

74ABT623

Octal transceiver with dual enable; non-inverting; 3-state

Rev. 03 — 22 October 2009

Product data sheet

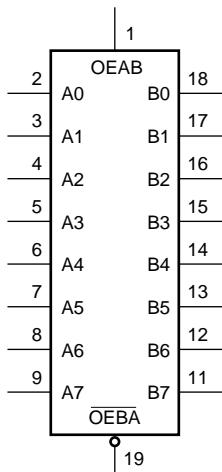
1. General description

The 74ABT623 high performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive.

The 74ABT623 is an octal transceiver featuring non-inverting 3-state bus compatible outputs in both send and receive directions. This octal bus transceiver is designed for asynchronous two-way communication between data buses.

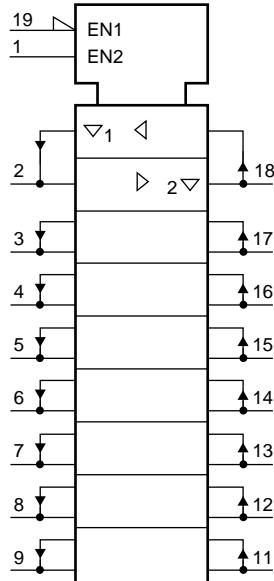
The control function implementation allows maximum flexibility in timing. This device allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending upon the logic levels at the enable inputs (pins OEAB and \overline{OEBA}). The enable inputs can be used to disable the device so that the buses are effectively isolated. The dual enable function configuration gives this transceiver the capability to store data by simultaneous enabling of pins OEAB and \overline{OEBA} . Each output reinforces its input in this transceiver configuration. Thus, when both control inputs are enabled and all other data sources to the two sets of the bus lines are at high-impedance OFF-state, both sets of the bus lines will remain at their last states. The 8-bit codes appearing on the two sets of buses will be identical.

2. Features


- Octal bidirectional bus interface
- 3-state buffers
- Power-up 3-state
- Output capability: +64 mA and -32 mA
- data inputs are disabled during 3-state mode
- Latch-up protection exceeds 500 mA per JESD78B class II level A
- ESD protection:
 - ◆ HBM JESD22-A114F exceeds 2000 V
 - ◆ MM JESD22-A115-A exceeds 200 V

3. Ordering information

Table 1. Ordering information


Type number	Package	Temperature range	Name	Description	Version
74ABT623D		−40 °C to +85 °C	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-1
74ABT623DB		−40 °C to +85 °C	SSOP20	plastic shrink small outline package; 20 leads; body width 5.3 mm	SOT339-1
74ABT623PW		−40 °C to +85 °C	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-1

4. Functional diagram

001aaa844

Fig 1. Logic symbol.

001aaa833

Fig 2. IEC logic symbol.

