pause for 3 ms

RCTIME RPhotoCircuit,1l,RPhotoval ' Measure R/C time on right
Your Turn

V' Try replacing one of the 0.01 UF capacitors with a 0.1 uF capacitor. Which
circuit fares better in bright light, the one with the larger (0.1 UWF) or the one with
the smaller (0.01 UF) capacitor? What is the effect as the surroundings get darker
and darker? Do you notice any symptoms that would indicate that one or the
other capacitor would work better in a darker environment?

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 96 - Advanced Robotics with the Toddler

ACTIVITY #2: A LIGHT COMPASS

If you focus a flashlight beam in front of the Toddler, the circuit and programming
techniques just discussed can be used to make the Toddler turn so that it’s pointing at the
flashlight beam. Make sure the photoresistors are pointed so that they can make a light
comparison. Aside from each being pointed 45° outward from the center-line of the
Toddler, they also should be oriented so they are pointing 45° downward from horizontal.
In other words, point the faces of the photoresistors down toward the table top. Then, use
a bright flashlight to make the Toddler track the direction of the light.

Programming the Toddler to Point at the Light

Getting the Toddler to track a light source is a matter of programming it to compare the
value measured at each photoresistor. Remember that as the light gets dimmer, the
photoresistor’s value increases. So, if the photoresistor value on the right is larger than
that of the photoresistor on the left, it means it’s brighter on the left. Given this situation,
the Toddler should turn left. On the other hand, if the ReTIME of the photoresistor on the
left is larger than that of the photoresistor on the right, the right side is brighter and the
Toddler should turn right.

To keep the Toddler from changing directions too often, a parameter for DeadBand is
introduced. DeadBand is a range of values wherein the system makes no attempt at
correction. If the numbers go above or below the DeadBand, then the system corrects
accordingly. The most convenient way to measure for DeadBand is to subtract the left
RCTIME from the right RCTIME, or visa versa, then take the absolute value. If this absolute
value is within the DeadBand limits, then do nothing; if otherwise, program an
appropriate adjustment.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #5: Following Light - Page 97

L [Title J------mmmmmmm oo oo oo
' Toddler Program 5.2: Light Compass

' Points towards the most well-lit area in the room

' Adjust DeadBand for Toddler's sensitivity to light levels

' {s$sTAMP BS2}

' {$PBASIC 2.5}

TiltServo CON 13 ' Tilt servo on P13
StrideServo CON 12 ' Stride servo P12
LPhotoCircuit CON 10

RPhotoCircuit CON 15

L [Constants J------co-mmmmmmm o m oo
MoveDelay CON 15 ' in micrcoseconds

TiltStep CON 5 ' TiltServo step size
StrideStep CON 5 ' StrideServo step size
RightTilt CON 620 ' Tilt limits

CenterTilt CON 750

LeftTilt CON 880

RightStride CON 650 ' Stride limits
CenterStride CON 750

LeftStride CON 850

DeadBand CON 30 ' Light sensitivity diff

L [Variables J------commmmmmm i m o e
LPhotoVal VAR word ' Stores measured R/C times
RPhotoval VAR word ' of photoresistors
FigureLoop VAR Nib

MoveLoop VAR Byte ' Loop for repeat movements
MoveLoopLimit VAR Byte

SubMoveLoop VAR Byte ' Loop for repeat
SubMoveLoopLmt VAR Byte ' submovements

Pulses VAR Word ' Pulse variable
CurrentTilt VAR Word

CurrentStride VAR Word

NewValue VAR Word

Dx VAR Pulses

Mx VAR Word

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 98 - Advanced Robotics with the Toddler

MxCurrent VAR Word
Sx VAR Word
SxCurrent VAR Word

LI [EEPROM DAEA] -==== === === === oo oo e oo oo

L it Movement Support Codes ------

' The following state tables are lists of movement state numbers.
' A xx indicates the end of a list.

' These are used with the Movement routine.

TL CON 0
TC CON 1
TR CON 2
SL CON 3
sC CON 4
SR CON 5
XX CON 255

------ Movement Value Tables ------

' These can be used with the Movement routine.

' The tables can contain Basic Movement Codes.

' Note: ALL movement tables must be in this section

LeftSemicircle DATA 7, bLeftTurn, DbLeftTurn, bForward, xx
RightSemicircle DATA 7, bRightTurn, bRightTurn, bForward, xx
WalkForward3 DATA 3, bForward, xx
WalkForward8 DATA 8, bForward, xx

------ Basic Movement Codes ------
''" Used in Movement tables.
' Referenced below using LOOKUP statement.

bFinish CON 0
bForward CON 1
bBackward CON 2
bLeftTurn CON 3
bRightTurn CON 4
bPivotLeft CON 5
bPivotRight CON 6

L it Basic Movement Tables ------
''" These tables can contain Movement Support Codes.

BasicMovements CON Forward

Forward DATA 1, TR, SL, TL, SR, XX

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Backward DATA 1,
LeftTurn DATA 1,
RightTurn DATA 1,
PivotLeft DATA 3,
PivotRight DATA 3,
Finish DATA 1,

Main:

TR,

WL,
TR,

Wiy,
TR,

TR,

SR,

SR,
ST

SR,
SL,

SC,

TL,

e,
e,

e,
TC,

e,

SL,

ST
SR,

SL,
SR,

XX

' Measure RC time for left photoresistor.

HIGH LPhotoCircuit
PAUSE 3

RCTIME LPhotoCircuit,1,LPhotoVal

1

1

1

' Measure RC time for right photoresistor.

HIGH RPhotoCircuit
PAUSE 3

RCTIME RPhotoCircuit,1,RPhotoVal

1

1

1

Chapter #5: Following Light - Page 99

XX

XX
XX

XX
XX

Set to output-high.
Pause for 3 ms.
Measure R/C time on left

Set to output-high.
Pause for 3 ms
Measure R/C time on right

' Measure difference between RPhotoVal and LPhotoVal, decide what to do

DEBUG home, "Left = ", dec LPhotoVal,

IF ABS (LPhotoVal-RPhotoVal)

IF LPhotoVal > RPhotoVal THEN turn right
IF LPhotoVal < RPhotoVal THEN

I Navigation Routines

Turn_left:
Mx = PivotLeft
GOSUB Movement
GOTO main

Turn_right:
Mx = PivotRight
GOSUB Movement
GOTO main

n

Right = ",dec RPhotoVval,cr

< DeadBand THEN main

turn left

turn left towards light

go back to main routine.

turn right towards light

go back to main routine.

I ===== [Stlsreutingg ||===

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 100 - Advanced Robotics with the Toddler

' Input: Mx = movement table index, table ends in xx
0 Mx = submovement table index, table ends in xx
' Note: All submovment tables come after the movment tables in this file.

Movement :
IF Mx < BasicMovements THEN SetupMovement

MxCurrent = Mx ' setup to use submovement
MoveLoopLimit = 1 ' table
GOTO StartMovement

SetupMovement :
READ Mx, MoveLoopLimit ' read movement table
MxCurrent = Mx + 1 ' repeat count
StartMovement :
FOR MoveLoop = 1 to MoveLoopLimit
Mx = MxCurrent ' Mx = start of movement
' table
'DEBUG DEC Mx, " Movement ", DEC MoveLoop, " of ", DEC MoveLoopLimit, CR

IF Mx < BasicMovements THEN MovementLoop
' skip i1f movement table

SxCurrent = Mx ' SxCurrent = submovement table index

GOTO StartSubMovement ' enter middle of loop
MovementLoop:

READ Mx, SxCurrent ' read next submovment byte

Mx = Mx + 1
IF SxCurrent = xx THEN MovementDone
' skip 1if end of list
'DEBUG " ", DEC SxCurrent, " movement", CR
LOOKUP SxCurrent, [Finish, Forward, Backward, LeftTurn,
RightTurn, PivotLeft, PivotRight] , SxCurrent
' lookup submovement table index
StartSubMovement : ' execute submovement table
READ SxCurrent, SubMoveLoopLmt
' read submovement table
SxCurrent = SxCurrent + 1

FOR SubMoveLoop = 1 TO SubMoveLoopLmt
Sx = SxCurrent

'DEBUG " ", DEC Sx, " submovement "

'DEBUG DEC SubMoveLoop, " of ", DEC SubMoveLoopLmt,CR
SubMovementLoop :

READ Sx, Dx ' read next submovement

Sx = Sx + 1 ' action

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #5: Following Light - Page 101

IF Dx = xx THEN SubMovementDone

' skip if end of list
GOSUB DoMovement ' execute movement
GOTO SubMovementLoop

SubMovementDone :
NEXT
IF Mx < BasicMovements THEN MovementLoop

MovementDone :
NEXT
RETURN

DoMovement :
'DEBUG " ", DEC Dx, " action", CR
BRANCH Dx, [TiltLeft,TiltCenter,TiltRight,StrideLeft,
StrideCenter, StrideRight]
' will fall through if invalid index
RETURN

' ---- Movement routines can be called directly ----

TiltLeft:
NewValue = LeftTilt
GOTO MovementTilt

TiltCenter:
NewValue = CenterTilt
GOTO MovementTilt

TiltRight:
NewValue = RightTilt

MovementTilt:
FOR Pulses = CurrentTilt TO NewValue STEP TiltStep
PULSOUT TiltServo, Pulses

PULSOUT StrideServo, CurrentStride
PAUSE MoveDelay
NEXT

CurrentTilt = NewValue
RETURN

StrideLeft:
NewValue = LeftStride
GOTO MovementStride

StrideCenter:

NewValue = CenterStride
GOTO MovementStride

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 102 - Advanced Robotics with the Toddler

StrideRight:
NewValue = RightStride

MovementStride:
FOR Pulses = CurrentStride TO NewValue STEP StrideStep
PULSOUT TiltServo, CurrentTilt

PULSOUT StrideServo, Pulses
PAUSE MoveDelay
NEXT

CurrentStride = NewValue
RETURN

————— Move feet to initial center position -----
ResetCC:

CurrentTilt = CenterTilt
CurrentStride = CenterStride

FOR Pulses = 1 TO 100 STEP StrideStep
PULSOUT TiltServo, CenterTilt
PULSOUT StrideServo, CenterStride
PAUSE MoveDelay

NEXT

DoReturn:
RETURN

How the Light Compass Works

Program 5.2 takes RC time measurements and first checks to see if the difference
between the values returned by the RCTIME commands fall in the DeadBand variable
using the command:

IF ABS (LPhotovVal-RPhotoVal) < DeadBand THEN main

If the difference between RC times is within the DeadBand, the program jumps to the
Main: label. If the measured difference in RC times is not within the DeadBand, two
IF...THEN statements decide which routine to call, Turn_left or Turn right.

IF ABS (LPhotoVal-RPhotoVal) < DeadBand THEN main

IF LPhotoVal > RPhotoVal THEN turn right
IF LPhotoVal < RPhotoVal THEN turn_ left

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #5: Following Light - Page 103

These routines use the movement routines initially presented in the prior chapter. The
Toddler can make smaller turns.

Your Turn

\/
\/

Enter and run Program Listing 5.2.

Shine a bright flashlight in front of the Toddler. When you move the flashlight,
the Toddler should rotate so that it’s pointing at the flashlight beam.

Instead of using a flashlight, use your hand to cast a shadow over one of the
photoresistors. The Toddler should rotate away from the shadow.

In a darker area, not only will the photoresistor values be larger, so will the
difference between them. You may have to increase the deadband in low
ambient light to detune the Toddler to small and changing variations in light.
The lower the light levels, the less you need the PAUSE statements. If the
Toddler’s performance starts to decrease, it’s probably because the time between
pulses has exceeded 40 ms. The first line of defense for this problem is to reduce
the PAUSE period in each subroutine to zero. The second line of defense is to
check photoresistors during alternate pulses. That way, after the first pulse, the
right photoresistor could be checked. Then, after the second pulse, the left
photoresistor could be checked. You can try your hand at developing code that
does this in the Challenges section.

Experiment with different ambient light levels and their effect on deadband by
trying this experiment in lighter and darker areas. In lighter areas, the deadband
value can be made smaller, even zero. In darker areas, the deadband value should
be increased.

Swap the conditions in the second and third IF...THEN statement in Program
5.2. Then re-run the program. Now your Toddler points away from the light.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 104 - Advanced Robotics with the Toddler

ACTIVITY #3: FOLLOWING THE LIGHT

Programming the Toddler to follow light requires that only a few modifications to
Program Listing 5.2 be made. The main change is that measurements within the
deadband resulted in no motion in Program Listing 5.2. In Program Listing 5.3, when the
difference between RC times falls within the deadband, it results in forward motion.
Let’s see how it works.

I ===== [Tigle J===
' Toddler Program 5.3: Follow the Light

' Marching toward the light

' {$sTAMP BS2}

' {$PBASIC 2.5}

TiltServo CON 13 ' Tilt servo on P12
StrideServo CON 12 ' Stride servo on P13
LPhotoCircuit CON 10

RPhotoCircuit CON 14

I coces N Cen s Fantc I e e e R L L L L
MoveDelay CON 18 ' in micrcoseconds

TiltStep CON 5 ' TiltServo step size
StrideStep CON 5 ' StrideServo step size
RightTilt CON 620 ' Tilt limits

CenterTilt CON 750

LeftTilt CON 880

RightStride CON 650 ' Stride limits

CenterStride CON 750

LeftStride CON 850

DeadBand CON 5 ' Photoresistor R/C DeadBand

R [Variables J---------c-mocommmmmmm oo om -
LPhotoVal VAR Word ' Stores measured R/C times
RPhotoVval VAR Word ' of photoresistors

FigureLoop VAR Nib

MoveLoop VAR Byte ' Loop for repeat movements
MoveLoopLimit VAR Byte

SubMoveLoop VAR Byte ' Loop for repeat submovements

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

SubMoveLoopLmt VAR

Pulses VAR
CurrentTilt VAR
CurrentStride VAR
NewValue VAR
Dx VAR
Mx VAR
MxCurrent VAR
Sx VAR
SxCurrent VAR

Chapter #5: Following Light - Page 105

Byte

Word ' Pulse variable
Word

Word

Word

Pulses

Word

Word

Word
Word

' The following state tables are lists of movement state numbers.
' A xx indicates the end of a list.
' These are used with the Movement routine.

TL CON
TC CON
TR CON
SL CON
sc CON
SR CON
blod CON

u s W NP o

255

L Movement Value Tables ------
' These can be used with the Movement routine.
' The tables can contain Basic Movement Codes.

' Note: ALL movement tables must be in this section

LeftSemicircle DATA
RightSemicircle DATA

WalkForward3 DATA
WalkForward8 DATA

7, bLeftTurn, DbLeftTurn, DbForward, xx
7, bRightTurn, bRightTurn, bForward, xx

3, bForward, xx
8, bForward, xx

------ Basic Movement Codes ------

' Used in Movement tables.
' Referenced below using LOOKUP statement.

bFinish CON
bForward CON
bBackward CON
bLeftTurn CON
bRightTurn CON

Downloaded from Elcodis.com electronic components distributor

s W N o

http://elcodis.com/parts/844626/27311.html

Page 106 - Advanced Robotics with the Toddler

bPivotLeft CON 5
bPivotRight CON 6

L Basic Movement Tables ------

' These tables can contain Movement Support Codes.

BasicMovements CON Forward

Forward DATA 1, TR, SL, TL, SR, xxX

Backward DATA 1, TR, SL, TL, SR, XX

LeftTurn DATA i, TL, SR, TC, SL, TL, SR, TR, SL, xx
RightTurn DATA 1, TR, SL, TC, SR, TR, SL, TL, SR, xxX
PivotLeft DATA 1, TL, SR, TC, SL, xx

PivotRight DATA 1, TR, SL, TC, SR, xxX

Finish DATA 1, TR, SC, TC, xx

I ccoo= R R OV &l i R T e
GOSUB ResetCC ' Initialize feet

I ===== [Meilm Cogle |[===
Main:

' Measure RC time for left photoresistor.

HIGH LPhotoCircuit ' Set to output-high
PAUSE 3 ' Pause for 3 ms
RCTIME LPhotoCircuit,1,LPhotoval ' Measure R/C time on left

' Measure RC time for right photoresistor.

HIGH RPhotoCircuit ' Set to output-high
PAUSE 3 ' Pause for 3 ms
RCTIME RPhotoCircuit,1l,RPhotoval ' Measure R/C time on right

' Measure difference between RPhotoVal and LPhotoVal, decide what to do
IF ABS (LPhotoVal-RPhotoVal) > DeadBand THEN check dir

' Check if difference between RC times is within the deadband
' If yes, then forward. If no then skip to check dir subroutine.

walk forward:
Mx = Forward
GOSUB Movement
goto main

' Select right turn or left turn depending on which RC time is larger

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #5: Following Light - Page 107

check dir:
IF LPhotoVal > RPhotoVal THEN turn right
IF LPhotoVal < RPhotoVal THEN turn left
e Navigation Routines -------
turn left: ' turn left towards light
Mx = PivotLeft
GOSUB Movement
goto main ' go back to main routine.
Turn_right: ' turn right towards light
Mx = PivotRight
GOSUB Movement
GOTO main ' go back to main routine.
----- [Subroutines J-----------cocoom oo
L Movement: Move feet using DATA table referenced by Mx -----
' Input: Mx = movement table index, table ends in xx

0 Mx = submovement table index, table ends in xx

' Note: All submovment tables come after the movment tables in this file.

Movement :
IF Mx < BasicMovements THEN SetupMovement
MxCurrent = Mx ' setup to use submovement table

MoveLoopLimit = 1
GOTO StartMovement

SetupMovement :
READ Mx, MoveLoopLimit ' read movement table
MxCurrent = Mx + 1 ' repeat count
StartMovement :
FOR MoveLoop = 1 to MoveLoopLimit
Mx = MxCurrent ' Mx = start of movement table
'debug hex Mx, " Movement ", dec MoveLoop, " of ", dec MoveLoopLimit,cr

IF Mx < BasicMovements THEN MovementLoop
' skip i1f movement table

SxCurrent = Mx ' SxCurrent = submovement index
GOTO StartSubMovement ' enter middle of loop
MovementLoop:

READ Mx, SxCurrent ' read next submovment byte

Mx = Mx + 1
IF SxCurrent = xx THEN MovementDone
' skip 1if end of list

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 108 - Advanced Robotics with the Toddler

'debug " ", dec SxCurrent, " movement",cr
LOOKUP SxCurrent, [Finish, Forward, Backward, LeftTurn,RightTurn,
PivotLeft, PivotRight] , SxCurrent

' lookup submovement table index

StartSubMovement : ' start executing submovement table
READ SxCurrent, SubMoveLoopLmt ' read submovement table repeat count
SxCurrent = SxCurrent + 1

FOR SubMoveLoop = 1 to SubMoveLoopLmt
Sx = SxCurrent

'DEBUG " ", DEC Sx, " submovement ", DEC SubMoveLoop, " of ",
dec SubMoveLooplLmt, CR

SubMovementLoop :
READ Sx, Dx ' read next submovent action
Sx = Sx + 1
IF Dx = xx THEN SubMovementDone
' skip 1if end of list
GOSUB DoMovement ' execute movement
GOTO SubMovementLoop

SubMovementDone :
NEXT
IF Mx < BasicMovements THEN MovementLoop

MovementDone :
NEXT
RETURN
DoMovement :
'debug " ", dec Dx, " action",cr

BRANCH Dx, [TiltLeft,TiltCenter,TiltRight,StrideLeft,
StrideCenter, StrideRight]
' will fall through if invalid index
RETURN

' ---- Movement routines can be called directly ----
TiltLeft:

NewValue = LeftTilt

GOTO MovementTilt
TiltCenter:

NewValue = CenterTilt

GOTO MovementTilt

TiltRight:
NewValue = RightTilt

MovementTilt:

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #5: Following Light - Page 109

FOR Pulses = CurrentTilt TO NewValue STEP TiltStep

PULSOUT TiltServo, Pulses

PULSOUT StrideServo, CurrentStride

PAUSE MoveDelay
NEXT

CurrentTilt = NewValue
RETURN

StrideLeft:
NewValue = LeftStride
GOTO MovementStride

StrideCenter:
NewValue = CenterStride
GOTO MovementStride

StrideRight:
NewValue = RightStride

MovementStride:

FOR Pulses = CurrentStride TO NewValue STEP StrideStep

PULSOUT TiltServo, CurrentTilt

PULSOUT StrideServo, Pulses
PAUSE MoveDelay
NEXT

CurrentStride = NewValue
RETURN

ResetCC:
CurrentTilt = CenterTilt
CurrentStride = CenterStride

FOR Pulses = 1 TO 100 STEP StrideStep
PULSOUT TiltServo, CenterTilt
PULSOUT StrideServo, CenterStride

PAUSE MoveDelay
NEXT

DoReturn:
RETURN

Downloaded from Elcodis.com electronic components distributor

————— Move feet to initial center position

http://elcodis.com/parts/844626/27311.html

Page 110 - Advanced Robotics with the Toddler

How the Light Follower Program Works

As in the previous program, the first IF...THEN statement tests for a difference in RC
time measurements within the deadband. This statement has been modified so that it
skips the walk forward routine if the difference between RC times falls outside the
deadband. On the other hand, if the difference in RC times is within the deadband, the
forward pulse is executed. After the forward pulse, the program is directed back to main
and the RC times are checked again.

IF ABS(LPhotoVal-RPhotoVal) > DeadBand THEN check dir

walk forward:
Mx = Forward
GOSUB Movement
goto main

If the difference between RC times is not within the beadBand, the program skips to the
Check dir label. The IF...THEN statements following the check dir label are used to
decide whether Toddler should turn left or turn right depending on the inequality of the
RPhotoVal and LPhotoVal values.

check _dir:
IF LPhotoVal > RPhotoVal THEN turn right
IF LPhotoVal < RPhotoVal THEN turn left

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #5: Following Light - Page 111

CHALLENGES
Lead your Toddler around with a flashlight.

V' Instead of pointing the photoresistors at the surface directly in front of the
Toddler, point them upward and outward. With the photoresistors adjusted this
way, the Toddler will roam on the floor and try to always find the brightest
place.

V' Depending on the luminance gradient, you may have to increase the deadband to
smooth out the Toddler’s light roaming. Alternatively, the deadband may need
to be decreased to make it more responsive to seeking out the brighter areas.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #6: Object Avoidance with Infrared - Page 113

Chapter #6: Object Avoidance with Infrared

WIRELESS OBJECT DETECTION

Today's hottest products seem to have one thing in common: wireless communication.
Personal organizers beam data into desktop computers, and wireless remotes let us
channel surf. With a few inexpensive and widely available parts, the BASIC Stamp can
also use an infrared LED and detector to detect objects to the front and side of your

traveling Toddler.
Infrared means Infra means below, so Infra-red is light (or electromagnetic radiation) that
has lower frequency, or longer wavelength than red light. Our IR LED and detector work at
980 nm. (nanometers) which is considered near infrared. Night-vision goggles and IR
temperature sensing use far infrared wavelengths of 2000-10,000 nm., depending on the
application.
Color Approximate Wavelength (nm)
/"“\ Violet 400
(e Blue 470
-’ Green 565
Yellow 590
Orange 630
Red 780
Near infra-red 800-1,000
Infra-red 1,000-2,000
Far infra-red 2,000-10,000

Detecting obstacles doesn’t require anything as sophisticated as machine vision. A much
simpler system will suffice. Some robots use RADAR or SONAR (sometimes called
SODAR when used in air instead of water). An even simpler system is to use infrared
light to illuminate the robot’s path and determine when the light reflects off an object.
Thanks to the proliferation of infrared (IR) remote controls, IR illuminators and detectors
are easily available and inexpensive.

The Toddler infrared object detection scheme has a variety of uses. The Toddler can use
infrared to detect objects without bumping into them. As with the photoresistors, infrared
can be used to detect the difference between black and white for line following. Infrared
can also be used to determine the distance of an object from the Toddler. The Toddler can
use this information to follow objects at a fixed distance, or detect and avoid high ledges.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 114 - Advanced Robotics with the Toddler

Infrared Headlights for Toddler

The infrared object detection system we’ll build on the Toddler is like a car’s headlights
in several respects. When the light from a car’s headlights reflects off obstacles, your
eyes detect the obstacles and your brain processes them and makes your body guide the
car accordingly. The Toddler uses infrared LEDs for headlights. They emit infrared, and
in most cases, the infrared reflects off objects, and bounces back in the direction of the
Toddler. The eyes of the Toddler are the infrared detectors. The infrared detectors send
signals to the BASIC Stamp indicating whether or not they detect infrared reflected off an
object. The brain of the Toddler, the BASIC Stamp, makes decisions and operates the
servo motors based on this input.

