

AMPHENOL TCS

TB-2241

DFM and SMT Assembly Guideline

Revision "J"

Specification Revision Status

Revision	SCR No.	Description	Initial	Date
"A"	S1647	Initial Release	J. Proulx	1/27/11
"B"	S1884	Implemented 6-Pr changes	J. Proulx	12/15/11
"C"	S2248	Updated PN Tree and connector weight table	J. Proulx	2/19/13
"D"	S2412	Updated 6-Pr images, 4-pr & 6-pr weight table, stack heights, PN Tree and JEDEC Tray Info	J. Proulx	8/20/13
"E"	S2652	Updated section 9.0 to recommend using a secondary method of attachment for bottom side reflow Updated Addendum A – Connector Weights Table to remove testing results	J. Proulx	1/16/14
"F"	S3138	Added Section 3.5.1 Allowable mating angles and mating forces and suggested mechanical structure for heavier assemblies. Revised connector weight table to reflect metal caps on 6-pr plugs	M. Chareth	9/29/14
"G"	S3260	Updated Section 3.7, changed minimum recommended standoff length and clarified DFM impact	J. Proulx	1/08/15
"H"	S4356	Updated PN Trees. Added info for new part #'s – 4pr 15.5 and 17.5mm – 6pr 16mm. Added PCB hole info and hardware assembly order to section 3.7	J. Proulx	2/26/16
"J"	S4404	Update Section 3.4 – connector array positional tolerances, the DFM check sheet in Addendum B, and the PN matrix in sections 2.1/2.2 Removed the angular tolerance note in the visual aid on pg 18	J. Proulx	3/09/16

Amphenol TCS

A Division of Amphenol Corporation

Amphenol TCS
200 Innovative Way, Suite 201
Nashua, NH 03062
603.879.3000

www.amphenol-tcs.com

Aptera, Chameleon, Crossbow, eHSD, GbX, HD Plus, HDM Plus, HDM, HD-Optyx, InfinX, Lynx, NeXLev, Paladin, Ventura, VHDM, VHDM-HSD, and XCede, are trademarks or registered trademarks of Amphenol Corporation. AirMax VS is a registered trademark of FCI. Information contained in this document is summary in nature and subject to change without notice. Appearance of the final, delivered product may vary from the photographs shown herein.

Table of Contents

- 1.0 DFM Guideline Introduction**
 - 1.1 Scope**
 - 1.2 Purpose**
 - 1.3 Reference Documents**
 - 1.3.1 Customer Use Drawings**
- 2.0 Design Introduction – InfinX Connector**
 - 2.1 Part Numbering Matrix**
- 3.0 Design Requirements**
 - 3.1 InfinX Solder Joint Definition – Reliability Factors**
 - 3.2 Landing Pad Footprint**
 - 3.3 PCB General Requirements and Routing**
 - 3.4 Connector Array Positional and Shift Tolerances**
 - 3.5 Layout and Orientation for Multi-Connector Applications**
 - 3.5.1 Allowable Mating and Un-Mating Angles**
 - 3.6 Connector Mating and Polarizing Features**
 - 3.7 Mechanical Requirements**
 - 3.7.1 Suggested Mechanical Structure for Heavier Assemblies**
 - 3.8 Keep-out Zone and Clearances**
- 4.0 Manufacturing Introduction - InfinX Connector**
- 5.0 Connector Handling**
 - Part # and Serial # Location Information**
- 6.0 Solder Paste Process**
- 7.0 Placement Process**
 - 7.1 Part Set-Up**
 - 7.2 Feeders**
 - 7.3 4-Pair Plug JEDEC Tray Set-up**
 - 7.4 4-Pair Receptacle JEDEC Tray Set-up**
 - 7.5 6-Pair Plug and Receptacle JEDEC Tray Set-up**
- 8.0 Reflow Process - Set-up and Recommended Thermocouple Locations**
 - 8.1 Reflow Profile Recommendations**
 - 8.2 Vacuum Cap Removal**
- 9.0 Double Sided Reflow Process**
- 10.0 Rework Process**

Addendums:

- A. InfinX Connector Weights**
- B. InfinX DFM Check Sheet - used for design reviews, and process start-up.**

1.0 DFM Guideline Introduction

This document is intended to provide design criteria and process information that will promote automation, cost and cycle time reduction, and help to produce designs that will yield high quality for the solder attach of InfinX connectors. The InfinX connector will be used in many assembly processes, and because all processes are different, this document provides a starting point, or "baseline" criteria for application process development. **This document is not intended to be the final process definition, nor is it intended to constrain designs.** If customers cannot meet/follow all of the recommendations, they should contact TCS to discuss the best alternatives.

1.1 Scope

This document has been prepared to communicate the application guidelines for the InfinX Surface Mount Connector. It provides Printed Circuit Board (PCB) footprint and layout criteria, and "starting-point" process recommendations for SMT assembly. Updates and revisions will be issued on a continuous basis to expand the guidelines, address changes in technology and manufacturing capabilities, and cover modifications and/or additions to current criteria.

1.2 Purpose

DFM is the sharing of manufacturing guidelines developed from industry standards and the knowledge gained from design and production. Applying these guidelines concurrently, in new product development with the design and application of Amphenol TCS's InfinX connector, can positively impact cost, time to market, and quality of the end product.

1.3 Reference Documents

Located at: <http://www.amphenol-tcs.com/search.php?n=infinx&srt=rel&p=1>

- 1.3.1** TB2240 InfinX Routing Guideline
- 1.3.2** Customer Use Drawings
 - C379-XXXX-XXX Plug
 - C380-XXXX-XXX Receptacle

1.4 Levels of Requirement

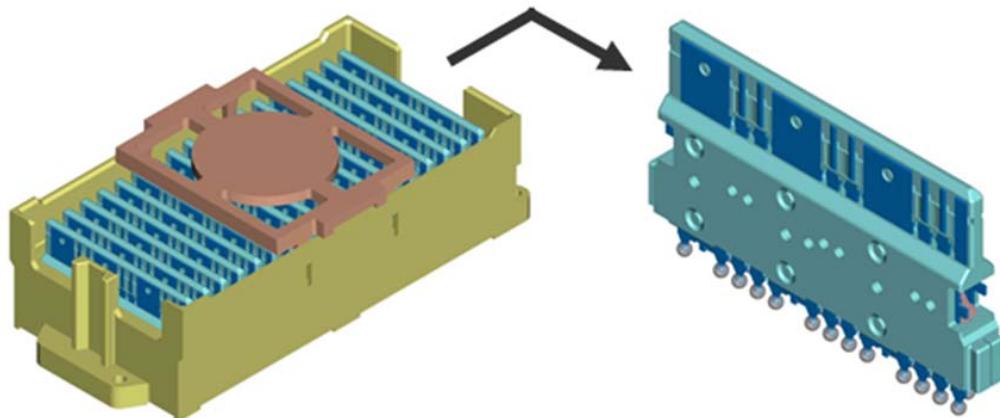
For each requirement, an impact and benefit statement is included to quantify the requirement. Some requirements are stated as being recommended or preferred per the following:

Recommended: The minimum processing requirement – a deviation will most likely impact manufacturability and cost.

Preferred: Should be done when possible – a deviation could impact manufacturability and cost.

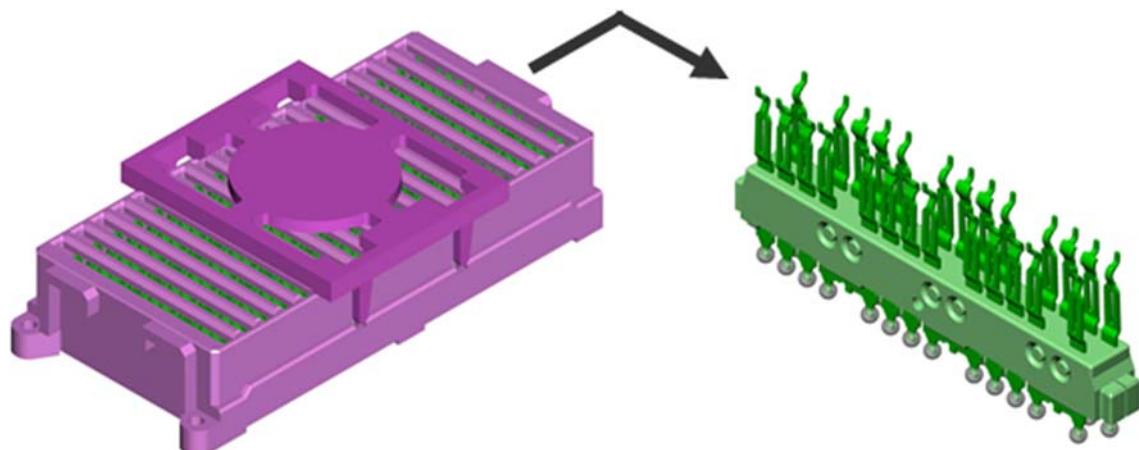
2.0 Design Introduction – InfinX Connector

The InfinX connector is wafer constructed and organized in 10 and 18 wafer configurations. There are 4 Pair and 6-Pair versions available. Each 4-Pair wafer has 18 connections – 8 signals and 10 grounds. The 6-Pair wafer has a total of 26 connections - 12 Signals and 14 Grounds.


The wafer construction allows for the contacts to be spaced on a 1.15mm x 2.3mm interstitial grid. The connector can be specified in multiple separation heights – see section 2.1.

The connector is completely SMT attach, utilizing ball grid technology for termination to the board, and is readily applied using standard SMT processes.

The solder ball used is a SAC305 Alloy with a diameter of 28 mils (0.71mm), re-flowed on the end of a lead – “Blade in Ball”. (Tin-Lead is also available)


18 Wafer 6-Pair Plug Assembly – 8mm

8mm Plug Wafer

18 Wafer 6-Pair Receptacle Assembly – 9mm

9mm Receptacle Wafer

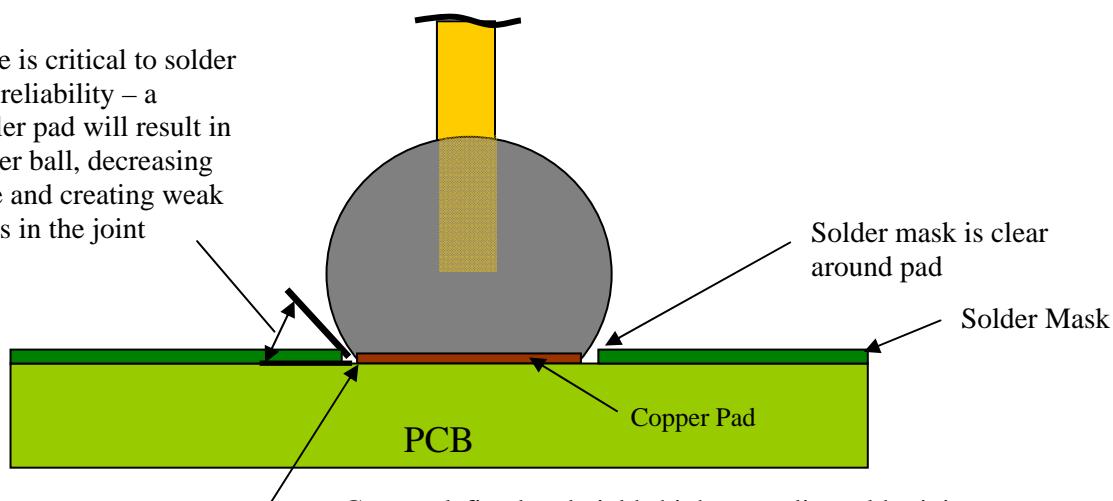
2.1 Part Numbering Matrix: Plug

InfinX Plug Assemblies																					
379 - <u>D</u> <u>E</u> <u>F</u> <u>G</u> - <u>H</u> <u>I</u> <u>J</u>																					
<u>Family Size:</u> _____						<u>Load Type</u>															
3 = 4 pair 5 = 6 Pair						0 = Fully Populated 1 = Custom Load #1 2 = Custom Load #2 W = Modified LF slot, 14mm wafer gap Y = No LF slot, no wafer gap															
<u>Ohms & Lossy:</u> _____						Note: If 10 th digit alpha character equals the 9 th digit customer specific alpha character, the part is the same as the part with a 0 in the 10 th digit. Different P/N is for pricing reasons.															
1 = 100 ohm, without lossy (3mm Std & RW only) 2 = 85 ohm, without lossy (3mm Std & RW only) 3 = 100 ohm, with lossy 4 = 85 ohm, with lossy 5 = 100 ohm, without lossy 6 = 85 ohm, without lossy 7 = 100 ohm, with OM 8 = 85 ohm, with OM						Example: 379-5361-2A0 is the same physical part as 379-5361-2AA															
<u>Height Wipe:</u> _____						<u>Customer</u>															
<u>4 PAIR</u>		<u>6 PAIR</u>		0 = no differentiation A = Cisco B = Huawei C = HP D = Tellabs E = Ericsson F = H3C																	
1 = TBD 2 = TBD 3 = 6 mm 4 = TBD 5 = TBD 6 = 10.5 mm 7 = TBD 8 = 15.5 mm 9 = 17.5 mm		1 = 3 mm 2 = 8 mm 3 = TBD 4 = TBD 5 = TBD 6 = 16 mm 7 = TBD 8 = 3 mm (RW only) 9 = 18 mm		<u>Solderball/Wafer Plating/Signal Type</u>																	
				1 = SnPb/753/HSD 2 = SAC305/753/HSD 3 = SnPb/Xtalic /HSD 4 = SAC305 /Xtalic /HSD 5 = SnPb/753/SE 6 = SAC305/753/SE 7 = SnPb /Xtalic/SE 8 = SAC305 /Xtalic /SE																	
Note: Wipe is standard unless noted otherwise																					
<u>Number of Wafers</u>																					
1 = 10 2 = 18 3 = 14 4 = 5 5 = 9 6 = 15 7 = 12 8 = 20 9 = TBD																					