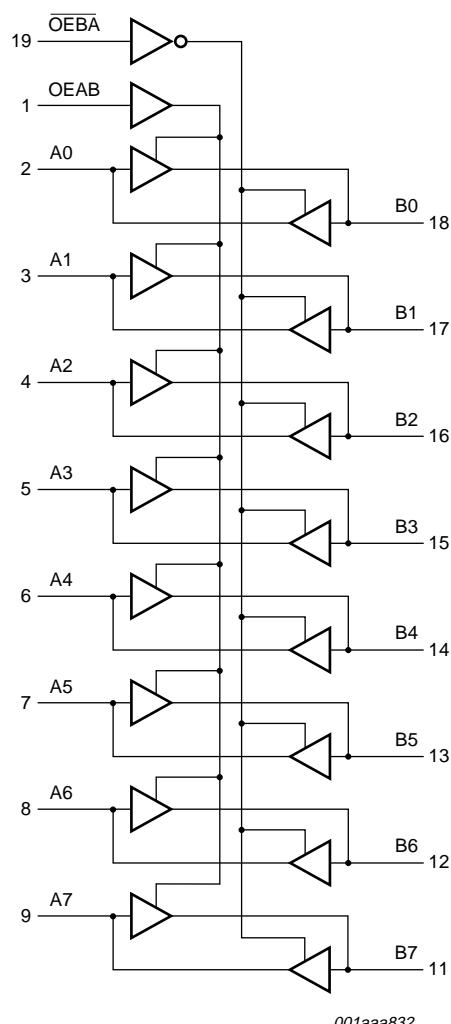


Fig 3. Logic diagram

5. Pinning information

5.1 Pinning

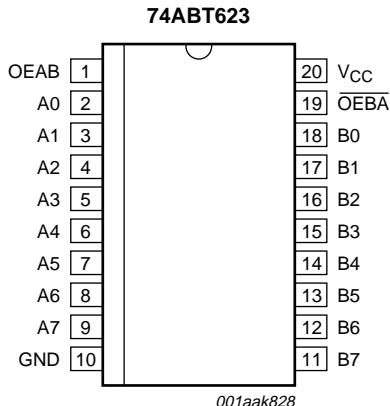


Fig 4. Pin configuration SO20

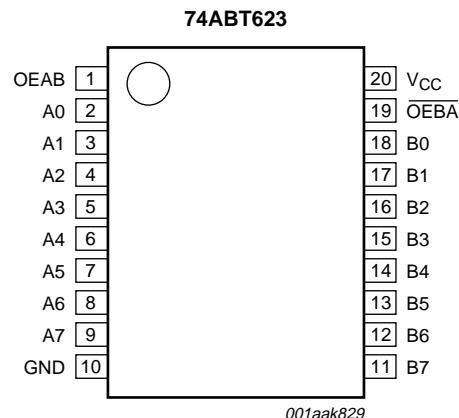


Fig 5. Pin configuration (T)SSOP20

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
OEAB	1	output enable input (active HIGH)
A0 to A7	2, 3, 4, 5, 6, 7, 8, 9	data input or output
B0 to B7	18, 17, 16, 15, 14, 13, 12, 11	data input or output
GND	10	ground (0 V)
OEBA	19	output enable input (active LOW)
V _{CC}	20	supply voltage

6. Functional description

Table 3. Function table^[1]

Input		Input or output	
OEAB	OEBA	An	Bn
L	L	An = Bn	input
H	H	input	Bn = An
L	H	Z	Z
H	L	An = Bn	input
H	L	input	Bn = An

[1] H = HIGH voltage level; L = LOW voltage level; Z = high-impedance OFF-state.

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7.0	V
V_I	input voltage		[1] -1.2	+7.0	V
V_O	output voltage	output in OFF-state or HIGH-state	[1] -0.5	+5.5	V
I_{IK}	input diode current	$V_I < 0$ V	-18	-	mA
I_{OK}	output diode current	$V_O < 0$ V	-50	-	mA
I_o	output current	output in LOW-state	-	128	mA
T_j	junction temperature		[2] -	150	°C
T_{stg}	storage temperature		-65	+150	°C
P_{tot}	total power dissipation	$T_{amb} = -40$ °C to +85 °C	[3] -	500	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150 °C.

[3] For SO20 package: P_{tot} derates linearly with 8 mW/K above 70 °C.

For SSOP20 and TSSOP20 package: P_{tot} derates linearly with 5.5 mW/K above 60 °C.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{CC}	supply voltage		4.5	-	5.5	V
V_I	input voltage		0	-	V_{CC}	V
V_{IH}	HIGH-level input voltage		2.0	-	-	V
V_{IL}	LOW-level input voltage		-	-	0.8	V
I_{OH}	HIGH-level output current		-32	-	-	mA
I_{OL}	LOW-level output current		-	-	64	mA
$\Delta t/\Delta V$	input transition rise or fall rate		0	-	10	ns/V
T_{amb}	ambient temperature	in free air	-40	-	+85	°C

