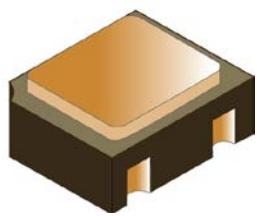
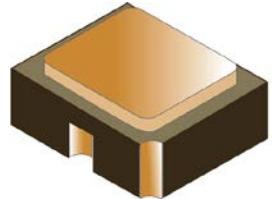


NPN Silicon High-Frequency Transistor

Qualified per **MIL-PRF-19500/398**

Qualified Levels:
JAN, JANTX, JANTXV
and JANS



DESCRIPTION

This 2N3866(A) silicon VHF-UHF amplifier transistor is military qualified up to the JANS level for high-reliability applications. It is also available in a top hat leaded TO-205AD package.

Important: For the latest information, visit our website <http://www.microsemi.com>.

FEATURES

- JEDEC registered 2N3866 number
- JAN, JANTX, JANTXV and JANS qualifications also available per MIL-PRF-19500/398
- RoHS compliant

UB Package

APPLICATIONS / BENEFITS

- Ceramic UB package
- Lightweight
- Military and other high-reliability applications

Also available in:

**TO-205AD (TO-39)
package**
(leaded)
 [2N3866\(A\)](#)

MAXIMUM RATINGS @ $T_A = +25^\circ\text{C}$ unless otherwise noted

Parameters / Test Conditions	Symbol	Value	Unit
Junction & Storage Temperature	T_J, T_{stg}	-65 to +200	°C
Thermal Resistance Junction-to-Case	R_{EJC}	60	°C/W
Thermal Resistance Junction-to-Ambient	R_{EJA}	325	°C/W
Collector – Emitter Voltage	V_{CEO}	30	V
Collector – Base Voltage	V_{CBO}	60	V
Emitter - Base Voltage	V_{EBO}	3.5	V
Total Power Dissipation ⁽¹⁾	P_T	0.5	W
Collector Current	I_C	0.4	A

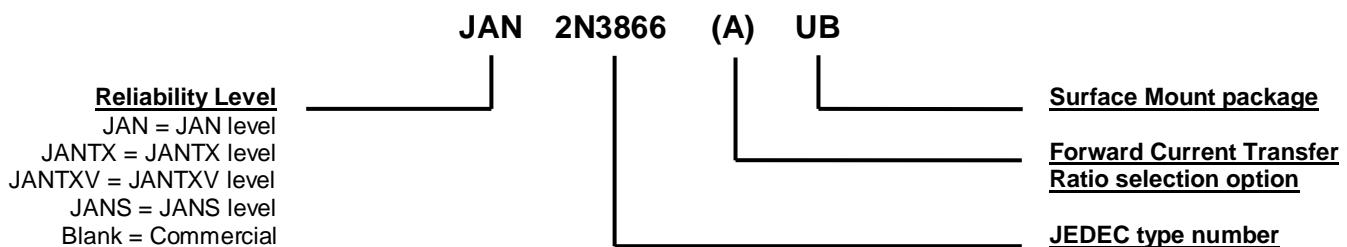
Notes: 1. Derated linearly 3.08 mW/°C for $T_A > +25^\circ\text{C}$

MSC – Lawrence

6 Lake Street,
Lawrence, MA 01841
Tel: 1-800-446-1158 or
(978) 620-2600
Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park,
Ennis, Co. Clare, Ireland
Tel: +353 (0) 65 6840044
Fax: +353 (0) 65 6822298


Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Ceramic.
- TERMINALS: Gold plating over nickel under plate.
- MARKING: Part number, date code, manufacturer's ID.
- TAPE & REEL option: Standard per EIA-418D. Consult factory for quantities.
- WEIGHT: Less than 0.04 grams.
- See [Package Dimensions](#) on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS

Symbol	Definition
I_B	Base current: The value of the dc current into the base terminal.
I_C	Collector current: The value of the dc current into the collector terminal.
V_{BE}	Base-emitter voltage: The dc voltage between the base and the emitter.
V_{CB}	Collector-base voltage: The dc voltage between the collector and the base.
V_{CBO}	Collector-base voltage, base open: The voltage between the collector and base terminals when the emitter terminal is open-circuited.
V_{CE}	Collector-emitter voltage: The dc voltage between the collector and the emitter.
V_{CEO}	Collector-emitter voltage, base open: The voltage between the collector and the emitter terminals when the base terminal is open-circuited.
V_{CC}	Collector-supply voltage: The supply voltage applied to a circuit connected to the collector.
V_{EBO}	Emitter-base voltage, collector open: The voltage between the emitter and base terminals with the collector terminal open-circuited.

