

April 1988 Revised September 2000

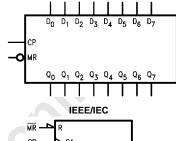
74F273 Octal D-Type Flip-Flop

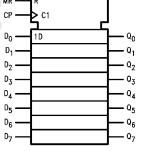
General Description

The 74F273 has eight edge-triggered D-type flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) and Master Reset $(\overline{\text{MR}})$ inputs load and reset (clear) all flip-flops simultaneously.

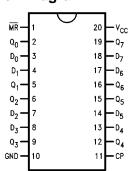
The register is fully edge-triggered. The state of each D input, one setup time before the LOW-to-HIGH clock transition, is transferred to the corresponding flip-flop's Q output. All outputs will be forced LOW independently of Clock or Data inputs by a LOW voltage level on the \overline{MR} input. The device is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements.

Features


- Ideal buffer for MOS microprocessor or memory
- Eight edge-triggered D-type flip-flops
- Buffered common clock
- Buffered, asynchronous Master Reset
- See 74F377 for clock enable version
- See 74F373 for transparent latch version
- See 74F374 for 3-STATE version


Ordering Code:

Order Number	Package Number	Package Description
74F273SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F273SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F273PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

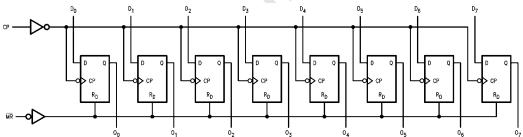

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

Unit Loading/Fan Out

Pin Names	Promintion	U.L.	Input I _{IH} /I _{IL}	
	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
D ₀ -D ₇	Data Inputs	1.0/1.0	20 μA/-0.6 mA	
MR	Master Reset (Active LOW)	1.0/1.0	20 μA/-0.6 mA	
СР	Clock Pulse Input (Active Rising Edge)	1.0/1.0	20 μA/-0.6 mA	
Q ₀ –Q ₇	Data Outputs	50/33.3	-1 mA/20 mA	


Mode Select-Function Table

		Output		
Operating Mode	MR	СР	D _n	Q _n
Reset (Clear)	L	Х	Х	
Load "1"	Н	~	h	Н
Load "0"	Н	~		L

- H = HIGH Voltage Level steady state
 h = HIGH Voltage Level one setup time prior to the LOW-to-HIGH clock transition
 L = LOW Voltage Level steady state
- I = LOW Voltage Level one setup time prior to the LOW-to-HIGH clock transition
- X = Immaterial

 = LOW-to-HIGH clock transition

Logic Diagram

 $\dot{0}_0$ $\dot{0}_1$ $\dot{0}_2$ $\dot{0}_3$ $\dot{0}_4$ $\dot{0}_5$ $\dot{0}_6$ Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions

Storage Temperature —65°C to +150°C

 $\begin{array}{ll} \mbox{Ambient Temperature under Bias} & -55\mbox{°C to } +125\mbox{°C} \\ \mbox{Junction Temperature under Bias} & -55\mbox{°C to } +150\mbox{°C} \\ \end{array}$

Voltage Applied to Output

in HIGH State (with V_{CC} = 0V) Standard Output -0.5V to V_{CC} 3-STATE Output -0.5V to +5.5V

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA) ESD Last Passing Voltage (min) 4000V

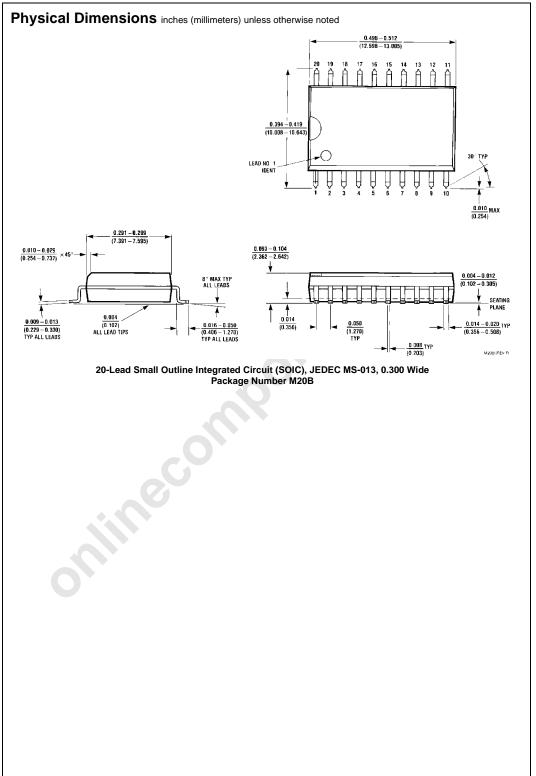
Free Air Ambient Temperature 0°C to +70°C Supply Voltage +4.5V to +5.5V