9. Static characteristics

Table 6. Static characteristics

Symbol	Parameter	Conditions	25 °C			−40 °C to +85 °C		Unit
			Min	Typ	Max	Min	Max	
V_{IK}	input clamping voltage	$V_{CC} = 4.5 \text{ V}$; $I_{IK} = -18 \text{ mA}$	-	-0.9	-1.2	-	-1.2	V
V_{OH}	HIGH-level output voltage	$V_I = V_{IL}$ or V_{IH}						
		$V_{CC} = 4.5 \text{ V}$; $I_{OH} = -3 \text{ mA}$	2.5	2.9	-	2.5	-	V
		$V_{CC} = 5.0 \text{ V}$; $I_{OH} = -3 \text{ mA}$	3.0	3.4	-	3.0	-	V
		$V_{CC} = 4.5 \text{ V}$; $I_{OH} = -32 \text{ mA}$	2.0	2.4	-	2.0	-	V
V_{OL}	LOW-level output voltage	$V_{CC} = 4.5 \text{ V}$; $I_{OL} = 64 \text{ mA}$; $V_I = V_{IL}$ or V_{IH}	-	0.42	0.55	-	0.55	V
I_I	input leakage current	$V_{CC} = 5.5 \text{ V}$; $V_I = \text{GND}$ or 5.5 V						
		$\text{OEAB}, \overline{\text{OEBA}}$	-	± 0.01	± 1.0	-	± 1.0	μA
		An, Bn	-	± 5.0	± 100	-	± 100	μA
I_{OFF}	power-off leakage current	$V_{CC} = 0.0 \text{ V}$; V_I or $V_O \leq 4.5 \text{ V}$	-	± 5.0	± 100	-	± 100	μA
$I_{O(\text{pu/pd})}$	power-up/power-down output current	$V_{CC} = 2.0 \text{ V}$; $V_O = 0.5 \text{ V}$; $V_I = \text{GND}$ or V_{CC} ; $\text{OEAB} = \text{GND}$; $\overline{\text{OEBA}} = V_{CC}$	[1]	-	± 5.0	± 50	-	± 50 μA
I_{OZ}	OFF-state output current	$V_{CC} = 5.5 \text{ V}$; $V_I = V_{IL}$ or V_{IH}						
		$V_O = 2.7 \text{ V}$	-	5.0	50	-	50	μA
		$V_O = 0.5 \text{ V}$	-	-5.0	-50	-	-50	μA
I_{LO}	output leakage current	HIGH-state; $V_O = 5.5 \text{ V}$; $V_{CC} = 5.5 \text{ V}$; $V_I = \text{GND}$ or V_{CC}	-	5.0	50	-	50	μA
I_O	output current	$V_{CC} = 5.5 \text{ V}$; $V_O = 2.5 \text{ V}$	[2]	-180	-100	-50	-180	-50 mA
I_{CC}	supply current	$V_{CC} = 5.5 \text{ V}$; $V_I = \text{GND}$ or V_{CC}						
		outputs HIGH-state	-	50	250	-	250	μA
		outputs LOW-state	-	24	30	-	30	mA
ΔI_{CC}	additional supply current	outputs disabled	-	50	250	-	250	μA
		per input pin; $V_{CC} = 5.5 \text{ V}$; one input pin at 3.4 V, other inputs at V_{CC} or GND	[3]					
		outputs enabled	-	0.5	1.5	-	1.5	mA
		outputs disabled	-	50	250	-	250	mA
		one enable input at 3.4 V and other inputs at V_{CC} or GND; outputs disabled	-	0.5	1.5	-	1.5	mA
C_I	input capacitance	$V_I = 0 \text{ V}$ or V_{CC}	-	4	-	-	-	pF
$C_{I/O}$	input/output capacitance	outputs disabled; $V_O = 0 \text{ V}$ or V_{CC}	-	7	-	-	-	pF

[1] This parameter is valid for any V_{CC} between 0 V and 2.1 V, with a transition time of up to 10 ms. From $V_{CC} = 2.1 \text{ V}$ to $V_{CC} = 5 \text{ V} \pm 10 \%$, a transition time of up to 100 ms is permitted.

[2] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

[3] This is the increase in supply current for each input at 3.4 V.