ELECTRICAL CHARACTERISTICS @ $T_A = +25^\circ\text{C}$, unless otherwise noted

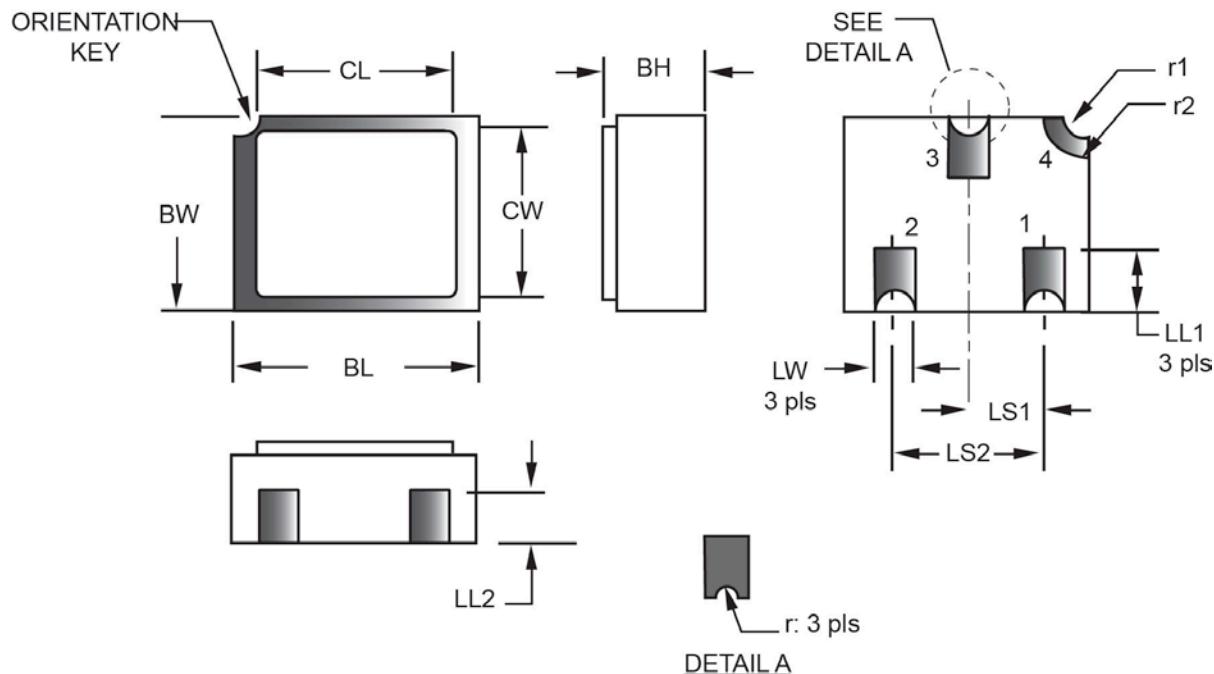
Characteristics	Symbol	Min	Max	Unit
-----------------	--------	-----	-----	------

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $I_C = 5 \text{ mA}$	$V_{(\text{BR})\text{CEO}}$	30		V
Collector-Base Breakdown Voltage $I_C = 100 \mu\text{A}$	$V_{(\text{BR})\text{CBO}}$	60		V
Emitter-Base Breakdown Voltage $I_E = 100 \mu\text{A}$	$V_{(\text{BR})\text{EBO}}$	3.5		V
Collector-Emitter Cutoff Current $V_{\text{CE}} = 28 \text{ V}$	I_{CEO}		20	μA
Collector-Emitter Cutoff Current $V_{\text{CE}} = 55 \text{ V}$	I_{CES1}		100	μA

