

2SC0108T2H0-17 Preliminary Data Sheet

Dual Channel Ultra-compact Low-cost SCALE™-2+ Driver Core

Short Description

The low-cost SCALE™-2+ dual-driver core 2SC0108T2H0-17 (Connector pin length of 2.54mm; increased EMI capability; SSD implemented; lead free) combines unrivalled compactness with broad applicability. The driver is designed for universal applications requiring high reliability. The 2SC0108T2H0-17 drives all usual IGBT modules up to 600A/1200V or 450A/1700V. The embedded paralleling capability allows easy inverter design covering higher power ratings. Multi-level topologies are also supported.

The 2SC0108T2H0-17 is the most compact driver core available for industrial applications, with a footprint of only 45 x 34.3mm and an insertion height of max. 16mm. It allows even the most restricted insertion spaces to be efficiently used. Compared with conventional drivers, the highly integrated SCALE-2+ chipset allows about 85% of components to be dispensed with. This advantage is impressively reflected in increased reliability at simultaneously minimized cost.

The 2SC0108T2H0-17 combines a complete two-channel driver core with all components required for driving, such as an isolated DC/DC converter, short-circuit protection, Soft Shut Down (SSD) as well as supply voltage monitoring. Each of the two output channels is electrically isolated from the primary side and the other secondary channel.

An output current of 8A and 1W drive power is available per channel, making the 2SC0108T2H0-17 an ideal driver platform for universal usage in small and medium power applications. The driver provides a gate voltage swing of +15V/-8V. The turn-on voltage is regulated to maintain a stable 15V regardless of the output power level.

Its outstanding EMC allows safe and reliable operation in even harsh industrial applications.

Product Highlights

Applications

<ul style="list-style-type: none"> ✓ Ultra-compact dual channel driver ✓ Highly integrated SCALE-2+ chipset ✓ Gate current $\pm 8A$, 1W output power per channel ✓ +15V/-8V gate driving ✓ Blocking voltages up to 1700V ✓ Safe isolation to EN 50178 ✓ Short delay and low jitter ✓ Interface for 3.3V...15V logic level ✓ Soft Shut Down function ✓ UL-compliant ✓ Lead-free 	<ul style="list-style-type: none"> ✓ General purpose drives ✓ Uninterruptible power supplies (UPS) ✓ Solar and wind power converters ✓ Auxiliary converters for traction ✓ Electro/hybrid drive vehicles ✓ Driving parallel-connected IGBTs ✓ Switched mode power supplies (SMPS) ✓ Medical (MRT, CT, X-Ray) ✓ Laser technology
--	--

Preliminary Data Sheet

Safety Notice!

The data contained in this data sheet is intended exclusively for technically trained staff. Handling all high-voltage equipment involves risk to life. Strict compliance with the respective safety regulations is mandatory!

Any handling of electronic devices is subject to the general specifications for protecting electrostatic-sensitive devices according to international standard IEC 60747-1, Chapter IX or European standard EN 100015 (i.e. the workplace, tools, etc. must comply with these standards). Otherwise, this product may be damaged.

Important Product Documentation

This data sheet contains only product-specific data. For a detailed description, must-read application notes and important information that apply to this product, please refer to "2SC0108T Description & Application Manual" on www.power.com/igbt-driver/go/2SC0108T.

Absolute Maximum Ratings

Parameter	Remarks	Min	Max	Unit
Supply voltage V_{CC}	VCC to GND	0	16	V
Logic input and output voltages	Primary side, to GND	-0.5	VCC+0.5	V
SOx current	Failure condition, total current		20	mA
Gate peak current I_{out}	Note 1	-8	+8	A
External gate resistance	Turn-on and turn-off	2		Ω
IGBT gate charge			6.3	μ C
Average supply current I_{CC}	Notes 2, 3		260	mA
Output power	Ambient temperature $< 70^{\circ}\text{C}$ (Notes 4, 5)		1.2	W
	Ambient temperature $< 85^{\circ}\text{C}$ (Note 4)		1	W
Test voltage (50Hz/1min.)	Primary to secondary (Note 13)		5000	$V_{AC(\text{eff})}$
	Secondary to secondary (Note 13)		4000	$V_{AC(\text{eff})}$
Switching frequency f		50		kHz
$ \text{d}V/\text{d}t $	Rate of change of input to output voltage		50	$\text{kV}/\mu\text{s}$
Operating voltage	Primary/secondary, secondary/secondary		1700	V_{peak}
Operating temperature	Note 5	-40	+85	$^{\circ}\text{C}$
Storage temperature		-40	+90	$^{\circ}\text{C}$