The IR detectors have built-in optical filters that allow very little light except the 980 nm
infrared that we want to detect onto its internal photodiode sensor. The infrared detector
also has an electronic filter that only allows signals around 38.5 kHz to pass through. In
other words, the detector is only looking for infrared flashed on and off at 38,500 times
per second. This prevents interference from common IR interference sources such as
sunlight and indoor lighting. Sunlight is DC interference (0 Hz), and house lighting tends
to flash on and off at either 100 or 120 Hz, depending on the main power source in the
country where you reside. Since 120 Hz is way outside the electronic filter’s 38.5 kHz
band pass frequency, it is, for all practical purposes, completely ignored by the IR
detectors.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #6: Object Avoidance with Infrared - Page 115

The FREQOUT Trick

Since the IR detectors only see IR signals in the neighborhood of 38.5 kHz, the IR LEDs
have to be flashed on and off at that frequency. A 555 timer can be used for this purpose,
but the 555 timer circuit is more complex and less functional than the circuit we will use
in this and the next chapter. For example, the method of IR detection introduced here can
be used for distance detection; whereas, the 555 timer would need additional hardware to
do distance detection.

A pair of Toddler enthusiasts found an interesting trick that made the 555 timer scheme
unnecessary. This scheme uses the FREQouT command without the RC filter that’s
normally used to smooth the signal into a sine-wave. Even though the highest frequency
FREQOUT is designed to transmit is 32768 Hz, the unfiltered FREQoOUT output contains a
harmonic with useful properties for a 38.5 kHz IR detector. More useful still is the fact
that you can use a command such as FREQOUT Pin, Period, 38500 to send a 38.5 kHz
harmonic that the IR detector will detect.

Figure 6-1 shows (a) the signal sent by the command FREQOUT Pin, Period, 27036.
Tuned electronic receivers, such as the IR detectors we’ll be using, can detect
components of this signal that are called harmonics. The FREQOUT signal’s two dominant
low frequency harmonics are shown in (b) and (c). (b) shows the fundamental harmonic,
and (c) shows the third harmonic. These harmonics are actually components of the
unfiltered FREQouT pulses shown in (a). The third harmonic shown in (¢) can be
controlled directly by entering commands such as FREQOUT Pin, Period, 38500
(instead of 27036) for 38.5 kHz, or FREQOUT Pin, Period, 40000 for 40 kHz, etc.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 116 - Advanced Robotics with the Toddler

Volts, V
Volts, V +1.25
+ 5 TO6 117] M] M] T ,// -
0 } .\ t
- 1-25J 0 Time, us :
1 (b) (b) 27036 Hz fundamental harmonic.
1 +1.25
[S . P
0 . : : : 0 t ~_
0 Time, us 37 T
-125+0 Time, us

(a) Unfiltered freqout pulses sent by

(c) 38500 Hz third harmonic.
FREQOUT pin, period, 27036

Figure 6-1: FREQOUT Example Properties

Even though the “FrREQOUT” trick works, there is an additional problem. The BASIC
Stamp does not multitask. The reason this is a problem is because the IR detector only
sends the low signal indicating that it has detected an object while it is receiving the 38.5
kHz IR. Otherwise, it sends a high signal. Fortunately, it takes the detector long enough
to rebound from its low output state that the BASIC Stamp can capture the value. The
reason that the detector’s output takes so long to rebound is related to its tendency toward
slower responses when it receives a signal with unequal high and low times, of which the
signal in (a) has many.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

ACTIVITY #1: BUILDING AND TESTING THE NEW IR TRANSMITTER /

DETECTOR

Parts Required

(1) Piezoelectric speaker

(2) Shrink wrapped IR LEDs
(2) IR detectors

(misc) wires

Figure 6-2 shows the individual part schematics and pictorials so you can identify them.
Figure 6-3 is the schematic. Build this circuit on your Toddler board. Note that the 220
ohm resistors are already built into the Toddler PCB; just plug in the infrared LEDs and

your Toddler will be ready.

b

123
1
IR
Y
+\ LED
2

2]
«—
IR LED will snap in. -

T

Downloaded from Elcodis.com electronic components distributor

Chapter #6: Object Avoidance with Infrared - Page 117

Infrared detector
schematic symbol

Infrared detector
component

Figure 6-2:
Infrared Components and their

Schematic Symbols
Infrared LED
schematic symbol

IR LED component
with light shield
assembly

http://elcodis.com/parts/844626/27311.html

Page 118 - Advanced Robotics with the Toddler

P4 O AN P15 D———MWAN——
220 Q 220 Q
vdd vdd
- IR IR
¥y e ¥ o
P11 P14
Vgs Vgs Vgs Vgs

Figure 6-3: Infrared circuit schematic Note: the 220 ohm resistors are already built into the
Toddler PCB and are not required; simply plug the LEDs into the front sockets.

One IR pair (IR LED and detector) is mounted on each corner of the Toddler circuit
board.

Testing the IR Pairs

The key to making each IR pair work is to send 1 ms of unfiltered 38.5 kHz FrREQoUT
harmonic followed immediately by testing the signal sent by the IR detector and saving
its output value. The IR detector’s normal output state when it sees no IR signal is high.
When the IR detector sees the 38500 Hz harmonic sent by the IR LED, its output will
drop from high to low. Of course, if the IR does not reflect off an object, the IR detector’s
output simply stays high. Program 6.1 shows an example of this method of reading the
detectors.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #6: Object Avoidance with Infrared - Page 119

L s [Title J--ommmmmmm s m oo oo m oo
' Toddler Program 6.1: Infrared Pairs Display

' Test program for the infrared emitters / detectors

' {$sSTAMP BS2}

' {$PBASIC 2.5}

l1Emitter CON 4

rEmitter CON 15

1Input VAR inll

rInput VAR inl4

R [Variables J---------c-mocommmmmmm oo om -
1Detector VAR Bit ' Two bit variables for saving IR
rDetector VAR Bit ' detector output values.

I ===== [rmdiEilalizaElem | ==
OUTPUT lEmitter ' signals to function as outputs

OUTPUT rEmitter

DO
' Detect object on the left.
FREQOUT lEmitter, 1, 38500 ' Send freqgout signal - left IR LED
lDetector = lInput ' Store IR detector output in RAM.
' Detect object on the right.
FREQOUT rEmitter, 1, 38500 ' Repeat for the right IR pair.

rDetector = rInput

DEBUG home, "Left= ", BIN1 lDetector
PAUSE 20
DEBUG " Right= ", BIN1l rDetector
PAUSE 20

LOOP

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 120 - Advanced Robotics with the Toddler

Your Turn
V' Enter and run Program Listing 6.1.

' This program makes use of the BASIC Stamp Editor’s Debug Terminal, so leave
the serial cable connected to the Toddler while Program Listing 6.1 is running.

V' While program Listing 6.1 is running, point the IR detectors so nothing nearby
could possibly reflect infrared back at the detectors. The best way to do this is to
point the Toddler up at the ceiling. The Debug Terminal should display both left
and right values as equal to “1.”

\ By placing your hand in front of an IR pair, it should cause the Debug Terminal
display for that detector to change from “1” to “0.” Removing your hand should
cause the output for that detector to return to a “1” state. This should work for
each individual detector, and you also should be able to place your hand in front
of both detectors and make both their outputs change from “1” to “0.”

' If the IR Pairs passed all these tests, you’re ready to move on; otherwise, check
your program and circuit for errors.

How the IR Pairs Display Program Works

Two bit variables are declared to store the value of each IR detector output. The first
FREQOUT command in the Do...LooP routine is different. The command FREQOUT
lEmitter, 1, 38500 sends the on-off pattern shown in Figure 6-1 via left IR LED
circuit by causing it to flash on and off rapidly. The harmonic contained in this signal
either bounces off an object, or not. If it bounces off an object and is seen by the IR
detector, the IR detector sends a low signal to I/O pin 1Input. Otherwise, the IR detector
sends a high signal to 1Input. So long as the next command after the FREQouT command
is the one testing the state of the IR detector’s output, it can be saved as a variable value
in RAM. The statement 1Detector = lInput checks 1Input, and saves the value (“1”
for high or “0” for low) in the 1Detector bit variable. This process is repeated for the
other IR pair, and the IR detector’s output is saved in the rDetector variable. The DEBUG
command then displays the values in the Debug Terminal.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #6: Object Avoidance with Infrared - Page 121

Your Turn

V' Experiment with detuning your IR pairs by using frequencies above 38.5 kHz.
For example, try 39.0, 39.5, 40.0, 40.5 and 41 kHz. Note the maximum distance
that each will detect by bringing an object progressively closer to the IR pairs
and noting what distance began to cause the IR detector output to switch from
“1” to “0.”

ACTIVITY #2: OBJECT DETECTION AND AVOIDANCE

The IR pairs provide range information that the Toddler can use to avoid obstacles. A
simple program can simply avoid obstacles providing a random walk around a room
without causing a collision. Obstacles must be high enough to be detected by the
Toddler’s IR detectors.

Sampling Between Movements

Program Listing 6.2 checks the IR pairs and delivers one of four different pulses based on
the sensors. Each of the navigational routines is just a single step in the Forward,
Left turn, Right turn or Backward directions. After the pulse is applied, the
sensors are checked again, then another step is made, etc. This program also makes use of
some programming techniques you will find very useful.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 122 - Advanced Robotics with the Toddler

L s [Title J--ommmmmmm oo oo oo oo
' Toddler Program 6.2: Object Detection and Avoidance

' Uses the infrared emitters and detectors

' {$sSTAMP BS2}

' {$PBASIC 2.5}

lEmitter CON 4
rEmitter CON 15
1Input VAR inll
rInput VAR inl4
StrideServo CON 12 ' Stride servo on P12
TiltServo CON 13 ' Tilt servo on P13
I ===== | Congiamid ||===
MoveDelay CON 18 ' in micrcoseconds
TiltStep CON 10 ' TiltServo step size
StrideStep CON 10 ' StrideServo step size
RightTilt CON 620 ' Tilt limits
CenterTilt CON 750
LeftTilt CON 880
RightStride CON 650 ' Stride limits
CenterStride CON 750
LeftStride CON 850
L [Variables J------commmmmmm i m o e
Sensors VAR Nib ' variable is used to store
' lower two bits of detector values
FigureLoop VAR Nib
MoveLoop VAR Byte ' Loop for repeat movements
MoveLoopLimit VAR Byte
SubMoveLoop VAR Byte ' Loop for repeat submovements
SubMoveLoopLmt VAR Byte
Pulses VAR Word ' Pulse variable
CurrentTilt VAR Word
CurrentStride VAR Word
NewValue VAR Word
Dx VAR Pulses
Mx VAR Word

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #6: Object Avoidance with Infrared - Page 123

MxCurrent VAR Word
Sx VAR Word
SxCurrent VAR Word

e [EEPROM Data] -=-=-- === mmm oo oo oo oo oo
L it Movement Support Codes ------

' The following state tables are lists of movement state numbers.

' A xx indicates the end of a list.

' These are used with the Movement routine.

TL CON 0
TC CON 1
TR CON 2
SL CON 3
sC CON 4
SR CON 5
XX CON 255

L et Movement Value Tables ------

' These can be used with the Movement routine.
' The tables can contain Basic Movement Codes.

' Note: ALL movement tables must be in this section

LeftSemicircle DATA 7, bLeftTurn, DbLeftTurn, bForward, xx
RightSemicircle DATA 7, bRightTurn, bRightTurn, bForward, xx
WalkForward3 DATA 3, bForward, xx
WalkForward8 DATA 8, bForward, xx

L Basic Movement Codes ------

' Used in Movement tables.
' Referenced below using LOOKUP statement.

bFinish CON 0
bForward CON 1
bBackward CON 2
bLeftTurn CON 3
bRightTurn CON 4
bPivotLeft CON 5
bPivotRight CON 6

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 124 - Advanced Robotics with the Toddler

1

' These tables can contain Movement Support Codes.

BasicMovements CON Forward

Forward DATA 1, TR, SL, TL, SR, xxX

Backward DATA 1, TR, SR, TL, SL, xx

LeftTurn DATA 1, TL, SR, TC, SL, TL, SR, TR, SL, XX

RightTurn DATA 1, TR, SL, TC, SR, TR, SL, TL, SR, xx

PivotLeft DATA 3, TL, SR, TC, SL, TR, SR, TC, SL, xx

PivotRight DATA 3, TR, SL, TC, SR, TL, SL, TC, SR, XX

Finish DATA 1, TR, SC, TC, xx

L [Initialization J-------------"--"--"-—“-“ -
OUTPUT lEmitter ' signals to function as outputs

OUTPUT rEmitter

GOSUB ResetCC ' Initialize feet

DO
FREQOUT l1Emitter,1,38500 ' Send fregout signal - left IRLED.
sensors.bit0 = lInput ' Store IR detector output in RAM.
' Detect object on the right.
FREQOUT rEmitter,1,38500 ' Repeat for the right IR pair.
sensors.bitl = rInput
PAUSE 18 ' 18 ms pause (2 ms lost on fregout)

' Loads the IR detector output values into the lower 2 bits of the
' sensors variable, a number btwn 0 and 3 that the LOOKUP command can use

LOOKUP sensors, [Backward, PivotLeft, PivotRight, Forward] , Mx

GOSUB Movement
LOOP

----- [Subroutines J-----------coooom oo
L Movement: Move feet using DATA table referenced by Mx -----

' Input: Mx = movement table index, table ends in xx

' or

0 Mx = submovement table index, table ends in xx

' Note: All submovment tables come after the movment tables in this file.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #6: Object Avoidance with Infrared - Page 125

Movement :
IF Mx < BasicMovements THEN SetupMovement

MxCurrent = Mx ' setup to use submovement table
MoveLoopLimit = 1
GOTO StartMovement

SetupMovement :
READ Mx, MoveLoopLimit ' read movement table repeat count
MxCurrent = Mx + 1

StartMovement :
FOR MoveLoop = 1 to MoveLoopLimit
Mx = MxCurrent ' Mx = start of movement table
'debug DEC Mx, " Movement ", DEC MoveLoop, " of ", DEC MoveLoopLimit,cr

IF Mx < BasicMovements THEN MovementLoop
' skip if movement table

SxCurrent = Mx ' SxCurrent = submovement table index
GOTO StartSubMovement ' enter middle of loop
MovementLoop :
READ Mx, SxCurrent ' read next submovment byte

Mx = Mx + 1
IF SxCurrent = xx THEN MovementDone
' skip if end of list
debug " ", DEC SxCurrent, " movement",cr
LOOKUP SxCurrent, [Finish, Forward, Backward, LeftTurn,RightTurn,
PivotLeft, PivotRight], SxCurrent
' lookup submovement table index
StartSubMovement : ' start executing submovement table
READ SxCurrent, SubMoveLoopLmt
' read submovement table repeat count
SxCurrent = SxCurrent + 1
FOR SubMoveLoop = 1 to SubMoveLoopLmt
Sx = SxCurrent

debug " ", DEC Sx, " submovement ", DEC SubMoveLoop, " of ",
DEC SubMoveLoopLmt, cr

SubMovementLoop :
READ Sx, Dx ' read next submovent action
Sx = Sx + 1
IF Dx = xx THEN SubMovementDone
' skip 1if end of list
GOSUB DoMovement ' execute movement
GOTO SubMovementLoop

SubMovementDone :

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 126 - Advanced Robotics with the Toddler

NEXT
IF Mx < BasicMovements THEN MovementLoop
' exit if submovement table
MovementDone :
NEXT
RETURN

DoMovement :
debug " ", DEC Dx, " action",cr
BRANCH Dx, [TiltLeft,TiltCenter,TiltRight, StrideLeft,
StrideCenter, StrideRight]
' will fall through if invalid index
RETURN

' ---- Movement routines can be called directly ----

TiltLeft:
NewValue = LeftTilt
GOTO MovementTilt

TiltCenter:
NewValue = CenterTilt
GOTO MovementTilt

TiltRight:
NewValue = RightTilt

MovementTilt:
FOR Pulses = CurrentTilt TO NewValue STEP TiltStep
PULSOUT TiltServo, Pulses

PULSOUT StrideServo, CurrentStride
PAUSE MoveDelay
NEXT

CurrentTilt = NewValue
RETURN

StrideLeft:
NewValue = LeftStride
GOTO MovementStride

StrideCenter:
NewValue = CenterStride
GOTO MovementStride

StrideRight:
NewValue = RightStride

MovementStride:
FOR Pulses = CurrentStride TO NewValue STEP StrideStep
PULSOUT TiltServo, CurrentTilt

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #6: Object Avoidance with Infrared - Page 127

PULSOUT StrideServo, Pulses
PAUSE MoveDelay
NEXT

CurrentStride = NewValue
RETURN

L Move feet to initial center position -----

ResetCC:
CurrentTilt = CenterTilt
CurrentStride = CenterStride

FOR Pulses = 1 TO 100 STEP StrideStep
PULSOUT TiltServo, CenterTilt
PULSOUT StrideServo, CenterStride
PAUSE MoveDelay

NEXT

DoReturn:
RETURN

How IR Roaming by Numbers in Real-Time Works

This Program listing declares the sensors variable, which is one nibble of RAM. Of the
four bits in the sensors variable, only the lowest two bits are used. Bit-0 is used to store
the left detector’s output, and bit-1 is used to store the right detector’s output.

The main routine starts with the FREQOUT commands used to send the IR signals, but the
commands following each freqout command are slightly different from those used in the
previous program. Instead of saving the bit value at the input pin to a bit variable, each
bit value is stored as a bit in the sensors variable. Bit-0 of sensors is set to the binary
value of IN8, and bit-1 of the sensors variable is set to the binary value of IN0. After
setting the values of the lower two bits of the sensors variable, it will have a decimal
value between “0” and “3.” The BRANCH command uses these numbers to determine to
which label it sends the program.

DO
FREQOUT lEmitter,1,38500 ' Send fregout signal - left IRLED.
sensors.bit0 = lInput ' Store IR detector output in RAM.
' Detect object on the right.
FREQOUT rEmitter,1,38500 ' Repeat for the right IR pair.
sensors.bitl = rInput

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 128 - Advanced Robotics with the Toddler

PAUSE 18 ' 18 ms pause (2 ms lost on fregout)

' Loads the IR detector output values into the lower 2 bits of the
' sensors variable, a number btwn 0 and 3 that LOOKUP can use

LOOKUP sensors, [Backward, PivotLeft, PivotRight, Forward] , Mx

GOSUB Movement
LOOP

The four possible binary numbers that result are shown in Table 6.1. Also shown is the
lookup action that occurs based on the value of the state argument.

Binary Value of | Decimal Value of . .

state State What the Value Indicates, Branch Action Based on State
1Input = 0and rInput = 0,

0000 0
Both IR detectors detect object, step back.
1Input = 0and rInput = 1,

0001 1
Left IR detector detects object, turn right.
1Input = 1and rInput = 0,

0010 2
Right IR detector detects object, turn left.
lInput = 1landrInput = 1,

0011 3
Neither IR detector detects object, step forward.

Table 6-1: IR Detector States as Binary Numbers

The mx variable is set to the appropriate movement table index. The Movement routine
then performs the appropriate sequence of commands.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #6: Object Avoidance with Infrared - Page 129

CHALLENGES

You can rearrange the address labels in the nookur command so that the Toddler does
different things in response to obstacles. One interesting activity is to try replacing the
Backward address with the Forward address. There will be two instances of Forward
in the Lookup address list, but this is not a problem. Also, swap the Left turn and
Right turn addresses.

V' Try making the changes just discussed.

The Toddler should now run into your hand. Because of this, one Toddler cannot be
programmed to follow another without some way of distance detection. If the one in front
stops, the one in back will crash into it. This problem will be fixed as an example in the
next chapter.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #7: Staying on the Table - Page 131

Chapter #7: Staying on the Table

WHAT'S A FREQUENCY SWEEP?

In general, a frequency sweep is what you do when checking your favorite radio stations.
Set the station for one frequency, and check the output. If you don’t like the song that’s
playing, change the frequency and check the output again.

ACTIVITY #1: TESTING THE FREQUENCY SWEEP

The Toddler can be programmed to send different IR frequencies, and to check for object
detection at each frequency. By keeping track of the frequencies for which the IR
detector reported an object, its distance can be determined. The left axis of the graph in
Figure 7.1 shows how the sensitivity of the IR detector’s electronic filter decreases as it
receives frequencies greater than 38.5 kHz. The filter essentially causes the IR detector to
become less able to detect IR at these frequencies. Another way to think about it is that
you have to move an object closer if you want it to be detected at a less sensitive
frequency. Since the detector is less sensitive, it will take brighter IR (or a closer object)
to make the detector see the signal.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 132 - Advanced Robotics with the Toddler

100% Zone 0
Zone 1
> Object
s Zone 2
2 K 8
[0 " c
2 ; ks
o ")
2 a
5 Zone 3
[v4 \ “
v Zone 4
oo [N\ . Zone5
N IV $ G ; 1- ;
& &9 0 WP Figure 7-1: Relative IR

Sensitivity to Frequency
Modulated IR Frequency, kHz

"Toddler” “*

vdd vin (1)yss(vs)

EE

00000000000000000

Figure 7-1 compares the left axis of the graph (IR frequency) to the relative sensitivity of
the IR detector. The right side of the graph shows how the relative sensitivity of the IR
detector relates to distance detection. As detector sensitivity decreases with the increase
in frequency, the object must be closer for the IR signal to be detected. Why closer?
When the detectors are made less sensitive by sending higher frequencies, it’s like giving
them darker and darker lenses to look through. Just as a flashlight beam appears brighter
when reflected off an object that’s closer to you, IR reflected off a closer object appears
brighter to the IR detectors.

The right axis of Figure 7-1 shows how different frequencies can be used to indicate in
which zone a detected object is located. By starting with a frequency of 38.5 kHz,
whether or not an object is in Zone 1-5 can be determined. If an object is not yet
detected, it must be beyond the detector limit (Zone 0). If an object is detected, by testing
again at 39.25 kHz, the first datum about distance is collected. If 38.5 kHz is detected the

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #7: Staying on the Table - Page 133

object but 39.25 kHz did not, the object must be in Zone 1. If the object was detected at
both frequencies, but not at 40.5 kHz, we know it’s in Zone 2. If all three frequencies
detected the object, but it was not detected at 41.75 kHz, we know it is in Zone 3. If all
four frequencies detected the object, but not 42.5 kHz, we know it’s in Zone 4. If all the
frequencies detected the object, we know it’s in Zone 5.

The frequency sweep technique used in this chapter works fairly well for the Toddler,
and the components are only a fraction of the cost of common IR distance sensors. The
trade off is that the accuracy of this method is also only a fraction of the accuracy of
common IR distance sensors. For basic Toddler tasks that require some distance
perception, such as following another Toddler, this interesting technique does the trick.
Along with adding low-resolution distance perception to the Toddler’s senses, it also
provides an introduction to the concepts of filters and frequency response.

Parts Required

Use the same IR detection circuit from Chapter 6, shown in Figure 6.4, for this activity.

Programming the IR Distance Gauge

Programming the BASIC Stamp to send different frequencies involves a po...LoopP. The
Counter variable can be used to give the Fregour command different frequencies to
check. This program introduces the use of arrays. Arrays are used in Program 7.1 to
store the IR detector outputs at the different frequencies. For the L_values variable, the
Zone 0 output is stored in bit-0 of L_values. The Zone 1 output is stored in bit-1
1 values.bitl, and so on, all the way through Zone 5, which is stored in bit-5 of
L _values. The same measurements are taken for R _values.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 134 - Advanced Robotics with the Toddler

L [Title J-----cmmmmmmm e oo oo oo o -
' Toddler Program 7.1: IR Distance Gauge

' Test of infrared sensors to show distance measurement

' {$sSTAMP BS2}

' {$PBASIC 2.5}

LeftIRLED CON 4

Right IRLED CON 15

LeftDetector VAR IN11

RightDetector VAR IN14

L [Variables J--------------m oo oo oo
Counter VAR Nib ' Counting variable
L_values VAR Byte ' Vars for storing freqg

R values VAR Byte ' sweep IR detector outputs
IR freq VAR Word ' Frequency argument

DO
L _values = 0 ' Reset L values and
R_values 0 ' R_values to 0

' Load sensor outputs into L values and R values using a FOR..NEXT loop
' and a lookup table, and bit addressing

FOR Counter = 0 TO 4
LOOKUP counter, [37500,38250,39500,40500,41500], IR freg

FREQOUT LeftIRLED,1, IR freqg
L values.lowbit (counter) = ~LeftDetector

FREQOUT RightIRLED,1, IR freqg
R_values.lowbit (counter) = ~RightDetector

NEXT

' Display 1_values and r_values in binary and ncd format.

