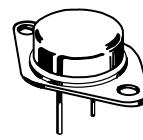

SWITCHMODE™ Series NPN Silicon Power Transistors

The 2N6547 transistor is designed for high-voltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for 115 and 220 volt line operated switch-mode applications such as:

- Switching Regulators
- PWM Inverters and Motor Controls
- Solenoid and Relay Drivers
- Deflection Circuits


Specification Features

- High Temperature Performance Specified for:
 - Reversed Biased SOA with Inductive Loads
 - Switching Times with Inductive Loads
 - Saturation Voltages
 - Leakage Currents

2N6547

15 AMPERE
NPN SILICON
POWER TRANSISTORS
300 and 400 VOLTS
175 WATTS

CASE 1-07
TO-204AA
(TO-3)

MAXIMUM RATINGS (1)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$V_{CEO(sus)}$	400	Vdc
Collector-Emitter Voltage	$V_{CEX(sus)}$	450	Vdc
Collector-Emitter Voltage	V_{CEV}	850	Vdc
Emitter Base Voltage	V_{EB}	9.0	Vdc
Collector Current — Continuous — Peak (2)	I_C I_{CM}	15 30	Adc
Base Current — Continuous — Peak (2)	I_B I_{BM}	10 20	Adc
Emitter Current — Continuous — Peak (2)	I_E I_{EM}	25 35	Adc
Total Power Dissipation @ $T_C = 25^\circ\text{C}$ @ $T_C = 100^\circ\text{C}$ Derate above 25°C	P_D	175 100 1.0	Watts W/ $^\circ\text{C}$
Operating and Storage Junction Temperature Range	T_J, T_{stg}	-65 to +200	$^\circ\text{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	1.0	$^\circ\text{C/W}$
Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds	T_L	275	$^\circ\text{C}$

2N6547

*ELECTRICAL CHARACTERISTICS ($T_C = 25^\circ\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS (1)				
Collector-Emitter Sustaining Voltage ($I_C = 100 \text{ mA}$, $I_B = 0$)	$V_{CEO(\text{sus})}$	300	—	Vdc
		400	—	
Collector-Emitter Sustaining Voltage ($I_C = 8.0 \text{ A}$, $V_{\text{clamp}} = \text{Rated } V_{CEX}$, $T_C = 100^\circ\text{C}$)	$V_{CEX(\text{sus})}$	350	—	Vdc
($I_C = 15 \text{ A}$, $V_{\text{clamp}} = \text{Rated } V_{CEO} = 100 \text{ V}$, $T_C = 100^\circ\text{C}$)		450	—	
Collector Cutoff Current ($V_{CEV} = \text{Rated Value}$, $V_{BE(\text{off})} = 1.5 \text{ Vdc}$) ($V_{CEV} = \text{Rated Value}$, $V_{BE(\text{off})} = 1.5 \text{ Vdc}$, $T_C = 100^\circ\text{C}$)	I_{CEV}	—	1.0	mAdc
		—	4.0	
Collector Cutoff Current ($V_{CE} = \text{Rated } V_{CEV}$, $R_{BE} = 50 \Omega$, $T_C = 100^\circ\text{C}$)	I_{CER}	—	5.0	mAdc
Emitter Cutoff Current ($V_{EB} = 9.0 \text{ Vdc}$, $I_C = 0$)	I_{EBO}	—	1.0	mAdc

SECOND BREAKDOWN

Second Breakdown Collector Current with base forward biased $t = 1.0 \text{ s}$ (non-repetitive) ($V_{CE} = 100 \text{ Vdc}$)	$I_{S/b}$	0.2	—	Adc
--	-----------	-----	---	-----

ON CHARACTERISTICS (1)

