74HC3GU04

Triple unbuffered inverter Rev. 5 — 2 October 2013

Product data sheet

1. **General description**

The 74HC3GU04 is a triple unbuffered inverter. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}.

Features and benefits 2.

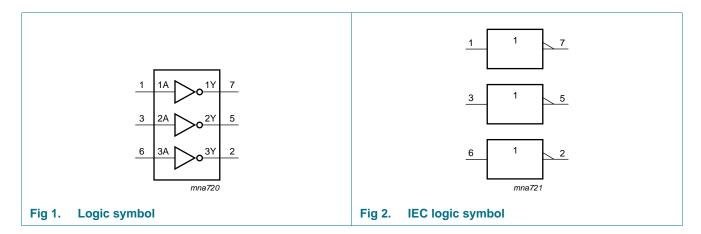
- Wide supply voltage range from 2.0 V to 6.0 V
- Symmetrical output impedance
- High noise immunity
- Low-power dissipation
- Balanced propagation delays
- Multiple package options
- ESD protection:
 - ♦ HBM JESD22-A114F exceeds 2000 V
 - ♦ MM JESD22-A115-A exceeds 200 V
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

Ordering information

Table 1. **Ordering information**

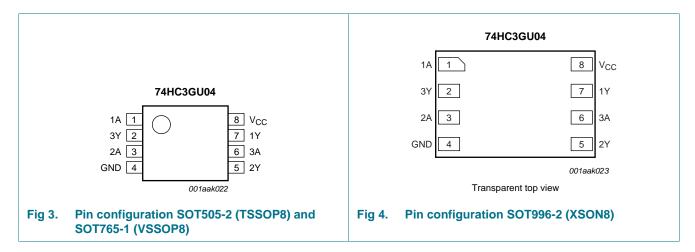
Type number	Package							
	Temperature range	Name	Description	Version				
74HC3GU04DP	–40 °C to +125 °C	TSSOP8	plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm	SOT505-2				
74HC3GU04DC	–40 °C to +125 °C	VSSOP8	plastic very thin shrink small outline package; 8 leads; body width 2.3 mm	SOT765-1				
74HC3GU04GD	–40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body $3\times2\times0.5$ mm	SOT996-2				

Marking 4.


Table 2. **Marking**

Type number	Marking code ^[1]
74HC3GU04DP	HU4
74HC3GU04DC	HU4
74HC3GU04GD	HU4

^[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.



5. Functional diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
1A, 2A, 3A	1, 3, 6	data input
1Y, 2Y, 3Y	7, 5, 2	data output
GND	4	ground (0 V)
V _{CC}	8	supply voltage

Triple unbuffered inverter

7. Functional description

Table 4. Function table [1]

Input	Output
nA	nY
L	Н
H	L

^[1] H = HIGH voltage level; L = LOW voltage level.

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7.0	V
I _{IK}	input clamping current	$V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$	<u>[1]</u> -	±20	mA
I _{OK}	output clamping current	V_{O} < -0.5 V or V_{O} > V_{CC} + 0.5 V	<u>[1]</u> -	±20	mA
Io	output current	$V_{O} = -0.5 \text{ V to } (V_{CC} + 0.5 \text{ V})$	<u>[1]</u> -	±25	mA
I _{CC}	quiescent supply current		<u>[1]</u> -	50	mA
I _{GND}	ground current		<u>[1]</u> –50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	[2] _	300	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

9. Recommended operating conditions

Table 6. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage		2.0	5.0	6.0	V
VI	input voltage		0	-	V_{CC}	V
Vo	output voltage		0	-	V_{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	°C
$\Delta t/\Delta V$	input transition rise and fall rate	$V_{CC} = 2.0 \text{ V}$	-	-	625	ns/V
		V _{CC} = 4.5 V	-	1.67	139	ns/V
		V _{CC} = 6.0 V	-	-	83	ns/V

^[2] For TSSOP8 package: above 55 °C the value of P_{tot} derates linearly with 2.5 mW/K. For VSSOP8 package: above 110 °C the value of P_{tot} derates linearly with 8 mW/K. For XSON8 package: above 118 °C the value of P_{tot} derates linearly with 7.8 mW/K.