Rev 1536.3

2.2 Part Numbering Matrix: Receptacle

InfinX Receptacle Assemblies																		
380 - D E F G - H I J																		
Load Type																		
<u>Family Size:</u>	<hr/>																	
3 = 4 pair 5 = 6 Pair	<hr/>																	
<u>Ohms & Lossy</u>	<hr/>																	
1 = 100 ohm, without lossy (7mm RW only) 2 = 85 ohm, without lossy (7mm RW only) 3 = 100 ohm, with lossy 4 = 85 ohm, with lossy 5 = 100 ohm, without lossy 6 = 85 ohm, without lossy 7 = 100 ohm, with OM 8 = 85 ohm, with OM	<hr/>																	
<u>Height</u>	<hr/>																	
<u>4 PAIR</u>	<u>6 PAIR</u>																	
1 = 24.5 mm 2 = 12.5 mm 3 = 9 mm 4 = TBD 5 = TBD 6 = TBD 7 = TBD 8 = TBD 9 = TBD	1 = TBD 2 = TBD 3 = 9 mm 4 = 12 mm 5 = TBD 6 = 18 mm 7 = 24 mm 8 = 7 mm (RW) 9 = 20 mm																	
Note: Wipe is standard unless noted otherwise																		
<u>Solderball/Wafer Platine/Signal Type</u>																		
1 = SnPb/753/HSD 2 = SAC305/753/HSD 3 = SnPb/Xtalic /HSD 4 = SAC305 /Xtalic /HSD 5 = SnPb/753/SE 6 = SAC305/753/SE 7 = SnPb /Xtalic/SE 8 = SAC305/Xtalic /SE																		
<u>Customer</u>																		
0 = no differentiation A = Cisco B = Huawei C = HP D = Tellabs E = Ericsson F = H3C																		
<u>Number of Wafers</u>																		
1 = 10 2 = 18 3 = 14 4 = 5 5 = 9 6 = 15 7 = 12 8 = 20 9 = TBD																		


3.0 Design Requirements

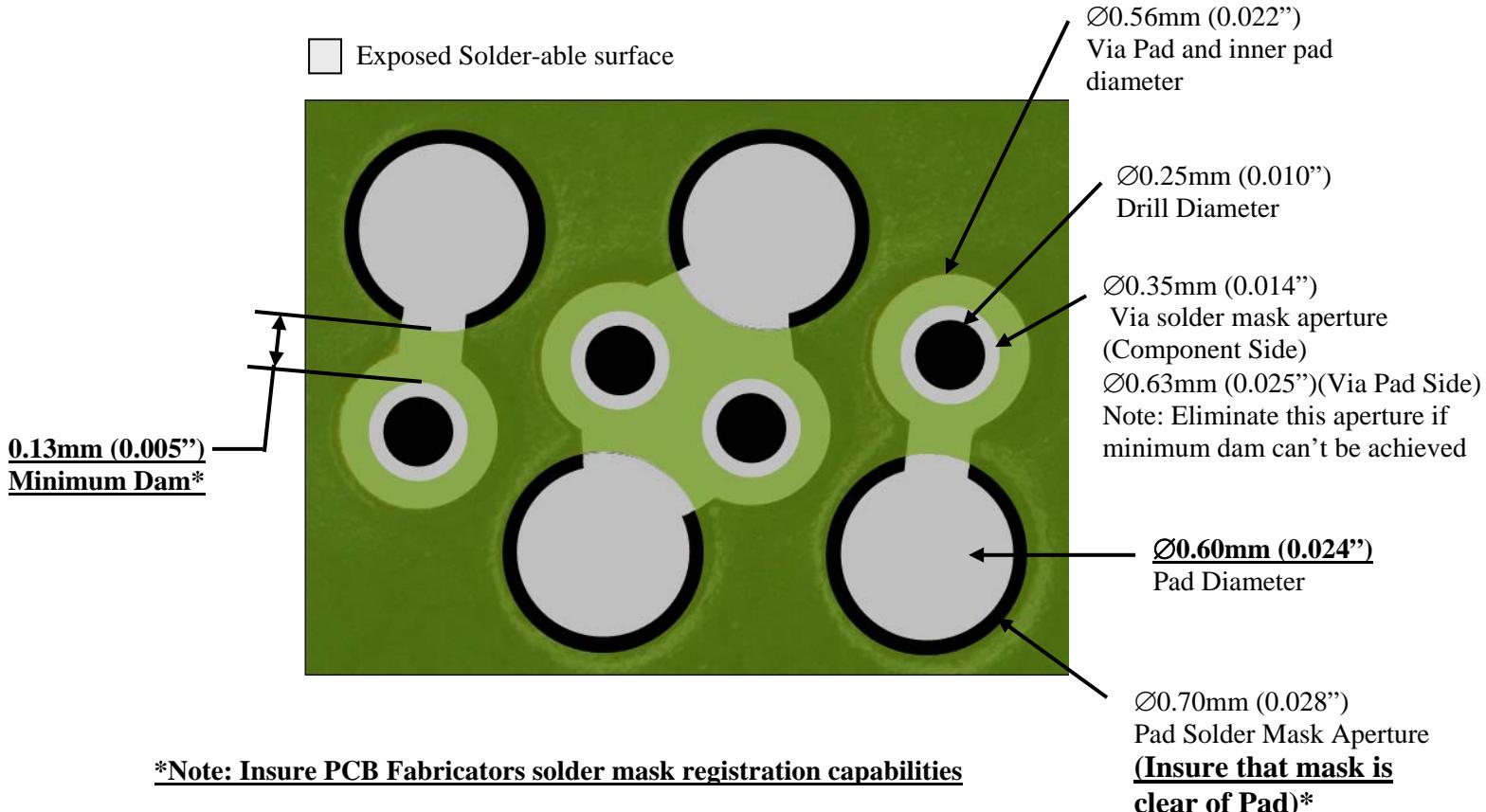
3.1 InfinX Solder Joint Definition – Reliability Factors

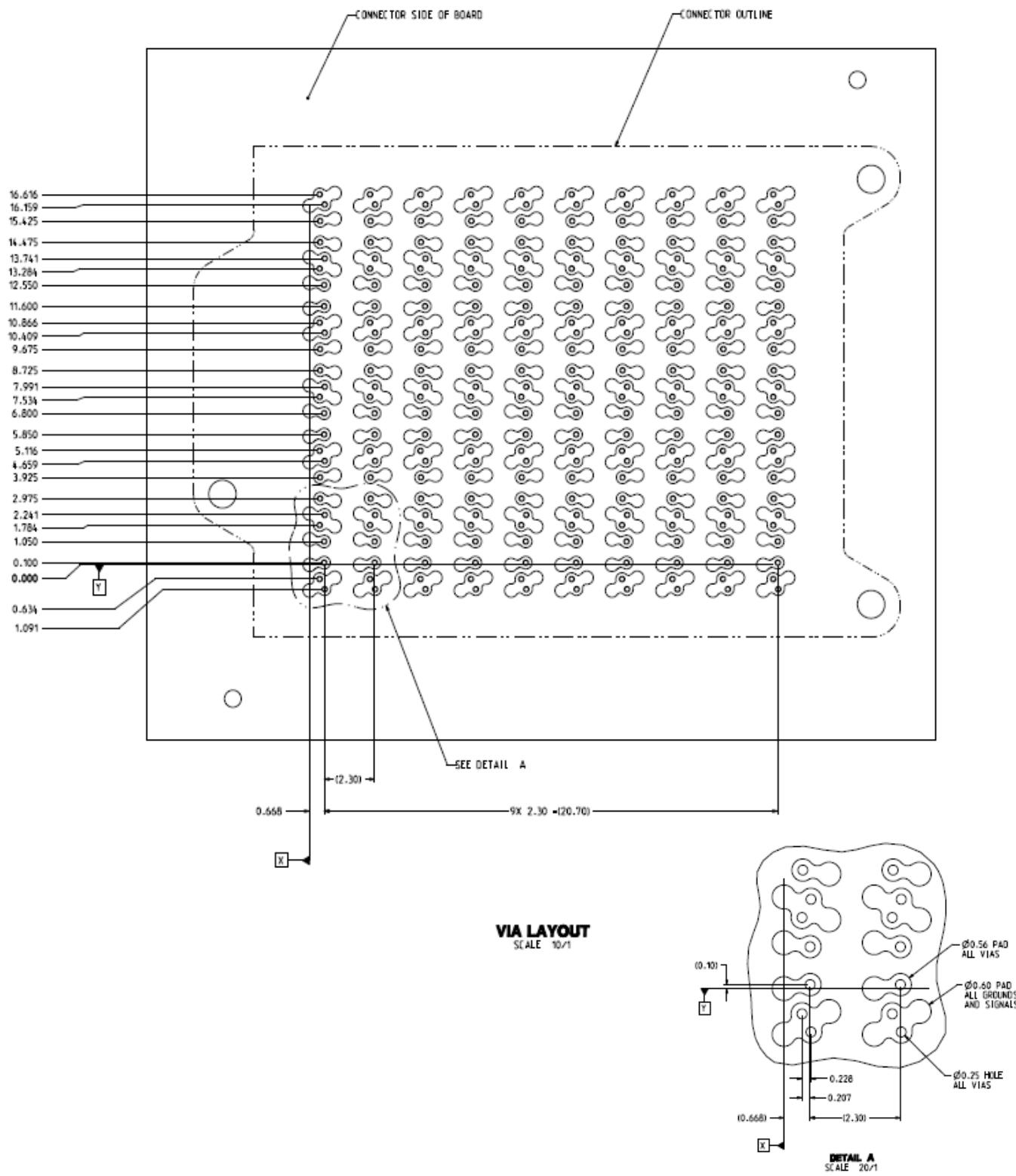
The recommendations made below have a direct impact on the reliability of the connector solder joint, and play an important role in facilitating the connectors' ability to self-center and achieve the best possible location tolerances. This is especially important when multiple connectors are being used.

<u>Requirements</u>	<u>DFM Impact/Benefit</u>
<ul style="list-style-type: none"> Recommend using a "Copper Defined" landing pad as opposed to a "Solder-Mask Defined" pad. 	<ul style="list-style-type: none"> "Copper defined" better insures a round, accurately located pad – critical to part location tolerance. "Copper defined" pad produces a more reliable solder joint – allowing solder to wrap around the pad edge.
<ul style="list-style-type: none"> Pad Size = .60mm (.024") 	<ul style="list-style-type: none"> Smaller pad will result in decreased ball-to-pad angle, based on solder volume – increasing the risk of solder fracture. Larger pads will increase the risk of shorting.
<ul style="list-style-type: none"> Solder mask should be clear around pad 	<ul style="list-style-type: none"> In-accurate registration will result in solder mask encroaching onto copper pad.

Angle is critical to solder joint reliability – a smaller pad will result in a fatter ball, decreasing angle and creating weak points in the joint

Copper defined pad yields highest quality solder joint – compared to Solder Mask defined:

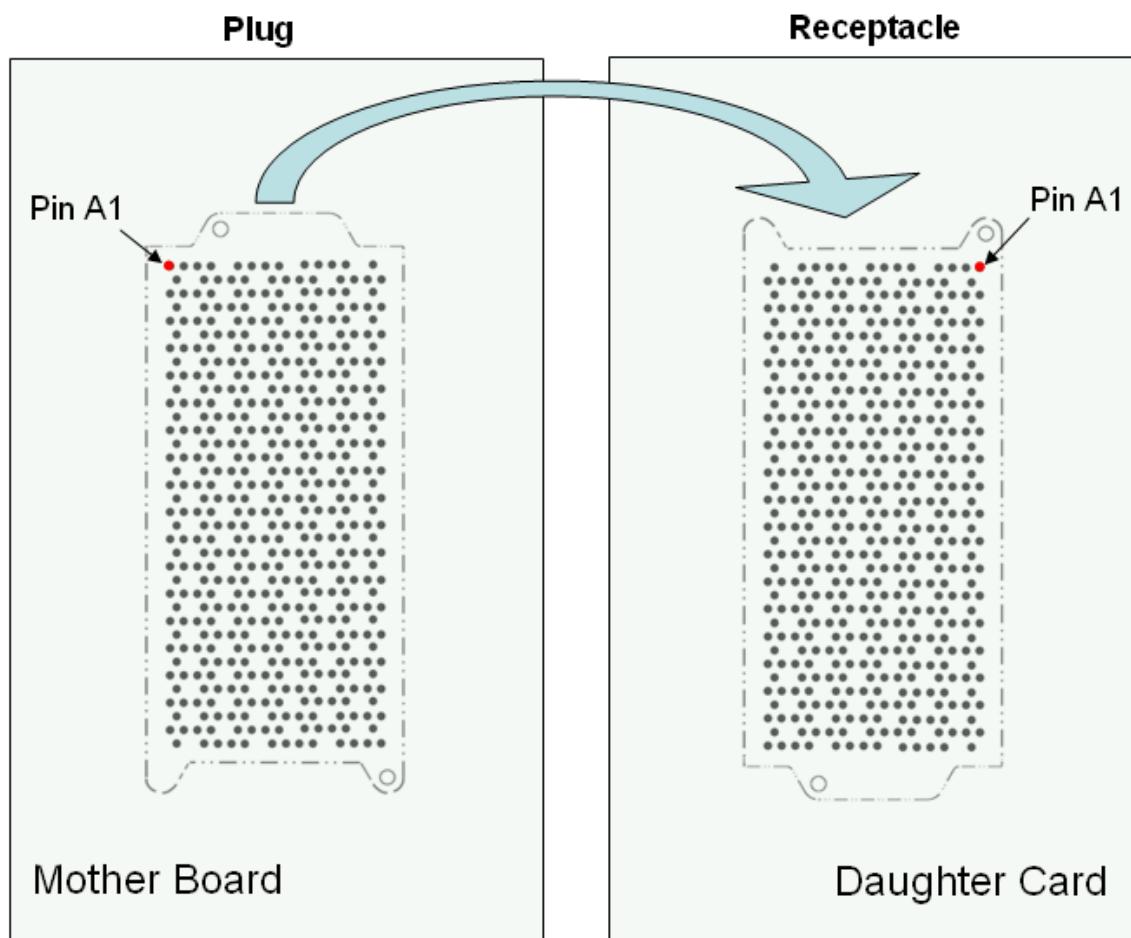

- Doesn't inhibit connectors ability to self-center
- Solder wraps around pad edge for maximum strength


3.2 Landing Pad Footprint

Refer to next page (Figure 3.2.1) for overall landing pad layout. See below for pad and via design details. The exact design will depend on several factors including design goals, route-ability, customer specific design for manufacturability (DFM) guidelines, and PCB fabricator capabilities. The diagram below offers a starting point, with the critical parameters in bold.

<u>Requirements</u>	<u>DFM Impact/Benefit/Alternatives</u>
<ul style="list-style-type: none"> Amphenol TCS recommends a .60mm (.024") "Copper Defined" landing pad over a "Solder-Mask Defined" pad. 	<ul style="list-style-type: none"> See previous section for impact
<ul style="list-style-type: none"> Minimum .13mm (.005") Solder Mask Dam between pad and via. 	<ul style="list-style-type: none"> Prevents solder from wicking away from pad and into via, causing insufficient solder joints.
<ul style="list-style-type: none"> It's preferred to mask the vias if design allows, or if a .13mm min dam can't be held. 	<ul style="list-style-type: none"> Via drill sizes can be changed based on PCB fabricators board thickness aspect ratio, but must insure a minimum solder mask dam.