DC Current Gain ($I_C = 5.0 \text{ Adc}$, $V_{CE} = 2.0 \text{ Vdc}$) ($I_C = 10 \text{ Adc}$, $V_{CE} = 2.0 \text{ Vdc}$)	h_{FE}	1 2	60	—
		6.0	30	
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ Adc}$, $I_B = 2.0 \text{ Adc}$) ($I_C = 15 \text{ Adc}$, $I_B = 3.0 \text{ Adc}$) ($I_C = 10 \text{ Adc}$, $I_B = 2.0 \text{ Adc}$, $T_C = 100^\circ\text{C}$)	$V_{CE(\text{sat})}$	—	1.5	Vdc
		—	5.0	
		—	2.5	
Base-Emitter Saturation Voltage ($I_C = 10 \text{ Adc}$, $I_B = 2.0 \text{ Adc}$) ($I_C = 10 \text{ Adc}$, $I_B = 2.0 \text{ Adc}$, $T_C = 100^\circ\text{C}$)	$V_{BE(\text{sat})}$	—	1.6	Vdc
		—	1.6	

DYNAMIC CHARACTERISTICS

Current-Gain — Bandwidth Product ($I_C = 500 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f_{\text{test}} = 1.0 \text{ MHz}$)	f_T	6.0	28	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f_{\text{test}} = 1.0 \text{ MHz}$)	C_{ob}	125	500	pF

SWITCHING CHARACTERISTICS

Resistive Load					
Delay Time	$(V_{CC} = 250 \text{ V}, I_C = 10 \text{ A},$ $I_{B1} = I_{B2} = 2.0 \text{ A}, t_p = 100 \mu\text{s},$ $\text{Duty Cycle} \leq 2.0\%)$	t_d	—	0.05	μs
Rise Time		t_r	—	1.0	μs
Storage Time		t_s	—	4.0	μs
Fall Time		t_f	—	0.7	μs
Inductive Load, Clamped					
Storage Time	$(I_C = 10 \text{ A(pk)}, V_{clamp} = \text{Rated } V_{CEX}, I_{B1} = 2.0 \text{ A},$ $V_{BE(off)} = 5.0 \text{ Vdc, } T_C = 100^\circ\text{C})$	t_s	—	5.0	μs
Fall Time		t_f	—	1.5	μs
Typical					
Storage Time	$(I_C = 10 \text{ A(pk)}, V_{clamp} = \text{Rated } V_{CEX}, I_{B1} = 2.0 \text{ A},$ $V_{BE(off)} = 5.0 \text{ Vdc, } T_C = 25^\circ\text{C})$	t_s	—	2.0	μs
Fall Time		t_f	—	0.09	μs

*Indicates JEDEC Registered Data.

(1) Pulse Test: Pulse Width = 300 μs , Duty Cycle = 2%.

