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ABSTRACT

It is an important step in deign under uncertainty to select
an appropriate uncertainty propagation (UP) method
considering the characteristics of the engineering systems at
hand, the required level of UP associated with the probabilistic
design scenario, and the required accuracy and efficiency
levels. Many uncertainty propagation methods have been
developed in various fields, however, there is a lack of good
understanding of their relative merits. In this paper, a
comparative study on the performances of several UP methods,
including a few recent methods that have received growing
attention, is performed. The full factorial numerical
integration (FFNI), the univariate dimension reduction method
(UDR), and the polynomial chaos expansion (PCE) are
implemented and applied to several test problems with different
settings of the performance nonlinearity, distribution types of
input random variables, and the magnitude of input uncertainty.
The performances of those methods are compared in moment
estimation, tail probability calculation, and the probability
density function (PDF) construction. It is found that the FFNI
with the moment matching quadrature rule shows good
accuracy but the computational cost becomes prohibitive as the
number of input random variables increases. The accuracy
and efficiency of the UDR method for moment estimations
appear to be superior when there is no significant interaction
effect in the performance function. Both FFNI and UDR are
very robust against the non-normality of input variables. The
PCE is implemented in combination with FFNI for coefficients
estimation. The PCE method is shown to be a useful approach
when a complete PDF description is desired.  Inverse
Rosenblatt transformation is used to treat non-normal inputs of
PCE, however, it is shown that the transformation may result in
the degradation of accuracy of PCE. It is also shown that in
black-box type of system the performance and convergence of
PCE highly depend on the method adopted to estimate its
coefficients.
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1. INTRODUCTION

One of the key components of uncertainty analysis is the
quantification of uncertainties in the system output
performances propagated from uncertain inputs, named as
uncertainty propagation (UP). A lot of efforts have been made
to develop methods of uncertainty propagation in various fields
such as structural reliability (Madsen et al. 2006, Christensen
1982, Kiureghian 1998), stochastic mechanics (Ghanem and
Spanos 1991, Liu et al. 1986), quality engineering (Evans 1972,
Taguchi 1978, D’Errico and Zaino 1988, Seo and Kwak 2002)
and considerably many methods are now available. Since the
methods were developed with different backgrounds and
philosophies, it is necessary to examine their applicability and
relative efficiency in the context of engineering design. In
design under uncertainty, the role that the UP is expected to
play varies based on different design scenarios. For instance,
in robust design (Du and Chen 2000, McAllister and Simpson
2003), the interest of UP is to evaluate the low-order moments
(mean and variance) of a performance. In reliability-based
design (Lee and Kwak 1987-88, Wu 1994, Youn et al. 2003,
Du et al. 2004), the interest is on assessing the performance
reliability. The complete distribution of a performance is
needed in utility optimization (Hazelrigg 1998), where the
probability distribution needs to be integrated with designer's
utility function to maximize the expected utility of a product.
Our goal in this work is to conduct an in-depth examination of
several widely used UP techniques, some are newly developed
in literature, to understand the characteristics and limitations of
these methods, and to compare their performance using
illustrative examples.

The methods for uncertainty propagation can be classified
into five categories as follows. The first category is the
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simulation based methods like Monte Carlo simulation (MCS)
(Madsen et al. 2006, Christensen 1982, Kiureghian 1998),
importance sampling (Melchers 1989, Engelund and Rackwitz
1993), adaptive sampling (Bucher 1988). The second category
is the local expansion based methods like Taylor series method
or perturbation method (Madsen et al. 2006, Christensen 1982,
Kiureghian 1998, Ghanem and Spanos 1991). Methods in this
category are weak against the large variability of inputs and
nonlinearity of performance functions. The third category is
the most probable point (MPP) based methods (Hasofer and
Lind 1974, Fiessler et al. 1979). First order reliability method
(FORM) and second order reliability methods (SORM) are two
popular methods in this category. The fourth category is the
functional expansion based methods. The Neumann
expansion and the polynomial chaos expansion can be
classified into this group. The polynomial chaos expansion
(PCE) (Ghanem and Spanos 1991, Xiu and Karniadakis 2003)
is a mean square convergent series of orthogonal polynomials
of standard random variables. In recent years, the PCE
approach has been gaining more attention in uncertainty
representations, stochastic mechanics, solution of stochastic
differential equations and so on. The last category is the
numerical integration based methods (Evans 1972, Seo and
Kwak 2002, Lee and Kwak 2006). The statistical moments
are first calculated by direct numerical integration and then the
probability density or the tail region probability is
approximated using the empirical distribution systems (Johnson
et al. 1994) based on the calculated moments. This approach
has been implemented together with the technique of design of
experiments and the procedure using the product quadrature
rule with Gaussian type integration and Pearson system for
reliability analysis was named as the full factorial moment
method (FFMM) in Seo and Kwak (2002) and Lee and Kwak
(2006). For clarity, in this paper, we denote the moment
calculation with full factorial set of evaluation points as full
factorial numerical integration (FFNI). A newly developed
method in this last category of numerical integration based
method is the so called dimension reduction (DR) method
(Rhaman and Xu 2004, Xu and Rhaman 2004). The DR
method approximates a multi-dimensional moment integral by
multiple reduced-dimensional integrals based on additive
decomposition of performance function.