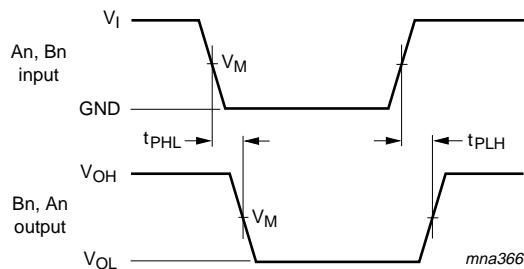
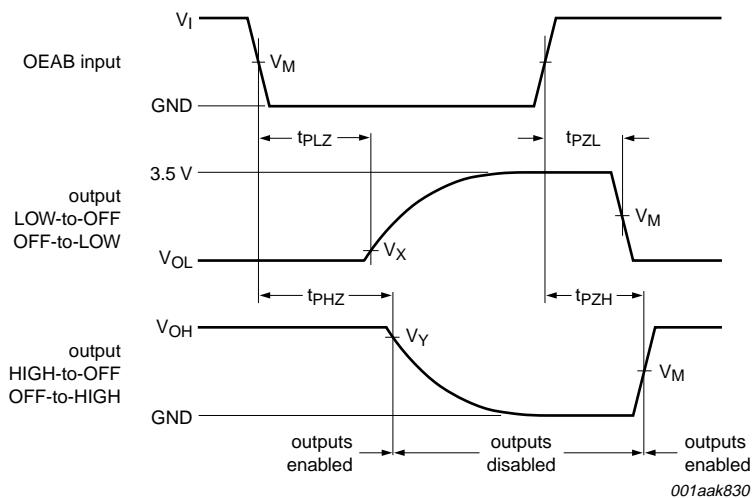

10. Dynamic characteristics

Table 7. Dynamic characteristics

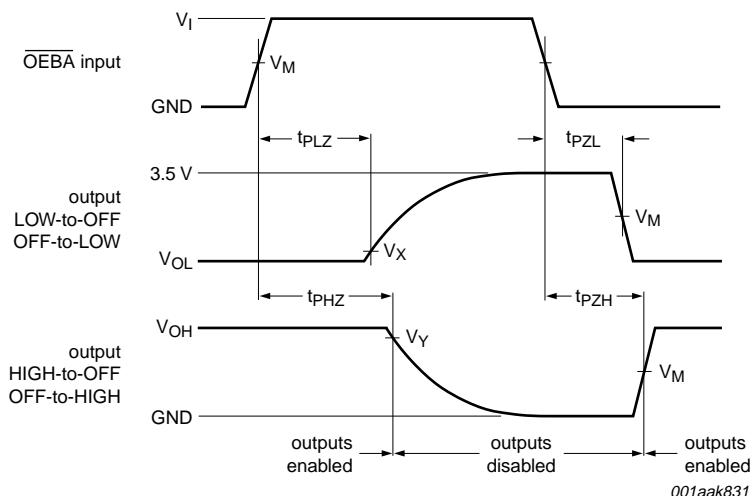
GND = 0 V; for test circuit, see [Figure 9](#).

Symbol	Parameter	Conditions	25 °C; V _{CC} = 5.0 V			−40 °C to +85 °C; V _{CC} = 5.0 V ± 0.5 V		Unit
			Min	Typ	Max	Min	Max	
t _{PLH}	LOW to HIGH propagation delay	An to Bn or Bn to An; see Figure 6	1.0	2.6	4.1	1.0	4.6	ns
t _{PHL}	HIGH to LOW propagation delay	An to Bn or Bn to An; see Figure 6	1.0	2.7	4.2	1.0	4.6	ns
t _{PZH}	OFF-state to HIGH propagation delay	OEAB, OEBA to An or Bn; see Figure 7 and Figure 8	1.7	3.4	6.5	1.7	7.5	ns
t _{PZL}	OFF-state to LOW propagation delay	OEAB, OEBA to An or Bn; see Figure 7 and Figure 8	1.7	4.8	6.5	1.7	7.5	ns
t _{PHZ}	HIGH to OFF-state propagation delay	OEAB, OEBA to An or Bn; see Figure 7 and Figure 8	1.7	3.6	6.5	1.7	7.5	ns
t _{PLZ}	LOW to OFF-state propagation delay	OEAB, OEBA to An or Bn; see Figure 7 and Figure 8	1.7	3.1	6.5	1.7	7.5	ns


11. Waveforms

Measurement points are given in [Table 8](#).