10. Static characteristics

Table 7. Static characteristics

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40	-40 °C to +85 °C			-40 °C to +125 °C		
			Min	Typ[1]	Max	Min	Max		
V_{IH}	HIGH-level input	V _{CC} = 2.0 V	1.7	1.1	-	1.7	-	V	
	voltage	V _{CC} = 4.5 V	3.6	2.4	-	3.6	-	V	
		V _{CC} = 6.0 V	4.8	3.1	-	4.8	-	V	
V_{IL}	LOW-level input	V _{CC} = 2.0 V	-	0.9	0.3	-	0.3	V	
	voltage	V _{CC} = 4.5 V	-	2.1	0.9	-	0.9	V	
		V _{CC} = 6.0 V	-	2.9	1.2	-	1.2	V	
V_{OH}	HIGH-level output	$V_I = V_{IH}$ or V_{IL}							
	voltage	$I_O = -20 \mu A; V_{CC} = 2.0 V$	1.9	2.0	-	1.9	-	V	
		$I_O = -20 \mu A; V_{CC} = 4.5 V$	4.4	4.5	-	4.4	-	V	
		$I_O = -20 \mu A$; $V_{CC} = 6.0 \text{ V}$	5.9	6.0	-	5.9	-	V	
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	4.13	4.32	-	3.7	-	V	
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.63	5.81	-	5.2	-	V	
V_{OL}	LOW-level output	$V_I = V_{IH}$ or V_{IL}							
	voltage	$I_O = 20 \mu A; V_{CC} = 2.0 V$	-	0	0.1	-	0.1	V	
		$I_O = 20 \mu A; V_{CC} = 4.5 V$	-	0	0.1	-	0.1	V	
		$I_O = 20 \mu A; V_{CC} = 6.0 V$	-	0	0.1	-	0.1	V	
		$I_{O} = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.33	-	0.4	V	
		$I_O = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.33	-	0.4	V	
I _I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±1.0	-	±1.0	μΑ	
I _{CC}	supply current	per input pin; $V_1 = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0$ V	-	-	10	-	20	μА	
Cı	input capacitance		-	3.0	-	-	-	pF	

^[1] All typical values are measured at T_{amb} = 25 °C.

11. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 6.

Symbol	bol Parameter Conditions -40 °C to +85 °C		5 °C	C -40 °C to +125 °C		Unit			
				Min	Typ[1]	Max	Min	Max	
t _{pd} p	propagation delay	nA to nY; see Figure 5	[2]		'				'
		V _{CC} = 2.0 V		-	13	75	-	90	ns
		V _{CC} = 4.5 V		-	6	15	-	18	ns
		V _{CC} = 6.0 V		-	5	13	-	15	ns

 Table 8.
 Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 6.

Symbol	Parameter	Conditions		-40 °C to +85 °C			-40 °C to +125 °C		Unit
				Min	Typ[1]	Max	Min	Max	
t _t transition time	transition time	nY; see Figure 5	3]						
		$V_{CC} = 2.0 \text{ V}$		-	18	95	-	125	ns
		$V_{CC} = 4.5 V$		-	6	19	-	25	ns
		V _{CC} = 6.0 V		-	5	16	-	20	ns
C _{PD}	power dissipation capacitance	$V_I = GND \text{ to } V_{CC}$	4]	-	5	-	-	-	pF

- [1] All typical values are measured at $T_{amb} = 25$ °C.
- [2] t_{pd} is the same as t_{PLH} and t_{PHL} .
- [3] t_t is the same as t_{TLH} and t_{THL} .
- [4] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o) \text{ where:}$

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of outputs.

12. Waveforms

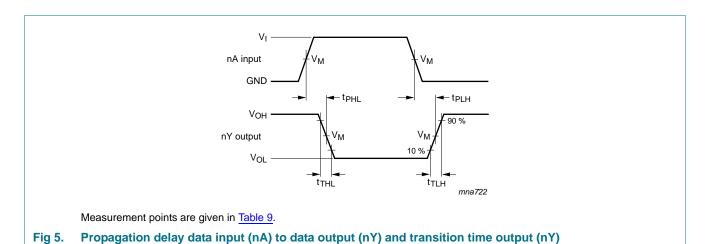
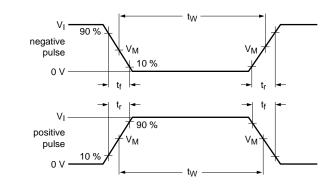
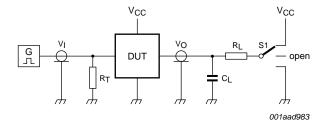




Table 9. Measurement points

Туре	Input	Output
	V _M	V _M
74HC3GU04	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$

Triple unbuffered inverter

Test data is given in Table 10.

Definitions for test circuit:

 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator.

 C_L = Load capacitance including jig and probe capacitance.

R_L = Load resistance.

