


# Threshold Value Switches

## MCR-SWS/...

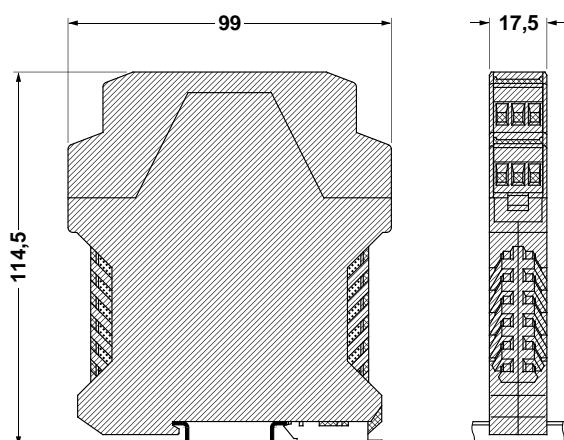
### 1. Description

- Relay/transistor output
- Limit indicator
- Selectable hysteresis

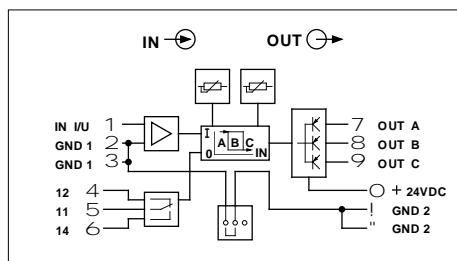


The MCR-SWS threshold value switch is used to monitor simple automation processes. Standard analog signals 0...10 V or 0...20 mA are processed on the input side.

The single-ended current input can be isolated using jumpers and therefore used as a differential current input. Using the differential input, several threshold value switches can be connected in series to monitor the current level.


From the analog input signals 0...10 V or 0(4)...20mA, a setpoint (limit value) is set in the module using a potentiometer. If the input signal reaches the setpoint (limit value), a relay contact is closed at the output.

After the setpoint (limit value) has been set, the required hysteresis can be set using another potentiometer. Both switching points control a relay.


Simple automation processes can be monitored using the changeover contact.

The three signal area states (A, B, and C) - below, within, and above the hysteresis - are provided as transistor outputs for monitoring. LEDs indicate the three signal areas.

The modules are 17.5 mm (0.689 in.) wide, have robust screw and plug-in connections, and can be mounted on all popular DIN rails.



## 2. Technical Data



|  | rigid<br>Connection data | flexible<br>[mm <sup>2</sup> ] | AWG   |
|--|--------------------------|--------------------------------|-------|
|  | 0.2-2.5                  | 0.2-2.5                        | 24-14 |

with signal input:

0...10 V  
0...20 mA  
4...20 mA



### MCR-SWS/...

| Type      | Order No.  | Pcs./Pkt. |
|-----------|------------|-----------|
| MCR-SWS/U | 27 66 46 5 | 1         |
| MCR-SWS/I | 27 66 47 8 | 1         |

| Technical Data                                         |                               |
|--------------------------------------------------------|-------------------------------|
| <b>Input</b>                                           | Input Signal                  |
| Input signal                                           | 0...10 V                      |
| Input resistance                                       | 0(4)...20 mA                  |
| Setting potentiometer                                  |                               |
| Setting range for the setpoint                         | 270° potentiometer with scale |
| Setting range for the hysteresis                       | 0...10 V                      |
| Setting precision for the hysteresis                   | 0.1...10 V                    |
| Internal hysteresis at the lower/upper switching point | ±30 mV                        |
|                                                        | 30 mV                         |

| MCR-SWS/U                     | MCR-SWS/I                     |
|-------------------------------|-------------------------------|
| 0...10 V                      | 0(4)...20 mA                  |
| ≥ 100 kΩ                      | ≤ 120 Ω                       |
| 270° potentiometer with scale | 270° potentiometer with scale |
| 0...10 V                      | 0...20 mA                     |
| 0.1...10 V                    | 0.2...20 mA                   |
| ±30 mV                        | ±60 µA                        |
| 30 mV                         | 60 µA                         |

| Output                                      |                      |
|---------------------------------------------|----------------------|
| Transistor level                            |                      |
| Output voltage                              | PNP outputs          |
| Maximum output current                      | 20...30 V DC         |
| Relay level                                 | 100 mA               |
| Type of contact                             | 1 Form C contact     |
| Maximum switching voltage/switching current | 250 V AC/2 A         |
| Cycles, mechanical                          | 10 x 10 <sup>6</sup> |