Board Pad and Via Detailed Footprint – Differential Pair


Figure 3.2.1 InfinX Detailed Board Layout – (4-Pair Plug is shown)

3.3 PCB General Requirements and Routing

3.3.1 Refer to TB2240 – InfinX Routing Guideline

<u>Requirements</u>	<u>DFM Impact/Benefit</u>
<ul style="list-style-type: none"> Maximum recommended board warp – 7 mils/inch*. (Sufficient for surface finishes that have less than .001" thickness variation such as OSP, ENIG, Immersion Tin and Silver.) 	<ul style="list-style-type: none"> Minimizes the risk of opens
<ul style="list-style-type: none"> The Pin 1 pad for the plug should align with the pin 1 pad of the receptacle when the mother and daughter card are mated – see below 	<ul style="list-style-type: none"> Ensures correct board alignment

*Note: The recommended board warp is also based on the assembly process stencil thickness used. For more detail, see selection matrix in section 6.0 – “Solder Paste Process”

Board Footprint View
(6-Pair Shown)

3.4 Array Positional Tolerance Allowance (Best Fit TP)

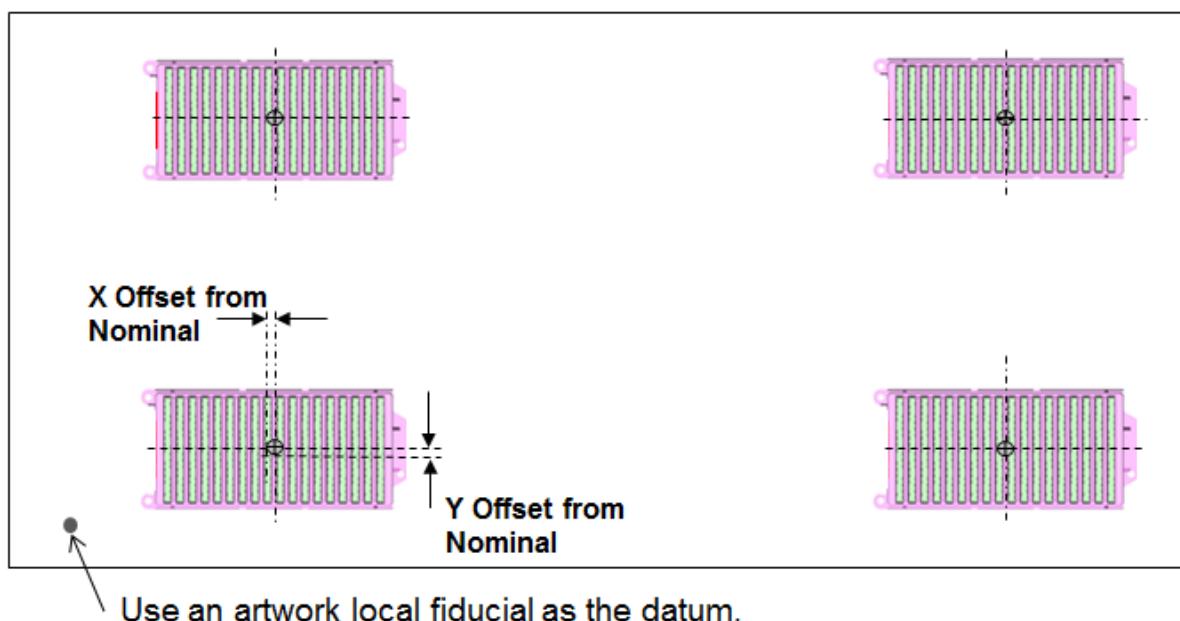
The InfinX connector is designed to accommodate SMT assembly and PCB tolerances. Below are the total allowances for the connector, SMT placement and PCB Artwork tolerances.

*To insure no mechanical binding, the mechanical structure and any other mating connectors should allow for these tolerances as shown in the following.

0.34mm Beam Gap Product:

Spec: Total X Offset Range < 0.3mm (+/-0.15mm)
Total Y Offset Range < 0.4mm (+/-0.20mm)

0.58m Beam Gap Product:

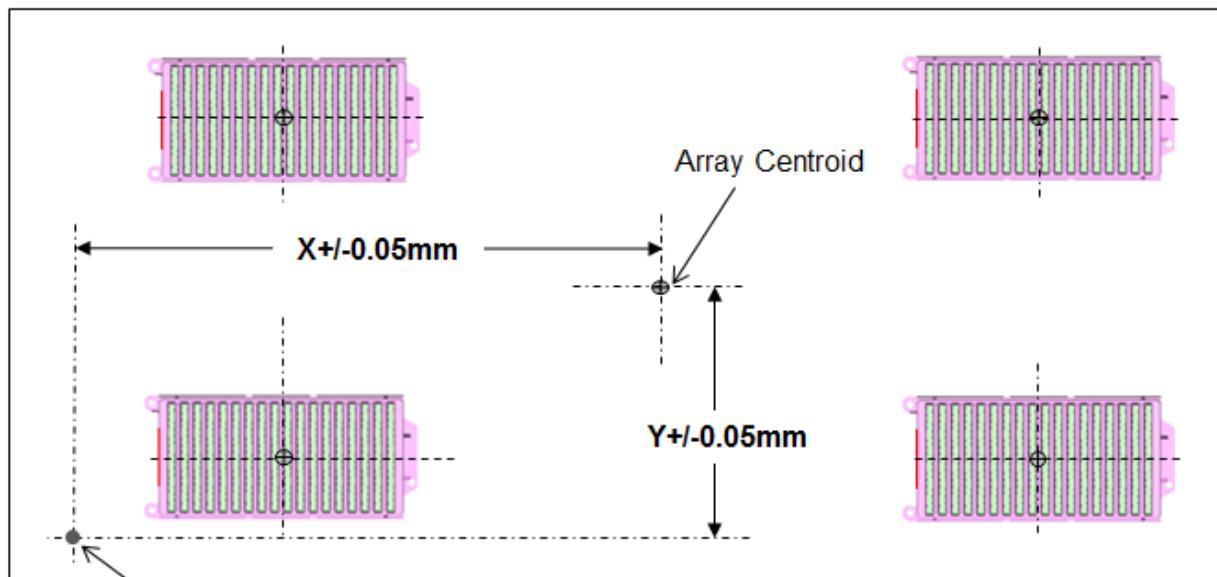

Spec: Total X Offset Range < 0.2mm (+/-0.10mm)
Total Y Offset Range < 0.4mm (+/-0.20mm)

Method to determine Best-fit TP positional variation (see section 3.4.3 for measuring part centroid):

- Measure each connector from an artwork fiducial
- Determine the X and Y offset from nominal for each connector
- Subtract Min from the Max offset for both X and Y = Total Range

Note: The tolerance allowance required is the same for a single connector application

(6-Pair 18 wafer parts shown)


3.4.1 Array Shift Tolerance Allowance

Spec: Max Allowable X Array shift +/-0.05mm
 Max Allowable Y Array shift +/-0.05mm

Method to determine array shift variation (see section 3.4.3 for measuring part centroid):

- X Array shift is the middle of the min/max = $(\text{Max-Min})/2 + \text{Min}$
- Y Array shift is the middle of the min/max = $(\text{Max-Min})/2 + \text{Min}$

Note: The shift tolerance required is the same for a single connector application

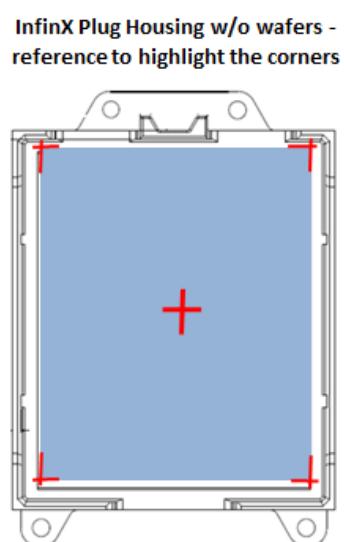
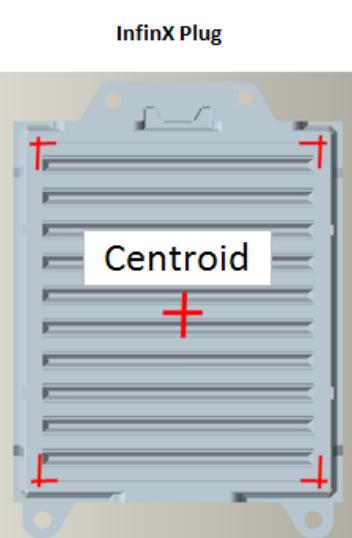
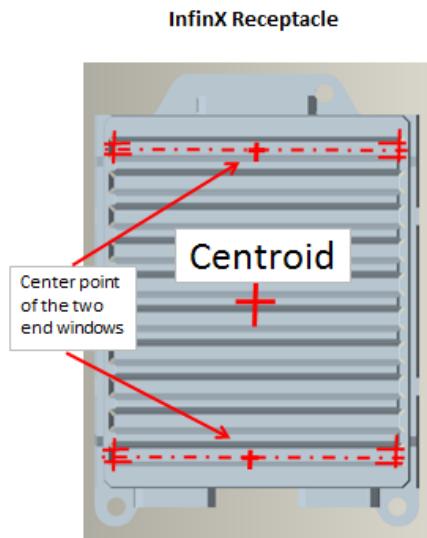
Use an artwork local fiducial as the datum.

Note: Tolerances listed above do not include tolerances between the artwork fiducial and mechanical board holes

3.4.2 Individual Positional Allotment (The 0.34mm beam gap product is shown)

	Connector Axis	Connector Variation (mm)	Placement/PCB Artwork Variation (mm)	Total Variation (mm)
Location Best Fit TP	X	+/-0.075	+/-0.075	+/-0.15
	Y	+/-0.10	+/-0.10	+/-0.20
Allowable Array Shift	X	+/-0.05	-	+/-0.05
	Y	+/-0.05	-	+/-0.05

3.4.3 Measuring Part (Mating Interface) Centroid

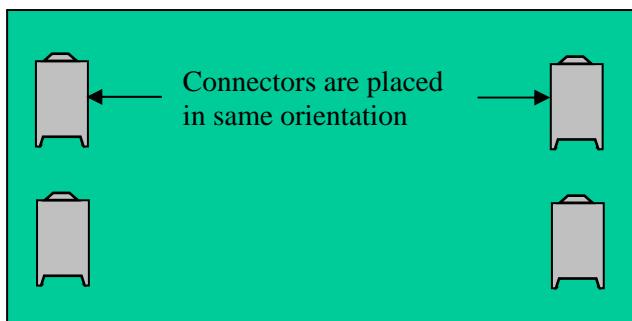



Find the centroid of each connector based on the method below.

Receptacle

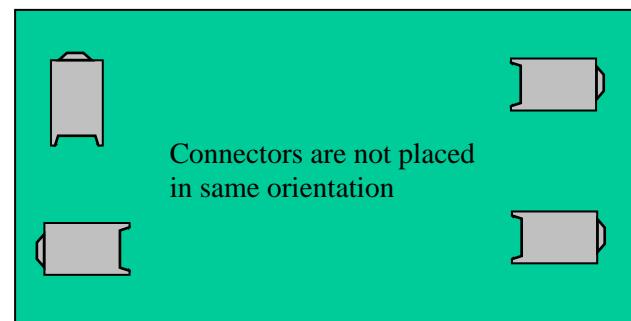
- Use 1st and last windows in the receptacle housing - find window corners.
- Determine window centroid
- Using window centroid - calculate part centroid"

Plug

- Use the overall opening at the base of the plug housing - at the height where the wafers protrude through
- Find Corner windows
- Calculate window Centroid - this is part centroid"



3.5 Layout and Orientation for Multi-Connector Applications

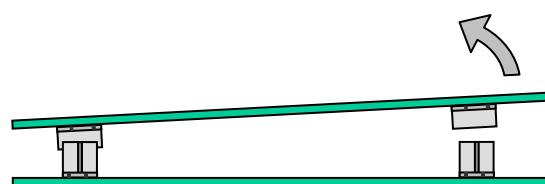

Layout:

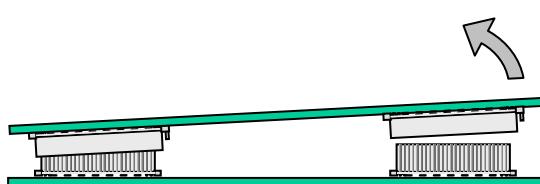
<u>Requirements</u>	<u>DFM Impact/Benefit</u>
<ul style="list-style-type: none"> Preferred to align connectors in the same direction 	<ul style="list-style-type: none"> • Ease of multi-board mating alignment
<ul style="list-style-type: none"> Connectors are parallel across the larger span, and in series on shorter spans. 	<ul style="list-style-type: none"> • Maximizes designed-in "float" tolerances
<ul style="list-style-type: none"> Max span is dependant on board fabrication tolerances – reference section 3.4. • 	<ul style="list-style-type: none"> • Board tolerance exceeds connector max alignment tolerance.
<ul style="list-style-type: none"> Layout should include a slightly larger silkscreen outline of the component housing. • 	<ul style="list-style-type: none"> • Silkscreen is visible after connector placement, and allows for "first-piece" visual inspection of polarity/orientation.