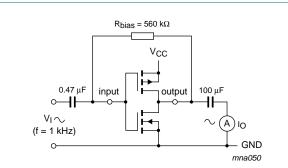
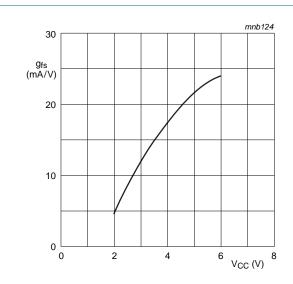

S1 = Test selection switch.

Fig 6. Test circuit for measuring switching times

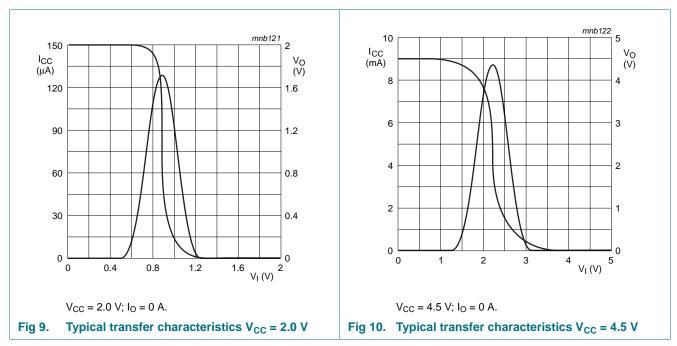
Table 10. Test data

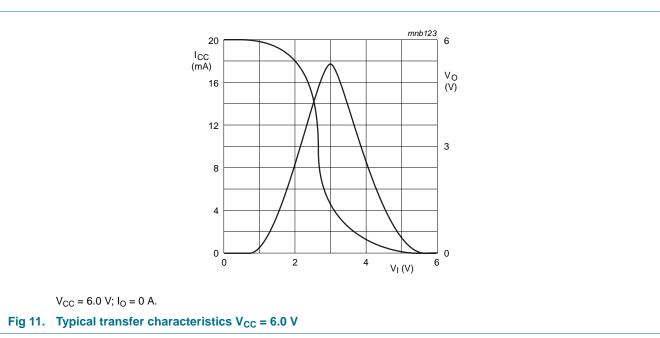
Туре	Input		Load	S1 position	
	VI	t _r , t _f	C _L	R_L	t _{PHL} , t _{PLH}
74HC3GU04	GND to V_{CC}	≤ 6 ns	50 pF	1 kΩ	open


12.1 Additional characteristics

$$g_{fs} = \frac{\Delta I_O}{\Delta V_I}$$

Vo is constant.


Fig 7. Test set-up for measuring forward transconductance

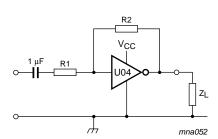


 T_{amb} = 25 °C.

Fig 8. Typical forward transconductance as a function of supply voltage

13. Typical transfer characteristics

14. Application information


Some applications for the 74HC3GU04 are:

- Linear amplifier (see Figure 12)
- Crystal oscillator (see Figure 14).

74HC3GU04

All information provided in this document is subject to legal disclaimers.

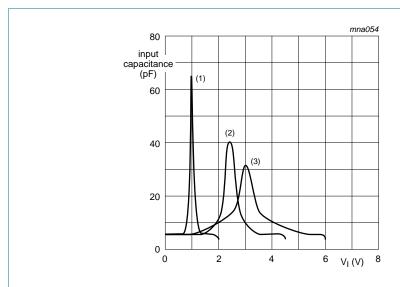
Remark: All values given are typical values unless otherwise specified.

 $Z_L > 10 \text{ k}\Omega$.

 $R1 \geq 3 \ k\Omega.$

 $R2 \le 1 M\Omega$.

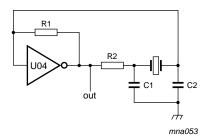
Open loop amplification: $A_{OL} = 20$ (typical).


$$\mbox{Voltage amplification:} \quad A_V = -\frac{A_{OL}}{I + \frac{R\,I}{R2}(I + A_{\rm OL})} \,.$$

 $V_{o(p-p)} = V_{CC} - 1.5 \text{ V}$ centered at $0.5 \times V_{CC}$.

Unity gain bandwidth product is 5 MHz (typical).

Input capacitance see Figure 13.


Fig 12. Linear amplifier application

- (1) $V_{CC} = 2.0 \text{ V}.$
- (2) $V_{CC} = 4.5 \text{ V}.$
- (3) $V_{CC} = 6.0 \text{ V}.$

Fig 13. Typical input capacitance as a function of the input voltage

Triple unbuffered inverter

Test data is given in Table 11 and Table 12.

C1 = 47 pF (typical).

C2 = 22 pF (typical).

R1 = 1 M Ω to 10 M Ω (typical).

