

74LV4053

Triple single-pole double-throw analog switch

Rev. 5 — 18 September 2014

Product data sheet

1. General description

The 74LV4053 is a triple single-pole double-throw (SPDT) analog switch, suitable for use as an analog or digital multiplexer/demultiplexer. It is a low-voltage Si-gate CMOS device and is pin and function compatible with the 74HC4053 and 74HCT4053. Each switch has a digital select input (S_n), two independent inputs/outputs (nY_0 and nY_1) and a common input/output (nZ). All three switches share an enable input (\bar{E}). A HIGH on \bar{E} causes all switches into the high-impedance OFF-state, independent of S_n .

V_{CC} and GND are the supply voltage connections for the digital control inputs (S_n and \bar{E}). The V_{CC} to GND range is 1 V to 6 V. The analog inputs/outputs (nY_0 , nY_1 and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. $V_{CC} - V_{EE}$ may not exceed 6 V. For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground). V_{EE} and V_{SS} are the supply voltage connections for the switches.

2. Features and benefits

- Optimized for low-voltage applications: 1.0 V to 3.6 V
- Accepts TTL input levels between $V_{CC} = 2.7$ V and $V_{CC} = 3.6$ V
- Low ON resistance:
 - ◆ 180 Ω (typical) at $V_{CC} - V_{EE} = 2.0$ V
 - ◆ 100 Ω (typical) at $V_{CC} - V_{EE} = 3.0$ V
 - ◆ 75 Ω (typical) at $V_{CC} - V_{EE} = 4.5$ V
- Logic level translation:
 - ◆ To enable 3 V logic to communicate with ± 3 V analog signals
- Typical ‘break before make’ built in
- ESD protection:
 - ◆ HBM JESD22-A114-C exceeds 2000 V
 - ◆ MM JESD22-A115-A exceeds 200 V
- Multiple package options
- Specified from -40 °C to $+85$ °C and from -40 °C to $+125$ °C

3. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74LV4053N	−40 °C to +125 °C	DIP16	plastic dual in-line package; 16 leads (300 mil)	SOT38-4
74LV4053D	−40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
74LV4053DB	−40 °C to +125 °C	SSOP16	plastic shrink small outline package; 16 leads; body width 5.3 mm	SOT338-1
74LV4053PW	−40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1
74LV4053BQ	−40 °C to +125 °C	DHVQFN16	plastic dual-in line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 × 3.5 × 0.85 mm	SOT763-1

4. Functional diagram

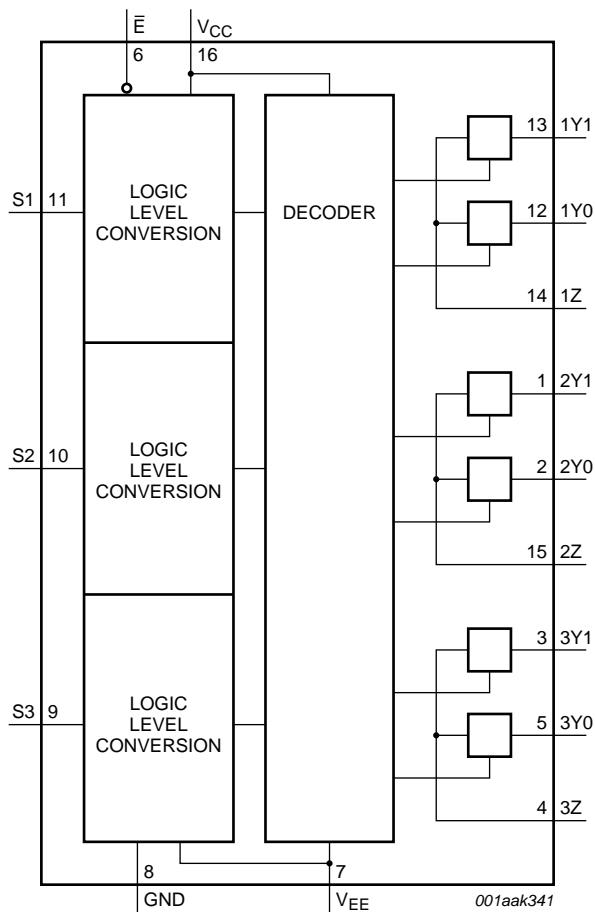


Fig 1. Functional diagram

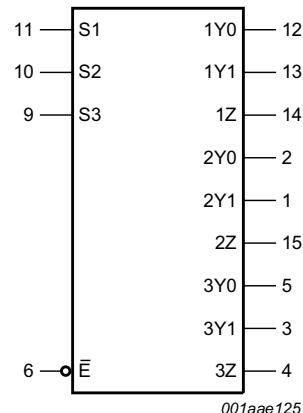


Fig 2. Logic symbol

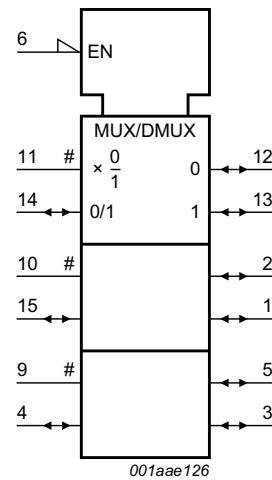


Fig 3. IEC logic symbol

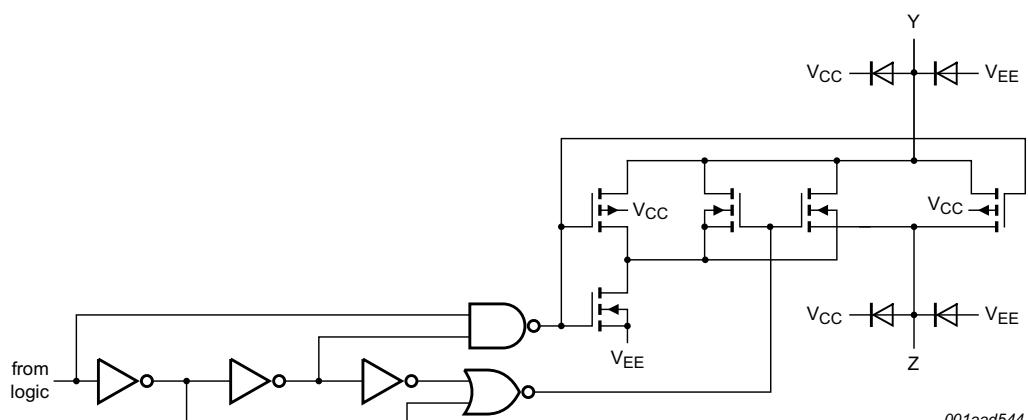


Fig 4. Schematic diagram (one switch)

5. Pinning information

5.1 Pinning

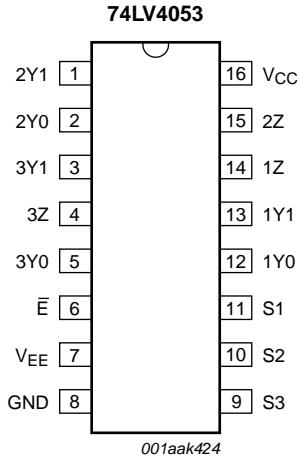


Fig 5. Pin configuration SOT38-4 and SOT109-1

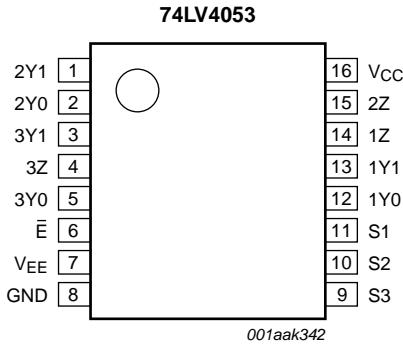
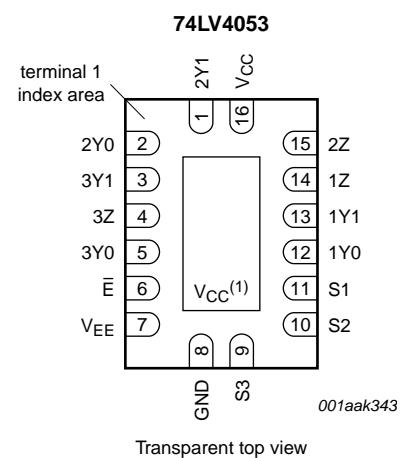



Fig 6. Pin configuration SOT338-1 and SOT403-1

(1) This is not a supply pin. The substrate is attached to this pad using conductive die attach material. There is no electrical or mechanical requirement to solder this pad. However, if it is soldered, the solder land should remain floating or be connected to V_{CC} .

