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ABSTRACT 

It is an important step in deign under uncertainty to select 
an appropriate uncertainty propagation (UP) method 
considering the characteristics of the engineering systems at 
hand, the required level of UP associated with the probabilistic 
design scenario, and the required accuracy and efficiency 
levels.  Many uncertainty propagation methods have been 
developed in various fields, however, there is a lack of good 
understanding of their relative merits.  In this paper, a 
comparative study on the performances of several UP methods, 
including a few recent methods that have received growing 
attention, is performed.  The full factorial numerical 
integration (FFNI), the univariate dimension reduction method 
(UDR), and the polynomial chaos expansion (PCE) are 
implemented and applied to several test problems with different 
settings of the performance nonlinearity, distribution types of 
input random variables, and the magnitude of input uncertainty.  
The performances of those methods are compared in moment 
estimation, tail probability calculation, and the probability 
density function (PDF) construction.  It is found that the FFNI 
with the moment matching quadrature rule shows good 
accuracy but the computational cost becomes prohibitive as the 
number of input random variables increases.  The accuracy 
and efficiency of the UDR method for moment estimations 
appear to be superior when there is no significant interaction 
effect in the performance function.  Both FFNI and UDR are 
very robust against the non-normality of input variables.  The 
PCE is implemented in combination with FFNI for coefficients 
estimation.  The PCE method is shown to be a useful approach 
when a complete PDF description is desired.  Inverse 
Rosenblatt transformation is used to treat non-normal inputs of 
PCE, however, it is shown that the transformation may result in 
the degradation of accuracy of PCE.  It is also shown that in 
black-box type of system the performance and convergence of 
PCE highly depend on the method adopted to estimate its 
coefficients.1 
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1. INTRODUCTION 

One of the key components of uncertainty analysis is the 
quantification of uncertainties in the system output 
performances propagated from uncertain inputs, named as 
uncertainty propagation (UP).  A lot of efforts have been made 
to develop methods of uncertainty propagation in various fields 
such as structural reliability (Madsen et al. 2006, Christensen 
1982, Kiureghian 1998), stochastic mechanics (Ghanem and 
Spanos 1991, Liu et al. 1986), quality engineering (Evans 1972, 
Taguchi 1978, D’Errico and Zaino 1988, Seo and Kwak 2002) 
and considerably many methods are now available.  Since the 
methods were developed with different backgrounds and 
philosophies, it is necessary to examine their applicability and 
relative efficiency in the context of engineering design.  In 
design under uncertainty, the role that the UP is expected to 
play varies based on different design scenarios.  For instance, 
in robust design (Du and Chen 2000, McAllister and Simpson 
2003), the interest of UP is to evaluate the low-order moments 
(mean and variance) of a performance.  In reliability-based 
design (Lee and Kwak 1987-88, Wu 1994, Youn et al. 2003, 
Du et al. 2004), the interest is on assessing the performance 
reliability. The complete distribution of a performance is 
needed in utility optimization (Hazelrigg 1998), where the 
probability distribution needs to be integrated with designer's 
utility function to maximize the expected utility of a product.  
Our goal in this work is to conduct an in-depth examination of 
several widely used UP techniques, some are newly developed 
in literature, to understand the characteristics and limitations of 
these methods, and to compare their performance using 
illustrative examples.  

The methods for uncertainty propagation can be classified 
into five categories as follows.  The first category is the 
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simulation based methods like Monte Carlo simulation (MCS) 
(Madsen et al. 2006, Christensen 1982, Kiureghian 1998), 
importance sampling (Melchers 1989, Engelund and Rackwitz 
1993), adaptive sampling (Bucher 1988). The second category 
is the local expansion based methods like Taylor series method 
or perturbation method (Madsen et al. 2006, Christensen 1982, 
Kiureghian 1998, Ghanem and Spanos 1991).  Methods in this 
category are weak against the large variability of inputs and 
nonlinearity of performance functions.  The third category is 
the most probable point (MPP) based methods (Hasofer and 
Lind 1974, Fiessler et al. 1979).  First order reliability method 
(FORM) and second order reliability methods (SORM) are two 
popular methods in this category.  The fourth category is the 
functional expansion based methods.  The Neumann 
expansion and the polynomial chaos expansion can be 
classified into this group.  The polynomial chaos expansion 
(PCE) (Ghanem and Spanos 1991, Xiu and Karniadakis 2003) 
is a mean square convergent series of orthogonal polynomials 
of standard random variables.  In recent years, the PCE 
approach has been gaining more attention in uncertainty 
representations, stochastic mechanics, solution of stochastic 
differential equations and so on.  The last category is the 
numerical integration based methods (Evans 1972, Seo and 
Kwak 2002, Lee and Kwak 2006).  The statistical moments 
are first calculated by direct numerical integration and then the 
probability density or the tail region probability is 
approximated using the empirical distribution systems (Johnson 
et al. 1994) based on the calculated moments.  This approach 
has been implemented together with the technique of design of 
experiments and the procedure using the product quadrature 
rule with Gaussian type integration and Pearson system for 
reliability analysis was named as the full factorial moment 
method (FFMM) in Seo and Kwak (2002) and Lee and Kwak 
(2006). For clarity, in this paper, we denote the moment 
calculation with full factorial set of evaluation points as full 
factorial numerical integration (FFNI).  A newly developed 
method in this last category of numerical integration based 
method is the so called dimension reduction (DR) method 
(Rhaman and Xu 2004, Xu and Rhaman 2004).  The DR 
method approximates a multi-dimensional moment integral by 
multiple reduced-dimensional integrals based on additive 
decomposition of performance function. 