DEBUG HOME, CR, CR, "Left readings Right Readings", cr

DEBUG " ",BIN8 L values, " ", BIN8 R values, cr

DEBUG " ", DEC5 NCD(L_Values), " ", DEC5 NCD(R_values), CR
LOOP

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #7: Staying on the Table - Page 135

Your Turn

' Enter and run Program Listing 7.1.

This program makes use of the Debug Terminal, so leave the serial cable
connected to the Toddler while Program Listing 7.1 is running.

When the Toddler is placed facing a nearby wall (3 to 5 cm.), the Debug
Terminal should display something similar to Figure 7.2. As the Toddler is
moved closer to and further from the wall, the numbers displayed by the Debug
Terminal should change increase and decrease. Each “1” represents a zone so

that when you see five 1’s the object is nearest to the Toddler.

V' Place the Toddler so that it faces the wall with its IR LEDs about 1 cm. away
from the wall. The left and right readings should both be at “4” or “5.” If not,
make sure each IR detector is facing in the same direction as its IR LED.

/ Debug Terminal #1
Carn Part: Baud Rate: Parity:
joowt D eeon B Nene E
Data Bits: Flaws Cantrol: @ T< [DIR [RIS
o 2 Jof 2l 5 Rz @ 0sR @ cis
>
4] 3
Left readings Right Readings
gooo111l goooo11l
oooo4 oooo3s
-
] 4]
[EaptTEs. | Pauze | Cloge |

Figure 7-2: Frequency sweep and data in binary and NCD format

V' Gradually back the Toddler away from the wall. As the Toddler is backed away
from the wall, the left and right readings should gradually decrease to “0.”

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 136 - Advanced Robotics with the Toddler

\ If either or both sides stay at all zeros or all ones, it indicates a possible mistake
in either your wiring or in the program. If this is the case, unplug your battery
pack from the Toddler. Then, check your wiring and PBASIC code for errors.

The maximum detection distance is 20 to 30 cm., depending on the reflectivity of the
wall. Some tinkering with how far left/right each IR pair is pointing may be required to
get the numbers to be the same at a given distance. A high level of precision IS NOT
necessary for these activities.

o IR circuit not working? Use a wire stripper to unsheathe about 1 cm of insulation from a
l L) jumper wire. Slide the insulation up one of the IR LED leads. This will protect the leads from

- touching each other during adjustment.

How the Distance Gauge Program Works

Counter is a nibble variable that is used to index a FOR. . .NEXT loop. The FOR. . .NEXT
loop is used for checking the IR detectors at various frequencies. The L values and
R_values variables store the outputs for the left and right IR detectors at the various
frequencies used. Each variable stores five binary measurements. Since the IR detector
outputs are tested at a variety of frequencies, IR_freq is a variable that can store the
value of the frequency that gets sent each time through the frequency testing loop.

The main routine contains two routines, one for frequency sweep and another for
displaying the data collected. The first step in the frequency sweep is setting L _values
and R _values to zero. This is important since individual bits in each variable are
modified. Clearing L. values and R _values starts each variable with a clean slate.
Then individual bits can be set to “1” or “0,” depending on what the IR detectors report.

DO

L _values
R_values

The For. . . NEXT loop is where the frequency sweep occurs. The lookup command
checks the counter value to determine which frequency to copy to the IR freq variable.
When counter is “0,” 37500 gets copied to IR _freq. When counter is “1,” 38250 is
copied to IR freq. As the value of counter is incremented from “0” to “4” by the FOR. .
. NEXT loop, each successive value in the lookup table is copied to IR freq.

FOR Counter = 0 to 4

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #7: Staying on the Table - Page 137

LOOKUP counter, [37500,38250,39500,40500,41500],IR_freq

Note that the lookup table begins the frequency sweep at 37500 (most sensitive) and ends
at 41500 (least sensitive). You might be wondering why the numbers in the LookUP table
don’t match the frequency values from Figure 7.1. It’s true that if the BASIC Stamp
could transmit a 50% duty cycle pulse train (pulses with the same high time and low
time) at these frequencies, they would have to match the frequencies specified for the IR
detector’s filter. However, the FREQouT command introduces other factors that affect the
amplitude of the harmonics transmitted by the IR LEDs. The math involved in predicting
the optimum frequency arguments to use is very advanced and is well outside the scope
of this text. Even so, the best frequencies for a given distance can be determined
experimentally. The list of values we are using are known to be reliable.

The left sensor is checked by using FREQouT to send the current value of IR fregq.
Next, the . lowbit () argument is used to address each successive bit in L_values. When
counter is “0,” the .lowbit (counter) argument addresses bit-0 of L _values. When
counter is “1,” the .lowbit (counter) argument addresses bit-1 of ._values, and so on.
Before writing the value of IN8 to L. values.lowbit (counter), the NOT operator (~) is
used to invert the bit’s value before it is stored to its bit array location in I._values. The
same process is then repeated for R values. After the fifth time through the
FOR. . .NEXT loop, the IR data bits have all been loaded into L_values and R values.

FREQOUT LeftIRLED,1, IR freg
L values.lowbit (counter) = ~LeftDetector

FREQOUT RightIRLED, 1, IR freg
R values.lowbit (counter) = ~RightDetector

NEXT

The pEBUG commands use a variety of formatters and text strings to display the
L values and R values variables. The first row of the display is the text heading
indicating which readings correspond the right IR detector and which readings
correspond to the left IR detector. Remember that left and right are treated as though you
are sitting in the Toddler’s body.

DEBUG HOME, CR, CR, "Left readings Right Readings", cr

DEBUG " ",BIN8 L values, " ", BIN8 R values, cr

DEBUG " ",DEC5 NCD(L_values), " ", DEC5 NCD(R_values),
CR

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 138 - Advanced Robotics with the Toddler

The second row displays L _values and R _values in binary format. This allows for
observation of how the bit values in I._values and R _values change as the apparent
distance of an object changes.

The third row displays the NcD value of each variable. The NcD operator returns a value
that corresponds to the location of the most significant bit in a variable. If the variable is
all zeros, NcD returns a zero. If the least significant bit contains a “1,” and all the rest of
the digits are “0,” NcD returns a “1.” If bit-1 contains a “1,” but all the numbers to the
left of bit-1 are zeros, NCD returns a “2,” and so on. The NcD operator is a handy way of
indicating how many ones have been loaded into the lower bits of L values and
R _values. What’s really handy is that Ncp directly tells you in which zone the object
has been detected.

When the display routine is finished sending data to the Debug Terminal, program
control is returned to the main label.

Your Turn

V' With Program 7.1 running, place the Toddler facing the wall so that the IR LEDs
are about 1.5 cm. from the wall. For best results, tape a white sheet of paper to
the wall.

V' Make a note of the left and right readings.
\ Start pulling the Toddler away from the wall.

\ Each time the value of one or the other sensors decreases, make a note of the
distance. In this way you can determine the zones for each of your Toddler’s IR
pairs.

\ If the readings on one side are consistently larger than the other, you can point
the IR LED on the side reporting the larger readings outward a little further. For
example, if the left IR pair continually reports higher readings than the right IR
pair, try pointing the left IR LED and detector a little further to the left.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #7: Staying on the Table - Page 139

ACTIVITY #2: THE DROP-OFF DETECTOR

Figure 7-3: IR LED and Receiver Adjustment for Edge Detection

One application for distance detection is checking for a drop-off. For example, if the
Toddler is navigating on a table, it can change direction if it sees the edge of the table. All
you have to do is point the IR pairs downward so that they are both pointing at the table
right in front of the Toddler. A distance detection program can then be used to detect that
the table is close-up. When the Toddler nears the edge of a table, one or both of the
distance detectors will start reporting that they no longer see something close-up. That
means it’s time to turn away from the abyss. This program works best on a light-colored
table. Darker tables will absorb more light and be less useful at reflecting infrared.

V' Point your IR pairs at the surface directly in front of the Toddler as shown in
Figure 7.3. The IR pairs should be pointed downward at least 45° from
horizontal and outward 45° from the Toddler’s center line.

V' Perform the tests below using Program 7.1 before trying Program 7.2.

V' Record the IR pair outputs when the Toddler is looking straight at the table. If
the values of the IR pairs when they are looking at your tabletop are “3” or more,
it indicates your detectors are seeing what they are supposed to see.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 140 - Advanced Robotics with the Toddler

V' Record the IR pair outputs when the Toddler is looking off the edge of the table.
If these values remain less than “3,” the Toddler is ready to try Program Listing
7.2.

V' If the Toddler does not give you steady and consistent readings of “3” or more
when the Toddler is looking at the table, try first adjusting the direction the IR
pairs are pointing. Also, if the Toddler does not consistently register less than
“3” when it’s looking off the edge of the table, some additional adjustment of the
IR pairs also is in order.

' If the sensors report “3” or more while looking at the table and “2” or less when
looking off the edge, the Toddler is ready for Program Listing 7.2.

Make sure to be the spotter for your Toddler when running Program Listing 7.2. Always
be ready to pick your Toddler up as it approaches the edge of the table it’s navigating. If
the Toddler tries to drive off the edge, pick it up before it takes the plunge. Otherwise,
your Toddler might become a Not-Bot!

When spotting your Toddler while it’s avoiding drop-offs, be ready to pick it up from
above. Otherwise, the Toddler will see your hands instead of the drop-off and not
perform as expected..

Program Listing 7.2 uses modified versions of the forward, right turn, left turn
and backward routines that have been used and reused in every chapter since Chapter #2.
The number of pulses in each routine has been adjusted for better performance along a
table edge. The check_ sensors subroutine takes distance measurements by recycling
code from Program Listing 7.1: IR Distance Gage.

Run and test Program Listing 7.2. Remember, always be ready to pick your Toddler up if
it tries to run off the table.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #7: Staying on the Table - Page 141

' Toddler Program 7.2: Drop-off Detection
' Walking on a table avoiding the edges

' {$sTAMP BS2}

' {$PBASIC 2.5}

TiltServo CON 13 ' Tilt servo on P13
StrideServo CON 12 ' Stride servo on P12

I ===== | Congitamid ||===
MoveDelay CON 25 ' in micrcoseconds

TiltStep CON 10 ' TiltServo step size
StrideStep CON 10 ' StrideServo step size
RightTilt CON 620 ' Tilt limits

CenterTilt CON 750

LeftTilt CON 880

RightStride CON 650 ' Stride limits

CenterStride CON 750

LeftStride CON 850

I coces [Vamilgloleg] ecererorocorononenonenemoonememenemorororosononononon=os
FigureLoop VAR Nib

MoveLoop VAR Byte ' Loop for repeat movements
MoveLoopLimit VAR Byte

SubMoveLoop VAR Byte ' Loop for repeat submovements
SubMoveLoopLmt VAR Byte

Pulses VAR Word ' Pulse variable

CurrentTilt VAR Word

CurrentStride VAR Word

NewValue VAR Word

Dx VAR Pulses

Mx VAR Word

MxCurrent VAR Word

Sx VAR Word

SxCurrent VAR Word

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 142 - Advanced Robotics with the Toddler

LS [EEPROM DAEA] == === === === == oo oo oo oo oo

' The following state tables are lists of movement state numbers.
' A xx indicates the end of a list.
' These are used with the Movement routine.

TL CON 0
TC CON 1
TR CON 2
SL CON 3
sC CON 4
SR CON 5
XX CON 255

------ Movement Value Tables ------

' These can be used with the Movement routine.
' The tables can contain Basic Movement Codes.

' Note: ALL movement tables must be in this section

LeftSemicircle DATA 7, bLeftTurn, DbLeftTurn, DbForward, xx
RightSemicircle DATA 7, bRightTurn, bRightTurn, bForward, xx
WalkForward3 DATA 3, bForward, xx
WalkForward8 DATA 8, bForward, xx

—————— Basic Movement Codes ------

' Used in Movement tables.
' Referenced below using LOOKUP statement.

bFinish CON 0
bForward CON 1
bBackward CON 2
bLeftTurn CON 3
bRightTurn CON 4
bPivotLeft CON 5
bPivotRight CON 6

L it Basic Movement Tables ------
' These tables can contain Movement Support Codes.

BasicMovements CON Forward

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #7: Staying on the Table - Page 143

Forward DATA 1, TR, SL, TL, SR, XX

Backward DATA 1, TR, SR, TL, SL, xx

LeftTurn DATA 1, TL, SR, TC, SL, TL, SR, TR, SL, xx
RightTurn DATA 1, TR, SL, TC, SR, TR, SL, TL, SR, xx
PivotLeft DATA 3, TL, SR, TC, SL, TR, SR, TC, SL, xx
PivotRight DATA 3, TR, SL, TC, SR, TL, SL, TC, SR, XX
Finish DATA 1, TR, SC, TC, xx

counter VAR Nib ' For...next loop index variable
1 _values VAR Mx ' R sensor vals for processing
r values VAR Sx ' L sensor vals for processing
1 IR freq VAR MxCurrent ' L IR fregs from lookup table
r IR freq VAR SxCurrent ' R IR fregs from lookup table
lEmitter CON 4
rEmitter CON 15
1Detector VAR IN11
rDetector VAR IN14
I coces [TmlEilaldzaEdem || eccercerenorsrcncnsrssnsnsrororororarososononononoos
OUTPUT lEmitter ' Set infrared emitters to outputs
OUTPUT rEmitter
OUTPUT 2
FREQOUT 2,500,3000 ' Signal program start

GOSUB ResetCC
I ===== [Wedm REUEIRNE | ==
Main: ' Main routine

' The command "gosub check sensors" sends the program to a subroutine
' that loads distance values into 1 values and r values. So, when the
' fprogram returns rom the check sensors subroutine, the values are

' updated and ready for distance based decisions.

GOSUB check sensors

' The distances are checked for four different inequalities. Depending
' on the inequality that turns out to be true, the program either

' branches to the forward, left turn, right turn or backward navigation
' routine. The "3" value used below to test the boundary conditions

' may need to be changed depending upon the color of the walking surface
' and the angle of IR LEDs and detectors.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 144 - Advanced Robotics with the Toddler

Boundary CON 2
IF 1 values >= boundary AND r values >= boundary THEN go forward
IF 1 values >= boundary AND r values < boundary THEN left turn
IF 1 values < boundary AND r values >= boundary THEN right turn
IF 1 _values < boundary AND r values < boundary THEN go_backward
GOTO main ' Repeat the process.
I Navigation Routines -------
go_forward: ' single forward pulse, then
Mx = Forward
GOSUB Movement
GOTO main ' go back to the main: label.
left turn: ' eight left pulses, then
Mx = PivotLeft
GOSUB Movement
GOTO main ' go back to the main: label.
right turn: ' eight right pulses, then
Mx = PivotRight
GOSUB Movement
GOTO main ' go back to the main: label.
go_backward: ' eight backward pulses, then
Mx = Backward
GOSUB Movement
GOTO main ' go back to the main: label.

I o===== [Suerouitimeg [|===============c===s============s==c==-==c=s=o=======

' The check sensors subroutine is a modified version of Program Listing
' 6.1 without the debug Terminal display. Instead of displaying 1_values
' and r _values, the main routine uses these values to decide which way to
T

go.

check_sensors:

1_values
r values

0 ' Reset 1 values and r values to 0.
0

' Load sensor outputs into 1 values and r values using a FOR..NEXT loop
' a lookup table, and bit addressing.

FOR counter = 0 TO 4

check_left sensors:
LOOKUP counter, [37500,38250,39500,40500,41500] ,1 IR freq

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #7: Staying on the Table - Page 145

FREQOUT lEmitter, 1, 1 IR freg
1 values.lowbit (counter) = ~ lDetector

check right sensors:
LOOKUP counter, [37500,38250,39500,40500,41500] ,r IR freq
FREQOUT rEmitter, 1, r IR freg
r values.lowbit (counter) = ~ rDetector
NEXT

' Convert 1 values and r values from binary to ncd format.

1 _values = ncd 1_values
r_values = ncd r_values

' Now 1 values and r_values each store a number between 0 and 5
' corresponding to the zone the object is detected in. The program can
' now return to the part of the main routine that makes decisions based
' on these distance measurements.
RETURN

----- Movement : Move feet using DATA table referenced by Mx -----

' Input: Mx = movement table index, table ends in xx

! or

0 Mx = submovement table index, table ends in xx

' Note: All submovment tables come after the movment tables in this file.

Movement :
IF Mx < BasicMovements THEN SetupMovement
MxCurrent = Mx ' setup to use submovement table

MoveLoopLimit = 1
GOTO StartMovement

SetupMovement :
READ Mx, MoveLoopLimit ' read movement table repeat count
MxCurrent = Mx + 1

StartMovement :
FOR MoveLoop = 1 to MoveLoopLimit
Mx = MxCurrent ' Mx = start of movement table
DEBUG DEC Mx, " Movement ", dec MoveLoop, " of ", dec MoveLoopLimit,CR

IF Mx < BasicMovements THEN MovementLoop
' skip if movement table

SxCurrent = Mx ' SxCurrent = submovement index
GOTO StartSubMovement ' enter middle of loop
MovementLoop :

READ Mx, SxCurrent ' read next submovment byte

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 146 - Advanced Robotics with the Toddler

Mx = Mx + 1
IF SxCurrent = xx THEN MovementDone

' skip if end of list
DEBUG " ", DEC SxCurrent, " movement",CR
LOOKUP SxCurrent, [Finish, Forward, Backward, LeftTurn,RightTurn,
PivotLeft, PivotRight], SxCurrent

' lookup submovement table index

StartSubMovement : ' start executing submovement table

READ SxCurrent, SubMoveLoopLmt

' read submovement table repeat
SxCurrent = SxCurrent + 1

FOR SubMoveLoop = 1 TO SubMoveLoopLmt
Sx = SxCurrent

DEBUG " ", DEC Sx, " submovement ", DEC SubMoveLoop, " of "
DEBUG DEC SubMoveLoopLmt, CR

SubMovementLoop :
READ Sx, Dx ' read next submovent action
Sx = Sx + 1

IF Dx = xx THEN SubMovementDone

' skip if end of list
GOSUB DoMovement ' execute movement
GOTO SubMovementLoop

SubMovementDone :
NEXT
IF Mx < BasicMovements THEN MovementLoop
' exit i1f submovement table

MovementDone :
NEXT
RETURN
DoMovement :
DEBUG " ", dec Dx, " action",cr

BRANCH Dx, [TiltLeft,TiltCenter,TiltRight,StrideLeft, StrideCenter,
StrideRight]

' will fall through if invalid
RETURN

' ---- Movement routines can be called directly ----
TiltLeft:
NewValue = LeftTilt

GOTO MovementTilt

TiltCenter:
NewValue = CenterTilt

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #7: Staying on the Table - Page 147

GOTO MovementTilt

TiltRight:
NewValue = RightTilt

MovementTilt:
FOR Pulses = CurrentTilt TO NewValue STEP TiltStep
PULSOUT TiltServo, Pulses

PULSOUT StrideServo, CurrentStride
PAUSE MoveDelay
NEXT

CurrentTilt = NewValue
RETURN

StrideLeft:
NewValue = LeftStride
GOTO MovementStride

StrideCenter:
NewValue = CenterStride
GOTO MovementStride

StrideRight:
NewValue = RightStride

MovementStride:
FOR Pulses = CurrentStride TO NewValue STEP StrideStep
PULSOUT TiltServo, CurrentTilt

PULSOUT StrideServo, Pulses
PAUSE MoveDelay
NEXT

CurrentStride = NewValue
RETURN

L Move feet to initial center position -----

ResetCC:
CurrentTilt = CenterTilt
CurrentStride = CenterStride

FOR Pulses = 1 TO 100 STEP StrideStep
PULSOUT TiltServo, CenterTilt
PULSOUT StrideServo, CenterStride
PAUSE MoveDelay

NEXT

DoReturn:
RETURN

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 148 - Advanced Robotics with the Toddler

Aliased Variables

The Drop-off Detection program in Program 7.2 is the beginning of a rather large
program in terms of data memory. In fact, without a little PBASIC programming trick,
the program will not compile. The trick is PBASIC’s ability to alias a variable so it uses
the storage space of another variable. This allows the program to run with the 16 words
of RAM space (actually 3 words are used for the BASIC Stamp’s PBASIC and interface
pin support).

The following code from Program Listing 7.2 shows how the aliasing is done.

counter var nib
1 _values var Mx
r_values var Sx
1 IR freg var MxCurrent
r IR freg var SxCurrent

The first var definition is normal. It defines a nibble variable. The next four reuse
different variables. They are the same size as the aliased variables. The main requirement
to keep in mind when using aliased variables is that any variables sharing the same
storage that these variables cannot be used at the same time. In other words, do not try the

following.
1 values =1
Mx = 2

Aliasing is normally used because the original variable names do not work well with a
new part of the program or subroutine. PBASIC has no concept of local variables so
aliasing is required.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #7: Staying on the Table - Page 149

The BASIC Stamp’s IDE can present the memory map of the current program. This
provides RAM and EEPROM usage information. The memory map for the Toddler
Program 7.2 is shown in Figure 7.4. It shows 5 bytes of free RAM. Not much but enough.
This includes the use of four word aliased variables. If these variables were not aliased
then the program would need additional 8 bytes, 3 more than available.

Memory Map - EEPROM 34% Full (Toddler Program 7.2 Drop-off Detection.bs2) il
EEPROM Map RAM Map
DI1I2|3|4|5|E‘I?ISIQIAIBICIDIEIFILI S B41z12NM038 76543210
F Y
000[07 03 03 01 FF 07 04 04 01 FF 03 01 FF 06 01 FF _| s OO T
plof0l 02 03 00 OS5 FF 01 02 05 00 03 FF 01 00 05 01 DIHS:. CIITTTITITIITTITTITIT11]
02003 00 05 02 03 FF 01 02 03 01 05 02 03 00 05 FF REGL: []
030|023 00 05 01 03 02 05 01 03 FF 03 02 02 01 0% 00 REGT: SR
040]03 01 05 FF 01 02 04 01 FF 00 00 00 00 00 00 00 REGZ =
1050 ST 55 o B B S |
060 REGS: IR
070 REGE N
0an REG7. I
] N _
090 At CTTTTTTTITTITTIT]
[REGT0: I Y
OEd REG11: I T
0cno REG1Z: TTTTT 11171
% RAM Legend
——— B -Fin: [-Byte [-Bit
| OF 0] j B -'word B -Mibble [- Unused
EEPROM Legend—————————
[~ Display ASCI [- -Undef. Data 3 - Program
- Def, Dt - Unused
[J-eh BeE - Source Code IToddIer Praogram 7. j

Figure 7-4: EEPROM Memory Map for Toddler Program 7.2

Aliasing should be used with great care. It is a significant source of problems when
debugging a program. The advantage of using this with the BASIC Stamp is that only a
limited number of variables will be used in the program so it is readily apparent where
problems occur.

In this case, the initial set of variables including Mx is used in the movement part of the
program. Only the Mx variable is used outside of the Movement routine and that is used to
pass a parameter to the routine. The aliased variables including 1 IR freq variable is
used in the range finding routine. Since these two routines do not call each other it is easy
to isolate the two with respect to variables.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 150 - Advanced Robotics with the Toddler

How the Drop-off Avoidance Program Works

Now that we have the aliasing issue out of the way we can move onto the main program.
The first thing the main routine does is call the check sensors subroutine. Note that
check sensors is simply Program 7.1 with no Debug Terminal display placed in a
subroutine. Instead of debugging the NCD values of 1_detect and r detect, the
values of these two variables are simply converted to ncp values using the statements:

1 _values = ncd 1_values

and
r_values = ncd r_values

After calling the check sensors subroutine, 1 _values and r values are numbers
between “0” and “5.” After the program returns from the check sensors subroutine,
1 values and r values are checked against the benchmarks distance indicating the
edge of the table has been detected.

boundary CON 2

IF 1 values >= boundary AND r values >= boundary THEN go_ forward
IF 1 _values >= boundary AND r values < boundary THEN left turn

IF 1 values < boundary AND r values >= boundary THEN right_ turn
IF 1 _values < boundary AND r values < boundary THEN go_backward

The routines then load the Mx variable with the index of the appropriate table. The
Movement routine then uses the table to initiate the Toddler’s leg movements. The
boundary value is the distance boundary condition. This may need to be changed
depending upon the color of the surface the Toddler is walking on. It must be set so that
the Toddler reliably sees the table when moving forward.