When selecting a method for UP various aspects should be
considered such as the required level of uncertainty
quantification, accuracy or confidence level, as well as the
computational cost or efficiency. Since the performance of
the above mentioned methods are affected by the problem
settings such as the type of input distribution, the nonlinearity
of performance function, the number of input random variables,
and the required resolution, it would be beneficial to develop
guidelines to choose an appropriate method which fits for a
specific situation. For this, comparative studies among the
various methods are important. So far, comparative studies
among the numerical integration based methods (e.g., the
dimension reduction method) and the functional expansion
based methods, especially the PCE method have not been
reported in literature. In this paper, we present the results of
our comparative study on the performance of a few relatively
recent methods, such as the Univariate Dimension Reduction
(UDR) and the PCE, as well as a few conventional approaches,
such as the FFNI and the MPP based approaches. In our

studies, the results from MCS are used as a reference. Since
in most of the engineering design problems, the analysis
models are provided in the form of black-boxes rather than
explicit functions or governing equations, the black-box type
problems are the target of our study. Even though explicit
functions are provided for our case studies, they are treated as
black-box type functions with different degrees of nonlinearity
and different distribution types of input variables.

In Section 2, introductions to FFNI, UDR and PCE are
provided with emphasis on the unique aspects of each method.
Test results with several problems are given in Section 3. In
Section 4, a brief summary and discussions about the results are
provided.

2. SUMMARY OF METHODS

Throughout this paper, a black-box type performance
function is denoted as

y=9(x) (b
where x is the n dimensional vector of random variables
with joint probability density function (PDF) f(x).

2.1 Full Factorial Numerical Integration (FFNI)

With this approach, the statistical moments are calculated
through the direct numerical integration. Once the first four
moments are calculated, the complete distribution function or
the probability of failure can be estimated using the empirical
distribution systems (Johnson et al. 1994). Some details are
provided as follows.

The m-node Gaussian type integration rule for statistical
moments can be written as

E[gk]:i{g(x)}k f(x)dx:éwi[g(y+aia)]k 2

where «;, w; are the location parameter and weight at the i -

th quadrature point. The optimal locations of the quadrature
points and the corresponding weights can be calculated using
the moment-matching equations as follows:

M, =) (=S (ac)  k=0..om1 @

where M, isthe k -th central moment of random variable x

which should be provided based on the PDF of x. This
nonlinear system of equations can be solved with numerical

methods to find the unique {a,,---,a,,w,---W,}. However,

when m becomes large (e.g. > 7), it is not a simple task to
solve the nonlinear system of equations. Fig. 1 is the example
of evaluation points and weights for some well-known
distributions when the 3-node rule is applied (m =3).

When x follows the normal, uniform and exponential
distribution, «;’s and w;’s can be directly derived from the
Gauss-Hermite,  Gauss-Legendre, and  Gauss-Laguerre
quadrature formula respectively since the weighting functions
of those quadrature rules have the same form with the PDF of
the above three distributions. When there are n random
variables in the system, the moment integral becomes an n
dimensional multiple integral based on the product quadrature
rule (Evans 1972) and can be calculated as follows:
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(a) normal distribution (b) R.aylei-gh distributi.on
u=50c=1 =2
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(c) uniform distribution (d) beta distribution
0<x<10 7=03,7=06
Figure 1. PDF and 3-node quadrature rule for four different
distributions.  The notations for parameters are from Hahn and
Shapiro (1967).

E{gk}=(J;"'J[9(Xp‘“vxnﬂk f(Xp“an)dxi'“an
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The sampling becomes a m" full factorial design in the
DOE point of view. The integration order of this method is
(2m-1) and the number of function evaluations required is
m".

Once the four statistical moments are obtained, the
probability of failure can be evaluated with the aids of the
empirical distribution systems such as the Pearson system, the
Johnson system, and the Gram-Charlier series. Pearson

system approximates the PDF f(x) as a solution of the
differential equation following,
1 df(x X+a
() _ ra__ ®)

f(x) dx C, +CX +C,X
where X=x-x and, a, ¢,, ¢ and c, are coefficients

calculated from the first four central moments of random
variable x whose PDF is to be approximated.

2.2 Univariate Dimension Reduction (UDR) Method

Similar to the FFNI, the univariate dimension reduction
(UDR) method (Rhaman and Xu 2004, Xu and Rhaman 2004)
belongs to the category of numerical integration based methods.