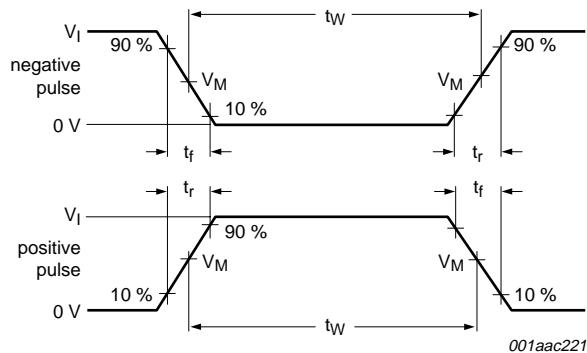
V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.


Fig 6. Propagation delay input (An, Bn) to output (Bn, An)

Measurement points are given in [Table 8](#).

V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Fig 7. Enable and disable times for OEAB input.


Measurement points are given in [Table 8](#).

V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

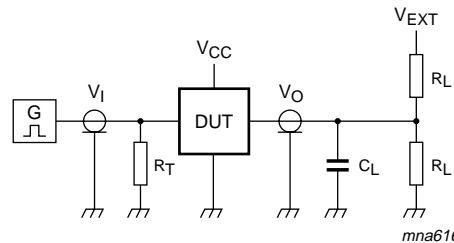

Fig 8. Enable and disable times for OEBA input.

Table 8. Measurement points

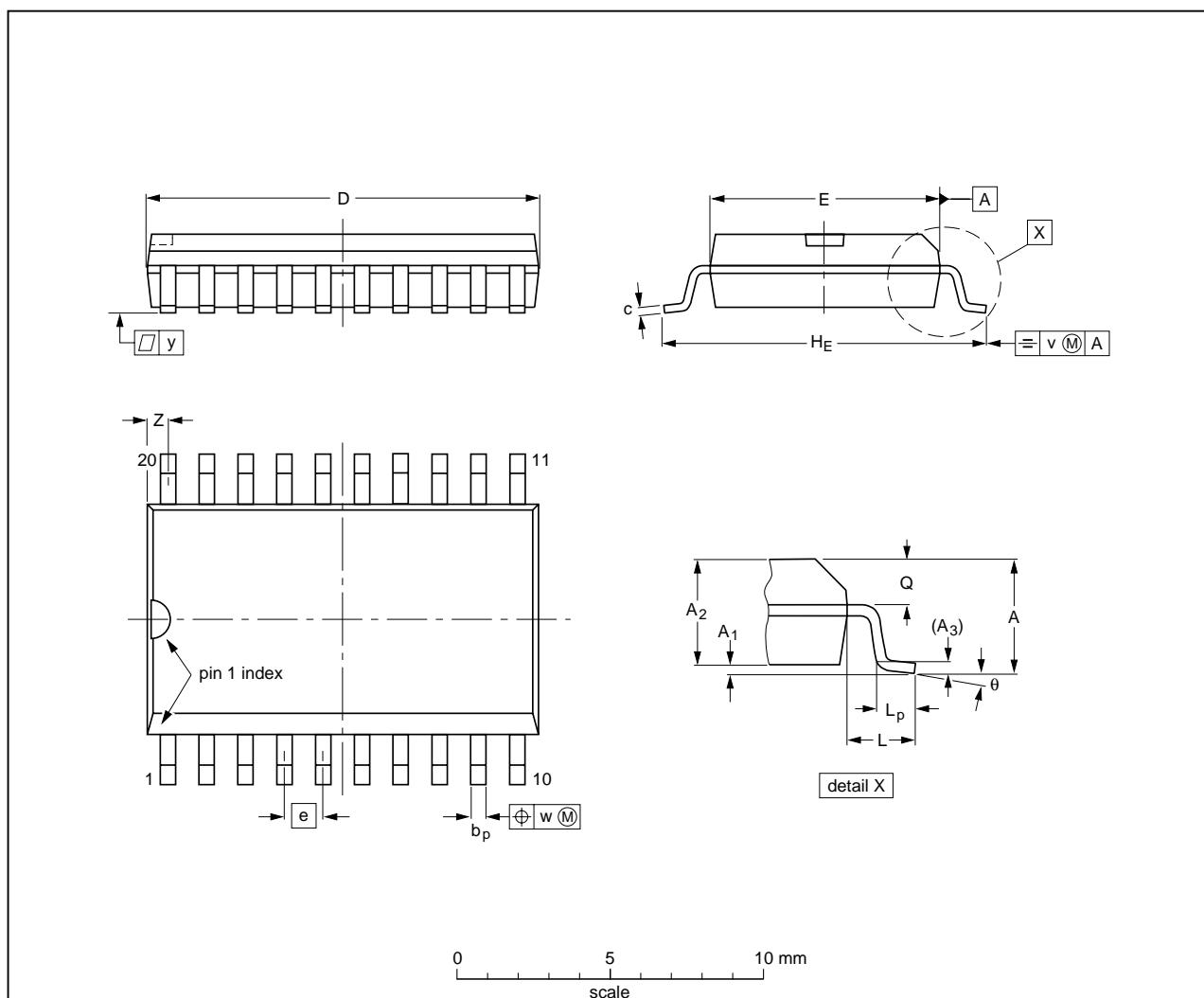
Input	Output		
V_I	V_M	V_X	V_Y
3.0 V	1.5 V	$V_{OL} + 0.3$ V	$V_{OH} - 0.3$ V