Fig 7. Pin configuration for SOT763-1

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
\bar{E}	6	enable input (active LOW)
V_{EE}	7	supply voltage
GND	8	ground supply voltage
S1, S2, S3	11, 10, 9	select input
1Y0, 2Y0, 3Y0	12, 2, 5	independent input or output
1Y1, 2Y1, 3Y1	13, 1, 3	independent input or output
1Z, 2Z, 3Z	14, 15, 4	common output or input
V_{CC}	16	supply voltage

6. Functional description

Table 3. Function table [1]

Inputs		Channel on
E	Sn	
L	L	nY0 to nZ
L	H	nY1 to nZ
H	X	switches off

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care.

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to $V_{SS} = 0$ V (ground).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		[1] -0.5	+7.0	V
I_{IK}	input clamping current	$V_I < -0.5$ V or $V_I > V_{CC} + 0.5$ V	[2] -	± 20	mA
I_{SK}	switch clamping current	$V_{SW} < -0.5$ V or $V_{SW} > V_{CC} + 0.5$ V	[2] -	± 20	mA
I_{SW}	switch current	$V_{SW} > -0.5$ V or $V_{SW} < V_{CC} + 0.5$ V; source or sink current	[2] -	± 25	mA
T_{stg}	storage temperature		-65	+150	°C
P_{tot}	total power dissipation	$T_{amb} = -40$ °C to +125 °C	[3]		
		DIP16 package	-	750	mW
		SO16 package	-	500	mW
		TSSOP16 package	-	500	mW
		DHVQFN16 package	-	500	mW

[1] To avoid drawing V_{CC} current out of terminal nZ, when switch current flows into terminals nYn, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal nZ, no V_{CC} current will flow out of terminals nYn, and in this case there is no limit for the voltage drop across the switch, but the voltages at nYn and nZ may not exceed V_{CC} or V_{EE} .

[2] The minimum input voltage rating may be exceeded if the input current rating is observed.

[3] For DIP16 packages: above 70 °C the value of P_{tot} derates linearly with 12 mW/K.
For SO16 packages: above 70 °C the value of P_{tot} derates linearly with 8 mW/K.
For SSOP16 and TSSOP16 packages: above 60 °C the value of P_{tot} derates linearly with 5.5 mW/K.
For DHVQFN16 packages: above 60 °C the value of P_{tot} derates linearly with 4.5 mW/K.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{CC}	supply voltage	see Figure 8	1	3.3	6	V
V_I	input voltage		0	-	V_{CC}	V
V_{SW}	switch voltage		0	-	V_{CC}	V
T_{amb}	ambient temperature	in free air	-40	-	+125	°C
$\Delta t/\Delta V$	input transition rise and fall rate	$V_{CC} = 1.0 \text{ V to } 2.0 \text{ V}$	-	-	500	ns/V
		$V_{CC} = 2.0 \text{ V to } 2.7 \text{ V}$	-	-	200	ns/V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	-	-	100	ns/V

[1] The static characteristics are guaranteed from $V_{CC} = 1.2 \text{ V to } 6.0 \text{ V}$, but LV devices are guaranteed to function down to $V_{CC} = 1.0 \text{ V}$ (with input levels GND or V_{CC}).

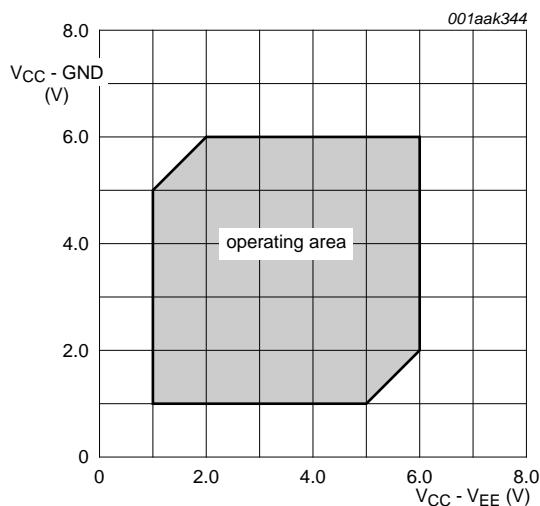
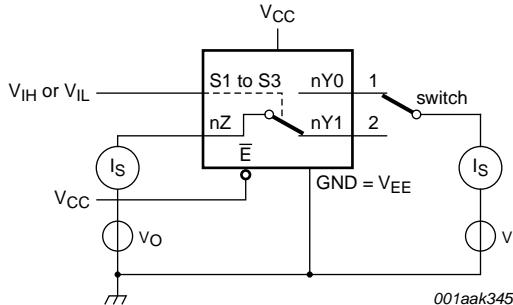


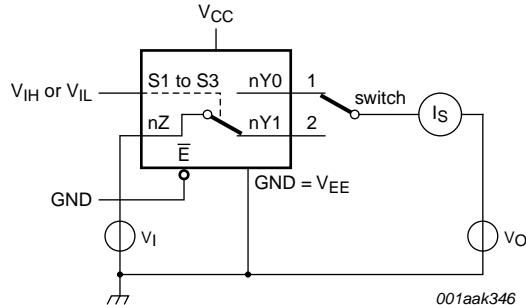
Fig 8. Guaranteed operating area as a function of the supply voltages

9. Static characteristics


Table 6. Static characteristics

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40 °C to +85 °C			-40 °C to +125 °C		Unit
			Min	Typ ^[1]	Max	Min	Max	
V _{IH}	HIGH-level input voltage	V _{CC} = 1.2 V	0.9	-	-	0.9	-	V
		V _{CC} = 2.0 V	1.4	-	-	1.4	-	V
		V _{CC} = 2.7 V to 3.6 V	2.0	-	-	2.0	-	V
		V _{CC} = 4.5 V	3.15	-	-	3.15	-	V
		V _{CC} = 6.0 V	4.20	-	-	4.20	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 1.2 V	-	-	0.3	-	0.3	V
		V _{CC} = 2.0 V	-	-	0.6	-	0.6	V
		V _{CC} = 2.7 V to 3.6 V	-	-	0.8	-	0.8	V
		V _{CC} = 4.5 V	-	-	1.35	-	1.35	V
		V _{CC} = 6.0 V	-	-	1.80	-	1.80	V
I _I	input leakage current	V _I = V _{CC} or GND						
		V _{CC} = 3.6 V	-	-	1.0	-	1.0	µA
		V _{CC} = 6.0 V	-	-	2.0	-	2.0	µA
I _{S(OFF)}	OFF-state leakage current	V _I = V _{IH} or V _{IL} ; see Figure 9						
		V _{CC} = 3.6 V	-	-	1.0	-	1.0	µA
		V _{CC} = 6.0 V	-	-	2.0	-	2.0	µA
I _{S(ON)}	ON-state leakage current	V _I = V _{IH} or V _{IL} ; see Figure 10						
		V _{CC} = 3.6 V	-	-	1.0	-	1.0	µA
		V _{CC} = 6.0 V	-	-	2.0	-	2.0	µA
I _{CC}	supply current	V _I = V _{CC} or GND; I _O = 0 A						
		V _{CC} = 3.6 V	-	-	20	-	40	µA
		V _{CC} = 6.0 V	-	-	40	-	80	µA
ΔI _{CC}	additional supply current	per input; V _I = V _{CC} - 0.6 V; V _{CC} = 2.7 V to 3.6 V	-	-	500	-	850	µA
C _I	input capacitance		-	3.5	-	-	-	pF
C _{sw}	switch capacitance	independent pins nYn	-	5	-	-	-	pF
		common pins nZ	-	8	-	-	-	pF


[1] Typical values are measured at T_{amb} = 25 °C.

