

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

74VHCT245A Octal Buffer/Line Driver with 3-STATE Outputs

Features

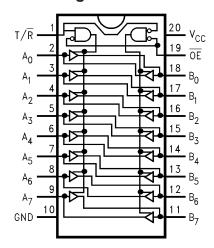
- High Speed: t_{PD} = 5.4ns (Typ.) at V_{CC} = 5V
- Power Down Protection on Inputs and Outputs
- Low Power Dissipation: $I_{CC} = 4\mu A$ (Max.) @ $T_A = 25$ °C
- Pin and Function Compatible with 74HCT245

General Description

The VHCT245A is an advanced high speed CMOS octal bus transceiver fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. The VHCT245A is intended for bidirectional asynchronous communication between data busses. The direction of data transmission is determined by the level of the T/R input. The enable input can be used to disable the device so that the busses are effectively isolated.

Protection circuits ensure that 0V to 7V can be applied to the input and output⁽¹⁾ pins without regard to the supply voltage. These circuits prevent device destruction due to mismatched supply and input/output voltages. This device can be used to interface 5V to 3V systems and two supply systems such as battery back up.

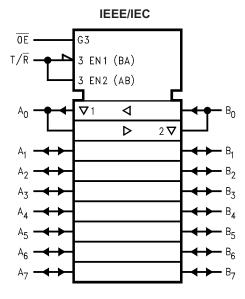
Note:


1. Outputs in OFF-State

Ordering Information

Order Number	Package Number	Package Description
74VHCT245AM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74VHCT245ASJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74VHCT245AMTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering number. Pb-Free package per JEDED J-STD-020B.


Connection Diagram

Pin Description

Pin Names	Description
ŌĒ	Output Enable Input
T/R	Transmit/Receive Input
A ₀ -A ₇	Side A Inputs or 3-STATE Outputs
B ₀ –B ₇	Side B Inputs or 3-STATE Outputs

Logic Symbol

Truth Table

Inp	uts	
ŌĒ	T/R	Outputs
L	L	Bus B Data to Bus A
L	Н	Bus A Data to Bus B
Н	Х	HIGH-Z State

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +7.0V
V _{IN}	DC Input Voltage	-0.5V to +7.0V
V _{OUT}	DC Output Voltage	
	Note 2	–0.5V to V _{CC} + 0.5V
	Note 3	-0.5V to +7.0V
I _{IK}	Input Diode Current	–20mA
I _{OK}	Output Diode Current ⁽⁴⁾	±20mA
I _{OUT}	DC Output Current	±25mA
I _{CC}	DC V _{CC} / GND Current	±75mA
T _{STG}	Storage Temperature	–65°C to +150°C
T _L	Lead Temperature (Soldering, 10 seconds)	260°C

Recommended Operating Conditions⁽⁵⁾

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	4.5V to +5.5V
V _{IN}	Input Voltage	0V to +5.5V
V _{OUT}	Output Voltage	
	Note 2	0V to V _{CC}
	Note 3	0V to +5.5V
T _{OPR}	Operating Temperature	–40°C to +85°C
t _r , t _f	Input Rise and Fall Time, V _{CC} = 5.0V ± 0.5V	0ns/V ~ 20ns/V

Notes

- 2. HIGH or LOW state. I_{OUT} absolute maximum rating must be observed.
- 3. When outputs are in OFF-State or when $V_{CC} = 0V$.
- 4. $V_{OUT} < GND$, $V_{OUT} > V_{CC}$ (Outputs Active).
- 5. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