R2 optimum value depends on the frequency and required stability against changes in V_{CC} or average minimum I_{CC} ($I_{CC} = 2$ mA at $V_{CC} = 3.0$ V and f = 1 MHz)

Fig 14. Crystal oscillator application

Table 11. External components for resonator (f < 1 MHz)

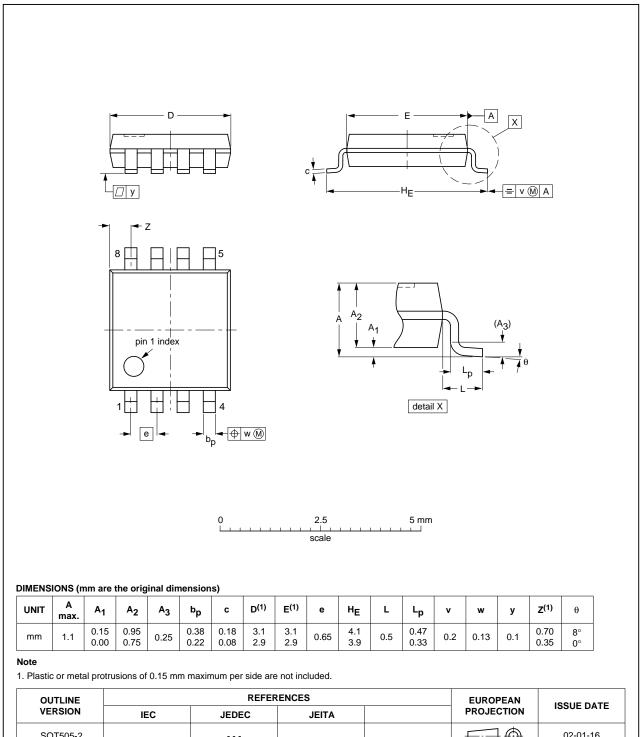

Frequency	R1	R2	C1	C2
10 kHz to 15.9 kHz	$2.2~{ m M}\Omega$	220 kΩ	56 pF	20 pF
16 kHz to 24.9 kHz	$2.2~{ m M}\Omega$	220 kΩ	56 pF	10 pF
25 kHz to 54.9 kHz	$2.2~{ m M}\Omega$	100 kΩ	56 pF	10 pF
55 kHz to 129.9 kHz	2.2 MΩ	100 kΩ	47 pF	5 pF
130 kHz to 199.9 kHz	2.2 MΩ	47 kΩ	47 pF	5 pF
200 kHz to 349.9 kHz	$2.2~{ m M}\Omega$	47 kΩ	47 pF	5 pF
350 kHz to 600 kHz	2.2 MΩ	47 kΩ	47 pF	5 pF

Table 12. Optimum value for R2

Frequency	R2	Optimum			
3 kHz	$2.0~\text{k}\Omega$	minimum required I _{CC}			
	8.0 kΩ	minimum influence due to change in V _{CC}			
6 kHz	1.0 kΩ	minimum required I _{CC}			
	4.7 kΩ	minimum influence by V _{CC}			
10 kHz	$0.5~\mathrm{k}\Omega$	minimum required I _{CC}			
	2.0 kΩ	minimum influence by V _{CC}			
14 kHz	$0.5~\mathrm{k}\Omega$	minimum required I _{CC}			
	2.0 kΩ	minimum influence by V _{CC}			
> 14 kHz	replace R2 by C3 = 35 pF (typical)				

15. Package outline

TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm

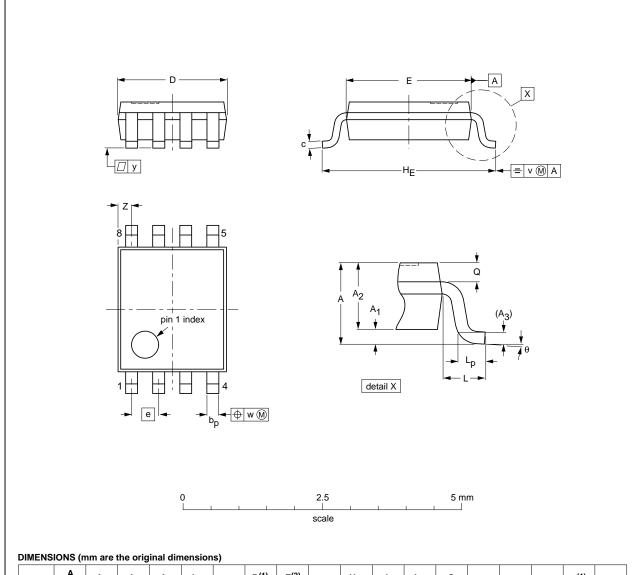

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT505-2						02-01-16	
				-			

Fig 15. Package outline SOT505-2 (TSSOP8)

74HC3GU04 All information provided in this document is subject to legal disclaimers.