When selecting a method for UP various aspects should be 
considered such as the required level of uncertainty 
quantification, accuracy or confidence level, as well as the 
computational cost or efficiency.  Since the performance of 
the above mentioned methods are affected by the problem 
settings such as the type of input distribution, the nonlinearity 
of performance function, the number of input random variables, 
and the required resolution, it would be beneficial to develop 
guidelines to choose an appropriate method which fits for a 
specific situation.  For this, comparative studies among the 
various methods are important.  So far, comparative studies 
among the numerical integration based methods (e.g., the 
dimension reduction method) and the functional expansion 
based methods, especially the PCE method have not been 
reported in literature.  In this paper, we present the results of 
our comparative study on the performance of a few relatively 
recent methods, such as the Univariate Dimension Reduction 
(UDR) and the PCE, as well as a few conventional approaches, 
such as the FFNI and the MPP based approaches.  In our 

studies, the results from MCS are used as a reference.  Since 
in most of the engineering design problems, the analysis 
models are provided in the form of black-boxes rather than 
explicit functions or governing equations, the black-box type 
problems are the target of our study.  Even though explicit 
functions are provided for our case studies, they are treated as 
black-box type functions with different degrees of nonlinearity 
and different distribution types of input variables. 

In Section 2, introductions to FFNI, UDR and PCE are 
provided with emphasis on the unique aspects of each method.  
Test results with several problems are given in Section 3.  In 
Section 4, a brief summary and discussions about the results are 
provided. 

2. SUMMARY OF METHODS 
Throughout this paper, a black-box type performance 

function is denoted as  
( )y g= x                      (1) 

where x  is the n  dimensional vector of random variables 
with joint probability density function (PDF) ( )f x . 

2.1 Full Factorial Numerical Integration (FFNI) 
With this approach, the statistical moments are calculated 

through the direct numerical integration.  Once the first four 
moments are calculated, the complete distribution function or 
the probability of failure can be estimated using the empirical 
distribution systems (Johnson et al. 1994).  Some details are 
provided as follows. 
The m-node Gaussian type integration rule for statistical 
moments can be written as 

( ){ } ( ) ( )
1

mk kk
i i

i
E g g x f x dx w g µ α σ

=Ω

⎡ ⎤ ⎡ ⎤= ≈ +⎣ ⎦⎣ ⎦ ∑∫      (2) 

where iα , iw  are the location parameter and weight at the i -
th quadrature point.  The optimal locations of the quadrature 
points and the corresponding weights can be calculated using 
the moment-matching equations as follows: 

( ) ( ) ( )
1

0,...,2 1
m

k k
k i i

i
M x f x dx w k mµ α σ

=Ω

= − = = −∑∫     (3) 

where kM  is the k -th central moment of random variable x  
which should be provided based on the PDF of x .  This 
nonlinear system of equations can be solved with numerical 
methods to find the unique { }1 1, , , , ,m mw wα α .  However, 
when m  becomes large (e.g. > 7), it is not a simple task to 
solve the nonlinear system of equations.  Fig. 1 is the example 
of evaluation points and weights for some well-known 
distributions when the 3-node rule is applied ( 3m = ). 

When x  follows the normal, uniform and exponential 
distribution, iα ’s and iw ’s can be directly derived from the 
Gauss-Hermite, Gauss-Legendre, and Gauss-Laguerre 
quadrature formula respectively since the weighting functions 
of those quadrature rules have the same form with the PDF of 
the above three distributions.  When there are n  random 
variables in the system, the moment integral becomes an n  
dimensional multiple integral based on the product quadrature 
rule (Evans 1972) and can be calculated as follows: 
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(a) normal distribution 

5, 1µ σ= =  
(b) Rayleigh distribution 

ˆ 2σ =  

  
(c) uniform distribution 

0 10x≤ ≤  
(d) beta distribution 

0.3, 0.6η γ= =  
Figure 1. PDF and 3-node quadrature rule for four different 
distributions.  The notations for parameters are from Hahn and 
Shapiro (1967). 
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The sampling becomes a nm  full factorial design in the 
DOE point of view.  The integration order of this method is 
( 2 1m − ) and the number of function evaluations required is 

nm . 
Once the four statistical moments are obtained, the 

probability of failure can be evaluated with the aids of the 
empirical distribution systems such as the Pearson system, the 
Johnson system, and the Gram-Charlier series.  Pearson 
system approximates the PDF ( )f x  as a solution of the 
differential equation following, 

2
0 1 2

1 ( )
( )

df x x a
f x dx c c x c x

+
= −

+ +
                    (5) 

where x x µ= −  and, a , 0c , 1c  and 2c  are coefficients 
calculated from the first four central moments of random 
variable x  whose PDF is to be approximated. 

2.2 Univariate Dimension Reduction (UDR) Method 
Similar to the FFNI, the univariate dimension reduction 

(UDR) method (Rhaman and Xu 2004, Xu and Rhaman 2004) 
belongs to the category of numerical integration based methods.  
This method calculates the statistical moments of ( )g x  with a 
univariate decomposition to improve the efficiency of 
numerical integration.  The performance function ( )g x  is 
approximated by a sum of univariate functions which depend 
on only one random variable with the other variables fixed to 
their mean values.  If we denote these univariate functions as 

ig  then the approximation can be written as: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1
1

1

ˆ , , , , 1 , ,

1

n

i n n
i

n

i i
i

g g g x n g

g x n g

µ µ µ µ
=

=

≈ = − −

= − −

∑

∑ x

x x

µ
        (6) 

where iµ  denotes the mean value of i-th random variable. 
It can be shown that the Taylor series expansion of the 

univariate approximation ( )ĝ x  contains all single variable 

terms of Taylor series of ( )g x .  This means that the 
approximation error is contributed by the terms with two or 
more variables in the expansion of ( )g x . 