9.1 Test circuits

$V_I = V_{CC}$ or V_{EE} and $V_O = V_{EE}$ or V_{CC} .

Fig 9. Test circuit for measuring OFF-state leakage current

$V_I = V_{CC}$ or V_{EE} and $V_O = \text{open circuit}$.

Fig 10. Test circuit for measuring ON-state leakage current

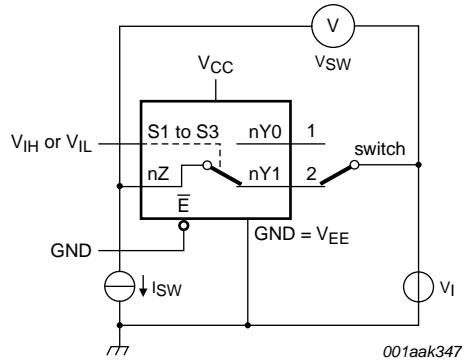
9.2 ON resistance

Table 7. ON resistance

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for graphs see [Figure 11](#) and [Figure 12](#).

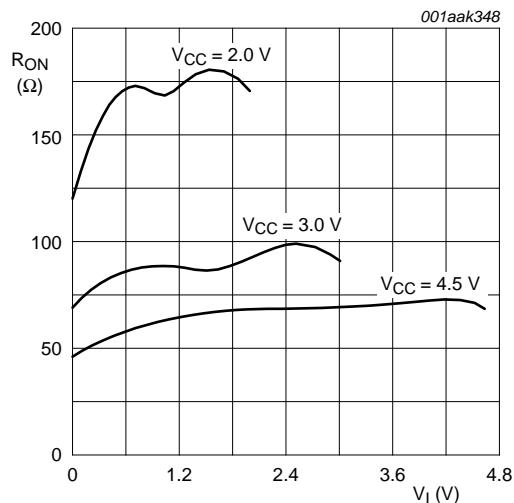
Symbol	Parameter	Conditions	-40 °C to +85 °C			-40 °C to +125 °C			Unit
			Min	Typ ^[1]	Max	Min	Max		
$R_{ON(\text{peak})}$	ON resistance (peak)	$V_I = 0 \text{ V to } V_{CC} - V_{EE}$							
		$V_{CC} = 1.2 \text{ V; } I_{SW} = 100 \mu\text{A}$	[2]	-	-	-	-	-	Ω
		$V_{CC} = 2.0 \text{ V; } I_{SW} = 1000 \mu\text{A}$		-	180	365	-	435	Ω
		$V_{CC} = 2.7 \text{ V; } I_{SW} = 1000 \mu\text{A}$		-	115	225	-	270	Ω
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V; } I_{SW} = 1000 \mu\text{A}$		-	100	200	-	245	Ω
		$V_{CC} = 4.5 \text{ V; } I_{SW} = 1000 \mu\text{A}$		-	75	150	-	180	Ω
		$V_{CC} = 6.0 \text{ V; } I_{SW} = 1000 \mu\text{A}$		-	70	140	-	165	Ω
ΔR_{ON}	ON resistance mismatch between channels	$V_I = 0 \text{ V to } V_{CC} - V_{EE}$							
		$V_{CC} = 1.2 \text{ V; } I_{SW} = 100 \mu\text{A}$	[2]	-	-	-	-	-	Ω
		$V_{CC} = 2.0 \text{ V; } I_{SW} = 1000 \mu\text{A}$		-	5	-	-	-	Ω
		$V_{CC} = 2.7 \text{ V; } I_{SW} = 1000 \mu\text{A}$		-	4	-	-	-	Ω
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V; } I_{SW} = 1000 \mu\text{A}$		-	4	-	-	-	Ω
		$V_{CC} = 4.5 \text{ V; } I_{SW} = 1000 \mu\text{A}$		-	3	-	-	-	Ω
		$V_{CC} = 6.0 \text{ V; } I_{SW} = 1000 \mu\text{A}$		-	2	-	-	-	Ω

Table 7. ON resistance ...continued


At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for graphs see [Figure 11](#) and [Figure 12](#).

Symbol	Parameter	Conditions	-40 °C to +85 °C			-40 °C to +125 °C		Unit
			Min	Typ ^[1]	Max	Min	Max	
R _{ON(rail)}	ON resistance (rail)	V _I = GND						
		V _{CC} = 1.2 V; I _{SW} = 100 µA	[2]	-	250	-	-	Ω
		V _{CC} = 2.0 V; I _{SW} = 1000 µA		-	120	280	-	325
		V _{CC} = 2.7 V; I _{SW} = 1000 µA		-	75	170	-	195
		V _{CC} = 3.0 V to 3.6 V; I _{SW} = 1000 µA		-	70	155	-	180
		V _{CC} = 4.5 V; I _{SW} = 1000 µA		-	50	120	-	135
		V _{CC} = 6.0 V; I _{SW} = 1000 µA		-	45	105	-	120
R _{ON(rail)}	ON resistance (rail)	V _I = V _{CC} – V _{EE}						
		V _{CC} = 1.2 V; I _{SW} = 100 µA	[2]	-	350	-	-	Ω
		V _{CC} = 2.0 V; I _{SW} = 1000 µA		-	170	340	-	400
		V _{CC} = 2.7 V; I _{SW} = 1000 µA		-	105	210	-	250
		V _{CC} = 3.0 V to 3.6 V; I _{SW} = 1000 µA		-	95	190	-	225
		V _{CC} = 4.5 V; I _{SW} = 1000 µA		-	70	140	-	165
		V _{CC} = 6.0 V; I _{SW} = 1000 µA		-	65	125	-	150

[1] Typical values are measured at T_{amb} = 25 °C.


[2] When supply voltages (V_{CC} – V_{EE}) near 1.2 V the analog switch ON resistance becomes extremely non-linear. When using a supply of 1.2 V, it is recommended to use these devices only for transmitting digital signals.

9.3 On resistance waveform and test circuit

$$R_{ON} = V_{SW} / I_{SW}$$

Fig 11. Test circuit for measuring R_{ON}

$$V_i = 0\text{ V to }V_{CC} - V_{EE}$$

Fig 12. Typical R_{ON} as a function of input voltage

10. Dynamic characteristics

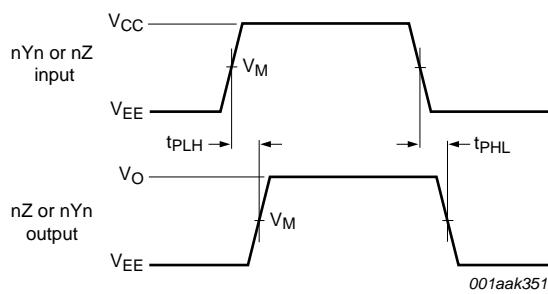
Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit see [Figure 15](#).

