

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

May 1995 Revised April 2001

74LCX16543

Low Voltage 16-Bit Registered Transceiver with 5V Tolerant Inputs and Outputs

General Description

The LCX16543 contains sixteen non-inverting transceivers containing two sets of D-type registers for temporary storage of data flowing in either direction. Each byte has separate control inputs which can be shorted together for full 16-bit operation. Separate Latch Enable and Output Enable inputs are provided for each register to permit independent input and output control in either direction of data flow.

The LCX16543 is designed for low voltage (2.5V or 3.3V) V_{CC} applications with capability of interfacing to a 5V signal applications.

The LCX16543 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

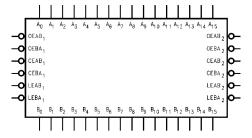
- 5V tolerant inputs and outputs
- 2.3V-3.6V V_{CC} specifications provided
- 5.2 ns t_{PD} max ($V_{CC} = 3.3V$), 20 μ A I_{CC} max
- Power down high impedance inputs and outputs
- Supports live insertion/withdrawal (Note 1)
- \pm 24 mA Output Drive (V_{CC} = 3.0V)
- Implements patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA
- ESD performance:

Human Body Model > 2000V

Machine Model > 200V

Note 1: To ensure the high-impedance state during power up or down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver.

Ordering Code:


Order Number	Package Number	Package Description
74LCX16543MEA	MS56A	56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300 Wide
74LCX16543MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Logic Symbol

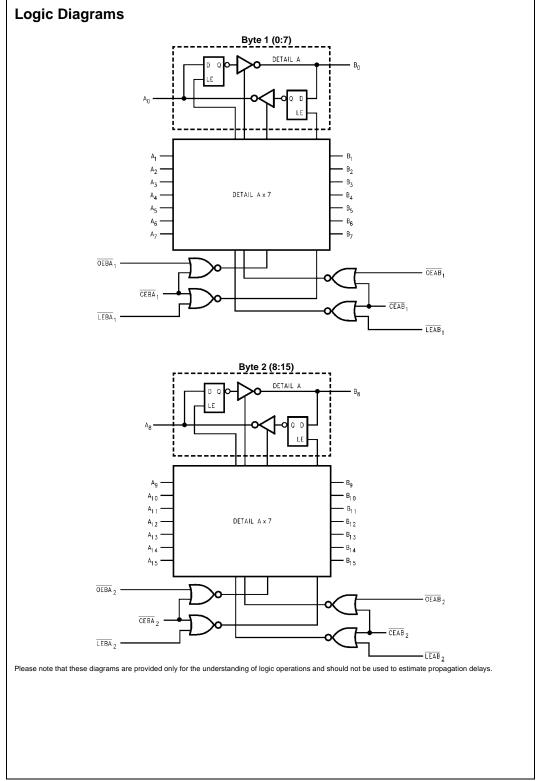
Pin Descriptions

Pin Names	Description
OEAB _n	A-to-B Output Enable Input (Active LOW)
OEBA _n B-to-A Output Enable Input (Active LOW)	
CEAB _n	A-to-B Enable Input (Active LOW)
CEBAn	B-to-A Enable Input (Active LOW)
LEAB _n	A-to-B Latch Enable Input (Active LOW)
LEBAn	B-to-A Latch Enable Input (Active LOW)
A ₀ -A ₁₅	A-to-B Data Inputs or B-to-A 3-STATE Outputs
B ₀ -B ₁₅	B-to-A Data Inputs or A-to-B 3-STATE Outputs

Data I/O Control Table

	Inputs		Latch Status	Output Buffers
CEAB _n	$\overline{\text{LEAB}}_{\text{n}}$	$\overline{\text{OEAB}}_{\text{n}}$	(Byte n)	(Byte n)
Н	Х	Х	Latched	High Z
X	Н	X	Latched	_
L	L	X	Transparent	_
X	X	Н	_	High Z
L	X	L	_	Driving