* InfinX un-mating forces are generally 20% less than mating forces. (Forces will decrease as mating cycles increase)

Preferred

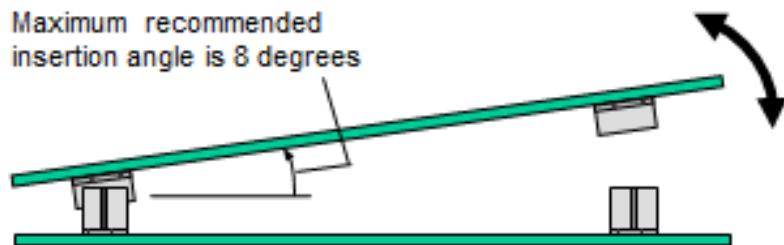
Not preferred

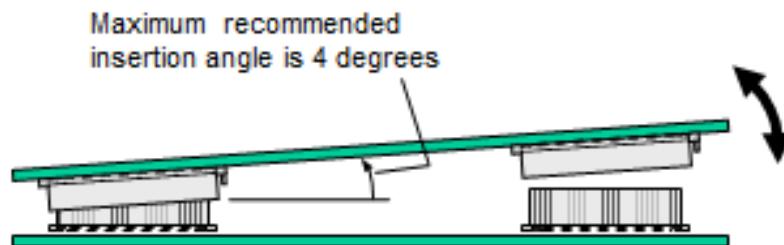

Mating and Un-Mating:


Preferred

Preferred

Acceptable


Not Recommended

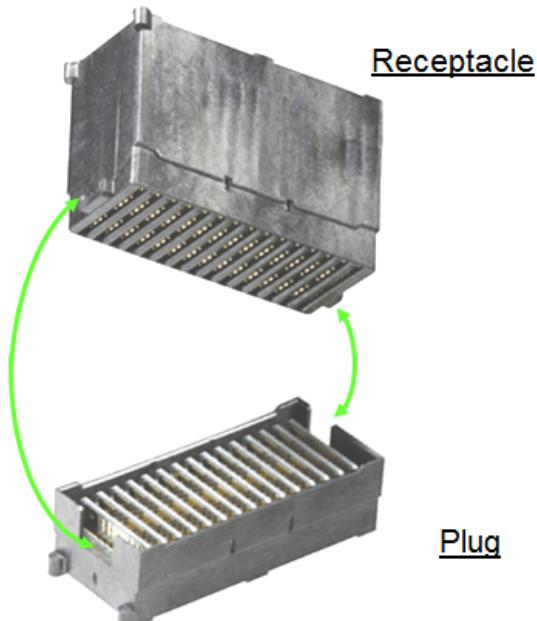

3.5.1 Allowable Mating and Un-mating Angles

<u>Requirements</u>	<u>DFM Impact/Benefit</u>
<ul style="list-style-type: none">Figure 1 - When mating/un-mating connectors where you rotate on connector width – max angle is 8 degrees	<ul style="list-style-type: none">Prevents connector damage
<ul style="list-style-type: none">Figure 2 - When mating/un-mating connectors where you rotate on connector length – max angle is 4 degrees	<ul style="list-style-type: none">Prevents connector damage

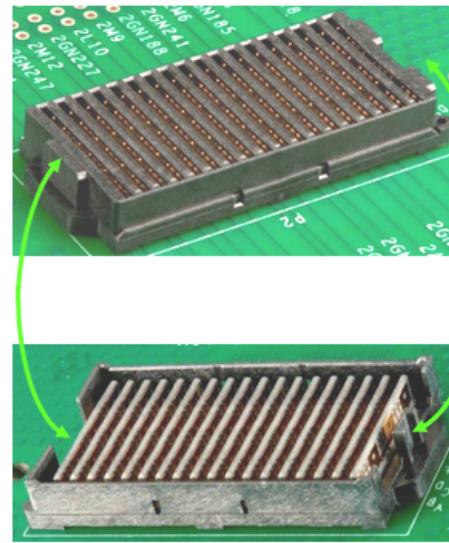
1. Rotating on connector width

2. Rotating on connector length

3.6 Connector Mating Forces and Polarizing Features


<u>Requirements</u>	<u>DFM Impact/Benefit</u>
<ul style="list-style-type: none">• Mating should be performed using the polarizing features as shown below	<ul style="list-style-type: none">• Prevents mis-mating and damage to the connector
<ul style="list-style-type: none">• Blind mates should include standoffs or mechanical alignment hardware (guide pin) to assist. (See section 3.7 for details)	<ul style="list-style-type: none">• Completes gross alignment allowing connector housings to begin next level of align.

Connector Mating and Un-Mating Forces

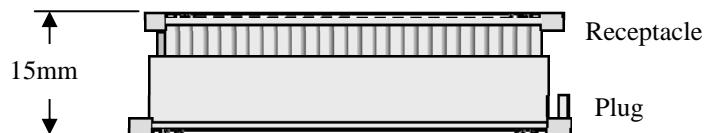

Connector Type	Wafer Count	Mating Force (lbs)	Un-Mating Force (lbs)
4-Pair	5	3.5	2.5
	9	6.3	4.5
	15	10.5	7.5
	20	14.0	10.0
6-Pair	10	10.0	7.0
	18	18.0	12.6

Polarizing Features

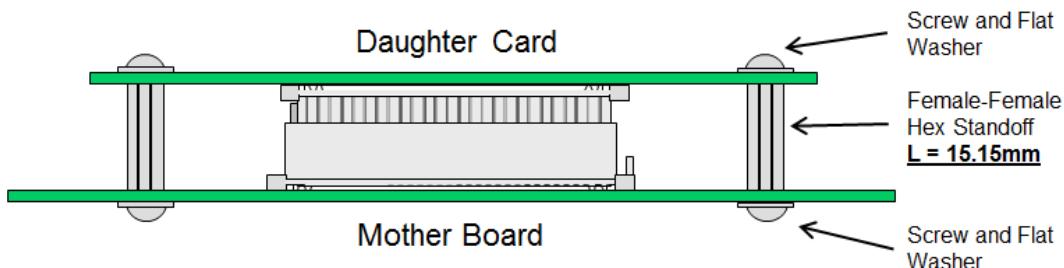
4-Pair

6-Pair

3.7 Mechanical Requirements


The InfinX connector should **NOT** be used as the mechanical structure of two mated boards within a system. Board assembly weight and shock and vibration forces should be supported by other mechanical means such as standoffs or structural hardware.

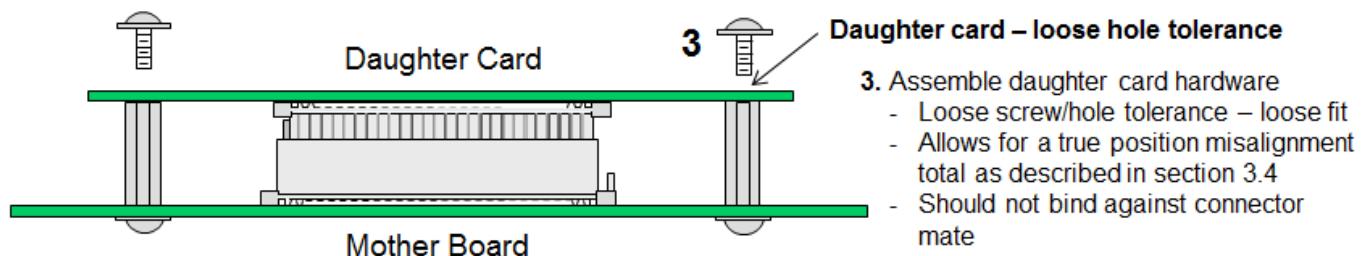
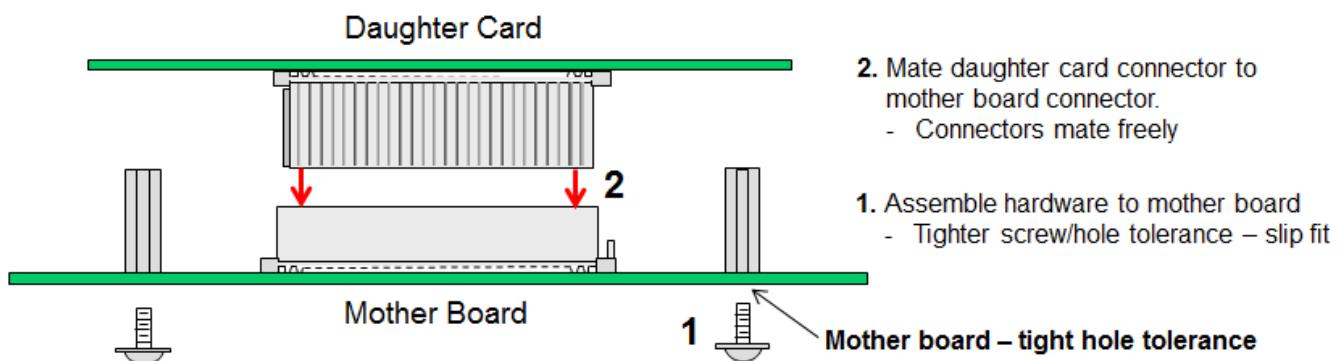
The following describes minimum requirements for mechanical packaging.


<u>Requirements</u>	<u>DFM Impact/Benefit</u>
<ul style="list-style-type: none"> Provide sufficient hold down forces to retain mated cards. 	<ul style="list-style-type: none"> Insure connectors stay mated during shipment, vibration and other static and dynamic forces
<ul style="list-style-type: none"> Standoffs between boards are required for all applications. Rigid mechanical structures should be used for heavier assemblies and/or higher stack heights. See next sections 	<ul style="list-style-type: none"> Maintain minimum wipe regardless of shock, vibration and board warp tolerances. Support the mated boards and protect the BGA solder joints. Minimizes mechanical stresses on the solder joints
<ul style="list-style-type: none"> Nominal stand-off lengths should be 0.15mm greater than connector stack height. Insure a minimum height of "stack height" + 0.05mm – see below 	<ul style="list-style-type: none"> Minimize board or connector stresses.
<ul style="list-style-type: none"> Stand-offs should be placed outside the connector keep-out zones. • 	<ul style="list-style-type: none"> Allows for connector rework without having to remove stand-offs Allow the board to absorb some of the stresses if over-mating occurs.
<ul style="list-style-type: none"> Number of stand-offs and pattern of placement should prevent all mechanical stresses to the solder joint. 	<ul style="list-style-type: none"> Insures no solder joint failures due to shock and vibration.

Example:

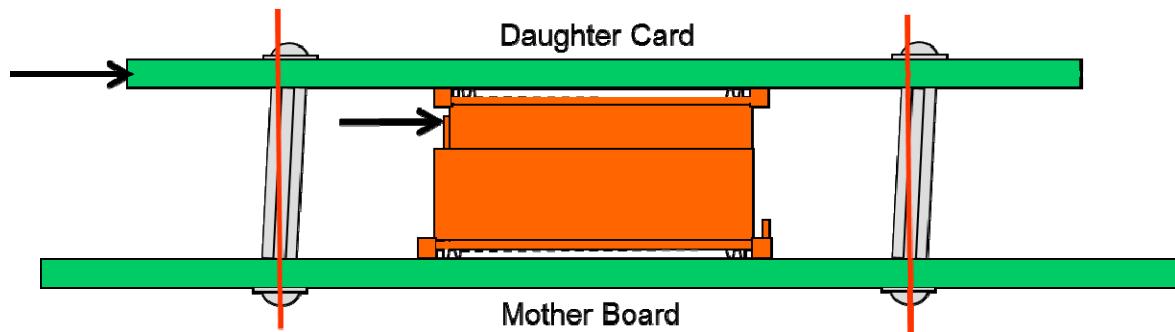
Nominal Connector Stack Height = 15mm

Nominal stand-off length = Stack-height + 0.15mm = **15.15mm**

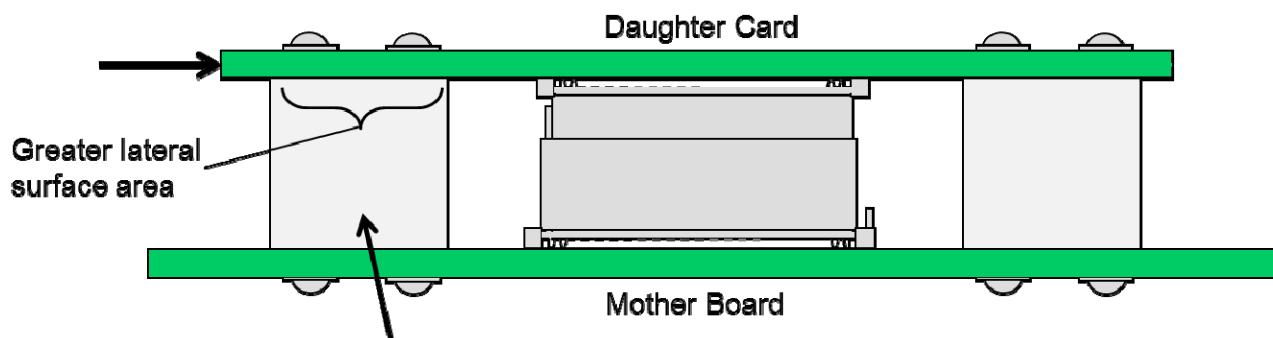



Accounting for stand-off tolerances –

Minimum recommended stand-off length = Stack-height + 0.05mm = 15.05mm


3.7.1 Mechanical Requirements – PCB Holes

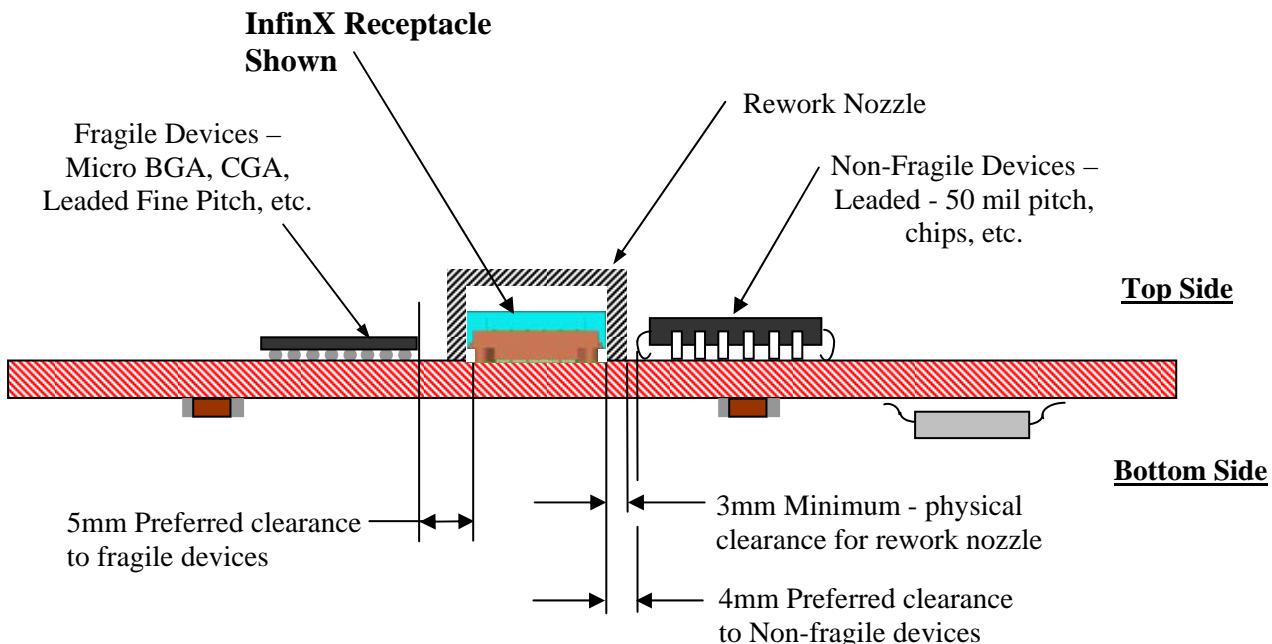
<u>Requirements</u>	<u>DFM Impact/Benefit</u>
<ul style="list-style-type: none"> PCB holes for standoff fasteners must permit a true position misalignment total as described in Section 3.4 <ul style="list-style-type: none"> – Array Positional Tolerances (Board-to-board fastening must <u>comply</u> to the connector alignment) 	<ul style="list-style-type: none"> Prevents stresses to the connector and/or printed circuit board
<ul style="list-style-type: none"> Tighter tolerance holes recommended on the mother (primary) board and not include positional tolerances Looser “Array Positional Tolerances” should be applied to the holes on the mating board 	<ul style="list-style-type: none"> Allows connector to act as the primary alignment feature of mated boards Hardware alignment does not bind against mated connectors.