TYPICAL ELECTRICAL CHARACTERISTICS

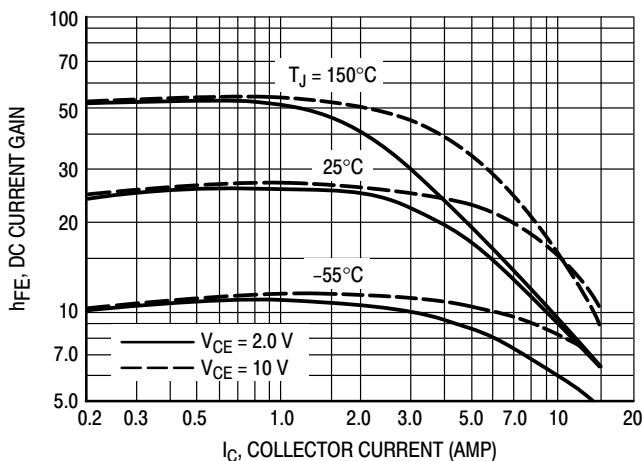


Figure 1. DC Current Gain

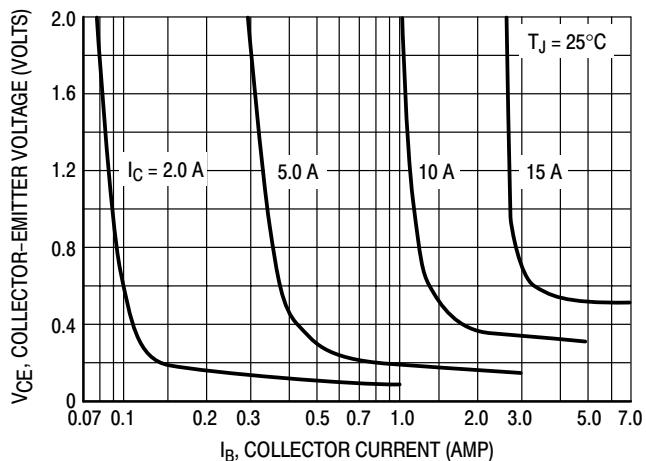


Figure 2. Collector Saturation Region

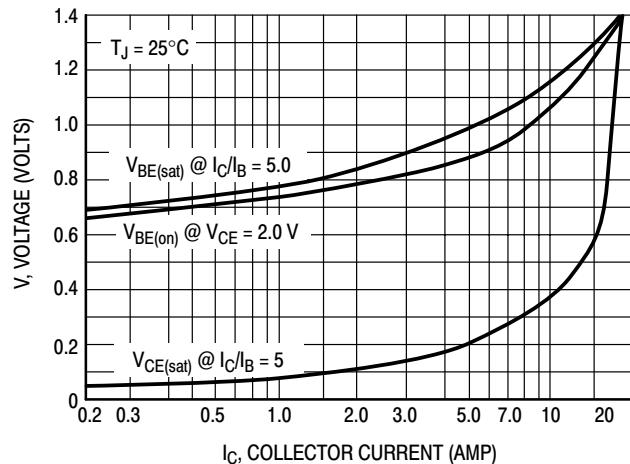


Figure 3. "On" Voltages

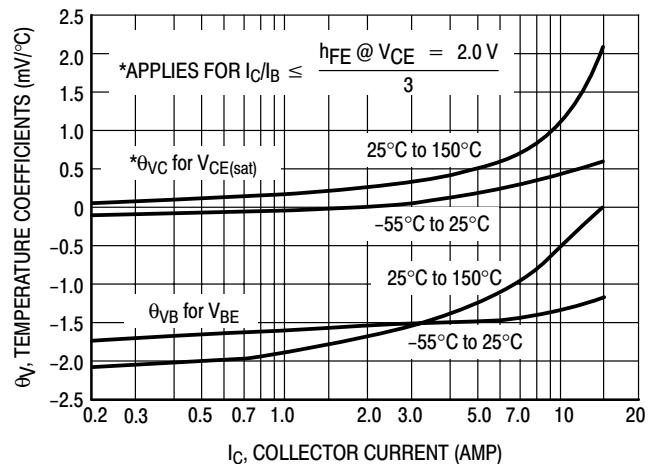


Figure 4. Temperature Coefficients

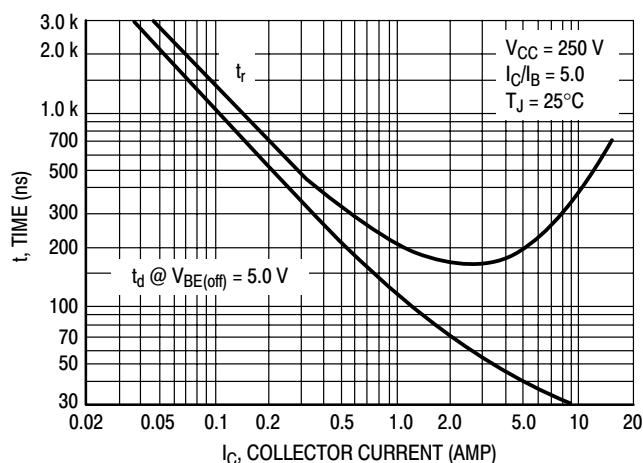


Figure 5. Turn-On Time

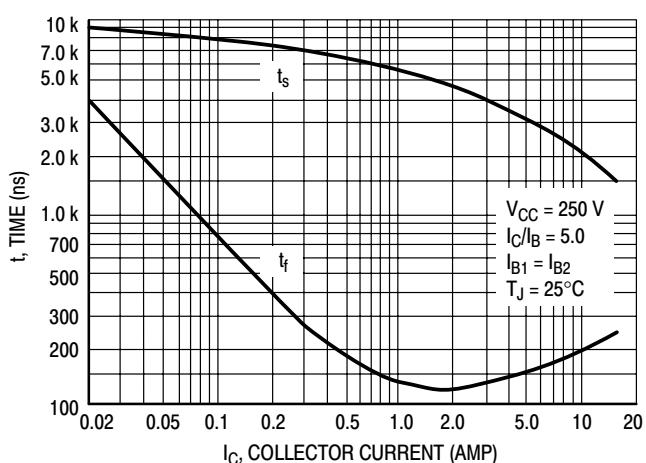


Figure 6. Turn-Off Time

MAXIMUM RATED SAFE OPERATING AREAS

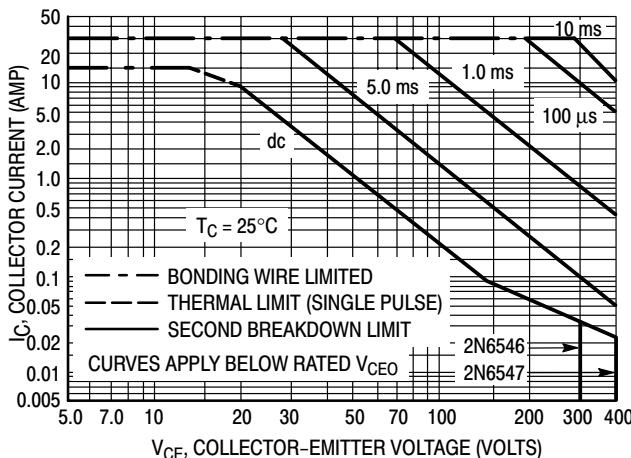