H = HIGH Voltage Level


Functional Description

The LCX16543 contains sixteen non-inverting transceivers with 3-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins may be shorted together to obtain full 16-bit operation. The following description applies to each byte. For data flow from A to B, for example, the A-to-B Enable (\overline{CEAB}_n) input must be LOW in order to enter data from $\mathrm{A}_0\mathrm{-A}_{15}$ or take data from $\mathrm{B}_0\mathrm{-B}_{15}$, as indicated in the Data I/O Control Table. With $\overline{\text{CEAB}}_{\text{n}}$ LOW, a LOW signal on the A-to-B Latch Enable (LEABn) input

makes the A-to-B latches transparent; a subsequent LOWto-HIGH transition of the $\overline{\text{LEAB}}_n$ signal puts the A latches in the storage mode and their outputs no longer change with the A inputs. With $\overline{\text{CEAB}}_n$ and $\overline{\text{OEAB}}_n$ both LOW, the 3-STATE B output buffers are active and reflect the data present at the output of the A latches. Control of data flow from B to A is similar, but using the \overline{CEBA}_n , \overline{LEBA}_n and OEBA_n inputs.

L = LOW Voltage Level

 $X = Immaterial \\ A-to-B data flow shown; B-to-A flow control is the same, except using \overline{CEBA}_n, \overline{LEBA}_n and \overline{OEBA}_n.}$

Absolute Maximum Ratings(Note 2)

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	−0.5 to +7.0		V
VI	DC Input Voltage	−0.5 to +7.0		V
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to $V_{CC} + 0.5$	Output in HIGH or LOW State (Note 3)	v
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	V _O > V _{CC}	IIIA
I _O	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current per Supply Pin	±100		mA
I _{GND}	DC Ground Current per Ground Pin	±100		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions (Note 4)

Symbol	Parameter	Min	Max	Units	
V _{CC}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	V
V _I	Input Voltage		0	5.5	V
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	V
		3-STATE	0	5.5	V
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$ $V_{CC} = 2.7V - 3.0V$ $V_{CC} = 2.3V - 2.7V$		±24	
		$V_{CC} = 2.7V - 3.0V$		±12	mA
		$V_{CC} = 2.3V - 2.7V$		±8	
T _A	Free-Air Operating Temperature		-40	85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V		0	10	ns/V

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 4: Unused (inputs or I/Os) must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	v _{cc}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	
Syllibol		Conditions	(V)	Min	Max	Ullits	
V _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.7		V	
		2.7 -		2.0		V	
V _{IL}	LOW Level Input Voltage		2.3 – 2.7		0.7	V	
			2.7 – 3.6		0.8	V	
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -100 \mu A$	2.3 – 3.6	V _{CC} - 0.2			
		$I_{OH} = -8 \text{ mA}$	2.3	1.8			
		$I_{OH} = -12 \text{ mA}$	2.7	2.2		V	
		$I_{OH} = -18 \text{ mA}$	3.0	2.4			
		$I_{OH} = -24 \text{ mA}$	3.0	2.2			
V _{OL}	LOW Level Output Voltage	$I_{OL} = 100 \mu A$	2.3 – 3.6		0.2		
		$I_{OL} = 8 \text{ mA}$	2.3		0.6		
		I _{OL} = 12 mA	2.7		0.4	V	
		I _{OL} = 16 mA	3.0		0.4		
		I _{OL} = 24 mA	3.0		0.55		
l _l	Input Leakage Current	0 ≤ V _I ≤ 5.5V	2.3 – 3.6		±5.0	μΑ	
l _{oz}	3-STATE I/O Leakage	$0 \le V_O \le 5.5V$	2.3 – 3.6		±5.0	^	
		$V_I = V_{IH}$ or V_{IL}	2.3 - 3.0		±3.0	μΑ	
OFF	Power-Off Leakage Current	V_I or $V_O = 5.5V$	0		10	μΑ	

Note 3: I_O Absolute Maximum Rating must be observed.

DC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	V _{CC}	$T_A = -40^{\circ}$	C to +85°C	Units
Cymbol	i didilicici	Conditions	(V)	Min	Max	Onico
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3 – 3.6		20	μА
		$3.6V \le V_1, V_0 \le 5.5V \text{ (Note 5)}$	2.3 – 3.6		±20	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.3 – 3.6		500	μΑ

Note 5: Outputs in disabled or 3-STATE only.