VSSOP8: plastic very thin shrink small outline package; 8 leads; body width 2.3 mm

SOT765-1

UNIT	A max.	A ₁	A ₂	А3	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1	0.15 0.00	0.85 0.60	0.12	0.27 0.17	0.23 0.08	2.1 1.9	2.4 2.2	0.5	3.2 3.0	0.4	0.40 0.15	0.21 0.19	0.2	0.13	0.1	0.4 0.1	8° 0°

Notes

- Plastic or metal protrusions of 0.15 mm maximum per side are not included.
 Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT765-1		MO-187				02-06-07

Fig 16. Package outline SOT765-1 (VSSOP8)

74HC3GU04

All information provided in this document is subject to legal disclaimers.

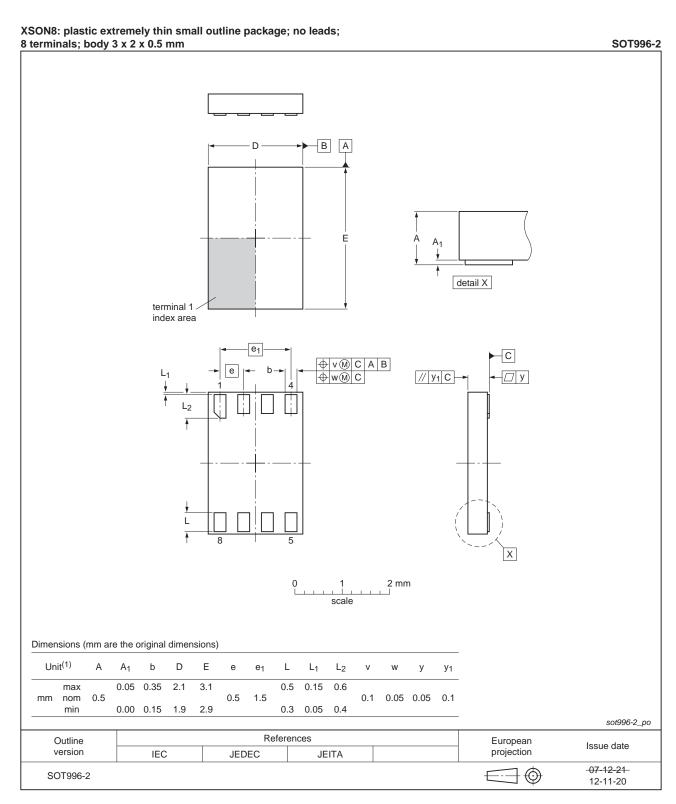


Fig 17. Package outline SOT996-2 (XSON8)

74HC3GU04 All information provided in this document is subject to legal disclaimers.

74HC3GU04

Triple unbuffered inverter

16. Abbreviations

Table 13. Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

17. Revision history

Table 14. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC3GU04 v.5	20131002	Product data sheet	-	74HC3GU04 v.4
Modifications:	 For type nur 	mber 74HC3GU04GD XSON8I	J has changed to XS	SON8.
74HC3GU04 v.4	20100111	Product data sheet	-	74HC3GU04 v.3
Modifications:	 Marking cod 	le for 74HC3GU04DP package	changed from HU0	4 to HU4
74HC3GU04 v.3	20090511	Product data sheet	-	74HC3GU04 v.2
74HC3GU04 v.2	20031126	Product specification	-	74HC3GU04 v.1
74HC3GU04 v.1	20030818	Product specification	-	-

18. Legal information

18.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

18.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

74HC3GU04

All information provided in this document is subject to legal disclaimers.

NXP Semiconductors 74HC3GU04

Triple unbuffered inverter

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

18.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

19. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

74HC3GU04

Triple unbuffered inverter

20. Contents

1	General description
2	Features and benefits
3	Ordering information 1
4	Marking 1
5	Functional diagram 2
6	Pinning information 2
6.1	Pinning
6.2	Pin description 2
7	Functional description 3
8	Limiting values 3
9	Recommended operating conditions 3
10	Static characteristics 4
11	Dynamic characteristics 4
12	Waveforms
12.1	Additional characteristics 7
13	Typical transfer characteristics 8
14	Application information 8
15	Package outline
16	Abbreviations
17	Revision history 14
18	Legal information
18.1	Data sheet status
18.2	Definitions
18.3	Disclaimers
18.4	Trademarks16
19	Contact information 16
20	Contents 17

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP: