

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT161

Presetable synchronous 4-bit binary counter; asynchronous reset

Product specification

File under Integrated Circuits, IC06

December 1990

Philips
Semiconductors

PHILIPS

Presetable synchronous 4-bit binary counter; asynchronous reset

74HC/HCT161

FEATURES

- Synchronous counting and loading
- Two count enable inputs for n-bit cascading
- Positive-edge triggered clock
- Asynchronous reset
- Output capability: standard
- I_{cc} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT161 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT161 are synchronous presettable binary counters which feature an internal look-ahead carry and can be used for high-speed counting.

Synchronous operation is provided by having all flip-flops clocked simultaneously on the positive-going edge of the clock (CP).

The outputs (Q₀ to Q₃) of the counters may be preset to a HIGH or LOW level. A LOW level at the parallel enable

input (PE) disables the counting action and causes the data at the data inputs (D₀ to D₃) to be loaded into the counter on the positive-going edge of the clock (providing that the set-up and hold time requirements for PE are met). Preset takes place regardless of the levels at count enable inputs (CEP and CET).

A LOW level at the master reset input (MR) sets all four outputs of the flip-flops (Q₀ to Q₃) to LOW level regardless of the levels at CP, PE, CET and CEP inputs (thus providing an asynchronous clear function).

The look-ahead carry simplifies serial cascading of the counters. Both count enable inputs (CEP and CET) must be HIGH to count. The CET input is fed forward to enable the terminal count output (TC). The TC output thus enabled will produce a HIGH output pulse of a duration approximately equal to a HIGH level output of Q₀. This pulse can be used to enable the next cascaded stage.

The maximum clock frequency for the cascaded counters is determined by the CP to TC propagation delay and CEP to CP set-up time, according to the following formula:

$$f_{\max} = \frac{1}{t_{P(\max)} \text{ (CP to TC)} + t_{SU} \text{ (CEP to CP)}}$$

QUICK REFERENCE DATA

GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
t _{PHL} / t _{PLH}	propagation delay	C _L = 15 pF; V _{CC} = 5 V	19	20	ns
	CP to Q _n		21	24	ns
	CP to TC		20	25	ns
	MR to Q _n		20	26	ns
	MR to TC		10	14	ns
	CET to TC				
f _{max}	maximum clock frequency		44	45	MHz
C _I	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per package	notes 1 and 2	33	35	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$

where:

f_i = input frequency in MHz

f_o = output frequency in MHz

$\sum (C_L \times V_{CC}^2 \times f_o)$ = sum of outputs

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is

$$V_I = \text{GND to } V_{CC}$$

For HCT the condition is

$$V_I = \text{GND to } V_{CC} - 1.5 \text{ V}$$

Presetable synchronous 4-bit binary counter; asynchronous reset

74HC/HCT161

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1	MR	asynchronous master reset (active LOW)
2	CP	clock input (LOW-to-HIGH, edge-triggered)
3, 4, 5, 6	D ₀ to D ₃	data inputs
7	CEP	count enable input
8	GND	ground (0 V)
9	PE	parallel enable input (active LOW)
10	CET	count enable carry input
14, 13, 12, 11	Q ₀ to Q ₃	flip-flop outputs
15	TC	terminal count output
16	V _{CC}	positive supply voltage

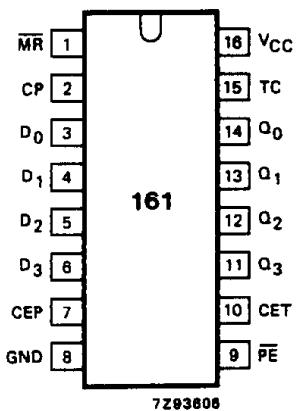


Fig.1 Pin configuration.

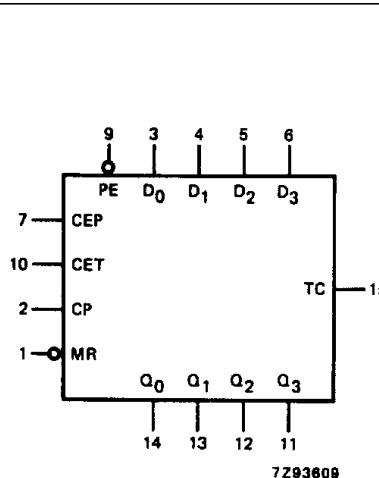


Fig.2 Logic symbol.

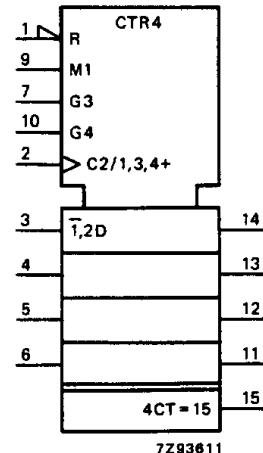


Fig.3 IEC logic symbol.