AC Electrical Characteristics

		$T_A = -40$ °C to $+85$ °C, $R_L = 500 \Omega$						
Symbol	Parameter	V _{CC} = 3.	3V ± 0.3V	V _{CC}	= 2.7V	V _{CC} = 2	.5V ± 0.2V	Units
	Farameter	C _L =	C _L = 50 pF		C _L = 50 pF		C _L = 30 pF	
		Min	Max	Min	Max	Min	Max	1
t _{PHL}	Propagation Delay	1.5	5.2	1.5	6.0	1.5	6.2	ns
t _{PLH}	A_n to B_n or B_n to A_n	1.5	5.2	1.5	6.0	1.5	6.2	115
t _{PHL}	Propagation Delay	1.5	6.5	1.5	7.5	1.5	7.8	ns
t _{PLH}	\overline{LEBA}_{n} to A_{n} or \overline{LEAB}_{n} to B_{n}	1.5	6.5	1.5	7.5	1.5	7.8	115
t _{PZL}	Output Enable Time							
t _{PZH}	\overline{OEBA}_n or \overline{OEAB}_n to A_n or B_n	1.5	6.5	1.5	7.0	1.5	8.5	ns
	$\overline{\text{CEBA}}_{\text{n}}$ or $\overline{\text{CEAB}}_{\text{n}}$ to A_{n} or B_{n}	1.5	6.5	1.5	7.0	1.5	8.5	
t _{PLZ}	Output Disable Time							
t_{PHZ}	\overline{OEBA}_n or \overline{OEAB}_n to A_n or B_n	1.5	6.5	1.5	7.0	1.5	7.8	ns
	$\overline{\text{CEBA}}_{\text{n}}$ or $\overline{\text{CEAB}}_{\text{n}}$ to A_{n} or B_{n}	1.5	6.5	1.5	7.0	1.5	7.8	
t _S	Setup Time, HIGH or LOW,	2.5		2.5		3.0		ns
	Data to LEXX _n							115
t _H	Hold Time, HIGH or LOW,	1.5		1.5		2.0		
	Data to LEXX _n							ns
t _W	Pulse Width, Latch Enable, LOW	3.0		3.0		3.5		ns
toshl	Output to Output Skew (Note 6)		1.0					
toslh			1.0					ns

Note 6: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V _{CC} (V)	T _A = 25°C	Units
V _{OLP}	Quiet Output Dynamic Peak VOI	$C_{L} = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{II} = 0 \text{V}$	3.3	0.8	
OLI	32	C _L = 30 pF, V _{IH} = 2.5V, V _{IL} = 0V	2.5	0.6	V
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.8	V
		$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	-0.6	V

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	V_{CC} = Open, V_I = 0V or V_{CC}	7	pF
C _{I/O}	Input/Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} , $f = 10$ MHz	20	pF

AC LOADING and WAVEFORMS Generic for LCX Family

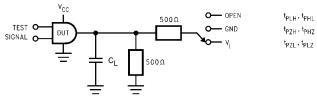
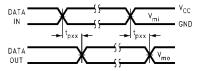
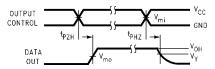
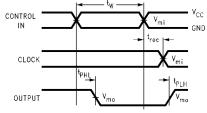
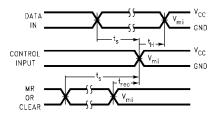
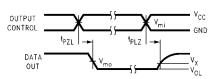




FIGURE 1. AC Test Circuit (C_L includes probe and jig capacitance)


Test	Switch
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6V at V_{CC} = 3.3 \pm 0.3V V_{CC} x 2 at V_{CC} = 2.5 \pm 0.2V
t_{PZH}, t_{PHZ}	GND