Recommended Operating Conditions

Power Supply	Remarks	Min	Typ	Max	Unit
Supply voltage V_{CC}	VCC to GND	14.5	15	15.5	V

Preliminary Data Sheet

Electrical Characteristics

All data refer to $+25^{\circ}\text{C}$ and $V_{\text{CC}} = 15\text{V}$ unless otherwise specified.

Power supply	Remarks	Min	Typ	Max	Unit
Supply current I_{CC}	Without load	31			mA
Coupling capacitance C_{io}	Primary side to secondary side, per channel	23			pF
Power Supply Monitoring	Remarks	Min	Typ	Max	Unit
Supply threshold V_{CC}	Primary side, clear fault	11.9	12.6	13.3	V
	Primary side, set fault (Note 10)	11.3	12.0	12.7	V
Monitoring hysteresis	Primary side, set/clear fault	0.35			V
Supply threshold $V_{\text{ISOx}}-V_{\text{Ex}}$	Secondary side, clear fault	12.1	12.6	13.1	V
	Secondary side, set fault (Note 11)	11.5	12.0	12.5	V
Monitoring hysteresis	Secondary side, set/clear fault	0.35			V
Supply threshold $V_{\text{Ex}}-V_{\text{COMx}}$	Secondary side, clear fault	5	5.15	5.3	V
	Secondary side, set fault (Note 11)	4.7	4.85	5	V
Monitoring hysteresis	Secondary side, set/clear fault	0.15			V
Logic Inputs and Outputs	Remarks	Min	Typ	Max	Unit
Input bias current	$V(\text{INx}) > 3\text{V}$	190			μA
Turn-on threshold	$V(\text{INx})$	2.6			V
Turn-off threshold	$V(\text{INx})$	1.3			V
SOx output voltage	Failure condition, $I(\text{SOx}) < 20\text{mA}$			0.7	V
Short-Circuit Protection	Remarks	Min	Typ	Max	Unit
Current through pin REFx	$R(\text{REFx}, V_{\text{Ex}}) < 70\text{k}\Omega$	150			μA
Minimum response time	Note 8	1.2			μs
Minimum blocking time	Note 9	9			μs
Timing Characteristics	Remarks	Min	Typ	Max	Unit
Turn-on delay $t_{\text{d(on)}}$	Note 6	75			ns
Turn-off delay $t_{\text{d(off)}}$	Note 6	65			ns
Jitter of turn-on delay	Note 16	± 2			ns
Jitter of turn-off delay	Note 16	± 2			ns
Output rise time $t_{\text{r(out)}}$	Note 7	17			ns
Output fall time $t_{\text{f(out)}}$	Note 7	15			ns
Transmission delay of fault state	Note 12	360			ns

Preliminary Data Sheet

Soft Shut Down (SSD)	Remarks	Implementation			
SSD function	Note 17	Yes			
Electrical Isolation	Remarks	Min	Typ	Max	Unit
Test voltage (50Hz/1s)	Primary to secondary side (Note 13) Secondary to secondary side (Note 13)	5000 4000	5050 4050	5100 4100	V_{eff}
Partial discharge extinction volt.	Primary to secondary side (Note 15) Secondary to secondary side (Note 15)	1768 1700			V_{peak}
Creepage distance	Primary to secondary side Secondary to secondary side	12.9 8.5			mm
Clearance distance	Primary to secondary side Secondary to secondary side	12.9 6.5			mm
Outputs	Remarks	Min	Typ	Max	Unit
Blocking capacitance	VISOx to VEx VEx to COMx	9.4 9.4			μF
Typical internal gate resistance	Turn-on and turn-off (Note 14)	0.5			Ω

Output voltage swing

The output voltage swing consists of two distinct segments. First, there is the turn-on voltage V_{GHx} between pins GHx and VEx. V_{GHx} is regulated and maintained at a constant level for all output power values and frequencies.