This method calculates the statistical moments of g(x) with a
univariate decomposition to improve the efficiency of
numerical integration. The performance function g(x) is
approximated by a sum of univariate functions which depend

on only one random variable with the other variables fixed to
their mean values. If we denote these univariate functions as

g, then the approximation can be written as:

n 39 (1 % , ©
zégl(xi)—(n—l)g(ux)

where 4 denotes the mean value of i-th random variable.
It can be shown that the Taylor series expansion of the
univariate approximation §(x) contains all single variable

terms of Taylor series of g(x). This means that the

approximation error is contributed by the terms with two or
more variables in the expansion of g(x).

The univariate decomposition can be applied to the
statistical moment integral, with the condition that the random
variables should be independent with each other. When the
variables are correlated, they should be transformed into
independent variables with Rosenblatt transformation. The

k -th moment of g(x) is approximated as follows:

e[o* (x)]~E[6* (3] E{{igi(xi)—(n—l)g(lh)}k} )

This operations can be performed algebraically and the
results can be expressed in terms of moments of univariate

functions, say E[g{], i=1--n 1=0--k. In Rhaman
and Xu (2004), a recursive formula for this calculation is

proposed.
The moments of g,’s can be calculated using the one

dimensional numerical integration based on the moment-based
quadrature rule.  Schemes introduced in Section 2.1 for
sampling can also be used. If we use the quadrature rule with
the same number of nodes m for one dimensional integration

of all g;’s, then the number of g(x) evaluations required

becomes (m-1)n+1 at least and mn+1 at most (n: number
of random variables). Since the output of UDR is also
statistical moments of g(x), the empirical distribution system

introduced in Section 2.1 needs to be applied to get the full
distribution function to calculate the probability of failure.

2.3 Polynomial chaos expansion (PCE)

The PCE method belongs to the category of functional
expansion based methods. The PCE of a square integrable

random variable u(6) can be written as (Ghanem and Spanos
1991)

u(0)=a,+ Y0, (4 (0))+ S a, T, (£ (6).4,(0))

=1 i=1i,=1

(8)

o iy

+Zzzai1izi3r3(§i1(0)’§iz (9)’§i3 (9))+
i =1i,=1i;=1
where {;(6’)}?=1
a generic element in the set of multi-dimensional Hermite
polynomials of order p , and a are the deterministic

coefficients. 6 is a parameter indicating the quantities
involved are random variables defined over a space of random
events. We can rewrite Eq. (8) in a simpler form as

is a set of standard normal variables, T', is
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respectively. For example, the two dimensional PCE of
second order ( p=2) can be written as

u(@)=h, +b& (0)+bé,(6)+b, (512 (9) —l)

where b, W,(&) correspond to & .,

iyl

: (10)
+b,&,(0)&,(0)+b5(&(0)-1)
Some notable properties of Hermite polynomials are
E[ww,|=E[¥]]s, (11)
E[W,]=0 for i=0. (12)

When there are n random inputs in the system as in Eq.
(1), the output responses can be approximated by n
dimensional PCE, truncated at some order p. In this case the
number of terms in PCE becomes P +1 where P is given as

s-1

p
P:Zi{n(nﬂ)} : (13)
s=1 S! r=0
Then the PC approximation is written as
P
y~ y(P) :zbi‘{’i(g) (14)
i=0

where & is a standard normal random vector of n

dimension.
The coefficients of Eq. (14) can be calculated based on the
orthogonality (Eq. (11)) of Hermite polynomials. Multiplying

¥;(&) on both sides of Eq. (14) and taking the expectation, we
can obtain b, as follows:

b, =E[y¥;(8)]/E[¥}(8)] (15)

While the denominator term in Eq. (15) can be evaluated
analytically, the expectation in the numerator needs to be
evaluated with sampling or numerical integration schemes.
Approaches using Latin Hyper cube sampling (Choi et al.
2004), numerical integration (Xiu 2007) have been reported.
One issue related with the procedure is how to treat the non-
normal random inputs. It is reported that the convergence rate
of PCE is not fast when the inputs are non-normal and a
generalized PCE (Xiu and Karniadakis 2003) has been
proposed to solve this problem with various orthogonal
polynomials in Askey scheme. Using the generalized PCE is
one way to treat non-normal random inputs, and the other way
is to use transformation (Tatang 1995). The comparison
between these two approaches, using the generalized PCE and
using transformation, was performed by Choi et al. (2004). It
is reported that the use of generalized PCE guarantees faster
convergence but the use of transformation is easier in
implementation.

In our implementation, m" FFNI with inverse Rosenblatt
transformation is used. The detailed procedure of calculating
coefficients in Eq. (15) is as follows:

1) Define transformations which map random variable x

to independent standard normal variable & as
=T (&)=F*(®(&))i=1-n (16)

where F denotes the cumulative distribution function (CDF)
of the original random variable and ® is the CDF of the

standard normal distribution.
independent with each other.
2) Set up the integration points and weights {I, ;,w, ;} .

It is assumed that x are

3) The coefficients b, is calculated as

b, zLilWh...jnileng(rl(h_h),...,Tn(ln_jn )by )}/E[‘Pf}

(17)
where the expectation in denominator can be evaluated
analytically.