a. Input pulse definition

Test data and V_{EXT} levels are given in [Table 9](#). C_L = Load capacitance including jig and probe capacitance.

b. Test circuit

Fig 9. Test circuit for measuring switching times


Table 9. Test data

Input	Load		V_{EXT}	t_{PHL}, t_{PLH}	t_{PZH}, t_{PHZ}	t_{PZL}, t_{PLZ}
t_r, t_f ≤ 2.5 ns	C_L 50 pF	R_L 500 Ω	open	open	open	7.0 V

12. Package outline

SO20: plastic small outline package; 20 leads; body width 7.5 mm

SOT163-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	b _p	c	D ⁽¹⁾	E ⁽¹⁾	e	H _E	L	L _p	Q	v	w	y	z ⁽¹⁾	θ
mm	2.65 0.1	0.3 2.25	2.45	0.25	0.49 0.36	0.32 0.23	13.0 12.6	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8° 0°
inches	0.1	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.51 0.49	0.30 0.29	0.05	0.419 0.394	0.055	0.043 0.016	0.043 0.039	0.01	0.01	0.004	0.035 0.016	

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT163-1	075E04	MS-013			-99-12-27 03-02-19

Fig 10. Package outline SOT163-1.

SSOP20: plastic shrink small outline package; 20 leads; body width 5.3 mm

SOT339-1

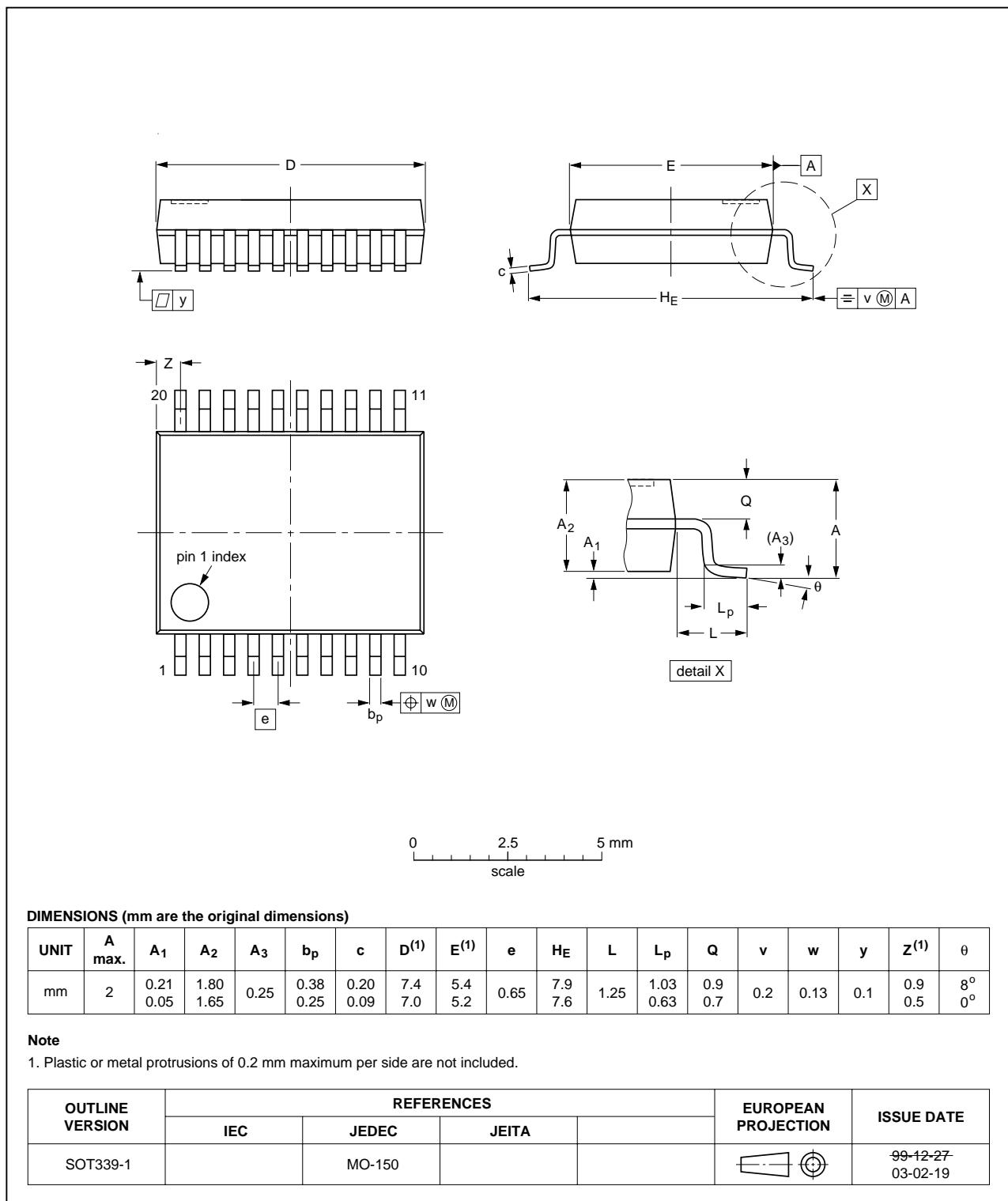


Fig 11. Package outline SOT339-1.

TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm

SOT360-1

Fig 12. Package outline SOT360-1.

13. Abbreviations

Table 10. Abbreviations

Acronym	Description
BiCMOS	BiPolar Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model

14. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74ABT623_3	20091022	Product data sheet	-	74ABT623_2