The angle at which the IR LEDs and sensors can be tilted downward is limited so a low
boundary value is typical. One alternative to having a value of 1 or 2 is to adjust the
range finding frequencies so that the midrange values are sensing distances farther away.
The other alternative is to mount the IR LEDs and sensors closer or on to the Toddler’s
feet.

The current configuration with the IR LEDs and sensors mounted on the Toddler’s circuit
board does lead to a long rang recognition of the edge of the table so the Toddler should
not get much closer than a foot from the edge. This means the Toddler needs a relatively
large table with a white or light colored surface to walk on.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #7: Staying on the Table - Page 151

The Toddler will also attempt to walk along the edge of the table although this is not
explicitly built into the program. In theory, if the Toddler walks perpendicular to the edge
it will walk to the edge, back up, walk forward and repeat this indefinitely. In practice,
this does not occur for two reasons. The first is that the Toddler’s movement is not
perfectly repeatable. As it moves forward and backwards, the Toddler turns slightly to the
one side or the other. Eventually the IR sensors will detect the difference and the Toddler
will turn instead of backing up or moving forward.

The sensors themselves are another area that will cause the Toddler to turn parallel to the
edge of the table. This will occur if one sensor is more sensitive than the other. Of course,
this difference will work in one direction and may cause the Toddler to take an extra step
forward if the detection is handled by the other side. This will not cause the Toddler to
walk off the table though since it tries to stay so far away from the edge. An extra step or
two will not cause a problem.

One area that can be a problem especially when the IR LEDs and sensors are pointed
forward is that the Toddler will have limited peripheral vision. It is possible for the
Toddler to turn parallel to an edge and drift towards the edge. In theory, the sensor on
that side should detect the edge and the Toddler will turn away from the edge. This
problem occurs more often when the edge of the table is irregular. Aiming the IR LEDs
and sensors outward slightly can help eliminate the problem if it occurs.

ACTIVITY #3: TODDLER SHADOW WALKER

For one Toddler to follow another, the Toddler that follows, a.k.a. the shadow walker, has
to know how far the lead Toddler is ahead. If the shadow Toddler is lagging behind, it
has to detect this and speed up. If the shadow Toddler is too close to the lead Toddler, it
has to detect this as well and slow down. If it’s the right distance, it can wait until the
measurements indicate it’s too far or too close again.

Unlike the Toddler’s sibling the Boe-Bot, the Toddler moves in discrete steps, not small
increments using wheels. Whereas the Boe-Bot uses calculated proportional control, the
Toddler must be a bit more discrete. It is possible to take proportional steps but the
accuracy of the Toddler’s movements minimizes the effect of minor changes to
movements. On the other hand, the Boe-Bot can move one or both of its wheels a fraction
of an inch in subsecond times. A Toddler step can take as long as a second.

As it turns out, the Toddler’s IR range finders work well for tracking another Toddler.
The range results are in discrete values and the number is not large. If it were, then the

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 152 - Advanced Robotics with the Toddler

values would have to be converted down to this level of gradation that is manageable. It
is then simply a matter of choosing the appropriate step type and magnitude.

The Toddler is a difficult target for another Toddler to locate with its many facets. To
improve the detection using the IR sensors, the target Toddler should have a white box
placed around it. This can be made of paper or cardboard and it can be affixed to the
Toddler’s frame using tape or other means. The box should start about where the base of
the Toddler’s central body contains the servos and can extend to just above the circuit
board. The IR sensors can be angled down slightly so they will detect the central portion
of the box at a distance of about a foot. The box should not impede the foot movement or
the servos and it can extend out from the Toddler by as much as a few inches. It should
not be too heavy or large so as to significantly change the center of gravity forcing
adjustments in walking behavior.

Although these changes are not absolutely required for one Toddler to follow another,
they will improve the overall system performance. Also, the roaming area needs to be
free of obstacles and walls otherwise the Toddler that will be following may detect these
obstacles instead. There is no checking in the program to determine if the object detected
is remaining stationary although it is possible to modify the program to do so.

Programming the Toddler Shadow Walker

Program Listing 7.3 uses additional branch and lookup statements to adjust the Toddler’s
position based on the range finder results. The movements are designed to aim the
Toddler at the object it is following, usually another Toddler, and to keep that object at a
discrete distance.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #7: Staying on the Table - Page 153

Your Turn

V' Run Program Listing 7.3.

V' Point the Toddler at an 8 % x 117 sheet of paper held in front of it as though it’s
a wall-obstacle. The Toddler should move about trying to maintain an average
distance from the object.

V' Try moving the paper so it rotates about the Toddler. The Toddler should rotate
with it.

V' Try using the sheet of paper to lead the Toddler around. The Toddler should
follow it.

L [Title J----mmmmmmm oo oo oo oo -
' Toddler Program 7.3: Shadow Walker

' Follows another Toddler with a piece of paper on his backside

' {$sSTAMP BS2}

' {$PBASIC 2.5}

StrideServo CON 12 ' Stride servo on P12
TiltServo CON 13 ' Tilt servo on P13
left pin CON 4

right pin CON 15

left in VAR IN11

right in VAR IN14

I ===== [Clomgtanits [|==c============
MoveDelay CON 25 ' in micrcoseconds
TiltStep CON 20 ' TiltServo step size
StrideStep CON 20 ' StrideServo step size
RightTilt CON 630 ' Tilt limits
CenterTilt CON 750

LeftTilt CON 870

RightStride CON 650 ' Stride limits
CenterStride CON 750

LeftStride CON 850

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 154 - Advanced Robotics with the Toddler

R [Variables J---------c-mccommmmmmm e oo om -
FigureLoop VAR Nib

MoveLoop VAR Byte ' Loop for repeat movements
MoveLoopLimit VAR Byte

SubMoveLoop VAR Byte ' Loop for repeat submovements
SubMoveLoopLmt VAR Byte

Pulses VAR Word ' Pulse variable

CurrentTilt VAR Word

CurrentStride VAR Word

NewValue VAR Word

Dx VAR Pulses

Mx VAR Word

MxCurrent VAR Word

Sx VAR Word

SxCurrent VAR Word

counter VAR Nib ' For...next loop index variable.
1 _values VAR Mx ' store R sensor vals

r_values VAR Sx ' store L sensor vals

1 IR freq VAR MxCurrent ' stores L IR frequencies.

r IR freqg VAR SxCurrent ' stores R IR frequencies

' The following state tables are lists of movement state numbers.
' A xx indicates the end of a list.
' These are used with the Movement routine.

TL CON 0
TC CON 1
TR CON 2
SL CON 3
SC CON 4
SR CON 5
blod CON 255

I ccoo= R R OV &l i R T e
L et Movement Value Tables ------

' These can be used with the Movement routine.
' The tables can contain Basic Movement Codes.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #7: Staying on the Table - Page 155

' Note: ALL movement tables must be in this section

TurnLeftForward
TurnRightForward

PivotLeftForward
PivotRightForward

BackwardPivotLeft
BackwardPivotRight

Forward2
Backward2

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

L Basic Movement Codes

' Used in Movement tables.
' Referenced below using LOOKUP statement.

bFinish CON
bForward CON
bBackward CON
bLeftTurn CON
bRightTurn CON
bPivotLeft CON
bPivotRight CON

o Ul WNPRE O

------ Basic Movement Tables

bLeftTurn, bForward, xx
bRightTurn, bForward, xx

bPivotLeft, bForward, xx
bPivotRight, bForward, xx

bBackward, bPivotLeft, xx
bBackward, bPivotRight, xx

bForward, xx
bBackward, xx

' These tables can contain Movement Support Codes.

BasicMovements CON

Nop DATA
Forward DATA
Backward DATA
LeftTurn DATA
RightTurn DATA
PivotLeft DATA
PivotRight DATA
Finish DATA

e Movement LOOKUP entries

Forward
1, xx
1, TR,
1, TR,
1, TL,
1, TR,
3, M,
3, TR,
1, TR,

SL,
SR,

SR,
SL,

SR,
SL,

SC,

TL,
TL,

TC,
TC,

e,
TC,

e,

SR,
SL,

SL,
SR,

SL,
SR,

XX

XX
XX

TL, SR, TR, SL, xx
TR, SL, TL, SR, xx

TR, SR, TC, SL, xx
TL, SL, TC, SR, xx

' These constants should reference

Downloaded from Elcodis.com electronic components distributor

appropriate movement table.

http://elcodis.com/parts/844626/27311.html

Page 156 - Advanced Robotics with the Toddler

' The constant syntax is 1lxry where x and y indicate the range from the
' left and right sensor respectively. A zero value indicates nothing

' is within range while a 5 indicates an object is within inches.

' In general, a 3 will be the closest desirable distance.

loro CON Forward

lorl CON TurnRightForward

10r2 CON PivotRightForward

1l0r3 CON PivotRight

lor4 CON RightTurn

10r5 CON BackwardPivotRight

11ro0 CON PivotLeftForward

1lrl CON Forward

1lir2 CON PivotRightForward

11xr3 CON PivotRight

11r4 CON PivotRight

11rs CON BackwardPivotRight

12ro0 CON TurnLeftForward

12r1 CON TurnLeftForward

12r2 CON Forward

12r3 CON Nop

12r4 CON PivotRight

12r5 CON BackwardPivotRight

13r0 CON PivotLeft

13r1 CON PivotLeft

13r2 CON Nop

13r3 CON Nop

13r4 CON Nop

13r5 CON BackwardPivotRight

l4aro CON BackwardPivotLeft

larl CON BackwardPivotLeft

1l4r2 CON PivotLeft

14r3 CON Nop

lara CON Backward

l4ars CON Backward

15r0 CON BackwardPivotLeft

15r1 CON BackwardPivotLeft

15r2 CON BackwardPivotLeft

15r3 CON BackwardPivotLeft

15r4 CON Backward

15r5 CON Backward

e Initialization ------------
OUTPUT 2 ' Declare outputs.

OUTPUT left pin

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #7: Staying on the Table - Page 157

OUTPUT right pin
FREQOUT 2,500,3000 ' Beep at startup.
GOSUB ResetCC
e Main Routine --------------
main: ' Main routine
GOSUB check sensors ! Distance values for each sensor
'debug "1",dec 1 values,"r", dec r values,cr
BRANCH 1 values, [left0,leftl,left2,left3,left4,left5]
lefto:
LOOKUP r values, [10r0,10rl,10r2,10r3,10r4,10r5],Mx
GOTO main movement
leftl:
LOOKUP r values, [11r0,11rl,11r2,11r3,11r4,11r5],Mx
GOTO main movement
left2:
LOOKUP r values, [12r0,12r1,12r2,12r3,12r4,12r5] ,Mx
GOTO main movement
left3:
LOOKUP r values, [13r0,13r1,13r2,13r3,13r4,13r5],Mx
GOTO main movement
left4:
LOOKUP r values, [14r0,14rl,14r2,14r3,14r4,14r5],Mx

GOTO main movement

lefts:
LOOKUP r values, [15r0,15r1,15r2,15r3,15r4,15r5] ,Mx

main movement :

GOSUB Movement

GOTO main ' Infinite loop.
le==== Subrentimel(S)SEEEEES =
check_sensors:

1 values = 0 ' Set distances to 0.

r_values = 0
' Take 5 measurements for distance at each IR pair. If you fine tuned

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 158 - Advanced Robotics with the Toddler

' frequencies in Activity #2, insert them in the lookup tables.

FOR counter = 0 TO 4
check_left sensors:
LOOKUP counter, [37500,38250,39500,40500,41000] ,1 IR freq
FREQOUT left pin,1,1 IR freq
1 values.LOWBIT (counter) = ~left_in

check right sensors:
LOOKUP counter, [37500,38250,39500,40500,41000] ,r_IR freqg
FREQOUT right pin,1,r IR freqg

r values.LOWBIT (counter) = ~right_in
NEXT
1 values = NCD 1 _values ' Value for distance depends on MSB
r_values = NCD r_values

RETURN

e Movement: Move feet using DATA table referenced by Mx -----

' Input: Mx = movement table index, table ends in xx

0 Mx = submovement table index, table ends in xx

' Note: All submovment tables come after the movment tables in this file.

Movement :
IF Mx < BasicMovements THEN SetupMovement

MxCurrent = Mx ' setup to use submovement table
MoveLoopLimit = 1
GOTO StartMovement

SetupMovement :
READ Mx, MoveLoopLimit ' read movement table repeat count
MxCurrent = Mx + 1

StartMovement :
FOR MoveLoop = 1 TO MoveLoopLimit
Mx = MxCurrent ' Mx = start of movement table
'debug hex Mx, " Movement ", dec MoveLoop, " of ", dec MoveLoopLimit,cr

IF Mx < BasicMovements THEN MovementLoop
' skip i1f movement table

SxCurrent = Mx ' SxCurrent = submovement index
GOTO StartSubMovement ' enter middle of loop
MovementLoop:

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #7: Staying on the Table

READ Mx, SxCurrent ' read next submovment byte
Mx = Mx + 1
IF SxCurrent = xx THEN MovementDone
' skip if end of list
'debug " ", hex SxCurrent, " movement",cr
LOOKUP SxCurrent, [Finish, Forward, Backward, LeftTurn,RightTurn,
PivotLeft, PivotRight] ,h SxCurrent

- Page 159

' lookup submovement table index
StartSubMovement : ' start executing submovement table

READ SxCurrent, SubMoveLoopLmt

' read submovement table repeat count

SxCurrent = SxCurrent + 1

FOR SubMoveLoop = 1 TO SubMoveLoopLmt
Sx = SxCurrent
'debug " ", hex Sx, " submovement ", dec SubMoveLoop, " of "
'debug dec SubMoveLoopLmt,cr

SubMovementLoop :
READ Sx, Dx ' read next submovent action
Sx = Sx + 1
IF Dx = xx THEN SubMovementDone
' skip if end of list
GOSUB DoMovement ' execute movement
GOTO SubMovementLoop

SubMovementDone :
NEXT
IF Mx < BasicMovements THEN MovementLoop
' exit 1if submovement table
MovementDone :
NEXT
RETURN

DoMovement :
'debug " ", dec Dx, " action",cr
BRANCH Dx, [TiltLeft,TiltCenter,TiltRight,StrideLeft,
StrideCenter, StrideRight]
' will fall through if invalid
RETURN

' ---- Movement routines can be called directly ----

TiltLeft:

NewValue = LeftTilt
GOTO MovementTilt

TiltCenter:
NewValue = CenterTilt
GOTO MovementTilt

Downloaded from Elcodis.com electronic components distributor

index

http://elcodis.com/parts/844626/27311.html

Page 160 - Advanced Robotics with the Toddler

TiltRight:
NewValue = RightTilt

MovementTilt:
FOR Pulses = CurrentTilt TO NewValue STEP TiltStep
PULSOUT TiltServo, Pulses

PULSOUT StrideServo, CurrentStride
PAUSE MoveDelay
NEXT

CurrentTilt = NewValue
RETURN

StrideLeft:
NewValue = LeftStride
GOTO MovementStride

StrideCenter:
NewValue = CenterStride
GOTO MovementStride

StrideRight:
NewValue = RightStride

MovementStride:
FOR Pulses = CurrentStride TO NewValue STEP StrideStep
PULSOUT TiltServo, CurrentTilt

PULSOUT StrideServo, Pulses
PAUSE MoveDelay
NEXT

CurrentStride = NewValue
RETURN

L Move feet to initial center position -----

ResetCC:
CurrentTilt = CenterTilt
CurrentStride = CenterStride

FOR Pulses = 1 TO 100 STEP StrideStep
PULSOUT TiltServo, CenterTilt
PULSOUT StrideServo, CenterStride
PAUSE MoveDelay

NEXT

DoReturn:
RETURN

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #7: Staying on the Table - Page 161

How the Shadow Walker Program Works

The first thing the main routine does is call the check sensors subroutine. After the
check sensors subroutine is finished, 1_values and r values each contain a number
corresponding to the zone in which an object was detected for both the left and right IR
pairs.

main:

GOSUB check sensors

The next line of code jumps to one of many LoOKUP statements. The BRANCH statement
uses the status of the left IR sensor while the Lookup statements use the status of the right
IR sensor. These set the mMx variable with the table index for the movement to be
performed by the Movement routine.

Branch 1 values, [left0,leftl,left2,left3,left4,lefts]

lefto:
LOOKUP r_values, [10r0,10r1,10r2,10r3,10r4,10r5],Mx
GOTO main_movement

leftl:
LOOKUP r_values, [11r0,11r1,11r2,11r3,11r4,11r5],Mx
GOTO main_movement

left2:
LOOKUP r_values, [12r0,12r1,12r2,12r3,12r4,12r5] ,Mx
GOTO main_movement

left3:
LOOKUP r_values, [13r0,13r1,13r2,13r3,13r4,13r5],Mx
GOTO main_movement

left4:
LOOKUP r_values, [14r0,14rl,14r2,14r3,14r4,14r5],Mx

GOTO main_movement

lefts:
LOOKUP r_values, [15r0,15r1,15r2,15r3,15r4,15r5] ,Mx

main_movement :
GOSUB Movement

The values used in the LookuP statement are defined near the start of the program using
coN constant definitions. While it is possible to put these values in the LOOKUP statement,

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 162 - Advanced Robotics with the Toddler

this makes the statements long. It also makes it difficult to see what action is performed
in a particular state. The constant definitions provide a way to do this. It is now easy to
correlate a particular state such as 13r3 with a particular movement, in this case a nop or
no movement. Likewise, 15r5 indicates that the Toddler is immediately in front of an
obstacle and 10r0 indicates the Toddler has not located an obstacle within its range.

Program control is returned to the main: label after the movement has been performed,
and the loop repeats itself.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #7: Staying on the Table - Page 163

CHALLENGES

Figure 7-5: One Toddler Follows Another Toddler

Figure 7.5 shows a lead Toddler followed by a shadow Toddler. The lead Toddler could
run any of the prior programs provided the speed is slower (increase the PAUSE values or
decrease the sTEP values) and the shadow Toddler is running Program Listing 7.3:
Shadow Walker. Proportional control makes the shadow Toddler a very faithful follower.
One lead Toddler can string along a chain of 2 or 3 Toddlers. Just add a 4” x 4” paper to
the lead Toddler’s backside.

V' If you are part of a class, mount paper panel on the back of the lead Toddler as
shown in Figure 7.5.

V' If you are not part of a class (and only have one Toddler) the shadow Toddler
will follow a piece of paper or your hand just as well as it follows a lead Toddler.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 164 - Advanced Robotics with the Toddler

V' The Shadow Toddler should be running Program Listing 7.3 without any
modifications.

V' With both Toddlers running their respective programs, place the shadow Toddler
behind the lead Toddler. The shadow Toddler follows at a fixed distance, so
long as it is not distracted by another object such as a hand or a nearby wall.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #8: Real-Time Programming with Bumpers and Infrared - Page 165

Chapter #8: Real-Time Programming with
Bumpers and Infrared

Note to reader: This chapter requiresthe Toddler Toes Kit (#27312) from Parallax.

WHAT IS MEANT BY REAL TIME?

Real time programming is one of those terms that can mean different things at the same
time. In plain language, it is code that allows the computer system to keep up with what
is happening in the world around it — WHILE it is happening. Like in everything else,
there are degrees of “real time”. Programming a system to respond to events happening
quickly is more difficult than if they happen more slowly. Programming events to happen
at a very precise time can also be challenging — even if they don’t happen at high speed.

Let’s look at a simple example.

You want to flash 5 LEDs. You can determine if they need to be on or off by testing
switch inputs. It’s an easy task.

Turn off all the LEDs to start

Test each switch input and turn on the LED if the switch requires it.
Pause for %2 second — or however long you want the LEDs on.

Turn off all the LEDs

Pause for %2 second — or however long you want the LEDs off.

Go to to #2 and start over.

bk =

You probably ignored how long it takes to test the inputs in step #2 before running the
PAUSE in step #3. What if the program were required to flash the LEDs at precisely a 1
second rate (+- 0.001%)? Ignoring the calculation times can lead to disaster in that case.
Not only would you have to measure or calculate the instruction times to correct the
duration of the PAUSE but also you’d have to make sure that all possible cases of switch
inputs take the same amount of time to compute.

Now, what if the switches only make contact for 20 milliseconds? Your code would have
to constantly be scanning to see if the switch was making contact and remember it. The
scanning has to happen while still keeping track of the flashing LEDs. If you had a loop
to check the switches, you’d have to complete that loop more than once every 20

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 166 - Advanced Robotics with the Toddler

milliseconds. The BASIC Stamp makes it so easy to turn on or off LEDs that it probably
still isn’t a big problem. What if you had to do some calculations before deciding to turn
the LED on or off? And what if those calculations take 30 ms for each LED?

A Processor’s Got to Know its Own Limitations!

Actually the processor doesn’t care. But it sure helps a programmer to know them. Of
course, one way to help in high-speed real time programming is to use a faster processor.
But every processor has some limit. Often it isn’t price effective to just throw a faster
processor at a job. Besides, where’s the fun in that? One key to getting the most of any
given processor is to use some simple techniques (and sometimes not so simple
techniques) to maximize the use of the performance that is there.

In this situation with the BASIC Stamp, more speed adds some help but it would really
be nice to do more than one thing at a time.

Where's Real Time in Toddler?

Toddler Program 6.2: Object Detection And Avoidance sensed the outside surroundings
using Infrared headlights and decided to where to move accordingly. It responded rather
slowly because the sensing was only done between discrete moves. Wouldn’t it be better
to sense all the time during moves and respond immediately? As mentioned before,
Toddler has a more difficult time dealing with sensor inputs because it is walking instead
of rolling. In a rolling robot like Boe-Bot, you can back up or turn at any time. Toddler
can’t. If both feet are on the ground, it may first have to lift a leg before trying to move.
This adds complexity to the program compared to a roller, but it can still be done. Better
yet, it adds some personality to your Toddler too.

In this experiment we will use the Toddler Toes and the infrared object detection circuit
from prior experiments to demonstrate real-time programming on the Toddler.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #8: Real-Time Programming with Bumpers and Infrared - Page 167

ACTIVITY #1: BUILDING AND TESTING TODDLER TOES AND
INFRARED CIRCUIT

Parts Required

(1) Piezoelectric speaker

(2) Shrink wrapped IR LEDs

(2) IR detectors

(1) Set of Toddler Toes (Parallax #27312, not included in this kit)
Optional: (2) LEDs and (2) 220 ohm resistors for feedback purposes
(misc) wires

Toddler Toes kit (#27312) is not included in the stock Toddler Kit (#27310 or #27311)
because it would have raised the retail price, prohibiting more robot enthusiasts from
purchasing the kit. You can make your own toes using common materials.

This is what is included in the Parallax Toddler Toes Kit (#27312):

/ N
(! | Parallax Part Number Quantity Description
@ 550-27312 1 Twinkle Toes PCB, right side
550-27313 1 Twinkle Toes PCB, left side
700-00002 6 4/40 3/8" machine screw
700-00003 8 4/40 nut
720-27312 6 Bumper wire (extras for possible mistakes)
805-00002 2 14" servo extension cable

Assembling the Toddler Twinkle Toes

Figure 8.1 shows the schematic for the experiment.

Bending the Wires: Bend the wire to match the outline of the bumper in Figure 8-2. You
will need to use needle nose pliers to do this job.

The two curled ends need to make a 50% to 75% closed circle to keep from sliding off
the screw. Try to keep the wire flat while making these bends. The distance from one of
the curls to the outside bend is not to be exceeded. Follow the template exactly and the
bumpers will not hit each other.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 168 - Advanced Robotics with the Toddler

Twinkle Toes Left 270 Q Twinkle Toes Right 270 Q
N \ LED- A N LED-
X2 Bicolor X3 Bicolor
White White
g_) Red g Red
B Black B Black
Bumper Bumper
220 Q 220 Q
P4 D MV P15 D AN
220 Q 220 Q
Vvdd Vvdd
IR IR
¥\ o ¥\ Leo
P11 P14
V;s Vgs V;s V-ss

Figure 8-1: Real-Time Programming with Bumpers and Infrared. You may optionally add two green
or red LEDs to pins 5 and 6 on the breadboard to provide visual feedback for the infrared detectors.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #8: Real-Time Programming with Bumpers and Infrared - Page 169

You have six wires with which to experiment. You only need two good bumpers so don’t
worry if the first ones don’t come out quite right. And if you really destroy all of your
wires you can call Parallax for a few more.

le— critical distance —]

not to exceed
O2C

Figure 8-2: Wire bending template
Bend wire exactly as shown

Fine Tuning the Wire Tension: Put the 3/8” screw through the center hole of each
Twinkle Toes and secure tightly with a nut on top.