The univariate decomposition can be applied to the 
statistical moment integral, with the condition that the random 
variables should be independent with each other.  When the 
variables are correlated, they should be transformed into 
independent variables with Rosenblatt transformation.  The 
k -th moment of ( )g x  is approximated as follows: 

( ) ( ) ( ) ( ) ( )
1

ˆ 1
kn

k k
i i

i
E g E g E g x n g

=

⎡ ⎤⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎢ ⎥≈ = − −⎨ ⎬⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎩ ⎭⎣ ⎦
∑ xx x µ       (7) 

This operations can be performed algebraically and the 
results can be expressed in terms of moments of univariate 
functions, say l

iE g⎡ ⎤⎣ ⎦ , 1, ,i n=  0, ,l k= .  In Rhaman 
and Xu (2004), a recursive formula for this calculation is 
proposed.  

The moments of ig ’s can be calculated using the one 
dimensional numerical integration based on the moment-based 
quadrature rule.  Schemes introduced in Section 2.1 for 
sampling can also be used.  If we use the quadrature rule with 
the same number of nodes m  for one dimensional integration 
of all ig ’s, then the number of ( )g x  evaluations required 

becomes ( )1 1m n− +  at least and 1mn +  at most (n: number 
of random variables).  Since the output of UDR is also 
statistical moments of ( )g x , the empirical distribution system 
introduced in Section 2.1 needs to be applied to get the full 
distribution function to calculate the probability of failure. 

2.3 Polynomial chaos expansion (PCE) 
The PCE method belongs to the category of functional 

expansion based methods.  The PCE of a square integrable 
random variable ( )u θ  can be written as (Ghanem and Spanos 
1991) 

( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( )

1

1 1 1 2 1 2

1 1 2

1 2

1 2 3 1 2 3

1 2 3

0 0 1 2
1 1 1

3
1 1 1

,

, ,

i

i i i i i i
i i i

i i

i i i i i i
i i i

u a a a

a

θ ξ θ ξ θ ξ θ

ξ θ ξ θ ξ θ

∞ ∞

= = =

∞

= = =

= Γ + Γ + Γ

+ Γ +

∑ ∑∑

∑∑∑
   (8) 

where ( ){ }
1i i

ξ θ
∞

=
 is a set of standard normal variables, pΓ  is 

a generic element in the set of multi-dimensional Hermite 
polynomials of order p , and ia  are the deterministic 
coefficients.  θ  is a parameter indicating the quantities 
involved are random variables defined over a space of random 
events.  We can rewrite Eq. (8) in a simpler form as 
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( ) ( )( )
0

i i
i

u bθ θ
∞

=

= Ψ∑ ξ                   (9) 

where ib , ( )i ξΨ  correspond to 
1 pi ia , ( )1

, ,
pp i iξ ξΓ  

respectively.  For example, the two dimensional PCE of 
second order ( 2p = ) can be written as 

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

2
0 1 1 2 2 3 1

2
4 1 2 5 2

1

1

u b b b b

b b

θ ξ θ ξ θ ξ θ

ξ θ ξ θ ξ θ

= + + + −

+ + −
         (10) 

Some notable properties of Hermite polynomials are 
2

i j i ijE E δ⎡ ⎤⎡ ⎤Ψ Ψ = Ψ⎣ ⎦ ⎣ ⎦                 (11) 

0 0iE for iΨ = ≠⎡ ⎤⎣ ⎦ .                 (12) 
When there are n  random inputs in the system as in Eq. 

(1), the output responses can be approximated by n  
dimensional PCE, truncated at some order p .  In this case the 
number of terms in PCE becomes 1P +  where P  is given as 

( )
1

1 0

1
!

p s

s r

P n r
s

−

= =

⎧ ⎫
= +⎨ ⎬

⎩ ⎭
∑ ∏  .  (13) 

Then the PC approximation is written as 

( )( )

0

P
P

i i
i

y y b
=

≈ = Ψ∑ ξ                (14) 

where ξ  is a standard normal random vector of n  
dimension. 

The coefficients of Eq. (14) can be calculated based on the 
orthogonality (Eq. (11)) of Hermite polynomials.  Multiplying 

( )jΨ ξ  on both sides of Eq. (14) and taking the expectation, we 
can obtain jb  as follows: 

( ) ( )2
j j jb E y E ⎡ ⎤⎡ ⎤= Ψ Ψ⎣ ⎦ ⎣ ⎦ξ ξ             (15) 

While the denominator term in Eq. (15) can be evaluated 
analytically, the expectation in the numerator needs to be 
evaluated with sampling or numerical integration schemes.  
Approaches using Latin Hyper cube sampling (Choi et al. 
2004), numerical integration (Xiu 2007) have been reported.  
One issue related with the procedure is how to treat the non-
normal random inputs.  It is reported that the convergence rate 
of PCE is not fast when the inputs are non-normal and a 
generalized PCE (Xiu and Karniadakis 2003) has been 
proposed to solve this problem with various orthogonal 
polynomials in Askey scheme.  Using the generalized PCE is 
one way to treat non-normal random inputs, and the other way 
is to use transformation (Tatang 1995).  The comparison 
between these two approaches, using the generalized PCE and 
using transformation, was performed by Choi et al. (2004).  It 
is reported that the use of generalized PCE guarantees faster 
convergence but the use of transformation is easier in 
implementation.  