ON CHARACTERISTICS⁽¹⁾

Forward-Current Transfer Ratio $I_C = 50 \text{ mA}, V_{\text{CE}} = 5.0 \text{ V}$ $I_C = 360 \text{ mA}, V_{\text{CE}} = 5.0 \text{ V}$	2N3866UB 2N3866AUB 2N3866UB 2N3866AUB	h_{FE}	15 25 5 8	200 200	
Collector-Emitter Saturation Voltage $I_C = 100 \text{ mA}, I_B = 10 \text{ mA}$	$V_{\text{CE}(\text{sat})}$			1.0	V
Collector-Emitter Cutoff Current – High Temp Operation $V_{\text{CE}} = 55 \text{ V}, T_A = +150^\circ\text{C}$	I_{CES2}			2.0	mA
Forward-Current Transfer Ratio – Low Temperature Operation $V_{\text{CE}} = 5.0 \text{ V}, I_C = 50 \text{ mA}, T_A = -55^\circ\text{C}$	2N3866UB 2N3866AUB	h_{FE3}	7 12		


DYNAMIC CHARACTERISTICS

Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio $I_C = 50 \text{ mA}, V_{\text{CE}} = 15 \text{ V}, f = 200 \text{ MHz}$	2N3866UB 2N3866AUB	$ h_{\text{FE}} $	2.5 4.0	8.0 7.5	
Output Capacitance $V_{\text{CB}} = 28 \text{ V}, I_E = 0, 100 \text{ kHz} \leq f \leq 1.0 \text{ MHz}$	C_{obo}			3.5	pF

POWER OUTPUT CHARACTERISTICS

Power Output $V_{\text{CC}} = 28 \text{ V}; P_{\text{in}} = 0.15 \text{ W}; f = 400 \text{ MHz}^*$ $V_{\text{CC}} = 28 \text{ V}; P_{\text{in}} = 0.075 \text{ W}; f = 400 \text{ MHz}^*$ * See Figure 4 on MIL-PRF-19500/398	$P_{1\text{out}}$ $P_{2\text{out}}$	1.0 0.5	2.0	W
Collector Efficiency $V_{\text{CC}} = 28 \text{ V}; P_{\text{in}} = 0.15 \text{ W}; f = 400 \text{ MHz}$ $V_{\text{CC}} = 28 \text{ V}; P_{\text{in}} = 0.075 \text{ W}; f = 400 \text{ MHz}$	n_1 n_2	45 40		%
Clamp Inductive Collector-Emitter Breakdown Voltage $V_{\text{BE}} = -1.5 \text{ V}, I_C = 40 \text{ mA}$	$V_{(\text{BR})\text{CEX}}$	55		Vdc

(1) Pulse Test: pulse width = 300 μs , duty cycle $\leq 2.0\%$

PACKAGE DIMENSIONS

Symbol	Dimensions				Note	Symbol	Dimensions				Note			
	inch		millimeters				inch		millimeters					
	Min	Max	Min	Max			Min	Max	Min	Max				
BH	0.046	0.056	1.17	1.42		LS1	0.035	0.040	0.89	1.02				
BL	0.115	0.128	2.92	3.25		LS2	0.071	0.079	1.80	2.01				
BW	0.085	0.108	2.16	2.74		LW	0.016	0.024	0.41	0.61				
CL	-	0.128	-	3.25		r	-	0.008	-	0.20				
CW	-	0.108	-	2.74		r1	-	0.012	-	0.31				
LL1	0.022	0.038	0.56	0.96		r2	-	0.022	-	0.56				
LL2	0.017	0.035	0.43	0.89										

NOTES:

1. Dimensions are in inches. Millimeters are given for information only.
2. Hatched areas on package denote metallized areas.
3. Lid material: Kovar.
4. Pad 1 = Base, Pad 2 = Emitter, Pad 3 = Collector, Pad 4 = Shielding connected to the lid.
5. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[Microsemi:](#)

[2N3866UB](#)