Figure 7. Forward Bias Safe Operating Area

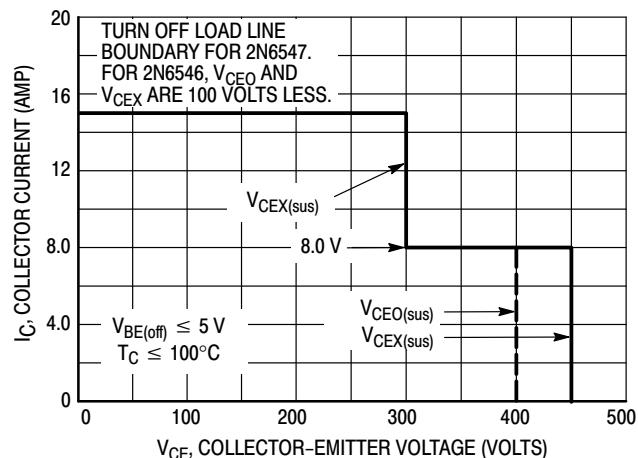


Figure 8. Reverse Bias Safe Operating Area

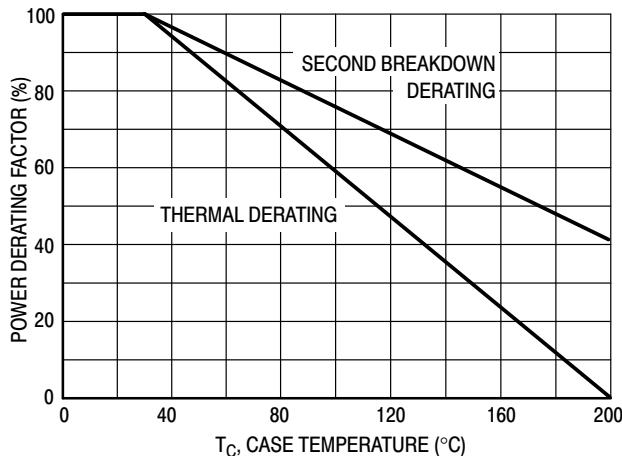


Figure 9. Power Derating

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 7 is based on $T_C = 25^\circ\text{C}$; $T_{J(pk)}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $T_C \geq 25^\circ\text{C}$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 7 may be found at any case temperature by using the appropriate curve on Figure 9.

