

May 2008

74VHCT74A Dual D-Type Flip-Flop with Preset and Clear

Features

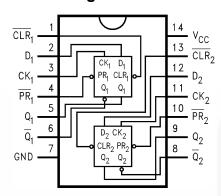
- $_{\rm n}$ High speed: $f_{MAX} = 160 MHz$ (Typ.) at $T_A = 25^{\circ}C$
- n High noise immunity: $V_{IH} = 2.0V$, $V_{II} = 0.8V$
- n Power down protection is provided on all inputs and outputs
- $_{\rm n}$ Low power dissipation: $I_{CC} = 2\mu A$ (Max.) at $T_A = 25^{\circ}C$
- n Pin and function compatible with 74HCT74

General Description

The VHCT74A is an advanced high speed CMOS Dual D-Type Flip-Flop fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. The signal level applied to the D INPUT is transferred to the Q OUTPUT during the positive going transition of the CK pulse. CLR and PR are independent of the CK and are accomplished by setting the appropriate input LOW.

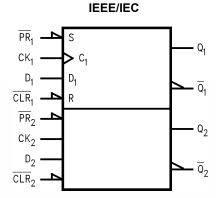
Protection circuits ensure that 0V to 7V can be applied to the input pins without regard to the supply voltage and to the output pins with $V_{CC} = 0V$. These circuits prevent device destruction due to mismatched supply and input/output voltages. This device can be used to interface 3V to 5V systems and two supply systems such as battery backup.

Ordering Information


Order Number	Package Number	Package Description
74VHCT74AM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74VHCT74ASJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74VHCT74AMTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.

All packages are lead free per JEDEC: J-STD-020B standard.


Connection Diagram

Pin Description

Pin Names	Description			
D ₁ , D ₂	Data Inputs			
CK ₁ , CK ₂	Clock Pulse Inputs			
CLR ₁ , CLR ₂	Direct Clear Inputs			
PR ₁ , PR ₂	Direct Preset Inputs			
$Q_1, \overline{Q}_1, Q_2, \overline{Q}_2$	Outputs			

Logic Symbol

Truth Table

	Inputs			Out	outs	
CLR	PR	D	СК	Q	Q	Function
L	Н	Х	Χ	L	Н	Clear
Н	L	Х	Χ	Н	L	Preset
L	L	Х	Х	Н	Н	
Н	Н	L		L	Н	
Н	Н	Н	~	Н	L	
Н	Н	Х	~	Q _n	Q _n	No Change

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +7.0V
V _{IN}	DC Input Voltage	-0.5V to +7.0V
V _{OUT}	DC Output Voltage	
	Note 1	$-0.5V$ to $V_{CC} + 0.5V$
	Note 2	-0.5V to 7.0V
I _{IK}	Input Diode Current	–20mA
I _{OK}	Output Diode Current ⁽³⁾	±20mA
I _{OUT}	DC Output Current	±25mA
I _{CC}	DC V _{CC} /GND Current	±50mA
T _{STG}	Storage Temperature	−65°C to +150°C
T _L	Lead Temperature (Soldering, 10 seconds)	260°C

Recommended Operating Conditions⁽⁴⁾

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	4.5V to +5.5V
V _{IN}	Input Voltage	0V to +5.5V
V _{OUT}	Output Voltage	
	Note 1	0V to V _{CC}
	Note 2	0V to 5.5V
T _{OPR}	Operating Temperature	–40°C to +85°C
t _r , t _f	Input Rise and Fall Time	
	$V_{CC} = 5.0V \pm 0.5V$	0ns/V ~ 20ns/V

Notes:

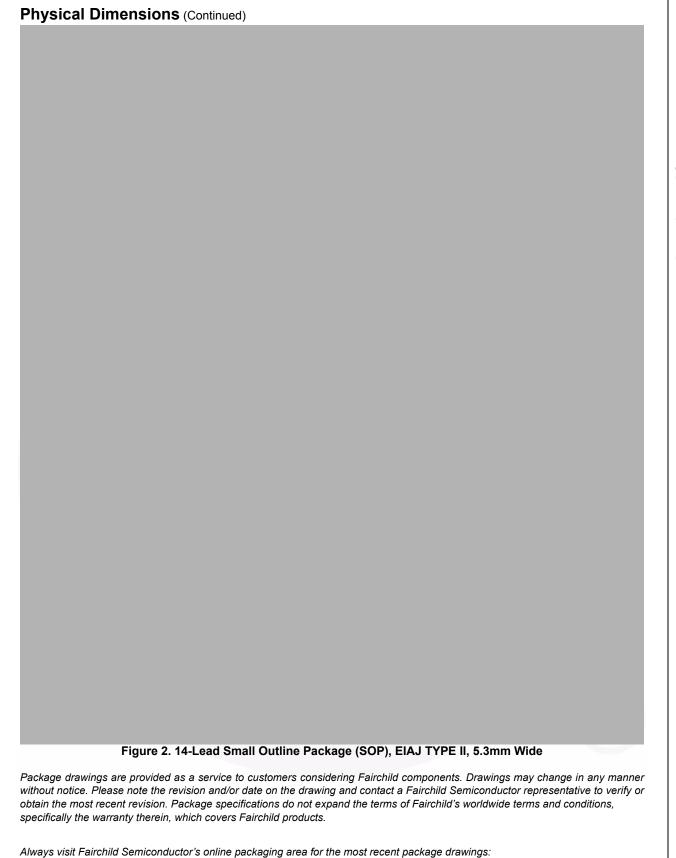
- 1. HIGH or LOW state. I_{OUT} absolute maximum rating must be observed.
- 2. $V_{CC} = 0V$.
- 3. $V_{OUT} < GND$, $V_{OUT} > V_{CC}$ (Outputs Active).
- 4. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