Modifications:				<ul style="list-style-type: none">The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors.Legal texts have been adapted to the new company name where appropriate.DIP20 package removed from Section 3 “Ordering information” and Section 12 “Package outline”.
74ABT623_2	19980116	Product specification	-	74ABT623_1
74ABT623_1	19960925	-	-	-

15. Legal information

15.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <http://www.nxp.com>.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

15.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <http://www.nxp.com/profile/terms>, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: <http://www.nxp.com>

For sales office addresses, please send an email to: salesaddresses@nxp.com

17. Contents

1	General description	1
2	Features	1
3	Ordering information	2
4	Functional diagram	2
5	Pinning information	4
5.1	Pinning	4
5.2	Pin description	4
6	Functional description	4
7	Limiting values	5
8	Recommended operating conditions	5
9	Static characteristics	6
10	Dynamic characteristics	7
11	Waveforms	7
12	Package outline	10
13	Abbreviations	13
14	Revision history	13
15	Legal information	14
15.1	Data sheet status	14
15.2	Definitions	14
15.3	Disclaimers	14
15.4	Trademarks	14
16	Contact information	14
17	Contents	15

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

founded by

PHILIPS

© NXP B.V. 2009.

All rights reserved.

For more information, please visit: <http://www.nxp.com>

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 22 October 2009

Document identifier: 74ABT623_3

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[NXP](#):

[74ABT623D,602](#) [74ABT623DB,112](#) [74ABT623DB,118](#) [74ABT623D,623](#) [74ABT623PW,112](#) [74ABT623PW,118](#)