| MCR-SWS/U                     | MCR-SWS/I                     |
|-------------------------------|-------------------------------|
| 0...10 V                      | 0(4)...20 mA                  |
| ≥ 100 kΩ                      | ≤ 120 Ω                       |
| 270° potentiometer with scale | 270° potentiometer with scale |
| 0...10 V                      | 0...20 mA                     |
| 0.1...10 V                    | 0.2...20 mA                   |
| ±30 mV                        | ±60 µA                        |
| 30 mV                         | 60 µA                         |

| General Data                        |                                              |
|-------------------------------------|----------------------------------------------|
| Supply voltage                      | 20...30 V DC                                 |
| Current consumption                 | 60 mA                                        |
| Temperature coefficient             | ≤ 0.02%/K                                    |
| Step-response (10 - 90%)            | < 0.025 s                                    |
| Ambient operating temperature range | -20°C to +65°C (-4°F to +149°F)              |
| Electromagnetic compatibility       | CE Conformance with EMC Directive 89/336/EEC |
| • Noise emission                    | EN 50 081-1                                  |
| • Immunity to interference          | EN 50 082-2                                  |

| MCR-SWS/U                     | MCR-SWS/I                     |
|-------------------------------|-------------------------------|
| 0...10 V                      | 0(4)...20 mA                  |
| ≥ 100 kΩ                      | ≤ 120 Ω                       |
| 270° potentiometer with scale | 270° potentiometer with scale |
| 0...10 V                      | 0...20 mA                     |
| 0.1...10 V                    | 0.2...20 mA                   |
| ±30 mV                        | ±60 µA                        |
| 30 mV                         | 60 µA                         |



**Conformance With EMC Directive 89/336/EEC in Accordance With EN 50081-2, EN 50082-2**

**EMC (electromagnetic compatibility)**

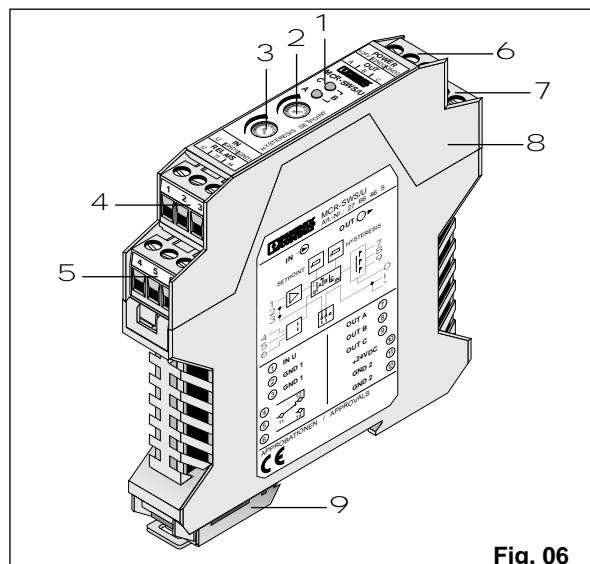
Noise immunity in accordance with EN 50082-2

- Electrostatic discharge (ESD)
- Electromagnetic HF field
  - Amplitude modulation
  - Pulse modulation
- Fast transients (burst)
- Surge current loads (surge)
- Conducted interference

Noise emission in accordance with EN 50081-2

|              |                                                 |
|--------------|-------------------------------------------------|
| EN 61000-4-2 | 8 kV air discharge <sup>2)</sup>                |
| ENV 50140    | 10 V/m                                          |
| ENV 50140    | 10 V/m                                          |
| EN 61000-4-4 | Input/output/supply<br>2 kV/5 kHz <sup>2)</sup> |
| ENV 50142    | Supply: 0.5 kV/2 Ω <sup>2)</sup>                |
| ENV 50141    | Input/output/supply<br>10 V                     |
| EN 55011     | Class A                                         |

EN 61000 corresponds to IEC 1000/


EN 55011 corresponds to CISPR11

<sup>2)</sup> Criterion B: Temporary adverse effects on the operating characteristics, which the device corrects automatically.