The second segment of the output voltage swing is the turn-off voltage V_{GLx} . V_{GLx} is measured between pins GLx and VEx. It is a negative voltage. It changes with the output power to accommodate the inevitable voltage drop across the internal DC/DC converter.

Output Voltage	Remarks	Min	Typ	Max	Unit
Turn-on voltage, V_{GHx}	Any load condition	15.0			V
Turn-off voltage, V_{GLx}	No load	-9.4			V
Turn-off voltage, V_{GLx}	1W output power	-7.6			V
Turn-off voltage, V_{GLx}	1.2W output power	-7.2			V

Footnotes to the Key Data

- 1) The maximum peak gate current refers to the highest current level occurring during the product lifetime. It is an absolute value and does also apply for short pulses.
- 2) The average supply input current is limited for thermal reasons. Higher values than specified by the absolute maximum rating are permissible (e.g. during power supply start up) if the average remains below the given value, provided the average is taken over a time period which is shorter than the thermal time constants of the driver in the application.
- 3) There is no means of actively controlling or limiting the input current in the driver. In the case of start-up with very high blocking capacitor values, or in case of short circuit at the output, the supply input current has to be limited externally.
- 4) The maximum output power must not be exceeded at any time during operation. The absolute

Preliminary Data Sheet

maximum rating must also be observed for time periods shorter than the thermal time constants of the driver in the application.

- 5) An extended output power range is specified in the output power section for maximum ambient temperatures of 70°C. In that case, the absolute maximum rating for the operating temperature changes to (-40°C - 70°C) and the absolute maximum output power rating changes to 1.2W.
- 6) The delay time is measured between 50% of the input signal and 10% voltage swing of the corresponding output. The delay time is independent of the output loading.
- 7) Output rise and fall times are measured between 10% and 90% of the nominal output swing. The values are given for the driver side of the gate resistors without load. The time constant of the output load in conjunction with the present gate resistors leads to an additional delay at the load side of the gate resistors.
- 8) The minimum response time given is valid for the circuit given in the description and application manual (Fig. 6) with the values of table 1 ($C_{ax}=0\text{pF}$, $R_{thx}=43\text{k}\Omega$).
- 9) The blocking time sets a minimum time span between the end of any fault state and the start of normal operation (remove fault from pin SOx). The value of the blocking time can be adjusted at pin TB. The specified blocking time is valid if TB is connected to GND.
- 10) Undervoltage monitoring of the primary-side supply voltage (VCC to GND). If the voltage drops below this limit, a fault is transmitted to both SOx outputs and the IGBTs are switched off.
- 11) Undervoltage monitoring of the secondary-side supply voltage (VISOx to VEx and VEx to COMx which correspond with the approximate turn-on and turn-off gate-emitter voltages). If the corresponding voltage drops below this limit, the IGBT is switched off and a fault is transmitted to the corresponding SOx output.
- 12) Transmission delay of fault state from the secondary side to the corresponding primary status output.
- 13) HiPot testing (= dielectric testing) must generally be restricted to suitable components. This gate driver is suited for HiPot testing. Nevertheless, it is strongly recommended to limit the testing time to 1s slots as stipulated by EN 50178. Excessive HiPot testing at voltages much higher than $1200\text{V}_{AC(eff)}$ may lead to insulation degradation. No degradation has been observed over 1min. testing at $5000\text{V}_{AC(eff)}$. Every production sample shipped to customers has undergone 100% testing at the given value for 1s.
- 14) The resulting gate resistance is the sum of the external and the internal gate resistance.
- 15) Partial discharge measurement is performed in accordance with IEC 60270 and isolation coordination specified in EN 50178. The partial discharge extinction voltage between primary and either secondary side is coordinated for safe isolation to EN 50178.
- 16) Jitter measurements are performed with input signals INx switching between 0V and 5V referred to GND, with a corresponding rise time and fall time of 15ns.
- 17) The SSD function reduces the turn-off di/dt at turn-off to limit the Vce overvoltage as soon as a short-circuit condition is detected. It cannot be deactivated. Refer to "2SC0108T Description & Application Manual" for more information.