Presetable synchronous 4-bit binary counter; asynchronous reset

74HC/HCT161

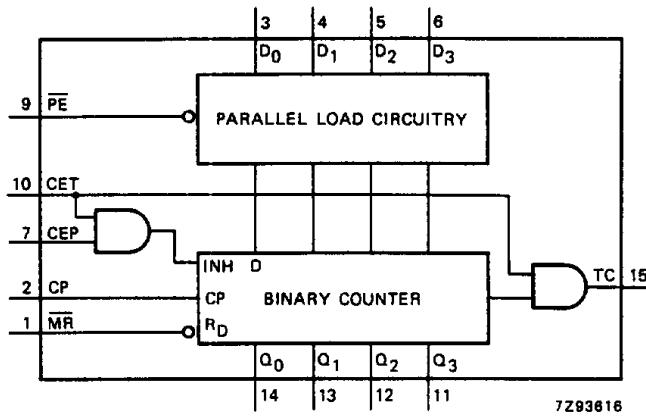


Fig.4 Functional diagram.

FUNCTION TABLE

OPERATING MODE	INPUTS						OUTPUTS	
	MR	CP	CEP	CET	PE	D _n	Q _n	TC
reset (clear)	L	X	X	X	X	X	L	L
parallel load	H	↑	X	X	I	I	L	L
	H	↑	X	X	I	h	H	(1)
count	H	↑	h	h	h	X	count	(1)
hold (do nothing)	H	X	I	X	h	X	q _n	(1)
	H	X	X	I	h	X	q _n	L

Note

1. The TC output is HIGH when CET is HIGH and the counter is at terminal count (HHHH).

H = HIGH voltage level

h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition

L = LOW voltage level

I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition

q = lower case letters indicate the state of the referenced output one set-up time prior to the LOW-to-HIGH CP transition

X = don't care

↑ = LOW-to-HIGH CP transition

Presettable synchronous 4-bit binary counter; asynchronous reset

74HC/HCT161

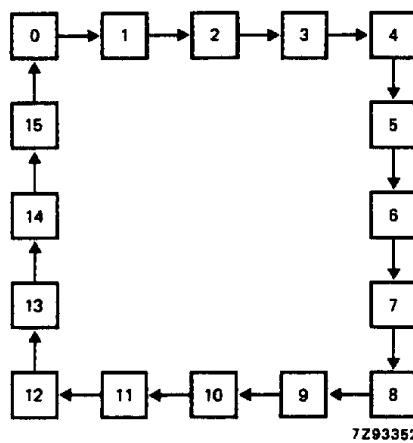


Fig.5 State diagram.

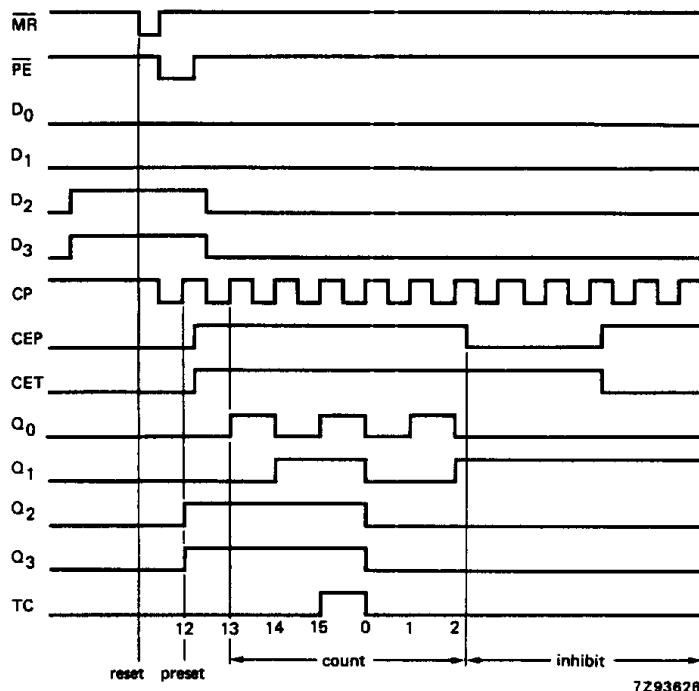


Fig.6 Typical timing sequence: reset outputs to zero; preset to binary twelve; count to thirteen, fourteen, fifteen, zero, one and two; inhibit.