Symbol	Parameter	Conditions	-40 °C to +85 °C			-40 °C to +125 °C		Unit	
			Min	Typ ^[1]	Max	Min	Max		
t _{pd}	propagation delay	nYn, nZ to nZ, nYn; see Figure 13	[2]						
		V _{CC} = 1.2 V	-	25	-	-	-	ns	
		V _{CC} = 2.0 V	-	9	17	-	20	ns	
		V _{CC} = 2.7 V	-	6	13	-	15	ns	
		V _{CC} = 3.0 V to 3.6 V	[3]	-	5	10	-	12	ns
		V _{CC} = 4.5 V	-	4	9	-	10	ns	
t _{en}	enable time	Sn to nYn, nZ; see Figure 14	[2]						
		V _{CC} = 1.2 V	-	100	-	-	-	ns	
		V _{CC} = 2.0 V	-	34	65	-	77	ns	
		V _{CC} = 2.7 V	-	25	48	-	56	ns	
		V _{CC} = 3.0 V to 3.6 V; C _L = 15 pF	[3]	-	16	-	-	ns	
		V _{CC} = 3.0 V to 3.6 V	[3]	-	19	38	-	45	ns
		V _{CC} = 4.5 V	-	17	32	-	38	ns	
		V _{CC} = 6.0 V	-	13	25	-	29	ns	
		Sn to nYn, nZ; see Figure 14	[2]						
		V _{CC} = 1.2 V	-	125	-	-	-	ns	
		V _{CC} = 2.0 V	-	43	82	-	97	ns	
		V _{CC} = 2.7 V	-	31	60	-	71	ns	
		V _{CC} = 3.0 V to 3.6 V; C _L = 15 pF	[3]	-	20	-	-	ns	
		V _{CC} = 3.0 V to 3.6 V	[3]	-	24	48	-	57	ns
		V _{CC} = 4.5 V	-	21	41	-	48	ns	
		V _{CC} = 6.0 V	-	16	31	-	37	ns	

Table 8. Dynamic characteristics ...continued

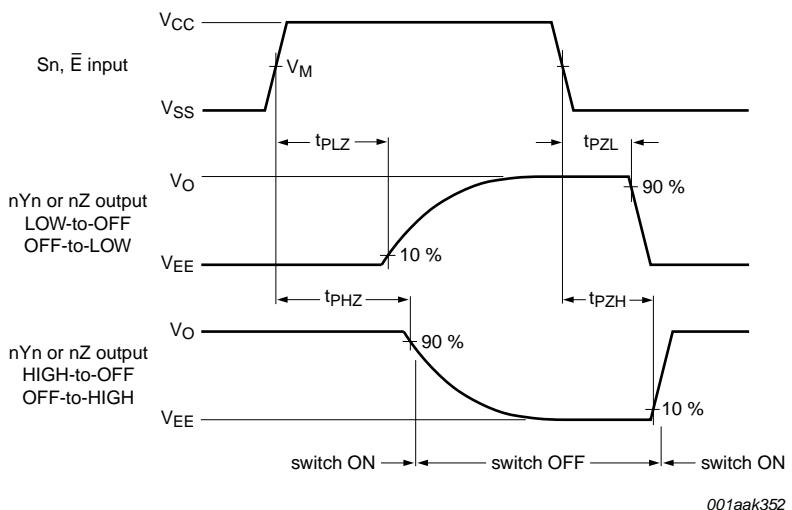
Voltages are referenced to GND (ground = 0 V). For test circuit see [Figure 15](#).


Symbol	Parameter	Conditions	-40 °C to +85 °C			-40 °C to +125 °C		Unit
			Min	Typ ^[1]	Max	Min	Max	
t_{dis}	disable time	\bar{E} to nYn, nZ ; see Figure 14	[2]					
		$V_{CC} = 1.2 \text{ V}$		-	95	-	-	ns
		$V_{CC} = 2.0 \text{ V}$		-	34	61	-	73
		$V_{CC} = 2.7 \text{ V}$		-	26	46	-	54
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}; C_L = 15 \text{ pF}$	[3]	-	17	-	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	[3]	-	20	37	-	44
		$V_{CC} = 4.5 \text{ V}$		-	18	32	-	38
		$V_{CC} = 6.0 \text{ V}$		-	15	25	-	30
		S_n to nYn, nZ ; see Figure 14	[2]					
		$V_{CC} = 1.2 \text{ V}$		-	90	-	-	ns
		$V_{CC} = 2.0 \text{ V}$		-	32	59	-	70
		$V_{CC} = 2.7 \text{ V}$		-	24	44	-	52
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}; C_L = 15 \text{ pF}$	[3]	-	16	-	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	[3]	-	19	36	-	42
		$V_{CC} = 4.5 \text{ V}$		-	17	31	-	36
		$V_{CC} = 6.0 \text{ V}$		-	14	24	-	28
C_{PD}	power dissipation capacitance	$C_L = 50 \text{ pF}; f_i = 1 \text{ MHz}; V_I = \text{GND to } V_{CC}$	[4]	-	36	-	-	pF

[1] All typical values are measured at $T_{amb} = 25 \text{ °C}$.[2] t_{pd} is the same as t_{PLH} and t_{PHL} . t_{en} is the same as t_{PZL} and t_{PZH} . t_{dis} is the same as t_{PLZ} and t_{PHZ} .[3] Typical values are measured at nominal supply voltage ($V_{CC} = 3.3 \text{ V}$).[4] C_{PD} is used to determine the dynamic power dissipation (P_D in μW). $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma((C_L + C_{SW}) \times V_{CC}^2 \times f_o)$ where: f_i = input frequency in MHz, f_o = output frequency in MHz C_L = output load capacitance in pF C_{SW} = maximum switch capacitance in pF; V_{CC} = supply voltage in Volts

N = number of inputs switching

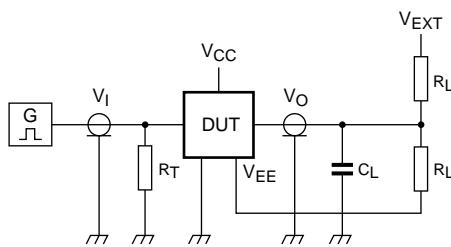
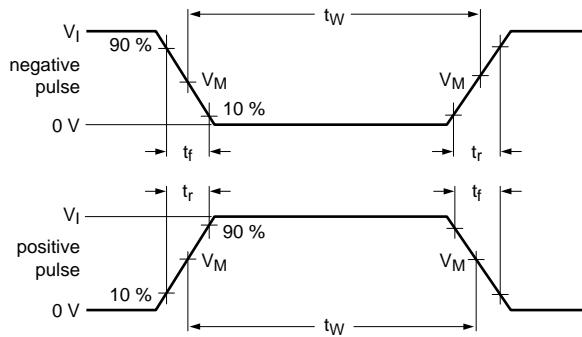
 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.


10.1 Waveforms

Measurement points are given in [Table 9](#).

V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Fig 13. nYn, nZ to nZ, nYn propagation delays



Measurement points are given in [Table 9](#).

V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Fig 14. Enable and disable times

Table 9. Measurement points

Supply voltage	Input	Output		
V_{CC}	V_M	V_M	V_X	V_Y
< 2.7 V	0.5 V_{CC}	0.5 V_{CC}	$V_{OL} + 0.1V_{CC}$	$V_{OH} - 0.1V_{CC}$
2.7 V to 3.6 V	1.5 V	1.5 V	$V_{OL} + 0.3 V$	$V_{OH} - 0.3 V$
> 3.6 V	0.5 V_{CC}	0.5 V_{CC}	$V_{OL} + 0.1V_{CC}$	$V_{OH} - 0.1V_{CC}$

001aak353

Test data is given in [Table 10](#).

Definitions for test circuit:

R_L = Load resistance.

C_L = Load capacitance including jig and probe capacitance.

R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator.

V_{EXT} = External voltage for measuring switching times.

Fig 15. Test circuit for measuring switching times

Table 10. Test data

Supply voltage	Input		Load		V_{EXT}		
V_{CC}	V_I	t_r, t_f	C_L	R_L	t_{PHL}, t_{PLH}	t_{PZH}, t_{PHZ}	t_{PZL}, t_{PLZ}
< 2.7 V	V_{CC}	≤ 6 ns	50 pF	1 k Ω	open	V_{EE}	$2V_{CC}$
2.7 V to 3.6 V	2.7 V	≤ 6 ns	15 pF, 50 pF	1 k Ω	open	V_{EE}	$2V_{CC}$
> 3.6 V	V_{CC}	≤ 6 ns	50 pF	1 k Ω	open	V_{EE}	$2V_{CC}$

10.2 Additional dynamic parameters

Table 11. Additional dynamic characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); V_I = GND or V_{CC} (unless otherwise specified); $t_f = t_{fI} \leq 6.0$ ns; $T_{amb} = 25$ °C.