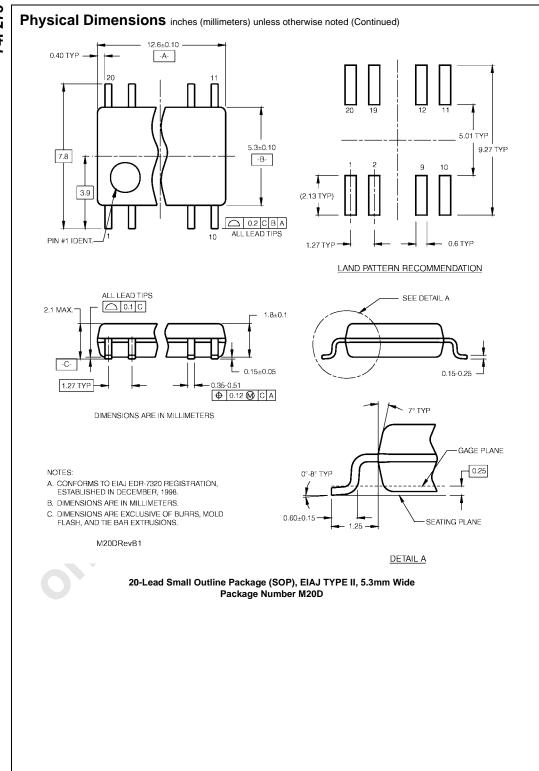
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

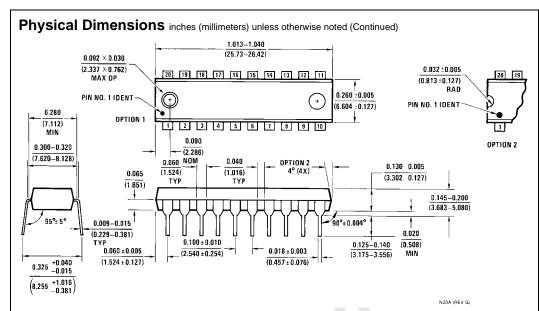
DC Electrical Characteristics

Symbol	Parameter		Min	Тур	Max	Units	V _{CC}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V	7	Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH	10% V _{CC}	2.5			V	Min	I _{OH} = -1 mA
	Voltage	$5\% V_{CC}$	2.7			v	IVIIII	IOH I IIIA
V _{OL}	Output LOW	10% V _{CC}			0.5	V	Min	1 - 20 mA
	Voltage	$5\% V_{CC}$			0.5	V	IVIIII	I _{OL} = 20 mA
I _{IH}	Input HIGH				5.0	μА	Max	V _{IN} = 2.7V
	Current				5.0	μА	IVIAX	v _{IN} = 2.7 v
I _{BVI}	Input HIGH Current				7.0	μА	Max	V _{IN} = 7.0V
	Breakdown Test				7.0	μΛ	IVIAX	V _{IN} = 7.0V
I _{CEX}	Output HIGH				50	μА	Max	V -V
	Leakage Current				50	μА	IVIAX	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage		4.75			V	0.0	$I_{ID} = 1.9 \mu A$
	Test		4.73			V	0.0	All other pins grounded
l _{OD}	Output Leakage				3.75	μА	0.0	V _{IOD} = 150 mV
	Circuit Current				3.73	μΛ	0.0	All other pins grounded
I _{IL}	Input LOW Current				-0.6	mA	Max	V _{IN} = 0.5V
los	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V
Іссн	Power Supply Current				44	mA	Max	CP =
I _{CCL}					56	IIIA	IVIAX	$D_n = \overline{MR} = HIGH$


AC Electrical Characteristics


Symbol			$T_A = +25^{\circ}C$		$T_A = -55^{\circ}C$	C to +125°C	T _A = 0°C	to +70°C	
	Parameter	$V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$			V _{CC} = 5.0V C _L = 50 pF		$V_{CC} = 5.0V$ $C_L = 50 \text{ pF}$		Units
		f _{MAX}	Maximum Clock Frequency	160			95		130
t _{PLH}	Propagation Delay	3.0		7.0	2.5	9.5	2.5	7.5	ns
t _{PHL}	Clock to Output	4.0		9.00	3.0	11.0	3.5	9.0	115
t _{PLH}	Propagation Delay	4.5		9.5	3.0	11.0	4.0	10.0	ns
t _{PHL}	MR to Output	4.5		3.5	3.0	11.0	4.0	10.0	115

AC Operating Requirements


Symbol	Parameter	$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$		$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = 5.0V$		$T_A = 0$ °C to +70°C $V_{CC} = 5.0V$		Units	
		Min	Max	Min	Max	Min	Max		
t _S (H)	Setup Time, HIGH or LOW	3.0		3.5		3.0			
t _S (L)	Data to CP	3.5		4.0		3.5		ns	
t _H (H)	Hold Time, HIGH or LOW	0.5		1.0		0.5			
t _H (L)	Data to CP	1.0		1.0		1.0			
t _W (L)	MR Pulse Width, LOW	6.0		4.0		6.0		ns	
t _W (H)	CP Pulse Width	6.0		5.0		6.0			
$t_W(L)$	HIGH or LOW	6.0		5.0		6.0		ns	
t _{REC}	Recovery Time, MR to CP	3.0		4.5		3.5		ns	

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com