Presetable synchronous 4-bit binary counter; asynchronous reset

74HC/HCT161

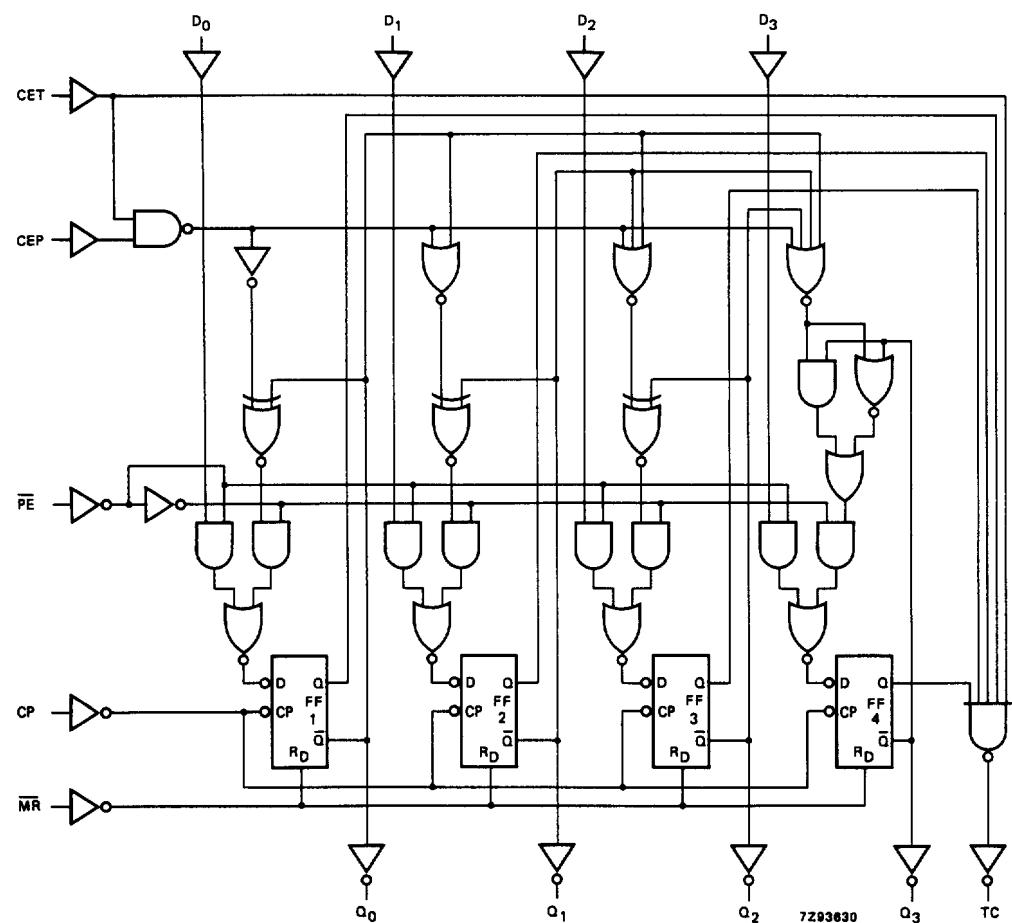


Fig.7 Logic diagram.

Presetable synchronous 4-bit binary counter; asynchronous reset

74HC/HCT161

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "[74HC/HCT/HCU/HCMOS Logic Family Specifications](#)".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

$GND = 0 \text{ V}$; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

SYMBOL	PARAMETER	T_{amb} ($^{\circ}\text{C}$)						UNIT	TEST CONDITIONS			
		74HC							V _{CC} (V)	WAVEFORMS		
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
t_{PHL}/t_{PLH}	propagation delay CP to Q_n		61 22 18	190 38 32		240 48 41		285 57 48	ns	2.0 4.5 6.0	Fig.8	
t_{PHL}/t_{PLH}	propagation delay CP to TC		69 25 20	215 43 37		270 54 46		325 65 55	ns	2.0 4.5 6.0	Fig.8	
t_{PHL}	propagation delay \overline{MR} to Q_n		63 23 18	210 42 36		265 53 45		315 63 54	ns	2.0 4.5 6.0	Fig.9	
t_{PHL}	propagation delay \overline{MR} to TC		63 23 18	220 44 37		275 55 47		330 66 56	ns	2.0 4.5 6.0	Fig.9	
t_{PHL}/t_{PLH}	propagation delay CET to TC		33 12 10	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.10	
t_{THL}/t_{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Figs 8 and 10	
t_W	clock pulse width HIGH or LOW	80 16 14	22 8 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.8	
t_W	master reset pulse width; LOW	80 16 14	19 7 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.9	
t_{rem}	removal time \overline{MR} to CP	100 20 17	19 7 6		125 25 21		150 30 26		ns	2.0 4.5 6.0	Fig.9	
t_{su}	set-up time D_n to CP	80 16 14	25 9 7		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.11	
t_{su}	set-up time \overline{PE} to CP	100 20 17	30 11 9		125 25 21		150 30 26		ns	2.0 4.5 6.0	Fig.11	