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
THD	total harmonic distortion	$f_i = 1$ kHz; $C_L = 50$ pF; $R_L = 10$ kΩ; see Figure 20					
		$V_{CC} = 3.0$ V; $V_I = 2.75$ V (p-p)		-	0.8	-	%
		$V_{CC} = 6.0$ V; $V_I = 5.5$ V (p-p)		-	0.4	-	%
		$f_i = 10$ kHz; $C_L = 50$ pF; $R_L = 10$ kΩ; see Figure 20					
		$V_{CC} = 3.0$ V; $V_I = 2.75$ V (p-p)		-	2.4	-	%
		$V_{CC} = 6.0$ V; $V_I = 5.5$ V (p-p)		-	1.2	-	%
$f_{(-3dB)}$	-3 dB frequency response	$C_L = 50$ pF; $R_L = 50$ Ω; see Figure 16	[1]				
		$V_{CC} = 3.0$ V		-	180	-	MHz
		$V_{CC} = 6.0$ V		-	200	-	MHz
α_{iso}	isolation (OFF-state)	$f_i = 1$ MHz; $C_L = 50$ pF; $R_L = 600$ Ω; see Figure 18	[2]				
		$V_{CC} = 3.0$ V		-	-50	-	dB
		$V_{CC} = 6.0$ V		-	-50	-	dB
V_{ct}	crosstalk voltage	between digital inputs and switch;	[2]				
		$f_i = 1$ MHz; $C_L = 50$ pF; $R_L = 600$ Ω; see Figure 21					
		$V_{CC} = 3.0$ V		-	0.11	-	V
		$V_{CC} = 6.0$ V		-	0.12	-	V
Xtalk	crosstalk	between switches; $f_i = 1$ MHz; $C_L = 50$ pF;					
		$R_L = 600$ Ω; see Figure 22					
		$V_{CC} = 3.0$ V		-	-60	-	dB
		$V_{CC} = 6.0$ V		-	-60	-	dB

[1] Adjust f_i voltage to obtain 0 dBm level at output for 1 MHz (0 dBm = 1 mW into 50 Ω).

[2] Adjust f_i voltage to obtain 0 dBm level at output for 1 MHz (0 dBm = 1 mW into 600 Ω).

10.2.1 Test circuits

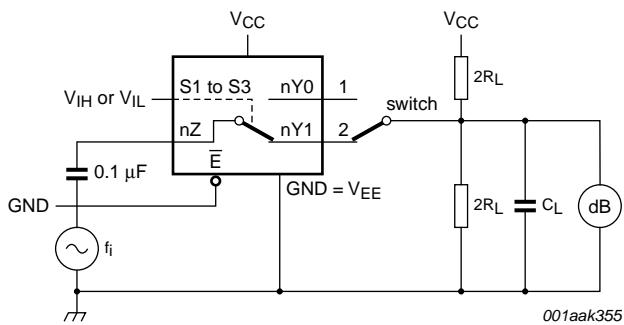


Fig 16. Test circuit for measuring frequency response

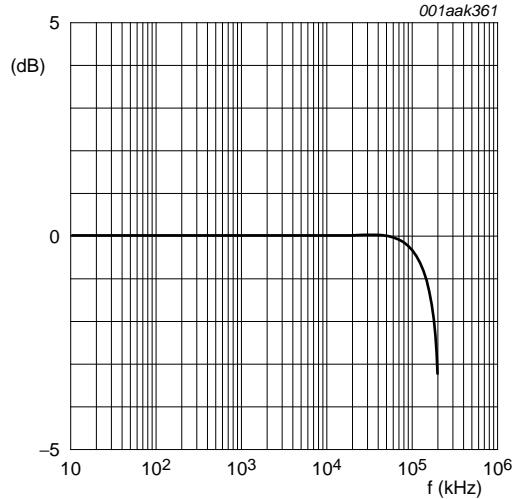


Fig 17. Typical frequency response

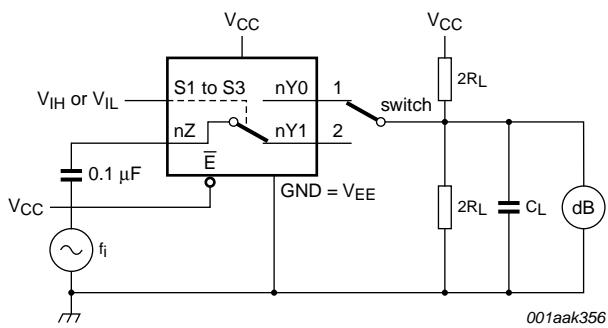
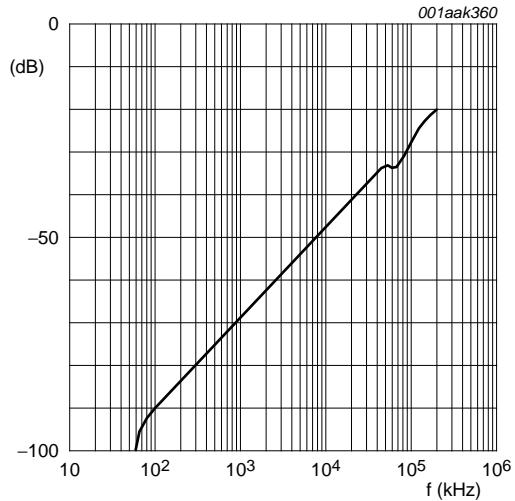
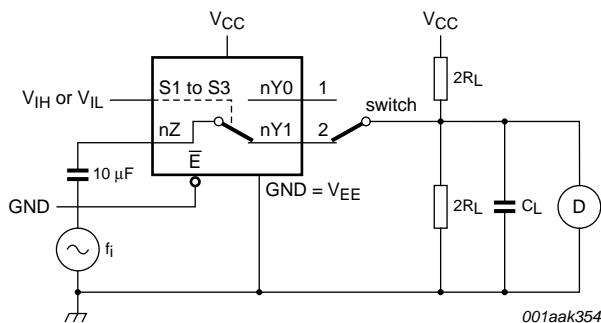
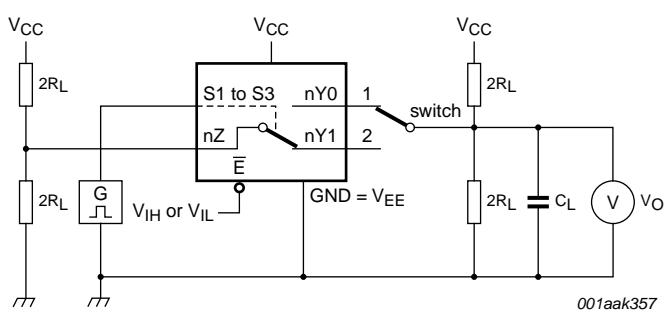


Fig 18. Test circuit for measuring isolation (OFF-state)

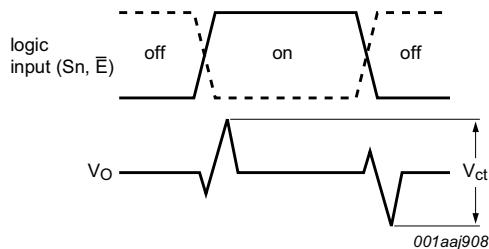
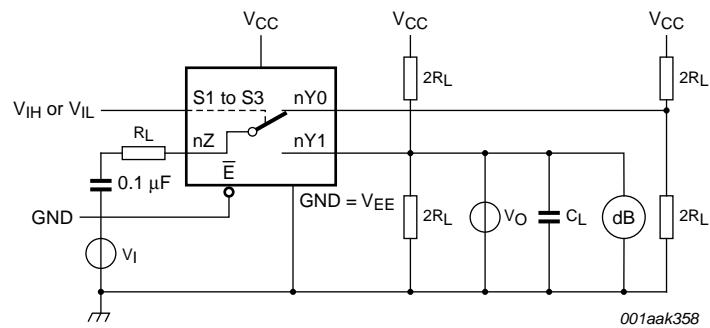
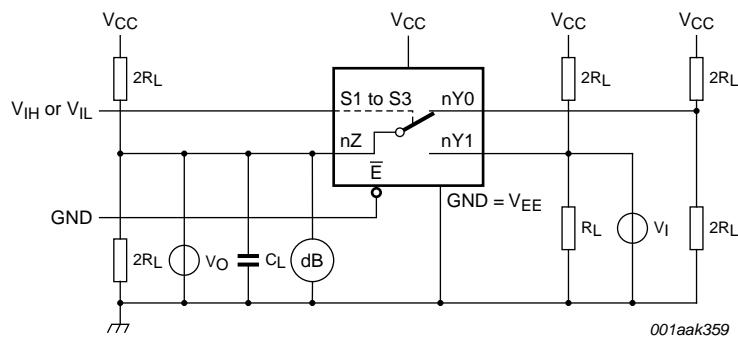

Fig 19. Typical isolation (OFF-state) as function of frequency

Fig 20. Test circuit for measuring total harmonic distortion


a. Test circuit


b. Input and output pulse definitions

V_1 may be connected to Sn or \bar{E} .