The output of PCE is a random variable expressed in terms
of standard normal variables and this is a different aspect of
PCE from other methods whose outputs are usually measures of
uncertainty such as moments. The above procedure of PCE
can be thought of as a construction of a non-normal random
variable with projection onto the orthogonal basis of random
variable space based on the observational data. Once the
expansion function is obtained, the moments and probability of
failure can be derived if needed. This feature of obtaining
directly the PDF function of an output response using the PCE
method is very useful when the complete PDF construction is
needed, either for evaluating the probabilistic design objective
or for further propagation of uncertainty in a chain type of
system.

3. COMPARATIVE STUDIES

Four examples are tested to compare the performance of
the methods mentioned, under different levels of function
nonlinearity and different types of uncertain inputs. The first
two examples are chosen to compare the performances of
FENI, UDR, and PCE in moment estimation. Three and five-
node (m = 3 or 5) quadrature rules are used for one dimensional
integration in both FFNI and UDR. In PCE, the expansions
up to 4-th order (p=4) are tried with coefficients calculated by
the procedure described in Section 2.3 with 5" FFNI.  When
the PCE method is used, the moments are calculated
analytically and the probability of failure is estimated by MCS
based on the PCE functions. In the last two problems, the
FORM is applied to compare the accuracy and efficiency of
probability calculation with the other three methods. The HL-
RF algorithm (Hasofer and Lind 1974, Rackwitz and Fiessler
1978) is used to find the MPP.

3.1 Example 1
y=x* k=127 (18)

This example is used to compare the accuracy of various
methods in moment estimation against the nonlinearity of
performance function in an one dimensional case. Two cases
are tested, one with an input that follows the normal
distribution and the other with the lognormal distribution.
Since this problem is one dimensional, the test of UDR method

is not included because there is no need for dimension
reduction.

3.1.1Casel: x ~normal (u=10=02)

In Figs. 2 and 3, the skewness and kurtosis calculation
results are depicted with the ratio to the exact values obtained
analytically. NI in the legend means the method using
numerical integration. Results of MCS with 1,000 k samples
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are provided together for comparison. Since the input x
follows a normal distribution, the Gauss-Hermite quadrature
rule with m -node (either 3 or 5) is used for numerical
integration and 2m-1 integration order is expected. It
means that when m is 5 the skewness results are exact up to
nonlinear order k=3 and kurtosis results are exact up to
k=2. The 5 node numerical integration seems sufficient for
calculating the coefficients of PCE up to 4-th order in this case.
PCE with coefficients obtained by numerical integration, Eq.
(17) is compared with PCE with coefficients calculated
analytically in Appendix. ~As the nonlinearity of g(x)

increases, the coefficients become erroneous for the higher
order terms in the PCE. The reason why higher order
expansion is still more accurate under the bigger coefficient
estimation error is that the truncation error is more significant
than the numerical error in the coefficient estimation. It is

notable that for any order of expansion, E[y“’)] equals E[y]

based on the property in Eq. (12). Due to the orthogonality,
the coefficients of low order terms stay the same even if higher
order terms are added.

From Figs. 2 and 3, it is noted that for this example, for
different orders of nonlinearity k, the accuracy follows the
sequence of MCS (highest), 4™ order PCE, 5 node NI, 3" order
PCE, 2" order PCE, and the 3 node NI (lowest). The 4-th
order PCE shows slightly better results in skewness and
kurtosis calculation than the 5-node numerical integration while
both methods use the same amount of samples (5).
Comparing the results of different orders of PCE, we can check
the amount of truncation error when a lower order of PCE is
used. On the other hand, the higher order expansion we
choose, the greater the error might become in the coefficient of
the expansion function.  Further study is necessary on
choosing the right order based on the balance between the
truncation error and the coefficient estimation error. It is
observed that with the increase of the PCE order from 2 to 4,
the PDF curve is converged to the Exact curve (Fig. 4).

Skewness (y=x"k)

—&—MCS

080 1 —8— 3 node NI
—&x—>5 node NI
—¥—2nd order PCE
0.40 ~——@— 3rd order PCE
=+ 4th order PCE

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Figure 2. Comparison of results in skewness estimation
(ratio= result/exact value)

kurtosis (y=x"k)

1.00

A4

. |—e—MCs
0.80 1 —#—3 node NI
o —&—>5 node NI
E 060 —¥— 2nd order PCE
0.40 ~—@— 3rd order PCE
——+—4th order PCE
0.20
0.00 \.\*
1.0 2.0 3.0 4.0 5.0 6.0 7.0

k

Figure 3. Comparison of results in kurtosis estimation
(ratio=result/exact value)

05 T
i Exact
———PCEZ ]
. PCE3
— —-PCE4 ]

0.45

0.4

D3k
0af
&0zt
o ;

02py
045}
o1k

0.0s

12 14 16 18 20

¥

Figure. 4 Probability density function estimated by PCE (k=7)

3.1.2 Case2: x ~lognormal (x=105=02)

The same problem is tested with an input variable
following the lognormal distribution. In numerical integration
and MCS, no transformation is involved but for PCE, a
transformation to the standard normal variable should be used
during the calculation of coefficients. In this example, the
mapping between the normal variable and the lognormal
variable is available as

x=exp(ct+a) E~N (0,12)

a=log u, —0.5Iog(af +1), o=, /Iog(af +1)

where x4, and o, denote the mean and standard deviation of
X, respectively.