Class A: Industrial application, without special installation measures

**MCR-SWS/... – Threshold Value Switches**

- 1 LEDs for switching transistor areas
- 2 Threshold value potentiometer
- 3 Hysteresis potentiometer
- 4 Signal input  
(plug-in screw-cage terminal block)
- 5 Relay output  
(plug-in screw-cage terminal block)
- 6 Switching transistor outputs  
(plug-in screw-cage terminal block)
- 7 Power supply  
(plug-in screw-cage terminal block)
- 8 Upper part of the housing can be removed to set the jumpers
- 9 Metal lock for fastening on the DIN rail



**Fig. 06**

### 3. Setting the Hysteresis

**Example:** switching point 5 V, hysteresis  $\pm 1$  V (4V...6V) or switching point 10 mA, hysteresis  $\pm 2$  mA

- Turn both potentiometers (setpoint P1 and hysteresis P2) as far to the left as possible.
- Send a signal (5 V or 10 mA), which corresponds to the setpoint to the signal input ( $U_{IN}$  or  $I_{IN}$ ). LED C lights up.
- Turn P1 to the right until both LEDs light up (area B).
- Send a signal (4 V or 8 mA), which corresponds to the lower hysteresis to the signal input ( $U_{IN}$  or  $I_{IN}$ ). LED A lights up.
- Turn P2 to the right until both LEDs light up.

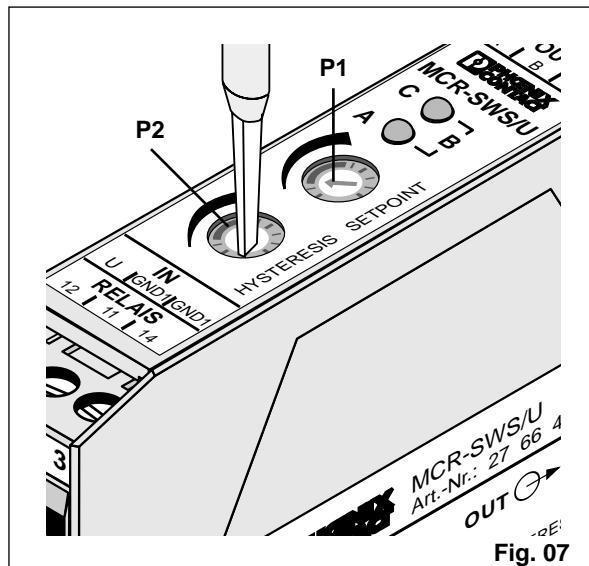



Fig. 07

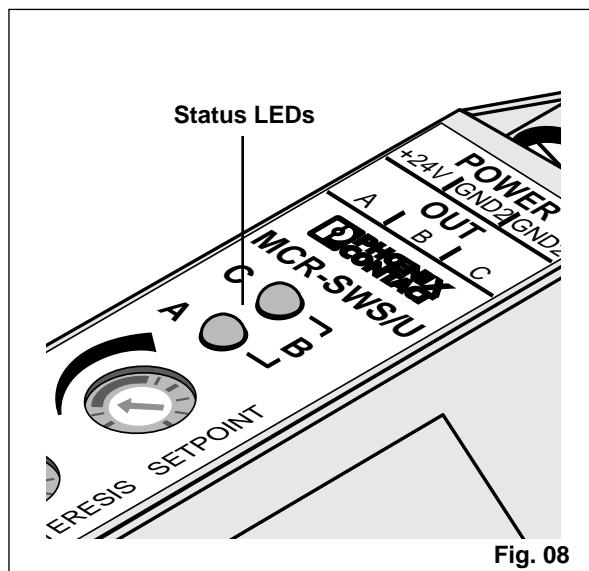



Fig. 08

#### Check:

The exact setting has been made if the following criteria have been met:

- Transition from area A (LED A) to area B (both LEDs) is 4 V  $\pm 15$  mV or 8 mA  $\pm 30$   $\mu$ A for a rising signal (0->10 V or 0->20 mA).
- Transition from area B (both LEDs) to area C (LED C) is 6 V  $\pm 15$  mV or 12 mA  $\pm 30$   $\mu$ A.

Deviations are caused by the internal hysteresis of 30 mV or 60  $\mu$ A.

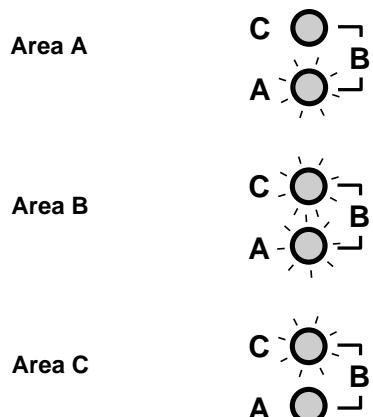



Fig. 09

## 4. Setting Differential Mode on the MCR-SWS/I

The input can be switched to differential mode to enable several threshold value switches with **current input 0...20 mA** to be connected in series.