3.7.2 Suggested Mechanical Structure for Heavier Assemblies

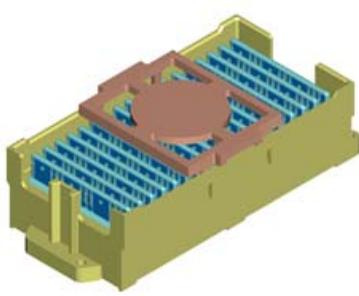
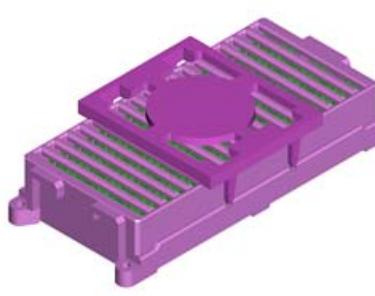
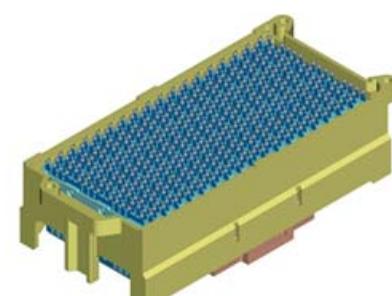
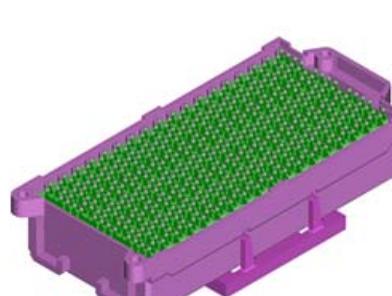
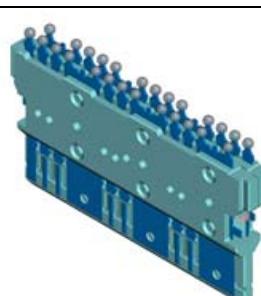
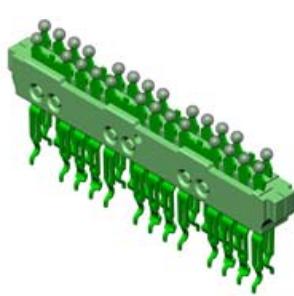
Standoff weakness with greater weight and stack height

- Standoffs may not provide enough lateral support with heavier assemblies and taller stack heights.
- Board and standoff flexing can result in high stresses to the connector and solder joints.
- Support is poor without lateral surface area between the board and standoff

Preferred Rigid Mechanical Structure



- Recommend a mechanical structure that provides more lateral surface area at the connection interface to prevent excess stresses on the connector and solder joints.
- Rigidity of this component is also greater than a standoff







3.8 Keep-out Zone and Clearances

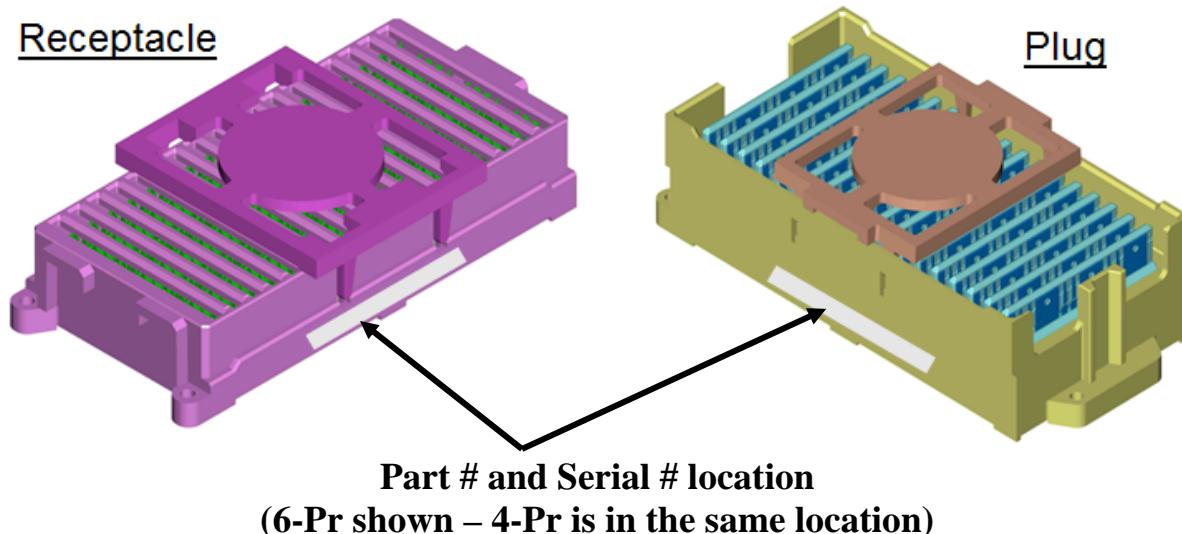
The InfinX connector keep-out zone is required for re-work capability. This allows clearance around the connector housing for rework tooling and nozzles.

<u>Requirements</u>	<u>DFM Impact/Benefit</u>
<ul style="list-style-type: none"> The recommended minimum clearance required is 3mm – preferred clearance is 4mm to non-fragile adjacent components. 	<ul style="list-style-type: none"> Rework nozzle - physical clearance
<ul style="list-style-type: none"> It's preferred to have 5mm clearance to adjacent devices that are very fine pitch with small thermal mass, and could re-reflow – this is dependent on board thickness, copper weight and connector height 	<ul style="list-style-type: none"> Prevents re-reflow of adjacent device, which could cause shorts/defects on that device.

4.0 Manufacturing Introduction – InfinX Connector

	<u>Plug</u>	<u>Receptacle</u>
Solder Ball Alloy	Standard - SAC305 Alloy (Sn96.5 Ag3.0 Cu0.5)	
Solder Ball Diameter		28 Mils (0.71mm)
Connector Heights (mm)	See Section 2	See Section 2
Separable Side (18 Wafer 6-Pair Part Shown)		
Solder Ball Side		
Wafer		

5.0 Connector Handling


InfinX connectors are 100% laser inspected before leaving Amphenol TCS. Each ball is laser scanned and checked for radial true position (RTP), co-planarity and ball protrusion from the housing (BH). This is done using an automated 3-D laser inspection system.

The solder balls are attached to straight leads using a reflow process. The leads are robust and not easily susceptible to damage. Standard SMT device care should be taken when handling the connectors through the process.

Outer box and foam packaging can be removed in the stockroom prior to transferring the parts to the SMT area.

InfinX connector materials are NOT moisture sensitive per J-STD-020. This standard does not apply to connectors.

<u>Requirements</u>	<u>DFM Impact/Benefit</u>
<ul style="list-style-type: none"> Connectors should be kept in the strapped JEDEC tray and cover with the vacuum bag sealed for transfer and storage in the SMT process. 	<ul style="list-style-type: none"> Protects the ball field until it can be loaded into the placement machine
<ul style="list-style-type: none"> The vacuum bag, straps and tray cover are removed for loading onto the placement machine. 	
<ul style="list-style-type: none"> Once the assembly run is complete, tray should be removed from machine, top cover replaced, and Velcro strap together. 	<ul style="list-style-type: none"> Protection of ball field.
<ul style="list-style-type: none"> It is recommended to bag and re-vacuum seal the tray if the parts are not going to be used within a reasonable time frame - shelf life is dependent on factory/stockroom environmental conditions. 	<ul style="list-style-type: none"> Re-bagging is to protect solderability InfinX Connector materials are not moisture sensitive, and do not require pre-bake.
<ul style="list-style-type: none"> Each connector is laser marked with the part # followed by serial # in the location shown below. 	<ul style="list-style-type: none"> Provides date/lot code info and specific ball position data for each connector

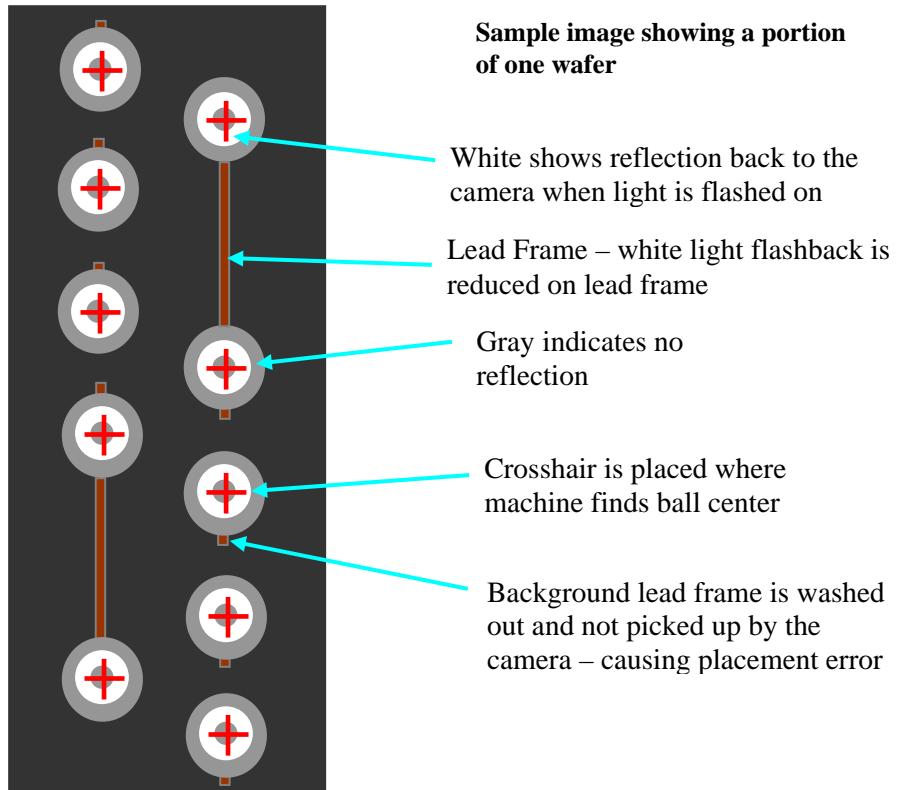
6.0 Solder Paste Process

<u>Requirements</u>	<u>DFM Impact/Benefit</u>
<ul style="list-style-type: none"> Liquid Photo-Imageable (LPI) solder mask over bare copper is preferred. 	<ul style="list-style-type: none"> Most common – provides best adhesion for solder mask - preventing peeling and flaking of mask during assembly processes.
<ul style="list-style-type: none"> Recommended stencil thickness 5 - 6 mils (0.127 - 0.152mm) 	<ul style="list-style-type: none"> Minimizes the risk of opens
<ul style="list-style-type: none"> Recommended aperture is 24 mils (0.61mm) 	<ul style="list-style-type: none"> Minimizes the risk of solder bridging

Board Warp Matrix - The following matrix defines the board warp spec required for each of the listed variables – Stencil Thickness and Pad Finish Co-planarity

Stencil Thickness and Paste Process Variation	Pad Finish Co-planarity	
	<.001"	<.002"
	5 mil +2/-0 mil	.007"
	5 mil +2/-0.5 mil	.005"
	6 mil +2/-0 mils	.007"
	6 mil +2/-0.5 mil	.007"

7.0 Placement Process

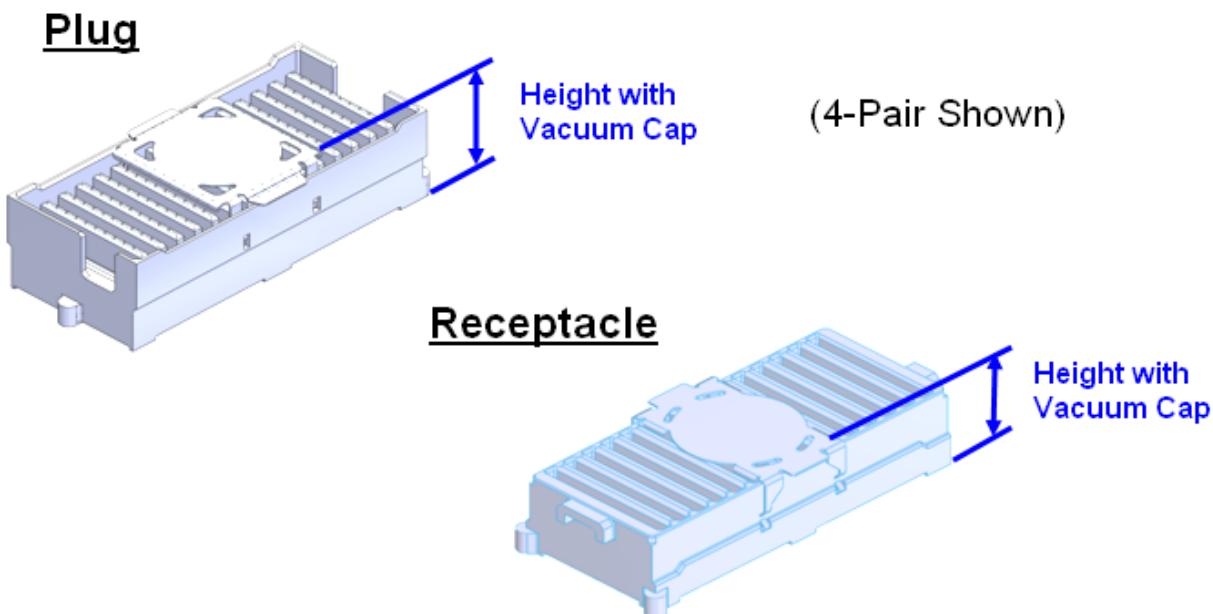

Requirements	DFM Impact/Benefit
• "All-ball" field best-fit alignment is preferred	• Most accurate placement
• Housing align, back-lit black-body align, or mechanical align is not preferred	• Plastic housing to ball field tolerance stack-up will result in less than optimal placement accuracy
• Connector should be <u>pre-oriented</u> for machine vision system alignment.	• Prevents nozzle slip/skew, between camera and placement, due to connector weight.
• Full circular side lighting is preferred – see below	• Ability to most accurately find the ball, without background lighting issues.
• Nozzle selection should be based on connector weight and height. Note: Refer to Placement equipment specs to verify capability	• Heavier connectors require larger bore nozzles to allow for sufficient vacuum and pick-up force and prevent part slip or skew.
• Placement location/centroid of the part should be based on the ball locations.	• Taller connectors may require custom length nozzles for correct focal length to vision system • Minimizes the percentage of ball that is off-pad.