$T_{J(pk)}$ may be calculated from the data in Figure 10. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

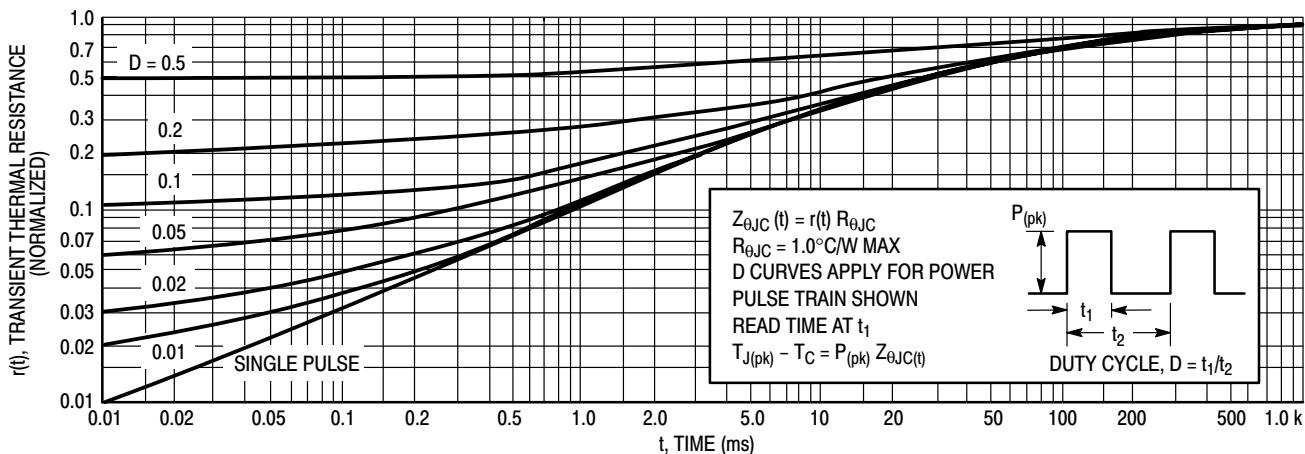
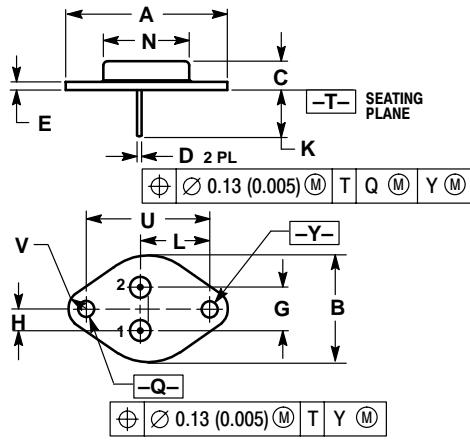



Figure 10. Thermal Response

PACKAGE DIMENSIONS

CASE 1-07
TO-204AA (TO-3)
ISSUE Z

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	1.550	REF	39.37	REF
B	---	1.050	---	26.67
C	0.250	0.335	6.35	8.51
D	0.038	0.043	0.97	1.09
E	0.055	0.070	1.40	1.77
G	0.430	BSC	10.92	BSC
H	0.215	BSC	5.46	BSC
K	0.440	0.480	11.18	12.19
L	0.665	BSC	16.89	BSC
N	---	0.830	---	21.08
Q	0.151	0.165	3.84	4.19
U	1.187	BSC	30.15	BSC
V	0.131	0.188	3.33	4.77

STYLE 1:

1. BASE
2. Emitter

CASE: COLLECTOR

Notes

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor
 P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
 Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET)
Email: ONlit-german@hibbertco.com
French Phone: (+1) 303-308-7141 (Mon-Fri 2:00pm to 7:00pm CET)
Email: ONlit-french@hibbertco.com
English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT)
Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)
Email: ONlit-spanish@hibbertco.com
Toll-Free from Mexico: Dial 01-800-288-2872 for Access –
 then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 1-303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:
001-800-4422-3781
Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center
 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2700
Email: r14525@onsemi.com

ON Semiconductor Website: <http://onsemi.com>

For additional information, please contact your local
 Sales Representative.

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com