					Т	_A = 25°	С		-40°C 85°C			
Symbol	Parameter	V _{CC} (V)	Con	Conditions		Тур.	Max.	Min.	Max.	Units		
V _{IH}	HIGH Level Input	4.5			2.0			2.0		V		
	Voltage	5.5			2.0			2.0				
V _{IL}	LOW Level Input	4.5					0.8		0.8	V		
	Voltage	5.5					0.8		0.8			
V _{OH}	HIGH Level Output	4.5	$V_{IN} = V_{IH}$	$I_{OH} = -50\mu A$	4.40	4.50		4.40		V		
	Voltage		or V _{IL}	$I_{OH} = -8mA$	3.94			3.80				
V _{OL}	LOW Level Output	4.5		$I_{OL} = 50\mu A$		0.0	0.1		0.1	V		
	Voltage		or V _{IL}	or V _{IL}	or V _{IL}	$I_{OL} = 8mA$			0.36		0.44	
I _{OZ}	3-STATE Output Off-State Current	5.5		$V_{IN} = V_{IH} \text{ or } V_{IL},$ $V_{OUT} = V_{CC} \text{ or GND}$			±0.25		±2.5	μA		
I _{IN}	Input Leakage Current	0–5.5	V _{IN} = 5.5V or GND				±0.1		±1.0	μA		
I _{CC}	Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$ or GND				4.0		40.0	μA		
I _{CCT}	Maximum I _{CC} /Input	5.5	V _{IN} = 3.4V, Other Input = V _{CC} or GND				1.35		1.50	mA		
I _{OFF}	Output Leakage Current (Power Down State)	0.0	V _{OUT} = 5.5	5V			0.5		5.0	μА		

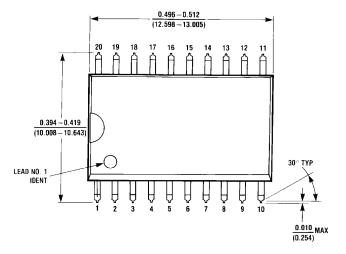
Noise Characteristics

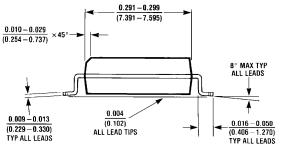
				$T_A = 25^{\circ}C$		
Symbol	Parameter	V _{CC} (V)	Conditions	Тур.	Limits	Units
V _{OLP} ⁽⁶⁾	Quiet Output Maximum Dynamic V _{OL}	5.0	C _L = 50pF	1.2	1.6	V
V _{OLV} ⁽⁶⁾	Quiet Output Minimum Dynamic V _{OL}	5.0	C _L = 50pF	-1.2	-1.6	V
V _{IHD} ⁽⁶⁾	Minimum HIGH Level Dynamic Input Voltage	5.0	C _L = 50pF		2.0	V
V _{ILD} ⁽⁶⁾	Maximum LOW Level Dynamic Input Voltage	5.0	C _L = 50pF		0.8	V

Note:

6. Parameter guaranteed by design.

AC Electrical Characteristics


					T,	_A = 25°	С	T _A = -	-40°C 85°C	
Symbol	Parameter	V _{CC} (V)	Conc	litions	Min.	Тур.	Max.	Min.	Max.	Units
t _{PLH} , t _{PHL}	Propagation Delay	5.0 ± 0.5		C _L = 15pF		4.9	7.7	1.0	8.5	ns
	Time			$C_L = 50pF$		5.4	8.7	1.0	9.5	
t _{PZL} , t _{PZH}	3-STATE Output	5.0 ± 0.5	$R_L = 1k\Omega$	C _L = 15pF		9.4	13.8	1.0	15.0	ns
	Enable Time			$C_L = 50pF$		9.9	14.8	1.0	16.0	
t _{PLZ} , t _{PHZ}	3-STATE Output Disable Time	5.0 ± 0.5	$R_L = 1k\Omega$	C _L = 50pF		10.1	15.4	1.0	16.5	ns
toslh, toshl	Output to Output Skew	5.0 ± 0.5	(7)				1.0		1.0	ns
C _{IN}	Input Capacitance		V _{CC} = Ope	en		4	10		10	pF
C _{OUT}	Output Capacitance		$V_{CC} = 5.0$	V		13				pF
C _{PD}	Power Dissipation Capacitance		(8)			16				pF


Notes:

- 7. Parameter guaranteed by design. $t_{OSLH} = |t_{PLH\;max} t_{PLH\;min}|; \ t_{OSHL} = |t_{PHL\;max} t_{PHL\;min}|$
- 8. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (Opr.) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC} / 8$ (per F/F). The total C_{PD} when n pcs. of the Octal D Flip-Flop operates can be calculated by the equation: C_{PD} (total) = 20 + 12n.

Physical Dimensions

Dimensions are in millimeters unless otherwise noted.