***Note: Set-up can be verified for placement repeatability and accuracy.**

Contact Amphenol TCS for information on verification tools.

Side Lighting

- Not affected by background
- Found to be more accurate/robust
- Better suited for InfinX

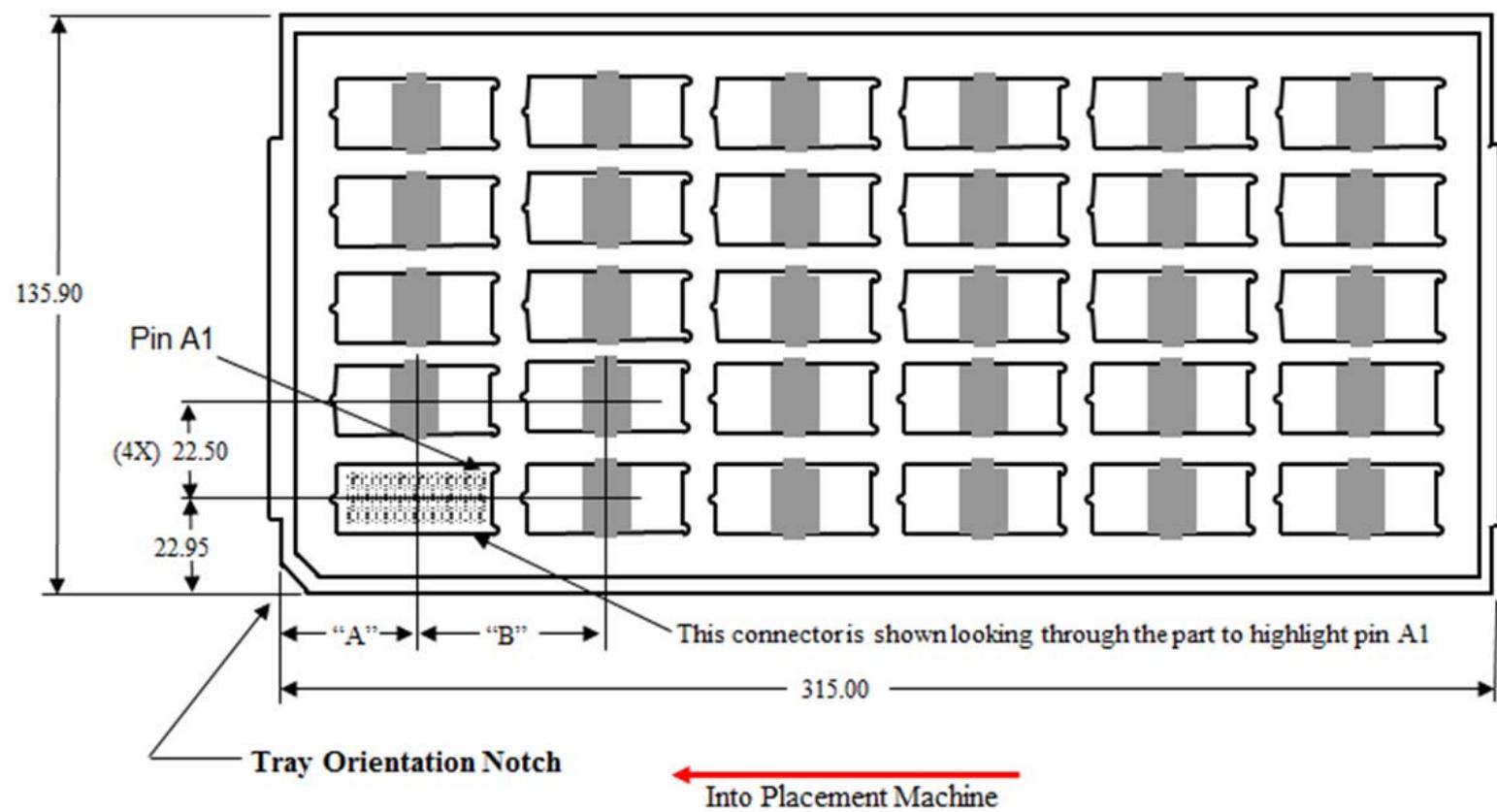

Camera Resolution

- Less than 3 mil/pixel finer resolution cameras are recommended to better filter-out background issues

7.1 Placement Process – 4 and 6 Pair Part Setup

Type	Part Number	Diff Pairs/Wafer	Design Height (mm)	Overall Height w/o Vacuum Cap (mm)	Overall Height with Vacuum Cap (mm)
Plug	379 - 3X3X	4	6	11.20	11.40
	379 - 3X6X	4	10.5	15.70	15.90
	379 - 3X8X	4	15.5	20.70	20.90
	379 - 3X9X	4	17.5	22.70	22.90
	379 - 5X8X	6	3 (RW)	7.35	8.40
	379 - 5X1X	6	3	8.20	9.25
	379 - 5X2X	6	8	13.20	14.25
	379 - 5X6X	6	16	21.20	22.25
	379 - 5X9X	6	18	23.2	24.25
Receptacle	380 - 3X3X	4	9	9.00	9.20
	380 - 3X2X	4	12.5	12.50	12.70
	380 - 3X1X	4	24.5	24.50	24.70
	380 - 5X8X	6	7 (RW)	7.00	8.95
	380 - 5X3X	6	9	9.00	10.95
	380 - 5X4X	6	12	12.00	13.95
	380 - 5X9X	6	20	20.00	21.95
	380 - 5X7X	6	24	24.00	25.95

Note: Connector heights that exceed 12.7mm may require shorter "custom" nozzles for placement. (Refer to your specific placement machine specs for more information)

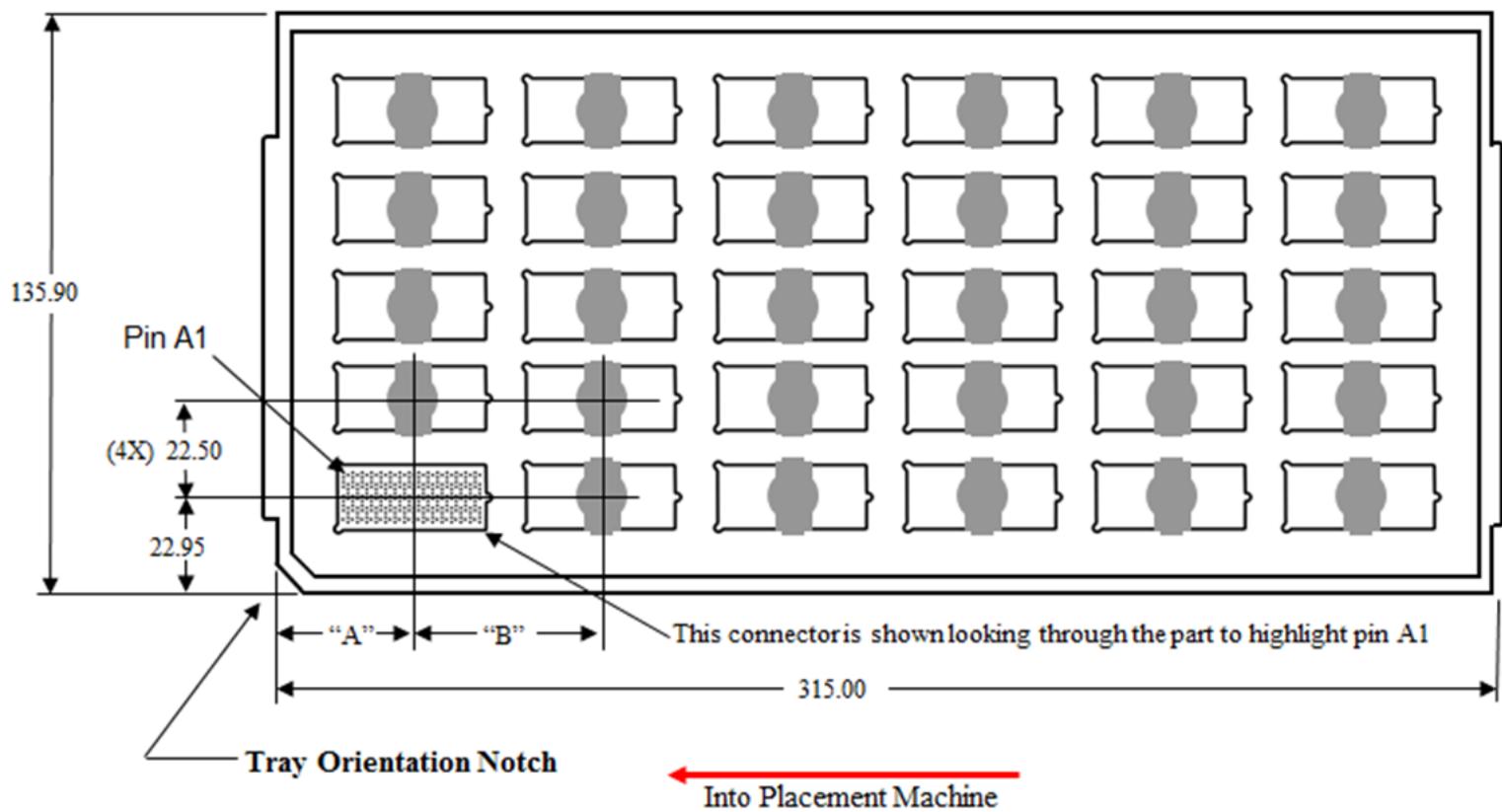

7.2 Placement Process – Feeders

<u>Requirements</u>	<u>DFM Impact/Benefit</u>
<ul style="list-style-type: none">Connectors are shipped in standard JEDEC outline trays and are equipped with a cap that provides a flat vacuum surface – see below and next page.	<ul style="list-style-type: none">Meets the requirements of industry standard placement equipment
<ul style="list-style-type: none">The vacuum caps can be removed by hand after reflow	<ul style="list-style-type: none">See reflow process section for more info
<ul style="list-style-type: none">There are multiple tray configurations depending on part width and length, and whether it's a Plug or Receptacle.	<ul style="list-style-type: none">The only size variation in the trays are the pockets that hold the connector. Overall tray length and width are standard. See next page.
<ul style="list-style-type: none">Trays should be loaded into the machine with the “tray-notch” in the upper left hand corner - for both the plug and receptacles. See diagram next page.	<ul style="list-style-type: none">Allows for part set-up standardization across the product line.Consistent loading of all parts minimizes the risk of reversed loading of the tray into the placement machine.
<ul style="list-style-type: none">Both Plug and Receptacle are oriented the same in the tray	<ul style="list-style-type: none">Provide consistent placement set-ups
<ul style="list-style-type: none">Plug trays are blue, Receptacle trays are black	<ul style="list-style-type: none">Minimizes the risk of reversed loading of the part into the tray.Minimizes the risk of putting the wrong part in the wrong tray.

7.3 Placement Process – 4-Pair Plug JEDEC Tray Set-up

Type	Part #	# of Wafers	Dimension "A"	Dimension "B"	"C"	Tray Height	Tray Part #
Plug	379-3XX4-XXX	5	18.53	21.38	13	4.5	801-4116-000
	379-3XX5-XXX	9	22.5	33.75	8	4.5	801-4118-000
	379-3XX6-XXX	15	35.5	48.8	5	4.5	801-4120-000

* To calculate the height from the bottom of the tray to the top of the vacuum "pick-up" cap - add tray height to overall connector height shown in Section 7.1.