The results of skewness and kurtosis calculation are
summarized in Figs. 4 and 5. In the numerical integration, the
evaluation points and weights are obtained by solving the
moment-matching equation, Eq. (3). Although the results
show bigger error for large k values (order of nonlinearity)
compared to the results of case 1, we can see that the numerical
integration with the moment matching quadrature rule provides
accurate results up to 2m-1 polynomial order.

(19)
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0.4000 \(\.\-\
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Figure. 5. Comparison of results in skewness estimation
(ratio= result/exact value)
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0.2000 \\.\@

== 4th order PCE
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Figure 6. Comparison of results in kurtosis estimation
(ratio= result/exact value)
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Figure 7. Probability density function estimated by PCE (k=7)

0

In Case 2, the accuracy follows the sequence of MCS
(highest), 5 node NI , 4™ order PCE, 3" order PCE, 3 node NI,
and 2" order PCE (lowest). Contrary to the result of the
normal input case, the accuracy of 4-th order PCE is worse than
the 5 node numerical integration and that of the 2" order PCE
is worse than the 3 node NI, which implies that the
transformation does have a negative effect on the results. The
nonlinearity of y is amplified with the transformation in Eq.

(19) and the coefficient estimation becomes erroneous when the
nonlinearity exceeds the integration order of the quadrature

rule.  When checking the convergence of PDF obtained by
PCE, it is shown that the convergence behavior is not as good
as in Case 1 with normal distributions.

3.2 Example 2
The second example is a three dimensional polynomial
y = X% +2x] (20)
where x;’s follow the lognormal distribution with mean 1.

Four values of the standard deviation, 0.1, 0.2, 0.3 and 0.4 are
tested to examine the effect of variability of inputs on the
moment estimation. Also we intend to observe the effect of
interactions among variables on the performance of univariate
dimension reduction method by trying several values of a in
Eg. (20). When calculating the PC coefficients, the
transformation in Eq. (19) is used again.

3.2.1casel: a=2

The results of standard deviation and skewness
calculations are summarized in Figs. 8 and 9. The coefficients
of PCE are calculated using the procedure described in Section

2.3 with 5" FFNI. From the figures it is seen that the results
of UDR is almost identical with that from the FFNI, which
implies that the univariate decomposition is valid for vy, that

is, the interaction effects among variables are not significant in
this example. From Table 1, we note that the number of
function evaluations for UDR is much less than that used for
the other methods. The result of PCE is much worse than that

from the 5" FFNI which is due to the non-normality of the
input random variables as in case 2 of example 1.
Transformation does not always result in the degradation of
accuracy, however, we can see that care must be taken when
integrating a function with transformed variables. UDR
shows an excellent efficiency compared to FFNI. On the
hand, the performance of MCS is even worse compared to the

5" FFNI and 5n UDR.

Table 1 Number of function evaluations in Ex 2

3" 5" 3n 5n "
Method  MCS o\l Femi UbrR  UDR 4 TCE
Fn calls 1,000 k 27 125 7 13 125

3.2.2case2: a=3

By increasing a, we expect that the interaction effect
between x, and x, becomes more significant. The analysis

results of the standard deviation and skewness are summarized
in Table 2~3. The computational costs are the same as in case
1. Compared to the results of case 1, the results of UDR show
considerable discrepancies with those of MCS, and FFNI
especially when the standard deviations (o) of variables are
big. This implies that when the interaction effects are strong,
the error of using UDR increases.

Table 2 Standard deviation calculation results for Ex 2 (case 2)

o MCS 3"FFNI 5"FFNI 3nUDR 5nUDR 4" PCE

0.1 1.0001  0.9990 0.9994 0.9879 0.9883  0.9994
0.2 2.6854  2.6723 2.6894 2.5634 25811  2.6851
0.3 6.5869  6.4263 6.6237 5.9017 6.1114  6.4627
0.4 17.5815 16.2045 17.6457 14.0807 15.6562 15.5571
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Table 3 Skewness calculation results for Ex 2 (case 2)

o | MCS 3"FFNI 5"FFNI | 3nUDR [ 5n UDR | 4™ PCE

0.1| 1.0541 | 0.9910 1.0530 0.9345 0.9982 | 1.0540

0.2| 2.9137 2.2053 2.8979 2.1221 2.8809 | 2.7196

0.3| 7.2888 | 4.0926 8.2544 3.8275 8.7001 | 5.2245

0.4 24.6705 | 8.2238

31.3577 | 13.7716 | 33.7417 | 7.6342
STD (Ex2.1)
1 osool
1.0000 Vs
P | —=—znr
I 0.9500 —&—5'nFRNI
—&—31UDR
0.9000
! |—+—snuor
0.8500 ——=— 4thorder PCE
0.8000