Waveform for Inverting and Non-Inverting Functions


3-STATE Output High Enable and Disable Times for Logic

Propagation Delay. Pulse Width and t_{rec} Waveforms

Setup Time, Hold Time and Recovery Time for Logic

3-STATE Output Low Enable and Disable Times for Logic

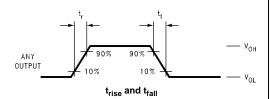
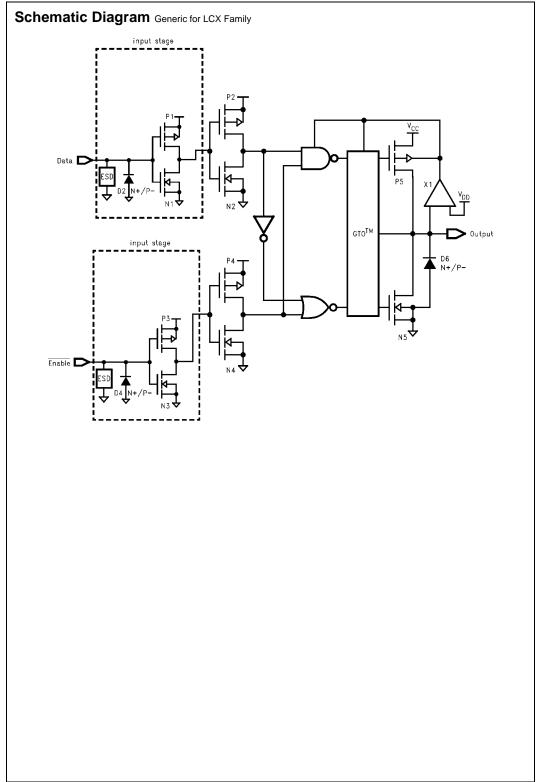
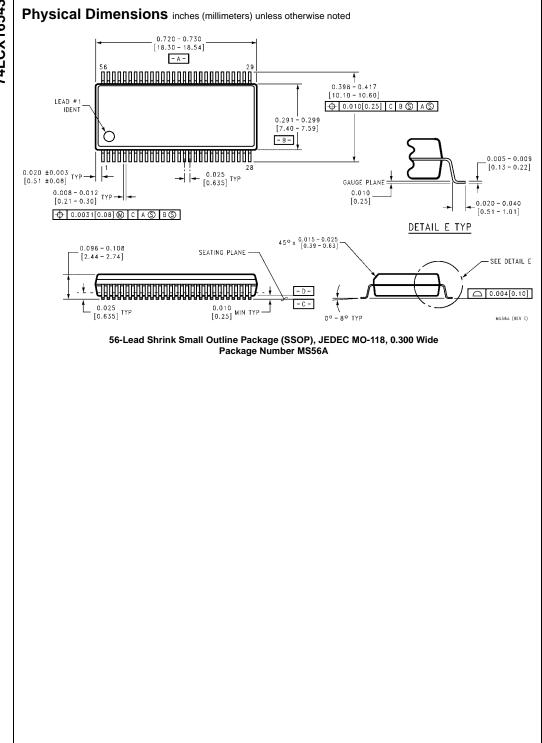
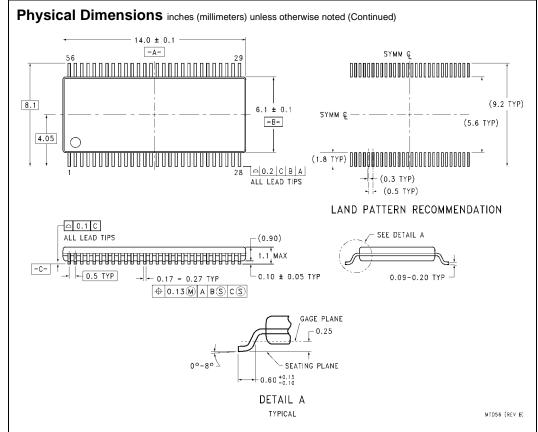





FIGURE 2. Waveforms (Input Characteristics; f =1MHz, $t_r = t_f = 3ns$)

Symbol		V _{CC}	
Cyllibol	$3.3V \pm 0.3V$	2.7V	$\textbf{2.5V} \pm \textbf{0.2V}$
V_{mi}	1.5V	1.5V	V _{CC} /2
V_{mo}	1.5V	1.5V	V _{CC} /2
V _x	V _{OL} + 0.3V	V _{OL} + 0.3V	V _{OL} + 0.15V
V _v	V _{OH} – 0.3V	V _{OH} – 0.3V	V _{OH} – 0.15V

56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD56

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: 74LCX16543MTDX 74LCX16543MTD