

Connection of motor and encoder

Couplings

Bellows and spring washer couplings

Bellows couplings provide cost-effective connection of the motor and encoder. They are also able to correct any angular errors between the drive and encoder.

Spring washer couplings are used with high speeds.

Order code Couplings

 $\left| 8.0000 \right| \cdot \left| 1 \right| XXX$

a Type of coupling

102 = Bellows-type ø 19 mm [0.75"]

202 = Bellows-type ø 15 mm [0.59"]

301 = Spring washer type,

ø 30 mm [1.18"], one-part

401 = Spring washer type,

ø 30 mm [1.18"], three part, plug-in

502 = Bellows-type ø 25 mm [0.98"]

Bore diameter d1
(see technical data)

0

Note:

for the bore diameter

d1 = 1/4" please enter Code A2

G Bore diameter d2 (see technical data)

Example: d1 = 10 mm [0.39"] and d2 = 12 mm [0.47"] Order no. = 8.0000.1X0X.**1012**

Technical data						
Туре		8.0000.1 1 02.XXXX	8.0000.1 2 02.XXXX	8.0000.1 3 01.XXXX	8.0000.1 4 01.XXXX	8.0000. 1 5 02.XXXX
Maximum speed	min ⁻¹	10000	10000	12000	12000	10000
Maximum torque	Ncm	120	40	80	60	200
Maximum	radial mm	± 0.3	± 0.25	± 0.4	± 0.3	± 0.35
displacement	axial mm	± 0.5	± 0.45	± 0.4	± 0.4	± 0.54
	angular -	± 4°	± 4°	± 3°	± 2.5°	± 4°
Torsion spring stiffne	ess Nm/rad	150	85	150	30	183
Radial spring stiffne	ss N/mm	10	20	6	40	17.8
Moment of inertia	gcm²	9.5	2.1	19	35	20
Max. tightening torq	ue Ncm	150	70	80	80	120
Working temperature		-30°C +120°C [-22°F +248°F]	-30°C +120°C [-22°F +248°F]	-30°C +120°C [-22°F +248°F]	-10°C +80°C [+14°F +176°F]	-30°C +120°C [-22°F +248°F]
Weight approx.		16 g [0.56 oz]	6.5 g [0.23 oz]	16 g [0.56 oz]	30 g [1.06 oz]	24 g [0.85 oz]
Material bellow or sp	flange ring washer/casing	Al, anodised stainless steel	Al, anodised stainless steel	Al, anodised stainless steel	Al, anodised PA 6.6 gf.	Al, anodised stainless steel
Diameter d/d1 from	to mm [inch]	3 12 [0.12 0.47]	3 9 [0.12 0.35]	3 8 [0.12 0.32]	4 16 [0.16 0.47]	3 16 [0.12 0.63]
Standard bore diameter	(d1 / d2) mm [inch]	12 / 12 [0.47 0.47] 12 / 10 [0.47 0.39] 10 / 10 [0.39 0.39] 10 / 08 [0.39 0.32] 10 / 06 [0.39 0.24] 08 / 08 [0.32 0.32] 06 / 06 [0.24 0.24]	08 / 06 [0.32 0.24] 06 / 06 [0.24 0.24] 06 / 04 [0.24 0.16] 04 / 04 [0.16 0.16]	06 / 06 [0.24 0.24]	12 / 12 [0.47 0.47] 12 / 10 [0.47 0.39] 10 / 10 [0.39 0.39] 10 / 06 [0.39 0.24] 06 / 06 [0.24 0.24] 1/4" / 10 1/4" / 06	15 / 12 [0.59 0.47] 14 / 12 [0.55 0.47] 14 / 10 [0.55 0.39] 10 / 10 [0.39 0.39] 06 / 06 [0.24 0.24]
Danasia di amanda						

Description and applications

Manufacturing and installation tolerances as well as the effects of temperature cause alignment errors between shafts in drive engineering which can sometimes lead to extreme overload on the bearings.

This may result in increased wear of the bearings and may lead to premature failure of the encoder. By using couplings, these alignment errors can be compensated, thereby reducing the load on the bearings to a minimum. A distinction should be made between three different kinds of alignment error: radial, angular and axial displacement.

Whilst with torsion-free but flexible shaft couplings, axial shaft displacements produce only static forces in the coupling, radial and angular displacements produce alternating stresses, restoring forces and moments which may have an impact on adjoining components (shaft bearings).

Depending on the type of coupling, particular attention should be paid to radial shaft displacement which should be kept to a minimum.