Attach the bumper hook ends over the screw you just mounted in the center of each
board. The beveled corner goes on the side with the LED. Slip the wire in-between the
prongs (two-post header pins) at each end of the board.

The bumper should be touching the pin closest to the front of the board. When pressing
the bumper from the front the wire will touch the pin farthest from the front of the board.
The pressure should feel very light to trip the bumper and will need to be adjusted until it
is lightly springy.

Figure 8-3 shows how to adjust the bumper wire to be less stiff. For a final adjustment,
take the bumper off, adjust and retest the tension. Once both sides of the bumper trip with
a soft bump, secure with the locking nut. Do not tighten on the wire; the wire needs to be
able to move freely around the screw.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 170 - Advanced Robotics with the Toddler

oC

.) . Figure 8-3: Bumper
Stiff detection Soft detection Tensioning

Figure 8-4 and Figure 8-5 show the final installation of the Twinkle Toes.

Figure 8-4: Installed
Twinkle Toes

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #8: Real-Time Programming with Bumpers and Infrared - Page 171

Figure 8-5: Twinkle Toes
include the pushbutton
resistors and bi-color
LED.

Mounting Twinkle Toes Disconnect the tilt rods from the Toddler’s left foot (the same
side as the power switch). Mount the Twinkle Toes with two 1/4” screws (the third hole
is only used if the ankle is mounted to the inside which would block one of the holes).

Make sure the bumper does not extend past the inside edge of the foot. If it does bend the
wire or make a new bumper. One way to find out if the bumper is going to touch the
opposite foot is to run one of the early basic walking programs in this text.

Reattach the control rod to the foot then mount the right sensor the same way and make
sure it also does not extend past the inside edge of the foot. Repeat for the right foot.

Connect the cables Connect the cables from the sensors to X2 and X3 of the Toddler
Board making sure the black to black connection (B to B) is maintained.

Testing the Toddler Toes

Let’s test the Toddler Toes circuit before we proceed to do anything else.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 172 - Advanced Robotics with the Toddler

L [Title J-----cmmmmmmm e oo oo oo o -
' Toddler Program 8.1 Twinkle Toes Test.bs2

' This program tests twinkle toes bumpers

' {$sSTAMP BS2}

' {$PBASIC 2.5}

I coces N Cen s Fantc I e e e R EEEL LLE LE LL
ctrlLEDs CON %1111 ' Define DIRs as constants

prepBumper CON %1001

bothGreen CON %0110 ' OUTa register

bothRed CON %1001

rightRed CON %0101

leftRed CON %1010

bothLEDsOff CON %1001

I ===== [Meilm Cogle |[===

Forward:
DIRS = ctrlLEDs
OUTS = bothGreen
PAUSE 20

Check Bumpers:
DIRS = prepBumper
OUTS = bothLEDsOff
DEBUG Home, "Right = ", BIN1 IN1, " Left = ", BIN1 IN2
IF (IN1 = 0) AND (IN2 = 0) THEN BothOn
IF IN1 = 0 THEN Right
IF IN2 = 0 THEN Left
GOTO Forward

BothOn:
DIRS = ctrlLEDs
OUTS = bothRed
PAUSE 200

GOTO Forward

Right:
DIRS = ctrlLEDs
OUTS = rightRed
PAUSE 200

GOTO Forward

Left:
DIRS = ctrlLEDs
OUTS = leftRed
PAUSE 200

GOTO Forward

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #8: Real-Time Programming with Bumpers and Infrared - Page 173

-'-'f":/'Dehug Termminal #1

LCom Port: Baud Rate: Parit [rata Bits: Flow Controk @ TX [DTR [RTS
IEDM1 - SO0 INune - b 'I i3 “| o R @ DSR @ CTS

Figure 8-6: Toddler Toes
Debug Test. Pushing the
bumper should result in a “0”
on the 1/O pin.

[Sapture; | Macros. | Pause | Clear | Close |

If the Toes are properly installed and wired then you will be able to activate them and
view the status of each bumper in the Debug Terminal as shown in Figure 8-6. If it works
then proceed. If it does not work then double-check your three-conductor wire connectors
and the wiring. The Twinkle Toes should flash green unless you press a bumper, then you
will see a green-red intermittent flash.

Testing the Toddler Toes and Infrared Object Detection Circuit Together

Now make sure the infrared emitters and detectors are plugged in the front of the Toddler
board. Then, run the following program to test the two circuits together.

L [Title J-----cmmmmmmm oo m oo oo oo
Toddler Program 8.2 Infrared and Twinkle Toes Test.bs2

This program tests infrared sensors and twinkle toes bumpers together
{$sTAamMP BS2}

{$PBASIC 2.5}

77777 [I/O0 Definitions J-----------oooommmmo oo

TiltServo PIN 13 ' tilt servo on X7
StrideServo PIN 12 ' stride servo on X6
LeftIRLED PIN 4 left IRLED

Right IRLED PIN 15 right IRLED

LeftIR Sensor PIN 11 left IR sensor input

RightIR Sensor PIN 14 right IR sensor input

LeftBumper PIN 2

RightBumper PIN 1

Spkr PIN 8 ' beeper pin

L [Constants J------------------ - -

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 174 - Advanced Robotics with the Toddler

MoveDelay CON 17 ' to make up 20 ms servo loop

CenterTilt CON 750

CenterStride CON 750

prepBumper CON %1001

bothLEDsOff CON %1001

L [Variables J--------------m oo oo

Counter VAR Nib

Temp VAR Bit

L [Initialize J]--------------- oo

ResetFeet:

FOR Counter = 1 TO 15 ' center feet for .3 sec

GOSUB Move It ' currentMove is only a nibble.
PAUSE MoveDelay ' make up 20 ms servo refresh time
NEXT

Test_Speaker:
FREQOUT Spkr, 2000, 3000 ' program start/restart signal.

R [Main Code J-------mommmmmmmmmm oo oo m oo -

Main_Program:

DO

FREQOUT LeftIRLED,1,38500 ' pulse left IRLED.

IF (LeftIR Sensor = 0) THEN ' check for IR hit on left
DEBUG " IR left "

ELSE
DEBUG " "

ENDIF

FREQOUT RightIRLED,1,38500 ' repeat for the right IR pair.

IF (RightIR_Sensor = 0) THEN ' check for IR hit on right
DEBUG " IR Right "

ELSE
DEBUG " "

ENDIF

FREQOUT RightIRLED,1,38500 ' repeat for the right IR pair.

Do_Bumpers:
DIRS = prepBumper
OUTS = bothLEDsOff

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #8: Real-Time Programming with Bumpers and Infrared - Page 175

IF (LeftBumper = 0) THEN ' check for bumper hit on left
DEBUG " bump left "
ELSE
DEBUG " "
ENDIF
IF (RightBumper = 0) THEN ' check for bumper hit on right
DEBUG " bump Right ", CR
ELSE
DEBUG " ", CR
ENDIF
LOOP
END
I ===== [Sulszoutingg |===
Move It:
PULSOUT TiltServo, CenterTilt
PULSOUT StrideServo, CenterStride
RETURN

This program will allow you to test the I/O connections you just made.

4 Debug Terminal #1 M=
Com Poit BaudRate: Paiity Data Bits: FlowConliol @ 1 [~ pTR [ATS

| TN | EETTINNEA | [(8 ERA | TGS | S e o

bump Right . Infrared Debug Test. The
' . sensors that detect an object
will be shown in the Debug
Terminal.

Copie | [Macros.. || Resume | em | | oese |

Downloaded from Elcodis.com electronic components distributor

Figure 8-7: Toddler Toes and

http://elcodis.com/parts/844626/27311.html

Page 176 - Advanced Robotics with the Toddler

ACTIVITY #2: FINITE STATE MACHINE REAL-TIME WALKER

Now you are ready to enter and run Program Listing 8.3, “Toddler Program 8.3 Finite
State Machine Walker.bs2”. This program also uses an optional four indicator LEDs on
P5 — P8. If you connect the LEDs be sure to use four resistors between the BASIC Stamp
I/O pin and LED.

L s [Title J--ommmmmmmm oo oo oo oo
' Toddler Program 8.3: Finite State Machine Walker

' Real time servo programming and sensor integration lets Toddler walk

' until infrared or Toddler Toes detect an object. To walk with bumpers

' only simply remove both infrared emitters on P4 and P15.

' {s$sTAMP BS2}

' {$PBASIC 2.5}

TiltServo PIN 13 ' tilt servo on X7
StrideServo PIN 12 ' stride servo on X6
LeftIRLED PIN 4 ' left IRLED

RightIRLED PIN 15 ' right IRLED

LeftIRSensor PIN 11 ' left IR sensor input
RightIRSensor PIN 14 ' right IR sensor input
RightBumper PIN 1

LeftBumper PIN 2

LeftVisionLED PIN 5 ' left vision display LED
RightVisionLED PIN 6 ' right vision display LED
Spkr PIN 8 ' beeper pin

L [Constants J------------------ - -
MoveDelay CON 1 ' code already using 19 ms of 20
TiltStep CON 5 ' TiltServo step size
StrideStep CON 5 ' StrideServo step size
RightTilt CON 610 ' tilt limits

CenterTilt CON 750

LeftTilt CON 880

RightStride CON 625 ' stride limits

CenterStride CON 750

LeftStride CON 875

ctrlLEDs CON %1111 ' define DIRs as constants to

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

prepBumper CON
bothGreen CON
bothRed CON
rightRed CON
leftRed CON
bothLEDsOff CON
Fwd CON
PivL CON
PivR CON
BumpL CON
BumpR CON
L [Variables

doneTiltFlag VAR
doneMoveFlag VAR
rightIR Flag VAR
leftIR_Flag VAR
rightBumpFlag VAR
leftBumpFlag VAR
sensors VAR
currentMove VAR
newMove VAR
Mx VAR
MxOffset VAR
bMovmnt VAR
currentTilt VAR
currentStride VAR
newTilt VAR
newStride VAR

1

TL
TC
TR
SL
SC
SR
XX

EEPROM Data

CON
CON
CON
CON
CON
CON
CON

Chapter #8: Real-Time Programming with Bumpers and Infrared - Page 177

%1001 ' simplify LED/bumper setups

%0110 ' OUTa register sets red/green
%1001 ' status on P0-P3 for Twinkle Toes
%0101 ' object detection states

%1010

%1001

0 ' codes to pick movement table

1 ' set newMove to one of these

2 ' values and New_Movemt will LOOKUP
3 ' the right movement table

4

Bit ' flag: 1 = tilt reached new value

Bit ' flag: 1 = servos hit new values

Bit ' flag: 1 = something on right side

Bit ' flag: 1 = something left side

Bit ' flag: 1 = bumper hit right side

Bit ' flag: 1 = bumper hit left side

Nib ' lower 2 bits of the sensors var
' used to store IR detector values

Nib

Nib

Word ' index for movement tables

Byte ' added to Mx for index

Byte ' table value for lookup movement

Word

Word

Word

Word

These are actual values saved in the Basic Movement tables.

' use lower nibble for these

N U WN R o

55 ' table end code

Basic Movement Tables ------

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 178 - Advanced Robotics with the Toddler

' These tables contain Basic Movements consisting of bytes containing
' above Basic Movement Codes to describe movement sequences.

' An xx indicates the end of a list.

' PivotLeft and PivotRight aren't entered at the start of their tables

Forward DATA TR, SL, TL, SR, XX
PivotLeft DATA TR, SL, TL, SR
DATA TC, SL, TL, SR, xx
PivotRight DATA TR, SL, TL, SR
DATA TR, SL, TC, SR, xx
RBumper DATA SL, TR, SR, TC, SL, TL, SR, xx
LBumper DATA SR, TL, SL, TC, SR, TR, SL, TL, SR, XX
R [Initialize J-----------ocommmmmmm oo em -
GOSUB Clr_Vision ' reset vision LEDs and flags
DIRS = ctrlLEDs ' setup green LEDs for Forward

OUTS = bothGreen

ResetFeet:
newTilt = CenterTilt
newStride = CenterStride
currentTilt = CenterTilt
currentStride = CenterStride

FOR currentMove = 1 TO 15 ' center feet for .3 sec
GOSUB Move_ It ' currentMove is only a nibble.
PAUSE 17 ' make up 20 ms servo refresh time
NEXT

'DEBUG "Forward = ", DEC Forward, CR

'DEBUG "PivotLeft = ", DEC PivotLeft, CR,

'DEBUG "PivotRight = ", DEC PivotRight, CR

'DEBUG "RBumper = ", DEC RBumper, cr, "LBumper = ", DEC LBumper, CR

doneTiltFlag = 1

doneMoveFlag = 1

sensors = 0

MxOffset = 0

FREQOUT Spkr, 2000, 3000 ' program start/restart signal
rightBumpFlag = 0
leftBumpFlag = 0

currentMove = 15 ' invalid value to assure start
' newMove = Fwd ' for testing single moves -

' newMove = PivL ' comment out GOSUBs to vision

' newMove = PivR ' and bump or the value might be
' newMove = BumpL ' overwritten

' newMove = BumpR

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #8: Real-Time Programming with Bumpers and Infrared - Page 179

Main_Program:
DO
GOSUB Do Vision
GOSUB Do_Bumper
GOSUB New_Movemt
GOSUB Do_Movement
PAUSE MoveDelay
LOOP
END

Do Vision:

FREQOUT LeftIRLED,1,38500
sensors.BITO0 = LeftIRSensor

FREQOUT RightIRLED,1,38500
sensors.BIT1 = RightIRSensor

----- [Main Code J-------mommmmmmmmmmmmm oo em oo

look for obstacles with IR

check for obstacles with bumpers
generates next move from table
gives servo pulses out

makes up 20 ms servo timing loop

pulse left IRLED.
store IR detector output in RAM

repeat for the right IR pair.

' Check if currently doing an infrared move

IF ((leftIR Flag =

IF (rightIR Flag =

1) & (rightIR Flag
IF (leftIR Flag = 1) THEN See Left
1) THEN See_Right

1

1)) THEN See_Both
is left only?
is right only?

' Load IR detector output values into the lower 2 bits of the sensors
' variable, storing a number between 0 and 3 that the BRANCH command

' can execute the appropriate routine.

BRANCH sensors, [See Both,See Right,See Left,See None]

See Both:
newMove = PivR
rightIR Flag = 1
leftIR Flag = 1
HIGH LeftVisionLED
HIGH RightVisionLED
RETURN

See Right:
newMove = PivL
rightIR Flag = 1
HIGH RightVisionLED
RETURN

See_ Left:
newMove = PivR
leftIR Flag = 1

Downloaded from Elcodis.com electronic components distributor

flag: 1 = something on right side
flag: 1 = something left side

left vision sequence display LED
right vision sequence display LED

flag: 1 = something on right side
right vision sequence display LED

flag: 1 = see something left side

http://elcodis.com/parts/844626/27311.html

Page 180 - Advanced Robotics with the Toddler

HIGH LeftVisionLED !
RETURN

See None:
newMove = Fwd
RETURN

Do_Bumper:
DIRS = prepBumper
OUTS = bothLEDsOff

left vision sequence display LED

' Bumpers on each foot. A hit causes Toddler to back and turn.
' Code asssumes leg that hit is on the leg that is moving

' (while leaning on the other 1leg).
' A hit backs up the hit leg right away
' and does a pivot away.

IF (leftBumpFlag = 1) THEN Bump LeftA
IF (rightBumpFlag = 1) THEN Bump RightA

' check for old bumper hit on left
' check for old bumper hit on right

IF (LeftBumper = 0) THEN Bump Left 0
IF (RightBumper = 0) THEN Bump Right '

DIRS = ctrlLEDs
OUTS = bothGreen

RETURN

Bump_Left:
'DEBUG "bump left", cr !

Bump_LeftA:
leftBumpFlag = 1 !
newMove = BumpL
DIRS = ctrlLEDs
OUTS = leftRed
GOTO Clr Vision !

Bump Right:
'DEBUG "bump right", cr

Bump_ RightA:
rightBumpFlag = 1
newMove = BumpR
DIRS = ctrlLEDs
OUTS = rightRed

1

Downloaded from Elcodis.com electronic components distributor

then steps back 1 step

check for bumper hit on left
check for bumper hit on right

sends only once on change

flag indicates bump response move

goes to Clr Vision

falls through to Clr Vision

http://elcodis.com/parts/844626/27311.html

Chapter #8: Real-Time Programming with Bumpers and Infrared - Page 181

Clr Vision: ' reset vision LEDs and flags
rightIR Flag = 0 ' flag: 1 = something on right side
leftIR Flag = 0 ' flag: 1 = something left side
LOW LeftVisionLED ' left vision sequence display LED
LOW RightVisionLED ' right vision sequence display LED
RETURN

e e e e e e e e

New_Movemt : ' sequences for forward motion
IF (newMove <> currentMove) THEN ' new DATA if movement changed

'DEBUG cr, "start NewMovemt; newMove = ", DEC newMove
'DEBUG ", currentMove = ", DEC currentMove, CR
doneMoveFlag = 1 ' stop current move wherever it is

EN

IF

currentMove = newMove

' When customizing the program, here is where to integrate between

' moves. You can make the transitions reasonable by using the existing
' Mx value and MxOffset to compute the proper MxOffset to start into

' the next move.

IF ((newMove = Fwd) OR (newMove = BumpL) OR (newMove = BumpR)) THEN
MxOffset = 0 ' reset MxOffset value for new move

ENDIF

' note: kept old MxOffset value for lead into pivot left or right

LOOKUP newMove, [Forward, PivotLeft, PivotRight, LBumper, RBumper] , Mx
' lookup movement table index

DIF

(doneMoveFlag = 1) THEN ' done moving - lookup new move
READ (Mx + MxOffset), bMovmnt ' read next basic move byte
'DEBUG "Mx = ", HEX Mx, ", MxOffset = ", HEX MxOffset

MxOffset = MxOffset + 1

IF (bMovmnt < xx) THEN ' end code so do new move

'DEBUG " DbMovmnt = ", HEX bMovmnt, " "

SELECT bMovmnt ' set and display movement type
CASE TL : newTilt = LeftTilt : 'DEBUG "TL, ", cr
CASE TC : newTilt = CenterTilt : 'DEBUG "TC, ", cr
CASE TR : newTilt = RightTilt : 'DEBUG "TR, ", cr
CASE SL. : newStride = LeftStride : 'DEBUG "SL, ", cr
CASE SC : newStride = CenterStride : 'DEBUG "SC, ", cr
CASE SR : newStride = RightStride : 'DEBUG "SR, ", cr

ENDSELECT

' fall through if invalid index

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 182 - Advanced Robotics with the Toddler

ELSE
'DEBUG " xx = finished table", CR, CR
MxOffset = 0 ' finished move sequence so restart
leftBumpFlag = 0 ' clear out left bumper hit flag
rightBumpFlag = 0 ' right too

DIRS = ctrlLEDs
OUTS = bothGreen

GOSUB Clr Vision ' reset vision LEDs and flags
GOSUB Do Vision ' since done previous movement,
GOSUB Do_Bumper ' figure out new one
GOTO New_Movemt ' get new table and offset
ENDIF
ENDIF

'Done New Move:
RETURN ' ignore if invalid

Do_Movement :

doneMoveFlag 0 ' reset flags
doneTiltFlag = 0

IF (currentTilt < newTilt) THEN ' start tilt calculations
currentTilt = currentTilt + TiltStep' inc if coming from right tilt
IF (currentTilt >= newTilt) THEN ' done?

currentTilt = newTilt ' stop at limit
doneTiltFlag = 1
ENDIF

ELSE
currentTilt = currentTilt - TiltStep' coming from left tilt = decrement
IF (currentTilt <= newTilt) THEN ' done?

currentTilt = newTilt ' stop at limit
doneTiltFlag = 1
ENDIF
ENDIF

Move_Stride:

IF (currentStride < newStride) THEN
currentStride = currentStride + StrideStep
' coming from right stride = increment
IF (currentStride >= newStride) THEN
currentStride = newStride
IF (doneTiltFlag = 1) THEN doneMoveFlag = 1
' uses doneMoveFlag to increment states.
ENDIF
ELSE

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #8: Real-Time Programming with Bumpers and Infrared - Page 183

currentStride = currentStride - StrideStep

' coming from left stride = decrement

IF (currentStride <= newStride) THEN

' jump if still moving
currentStride = newStride
IF (doneTiltFlag = 1) THEN doneMoveFlag = 1
' uses doneMoveFlag to increment states.

ENDIF

ENDIF

Move It:
PULSOUT TiltServo, currentTilt
PULSOUT StrideServo, currentStride
RETURN

How the Program Works

Movement Management

The Basic Movement Tables are similar to what has been used before. First notice the

Pivot tables. The pattern for Forward is at the beginning of both pivot entries. This is a

way to smoothly go from walking forward to pivoting when Toddler sees something with

its IR sensors. It keeps where in the table it was when it saw something walking forward n
and starts at the same point in the pivot table to get out of the way. Rather than do the

same thing for backing and turning on the bumper tables, an assumption is made that the

bumper can only be hit while the leg it is attached to is moving forward. It isn’t the most

general case but it is usually a reasonable assumption.

In the initialization section, currentMove is a nibble variable that isn’t needed yet for its
intended purpose. It is used here as a counter to save variable space.

The Main code is straightforward so let’s start by looking at the end of subroutines.
Do_Movement starts with currentTilt and currentStride values and ramps the
servos to the newTilt and newsStride values. The difference in this subroutine from the
examples before is that only one pulse is sent to each servo before RETURN. That means
the rest of the code will have to run and then come back to Do_Movement every 20 ms to
keep the servos running at their optimum timing. Servos will work at longer refresh times
but the performance starts to suffer so let’s try for 20ms as the goal (in a rolling robot
with pre-modified servos a refresh time every 50 ms is acceptable with out a decay in
performance). In the previous programs, only a small tight loop had to keep up with the
real time requirement. In this program, much more of the program is now real time code.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 184 - Advanced Robotics with the Toddler

Since we started at the end, let’s continue backward with the New Movement subroutine.
The code starts by comparing newMove to currentMove. If there is no change it skips the
code required to change over to a new move. It then tests to see if the current tilt or stride
is finished. Again, if no action is required, skip over it. First rule of real time
programming - If you don’t absolutely have to do it in the high-speed loop, don’t!

In New Movemt, the most usual case is test, test, RETURN. It’s pretty quick. In the case
where the doneMoveFlag is 1, it will look up the next item in the active Movement
Table. If the current table is finished (value = xx), the code gets the next table and
starts to run that.

If something caused the newMove to be different from currentMove, the table for the
new move is looked up. In previous programs, the index was always zeroed to start the
table at the beginning. Here it is sometimes different. All movement tables finish to
smoothly transition into Fwd so the offset is zeroed then. We are assuming where the legs
are when checking the bumpers so BumpL and BumpR start at zero too. This is because the
tables took into account where the legs would be when they were made. When Toddler
“sees” something, the walking sequence can be anywhere in the Fwd table. To prevent
tripping over its own feet, Toddler will take the offset being used in the Fwd table and use
it as a starting point into the PivotLeft or PivotRight table. Since Fwd is duplicated at
the front of both Pivot tables, there is a smooth transition. This section is worth further
study when you want to add other moves or other conditions for table transitions.

FSM

New Movemt is similar to Do_Movement in that it is also entered with a new state desired
(newMove) and it had its current state (currentMove) saved. This style of subroutine is a
called a Finite State Machine or FSM. Remember back to Activity #4, Approach 3, where
state diagrams were used to analyze the stepping? State diagrams will work here too. The
state diagram for this code is pretty simple so it won’t be diagrammed but you get the
idea. FSMs are excellent for real time programming because they are a convenient way to
be able to call a subroutine, have it do what it has to, and quickly get back out.
Diagramming the states can be very helpful in understanding more complex FSMs but
these are all pretty simple so there is no need to diagram them.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #8: Real-Time Programming with Bumpers and Infrared - Page 185

Commented out DEBUGS

The pEBUG statements with the comment () symbol in front don’t get executed or take
up program memory space. Why bother? Well, when trying to understand the program, or
trying to debug your modifications to it, DEBUG statements are very helpful. By doing a
global replace of ‘DEBUG with DEBUG, you can get a screen on the Debug Terminal of
your PC that will show what is happening in the program. Using the BASIC Stamp
Editor’s Debug Terminal means the serial cable has to stay connected to the Toddler
while the program is running. The DEBUG delays will also cause the program to
completely lose any possibility of meeting the 20 ms servo timing. Walking isn’t too
effective with the cable sticking out the back and the extended servo timing but you can
hold Toddler in the air and watch what it will try to do in response to the different sensor
inputs. Or, simply switch the switch to position 1 so the servos are not activated.