In our implementation, nm  FFNI with inverse Rosenblatt 
transformation is used.  The detailed procedure of calculating 
coefficients in Eq. (15) is as follows: 

1) Define transformations which map random variable ix  
to independent standard normal variable iξ  as 

( ) ( )( )1 1, ,i i i ix T F i nξ ξ−= = Φ =            (16) 
where F  denotes the cumulative distribution function (CDF) 
of the original random variable and Φ  is the CDF of the 

standard normal distribution.  It is assumed that ix  are 
independent with each other. 

2) Set up the integration points and weights { },i j i jl w⋅ ⋅ . 

3) The coefficients ib  is calculated as 

  ( ) ( )( ) ( )1 1 1

1

2
1 1 1

1 1
, , , ,

n n n

n

m m

i j j j n n j i j n j i
j j

b w w g T l T l l l E⋅ ⋅ ⋅ ⋅
= =

⎡ ⎤
⎡ ⎤= Ψ Ψ⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

∑ ∑  

(17) 
where the expectation in denominator can be evaluated 
analytically. 

The output of PCE is a random variable expressed in terms 
of standard normal variables and this is a different aspect of 
PCE from other methods whose outputs are usually measures of 
uncertainty such as moments.  The above procedure of PCE 
can be thought of as a construction of a non-normal random 
variable with projection onto the orthogonal basis of random 
variable space based on the observational data.  Once the 
expansion function is obtained, the moments and probability of 
failure can be derived if needed.  This feature of obtaining 
directly the PDF function of an output response using the PCE 
method is very useful when the complete PDF construction is 
needed, either for evaluating the probabilistic design objective 
or for further propagation of uncertainty in a chain type of 
system. 

3. COMPARATIVE STUDIES 
Four examples are tested to compare the performance of 

the methods mentioned, under different levels of function 
nonlinearity and different types of uncertain inputs.  The first 
two examples are chosen to compare the performances of 
FFNI, UDR, and PCE in moment estimation.  Three and five-
node (m = 3 or 5) quadrature rules are used for one dimensional 
integration in both FFNI and UDR.  In PCE, the expansions 
up to 4-th order (p=4) are tried with coefficients calculated by 
the procedure described in Section 2.3 with 5n  FFNI.  When 
the PCE method is used, the moments are calculated 
analytically and the probability of failure is estimated by MCS 
based on the PCE functions.  In the last two problems, the 
FORM is applied to compare the accuracy and efficiency of 
probability calculation with the other three methods.  The HL-
RF algorithm (Hasofer and Lind 1974, Rackwitz and Fiessler 
1978) is used to find the MPP. 

3.1 Example 1 
1,2, ,7ky x k= =                 (18) 

This example is used to compare the accuracy of various 
methods in moment estimation against the nonlinearity of 
performance function in an one dimensional case.  Two cases 
are tested, one with an input that follows the normal 
distribution and the other with the lognormal distribution.  
Since this problem is one dimensional, the test of UDR method 
is not included because there is no need for dimension 
reduction.  

3.1.1 Case 1: x  ~ normal ( )1, 0.2µ σ= =  

In Figs. 2 and 3, the skewness and kurtosis calculation 
results are depicted with the ratio to the exact values obtained 
analytically.  NI in the legend means the method using 
numerical integration.  Results of MCS with 1,000 k samples 
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are provided together for comparison.  Since the input x  
follows a normal distribution, the Gauss-Hermite quadrature 
rule with m -node (either 3 or 5) is used for numerical 
integration and 2 1m −  integration order is expected.  It 
means that when m  is 5 the skewness results are exact up to 
nonlinear order 3k =  and kurtosis results are exact up to 

2k = .  The 5 node numerical integration seems sufficient for 
calculating the coefficients of PCE up to 4-th order in this case.  
PCE with coefficients obtained by numerical integration, Eq. 
(17) is compared with PCE with coefficients calculated 
analytically in Appendix.  As the nonlinearity of ( )g x  
increases, the coefficients become erroneous for the higher 
order terms in the PCE.  The reason why higher order 
expansion is still more accurate under the bigger coefficient 
estimation error is that the truncation error is more significant 
than the numerical error in the coefficient estimation.  It is 
notable that for any order of expansion, ( )PE y⎡ ⎤⎣ ⎦  equals E y⎡ ⎤⎣ ⎦  
based on the property in Eq. (12).  Due to the orthogonality, 
the coefficients of low order terms stay the same even if higher 
order terms are added. 