Presettable synchronous 4-bit binary
counter; asynchronous reset

74HC/HCT161

SYMBOL	PARAMETER	T _{amb} (°C)						UNIT	TEST CONDITIONS			
		74HC							V _{CC} (V)	WAVEFORMS		
		+25			−40 to +85		−40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
t _{su}	set-up time CEP, CET to CP	170 34 29	47 17 14		215 43 37		255 51 43		ns	2.0 4.5 6.0		
t _h	hold time D _n , \overline{PE} , CEP, CET to CP	0 0 0	−14 −5 −4		0 0 0		0 0 0		ns	2.0 4.5 6.0		
f _{max}	maximum clock pulse frequency	4.6 23 27	13 40 48		3.6 18 21		3.0 15 18		MHz	2.0 4.5 6.0		

Presetable synchronous 4-bit binary counter; asynchronous reset

74HC/HCT161

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "[74HC/HCT/HCU/HCMOS Logic Family Specifications](#)".

Output capability: standard

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
MR	0.95
CP	1.10
CEP	0.25
D_n	0.25
CET	0.75
\overline{PE}	0.30

AC CHARACTERISTICS FOR 74HCT

GND = 0 V; $t_r = t_f = 6$ ns; $C_L = 50$ pF

SYMBOL	PARAMETER	T _{amb} (°C)						UNIT	TEST CONDITIONS			
		74HCT							V _{CC} (V)	WAVEFORMS		
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
t _{PHL} /t _{PLH}	propagation delay CP to Q _n		23	43		54		65	ns	4.5	Fig.8	
t _{PHL} /t _{PLH}	propagation delay CP to TC		28	48		60		72	ns	4.5	Fig.8	
t _{PHL}	propagation delay \overline{MR} to Q _n		29	46		58		69	ns	4.5	Fig.9	
t _{PHL}	propagation delay \overline{MR} to TC		30	51		64		77	ns	4.5	Fig.9	
t _{PHL} /t _{PLH}	propagation delay CET to TC		17	35		44		53	ns	4.5	Fig.10	
t _{THL} /t _{TLH}	output transition time		7	15		19		22	ns	4.5	Figs 8 and 10	
t _W	clock pulse width HIGH or LOW	16	7		20		24		ns	4.5	Fig.8	
t _W	master reset pulse width; LOW	20	10		25		30		ns	4.5	Fig.9	
t _{rem}	removal time \overline{MR} to CP	20	6		25		30		ns	4.5	Fig.9	

Presettable synchronous 4-bit binary
counter; asynchronous reset

74HC/HCT161

SYMBOL	PARAMETER	T _{amb} (°C)						UNIT	TEST CONDITIONS			
		74HCT							V _{CC} (V)	WAVEFORMS		
		+25			−40 to +85		−40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
t _{su}	set-up time D _n to CP	18	8		23		27		ns	4.5	Fig.11	
t _{su}	set-up time P̄E to CP	30	17		38		45		ns	4.5	Fig.11	
t _{su}	set-up time CEP, CET to CP	40	17		50		60		ns	4.5	Fig.12	
t _h	hold time D _n , P̄E, CEP, CET to CP	0	−7		0		0		ns	4.5	Figs 11 and 12	
f _{max}	maximum clock pulse frequency	23	41		18		15		MHz	4.5	Fig.8	

Presetable synchronous 4-bit binary counter; asynchronous reset

74HC/HCT161

AC WAVEFORMS

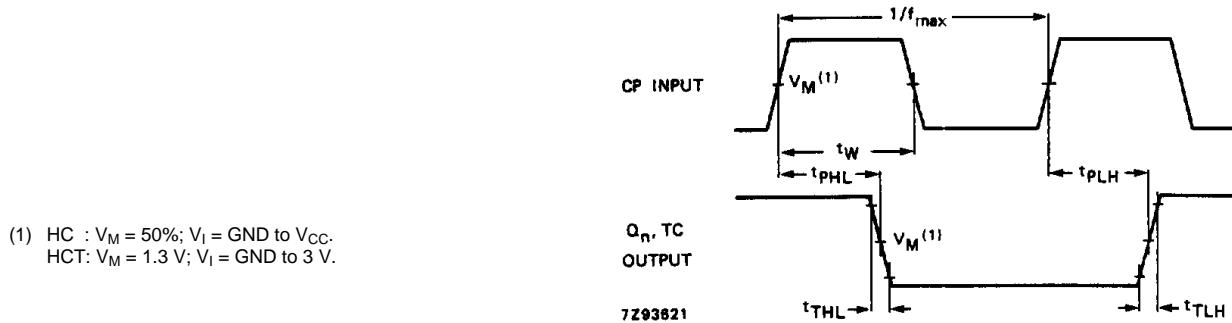


Fig.8 Waveforms showing the clock (CP) to outputs (Q_n, TC) propagation delays, the clock pulse width, the output transition times and the maximum clock frequency.