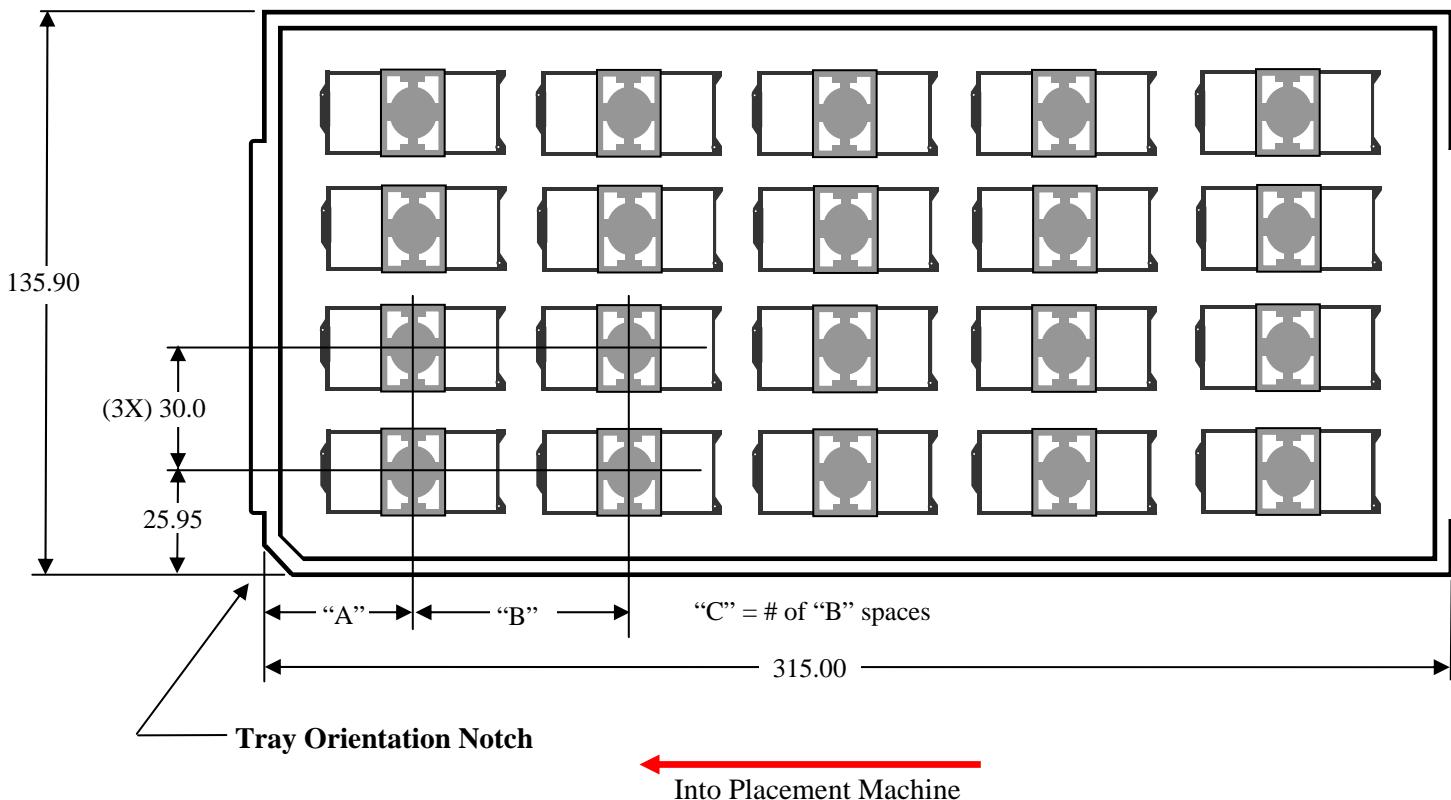

JEDEC Tray With 15-Wafer Plug Connectors – shown for reference

(Part # 379-3XX6-XXX) (Dimensions are in mm)

7.4 Placement Process – 4-Pair Receptacle JEDEC Tray Set-up

Type	Part #	# of Wafers	Dimension "A"	Dimension "B"	"C"	Tray Height	Tray Part #
Receptacle	380-3XX4-XXX	5	18.53	21.38	13	4.85	801-4110-000
	380-3XX5-XXX	9	22.5	33.75	8	4.85	801-4112-000
	380-3XX6-XXX	15	35.5	48.8	5	4.85	801-4114-000

* To calculate the height from the bottom of the tray to the top of the vacuum "pick-up" cap - add tray height to overall connector height shown in Section 7.1.

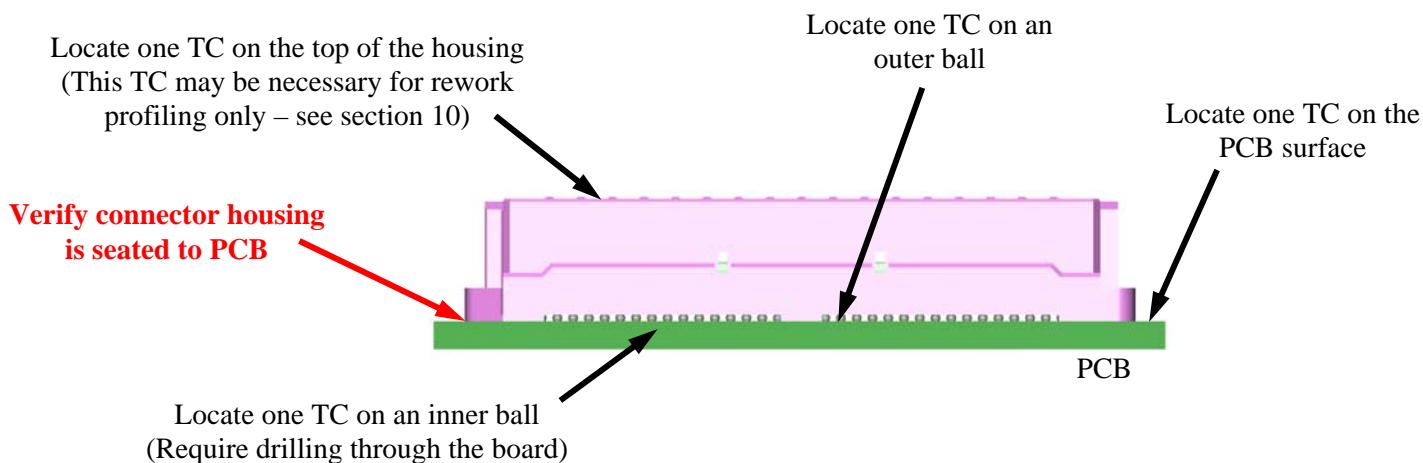

JEDEC Tray With 15-Wafer Receptacle Connectors – shown for reference
(Part # 380-3XX6-XXX) (Dimensions are in mm)

7.5 Placement Process – 6-Pair Plug and Receptacle JEDEC Tray Set-up

Type	Part #	# of Wafers	Dimension "A"	Dimension "B"	"C"	Tray Height	Tray Part #
Plug	379-5XX1-XXX	10	24.5	38.0	7	6.42	801-4031-000
	379-5XX2-XXX	18	37.5	60.0	4	6.42	801-4034-000
Receptacle	380-5X81-XXX	10	24.5	38.0	7	5.02	801-4032-000
	380-5X82-XXX	18	37.5	60.0	4	5.02	801-4035-000

* To calculate the height from the bottom of the tray to the top of the vacuum "pick-up" cap - add tray height to overall connector height shown in Section 7.1.

Note: Both Plug and Receptacle are oriented the same in the tray

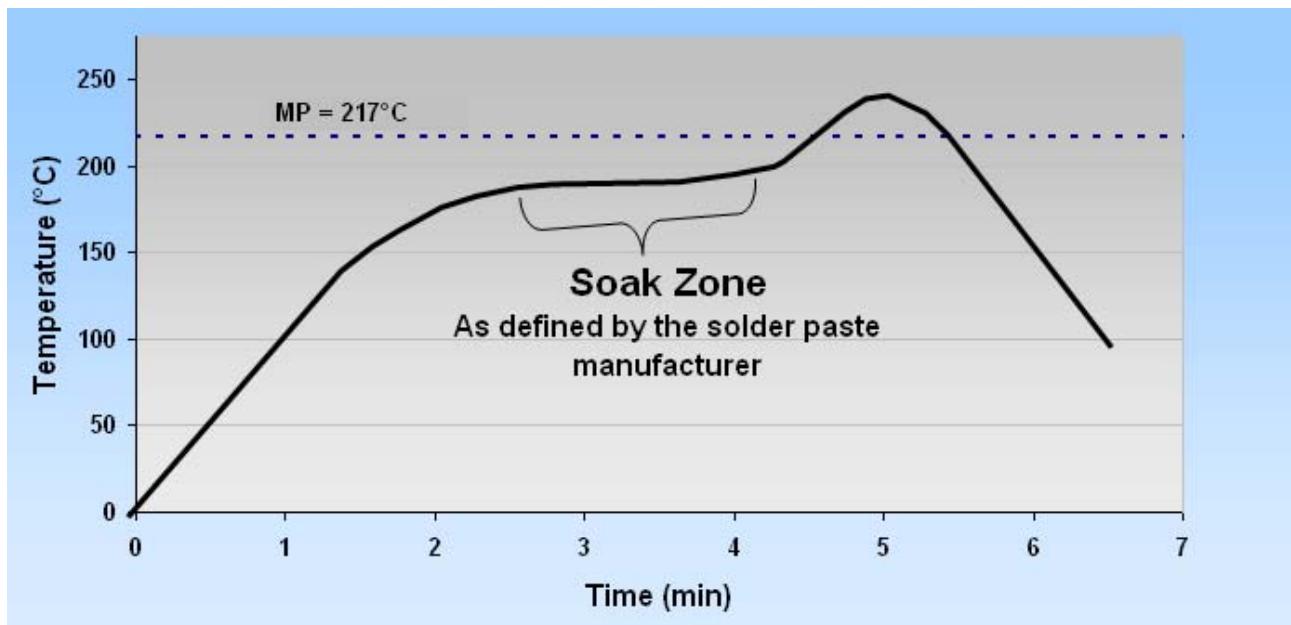

JEDEC Tray With 18-Wafer Receptacle Connectors – shown for reference

(Part # 380-6XX2-XXX) (Dimensions are in mm)

8.0 Reflow Process – Set-up and Recommended Thermocouple Locations

Requirements	DFM Impact/Benefit
<ul style="list-style-type: none"> To determine correct oven settings, follow standard reflow profile processes for set-up and placement of thermocouples (TC). 	<ul style="list-style-type: none"> Insure even heat distribution across the part. Insure profile matches solder paste supplier recommendations.
<ul style="list-style-type: none"> Locate one thermocouple (TC) on PCB surface (same side as connector). 	<ul style="list-style-type: none"> Insures against PCB over-heating and damage.
<ul style="list-style-type: none"> Locate one thermocouple (TC) on top of the connector housing during reflow profiling – It's preferred to keep the plastic below 260°C with a max allowable temperature of 280°C. 	<ul style="list-style-type: none"> Insures against plastic over-heating and damage.
<ul style="list-style-type: none"> Locate at least (2) thermocouple (TC) – one on an outer ball, and one on an inner ball – may require drilling through the board. 	<ul style="list-style-type: none"> Insures balanced reflow profile definition for all of the solder joints.
<ul style="list-style-type: none"> Verify the solder balls have completely reflowed with good wetting and solder ball collapse, and no cold solder exists. <p>Check connector to insure that housing is seated to the board surface – see below.</p>	<ul style="list-style-type: none"> This insures good reflow and balls have completely collapsed. Unseated connectors are due to improperly reflowed balls, and could result in long-term reliability failures.

Note: This thermal differential may require the lower oven heaters to be set hotter than the upper heaters, providing thermal balance between the board and connector.



InfinX Assembled to PCB After First Reflow
(6-Pair Shown)

8.1 Reflow Process – Reflow Profile Recommendations

<u>Requirements</u>	<u>DFM Impact/Benefit</u>
<ul style="list-style-type: none">Set process to the solder paste supplier's recommended profile.Recommend using a Soak Profile over a straight ramp to peak. The soak time and temperature is defined by the paste manufacturer based on optimal flux chemistry activation temperatures.	<ul style="list-style-type: none">This varies by supplier and specific flux chemistryMinimizes void formation and risk of pillow head defectsMinimizes delta T's across thermally heavier parts

Note: Melting Point of the SAC305 Solder ball is 217°C

8.2 Reflow Process – Vacuum Cap Removal

<u>Requirements</u>	<u>DFM Impact/Benefit</u>
<ul style="list-style-type: none">Post reflow vacuum cap removal	<ul style="list-style-type: none">Vacuum cap can be removed after reflow/inspection. (Note: A new vacuum cap is required for connector rework)
<ul style="list-style-type: none">Remove cap in the steps shown in Figure 1 for the Plug, and Figure 2 for the receptacle.	<ul style="list-style-type: none">Ease of cap removal

Note: Vacuum cap disassembly is the same for both 4 and 6-Pr. 4-Pr is shown below.

Figure 1
4-Pr Plug

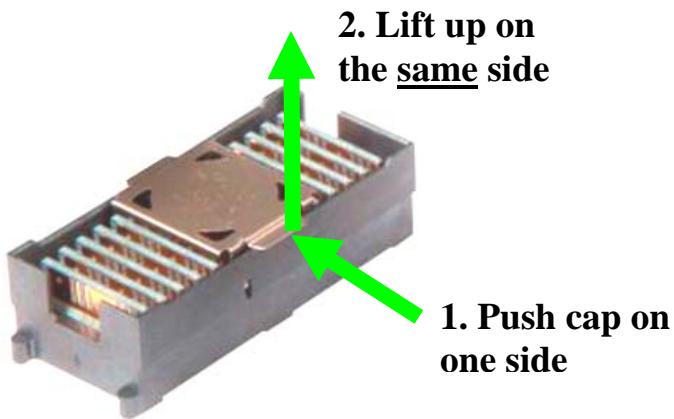
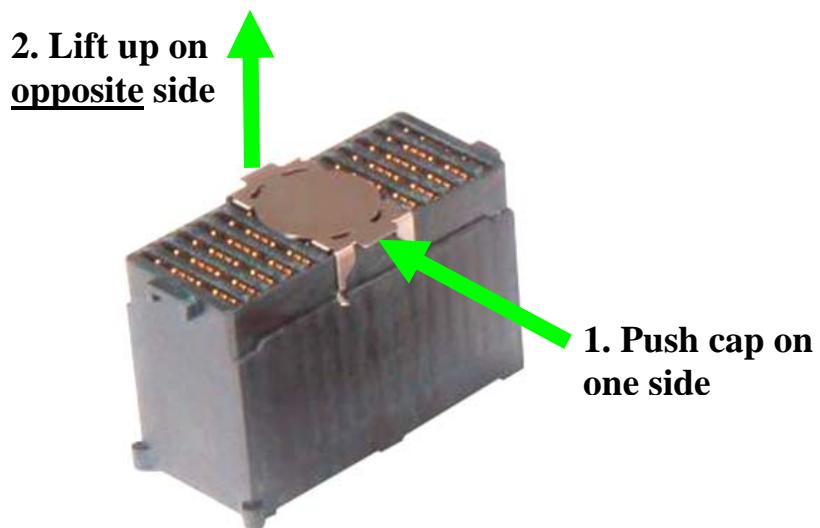
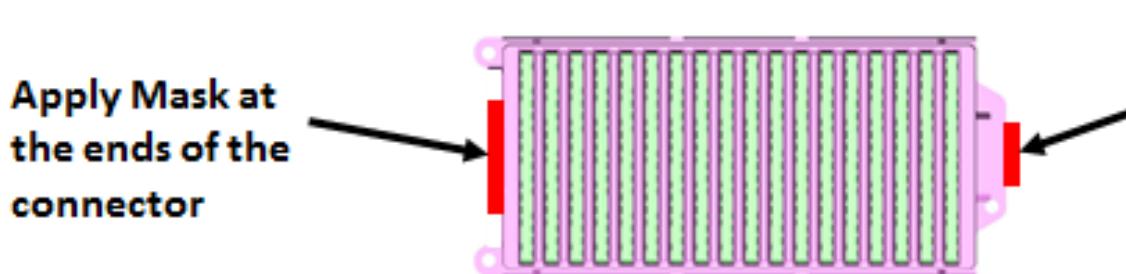



Figure 2
4-Pr Receptacle



9.0 Double Sided Reflow Process

<u>Requirements</u>	<u>DFM Impact/Benefit</u>
<ul style="list-style-type: none"> InfinX is compatible with double-sided reflow soldering. ATCS recommends a secondary method of retention (such as peelable solder mask) when running InfinX connectors upside down in the reflow process. 	<ul style="list-style-type: none"> Prevents excessive solder ball elongation or connectors falling off the board.
<ul style="list-style-type: none"> Before applying the secondary retention and running connectors upside down in reflow - inspect the connector to insure the solder balls have reflowed and the housing is seated to the board surface – see Reflow Process section for more info. 	<ul style="list-style-type: none"> Improperly reflowed connectors and possible cold and/or insufficient solder joints will result in problems with the secondary method of attachment
<ul style="list-style-type: none"> Remove the vacuum cap after the 1st reflow cycle. 	<ul style="list-style-type: none"> Reduces the weight of the connector and the risk of the connector dropping off the board.
<ul style="list-style-type: none"> One method is to apply RTV or peelable solder mask to the base of the housing AFTER the 1st reflow cycle 	<ul style="list-style-type: none"> Holds connector on the board Should be tested and verified in the customer's specific process
<ul style="list-style-type: none"> The method of retention and material used is the decision of the customer. ATCS can provide input and technical support during the development phases. 	<ul style="list-style-type: none"> Each customer will have different process and design restrictions or requirements for their specific application.