0.1 0.2 0.3 0.4

Figure 8. Comparison of results of STD estimation
(ratio=result/exact value)

Skewness (Ex2.1)

1.2000

1.0000

—e&—NCS

0.8000 ——@— 3 FFNI
——&—5" FFNI
——3n UDR
0.4000 ~—+——5n UDR

0.6000

Ratio

=== 4th order PCE

0.2000

0.0000

0.1 0.2 0.3 0.4
cov

Figure 9. Comparison of results of skewness estimation
(ratio=result/exact value)

3.3 Engine piston power loss analysis

This example is from the Piston-ring/Cylinder-liner
example used by Kokolaras et al. (2006), Huibin et al. (2006).
The performance of interest is the power loss due to the friction
between the piston ring and the cylinder liner. Our interest is
to find the probability density function over the whole range of
power loss and also compute the probability in the tail region.
The prediction model for power loss due to friction is a meta-
model built by the moving least square (MLS) method with
four inputs, ring surface roughness, liner surface roughness,
liner Young’s modulus, and liner hardness. The first two
inputs are treated as random variables following normal
distributions with mean 4.0 and 6.1193 respectively and with
unit variance. The other two input variables are assumed to be
deterministic with values 0.8 and 2.4 respectively. The
analysis results are summarized in Table 4. The
computational costs (number of power loss calculations) are
also listed in the Table.

The moment estimation results of all methods closely

match with each other except the kurtosis calculated by 3"

FFNI and 3n UDR, which is due to the nonlinearity of the
power loss function. The significance of this error obviously

depends on the situation, our target of analysis, the confidence
level required and so on. In the case that reliability is our
target of analysis, the effect of error in moment estimation can
be roughly calculated with the finite difference method using
the Pearson system introduced in Section 2.1 under the
assumption that the tail region PDF is well described by the
Pearson system.

Table 4 Analysis results of engine piston example

MCS 3" FFNI 5" FFNI 3n UDR
mean 0.3931 0.3920 0.3924 0.3920
Std 0.0311 0.0299 0.0300 0.0300
skewness -0.5855 -0.5867 -0.5822 -0.5663
kurtosis 3.1041 3.0406 3.4336 3.1188
Pr[PL<0.3] | 5.400E-03 | 3.684E-03 | 5.161E-03 4.117E-03
Pr[PL<0.45] | 9.980E-01 | 9.996E-01 | 9.922E-01 9.972E-01
Fn call 100 k 9 25 5
5n UDR 4" pCE FORM
mean 0.3926 0.3924
Std 0.0302 0.0300
skewness -0.5503 -0.58460
kurtosis 3.4833 3.46129
Pr[PL<0.3] | 5.278E-03 | 5.700E-03 | 1.903E-03
Pr[PL<0.45] | 9.889E-01 | 1.000E-00 0.9981
Fn call 9 25 (15, 30)

In probability calculation results, it is seen that 5" FFNI,
5n UDR, and the 4" order PCE match well with the result by

MCS while 3" FFNI and 3n UDR and FORM underestimate
the probability. It is natural that the errors in moment
estimation result in errors in probability calculation. The error
in the result of FORM is related to the nonlinearity of the
power loss function.

16| ——MCS (100k)
— 4th order PCE

141 | — Pearson (5" FFMM)

=] r

@

PDF of Power Loss

\

L T L 1 1
0z 0.25 03 0.35 0.4 0.45 0.5
Power Loss (k)

Figure 10. PDF of power loss function

In Fig. 10 the PDF of the power loss function is plotted.
The PDF of the PCE is obtained by running MCS on the PCE,
and the moments obtained by 5" FFNI are used with the
Pearson system to determine a PDF curve. We found that the
actual PDF obtained by the MCS has an irregular shape with
double peaks, but both the Pearson system based on the first
four moments and the PCE fail to find the accurate shape of the
PDF in this example. The Pearson system is not capable of
representing such irregular shape and it is an inherent limitation
of fitting a PDF using a small number of moments. This
example further verifies the notion that the PDF estimated by

7 Copyright © 2007 by ASME




the first few moments is not unique. The PCE can represent
any square integrable random variable in theory, however, this
problem shows that the convergence to the real PDF might be
very slow in some cases.

3.4 Fortini’s clutch

Roller
bearing

Figure 11. Fortini’s clutch

The last example is the Fortini’s clutch (Fig. 11) used in
many tolerance analysis literature (Creveling 1997). The
contact angle y is given in terms of the independent

component variables, x,, x,, x; and x, asfollows:

X, +0.5(X, +X,)
X, —0.5(%, +X%;)

The moments and probabilities at the left tail region of y
are calculated with all methods. The Pearson system is used
with FFNI and also with UDR to calculate the probability,
while the probability of PCE is calculated by MCS with 1,000
k samples. To see the effect of non-normality of input
variables, two different input settings are tried, one with all
normally distributed variables, the other with two non-normal
variables.

y= arccos[ (21)

3.4.1 Case 1: all normal inputs

The distribution parameters are summarized in Table 7,
and the results of analysis are given in Table 8. All the
methods calculate moments accurately except the UDR
method. The skewness and kurtosis estimation of the 5n UDR
is worse than that of 3" FFNI. This means that there exist
significant interaction effects between variables and it is
verified by the analysis of variance (ANOVA) that the
interaction between x, and x, is important. The same
reason contributes to the errors in the probability estimation.
The performance of FORM is very satisfactory in both
accuracy and efficiency. The coefficients of PCE are
calculated by 5" FFNI and the results are as accurate as 5"
FFNI.