Fig 21. Test circuit for measuring crosstalk voltage between digital inputs and switch

a. Switch closed condition

b. Switch open condition

Fig 22. Test circuit for measuring crosstalk between switches

11. Package outline

DIP16: plastic dual in-line package; 16 leads (300 mil)

SOT38-4

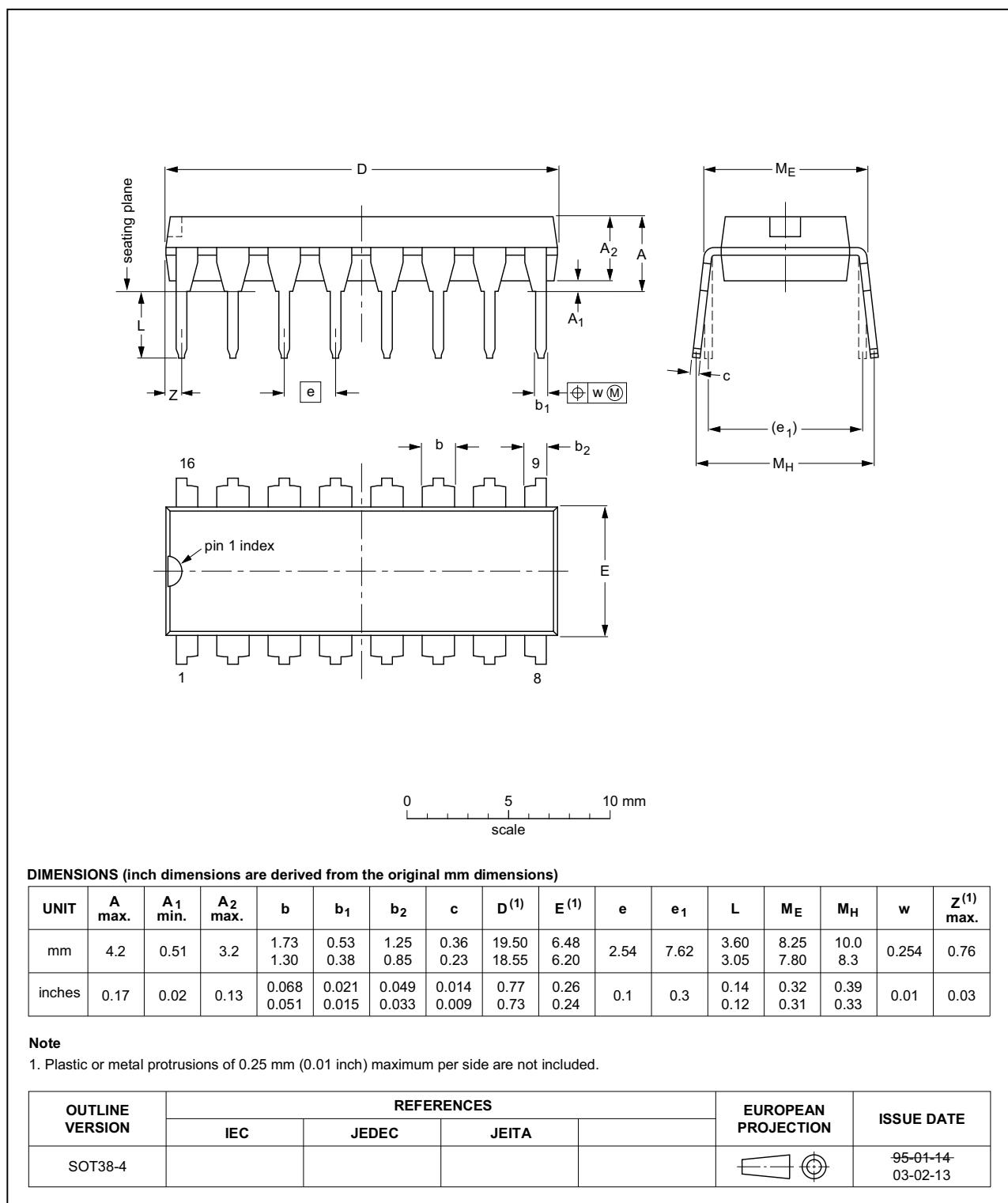
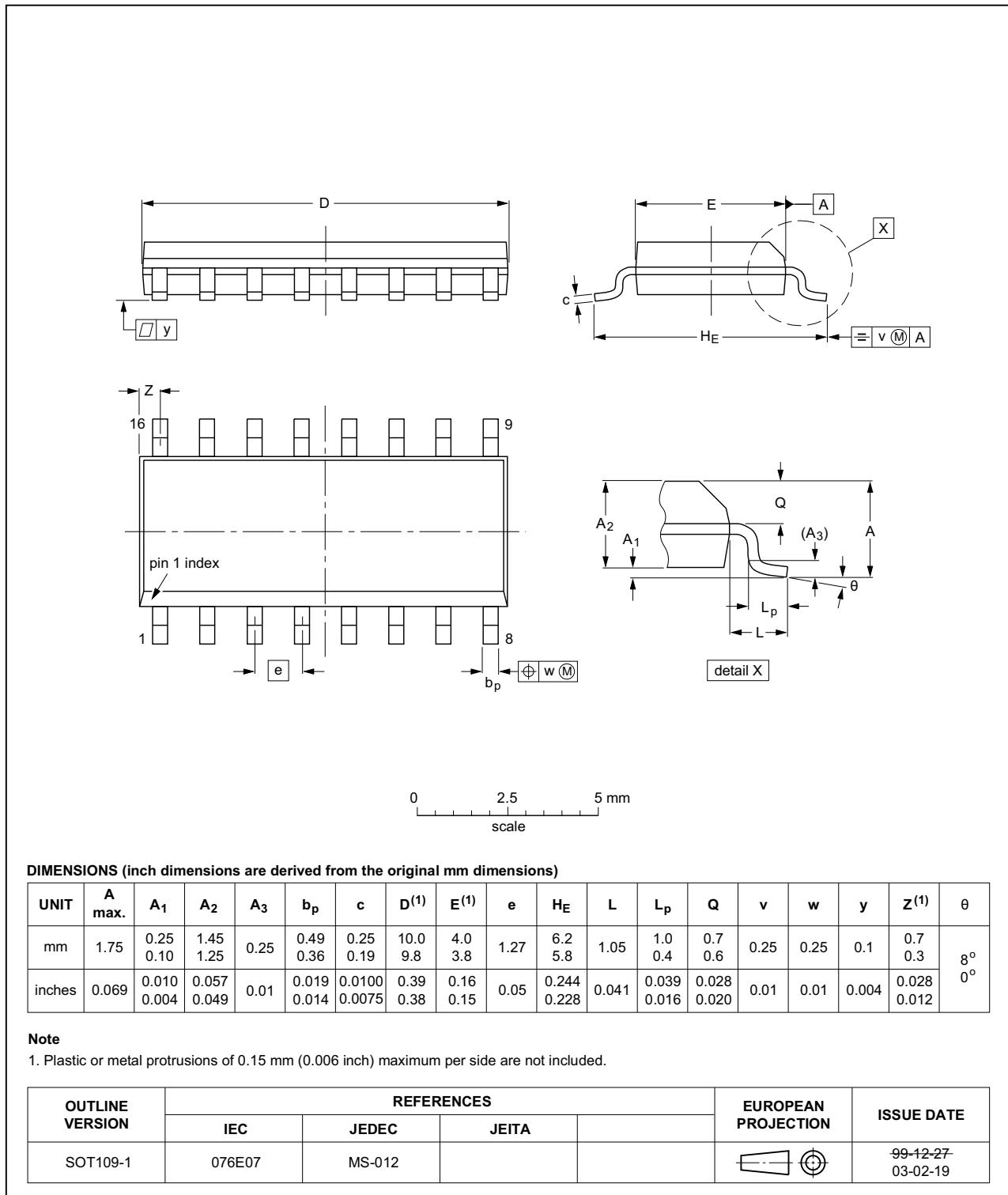