* Refer to Addendum "A" for more detailed information on connector weights and weight/ball data by part number.

One example of peelable solder mask is Kester TC-530. It will cure in the first 2-3 zones of the reflow oven and hold the part on the board in the peak zones. It should be peeled off after the reflow process.

10.0 Rework Process

The rework of an InfinX connector, for solder shorts and opens, requires that the connector be completely removed and replaced with a new connector.

<u>Requirements</u>	<u>DFM Impact/Benefit</u>
<ul style="list-style-type: none">Use specialized BGA rework equipment for connector removal and replacement, and should include thermal profiling and temperature measurement capability.	<ul style="list-style-type: none">Achieves an all-ball reflow at point of removal without excessive heat to the connector and PCB, or insufficient heat causing lifted pads.
<ul style="list-style-type: none">Follow reflow profiling guidelines in section 8 and make sure to include a thermocouple on <u>top of the connector housing</u> during reflow profiling – It is preferred to keep the plastic below 260°C with a max allowable temperature of 280°C.	<ul style="list-style-type: none">Insures against plastic over-heating and damage. (See reflow section for more detail.)
<ul style="list-style-type: none">Placement location of the part should be based on the ball locations using a best-fit alignment	<ul style="list-style-type: none">Minimizes the percentage of ball that is off-pad.
<ul style="list-style-type: none">Semi-Automated placement capability is preferred – including vacuum pick-up and placement.	<ul style="list-style-type: none">This will provide consistent placements.
<ul style="list-style-type: none">Split Vision alignment systems are required to allow a ball-field best-fit alignment to PCB footprint.	<ul style="list-style-type: none">Allows blind alignment of ball to pad - minimizing placement error.
<ul style="list-style-type: none">Hand/Manual placement is not recommended.	<ul style="list-style-type: none">Manual placement is inconsistent, and blind/housing align does not provide the required placement accuracy.
<ul style="list-style-type: none">Using custom InfinX nozzles is preferred for the taller connectors	<ul style="list-style-type: none">Because of the higher thermal masses, more consistent/even heat distribution is required.
<ul style="list-style-type: none">Follow normal rework processes for PCB site cleaning and prep, and reflow profile development.	<ul style="list-style-type: none">Improves rework yield and insures reliable solder joints
<ul style="list-style-type: none">“Flux-only” processing is not recommended.	<ul style="list-style-type: none">Inconsistent amount of metal left on pad during site prep, resulting in excessive pad co-planarity variation – increased risk of solder opens.
<ul style="list-style-type: none">Paste deposition is recommended using either an automated dispensing system or manual micro stencils – resulting in a 6 mil tall x 24 mil diameter deposit.	<ul style="list-style-type: none">Prevents opens/shorts with high reliability solder joints.
<ul style="list-style-type: none">Re-balling of InfinX connectors is not recommended.	<ul style="list-style-type: none">Re-balling processes not available for InfinX.

Air-Vac and VJ Electronix have developed custom rework nozzles for InfinX, and will assist in any process development work related to InfinX. For more info go to the following Web Sites:

Air-Vac<http://www.air-vac-eng.com/>**VJ Electronix**<http://vjelectronix.com/>

Addendum "A"

InfinX Connector Weights								
4-Pair								
ATCS p/n	Description	Design Height (mm)	Wafer Count	# of Solder Balls	Weight, no cap (grams)	Weight, with cap (grams)	Weight/ball no cap (grams)	Weight/ball with cap (grams)
379-3434-XX0	Plug, 4pr, 6mm, 5 Wafer, Pb-Free, w/Lossy	6	5	90	2.84	3.21	0.0316	0.0357
379-3634-XX0	Plug, 4pr, 6mm, 5 Wafer, Pb-Free	6	5	90	2.83	3.20	0.0314	0.0356
379-3436-XX0	Plug, 4pr, 6mm, 15 Wafer, Pb-Free, w/Lossy	6	15	270	7.94	8.34	0.0294	0.0309
379-3636-XX0	Plug, 4pr, 6mm, 15 Wafer, Pb-Free	6	15	270	7.91	8.31	0.0293	0.0308
379-3465-XX0	Plug, 4pr, 10.5mm, 9 Wafer, Pb-Free, w/Lossy	10.5	9	162	7.51	7.88	0.0464	0.0486
379-3665-XX0	Plug, 4pr, 10.5mm, 9 Wafer, Pb-Free	10.5	9	162	7.46	7.83	0.0460	0.0483
379-3366-XX0	Plug, 4pr, 10.5mm, 15 Wafer, Pb-Free, w/Lossy	10.5	15	270	12.13	12.55	0.0449	0.0465
379-3388-XX0	Plug, 4pr, 15.5mm, 20 Wafer, Pb-Free, w/Lossy	15.5	20	360	22.30	22.74	0.0619	0.0632
379-3396-XX0	Plug, 4pr, 17.5mm, 15 Wafer, Pb-Free, w/Lossy	17.5	15	270	19.12	19.51	0.0708	0.0723
380-3434-XX0	Receptacle, 4pr, 9mm, 5 Wafer, Pb Free, w/Lossy	9	5	90	1.96	2.28	0.0218	0.0253
380-3634-XX0	Receptacle, 4pr, 9mm, 5 Wafer, Pb Free	9	5	90	1.95	2.26	0.0217	0.0251
380-3436-XX0	Receptacle, 4pr, 9mm, 15 Wafer, Pb Free, w/Lossy	9	15	270	5.26	5.58	0.0195	0.0207
380-3636-XX0	Receptacle, 4pr, 9mm, 15 Wafer, Pb Free	9	15	270	5.21	5.52	0.0193	0.0204
380-3326-XX0	Receptacle, 4pr, 12.5mm, 15 Wafer, Pb Free, w/Lossy	12.5	15	270	8.70	9.02	0.0322	0.0334
380-3415-XX0	Receptacle, 4pr, 24.5mm, 9 Wafer, Pb Free, w/Lossy	24.5	9	162	12.65	12.97	0.0781	0.0801
380-3615-XX0	Receptacle, 4pr, 24.5mm, 9 Wafer, Pb Free	24.5	9	162	12.55	12.88	0.0775	0.0795
380-3416-XX0	Receptacle, 4pr, 24.5mm, 15 Wafer, Pb Free, w/Lossy	24.5	15	270	20.33	20.65	0.0753	0.0765
380-3616-XX0	Receptacle, 4pr, 24.5mm, 15 Wafer, Pb Free	24.5	15	270	20.17	20.47	0.0747	0.0758
380-3418-XX0	Receptacle, 4pr, 24.5mm, 20 Wafer, Pb Free, w/Lossy	24.5	20	360	26.62	27.06	0.0739	0.0752
380-3618-XX0	Receptacle, 4pr, 24.5mm, 20 Wafer, Pb Free	24.5	20	360	26.41	26.85	0.0734	0.0746

Note: cap refers to vacuum pickup cap

Addendum "A" (Cont'd)

InfinX Connector Weights								
6-Pair								
ATCS p/n	Description	Design Height (mm)	Wafer Count	# of Solder Balls	Weight, no cap (grams)	Weight, with cap (grams)	Weight/ball no cap (grams)	Weight/ball with cap (grams)
379-5181-XX0	Plug, 6pr, 3mm (RW), 10 Wafer, Pb-Free	3	10	260	4.33	5.34	0.0167	0.0205
379-5182-XX0	Plug, 6pr, 3mm (RW), 18 Wafer, Pb-Free	3	18	468	7.47	8.46	0.0160	0.0181
379-5111-XX0	Plug, 6pr, 3mm, 10 Wafer, Pb-Free	3	10	260	4.69	5.68	0.0180	0.0218
379-5112-XX0	Plug, 6pr, 3mm, 18 Wafer, Pb-Free	3	18	468	8.14	9.12	0.0174	0.0195
379-5321-XX0	Plug, 6pr, 8mm, 10 Wafer, Pb-Free, w/Lossy	8	10	260	9.62	10.61	0.0370	0.0408
379-5322-XX0	Plug, 6pr, 8mm, 18 Wafer, Pb-Free, w/Lossy	8	18	468	16.77	17.74	0.0358	0.0379
379-5361-XX0	Plug, 6pr, 16mm, 10 Wafer, Pb-Free, w/Lossy	16	10	260	16.92	17.91	0.0651	0.0689
379-5362-XX0	Plug, 6pr, 16mm, 18 Wafer, Pb-Free, w/Lossy	16	18	468	29.44	30.43	0.0629	0.0650
379-5391-XX0	Plug, 6pr, 18mm, 10 Wafer, Pb-Free, w/Lossy	18	10	260	16.73	17.71	0.0643	0.0681
379-5392-XX0	Plug, 6pr, 18mm, 18 Wafer, Pb-Free, w/Lossy	18	18	468	32.45	33.43	0.0693	0.0714
380-5181-XX0	Receptacle, 6pr, 7mm (RW), 10 Wafer, Pb Free	7	10	260	3.90	4.65	0.0150	0.0179
380-5182-XX0	Receptacle, 6pr, 7mm (RW), 18 Wafer, Pb Free	7	18	468	6.64	7.39	0.0142	0.0158
380-5331-XX0	Receptacle, 6pr, 9mm, 10 Wafer, Pb Free, w/Lossy	9	10	260	5.25	6.00	0.0202	0.0231
380-5332-XX0	Receptacle, 6pr, 9mm, 18 Wafer, Pb Free, w/Lossy	9	18	468	8.95	9.71	0.0191	0.0207
380-5341-XX0	Receptacle, 6pr, 12mm, 10 Wafer, Pb Free, w/Lossy	12	10	260	7.97	8.72	0.0307	0.0335
380-5342-XX0	Receptacle, 6pr, 12mm, 18 Wafer, Pb Free, w/Lossy	12	18	468	13.71	14.46	0.0293	0.0309
380-5391-XX0	Receptacle, 6pr, 20mm, 10 Wafer, Pb Free, w/Lossy	20	10	260	15.05	15.80	0.0579	0.0608
380-5392-XX0	Receptacle, 6pr, 20mm, 18 Wafer, Pb Free, w/Lossy	20	18	468	26.27	27.05	0.0561	0.0578
380-5371-XX0	Receptacle, 6pr, 24mm, 10 Wafer, Pb Free, w/Lossy	24	10	260	18.96	19.71	0.0729	0.0758
380-5372-XX0	Receptacle, 6pr, 24mm, 18 Wafer, Pb Free, w/Lossy	24	18	468	32.96	33.72	0.0704	0.0721

Note: cap refers to vacuum pickup cap

Addendum "B": DFM and Assembly Readiness Check Sheet

Item	Sect	Check	Change/ Comments	Who	Status
PCB Design	3.1 3.2 3.3/6.0 3.4/ 3.5	<ul style="list-style-type: none"> Copper defined .60mm (.024") pad – clear of solder mask Minimum .13mm (.005") Solder Mask dam to Via, or via masking Specify board warp spec per process variables Multi connector orientation is the same Long side of connector is parallel across the larger spans Layout includes slightly oversized silkscreen outline of connector. 			
Mech. Req'ments	3.4 3.6 3.7.1	<ul style="list-style-type: none"> Insure the mechanical structure allows for connector and placement positional and shift tolerances Stand-offs or mechanical spacers are required to secure the mezzanine cards. Insure the standoff PCB holes are tightly toleranced on the mother board. Standoff holes on the mated (daughter) card should be looser - allowing for the positional tolerances described in section 3.4. 			
Handling	4.0/ 5.0	<ul style="list-style-type: none"> Removal/replacement from JEDEC tray is not recommended – minimize manual handling Handling process should include re-packaging and handling pre-cautions. 			
Solder Paste	6.0	<ul style="list-style-type: none"> Stencil thickness is 5-6 mil. Stencil aperture should be 24 mils 			
Placement	7.0 7.1	<ul style="list-style-type: none"> Set-up should include ball-field align, full circular side lighting, and pre-orient align. Custom programming and nozzles may be required for the taller connectors. 			
Reflow	8.0 8.1 8.2	<ul style="list-style-type: none"> Follow solder paste manufacturer's recommended profile. Recommend using a soak profile in reflow. Follow recommended process for vacuum cap removal. 			
Double Sided Reflow	9.0	<ul style="list-style-type: none"> ATCS recommends a secondary method of retention (such as peelable solder mask) when running InfinX connectors upside down in the reflow process. 			
Rework	10.0	<ul style="list-style-type: none"> When profiling, include thermal probe attachment to the top of housing, to insure against plastic over-heating. Placement with ball-field align and best-fit Manual placement not recommended Use custom dedicated nozzles for the taller connectors. Paste deposition should be 5-6 mils high and 24 mil diameter "Flux-only" processing not recommended 			

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Amphenol:

[379-5111-200](#) [379-5112-200](#) [379-5181-200](#) [379-5182-200](#) [379-5321-200](#) [379-5322-200](#) [380-5181-200](#) [380-5182-200](#) [380-5331-200](#) [380-5332-200](#) [380-5341-200](#) [380-5342-200](#) [380-5391-200](#) [380-5392-200](#) [379-3434-400](#) [379-3436-400](#) [379-3465-400](#) [380-3415-400](#) [380-3416-400](#) [380-3434-400](#) [380-3436-400](#) [379-3434-200](#)