Accessories

Kübler

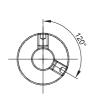
Connection of motor and encoder

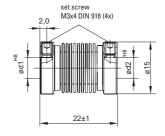
Couplings

Bellows and spring washer couplings

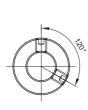
Metal bellows-type couplings (.1102, .1202 und .1502)

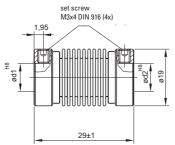
Metal bellows-type couplings are recommended as an inexpensive type of coupling. They are also suitable for compensating larger angle displacements.

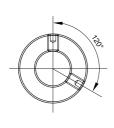

Spring washer-type couplings (.1301 und .1401)

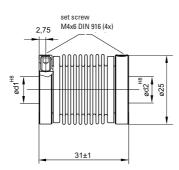

Spring washer couplings are used primarily where high speeds and minimal axial errors occur. For applications requiring potential separation between the encoder and the drive, use the electrically isolating spring washer coupling.

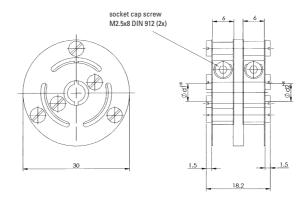
Dimensions


Dimensions in mm

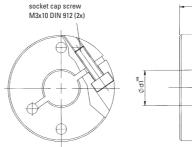

Bellows-type coupling ø 15 [0.59] (8.0000.1202.XXXX)

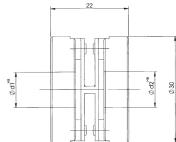



Bellows-type coupling ø 19 [0.75] (8.0000.1102.XXXX)

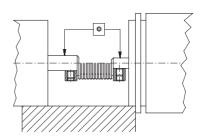


Bellows-type coupling ø 25 [0.98] (8.0000.1502.XXXX)





Spring washer-type coupling, one-part (8.0000.1301.XXXX)


Spring washer-type coupling, three part, plug-in (8.0000.1401.XXXX)

Installation instructions

- 1. Check shaft for displacement; see technical data for details.
- 2. Align and adjust coupling on shafts.
- 3. Tighten locking screws carefully. Avoid overtightening.
- 4. During installation protect the coupling from damage and from overbending.

Accessories

Connection of motor and encoder

Flexible shaft coupling

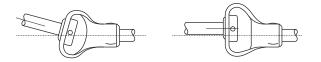
Double loop coupling

The safe, uncomplicated and economical solution, if drive shafts with angular, radial and/or axial displacement are to be friction-locked together.

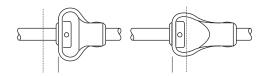
Order no. size 1

Bore diameter both sides 6 mm [0.24"]

8.0000.1J01.0606

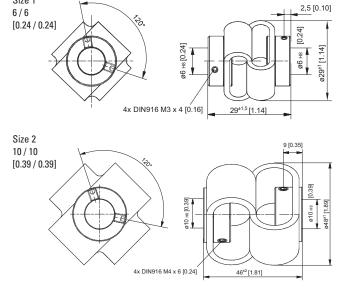

Order no. size 2

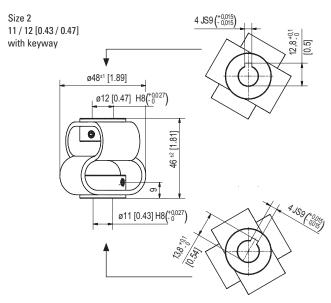
Bore diameter both sides 10 mm [0.39"] Bore diameter 11 mm [0.43"] and 12 mm [0.47"] with keyway 8.0000.1K01.1010 8.0000.1L01.1112


Technical data							
	Size 1	Size 2					
Max. speed	3000 min ⁻¹	3000 min ⁻¹					
Max. torque	0.5 Nm	2.0 Nm					
Max. offset of shafts radial	± 2 mm	± 3 mm					
axial	± 2 mm	± 4 mm					
angular	± 10°	± 12°					
Torsion spring stiffness	13 Nm/rad	28 Nm/rad					
Radial spring stiffness	13 N/mm	7 N/mm					
Moment of intertia	41 gcm²	106 gcm²					
Max. clamping torque	100 Ncm	100 Ncm					
Weight, approx.	33 g [1.16 oz]	85 g [3.35 oz]					
Temperature range	-30°C + 80°C [-22°F +176°F]						
Material flange	steel galvanized						
conecting element	Polyurethane						

Functional principle

Compensation of an angular misalignment Compensation of a radial misalignment


Compensation of a axial misalignment



Dimensions

Dimensions in mm

Size 1