From Figs. 2 and 3, it is noted that for this example, for 
different orders of nonlinearity k , the accuracy follows the 
sequence of MCS (highest), 4th order PCE, 5 node NI, 3rd order 
PCE, 2nd order PCE, and the 3 node NI (lowest).  The 4-th 
order PCE shows slightly better results in skewness and 
kurtosis calculation than the 5-node numerical integration while 
both methods use the same amount of samples (5).  
Comparing the results of different orders of PCE, we can check 
the amount of truncation error when a lower order of PCE is 
used.  On the other hand, the higher order expansion we 
choose, the greater the error might become in the coefficient of 
the expansion function.  Further study is necessary on 
choosing the right order based on the balance between the 
truncation error and the coefficient estimation error.  It is 
observed that with the increase of the PCE order from 2 to 4, 
the PDF curve is converged to the Exact curve (Fig. 4). 
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Figure 2. Comparison of results in skewness estimation 

(ratio= result/exact value) 
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Figure 3. Comparison of results in kurtosis estimation 

(ratio=result/exact value) 
 

 
Figure. 4 Probability density function estimated by PCE (k=7) 

 

3.1.2 Case 2: x  ~ lognormal ( )1, 0.2µ σ= =  

The same problem is tested with an input variable 
following the lognormal distribution.  In numerical integration 
and MCS, no transformation is involved but for PCE, a 
transformation to the standard normal variable should be used 
during the calculation of coefficients.  In this example, the 
mapping between the normal variable and the lognormal 
variable is available as 

( ) ( )
( ) ( )

2

2 2

ˆ ˆexp ~ 0,1

ˆ ˆlog 0.5log 1 , log 1x x x

x Nσξ µ ξ

µ µ σ σ σ

= +

= − + = +
    (19) 

where xµ  and xσ  denote the mean and standard deviation of 
x , respectively. 

The results of skewness and kurtosis calculation are 
summarized in Figs. 4 and 5.  In the numerical integration, the 
evaluation points and weights are obtained by solving the 
moment-matching equation, Eq. (3).  Although the results 
show bigger error for large k  values (order of nonlinearity) 
compared to the results of case 1, we can see that the numerical 
integration with the moment matching quadrature rule provides 
accurate results up to 2 1m −  polynomial order. 
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Figure. 5. Comparison of results in skewness estimation 

(ratio= result/exact value) 
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Figure 6. Comparison of results in kurtosis estimation 

(ratio= result/exact value) 
 

 
Figure 7. Probability density function estimated by PCE (k=7) 

 
In Case 2, the accuracy follows the sequence of MCS 

(highest), 5 node NI , 4th order PCE, 3rd order PCE, 3 node NI, 
and 2nd order PCE (lowest).  Contrary to the result of the 
normal input case, the accuracy of 4-th order PCE is worse than 
the 5 node numerical integration and that of the 2nd order PCE 
is worse than the 3 node NI, which implies that the 
transformation does have a negative effect on the results.  The 
nonlinearity of y  is amplified with the transformation in Eq. 
(19) and the coefficient estimation becomes erroneous when the 
nonlinearity exceeds the integration order of the quadrature 

rule.  When checking the convergence of PDF obtained by 
PCE, it is shown that the convergence behavior is not as good 
as in Case 1 with normal distributions. 

3.2 Example 2 
The second example is a three dimensional polynomial 

4
1 2 32a ay x x x= +                    (20) 

where ix ’s follow the lognormal distribution with mean 1.  
Four values of the standard deviation, 0.1, 0.2, 0.3 and 0.4 are 
tested to examine the effect of variability of inputs on the 
moment estimation.  Also we intend to observe the effect of 
interactions among variables on the performance of univariate 
dimension reduction method by trying several values of a  in 
Eq. (20).  When calculating the PC coefficients, the 
transformation in Eq. (19) is used again. 

3.2.1 case 1: 2a =  
The results of standard deviation and skewness 

calculations are summarized in Figs. 8 and 9.  The coefficients 
of PCE are calculated using the procedure described in Section 
2.3 with 5n  FFNI.  From the figures it is seen that the results 
of UDR is almost identical with that from the FFNI, which 
implies that the univariate decomposition is valid for y , that 
is, the interaction effects among variables are not significant in 
this example.  From Table 1, we note that the number of 
function evaluations for UDR is much less than that used for 
the other methods.  The result of PCE is much worse than that 
from the 5n  FFNI which is due to the non-normality of the 
input random variables as in case 2 of example 1.  
Transformation does not always result in the degradation of 
accuracy, however, we can see that care must be taken when 
integrating a function with transformed variables.  UDR 
shows an excellent efficiency compared to FFNI.  On the 
hand, the performance of MCS is even worse compared to the 
5n  FFNI and 5n UDR. 

 
Table 1 Number of function evaluations in Ex 2 

Method MCS 
3n 

FFNI 
5n 

FFNI 
3n 

UDR 
5n 

UDR 
4th PCE

Fn calls 1,000 k 27 125 7 13 125 

3.2.2 case 2: 3a =  
By increasing a , we expect that the interaction effect 

between 1x  and 2x  becomes more significant.  The analysis 
results of the standard deviation and skewness are summarized 
in Table 2~3.  The computational costs are the same as in case 
1.  Compared to the results of case 1, the results of UDR show 
considerable discrepancies with those of MCS, and FFNI 
especially when the standard deviations (σ ) of variables are 
big.  This implies that when the interaction effects are strong, 
the error of using UDR increases. 