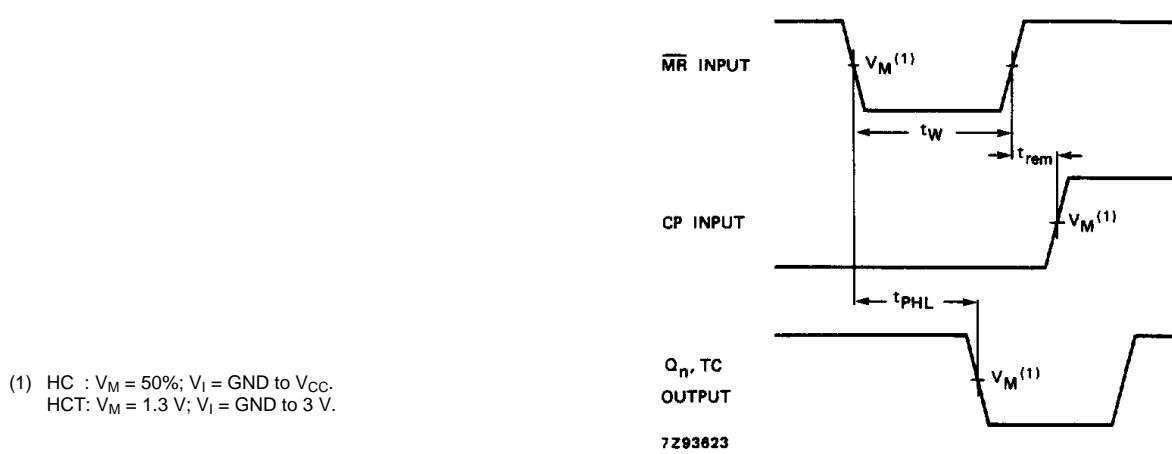


Fig.9 Waveforms showing the master reset (MR) pulse width, the master reset to output (Q_n, TC) propagation delays and the master reset to clock (CP) removal time.

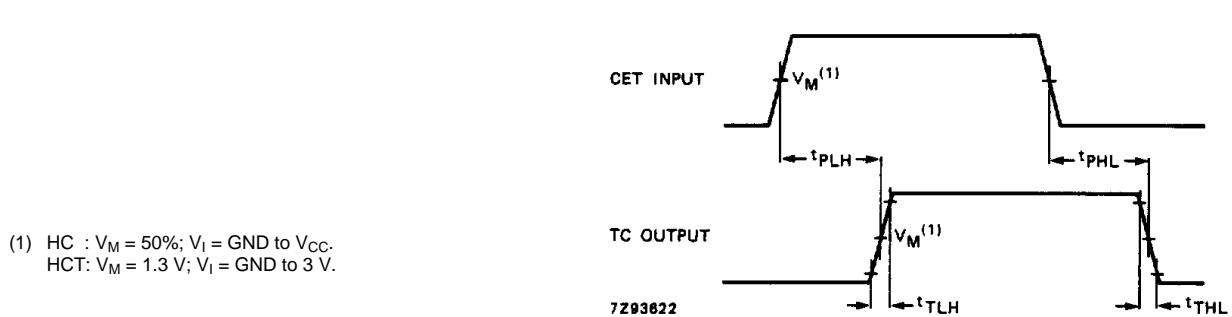


Fig.10 Waveforms showing the input (CET) to output (TC) propagation delays and output transition times.