Fig 23. Package outline SOT38-4 (DIP16)

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	b _p	c	D ⁽¹⁾	E ⁽¹⁾	e	H _E	L	L _p	Q	v	w	y	Z ⁽¹⁾	θ
mm	1.75 0.10	0.25 1.25	1.45	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069 0.004	0.010 0.049	0.057 0.049	0.01	0.019 0.014	0.0100 0.0075	0.39 0.38	0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016	0.028 0.020	0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT109-1	076E07	MS-012				99-12-27 03-02-19

Fig 24. Package outline SOT109-1 (SO16)

SSOP16: plastic shrink small outline package; 16 leads; body width 5.3 mm

SOT338-1

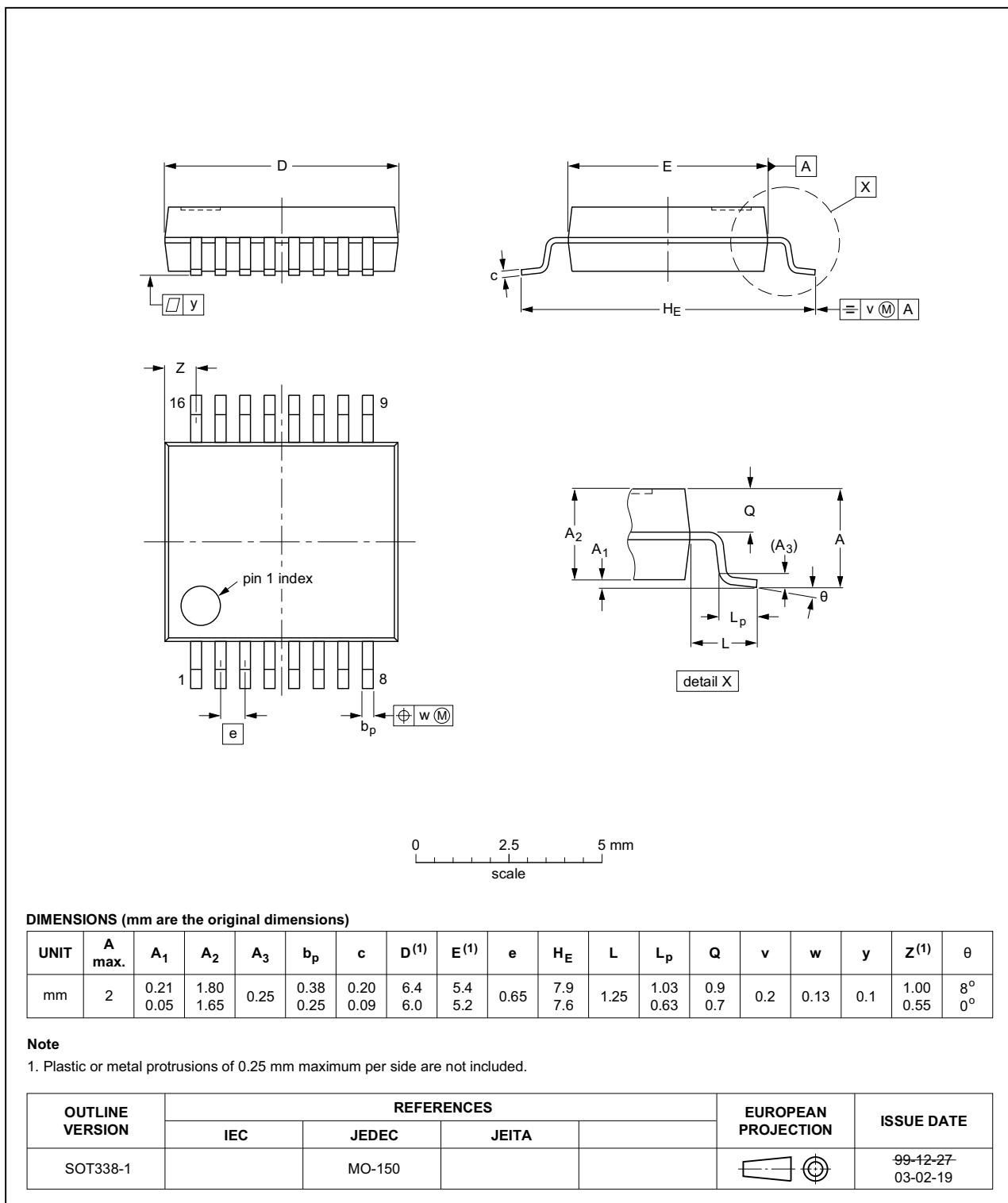


Fig 25. Package outline SOT338-1 (SSOP16)