The module is fitted with a single-ended input as standard.

### 4.1. Opening the Device

The fastenings on both sides of the upper part of the housing can be loosened using a screwdriver 1. The upper part of the housing and the electronics can now be pulled out approximately 3 cm (1.181 in.) 2.

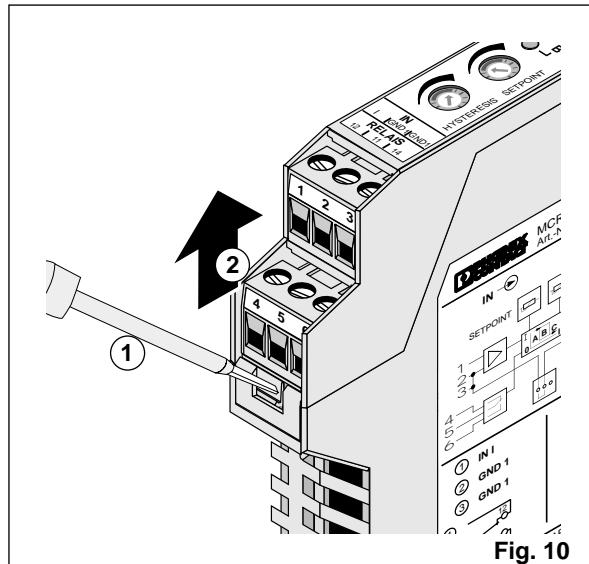



Fig. 10

### 4.2. Setting the Jumper 3

To switch to differential mode, jumper J is set to position D. After the setting has been made, the upper part of the housing is pushed back in until it locks into place.

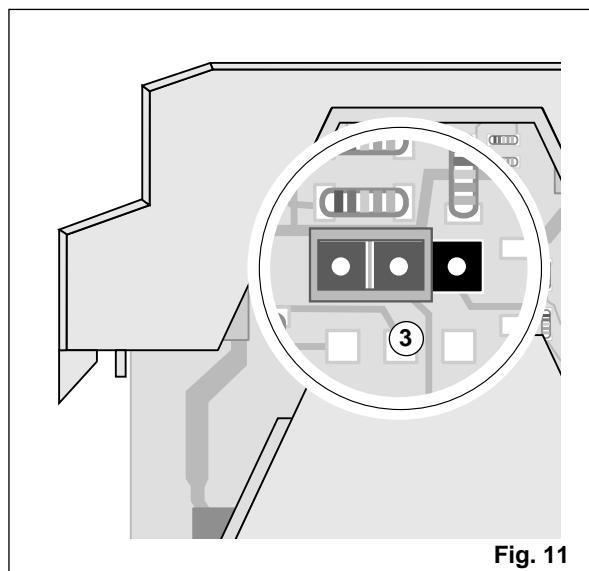



Fig. 11

#### Jumper Configuration (corresponding module view in Fig. 11):

- Single-ended input
- Position D = input in differential mode

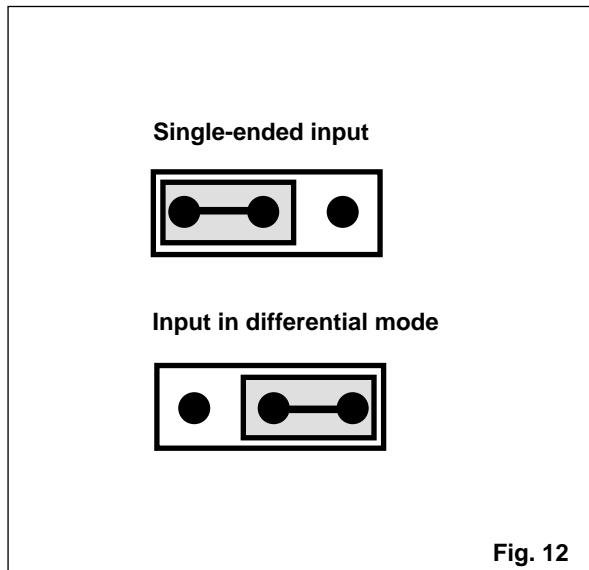



Fig. 12