 
Table 2 Standard deviation calculation results for Ex 2 (case 2) 

σ MCS 3nFFNI 5nFFNI 3n UDR 5nUDR 4th PCE
0.1 1.0001 0.9990 0.9994 0.9879 0.9883 0.9994
0.2 2.6854 2.6723 2.6894 2.5634 2.5811 2.6851
0.3 6.5869 6.4263 6.6237 5.9017 6.1114 6.4627
0.4 17.5815 16.2045 17.6457 14.0807 15.6562 15.5571
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Table 3 Skewness calculation results for Ex 2 (case 2) 
σ  MCS 3nFFNI 5nFFNI 3n UDR 5n UDR 4th PCE
0.1 1.0541 0.9910 1.0530 0.9345 0.9982 1.0540
0.2 2.9137 2.2053 2.8979 2.1221 2.8809 2.7196
0.3 7.2888 4.0926 8.2544 3.8275 8.7001 5.2245
0.4 24.6705 8.2238 31.3577 13.7716 33.7417 7.6342

 
S T D  ( Ex 2 . 1)
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Figure 8. Comparison of results of STD estimation 

(ratio=result/exact value) 
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Figure 9. Comparison of results of skewness estimation 

(ratio=result/exact value) 

3.3 Engine piston power loss analysis 
This example is from the Piston-ring/Cylinder-liner 

example used by Kokolaras et al. (2006), Huibin et al. (2006).  
The performance of interest is the power loss due to the friction 
between the piston ring and the cylinder liner.  Our interest is 
to find the probability density function over the whole range of 
power loss and also compute the probability in the tail region.  
The prediction model for power loss due to friction is a meta-
model built by the moving least square (MLS) method with 
four inputs, ring surface roughness, liner surface roughness, 
liner Young’s modulus, and liner hardness.  The first two 
inputs are treated as random variables following normal 
distributions with mean 4.0 and 6.1193 respectively and with 
unit variance.  The other two input variables are assumed to be 
deterministic with values 0.8 and 2.4 respectively.  The 
analysis results are summarized in Table 4.  The 
computational costs (number of power loss calculations) are 
also listed in the Table. 

The moment estimation results of all methods closely 
match with each other except the kurtosis calculated by 3n  
FFNI and 3n UDR, which is due to the nonlinearity of the 
power loss function.  The significance of this error obviously 

depends on the situation, our target of analysis, the confidence 
level required and so on.  In the case that reliability is our 
target of analysis, the effect of error in moment estimation can 
be roughly calculated with the finite difference method using 
the Pearson system introduced in Section 2.1 under the 
assumption that the tail region PDF is well described by the 
Pearson system.  

 
Table 4 Analysis results of engine piston example 

 MCS 3n FFNI 5n FFNI 3n UDR 
mean 0.3931 0.3920 0.3924 0.3920 
Std 0.0311 0.0299 0.0300 0.0300 

skewness -0.5855 -0.5867 -0.5822 -0.5663 
kurtosis 3.1041 3.0406 3.4336 3.1188 

Pr[PL<0.3] 5.400E-03 3.684E-03 5.161E-03 4.117E-03
Pr[PL<0.45] 9.980E-01 9.996E-01 9.922E-01 9.972E-01

Fn call 100 k 9 25 5 
 5n UDR 4th PCE FORM 

mean 0.3926 0.3924  
Std 0.0302 0.0300  

skewness -0.5503 -0.58460  
kurtosis 3.4833 3.46129  

Pr[PL<0.3] 5.278E-03 5.700E-03 1.903E-03
Pr[PL<0.45] 9.889E-01 1.000E-00 0.9981 

Fn call 9 25 (15, 30) 
 
In probability calculation results, it is seen that 5n  FFNI, 

5n UDR, and the 4th order PCE match well with the result by 
MCS while 3n  FFNI and 3n UDR and FORM underestimate 
the probability.  It is natural that the errors in moment 
estimation result in errors in probability calculation.  The error 
in the result of FORM is related to the nonlinearity of the 
power loss function. 

 
Figure 10. PDF of power loss function 

 
In Fig. 10 the PDF of the power loss function is plotted.  

The PDF of the PCE is obtained by running MCS on the PCE, 
and the moments obtained by 5n  FFNI are used with the 
Pearson system to determine a PDF curve.  We found that the 
actual PDF obtained by the MCS has an irregular shape with 
double peaks, but both the Pearson system based on the first 
four moments and the PCE fail to find the accurate shape of the 
PDF in this example.  The Pearson system is not capable of 
representing such irregular shape and it is an inherent limitation 
of fitting a PDF using a small number of moments. This 
example further verifies the notion that the PDF estimated by 
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the first few moments is not unique.  The PCE can represent 
any square integrable random variable in theory, however, this 
problem shows that the convergence to the real PDF might be 
very slow in some cases. 

3.4 Fortini’s clutch 
 

 
Figure 11. Fortini’s clutch 

 
The last example is the Fortini’s clutch (Fig. 11) used in 

many tolerance analysis literature (Creveling 1997).  The 
contact angle y  is given in terms of the independent 
component variables, 1x , 2x , 3x  and 4x  as follows: 

( )
( )

1 2 3

4 2 3

0.5
arccos

0.5
x x x

y
x x x

⎛ ⎞+ +
= ⎜ ⎟⎜ ⎟− +⎝ ⎠

              (21) 

The moments and probabilities at the left tail region of y  
are calculated with all methods.  The Pearson system is used 
with FFNI and also with UDR to calculate the probability, 
while the probability of PCE is calculated by MCS with 1,000 
k  samples. To see the effect of non-normality of input 
variables, two different input settings are tried, one with all 
normally distributed variables, the other with two non-normal 
variables. 