Presetable synchronous 4-bit binary counter; asynchronous reset

74HC/HCT161

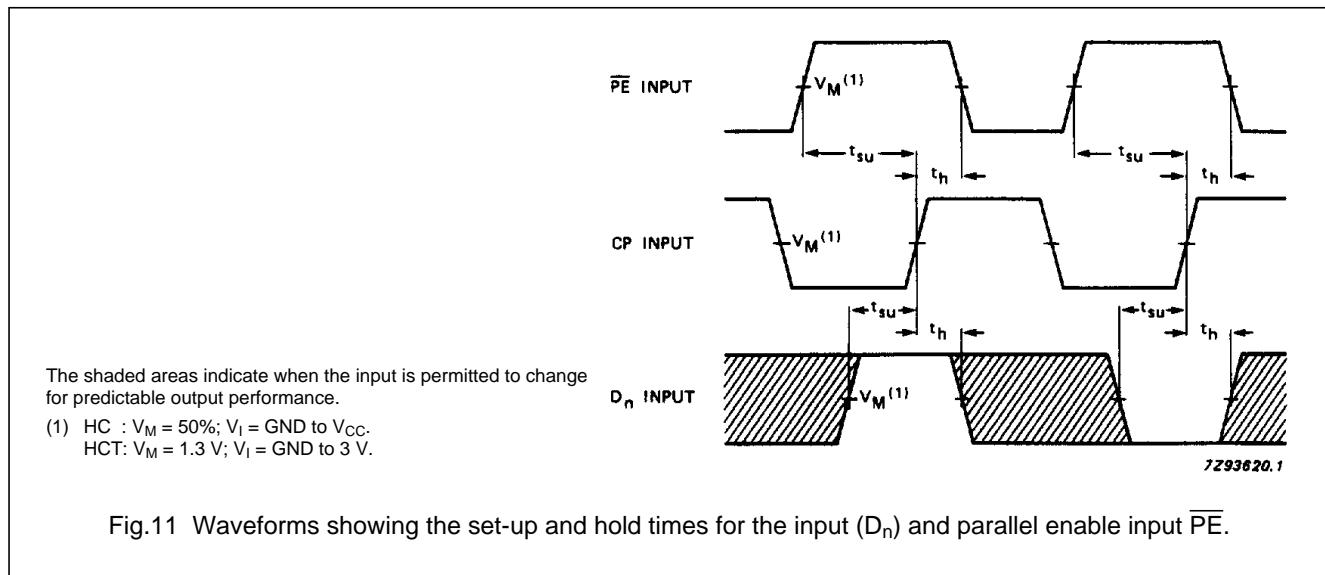
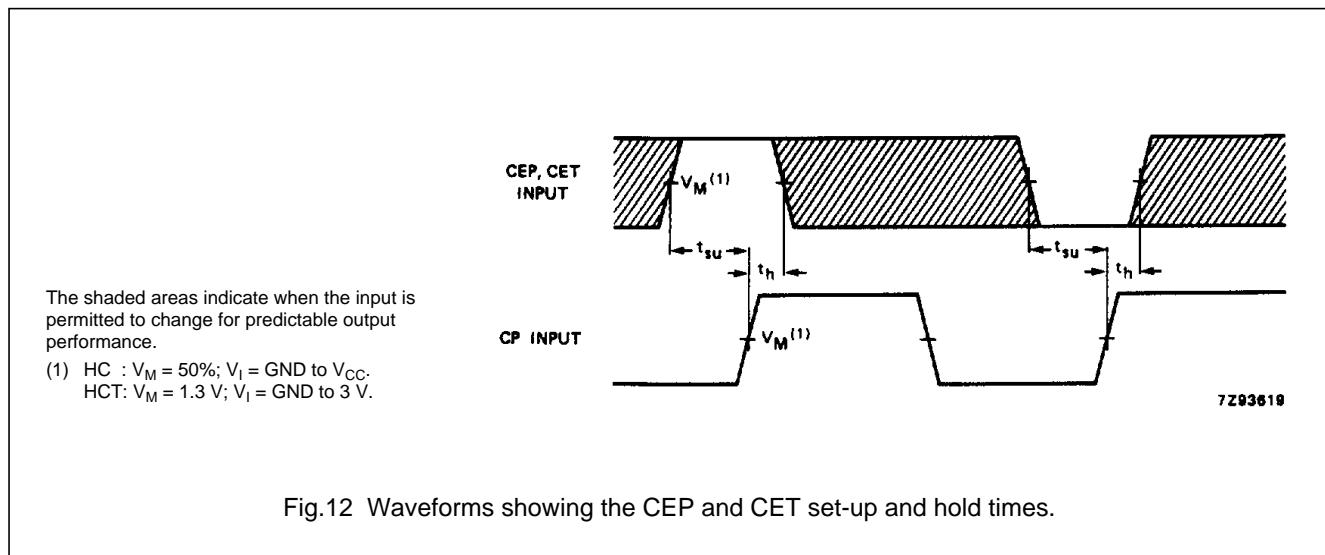


Fig.11 Waveforms showing the set-up and hold times for the input (D_n) and parallel enable input \overline{PE} .

Fig.12 Waveforms showing the CEP and CET set-up and hold times.