State Indicator LEDs

The four LEDs connected to P5-P8 show what mode Toddler is in without needing a
cable connected or slowing the timing to the servos. They are also fun to watch.

Do_Vision

Let’s now skip back up to the first subroutine. bo_Vvision checks the IR sensors like the
earlier programs. This takes a few milliseconds. If it already saw something from before,
the leftIR Flag and/or the rightIR Flag will be set. If a flag is set, the vision
movement continues with the previous decision on movement. This allows the full
sequence to be run from a momentary incident of “seeing” something. If neither flag was
set, a direction decision is made based on the current state of the IR sensors. Wait a
minute! Earlier it was flatly stated not to do things that didn’t need to be done in the real
time loop. If either the 1leftIR Flag or the rightIR Flag is set, the code doesn’t even
look at the result of the sensing. Why keep it in the high-speed loop?

Second rule of real time programming - Sometimes do it in the high-speed loop, even if
you didn’t have to?

Remember the goal here isn’t to get the code to run the fastest. It is to get the program to
consistently output servo pulses at 20 ms intervals. If, while running the Pivr and PivL
movement tables, the FREQouT commands were skipped, the servo pulses would come at
a 2 ms faster rate. In this case the FREQoUT commands are really just equivalent to a
PAUSE used to even the times between servo pulses.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 186 - Advanced Robotics with the Toddler

Do_Bumper

Like bo_vision, this is another FSM that tests sensors and flags and decides where to go
next. An important thing to notice though, bo_Bumper outputs its decision into the same
variable (newMove) that Do Vvision does. It will simply overwrite whatever Do _vision
decided. Why?

Subsumption Architecture

One way to program a robot is to have the program look at all possible internal states and
inputs and then decide on a course of action from that. The disadvantage to that style is
that it can get difficult to add new behaviors or sensors without redoing almost the whole
program.

Another style of program, called “Subsumption Architecture” or “Behavior Based
Programming”, is where the robotic control is broken into separate behaviors. In our case
we have two, vision and bumper. Each behavior (subroutine) decides what the output
(newMove) should be based on its inputs and its internal state. A higher priority behavior
can “subsume” or take control from a lower priority behavior. In our case, Do Bumper
subsumes Do Vision by writing over newMove. Notice Do Bumper doesn’t always write
newMove, only when something is happening with the bumpers. Otherwise it leaves
newMove alone. No bumper activity therefore causes Do_Vision to have control. This
lets the behaviors have more independent control over their domain without making the
overall program too complicated. Normally, a behavior will keep track of what it wants
the output to do and for how long and that is what happens if it is not subsumed. When
whatever was subsuming it goes away, it will immediately take control. This gives rise to
“emergent behaviors”. Those are behaviors that weren’t explicitly programmed in. They
just happen out of the interactions of the sensor inputs and behaviors. In our case,
however, that would be dangerous. If we are just done the bumper movement, we can’t
just start in the middle of a vision movement that had been subsumed by the bumper. To
prevent that in our case, clr vision resets the vision LEDs and status bits if the
bumper flags are active. This type of code is normally not used with Subsumption
Architecture and would not be used on a wheeled type robot.

Our program has only one output, a single movement so either programming style will
work here. Behavior Based Programming will be more helpful to you when you are
writing programs that have many outputs and many sensors. To add a behavior to this
program, insert the behavior subroutine call into Main Program. Any behavior calls

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #8: Real-Time Programming with Bumpers and Infrared - Page 187

before the added one have lower priority and any after it have higher priority. Professor
Rodney Brooks of MIT is widely credited with first publishing on Subsumption
Architecture and there is lots of information on the web if you want to study it further.

Final thoughts

Now we have a robot that will actively look at its sensors while it is moving. It can even
make decisions about what to do in real time. One warning though, notice the constant
MoveDelay. Main Program Uses it in a PAUSE statement to make up the difference
between the time taken to run one loop and the 20 ms needed by the servo. The delay
value here is only 1 millisecond! In other words the code needed 19 of the 20 ms allowed
to do its job. In real time programming, you only have to just get there so we are fine.
Actually, if we had a very firm 20 ms specification, we would fail because when we set
up new movement tables, we go beyond the 20 ms. That doesn’t happen often, and the
servos do forgive it, so it’s fine. Problems might come up later though as you start to add
features or options to the program. After all, there’s still two-thirds of the program space
and almost one-half of the variable space left.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 188 - Advanced Robotics with the Toddler

CHALLENGES

V' In the example program, once Toddler hit something, it continued with the
backup and turn sequence without looking if it was hit again. How can you fix
that to include still watching the bumpers while actually doing the Rbumper or
LBumper pattern? Hint: How did we do it when the bumper was subsuming the
vision?

V' In Program 8.3 the bumpers detect an object and Toddler takes one slide turn.
Modify the source code so when the bumpers are activated the Toddler takes
three or four turns away from the object it detected.

V' Toddler Toes have bi-color LEDs on them. Rewrite Program 8.3 so that the
LEDs are red while the Toddler moves forward and green when it is backing up.
Hint: Neither red or green LED should be on when you are checking the bumper
switches.

v In the program, Toddler assumed that if it hit something, it was with the leg
going forward at the time. Can you devise a way to sense if the bumper was hit
when its leg wasn’t moving forward? As an example, maybe your cat walked up
to toddler and touched the bumper on the foot that was on the ground at the time.
Hint: the difficult part here can be deciding what you want Toddler to do when it
happens.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #9: Acceleration-Based Motion - Page 189

Chapter #9: Acceleration-Based Motion

Note: This chapter requiresthe Memsic 2125 Accelerometer (#28017) from Parallax.

MEASURING TODDLER’S INCLINE

The Memsic 2125 is a great little accelerometer. You can add it to your Toddler to
actually sense and control how far it is tilted over rather than using the current method of
open-loop control.

The Memsic 2125 is a dual-axis accelerometer. Inside, the Memsic 2125 has a small
heater that warms a "bubble" of air. When the sensor moves, this heat bubble moves and
is detected by thermopiles that surround the heater. Changes detected by the thermopiles
are conditioned and the outputs are pulses (one for each axis) that correspond to the
forces acting on the sensor.

The accelerometer comes in a surface-mount package so Parallax has made a DIP carrier
that is more convenient for use on your Toddler. The tilt output is a 100 Hz square wave
(10 ms period) whose duty cycle depends on tilt. 50% duty cycle (high for half the time,
ground for the other half) means the sensor is level in the direction being read.

Applications for the Memsic 2125 are located throughout the Parallax web site. With the
Toddler the sensor is only utilized for single-axis incline measurement, but it can also
measure angular rotation and acceleration on two axis. Here is a sampling of the material
available for download from the web:

e “It's All About Angles” in the Nuts and Volts of Stamp Applications column #92. This
article demonstrates the BASIC Stamp integer math for calculating g-force and
— inclination (http://www.parallax.com/detail.asp?product_id=28168).
.

'\b‘l e “Memsic 2125 Demo Kit” documentation ships with the purchase of the Memsic 2125
accelerometer from Parallax and demonstrates the angular measurement examples
(http://www.parallax.com/detail.asp?product_id=28017).

e Memsic 2125 datasheet (http://www.memsic.com)

e Prior to using the accelerometer on your Toddler, we recommend that you download
and run some of the sample BASIC Stamp 2 programs from the above links. These
articles contain very instructional background code which is not repeated in this text.

When you are tilting the sensor, one way is positive G, the other way is negative G. The
sensor has a range of +2g.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 190 - Advanced Robotics with the Toddler

MORE ON REAL TIME TECHNIQUES

Since we plan to use the sensing in the high speed real time servo loop, can we make
Read Y Force faster? Sure! Change the 10 to 5 and you don’t have to multiply incline
by 2 before using it in the equation. Why should the BASIC Stamp have to do it millions
of times if you can do it once?

Read_Y Force:
PULSIN Yout, 1,incline
mGForce = ((incline / 5) - 500) * 8

Remember the resolution of puLsIN is 2us. If the first thing we do is divide it by 5, we
end up with an equivalent resolution of only 10 us. Why waste our resolution?

MGForce = ((incline / 5) - 500)*8 = ((8*incline) /5) - (500%8) =
((8*incline)/5) -4000

Now we multiplied by 8 before dividing so we’ll keep the maximum resolution possible.
You’ll have to make sure there can’t be an overflow if we multiply (left shift) first. Since
the period is 10 ms, incline can never be over 10,000/2 or 5000. Since 8 *5000 = 40,000
we can’t overflow a word variable. After dividing by 5, we get back down to 8000. That
won’t overflow a signed word variable at roughly £32000.

Read_Y Force:
PULSIN Yout, 1,incline
mGForce = ((incline * 8) / 5) - 4000

Multiplies take a long time. Eight is an exact binary number. All we have to do is left
shift the word variable incline 3 times and we have multiplied by 8.

Read_Y_Force:
PULSIN Yout, 1,incline
mGForce = ((incline / 5) - 500) <<3

Read_Y_Force:
PULSIN Yout, 1,incline
mGForce = ((incline <<3) / 5) - 4000

There, much faster and with better resolution too.

But after all this, what will we do with the G force anyway? Aren’t we just going to
compare the pulse width output to a limit for each direction? In that case, why bother to

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #9: Acceleration-Based Motion - Page 191

calculate anything? Just set the comparison to a limit value for incline and don’t bother to
calculate anything! — Remember the First rule of real time programming - If you don’t
absolutely have to do it in the high-speed loop, don’t!

Let’s get into it now.

ACTIVITY #1: BUILDING AND TESTING THE ACCELEROMETER

The circuit is exactly the same as that in Chapter 8 except for the addition of the
accelerometer.

Figure 9-1 is the circuit schematic and Figure 9-2 is a pictorial showing proper mounting
of the Memsic 2125. The pictorial shows two important points about the accelerometer —
placement on the Toddler board and the location on pin 1 for wiring purposes. Add the
accelerometer to the prototyping area of your Toddler board. Make sure when putting the
sensor down that it is flat on the board and correctly facing forward.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 192 - Advanced Robotics with the Toddler

Twinkle Toes Left 270 Q Twinkle Toes Right 270 Q
N \ LED- A N LED-
X2 Bicolor X3 Bicolor
White White
(]:_) Red g Red
B Black B Black
Bumper Bumper
220 Q 220 Q
P4 D AV P15 D MV
220 Q 220 Q
vdd vdd
IR IR
¥\ o ¥\ Leo
P11 P14
V;s Vgs V;s Vgs
vdd
M2125
nc Yrout vad o—
P10 G—|2 Yout Xout SH(nc
D +
I‘))) IE Vss Vss zl—
Vgs V;s Vgs

Figure 9-1: Add the Memsic 2125 accelerometer to your current Toddler circuitry. Additionally, you
can add two LED indicators on P5 and P6 to show the status of the infrared detectors.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #9: Acceleration-Based Motion - Page 193

-P15 +- P14

PRALAX 2

www.parallaxinc.com

Figure 9-2: Pictorial of Memsic 2125 Circuit. X2 and X3 are connected to the Twinkle Toes. X6
and X7 are connected to tilt and stride servos. Additionally, you may connect two LEDs to P5
and P6 for visual feedback of the infrared detectors.

Once the hardware is wired, enter and run Program Listing 9.1

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 194 - Advanced Robotics with the Toddler

- [Title J oo o mmmmm oo oo oo oo
' Toddler Program 9.1: Memsic Accelerometer Test Program

' Incline feedback determines tilt limitations of Toddler

' {s$sTAMP BS2}

' {$PBASIC 2.5}

Yout PIN 10 ' Yout from Memsic 2125
TiltServo PIN 13 ' Toddler tilt servo
StrideServo PIN 12 ' Toddler stride servo
I coces N Cen s Fantc I e e e R L L L L
TiltCenter CON 750 ' TiltServo center position
StrideCenter CON 750 ' StrideServo center position
Stepval CON 2 ' Servo step value = 1 or 2

' Set Stepval = 3 if using 'DEBUGSs
escval CON 4 ' Indicator for excessive tilt
Delay CON 8 ' Pause between servo pulses -

' add 8 ms to get 20 total
RightLimit CON 500 ' Limit does not occur on flat
LeftLimit CON 1000 ' Limit does not occur on flat

' Right and left depend on

' how you mounted the Memsic

' sensor. Below assume pins 1 & 6
' are toward front of Toddler.

YAxisRtLimit CON 2600 ' Yout right limit *2us = 5.34 ms
YAxisLfLimit CON 2400 ' Yout left limit *2us = 4.500 ms

I ===== [Vewilglole® |===
Incline VAR Word ' Pulses from Memsic 2125

ServoLoop VAR Word ' General purpose loop var

Counter VAR Nib ' Counter filters acceleration
tiltCount VAR Nib ' Temporary counter

L [Initialize J-----------mmmmmm oo

ServoLoop = 750
I ===== [Wedm Coce] ===

RightFromCenter:
Counter = 0
FOR ServoLoop = ServoLoop to RightLimit STEP StepVal
PULSOUT TiltServo, ServoLoop
PULSOUT StrideServo, StrideCenter

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

PAUSE Delay
PULSIN Yout,1l,Incline
'DEBUG "Right from Center - ServoLoop

Chapter #9: Acceleration-Based Motion - Page 195

"
’

DEC ServoLoop
= Counter + 1

CR

Incline = ", DEC Incline, cr

'DEBUG ": Incline = ", DEC Incline, CR

IF (Incline > YAxisRtLimit) THEN Counter =

'DEBUG "Counter = ", DEC Counter

'DEBUG ": tiltCount = ", DEC tiltCount,

IF Counter > escVal THEN LeftFromRight

NEXT

'DEBUG "ServoLoop = ", DEC ServoLoop, ":

LeftFromRight:

Counter = 0

FOR ServolLoop = ServolLoop to LeftLimit STEP StepVal

PULSOUT TiltServo, ServoLoop

PULSOUT StrideServo, StrideCenter
PAUSE Delay

PULSIN Yout,1l,Incline
'DEBUG "Left from Right - ServoLoop =

DEC ServoLoop

'DEBUG ": Incline = ", DEC Incline, CR
IF (Incline < YAxisLfLimit) THEN Counter = Counter + 1
'DEBUG "Counter = ", DEC Counter,": tiltCounter = ", DEC tiltCount, cr
IF Counter > escVal THEN RightFromLeft
NEXT
'DEBUG "ServoLoop = ", DEC ServoLoop,": Incline = ", DEC Incline, cr
RightFromLeft:
Counter = 0

FOR ServoLoop =
PULSOUT TiltServo, ServoLoop

PULSOUT StrideServo, StrideCenter
PAUSE Delay

PULSIN Yout,1l,Incline

'DEBUG "Right from Left - ServoLoop = ",
'DEBIG ": Incline = ", DEC Incline, CR
IF (Incline > YAxisRtLimit) THEN Counter

ServoLoop to RightLimit STEP Stepval

DEC ServoLoop

= Counter + 1

'DEBUG "Counter = ", DEC Counter,": tiltCount = "

IF Counter > escVal THEN LeftFromRight
NEXT
'DEBUG "ServoLoop = ", DEC ServoLoop, ":
GOTO LeftFromRight
END

There are two ways to run program 9.1.

Downloaded from Elcodis.com electronic components distributor

= ", DEC tiltCount, cr

Incline = ", DEC Incline, CR

http://elcodis.com/parts/844626/27311.html

Page 196 - Advanced Robotics with the Toddler

The first way is as it is printed above. Toddler will tilt back and forth going between the
YaxisRtLimit and YAxisLfLimit values. Be sure to support your Toddler while it is
moving as it may fall over.

The second way is to globally replace ‘DEBUG with DEBUG first. Toddler will go much
slower because the servo refresh rate is so slow but Toddler will indicate the measured
tilt (actually just the pulse width/2) values on the pEBUG screen on your PC.

Watch the values as Toddler goes from side to side. Pick the robot up and tilt left and
right it to get a feel for how the Memsic sensor works and what values correspond to
what tilt.

Noise Filter

The counter in the Program 9.1 allows filtering the tilt values. If it weren’t there, the
tilting would stop the first time a value over the limit was read. The sensor is looking at G
forces. Anything touching the Toddler while it is sensing could cause an out of limit
value to be read. The IF statements and counter require multiple measurements outside
the limit before acting.

ACTIVITY #2: INTEGRATED SENSOR WALKING PROGRAM
Enter and run Toddler Program 9.2.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #9: Acceleration-Based Motion - Page 197

L s [Title J--ommmmmmm s m oo oo m oo
' Toddler Program 9.2 Complete Sensor Management.bs2

' This program has real time servo programming, inclinometer sensing

' Toddler bumper toes detection and infrared object detection

' {s$sTAMP BS2}

' {$PBASIC 2.5}

TiltServo PIN 13 ' tilt servo on X7
StrideServo PIN 12 ' stride servo on X6
LeftIRLED PIN 4 ' left IRLED

Right IRLED PIN 15 ' right IRLED

LeftIR Sensor PIN 11 ' left IR sensor input
RightIR Sensor PIN 14 ' right IR sensor input

Spkr PIN 8 ' beeper pin

Yout PIN 10 ' Yout from Memsic 2125
LeftBumper PIN 2 ' bumper switch on left foot
RightBumper PIN 1 ' bumper switch on right foot
LeftBumpPU PIN 3 ' left bumper pull up
RightBumpPU PIN 0 ' right bumper pull up

' Indicator LEDs are optional, but useful for seeing movements

LeftVisionLED PIN 5 ' left vision display LED -
RightVisionLED PIN 6 ' right vision display LED -

R [Constants J---------comccommommm oo oo em - -
MoveDelay CON 0 ' in milliseconds - normally 20

' code is already using 30 ms

TiltStep CON 5 ' experiment with this wvalue
RightTilt CON 500 ' tilt limits was 620
CenterTilt CON 750

LeftTilt CON 1000 ' was 880

StrideStep CON 7 ' StrideServo step size
RightStride CON 625 ' stride limits was 650
CenterStride CON 750

LeftStride CON 875 ' was 850

ctrlLEDs CON %1111 ' define DIRs as constants to
prepBumper CON %1001 ' simplify LED/bumper setups

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 198 - Advanced Robotics with the Toddler

bothGreen CON %0110 ' OUTa register sets red/green
bothRed CON %1001 ' status on P0-P3 for Twinkle Toes
rightRed CON %0101 ' object detection states
leftRed CON %1010
bothLEDsOff CON %1001
Fwd CON 0 ' codes to pick movement table
PivL CON 1 ' set newMove to one of these
PivR CON 2 ' values and New Movemt will LOOKUP
BumpL CON 3 ' the right movement table
BumpR CON 4
escVal CON 4 ' Indicator for excessive tilt
' Right and left depend on
' how you mounted the Memsic
' sensor. Below assume pins 1 & 6
' are toward front of Toddler.
' Use your values here
YAxisRtLimit CON 2560 ' Right limit - was 2570 = 5.14 ms
YAxisLfLimit CON 2460 ' left limit - was 2350 = 4.70 ms
' Yout center - is 2510 = 5.02 ms
L [Variables J--------------m oo oo oo

' Bit variable flags set so 1 causes the action to be taken

doneTiltFlag VAR Bit ' Tilt servo reached new value
doneMoveFlag VAR Bit ' Servos have reached new values
rightIR Flag VAR Bit ' See something on right side
leftIR Flag VAR Bit ' See something left side
rightBumpFlag VAR Bit ' Bumper hit on right side
leftBumpFlag VAR Bit ' Bumper hit on left side
sensors VAR Nib ' Lower 2 bits of the sensors

' variable used to store IR values
currentMove VAR Nib
newMove VAR Nib
Counter VAR Nib ' Filters tilt sensor output
Mx VAR Word ' index for movement tables
MxOffset VAR Byte ' added to Mx for index
bMovmnt VAR Byte ' table value for movement lookup
currentTilt VAR Word
currentStride VAR Word
newTilt VAR Word
newStride VAR Word
Incline VAR Word ' Pulses from Memsic 2125

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #9: Acceleration-Based Motion - Page 199

v [EEPROM Data] -=--=-== === === m oo oo oo

' These are actual values saved in the Basic Movement tables.

TL CON 0 ' use lower nibble for these
TC CON 1

TR CON 2

SL CON 3

SC CON 4

SR CON 5

XX CON 255 ' table end code

Voo Basic Movement Tables -------

' These tables contain Basic Movements consisting of bytes containing
' above Basic Movement Codes to describe movement sequences.

' An xx indicates the end of a list.

' Note that PivotLeft and PivotRight aren't necessarily entered at the
' of their tables

Forward DATA TR, SL, TL, SR, xx
PivotLeft DATA TR, SL, TL, SR
DATA TC, SL, TL, SR, xx
PivotRight DATA TR, SL, TL, SR
DATA TR, SL, TC, SR, xx
RBumper DATA sL, TR, SR, TC, SL, TL, SR, xx
LBumper DATA SR, TL, SL, TC, SR, TR, SL, TL, SR, xxX
L [Initialize J------——---" -~ m oo~

DIRS = ctrlLEDs
OUTS = bothGreen

GOSUB Clr Vision ' reset vision LEDs and flags
Counter = 0 ' reset tilt filter
ResetFeet:

newTilt = CenterTilt
newStride = CenterStride
currentTilt = CenterTilt
currentStride = CenterStride

FOR currentMove = 1 TO 15 ' center feet for .3 sec
GOSUB Move It ' currentMove is only a nibble
PAUSE 15 ' make up 20 ms servo refresh time
NEXT

'DEBUG "Forward = ", DEC Forward, cr

'DEBUG "PivotLeft = ", DEC PivotLeft, CR, "PivotRight = "

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 200 - Advanced Robotics with the Toddler

'DEBUG DEC PivotRight,CR

'DEBUG "RBumper = ", DEC RBumper,
doneTiltFlag = 1

doneMoveFlag = 1

sensors = 0

MxOffset = 0

FREQOUT Spkr, 2000, 3000
rightBumpFlag = 0
leftBumpFlag = 0

currentMove = 15
' newMove = Fwd

' newMove = PivL
' newMove = PivR
' newMove = BumpL
' newMove = BumpR

Main Program:

DO
GOSUB Do_Vision
GOSUB Do_Bumper
GOSUB New_Movemt
GOSUB Do_Movement
'PAUSE MoveDelay

LOOP

END

"LBumper = ",

DEC LBumper, CR

program start/restart signal.

invalid value to assures start
for testing single moves -
comment out GOSUBs to vision
and bump or the value might be
overwritten

look for obstacles with IR
check for obstacles with bumpers
generates next move from table
gives servo pulses out

no pause required because the
PBASIC code is using 30 ms

----- [Subroutines J-----------coooom oo

Do_Vision:

FREQOUT LeftIRLED,1,38500
sensors.BITO0 = LeftIR Sensor

FREQOUT RightIRLED,1,38500

pulse left IRLED.
store IR detector output in RAM.

repeat for the right IR pair.

sensors.BIT1 = RightIR Sensor

' check if currently doing IR move

IF ((leftIR_Flag = 1) & (rightIR Flag = 1)) THEN See Both
IF (leftIR_Flag = 1) THEN See_ Left ' is left only?
IF (rightIR Flag = 1) THEN See Right ' is right only?

' Load IR detector output values into the lower 2 bits of the sensors
' variable, storing a number between 0 and 3 that the BRANCH command
' can execute the appropriate routine.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #9: Acceleration-Based Motion - Page 201

BRANCH sensors, [See Both,See Right,See Left, See None]

See Both:
newMove = PivR
rightIR Flag = 1
leftIR Flag = 1
HIGH LeftVisionLED
HIGH RightVisionLED

flag: 1 = something on right side
flag: 1 = see something left side
left vision sequence display LED
right vision sequence display LED

RETURN

See Right:
newMove = PivL
rightIR Flag = 1 !
HIGH RightVisionLED '
RETURN

flag: 1 = something on right side
right vision sequence display LED

See Left:
newMove = PivR
leftIR Flag = 1 L
HIGH LeftVisionLED !
RETURN

flag: 1 = something left side
left vision sequence display LED

See_None:
newMove =
RETURN

Fwd

Do_Bumper:
DIRS = prepBumper
OUTS = bothLEDsOff
' Bumpers on each foot. A hit causes Toddler to back and turn.
' Code asssumes leg that hit is on the leg that is moving
' (while leaning on the other leg).
' A hit backs up the hit leg right away then steps back 1 step
' and does a pivot away.

