INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT640Octal bus transceiver; 3-state; inverting

Product specification
File under Integrated Circuits, IC06

March 1988

Octal bus transceiver; 3-state; inverting

74HC/HCT640

FEATURES

- Octal bidirectional bus interface
- Inverting 3-state outputs
- · Output capability: bus driver
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT640 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT640 are octal transceivers featuring inverting 3-state bus compatible outputs in both send and receive directions.

The "640" features an output enable (\overline{OE}) input for easy cascading and a send/receive (DIR) for direction control. \overline{OE} controls the outputs so that the buses are effectively isolated. The "640" is similar to the "245" but has inverting outputs.

QUICK REFERENCE DATA

 $GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

SYMBOL	DADAMETED	CONDITIONS	TYP	PICAL	LINUT	
STWIBOL	PARAMETER	CONDITIONS	нс	нст	UNIT	
t _{PHL} / t _{PLH}	$\begin{array}{c} \text{propagation delay} \\ A_n \text{ to } B_n; \\ B_n \text{ to } A_n \end{array}$	C _L = 15 pF; V _{CC} = 5 V	9	9	ns	
Cı	input capacitance		3.5	3.5	pF	
C _{I/O}	input/output capacitance		10	10	pF	
C _{PD}	power dissipation capacitance per transceiver	notes 1 and 2	35	35	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

f_i = input frequency in MHz

f_o = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

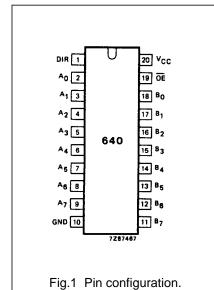
C_L = output load capacitance in pF

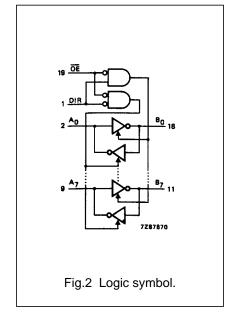
V_{CC} = supply voltage in V

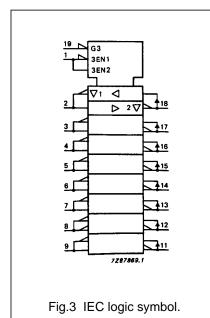
2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

ORDERING INFORMATION


See "74HC/HCT/HCU/HCMOS Logic Package Information".


Octal bus transceiver; 3-state; inverting

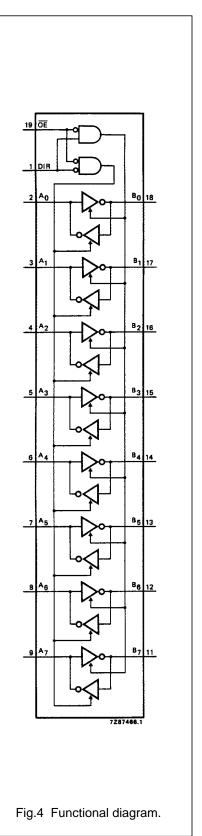

74HC/HCT640

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION					
1	DIR	direction control					
2, 3, 4, 5, 6, 7, 8, 9	A ₀ to A ₇	data inputs/outputs					
10	GND	ground (0 V)					
18, 17, 16, 15, 14, 13, 12, 11	B ₀ to B ₇	data inputs/outputs					
19	ŌĒ	output enable input (active LOW)					
20	V _{CC}	positive supply voltage					

FUNCTION TABLE

inį	outs	inputs/outputs					
ŌĒ	DIR	A _n	B _n				
L	L	A=B inputs	inputs				
L	Н	inputs	B=A				
Н	Х	Z	Z				


Note

1. H = HIGH voltage level

L = LOW voltage level

X = don't care

Z = high impedance OFF-state

March 1988 3

Octal bus transceiver; 3-state; inverting

74HC/HCT640

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
CVMBOL		74HC									
SYMBOL		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(')	
t _{PHL} / t _{PLH}	propagation delay A _n to B _n ; B _n to A _n		30 11 9	90 18 15		115 23 20		135 27 23	ns	2.0 4.5 6.0	Fig.5
t _{PZH} / t _{PZL}	3-state output enable time \overline{OE} , DIR to A_n ; \overline{OE} , DIR to B_n		44 16 13	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.6
t _{PHZ} / t _{PLZ}			50 18 14	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.6
t _{THL} / t _{TLH}	output transition time		14 5 4	60 12 10		75 15 13		90 18 15	ns	2.0 4.5 6.0	Fig.5

Octal bus transceiver; 3-state; inverting

74HC/HCT640

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

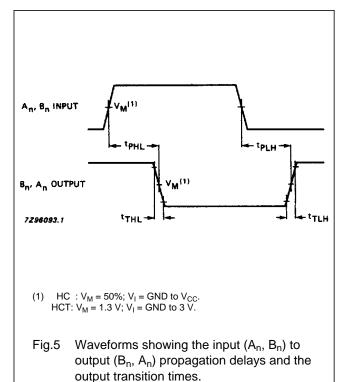
I_{CC} category: MSI

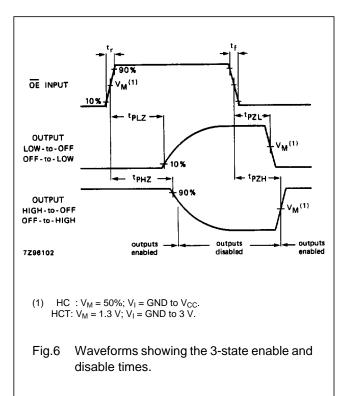
Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT					
An	1.50					
B _n	1.50					
ŌĒ	1.50					
DIR	0.90					

AC CHARACTERISTICS FOR 74HCT


 $GND = 0 \text{ V; } t_r = t_f = 6 \text{ ns; } C_L = 50 \text{ pF}$


	PARAMETER	T _{amb} (°C)							UNIT	TEST CONDITIONS	
SYMBOL		74HCT									
STWIBOL		+25		-40 to +85		-40 to +125		UNII	V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(',	
t _{PHL} /t _{PLH}	$\begin{array}{c} \text{propagation delay} \\ A_n \text{ to } B_n; \\ B_n \text{ to } A_n \end{array}$		11	22		28		33	ns	4.5	Fig.5
t _{PZH} / t _{PZL}			18	30		38		45	ns	4.5	Fig.6
t _{PHZ} / t _{PLZ}			19	30		38		45	ns	4.5	Fig.6
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Fig.5

Octal bus transceiver; 3-state; inverting

74HC/HCT640

AC WAVEFORMS

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP:

74HCT640D 74HCT640DB 74HC640DB,112 74HC640DB,118 74HC640N,652