PACKAGE OUTLINES

See "[74HC/HCT/HCU/HCMOS Logic Package Outlines](#)".

Philips Semiconductors Home

 Product catalog online [Buy online](#) [My Selection](#) [Contact](#) [Product Information](#)

74HC/HCT161; Presettable synchronous 4-bit binary counter; asynchronous reset

Information as of 2003-01-15

My.Semiconductors.COM.

Your personal service from
Philips Semiconductors.

Please register now !

Use right mouse button to
download datasheet

Download datasheet

Stay informed

[Products](#)[MultiMarket
Semiconductors](#)[ASICs](#)[Product Selector](#)[Catalog by
Function](#)[Catalog by
System](#)[Cross-reference](#)[Packages](#)[End of Life
information](#)[Distributors Go
Here!](#)

General description

The 74HC/HCT161 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT161 are synchronous presettable binary counters which feature an internal look-ahead carry and can be used for high-speed counting.

Synchronous operation is provided by having all flip-flops clocked simultaneously on the positive-going edge of the clock (CP).

The outputs (Q₀ to Q₃) of the counters may be preset to a HIGH or LOW level. A LOW level at the parallel enable input (PE) disables the counting action and causes the data at the data inputs (D₀ to D₃) to be loaded into the counter on the positive-going edge of the clock (providing that the set-up and hold time requirements for PE are met). Preset takes place regardless of the levels at count enable inputs (CEP and CET).

A LOW level at the master reset input (MR) sets all four outputs of the flip-flops (Q₀ to Q₃) to LOW level regardless of the levels at CP, PE, CET and CEP inputs (thus providing an asynchronous clear function).

The look-ahead carry simplifies serial cascading of the counters. Both count enable inputs (CEP and CET) must be HIGH to count. The CET input is fed forward to enable the terminal count output (TC). The TC output thus enabled will produce a HIGH output pulse of a duration approximately equal to a HIGH level output of Q₀. This pulse can be used to enable the next cascaded stage.

The maximum clock frequency for the cascaded counters is determined by the CP to TC propagation delay and CET to CP set-up time, according to the following formula:

$$f_{\max} = (1) / (t_{P(\max)} (\text{CP to TC}) + t_{SU} (\text{CEP to CP}))$$

□ Features

- Synchronous counting and loading
- Two count enable inputs for n-bit cascading
- Positive-edge triggered clock
- Asynchronous reset
- Output capability: standard
- I_{CC} category: MSI

□ Datasheet

Type number	Title	Publication release date	Datasheet status	Page count	File size (kB)	Datasheet
74HC/HCT161	Presettable synchronous 4-bit binary counter; asynchronous reset	01-Dec-90	Product specification	12	80	Download

Additional datasheet info

To complete the device datasheet with package and family information, also download the following PDF files. The "Logic Package Information" document is required to determine in which package(s) this device is available.

Document	Description
1 HCT_FAMILY_SPECIFICATIONS	HC/T Family Specifications, The IC06 74HC/HCT/HCMOS Logic Family Specifications
2 HCT_PACKAGE_INFO	HC/T Package Info, The IC06 74HC/HCT/HCMOS Logic Package Information
3 HCT_PACKAGE_OUTLINES	HC/T Package Outlines, The IC06 74HC/HCT/HCMOS Logic Package Outlines

□ Parametrics

Type number	Package	Description	Propagation Delay(ns)	Voltage	No. of Pins	Power Dissipation Considerations	Logic Levels	Output Drive Capabilities
74HC161D	SOT109 (SO16)	Presettable Synchronous 4-Bit Binary Counter; Asynchronous Reset	15	5 Volts +	16	Low Power or Battery Applications	CMOS	Low
74HC161DB	SOT338-1 (SSOP16)	Presettable Synchronous 4-Bit Binary Counter; Asynchronous Reset	15	5 Volts +	16	Low Power or Battery Applications	CMOS	Low

74HC161N	SOT38-1 (DIP16)	Presetable Synchronous 4-Bit Binary Counter; Asynchronous Reset	15	5 Volts +	16	Low Power or Battery Applications	CMOS	Low
74HC161PW	SOT403-1 (TSSOP16)	Presetable Synchronous 4-Bit Binary Counter; Asynchronous Reset	15	5 Volts +	16	Low Power or Battery Applications	CMOS	Low
74HC161U	uncased die	Presetable Synchronous 4-Bit Binary Counter; Asynchronous Reset	15	5 Volts +	16	Low Power or Battery Applications	CMOS	Low
74HCT161D	SOT109 (SO16)	Presetable Synchronous 4-Bit Binary Counter; Asynchronous Reset; TTL Enabled	15	5 Volts +	16	Low Power or Battery Applications	TTL	Low
74HCT161DB	SOT338-1 (SSOP16)	Presetable Synchronous 4-Bit Binary Counter; Asynchronous Reset; TTL Enabled	15	5 Volts +	16	Low Power or Battery Applications	TTL	Low
74HCT161N	SOT38-1 (DIP16)	Presetable Synchronous 4-Bit Binary Counter; Asynchronous Reset; TTL Enabled	15	5 Volts +	16	Low Power or Battery Applications	TTL	Low
74HCT161PW	SOT403-1 (TSSOP16)	Presetable Synchronous 4-Bit Binary Counter; Asynchronous Reset; TTL Enabled	15	5 Volts +	16	Low Power or Battery Applications	TTL	Low
74HCT161U	uncased die	Presetable Synchronous 4-Bit Binary Counter; Asynchronous Reset; TTL Enabled	15	5 Volts +	16	Low Power or Battery Applications	TTL	Low

Products, packages, availability and order

Type number	North American type number	Ordering code	Marking/Packing	Package	Device status	Buy online
			Discretes packing info			
74HC161D	74HC161D	9337 145 20652	Standard Marking * Bulk Pack, CECC	SOT109 (SO16)	Full production	Order this
	74HC161D-T	9337 145 20653	Standard Marking * Reel Pack, SMD, 13", CECC	SOT109 (SO16)	Full production	Order this
74HC161DB	74HC161DB	9351 745 10112	Standard Marking * Bulk Pack	SOT338-1 (SSOP16)	Full production	Order this
	74HC161DB-T	9351 745 10118	Standard Marking * Reel Pack, SMD, 13"	SOT338-1 (SSOP16)	Full production	Order this
74HC161N	74HC161N	9336 693 70652	Standard Marking * Bulk Pack, CECC	SOT38-1 (DIP16)	Full production	Order this
74HC161PW	74HC161PW	9351 883 20112	Standard Marking * Bulk Pack	SOT403-1 (TSSOP16)	Full production	Order this
	74HC161PW-T	9351 883 20118	Standard Marking * Reel Pack, SMD, 13"	SOT403-1 (TSSOP16)	Full production	Order this
74HC161U		9337 833 80005	No Marking * Chips on Wafer, Pre-Sawn, On FFC	Uncased die	Full production	-
74HCT161D	74HCT161D	9337 150 00652	Standard Marking * Bulk Pack, CECC	SOT109 (SO16)	Full production	Order this
	74HCT161D-T	9337 150 00653	Standard Marking * Reel Pack, SMD, 13", CECC	SOT109 (SO16)	Full production	Order this
74HCT161DB	74HCT161DB	9351 885 70112	Standard Marking * Bulk Pack	SOT338-1 (SSOP16)	Full production	Order this
	74HCT161DB-T	9351 885 70118	Standard Marking * Reel Pack, SMD, 13"	SOT338-1 (SSOP16)	Full production	Order this
74HCT161N	74HCT161N	9336 700 00652	Standard Marking * Bulk Pack, CECC	SOT38-1 (DIP16)	Full production	Order this
74HCT161PW	74HCT161PW	9351 883 10112	Standard Marking * Bulk Pack	SOT403-1 (TSSOP16)	Full production	Order this
	74HCT161PW-T	9351 883 10118	Standard Marking * Reel Pack, SMD, 13"	SOT403-1 (TSSOP16)	Full production	Order this
74HCT161U		9338 249 80005	No Marking * Chips on Wafer, Pre-Sawn, On FFC	Uncased die	Full production	-

Products in the above table are all in production. Some variants are discontinued; [click](#) variants.

□ Similar products

 [74HC/HCT161](#) links to the similar products page containing an overview of products that are similar in function or related to the type number(s) as listed on this page. The similar products page includes products from the same catalog tree(s), relevant selection guides and products from the same functional category.

□ Support & tools

 [HC/T Family Specifications, The IC06 74HC/HCT/HCMOS Logic Family Specifications](#) (date 01-mrt-98)
 [HC/T User Guide](#) (date 01-nov-97)

□ Email/translate this product information

- [Email this product information.](#)
- Translate this product information page from English to:

The English language is the official language used at the semiconductors.philips.com website and webpages. All translations on this website are created through the use of [Google Language Tools](#) and are provided for convenience purposes only. No rights can be derived from any translation on this website.

[About this Web Site](#)

| Copyright © 2003 Koninklijke Philips N.V. All rights reserved. | [Privacy Policy](#) |

| Koninklijke Philips N.V. | Access to and use of this Web Site is subject to the following [Terms of Use](#). |