3.4.1 Case 1: all normal inputs 
The distribution parameters are summarized in Table 7, 

and the results of analysis are given in Table 8.  All the 
methods calculate moments accurately except the UDR 
method.  The skewness and kurtosis estimation of the 5n UDR 
is worse than that of 3n  FFNI.  This means that there exist 
significant interaction effects between variables and it is 
verified by the analysis of variance (ANOVA) that the 
interaction between 1x  and 4x  is important.  The same 
reason contributes to the  errors in the probability estimation.  
The performance of FORM is very satisfactory in both 
accuracy and efficiency.  The coefficients of PCE are 
calculated by 5n  FFNI and the results are as accurate as 5n  
FFNI. 

 
Table 7 Input random variables for Fortini’s clutch example 

(case 1) 

Component Distribution 
type Mean Standard 

Deviation 
1x  Normal 55.29 mm 0.0793 mm 

2x  Normal 22.86 mm 0.0043 mm 

3x  Normal 22.86 mm 0.0043 mm 

4x  Normal 101.60 mm 0.0793 mm 

Table 8 Uncertainty analysis results of Fortini’s clutch example 
(case 1) 

 MCS 
(1000k) 3n FFNI 5n FFNI 3n UDR 

mean 0.1219 0.1219 0.1219 0.1219 
std 0.0118 0.0118 0.0118 0.0117 

skewness -0.3193 -0.3082 -0.3157 -0.1436 
kurtosis 3.2878 3.2000 3.2827 3.0000 

Pr(y<4deg) 2.070E-04 1.257E-04 1.732E-04 1.789E-05
Pr(y<5deg) 4.690E-03 4.514E-03 4.830E-03 2.490E-03
Pr(y<6deg) 7.836E-02 7.904E-02 7.849E-02 7.482E-02

Fn call 1000k 81 625 9 
 

Case 2: with 2 non-normal variables 
The input 1x  is assumed to follow the beta distribution 

with parameters 5.0η γ= =  and 4x  is assumed to follow the 
Rayleigh distribution with the same means and standard 
deviations with case 1 (Table 9).  The notations of distribution 
parameters follow those in (Hahn and Shapiro 1967).  Results 
are summarized in Table 10. 

 
Table 9 Input random variables for Fortini’s clutch example  

 Distribution Mean 
Standard 
Deviation 

Parameters for  
non-normal distributions

1x  Beta 55.29 mm 0.0793 mm 1 1 5.0γ η= =  

2x Normal 22.86 mm 0.0043 mm ( )155.0269 55.5531x≤ ≤

3x Normal 22.86 mm 0.0043 mm 4ˆ 0.1211σ =  

4x Rayleigh 101.60 mm 0.0793 mm ( )4 101.45x ≥  
 
Table 10 Analysis results of Fortini’s clutch example 
 MCS  3n  FFNI 5n  FFNI 3n UDR 

mean 0.1219 0.1219 0.1219 0.1219 
std 0.0117 0.0117 0.0117 0.0116 

skewness -0.0516 -0.0497 -0.0530 0.0989 
kurtosis 2.8810 2.8488 2.8827 2.8401 

Pr(y<4deg) 0.000E+00 3.791E-07 1.058E-06 0.000E+00
Pr(y<5deg) 1.222E-03 1.241E-03 1.396E-03 3.707E-04
Pr(y<6deg) 7.381E-02 7.288E-02 7.272E-02 6.671E-02

Fn_call 1000k 81 625 9 
 5n UDR 4th PCE FORM 

mean 0.1219 0.1219  
std 0.0116 0.0117  

skewness 0.0964 -0.0577  
kurtosis 2.8662 2.8930  

Pr(y<4deg) 0.000E+00 0.000E+00 Diverge 
Pr(y<5deg) 4.491E-04 1.220E-03 Diverge 
Pr(y<6deg) 6.668E-02 7.402E-02 8.771E-02

Fn_call 17 625 31 
 
The trends are almost similar with case 1, except that the 

HL-RF algorithm used in FORM has some difficulties in 
finding the MPP when the probability is small.  The 
divergence occurs when the search point of HL-RF algorithm 
goes outside the domain where the non-normal variables are 
defined.  FFNI shows consistently good results and similarly 
to the results of case 1 UDR shows some errors in high order 
moments and probability.  However, we can see that the 
estimation of the mean and standard deviation is still good and 
there is no additional loss of accuracy caused by non-normality 
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of inputs.  The accuracy of PCE is still good although the 
inverse Rosenblatt transformation is used to transform 1x  and 

4x  to the standard normal variables, which is different from 
the trend shown in examples 1 and 2. 

4. DISCUSSIONS AND CONCLUSIONS 
In the paper, several categories of uncertainty propagation 

techniques, including a few techniques that are receiving 
growing attentions, i.e., univariate dimension reduction and 
polynomial chaos expansion, are examined in depth to 
understand the characteristics and limitations of various 
methods.  Comparative studies are performed using 
illustrative examples.  Ideally, the performances should be 
evaluated under a considerable range of system nonlinearity, 
various distributions of input random variables, and various 
dimensionality in terms of accuracy and efficiency.  Hence, it 
might not be plausible to judge or rank the methods with just 
several examples.  However, through this comparison study, 
some characteristics, advantages and disadvantages of each 
method can be generalized.  

It is noted that the FFNI and UDR methods use direct 
numerical integrations to obtain the statistical moments, and 
their accuracy depends on the integration order of the 
quadrature rule adopted.  While the computational cost 
increases exponentially in FFNI, UDR has a linear increase of 
function evaluations with the number of input random 
variables.  This outstanding efficiency is obtained by 
sacrificing accurate considerations of the interaction effects 
which may exist in the system.  For examples, we could see 
that this approximation can cause errors especially in high order 
moments and the small probability at tail distribution.  One 
nice feature of FFNI and UDR is that they are robust against 
the non-normality of inputs.  Based on the four statistical 
moments obtained, the Pearson system of distribution can be 
further adopted to obtain the probability and the complete PDF. 
These methods work well when the PDF of a performance 
function has a regular shape with one mode, however, they are 
limited in finding the complete PDF with a few lower order 
moments.   