					Т	_A = 25°	С		–40°C 85°C	
Symbol	Parameter	V _{CC} (V)	Con	ditions	Min.	Тур.	Max.	Min.	Max.	Units
V _{IH}	HIGH Level Input	4.5			2.0			2.0		V
	Voltage	5.5			2.0			2.0		
V _{IL}	LOW Level Input	4.5					0.8		0.8	V
	Voltage	5.5					0.8		0.8	
V _{OH}	HIGH Level Output	4.5		$I_{OH} = -50\mu A$	4.40	4.50		4.40		V
	Voltage	4.5	or V _{IL}	$I_{OH} = -8mA$	3.94			3.80		
V _{OL}	LOW Level Output	4.5		$I_{OL} = 50 \mu A$		0.0	0.1		0.1	V
	Voltage	4.5	or V _{IL}	$I_{OL} = 8mA$			0.36		0.44	
I _{IN}	Input Leakage Current	0–5.5	$V_{IN} = 5.5V$	or GND			±0.1		±1.0	μA
I _{CC}	Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$	or GND			2.0		20.0	μA
I _{CCT}	Maximum I _{CC} /Input	5.5	V _{IN} = 3.4V Inputs = V	, Other _{CC} or GND			1.35		1.50	mA
I _{OFF}	Output Leakage Current (Power Down State)	0.0	V _{OUT} = 5.9	5V			+0.5		+5.0	μA

AC Electrical Characteristics

				T _A = 25°C		T _A = -40°C to +85°C			
Symbol	Parameter	V _{CC} (V) ⁽⁵⁾	Conditions	Min.	Тур.	Max.	Min.	Max.	Units
f _{MAX}	Maximum Clock	5.0	$C_L = 15pF$	100	160		80		MHz
	Frequency	5.0	$C_L = 50pF$	80	140		65		
t _{PLH} , t _{PHL}	Propagation Delay	5.0	$C_L = 15pF$		5.8	7.8	1.0	9.0	ns
	Time (CK-Q, Q)	5.0	$C_L = 50pF$		6.3	8.8	1.0	10.0	
t _{PLH} , t _{PHL}	Propagation Delay	5.0	$C_L = 15pF$		7.6	10.4	1.0	12.0	ns
	Time (CLR, PR-Q, Q)	5.0	$C_L = 50pF$		8.1	11.4	1.0	13.0	
C _{IN}	Input Capacitance		V _{CC} = Open		4	10		10	pF
C _{PD}	Power Dissipation Capacitance		(6)		24				pF


Notes:

- 5. V_{CC} is 5.0 ± 0.5V
- 6. C_{PD} is defined as the value of internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (Opr.) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC} / 2$ (per flip-flop).

AC Operating Requirements

			T _A =	25°C	T _A = -40°C to +85°C	
Symbol	Parameter	V _{CC} (V)	Тур.		aranteed nimum	Units
$t_W(L), t_W(H)$	Minimum Pulse Width (CK)	5.0 ± 0.5		5.0	5.0	ns
t _W (L)	Minimum Pulse Width (CLR, PR)	5.0 ± 0.5		5.0	5.0	ns
t _S	Minimum Setup Time	5.0 ± 0.5		5.0	5.0	ns
t _H	Minimum Hold Time	5.0 ± 0.5		0	0	ns
t _{REM}	Minimum Removal Time (CLR, PR)	5.0 ± 0.5		3.5	3.5	ns

Physical I	Dimensions	
F:	inner 4 44 Lead Overll Outline lete weeted Gioscit (OCIO). IEREO MO 040 0 450ll November	
	igure 1. 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow	
without notice. obtain the most	ings are provided as a service to customers considering Fairchild components. Drawings may change in any manner Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or st recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, warranty therein, which covers Fairchild products.	
	airchild Semiconductor's online packaging area for the most recent package drawings:	

http://www.fairchildsemi.com/packaging/

Physical Dimensions (Continued)
Figure 3. 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.
Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™ $CROSSVOLT^{\text{\tiny TM}}$ CTL™

Current Transfer Logic™ EcoSPARK®

EZSWITCH™ *

Fairchild[®] Fairchild Semiconductor® FACT Quiet Series™

FACT[®] $\mathsf{FAST}^{\mathbb{R}}$ FastvCore™ FlashWriter® 3 FPS™ $\mathsf{FRFET}^{\scriptscriptstyle{\textcircled{\tiny{\$}}}}$

Global Power Resource^{sм}

Green FPS™

Green FPS™ e-Series™

GTO™ i-Lo™ IntelliMAX™ ISOPLANAR™ MegaBuck™

MICROCOUPLER™ MicroFET™

MicroPak™ MillerDrive™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® PDP-SPM™ Power220® Power247® POWEREDGE® Power-SPM™ PowerTrench®

Programmable Active Droop™

QFET(QSTM

QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™

STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6

SPM® SuperSOT™-8 SyncFET™ SYSTEM ®

The Power Franchise®

puwer franchise TinyBoost™ TinvBuck™ $\mathsf{TinyLogic}^{\mathbb{R}}$ TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ uSerDes™ **UHC**®

Ultra FRFET™ UniFET™ VCX^{TM}

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification		Definition				
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.				
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.				

Rev. 132

^{*} EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: 74VHCT74AMX 74VHCT74AMTCX