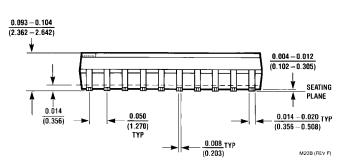
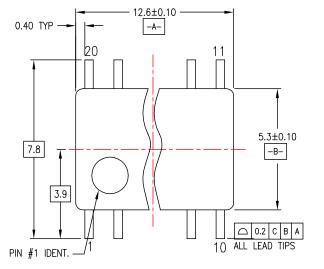
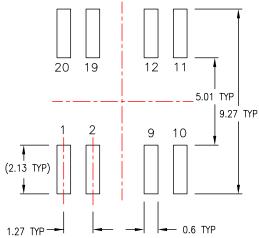
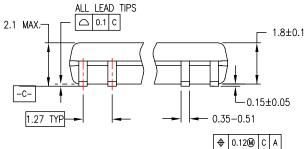
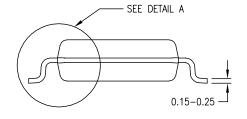
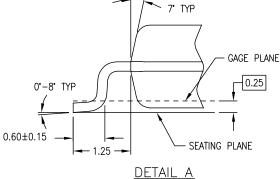




Figure 1. 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Package Number M20B


Physical Dimensions (Continued)


Dimensions are in millimeters unless otherwise noted.

LAND PATTERN RECOMMENDATION

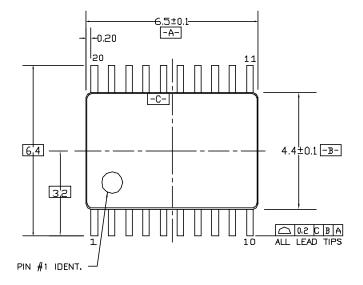

DIMENSIONS ARE IN MILLIMETERS

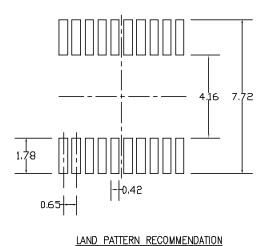
NOTES:

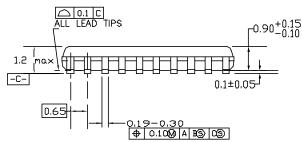
- A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998.

 B. DIMENSIONS ARE IN MILLIMETERS.

 C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.




M20DREVC


Figure 2. 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M20D

Physical Dimensions (Continued)

Dimensions are in millimeters unless otherwise noted.

DIMENSIONS ARE IN MILLIMETERS

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MD-153, VARIATION AC, REF NOTE 6, DATE 7/93.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

0.09-0.20¹ R0.09min GAGE PLANE SEATING PLANE R0.09min DETAIL A

SEE DETAIL A

MTC20REVD1

Figure 3. 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

TinyBuck™

TinyLogic[®]

TINYOPTO™

TinyPower™

TruTranslation™

TinyWire™

นSerDes™

UniFET™

UHC®

VCXTM

Wire™

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACFx® HiSeC™ Power-SPM™ Across the board. Around the world.™ PowerTrench® i-Lo™ ActiveArray[™] ImpliedDisconnect™ Programmable Active Droop™ Bottomless™ IntelliMAX™ **QFET** QSTM Build it Now™ ISOPLANAR™ CoolFET™ MICROCOUPLER™ QT Optoelectronics™ CorePLUS™ Quiet Series™ MicroPak™ RapidConfigure™ $CROSSVOLT^{m}$ MICROWIRE™ CTL™ RapidConnect™ Motion-SPM™ Current Transfer Logic™ MSX™ ScalarPump™ DOME™ MSXPro™ SMART START™ E²CMOSTM SPM[®] OCX^{TM} $\mathsf{EcoSPARK}^{^{\circledR}}$ STEALTH™ OCXPro™ EnSigna™ OPTOLOGIC® SuperFET™ FACT Quiet Series™ OPTOPLANAR® SuperSOT™-3 FACT® FAST® $PACMAN^{TM}$ SuperSOT™-6 PDP-SPM™ SuperSOT™-8 FASTr™ РОР™ SyncFET™ FPS™ Power220® TCM^TM

FRFET® Power247® The Power Franchise®

GlobalOptoisolator™ PowerEdge™

GTO™ PowerSaver™ TinyBoost™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. I27

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor:

74VHCT245AMX 74VHCT245AMTC 74VHCT245AM 74VHCT245ASJX 74VHCT245AMTCX