The PCE, a functional expansion based method that gains 
popularity, is tested with coefficients calculated by the 
numerical integration and the inverse Rosenblatt 
transformation.  The procedure of calculating the expansion 
coefficients is illustrated in detail which can be effectively 
applied to the black-box type functions.  With the PCE 
approach, the accuracy and the computational cost depend on 
the integration scheme adopted to calculate the coefficients.  
The implementation of the PCE used in this study is subject to 
two major sources of error.  The first one is the truncation 
error with the finite expansion, the second is the coefficient 
estimation error related with the numerical integration scheme 
to calculate the expectation.  A further study about the effect 
of the coefficient estimation errors on the convergence behavior 
of PCE seems necessary.  The transformation used to treat 
non-normal inputs can degrade the accuracy which makes this 
approach less robust against the non-normality of inputs 
compared to the FFNI and UDR methods.  On the other hand, 
this feature of obtaining directly the PDF function of an output 
response using the PCE method is very useful. 

Related to the different scenarios of design under 
uncertainty, for example, robust design, reliability-based 
design, and utility optimization, a method for UP should be 
selected based on the required level of uncertainty 
quantification (e.g., low-order moments, tail probability, and 
complete PDF), accuracy or confidence level, as well as the 
computational cost or efficiency.  It is observed that if there is 
no significant interaction between variables, the UDR method 
is the most efficient method for moment estimations.  The 
UDR method is flexible with the type of input distributions.  
Its performance in assessing tail probability is comparable with 
that of the MPP based method, sometimes even better, but not 
always.  The MPP based method is an efficient approach to 
the evaluation of tail probability.  However, it appears to be 
the least stable method that is sensitive to the type of input 
distributions and the function nonlinearity.  The PCE method 
is a useful approach when a complete PDF description is 
desired.  Its performance in evaluating the statistical moments 
is comparable to the FFNI approach.  With the current 
transformation method, the performance of the PCE method 
deteriorates when non-normal input distributions are 
considered.  On the other hand, the FFNI method is flexible 
with the type of input distributions. 

One aspect which is yet to be examined in this work is the 
performance of the PCE with respect to different sample sizes.  
The other aspect which was not investigated in this study is the 
effect of correlations among input variables on the performance 
of each method.  All the methods except MCS need 
transformation of those correlated variables into uncorrelated 
variables. Performances of hybrid approaches that combine 
multiple techniques including the metamodeling technique are 
yet studied to make the current scope of comparison 
manageable. 
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APPENDIX  
 
Table A1 PCE with coefficients calculated analytically 

k Polynomial chaos expansion 
1 ( ) 1 0.2py ξ= +  

2 ( )( ) 21.04 0.4 0.04 1py ξ ξ= + + −  

3 ( ) ( )( ) 2 31.12 0.6240 0.12 1 0.008 3py ξ ξ ξ ξ= + + − + −  

4
( ) ( )

( )
( ) 2 3

4 2

1.2448 0.8960 0.2496 1 0.0320 3

0.0016 6 3

py ξ ξ ξ ξ

ξ ξ

= + + − + −

+ − +
 

5
( ) ( )

( )
( ) 2 3

4 2

1.4240 1.2448 0.4480 1 0.0832 3

0.0080 6 3

py ξ ξ ξ ξ

ξ ξ

= + + − + −

+ − +
 

6
( )

( ) ( )
( ) 2

3 4 2

1.6730 1.7088 0.7469 1

0.1792 3 0.0250 6 3

py

z

ξ ξ

ξ ξ ξ

= + + −

+ − + − +
 

7
( )

( ) ( )
( ) 2

3 4 2

2.0147 2.3421 1.3348 1

0.3485 3 0.0672 6 3

py ξ ξ

ξ ξ ξ ξ

= + + −

+ − + − +
 

 
Table A2 PCE with coefficients calculated numerically 
k Polynomial chaos expansion 
1 ( ) 1 0.2py ξ= +  

2 ( )( ) 21.04 0.4 0.04 1py ξ ξ= + + −  

3 ( ) ( )( ) 2 31.12 0.6240 0.12 1 0.008 3py ξ ξ ξ ξ= + + − + −  

4
( )

( ) ( )
( ) 2

3 4 2

1.2448 0.8960 0.2496 1

0.0320 3 0.0016 6 3

py ξ ξ

ξ ξ ξ ξ

= + + −

+ − + − +
 

5
( )

( ) ( )
( ) 2

3 4 2

1.4240 1.2448 0.4480 1

0.0832 3 0.0080 6 3

py ξ ξ

ξ ξ ξ ξ

= + + −

+ − + − +
 

6
( )

( ) ( )
( ) 2

3 4 2

1.6730 1.7088 0.7469 1

0.1792 3 0.0246 6 3

py ξ ξ

ξ ξ ξ ξ

= + + −

+ − + − +
 

7
( )

( ) ( )
( ) 2

3 4 2

2.0147 2.3421 1.1962 1

0.3483 3 0.0604 6 3

py ξ ξ

ξ ξ ξ ξ

= + + −

+ − + − +
 

 