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm

SOT403-1

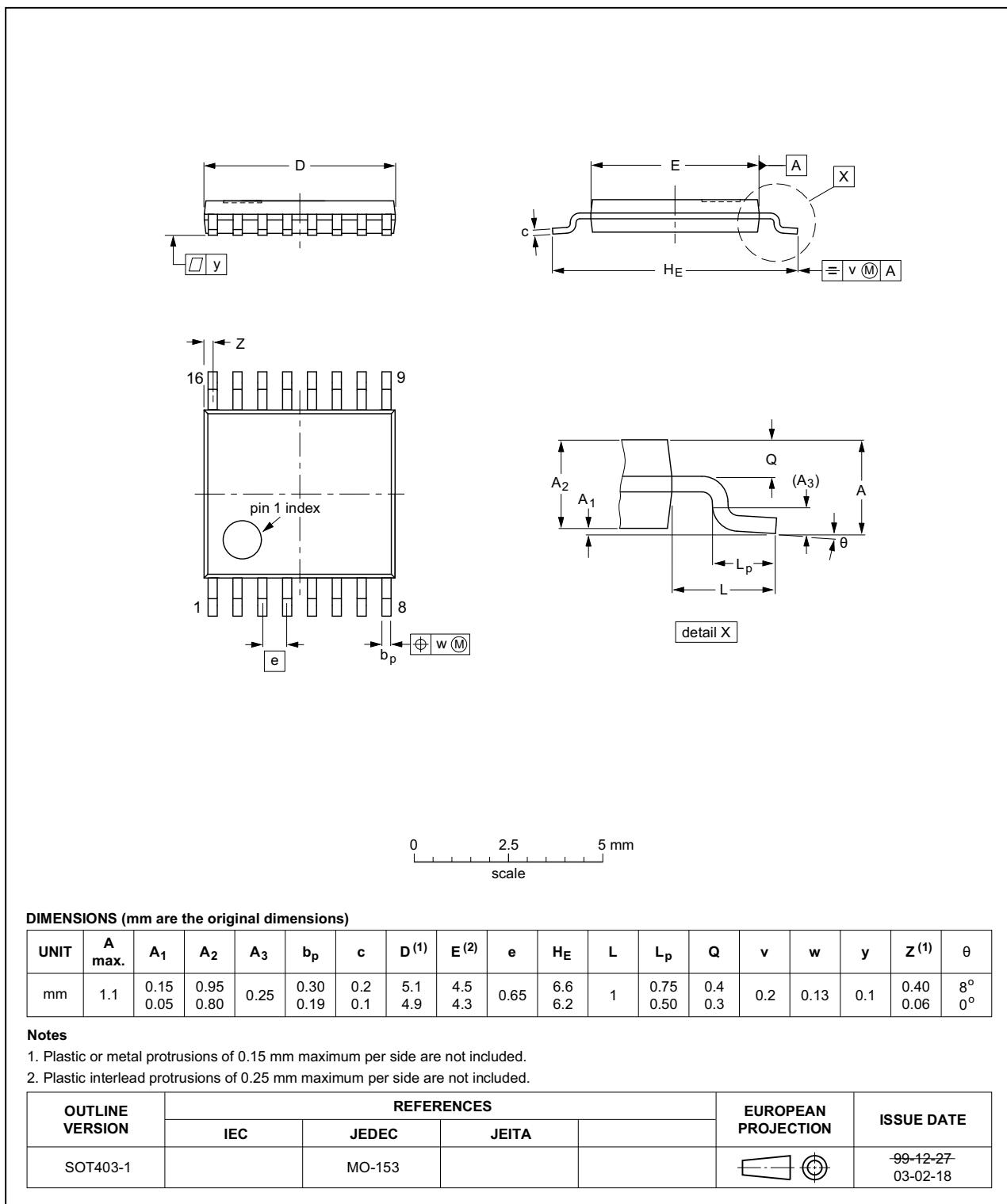


Fig 26. Package outline SOT403-1 (TSSOP16)

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads;
16 terminals; body 2.5 x 3.5 x 0.85 mm SOT763-1

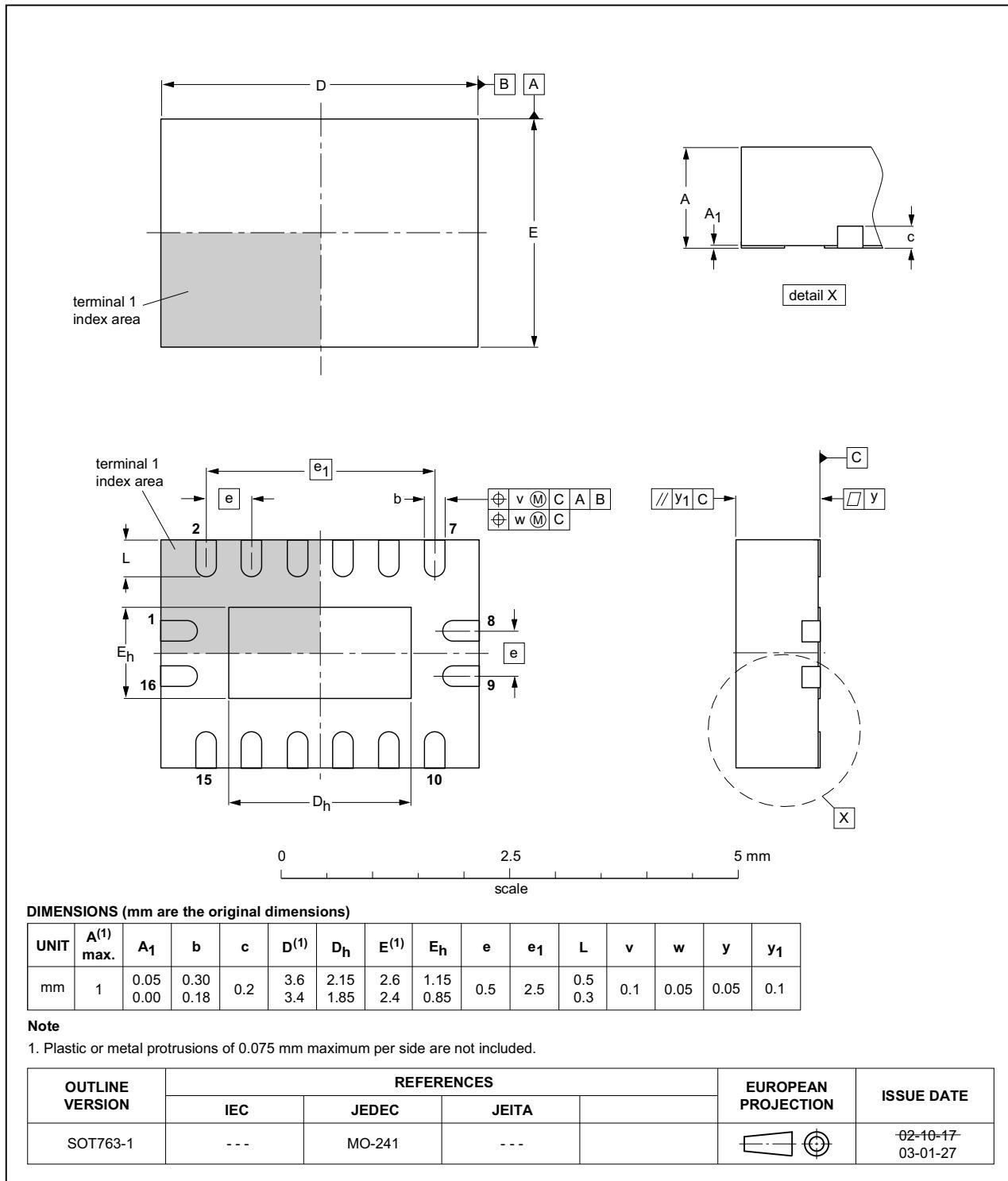


Fig 27. Package outline SOT763-1 (DHVQFN16)

12. Abbreviations

Table 12. Abbreviations

Acronym	Description
CMOS	Complementary Metal-Oxide Semiconductor
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

13. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74LV4053 v.5	20140918	Product data sheet	-	74LV4053 v.4
Modifications:	<ul style="list-style-type: none"> • Figure 7: Figure note added for DHVQFN16 package. 			
74LV4053 v.4	20090810	Product data sheet	-	74LV4053 v.3
Modifications:	<ul style="list-style-type: none"> • The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. • Legal texts have been adapted to the new company name where appropriate. • Added type number 74LV4053BQ (DHVQFN16 package) • R_{ON} values changed in Section 2. • Package version SOT38-1 changed to SOT38-4 in Section 3, and Figure 23. 			
74LV4053 v.3	19980623	Product specification	-	74LV4053 v.2
74LV4053 v.2	19970715	Product specification	-	-

14. Legal information

14.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <http://www.nxp.com>.

14.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

14.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <http://www.nxp.com/profile/terms>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

14.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

15. Contact information

For more information, please visit: <http://www.nxp.com>

For sales office addresses, please send an email to: salesaddresses@nxp.com

16. Contents

1	General description	1
2	Features and benefits	1
3	Ordering information	2
4	Functional diagram	2
5	Pinning information	4
5.1	Pinning	4
5.2	Pin description	4
6	Functional description	5
7	Limiting values	5
8	Recommended operating conditions	6
9	Static characteristics	7
9.1	Test circuits	8
9.2	ON resistance	8
9.3	On resistance waveform and test circuit	10
10	Dynamic characteristics	11
10.1	Waveforms	13
10.2	Additional dynamic parameters	15
10.2.1	Test circuits	16
11	Package outline	19
12	Abbreviations	24
13	Revision history	24
14	Legal information	25
14.1	Data sheet status	25
14.2	Definitions	25
14.3	Disclaimers	25
14.4	Trademarks	26
15	Contact information	26
16	Contents	27

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP Semiconductors N.V. 2014.

All rights reserved.

For more information, please visit: <http://www.nxp.com>

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 18 September 2014

Document identifier: 74LV4053

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP:

[74LV4053BQ,115](#) [74LV4053D,112](#) [74LV4053DB,112](#) [74LV4053DB,118](#) [74LV4053D,118](#) [74LV4053PW,112](#)
[74LV4053PW,118](#) [74LV4053D-Q100J](#)