IF
IF

(leftBumpFlag =

1) THEN Bump LeftA
(rightBumpFlag = 1)

THEN Bump_ RightA

' check for old bumper hit on left
' check for old bumper hit on right

IF (LeftBumper = 0)
IF (RightBumper = 0)
DIRs = ctrlLEDs
OUTS = bothGreen

THEN Bump Left
THEN Bump Right

RETURN

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 202 - Advanced Robotics with the Toddler

Bump_Left:

'DEBUG "bump left", CR ' sends only once on change
Bump_LeftA:

leftBumpFlag = 1 ' flag indicates bump response move

newMove = BumpL
DIRS = ctrlLEDs
OUTS = leftRed
GOTO Clr Vision ' goes to Clr Vision

Bump_ Right:
'DEBUG "bump right", CR

Bump_ RightA:
rightBumpFlag = 1
newMove = BumpR
DIRS = ctrlLEDs
OUTS = rightRed
' falls through to Clr Vision

Clr Vision: ' reset vision LEDs and flags
rightIR Flag = 0 ' flag: 1 = something on right side
leftIR Flag = 0 ' flag: 1 = something left side
LOW LeftVisionLED ' left vision sequence display LED
LOW RightVisionLED ' right vision sequence display LED
RETURN

e e e e e e e e

New_Movemt : ' sequence for forward motion
IF (newMove <> currentMove) THEN ' if new movement visit DATA table

'DEBUG CR, "start NewMovemt; newMove = ", DEC newMove
'DEBUG ", currentMove = ", DEC currentMove, CR
doneMoveFlag = 1 ' stop current move wherever it is

currentMove = newMove

' When customizing the program, here is where to integrate between

' moves. You can make the transitions reasonable by using the existing
' Mx value and MxOffset to compute the proper MxOffset to start into

' the next move.

IF ((newMove = Fwd) OR (newMove = BumpL) OR (newMove = BumpR)) THEN
MxOffset = 0 ' reset MxOffset value for new move
ENDIF
' note: kept old MxOffset value for lead into pivot left or right

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #9: Acceleration-Based Motion - Page 203

LOOKUP newMove, [Forward, PivotLeft, PivotRight, LBumper, RBumper] , Mx
' lookup movement table index

ENDIF

IF (doneMoveFlag = 1) THEN ' done - lookup new move in table
Counter = 0 ' reset tilt filter
READ (Mx + MxOffset), bMovmnt ' read next basic move byte
'DEBUG "Mx = ", DEC Mx, ", MxOffset = ", DEC MxOffset

MxOffset = MxOffset + 1

IF (bMovmnt < xx) THEN ' end code so do new move
'DEBUG " DbMovmnt = ", DEC bMovmnt, " "
SELECT bMovmnt ' set and display movement type
CASE TL : newTilt = LeftTilt : 'DEBUG "TL, ", CR
CASE TC : newTilt = CenterTilt : 'DEBUG "TC, ", CR
CASE TR : newTilt = RightTilt : 'DEBUG "TR, ", CR
CASE SL. : newStride = LeftStride : 'DEBUG "SL, ", CR
CASE SC : newStride = CenterStride : 'DEBUG "SC, ", CR
CASE SR : newStride = RightStride : 'DEBUG "SR, ", CR
ENDSELECT
' will fall through if invalid index
ELSE
'DEBUG " xx = finished table", CR, CR
MxOffset = 0 ' finished move sequence so restart
leftBumpFlag = 0 ' clear out left bumper hit flag
rightBumpFlag = 0 ' right too

DIRS = ctrlLEDs
OUTS = bothGreen

GOSUB Clr Vision ' reset vision LEDs and flags
GOSUB Do _Vision ' previous movement done figure out
GOSUB Do_Bumper ' new movement
GOTO New_Movemt ' restart this subroutine to get
ENDIF ' new table and offset
ENDIF
RETURN ' ignore if invalid

Do_Movement :

doneMoveFlag = 0 ' reset flags
doneTiltFlag =

|
o

IF (currentTilt = newTilt) THEN

doneTiltFlag = 1 ' Tilt is correct already
Counter = 0
PAUSE 1 ' Get servo loop out to 20 ms

ELSE

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 204 - Advanced Robotics with the Toddler

IF (currentTilt < newTilt) THEN ' start tilt calculations
currentTilt = currentTilt + TiltStep
' from right tilt = increment
PULSIN Yout,1l,Incline
'DEBUG "Incline = ", DEC Incline, CR
IF Incline < YAxisLfLimit THEN
Counter = Counter + 1

'DEBUG "Counter = ", DEC Counter, CR
ENDIF
IF Counter > escVal THEN
newTilt = currentTilt ' at limit of tilt, move no more
ENDIF
IF currentTilt >= newTilt THEN
currentTilt = newTilt ' correct 1f overshot tilt

doneTiltFlag = 1

Counter = 0
ENDIF

ELSE
currentTilt = currentTilt - TiltStep
' from left tilt = decrement

PULSIN Yout,1l,Incline
'DEBUG "Incline = ", DEC Incline, CR
IF Incline > YAxisRtLimit THEN

Counter = Counter + 1

'DEBUG "Counter = ", DEC Counter, CR
ENDIF
IF Counter > escVal THEN newTilt = currentTilt
IF currentTilt <= newTilt THEN

currentTilt = newTilt ' stop at limit of tilt
doneTiltFlag = 1
Counter = 0
ENDIF
ENDIF

ENDIF
Move_Stride:

IF (currentStride < newStride) THEN
currentStride = currentStride + StrideStep
' from right stride = increment
IF (currentStride >= newStride) THEN
currentStride = newStride
IF (doneTiltFlag = 1) THEN doneMoveFlag = 1
' uses doneMoveFlag to increment
' states
ENDIF
ELSE
currentStride = currentStride - StrideStep
' from left stride = decrement
IF (currentStride <= newStride) THEN' jump if still moving
currentStride = newStride

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Chapter #9: Acceleration-Based Motion - Page 205

IF (doneTiltFlag = 1) THEN doneMoveFlag = 1
' uses doneMoveFlag to increment
ENDIF ' states
ENDIF

Move It:
PULSOUT TiltServo, currentTilt
PULSOUT StrideServo, currentStride
RETURN

Do_Movement is the big change here. The tilt section kept the limits for the servo pulse
width but opened the values out to their full range. Measuring the tilt sensor was
integrated with the tilt movement.

If you recall, the program from the last experiment just managed to get the servo pulses
out at 20 ms intervals. Now we just added a measurement that takes around 5 ms and
some more calculations. When the tilt is ramping, the servo refresh is 30 ms. Not as good
as it can be! A quick and dirty fix was to check up front if the tilt is already where it is
supposed to be. If it is, we set the flag and skip the tilt sensing altogether. Since that
would run at 19 ms servo refresh, a 1 ms pAUSE was added. When we have to do the tilt
measurements, the refresh time goes back to 30 ms. It works like that but any changes to
this program could cause the servo movements to get rough. As it is, the same step values
for tilt are slower for tilting.

Where's the Problem?

The whole issue is the need to keep pulsing the servos every 20 ms. Toddler really
doesn’t need to use its vision and check the bumpers every 20 ms. You could set up the
state machines for vision and bumpers to run every other time. On one pass through the
main Do...LooP, do the IR, the next the bumpers. That trick will minimize the maximum
time between servo pulses and get smoother performance back. The big question now
becomes — “How do I measure the servo pulse cycle times?” Actually, if you have an
oscilloscope, it is easy. But many people don’t have one so that brings us back to the
problem.

Co-processor: Another Solution

Tuning a processor to get the absolute maximum performance out of it is an interesting
and challenging exercise. It can also be a big pain and require lots of time spent with an

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 206 - Advanced Robotics with the Toddler

oscilloscope trying to find a quicker way of executing your code. If your goal is to try out
new and fun behaviors, or sensors, or whatever, on your Toddler, there is another way.
Since the whole problem was the servos and their need for regular updates you can use a
“Co-Processor” that is specially programmed to handle the servos. There are two major
distinctions in “servo controller” Co-Processors. One type is given the new servo position
and it sends the servo to that position at full speed. It then gives the same pulse widths
every 20 ms to the servo until you send a new value. That type is better suited for
wheeled robots with modified servo motors. They aren’t very helpful in a walking robot.
The issue with a walker is that it is constantly changing the value of the servo output
pulse in a ramped fashion. As you recall, that is what the Stridestep and TiltStep
were used for in the Do Movement subroutine. Happily, there is another type. A
“ramping” servo controller remembers where each servo is and ramps (adds constant
steps like Do Movement did) to get to the new position. It essentially executes the
Do_Movement subroutine for you. Many Co-Processors have more than just servo
controllers in them. One we recommended is from Blue Bell Design Inc.
(www.bluebelldesign.com). It has 8 ramping servo controllers, 5 analog to digital
converter inputs (10-bit), and extra inputs and outputs. Best of all, it will be available on
a compatibly sized PC board for easy installation on your Toddler! The Blue Bell Design
Co-Processor is discussed in Appendix C.

CHALLENGES

vV In Do_Movement, the PULSIN command reads the value of the Memsic 2125
accelerometer. Since we know the code is too slow to keep up with 20 ms refresh
on the servos, and there is plenty of code space left, is there some way you can
use the current state of the accelerometer signal to pick up an average of 1.5 ms
in the worst case? What is the worst case state of Yout? Why is it the worst
case? Hint: What do you know about how purLsin works that makes a difference?

V' Tune the timing of your Toddler for optimal speeds, tilt, and stride. How good
can you get it to be?

V' You know that Toddler really doesn’t need to use its vision and check the
bumpers every 20 ms. Can you think of ways to make the state machines in
vision and bumpers run on alternate cycles? What happens to the evenness of the
servo steps if the duration between servo pulses changes cycle to cycle?.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Appendix A: Parts Listing and Sources - Page 207

Appendix A: Parts Listing and Sources

All parts used in the Toddler kit are available individually from the Parallax Component
Shop at www.parallax.com. If you can’t readily find the component you are looking for
in the Component Shop enter the name of it in the on-line search box using the stock
code.

The Toddler Kit comes in two flavors:

e Gold Anodized Toddler Kit - 27310
e Blue Anodized Toddler Kit - 27311

Toddler Kit Bill of Materials

Parts and quantities subject to change without notice
Parallax Part# |Description Qty/Kit
Electronic Components
150-02210 220 Ohm resistors ¥ watt 5% tolerance 4
200-01040 0.1 uF capacitor 2
200-01031 0.01 uF capacitor 2
350-00001 Green LED 2
350-00003 Infrared LEDs 4
350-00007 Yellow LED 2
350-00009 Photoresistors 2
350-00014 Infrared detector 4
350-90000 ILED standoffs 4
350-90001 ILED light shields 4
550-00020 Toddler Printed Circuit Board with BASIC Stamp 2 1
753-00001 Battery Pack with Tinned Wires 1
800-00016 Jumper wires (bag of 10) 1
900-00001 Piezospeaker 1
900-00010 Parallax Toddler Servo (Toddler Mini F BB) 2
Metal Parts
720-00001 Toddler Top Plate - Gold Anodized 1
720-00002 Toddler Top Plate - Blue Anodized 1
720-00003 Toddler Body - Gold Anodized 1
720-00004 Toddler Body - Blue Anodized 1
720-00005 Toddler Foot - Left Gold Anodized 1

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 208 - Advanced Robotics with the Toddler

720-00006 Toddler Foot - Left Blue Anodized 1
720-00007 Toddler Foot - Right Gold Anodized 1
720-00008 Toddler Foot - Right Blue Anodized 1
720-00009 Toddler Ankle 2
720-00010 Toddler Legs 4
Hardware
700-00002 3/8" 4/40 machine screw — panhead 10
700-00003 4/40 nut 14
700-00016 3/8” 4/40 machine screw — flathead 6
700-00028 1/4" 4/40 machine screw — panhead 12
700-00060 1” 4/40 aluminum standoffs female/female 4
710-00100 3/16” long 4/40 socket head cap screw — stainless steel 4
712-00001 1/2" outer diameter flat round plastic washer 4
725-00002 3” long 3/16" outer diameter stainless steel rod 2
725-00003 1/16" ball joints with 2/56 thread (nut, ball joint, cup) 4
5.4" long stainless steel rod with 2/56 0.5" thread on each
725-00004 end 2
725-00005 3/32" hex L-key 1
725-00006 3/32" E/Z adjust plastic horn bracket for 4-40 screw 1
725-00007 .072” brass servo horn connector (brass fitting, rubber
holder and small screw) — in a package 1
725-00008 .072” diameter “L” shaped 2” wire 2
726-00001 3/16" collars (4), set screw and wrench 1
Miscellaneous
122-00001)Advanced Robotics with the Toddler Manual 1
123-00001 Toddler Printed Insert 1
800-00003 Serial cable 1
900-00007 The Plastic Box 1
700-00064 Parallax Screwdriver 1
Additional Recommended Hardware
Parallax Part # Description
27312 Toddler Toes Kit for Chapter 8
28017 Memsic 2125 Accelerometer for Chapter 9

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Appendix B: Toddler PCB Schematic - Page 209

IC

Toddler PCB Schemat

Appendix B

D uoIsiaey S9.66 YD U0y LIOS'SSE|OUISALUEIS A
001 BHNS ‘3AUQ CIUBKY BES i
19|ppol au) _.xm__m._ma_ Wod oule|ered mamwan
B §
B GEees GCesaes | — _
(Lxny | 1d CEEEE GEEEE 0d
0d GEEEE GEa88H Ld
S S CEHEEE CEegd || 2dH R sid Hsay ssal-
Ens CE88E G884 || - vid |- oad +8u(+d
) A GeeeE Geeed || vdH £id 194 cay [ed
cixny | od GEEEE GeEe8 || s9H zid Hoou zauH 2
|_&d] CEE88 E88E8E || odH SS SSA _ bd H10¥ gezaisvag FBHH 1
€X Gaee8 cesss || W o bl — T Oid [qeod osyH od
s5 |4 CEEEs GCeEgd Bd [—1Zd £d —] _|_ 6d €0y sS/0Z- £y
g)xny | a4 GEE88 EEE8H 6d —{+d 5d pondl | 8d POU o e aig ST
2d GEEEE GEE8E || odH od idl— 1d fHsou ST |yt _
oy — GEE86 868 |[1dH s sdf—{ pwvp od [Hooy HRM gyl T
CEHEEE CEEEE || ddH —{0Ld bid [Mo ER S Fiel] EPA
s Gee68 cegea ||adH o sidf— zoso PPA
¥y | 6d EeeeE GeEeg || rdH bL—rid sid— 1050 201y
old Gee68 ceeea | [sdH PPA__UA PRRIT SSA
X — prevrv— —
SPEeH PonTy R
_ﬂmnumm_auuun_nn_ mhn M (o
= juaguasy -
() onses | wp (&1
zld ssA | | (DA PPA 73
ox _H
LsA
(1) onses | uip f——f <9
£id
o @an .HulA 5
— T & L H
Fld nLo
n-m SSA 5 Ak e
k-2 I
= pp —— = AN £
6X > Sare
i v AN aa | " o _.|o.."_.0| = 1 2
W.U 4 | oz 1aw0d N 3 - =l e
n-m dap | ;
| PPA— R == X e s WweS
ax 2 3 3
PR PRA (1A FRA PR BPA

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Appendix C: Blue Bell Designs Co-Processor Chip - Page 211

Appendix C: Blue Bell Designs Co-Processor

INTRODUCING BLUE BELL DESIGN

Parallax customers make many accessories for our robot and some of them are for sale.
This appendix is an example of a co-processor from Blue Bell Design
(www.bluebelldesign.com). At press time for this text the Blue Bell Design product is not
available through Parallax, but may be in the future..

Chapters 8 and 9 discussed Real Time Programming and some of the difficulties you can
get into when trying to keep up with some task that requires servo refreshing at a
relatively high rate. The Toddler challenge is keeping up with refreshing both the servos
every 20 ms.

How does it help?

A Co-Processor is an additional processor added to the main processor, which, in
Toddler’s case, is the BASIC Stamp. Various manufacturers put different features in their
Co-Processors. In Chapter #9, this text discussed the benefits of a ramping-type servo
controller. That type of controller would perform the Do_Movement subroutine with little
help from the main processor. The Blue Bell Design Co-Processor has ramping servo
controllers for up to 8 servos, plus five analog to digital converter inputs (10-bit), and
extra inputs and outputs. Best of all, it is even available with a PC board to easily attach
to your Toddler.

Where do the interface pins come from?

Obviously, if the BASIC Stamp is to talk to this Co-Processor, it will require some 1/O
pins from the BASIC Stamp. In this case it’s four. If you were counting the earlier
programs, you’ll see that the program in Chapter #8 had only a few spare pins left.
Chapter #9 had even fewer left. Evaluating the pin usage carefully you can see the
display LEDs can go. This isn’t an altogether great solution but would work in a pinch.
The pin-out of the PC board also requires moving some functions to different I/O ports
but that is even less of an issue thanks to the flexibility of the new PIN type of variable in
PBASIC 2.5. It turns out, however that the unused servo controller outputs from the Co-
Processor can also be used as regular digital outputs. Since we only have two servos on
Toddler, we can use servo channels 4->7 for the indicator LEDs and still have channels 2
and 3 as spare servo controllers. Maybe for a tilt and pan camera mount? Now we are

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 212 - Advanced Robotics with the Toddler

actually ahead on the pins as we used 4 Toddler I/O to get 6 Co-Processor 1/0. The two
Toddler freed up pins can again be used for a Memsic 2125 Accelerometer.

How do | drive the Servo Controller?

The four interface lines to the Co-Processor are reset, timer complete, serial data to the
Co-Processor and serial data from it. You’ll need to do a co-processor reset in the
initialization routine. Just pull the reset line low for a few milliseconds to do that. To tell
a servo controller to go to a certain position, you send two bytes. The first byte tells the
co-processor that you want a certain channel to move to a new place. The second byte
tells where you want it to go. Remember we used a worp variable for PuLsouT to drive
the servos before. Here we only need a byte because, rather than being general case like
PULSOUT, the servo controller byte defines how many steps of 4 us are added to a base
value of 994 us. In other words, a 0 sent to the servo controller gives 0.994 ms. Send a
255 and get 2.014 ms. That is almost exactly the 1 to 2 ms range specified for most
servos. If you need wider pulses for special applications, there is a “coarse” mode that
spreads the range somewhat. Sending a total of four bytes then tells the controller where
both the servos need to be and it will continue to refresh them every 20 ms with no
further help from the toddler main processor.

Tilt
Stride

SEROUT To_Co_Proc, Baud, [TiltServo,newValue] 'Set Servo 0
SEROUT To_Co_Proc, Baud, [StrideServo,newValue] 'Set Servo 1

As we discussed in Chapter #9, you really don’t want the servo to move to the final
position at full speed. That is why we had Tiltstep and StrideStep in the
Do_Movement subroutine. To get the servo controllers to ramp to position, just send two
bytes per servo channel. The first tells the controller to store the ramp value and enable
ramping. The second value contains the ramp rate for that channel. Unlike TiltStep
and stridestep, the servo controller adds only a quarter of the value sent for each 20
milliseconds cycle (it keeps track of the fractions internally). This allows for up to a 20
second full range transition. The maximum ramped speed is 31 counts, which takes 0.66
seconds for the transition. Setting the ramp value back to zero disables ramping for that
channel. Ramp rates stay in effect until rewritten or the co-processor is reset. They are
also not dependent on the loop speed in the BS2 as they are incremented once per 20 ms
not once each time through the control loop. Since we have only been using a single rate
for tilt and another one for stride, we can write the ramp values at initialization time and
not worry about it anymore. In the following code we used Tiltstep*4 to keep the steps
sizes like the previous programs.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Appendix C: Blue Bell Designs Co-Processor Chip - Page 213

SEROUT To_Co_ Proc, Baud, [TiltRamp, (TiltStep*4)] 'write rate to servo0
SEROUT To_Co_Proc, Baud, [StrideRamp, (StrideStep*4)] 'write rate to servol

How do | know when the servo is finished moving?

One benefit of calculating in the BASIC Stamp is that you constantly know where the
servo is at any given time. The disadvantage is, of course, that it takes a lot of power
from the processor! Since the servo controller in the co-processor is now doing this for
you, you’ll have to figure out how long it will take to move the servo to the new position
yourself. This is easily done by finding the difference from where you are to where you
are going and dividing by the step rates. Now you have almost nothing to do but wait
until the servo controller is finished with the move. If you use a PAUSE instruction, the
processor stops while it is waiting. That isn’t much help! You could also read the current
servo position out of the servo controller but there is a better way. Here is where a unique
feature of the Blue Bell Design Co-Processor comes into play. There are 8 timer channels
that keep time in increments of 20 ms. You can set a timer value and periodically check
to see if any are finished by looking at the single Timer Expired pin. That pin goes high
to signify a timer just completed. It is reset by reading a timer status byte that tells which
timer(s) finished. Here we’ll use timer 0.

SEROUT To_Co_Proc, Baud, [(128),DelayTime] ' write Timer 0 with delay value

To test the timers and reset the flag:

IF Timer Exp = 1 THEN ' check if any timers done
' read alarm byte to get and
clear
SEROUT To_Co_ Proc, Baud, [119] ' send the 1 byte command
SERIN Frm Co_ Proc, Baud, [SerDIn] ' data comes back into SerDIn
IF (SerDIn & $01) THEN doneMoveFlag = 1 ' servo is finished if Timer 0.
' If any other timers are also in
use,
' add your code to check them
here.
ENDIF ' IF Timer Exp = 1

Now let’s see the whole code.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 214 - Advanced Robotics with the Toddler

L s [Title J--ommmmmm o m oo oo oo oo oo
' Toddler CoP Program A.l FSM Walker.bs2

' This program has real time servo programming and sensor integration.

' Toddler now wanders in a straight line until it sees or hits something.

' by H. W. Lewis (www.bluebelldesign.com)

' {s$sTAMP BS2}

' {$PBASIC 2.5}

To_Co_Proc PIN 2 ' pin for data to Co-Processor

Frm_Co_Proc PIN 3 ' pin for data from Co-Processor

Timer Exp PIN 0 ' Timer Expired I/O pin from Co-Processor
Rst_Co_Proc PIN 1 ' pin for reset to Co-Processor when wired
LeftIRLED PIN 4 ' left IRLED

RightIRLED PIN 15 ' right IRLED

LeftIR SensorIn PIN 11
RightIR SensorIn PIN 14

left IR sensor input
right IR sensor input

Spkr PIN 13 ' beeper pin
LeftBumper PIN 7 ' bumper switch on left foot
RightBumper PIN 10 ' bumper switch on right foot
Left B PU PIN 8 ' left bumper pull up - not needed unless
' 3-wire connector used on new Toddler PCB
Right B PU PIN 9 ' right bumper pull up - not needed unless ..""
CycleIndicator PIN 12 ' shows how fast main loop is going - toggles

' each time through - NOT REALLY NEEDED

'EMPTY PIN 5 ' spare Stamp I/O pin

'EMPTY PIN 6 ' spare Stamp I/O pin

I ===== [Comgitemits | ==============================c==c=========================
Baud CON 84 ' 9600 Baud => BS2 = 84

' CoProc V1.1 pin 21 pulled up = 2400 Baud
' CoProc V1.1l pin 21 grounded = 9600 Baud

TiltServo CON 136 ' use Servo 0 = Tilt
' (136 = write setpoint command)
StrideServo CON 137 ' use Servo 1 = Stride
StrideServoPos CON 25 ' read tilt servo current position in Co-Proc
TiltStep CON 3 ' TiltServo step size - was 5 steps/20ms

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

RightTilt CON
CenterTilt CON
LeftTilt CON
StrideStep CON
RightStride CON

CenterStride CON

LeftStride CON
TiltRamp CON
StrideRamp CON

Appendix C: Blue Bell Designs Co-Processor Chip - Page 215

40 ' Tilt limits (other Toddler used 620 = 1240us)
' that would be CoP = (61*4us)+ 994 = 1238us

' This Toddler needed 40 or 1154us

127 ' BS2 was 750 = 1500us

' CoP = (127*4us)+ 994 = 1502us

191 ' BS2 was 880 = 1760us

' CoP = (191*4us)+ 994 = 1758us

3 ' StrideServo step size - was 5 steps/20ms
76 ' Stride limits BS2 was 650 = 1300us

' CoP = (76%*4us)+ 994 = 1298us

127 ' BS2 was 750 = 1500us

' CoP = (127*4us)+ 994 = 1502us

176 ' BS2 was 850 = 1700us

' CoP = (176*4us)+ 994 = 1698us

144 ' start value to write servo 0 ramp

' (command = 128 + 16 + ch0 = 144)

145 ' write servo 1 ramp=1 more than servo 0 command

' Co-Proc servo channels 4,5,6 and 7 are used
' for LED drive - gives back lots to I/O pins
' to Stamp

'servo 4 = left bumper, 5 = rt bumper, 6 = Left vision, 7 = Right vision

' For Bumper LEDs,

low = on. For vision LEDs, High = on.