Preliminary Data Sheet

RoHS Statement

On the basis of Annexes II and III of European Directive 2011/65/EC of 08 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS), we hereby state that the products described in this datasheet do not contain lead (Pb), mercury (Hg), hexavalent chromium (Cr VI), cadmium (Cd), polibrometo of biphenyl (PBB) or polibrometo diphenyl ether (PBDE) in concentrations exceeding the restrictions set forth in Annex II of 2011/65/EC with due consideration of the applicable exemptions as listed in Annex III of 2011/65/EC.

Legal Disclaimer

The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein. No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.

Preliminary Data Sheet

Ordering Information

The general terms and conditions of delivery of Power Integrations Switzerland GmbH apply.

Type Designation	Description
2SC0108T2H0-17	Dual-channel SCALE-2+ driver core (Connector pin length of 2.54mm, increased EMI capability, SSD implemented, lead free)

Product home page: www.power.com/igbt-driver/go/2SC0108T

Refer to www.power.com/igbt-driver/go/nomenclature for information on driver nomenclature.

Information about Other Products

For other drivers, product documentation, and application support

Please click: www.power.com

Manufacturer

Power Integrations Switzerland GmbH

Johann-Renfer-Strasse 15

2504 Biel-Bienne, Switzerland

Phone +41 32 344 47 47

Fax +41 32 344 47 40

Email igbt-driver.sales@power.com

Website www.power.com/igbt-driver

© 2009...2015 Power Integrations Switzerland GmbH.

We reserve the right to make any technical modifications without prior notice.

All rights reserved.

Version 1.1 from 2016-05-20

Preliminary Data Sheet

Power Integrations Worldwide High Power Customer Support Locations

World Headquarters

5245 Hellyer Avenue
San Jose, CA 95138 | USA
Main +1 408 414 9200
Customer Service:
Phone +1 408 414 9665
Fax +1 408 414 9765
Email usasales@power.com

Switzerland (Biel)

Johann-Renfer-Strasse 15
2504 Biel-Bienne | Switzerland
Phone +41 32 344 47 47
Fax +41 32 344 47 40
Email igbt-driver.sales@power.com

Germany (Ense)

HellwegForum 1
59469 Ense | Germany
Phone +49 2938 643 9990
Email igbt-driver.sales@power.com

Germany (Munich)

Lindwurmstrasse 114
80337 Munich | Germany
Phone +49 895 527 39110
Fax +49 895 527 39200
Email eurosales@power.com

China (Shanghai)

Rm 2410, Charity Plaza, No. 88
North Caoxi Road
Shanghai, PRC 200030
Phone +86 21 6354 6323
Fax +86 21 6354 6325
Email chinasales@power.com

China (Shenzhen)

17/F, Hivac Building, No 2,
Keji South 8th Road,
Nanshan District
Shenzhen | China, 518057
Phone +86 755 8672 8725
Fax +86 755 8672 8690
Hotline +86 400 0755 669
Email chinasales@power.com

Italy (Milano)

Via Milanese 20, 3rd. Fl.
20099 Sesto San Giovanni | Italy
Phone +39 024 550 8701
Fax +39 028 928 6009
Email eurosales@power.com

UK (Herts)

First Floor, Unit 15, Meadow Court,
Rutherford Close, Stevenage,
Herts SG1 2EF | United Kingdom
Phone +44 1252 730 141
Fax +44 1252 727 689
Email eurosales@power.com

India (Bangalore)

#1, 14th Main Road
Vasanthanagar
Bangalore 560052 | India
Phone +91 80 4113 8020
Fax +91 80 4113 8023
Email indiasales@power.com

Japan (Kanagawa)

Kosei Dai-3 Bldg., 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 | Japan
Phone +81 45 471 1021
Fax +81 45 471 3717
Email japansales@power.com

Korea (Seoul)

RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu
Seoul 135-728 | Korea
Phone +82 2 2016 6610
Fax +82 2 2016 6630
Email koreasales@power.com

Taiwan (Taipei)

5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu Dist.
Taipei 11493 | Taiwan R.O.C.
Phone +886 2 2659 4570
Fax +886 2 2659 4550
Email taiwansales@power.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[Power Integrations:](#)

[2SC0108T2H0-17](#)