Table 7 Input random variables for Fortini’s clutch example

Table 8 Uncertainty analysis results of Fortini’s clutch example

(case 1)

(1'\6'50?() 3"FFNI 5" FFNI 3n UDR

mean 0.1219 0.1219 0.1219 0.1219

std 0.0118 0.0118 0.0118 0.0117

skewness -0.3193 -0.3082 -0.3157 -0.1436

kurtosis 3.2878 3.2000 3.2827 3.0000
Pr(y<4deg) 2.070E-04 | 1.257E-04 | 1.732E-04 | 1.789E-05
Pr(y<bdeg) | 4.690E-03 | 4.514E-03 | 4.830E-03 | 2.490E-03
Pr(y<6deg) | 7.836E-02 | 7.904E-02 | 7.849E-02 | 7.482E-02

Fn call 1000k 81 625 9

Case 2: with 2 non-normal variables

The input x, is assumed to follow the beta distribution
with parameters 7=y =>5.0 and x, is assumed to follow the
Rayleigh distribution with the same means and standard

deviations with case 1 (Table 9).
parameters follow those in (Hahn and Shapiro 1967).

are summarized in Table 10.

The notations of distribution

Results

Table 9 Input random variables for Fortini’s clutch example

T Standard Parameters for
Distribution Mean L S
Deviation non-normal distributions
X Beta 55.29 mm | 0.0793 mm y,=n,=50
X Normal 22.86 mm | 0.0043 mm | (55.0269 < x, <55.5531)
X3 Normal 22.86 mm | 0.0043 mm G, =0.1211
X, Rayleigh 101.60 mm | 0.0793 mm (x,>101.45)
Table 10 Analysis results of Fortini’s clutch example
MCS 3" FFNI 5" FFNI 3n UDR
mean 0.1219 0.1219 0.1219 0.1219
std 0.0117 0.0117 0.0117 0.0116
skewness -0.0516 -0.0497 -0.0530 0.0989
kurtosis 2.8810 2.8488 2.8827 2.8401
Pr(y<4deg) | 0.000E+00 | 3.791E-07 | 1.058E-06 | 0.000E+00
Pr(y<bdeg) | 1.222E-03 | 1.241E-03 | 1.396E-03 | 3.707E-04
Pr(y<6deg) | 7.381E-02 | 7.288E-02 | 7.272E-02 | 6.671E-02
Fn_call 1000k 81 625 9
5n UDR 4" PCE FORM
mean 0.1219 0.1219
std 0.0116 0.0117
skewness 0.0964 -0.0577
kurtosis 2.8662 2.8930
Pr(y<4deg) | 0.000E+00 | 0.000E+00 Diverge
Pr(y<bdeg) | 4.491E-04 | 1.220E-03 Diverge
Pr(y<6deg) | 6.668E-02 | 7.402E-02 | 8.771E-02
Fn_call 17 625 31

The trends are almost similar with case 1, except that the

(case 1)
Distribution Standard
Component type Mean Deviation
X Normal 55.29 mm 0.0793 mm
X, Normal 22.86 mm 0.0043 mm
X, Normal 22.86 mm 0.0043 mm
X, Normal 101.60 mm 0.0793 mm

HL-RF algorithm used in FORM has some difficulties in
finding the MPP when the probability is small.  The
divergence occurs when the search point of HL-RF algorithm
goes outside the domain where the non-normal variables are
defined. FFNI shows consistently good results and similarly
to the results of case 1 UDR shows some errors in high order
moments and probability. However, we can see that the
estimation of the mean and standard deviation is still good and
there is no additional loss of accuracy caused by non-normality
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of inputs. The accuracy of PCE is still good although the
inverse Rosenblatt transformation is used to transform x, and

X, to the standard normal variables, which is different from
the trend shown in examples 1 and 2.

4. DISCUSSIONS AND CONCLUSIONS

In the paper, several categories of uncertainty propagation
techniques, including a few techniques that are receiving
growing attentions, i.e., univariate dimension reduction and
polynomial chaos expansion, are examined in depth to
understand the characteristics and limitations of various
methods. Comparative studies are performed using
illustrative examples. Ideally, the performances should be
evaluated under a considerable range of system nonlinearity,
various distributions of input random variables, and various
dimensionality in terms of accuracy and efficiency. Hence, it
might not be plausible to judge or rank the methods with just
several examples. However, through this comparison study,
some characteristics, advantages and disadvantages of each
method can be generalized.