' This sounds weird but it allows easy wiring on the PCB.

LeftVisionLEDOff

LeftVisionLEDOnNn

RightVisionLEDOff

RightVisionLEDOnNn

LeftBumpLEDOf £

LeftBumpLEDON

RightBumpLEDOf £

RightBumpLEDONn

Downloaded from Elcodis.com electronic components distributor

CON 246 ' left vision display LED (0 = Off)
' uses servo channel 6 output for LED drive
CON 254 ' left vision display LED - 1 = On means

' executing vision sequence for left side

CON 247 ' right vision display LED - 0 = Off
' uses servo channel 7 output for LED drive
CON 255 ' right vision display LED - 1 = On means

' executing vision sequence for right side

CON 252 ' left bumper display LED - 1 = Off
' uses servo channel 4 output for LED drive
CON 244 ' left bumper display LED - 0 = On means

' executing bumper sequence for left side

CON 253 ' right bumper display LED - 1 = Off
' uses servo channel 5 output for LED drive
CON 245 ' right bumper display LED - 0 = On means

' executing bumper sequence for right side

http://elcodis.com/parts/844626/27311.html

Page 216 - Advanced Robotics with the Toddler

Fwd CON 0

PivL CON 1

PivR CON 2

BumpL CON 3

BumpR CON 4

e [Variables
DelayTime VAR
SerDIn VAR
doTiltFlag VAR
doneMoveFlag VAR
rightIR Flag VAR
leftIR Flag VAR
rightBumpFlag VAR
leftBumpFlag VAR
sensors VAR
currentMove VAR
newMove VAR Nib
Mx VAR
MxOffset VAR
bMovmnt VAR
currentTilt VAR
currentStride VAR
newValue VAR
newStride VAR

' codes to pick movement table
' set newMove to one of these values and
' New Movemt will LOOKUP the right movement table

Byte !
DelayTime
' variable where Co-Processor data comes back - reused

of 20 cycles to wait for move to complete

Bit ' flag: 1 = tilt servo has new value
' flag: 0 = stride servo has new value
Bit ' flag: 1 = servos have reached new values
Bit ' flag: 1 = see something on right side
Bit ' flag: 1 = see something left side
Bit ' flag: 1 = bumper hit on right side
Bit ' flag: 1 = bumper hit on left side
Nib ' the lower 2 bits of the sensors variable
' are used to store IR detector values.
Nib
Word ' index for movement tables
Byte ' added to Mx for index
Byte ' table value for lookup to movement
Byte
Byte
Byte
Byte

Movaneme Ceeles ||===

' These are actual values saved in the Basic Movement tables.

TL CON
TC CON
TR CON
SL CON
SC CON
SR CON
XX CON

P o

IS

255

Downloaded from Elcodis.com electronic components distributor

' use lower nibble for these

' table end code

http://elcodis.com/parts/844626/27311.html

Appendix C: Blue Bell Designs Co-Processor Chip - Page 217

' These tables contain Basic Movements consisting of bytes containing

' above Basic Movement Codes to describe movement sequences.

' An xx indicates the end of a list.

' Note that PivotLeft and PivotRight aren't necessarily entered at the start

' of their tables

Forward DATA
PivotLeft DATA

DATA
PivotRight DATA

DATA
RBumper DATA
LBumper DATA

LOW Rst_Co_Proc
PAUSE 20
HIGH Rst_Co_Proc

SEROUT To Co_ Proc,

SEROUT To Co Proc,

HIGH Left B PU
HIGH Right B PU
GOSUB Clr Vision

Downloaded from Elcodis.com electronic components distributor

TR, SL, TL, SR, XX
' possible rt bumper hit while SR
' or left bumper hit while SL

index into here
Forward.

TR, SL, TL, SR ' copy of forward,
' by keeping MxOffset value from

TC, SL, TL, SR, xx
' this is the actual pivot move.

index into here
Forward.

TR, SL, TL, SR ' copy of forward,
' by keeping MxOffset value from

TR, SL, TC, SR, xx
' this is the actual pivot move.

SL, TR, SR, TC, SL, TL, SR, xx
'back up 1 step and pivot left
' bumper hit assumes SR when hit happened.

SR, TL, SL, TC, SR, TR, SL, TL, SR, xx
'back up 1 step and pivot right
' bumper hit assumes SL when hit happened.

'Reset Co-Processor if wired to port

Baud, [TiltRamp, (TiltStep*4)]
'write rate to servo 0
Baud, [StrideRamp, (StrideStep*4)]

'write rate to servo 1

' power left bumper pullup
' power right bumper pullup
' reset vision LEDs and flags

http://elcodis.com/parts/844626/27311.html

Page 218 - Advanced Robotics with the Toddler

SEROUT To_Co Proc, Baud, [LeftBumpLEDOff]
' turn off LED
SEROUT To Co Proc, Baud, [RightBumpLEDOff]
' turn off LED
ResetFeet:
CurrentTilt = CenterTilt
CurrentStride = CenterStride
SEROUT To_Co_Proc, Baud, [TiltServo,CurrentTilt]
'Set Servo 0 = Tilt
SEROUT To_Co_Proc, Baud, [StrideServo,CurrentStride]
'Set Servo 1 = Stride
'DEBUG "resetCC", CR, 1f
'DEBUG "Forward = ", hex Forward, cr
'DEBUG "PivotLeft = ", hex PivotLeft, cr, "PivotRight = ", hex PivotRight,
cr
'DEBUG "RBumper = ", hex RBumper, cr, "LBumper = ", hex LBumper, cr

doneMoveFlag = 1
sensors = 0
MxOffset = 0

output Spkr
output LeftIRLED
output RightIRLED

PAUSE 1000

freqout Spkr, 2000,
rightBumpFlag = 0
leftBumpFlag = 0

3000

currentMove = 15
' newMove = Fwd
' newMove = PivL
' newMove = PivR
' newMove = BumpL
' newMove = BumpR

1

1

1

1

1

1

set all I/O lines sending fregout
signals to function as outputs

wait with the feet straight at startup
program start/restart signal.

start with an invalid value to assure start
' for testing single moves -

you have to comment out GOSUBs to vision

and bump or the value might be overwritten

I ===== [Meilm Cegle ||==

Main_Program:
DO
TOGGLE CycleIndicator

Downloaded from Elcodis.com electronic components distributor

1

indicate speed of loop on pin (typ 12 -> 1l4ms)

http://elcodis.com/parts/844626/27311.html

IF Timer Exp =

1 THEN '

Appendix C: Blue Bell Designs Co-Processor Chip - Page 219

check if any timers done
' read timeout alarm byte to get and clear it

SEROUT To_Co_Proc, Baud, [119] ' send the byte command

SERIN Frm Co Proc, Baud, [SerDIn] ' data comes back into SerDIn

'DEBUG " DelayTime = expired, SerDIn = ",HEX SerDIn, " i = ",
DEC i,CR

IF (SerDIn & $01) THEN doneMoveFlag = 1

ENDIF

GOSUB
GOSUB

Do _Vision
Do_Bumper

GOSUB
GOSUB
LOOP

New_Movemt
Do_Movement

END

Do_Vision:

FREQOUT
sensors.bit0 =

FREQOUT RightIRLED,1,38500 '
RightIR SensorIn

sensors.bitl =

IF ((leftIR Flag =
IF (leftIR Flag = 1)
IF (rightIR Flag =

LeftIRLED,1,38500 !
LeftIR SensorIn !

1) & (rightIR Flag =

1) THEN See Right '

' servo is finished if Timer O.

' If any other timers are also in use,
' add your code to check them here.

' IF Timer Exp = 1

' look for obstacles with IR
' check for obstacles with bumpers

' generates next move from table
' gives servo commands out

pulse left IRLED.
store IR detector output in RAM.

repeat for the right IR pair.

' check if currently doing an IR move
1)) THEN See_Both
THEN See Left ' is left only?

is right only?

' By loading the IR detector output values into the lower 2 bits of the

' sensors
' variable,
' generated.

a number between 0 and 3 that the branch command can use is

' Sensor outputs a low to indicate it saw something so BRANCH looks

' backwards.

BRANCH sensors, [See Both,See Right,See Left,See None]

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 220 - Advanced Robotics with the Toddler

See_Both:
newMove = PivR
rightIR Flag = 1 ' flag: 1 = see something on right side
leftIR Flag = 1 ' flag: 1 = see something left side
SEROUT To Co Proc, Baud, [LeftVisionLEDOn]
' turn on LED
SEROUT To_Co_Proc, Baud, [RightVisionLEDOn]
' turn on LED
RETURN
See Right:
newMove = PivL
rightIR Flag = 1 ' flag: 1 = see something on right side
SEROUT To Co Proc, Baud, [RightVisionLEDOn]
' turn on LED
RETURN
See Left:
newMove = PivR
leftIR Flag = 1 ' flag: 1 = see something left side
SEROUT To Co Proc, Baud, [LeftVisionLEDOn] ' turn on LED
RETURN
See_None:
newMove = Fwd
RETURN

Do_Bumper:

' Code asssumes leg that hit is on the
' (while leaning on the other leg).

and does a pivot away.

IF (leftBumpFlag = 1) THEN Bump LeftA '
IF (rightBumpFlag = 1) THEN Bump RightA
|l
IF (LeftBumper = 0) THEN Bump Left
IF (RightBumper = 0) THEN Bump Right '
RETURN
Bump_Left:

Downloaded from Elcodis.com electronic components distributor

Bumpers on each foot. A hit causes Toddler to back and turn.

leg that is moving

A hit backs up the hit leg right away then steps back 1 step

check for old bumper hit on left

check for old bumper hit on right

check for bumper hit on left
check for bumper hit on right

http://elcodis.com/parts/844626/27311.html

Appendix C: Blue Bell Designs Co-Processor Chip - Page 221

'DEBUG "bump left", cr ' sends only once on change
SEROUT To_Co_Proc, Baud, [StrideServoPos]

' read the stride position
SERIN Frm Co Proc, Baud, [SerDIn] ' data comes back into SerDIn
currentTilt = SerDIn ' set the current position there for delay
SEROUT To_Co_ Proc, Baud, [LeftBumpLEDOn]

' turn on LED

Bump_ LeftA:

leftBumpFlag = 1 ' flag indicates doing a bump response move

newMove = BumpL

GOTO Clr Vision ' goes to Clr Vision which does RETURN
Bump Right:

'DEBUG "bump right", cr
SEROUT To_Co_Proc, Baud, [StrideServoPos]
' read the stride position
SERIN Frm Co Proc, Baud, [SerDIn] ' data comes back into SerDIn
currentTilt = SerDIn ' set the current position there for delay
SEROUT To_Co_Proc, Baud, [RightBumpLEDOn]
' turn on LED
Bump_ RightA:
rightBumpFlag = 1
newMove = BumpR
' falls through to Clr Vision which does RETURN

Clr Vision: ' reset vision LEDs and flags

IF rightIR Flag = 1 THEN
rightIR Flag = 0 ' flag: 1 = see something on right side

SEROUT To Co Proc, Baud, [RightVisionLEDOff]
' turn off LED

ENDIF ' IF used to prevent constant serial transmissions

IF leftIR Flag = 1 THEN
leftIR Flag = 0 ' flag: 1 = see something left side

SEROUT To_Co_Proc, Baud, [LeftVisionLEDOff]
' turn off LED
ENDIF

RETURN

New_ Movemt : ' output sequences for forward motion

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 222 - Advanced Robotics with the Toddler

IF (newMove <> currentMove) THEN ' if movement changed set up new DATA
' table.
'DEBUG cr, "start NewMovemt; newMove = ", HEX newMove
'DEBUG ", currentMove = ", HEX currentMove, cr
doneMoveFlag = 1 ' stop current move wherever it is

currentMove = newMove

' When customizing the program, here is where to integrate between moves.
' You can make the transitions reasonable by using the existing Mx value
' and MxOffset to compute the proper MxOffset to start into the next move.

IF ((newMove = Fwd) OR (newMove = BumpL) OR (newMove = BumpR)) THEN
MxOffset = 0 ' reset old MxOffset value for new move
ENDIF ' note: IF statement kept the old MxOffset

' value for starting pivot left or right

LOOKUP newMove, [Forward, PivotLeft, PivotRight, LBumper, RBumper] , Mx
' lookup movement table index

ENDIF

IF (doneMoveFlag = 1) THEN ' done moving - lookup new move in table
READ (Mx + MxOffset), bMovmnt ' read next basic move byte
'DEBUG "Mx = ", HEX Mx, ", MxOffset = ", HEX MxOffset

MxOffset = MxOffset + 1

IF (bMovmnt < xx) THEN ' end code so do new move
'DEBUG " DbMovmnt = ", HEX bMovmnt, " "
SELECT bMovmnt ' set and display movement type
CASE TL

newValue = LeftTilt

doTiltFlag = 1

'DEBUG "TL, ", cr
CASE TC

newValue = CenterTilt

doTiltFlag = 1

'DEBUG "TC, ", cr
CASE TR

newValue = RightTilt

doTiltFlag = 1

'DEBUG "TR, ", cr
CASE SL

newValue = LeftStride

doTiltFlag = 0

'DEBUG "SL, ", cr
CASE SC

newValue = CenterStride

doTiltFlag = 0

'DEBUG "SC, ", cr

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Appendix C: Blue Bell Designs Co-Processor Chip - Page 223

CASE SR
newValue = RightStride
doTiltFlag = 0

'DEBUG "SR, ", cr
ENDSELECT
' will fall through if invalid index
ELSE
'DEBUG " xx = finished table", cr, cr
MxOffset = 0 ' finished move sequence so restart
leftBumpFlag = 0 ' clear out left bumper hit flag
rightBumpFlag = 0 ' right too

SEROUT To Co Proc, Baud, [LeftBumpLEDOff]
' turn off left bumper display LED
SEROUT To_Co Proc, Baud, [RightBumpLEDOff]

' right too
GOSUB Clr Vision ' reset vision LEDs and flags c
GOSUB Do Vision ' since done previous movement, figure out new

' one

GOSUB Do_Bumper
GOTO New_Movemt ' restart this subroutine to get new
' table and offset
ENDIF

ENDIF

'Done_ New Move:
RETURN ' ignore if invalid

Do_Movement :

IF (doneMoveFlag = 1) THEN ' only do this when the move is done
DelayTime = 0

IF (doTiltFlag = 1) THEN ' only do this when the move is tilt
IF (currentTilt < newValue) THEN
DelayTime = newValue - currentTilt
ELSE
DelayTime = currentTilt - newValue
' coming from left tilt = decrement
ENDIF

SEROUT To_Co_ Proc, Baud, [TiltServo,newValue]
'Set Servo 0 = Tilt

DelayTime = DelayTime/TiltStep
CurrentTilt = newValue

ELSE ' IF (doTiltFlag = 1)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 224 - Advanced Robotics with the Toddler

IF (currentStride < newValue) THEN
DelayTime = newValue - currentStride
ELSE
DelayTime = currentStride - newValue
ENDIF

SEROUT To_Co_Proc, Baud, [StrideServo,newValue]
'Set Servo 1 = Stride

DelayTime = DelayTime/StrideStep

CurrentStride = newValue

ENDIF ' IF (doTiltFlag = 1)

IF DelayTime < 255 THEN DelayTime = DelayTime + 1

' to make up for fractions from divide
'DEBUG " DelayTime = ", DEC DelayTime, CR,LF
SEROUT To Co Proc, Baud, [(128),DelayTime]

'command to write Timer 0 with delay value

doneMoveFlag = 0 ' reset flag
ENDIF ' IF (doneMoveFlag = 1)
RETURN

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Appendix C: Blue Bell Designs Co-Processor Chip - Page 225

By using the cycleIndicator output we can see that the Main Program DO...LOOP NOW
normally takes only 12 to 14 milliseconds. More to the point, it no longer matters
anyway! The servos are kept moving along by the servo controllers. We now have almost
the complete BASIC Stamp 2 processor back for whatever great new things we can come
up with. If the program takes a while to get back to checking for the “Timer Expired” line
to be complete, it just means the response to seeing or feeling something or maybe the
time between moves is delayed. The smoothness of the servo movements is not
sacrificed. Programming also becomes much easier and non-critical.

What other features are in the Blue Bell Design Co-Processor?

There are also six channels of 10 bit A/D. Channel 0 is permanently wired to the battery
supply voltage. One of the others could be connected to the Memsic 2125 Accelerometer
to allow temperature compensation from the analog temperature output. Analog outputs
from IR distance sensors, temperatures, humidity, can all now be accurately measured.

There is an IR vision system and bumper sensors that can be used if BASIC Stamp 1/O
becomes a problem. See the data on Blue Bell Design’s website for more detailed

information.

The easy way to more fun!

Tuning a processor for absolute maximum performance can be a big pain, even though
it’s a standard part of any embedded process. On the other hand, with a Blue Bell Design
Co-Processor, you can easily try out new and fun behaviors, added sensors, or whatever,
on your Toddler. Best of all, it is available on an easily attached board for convenient
installation on your Toddler! Purchase it from www.bluebelldesign.com.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Index

-A-

Accelerometer, 189
Audience, vi

-C-

Co-processor, 205
-D-

Discussion group, vi
-E-

Educational concepts, v
-E-

Finite State Machine (FSM)
programming, 176, 184
Foreign translations, vi

-G-

Guarantee, 2
.-

Infrared, 113
-M -

Memory map, 75
Movements
Brute force method, 36

DATA tables, 50

Downloaded from Elcodis.com electronic components distributor

State transitions, 56
Turns, 65
-P-

PBASIC Commands
DATA, 50
FREQOUT, 115
RCTIME, 92
Variable aliases, 148

Photoresistors, 89

‘R-
Real time programming, 165, 190
-S-

Servos, 29

Subsumption architecture programming,
186

-T-
Teacher’s Guide, vi
Toddler Circuit Board
Basic connections, 6
Power switch, 7
Toddler Hardware
Angling feet outsteps, 21
Center of gravity, 28

http://elcodis.com/parts/844626/27311.html

Page 228 - Advanced Robotics with the Toddler

—

Prevent your Toddler Robot from running into objects using

Toddler Bumper Sensors.

The Toddler Bumper Sensors
are an add-on that attach to
the feet and wire directly to

the Toddler's BASIC Stamp
control board. Bi-color LEDs
indicate switch status.

For more information on sensors, or to order the Bumper Sensors visit www.parallax.com

Measure Acceleration

The Memsic 2125 is a low cost, dual-axis thermal accelerometer that is
capable of measuring dynamic acceleration (vibration) and static
acceleration (gravity) within a range of +2g. For integration into
existing applications, the Memsic 2125 is electrically compatible

with other popular accelerometers and is easy to interface to the
BASIC Stamp. Great to use in your next rabotic,
R/C airplane or alarm application.

W Wy AN Qrder onhne aT
/ Jlﬁ!"éﬁk/ <J wiww parallas,com

| Dual-Axis Accelerometer
#28017

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

ADD SOUND OUTPUT
TO YOUR ROBOT!

Make the most of your BASIC Stamp’s DTMFOUT and FREQOUT
commands by using an Audio Amplifier Application Module. The
Audio Amplifier AppMod employs an industry standard LM386
audio amplifier. Raw audio output is taken from BASIC Stamp
Pin-10 and filtered prior to amplification; this converts the
pulse-width modulation output of the BASIC Stamp to sinusoidal
waves for the best audio quality. The amplified signal is fed to an
onboard 8 ohm speaker. Order #29143 at www.parallox.com.

Sensors!

Expand the capabilities of your next BASIC Stamp project with
a sensor from Parallax. We stock an entire line of sensors that
are compatible with the BASIC Stamp microcontroller.

Clockwise from top:
* TAOS TCS230 Color Sensor (#30054)
* Memsic 2125 Dual-Axis Accelerometer (#28017)
® Sensirion SHTX Humidity Sensor (#28018)
® FlexiForce Pressure Sensor (#30056)

For these and other sensors visit the
Component Shop at www.parallax.com

= .

v |

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 230 - Advanced Robotics with the Toddler

LEARN DOBOJICS WITH THE BOE-BOT

If you enjoyed learning murocommller
programming with the BASIC Stamp,
why not continue the learning curve

by building a robot?

The Robotics! curriculum uses :
your BASIC Stamp 2 module and
Board of Educafion fo creafea
rolling robot that can follow \ 2 .
or avoid light, detect and avoid)\ a Ve
obiects with infrared, and much more. \
\ R

FOR MORE INEORMATION b —
OR TO ORDER ONLINE VISIT
WWW_DARALLAX.COM/SIC

=

OUFSG |

Looking for an all-in-one solution for
your latest BASIC Stamp project? Look no
further than Parallax Application
Modules. These modules are designed to
plug easily info any of our programming
boords with a BASIC Stamp and confain @
2x10 header (Board of Education, Super
Carrier Board, BS2p40 Demo Boord and
BASIC Stamp Activity Board). The
AppMods are easy to implement and yo
vuluuhle enginegring fin '

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Go to the head of the class!

Explore microcontroller programming and interfacing
with any of our popular Stamps in Class Curricula.

What's a Microcontroller?
introduces downloading PBASIC
code to a BASIC Stamp, building a
circuit on a breadboard, and simple
circuits with LEDs and pushbuttons.
Quite easy for the beginner.

Elements of Digital Logic will
immerse students into a sight, sound,
and hands-on logic environment.
This curriculum utilizes both
hardware and software
simultaneously to teach logic.

The 144-page Understanding Signals
text provides example circuits and
scope configuration for viewing and
capturing the common Stamps in

| Class signals.

Basic Analog and Digital will explore
the principles of interfacing analog
devices to digital microcontrollers.
This involves the commands built info
the BASIC Stamp, as well os the use of
an “analog to digital converter”.

Hiummm

LLLUR LRI LT R LR AR R R

Robotics will teach you how to mount the
Board of Education onto a robot chassis
to learn mechanical control, infrared
object detedion, light following and
avoidance.

Applied Sensors (formerly Earth Meo-
surements) covers program structuring,
sensor calibration, EEPROM data
logging, condudtivity of water, dosed-
loop feedback, and debugging in an
earth science format.

The Industrial Control Curriculum will
teach the basics of industrial process
control by introducing the use of
mechanical and digital switches, process

| control with on-off, differential gap,

and PID.

Advanced Robofics with the Toddler
will teach you how to build and
program a high-quality machined two-
servo bipedal walking robot controlled

. by an embedded BASIC Stamp 2.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

Page 232 - Advanced Robotics with the Toddler

350-90000
LED Standofis
o o o o 350-90001
LED light shields
700-00064
Parallax § =
scrawdriver 2
33
900-00010
720-00009 725-00002 Mini F B8 Servo
Toddler ankle 316" stainless pmy pmY
116" ball joints stoe] rod > =
725-00007 ;i%m 725-00008
brass 0.072 E/Z connector Lid 3/64" bent
stainless
brass rod

battery pack whinned wires

753-00001

3/16" 4 collars ‘ ”

wiscrew & wrench
S 5
/_,Z d‘ﬂ&
800-00016 G 8
jumper wires * A R 720-00004 Toddler body - blue
S doeas € (720-00003: gold)

Toddler circuit board
s @

720-00006
Toddler left

foot - blue
(720-00005; gold)

Parts and quantities in the Toddler kits are subject to change without notice. Parts may
differ from what is shown. Questions? Contact stampsinclass@parallax.com.

720-00002 720-00008
Toddler top plate - blue Toddler right foot - blug
(720-00001; goid) (720-00007; gold)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844626/27311.html