It is noted that the FFNI and UDR methods use direct
numerical integrations to obtain the statistical moments, and
their accuracy depends on the integration order of the
guadrature rule adopted.  While the computational cost
increases exponentially in FFNI, UDR has a linear increase of
function evaluations with the number of input random
variables.  This outstanding efficiency is obtained by
sacrificing accurate considerations of the interaction effects
which may exist in the system. For examples, we could see
that this approximation can cause errors especially in high order
moments and the small probability at tail distribution. One
nice feature of FFNI and UDR is that they are robust against
the non-normality of inputs. Based on the four statistical
moments obtained, the Pearson system of distribution can be
further adopted to obtain the probability and the complete PDF.
These methods work well when the PDF of a performance
function has a regular shape with one mode, however, they are
limited in finding the complete PDF with a few lower order
moments.

The PCE, a functional expansion based method that gains
popularity, is tested with coefficients calculated by the
numerical  integration and the inverse  Rosenblatt
transformation. The procedure of calculating the expansion
coefficients is illustrated in detail which can be effectively
applied to the black-box type functions. With the PCE
approach, the accuracy and the computational cost depend on
the integration scheme adopted to calculate the coefficients.
The implementation of the PCE used in this study is subject to
two major sources of error. The first one is the truncation
error with the finite expansion, the second is the coefficient
estimation error related with the numerical integration scheme
to calculate the expectation. A further study about the effect
of the coefficient estimation errors on the convergence behavior
of PCE seems necessary. The transformation used to treat
non-normal inputs can degrade the accuracy which makes this
approach less robust against the non-normality of inputs
compared to the FFNI and UDR methods.  On the other hand,
this feature of obtaining directly the PDF function of an output
response using the PCE method is very useful.

Related to the different scenarios of design under
uncertainty, for example, robust design, reliability-based
design, and utility optimization, a method for UP should be
selected based on the required level of uncertainty
quantification (e.g., low-order moments, tail probability, and
complete PDF), accuracy or confidence level, as well as the
computational cost or efficiency. It is observed that if there is
no significant interaction between variables, the UDR method
is the most efficient method for moment estimations. The
UDR method is flexible with the type of input distributions.
Its performance in assessing tail probability is comparable with
that of the MPP based method, sometimes even better, but not
always. The MPP based method is an efficient approach to
the evaluation of tail probability. However, it appears to be
the least stable method that is sensitive to the type of input
distributions and the function nonlinearity. The PCE method
is a useful approach when a complete PDF description is
desired. Its performance in evaluating the statistical moments
is comparable to the FFNI approach. With the current
transformation method, the performance of the PCE method
deteriorates when non-normal input distributions are
considered. On the other hand, the FFNI method is flexible
with the type of input distributions.

One aspect which is yet to be examined in this work is the
performance of the PCE with respect to different sample sizes.
The other aspect which was not investigated in this study is the
effect of correlations among input variables on the performance
of each method. All the methods except MCS need
transformation of those correlated variables into uncorrelated
variables. Performances of hybrid approaches that combine
multiple techniques including the metamodeling technique are
yet studied to make the current scope of comparison
manageable.
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APPENDIX

Table A1 PCE with coefficients calculated analytically
Polynomial chaos expansion

1| y?®=1+02¢
2 | yP =1.04+04& +o.04(§2 —1)

3| ¥ =1.12+0.6240¢ +0.12(&’ —1)+0.008(§3 -3¢)

y") =1.2448+0.8960¢ +0.2496( ¢ ~1)+0.0320(£* - 3¢)

4 +0.0016(£* - 6&° +3)
y(? =1.4240+1.2448¢ +0.4480( £ 1)+ 0.0832(£° - 3¢)
> +0.0080(£* - 6&° +3)
y® =1.6730+1.7088¢ +0.7469( £ 1)
6 +0.1792(£° ~32)+0.0250( £* —6&° +3)
, y(® =2.0147 +2.3421¢ +1.3348(&° 1)

+0.3485(&° ~3£) +0.0672(&* -6 +3)

Table A2 PCE with coefficients calculated numerically
k Polynomial chaos expansion

1| y?=1+02¢
2 | ¥y =104+04¢+0.04(£ 1)
3

y® =1.12+0.6240£ +0.12(£* ~1)+0.008(£* - 3¢)

Yo =1.2448+0.8960r§+0-2495(§2 ‘1)

4 +0.0820(¢°~3£)+0.0016(¢* ~65° +3)
y(®) =1.4240+1.2448 + 0.4480(&* 1)

| oosa(e-3)+0.0080(* -6 +3)
y"” =1.6730+1.7088¢ +0.7469(£* -1)

6 +0.1792(&° - 3¢) +0.0246(&* ~6&7 +3)

, yo = 2,0147+2.3421§+1.1962(§2 —1)

+0.3483(£° ~3£) +0.0604(&* ~6£” +3)
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