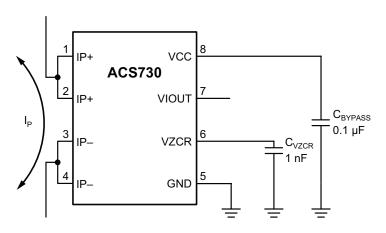


FEATURES AND BENEFITS

- Industry-leading noise performance with greatly improved bandwidth through proprietary amplifier and filter design techniques
- · High bandwidth 1 MHz analog output
- Patented integrated digital temperature compensation circuitry allows high accuracy over temperature in an open loop sensor
- 1.2 m Ω primary conductor resistance for low power loss and high inrush current withstanding capability
- Small footprint, low-profile SOIC8 package suitable for space-constrained applications
- Integrated shield virtually eliminates capacitive coupling from current conductor to die due to high dV/dt voltage transients
- 5 V, single supply operation
- Output voltage proportional to AC or DC current
- Factory-trimmed sensitivity and quiescent output voltage for improved accuracy
- · High PSRR for noisy environments

Package: 8-Pin SOIC (suffix LC)


DESCRIPTION

The AllegroTM ACS730 current sensor family provides economical and precise solutions for AC or DC current sensing in industrial, commercial, and communications systems. The device package allows for easy implementation by the customer. Typical applications include motor control, load detection and management, switched-mode power supplies, and overcurrent fault protection.

The device consists of a precise, low-offset, linear Hall sensor circuit with a copper conduction path located near the surface of the die. Applied current flowing through this copper conduction path generates a magnetic field which is sensed by the integrated Hall IC and converted into a proportional voltage. Device accuracy is optimized through the close proximity of the magnetic field to the Hall transducer. A precise, proportional voltage is provided by the Hall IC, which is programmed for accuracy after packaging. The output of the device has a positive slope when an increasing current flows through the primary copper conduction path (from pins 1 and 2, to pins 3 and 4), which is the path used for current sensing. The internal resistance of this conductive path is typically $1.2\,\mathrm{m}\Omega$, providing low power loss.

The terminals of the conductive path are electrically isolated from the sensor leads (pins 5 through 8). This allows the ACS730 current sensor to be used in high-side current sense applications without the use of high-side differential amplifiers or other costly isolation techniques.

The ACS730 is provided in a small, low-profile surface-mount SOIC8 package. The leadframe is plated with 100% matte tin, which is compatible with standard lead (Pb) free printed circuit board assembly processes. Internally, the device is Pb-free, except for flip-chip high-temperature Pb-based solder balls, currently exempt from RoHS. The device is fully calibrated prior to shipment from the factory.

The ACS730 outputs an analog signal, V_{IOUT}, that varies linearly with the bidirectional AC or DC primary sensed current, I_p, within the range specified

Typical Application

ACS730

1 MHz Bandwidth, Galvanically Isolated Current Sensor IC in Small Footprint SOIC8 Package

SELECTION GUIDE

Part Number	Optimized Range, I _P (A)	Sensitivity ¹ , Sens(Typ) (mV/A)	T _A (°C)	Packing ²
ACS730KLCTR-20AB-T	±20	100		
ACS730KLCTR-40AB-T	±40	50	-40 to 125	Tape and reel, 3000 pieces per reel
ACS730KLCTR-50AB-T	±50	40		

 $^{^{1}}$ Measured at $V_{\rm CC}$ = 5 V

SPECIFICATIONS

Absolute Maximum Ratings

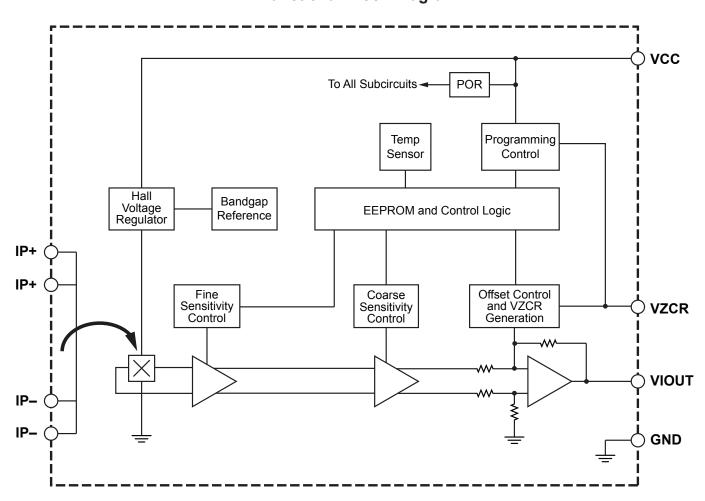
Characteristic	Symbol	Notes	Rating	Units
Supply Voltage	V _{CC}		6	V
Reverse Supply Voltage	V _{RCC}		-0.1	V
Output Voltage	V _{IOUT}		6	V
Reverse Output Voltage	V _{RIOUT}		-0.1	V
Operating Ambient Temperature	T _A	Range K	-40 to 125	°C
Junction Temperature	T _J (max)		165	°C
Storage Temperature	T _{stg}		-65 to 170	°C

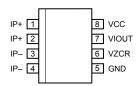
Isolation Characteristics

Characteristic Symbol Notes		Value	Units	
Dielectric Strength Test Voltage	V _{ISO}	Agency type-tested for 60 seconds per UL 1577 (edition 5); production-tested at 2520 VRMS for 1 second, in accordance with UL 1577 (edition 5)	2100	V_{RMS}
Clearance	D _{cl}	Minimum distance through air from IP leads to signal leads	1.6	mm
Creepage	D _{cr}	Minimum distance along package body from IP leads to signal leads	1.6	mm

Thermal Characteristics

Characteristic	Symbol	Test Conditions ¹	Value	Units
Package Thermal Resistance (Junction to Ambient)	R _{θJA}	Mounted on the Allegro 85-xxxx evaluation board with 1500 mm² of 2 oz. copper on each side, connected to pins 1 and 2, and to pins 3 and 4, with thermal vias connecting the layers. Performance values include the power consumed by the PCB.²	23	°C/W
Package Thermal Resistance (Junction to Lead)	R _{θJL}	Mounted on the Allegro ASEK722 evaluation board.	5	°C/W


¹ Additional thermal information available on the Allegro website.


² Contact Allegro for additional packing options.

² Further details on the board are available from the Frequently Asked Questions document on our website. Further information about board design and thermal performance also can be found in the Applications Information section of this datasheet.

Functional Block Diagram

Pinout Diagram and Terminal List Table

Package LC, 8-Pin SOICN Pinout Diagram

Terminal List Table

Number	Name	Description
1, 2	IP+	Terminals for current being sensed; fused internally
3, 4	IP-	Terminals for current being sensed; fused internally
5	GND	Signal ground terminal
6	VZCR	Zero current reference; outputs a DC voltage equal to V_{IOUT} at IP = 0 A
7	VIOUT	Analog output signal
8	VCC	Device power supply terminal

COMMON ELECTRICAL CHARACTERISTICS¹: Valid over full range of T_A , V_{CC} = 5 V, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Supply Voltage	V _{CC}		4.5	5	5.5	V
Supply Current	I _{CC}	V _{CC} = 5 V, output open	-	17	25	mA
Power-On Time	t _{PO}	T _A = 25°C	-	150	-	μs
Output Capacitance Load	C _L	VIOUT to GND	-	_	0.47	nF
Reference Capacitance Load	C _{VZCR}	VZCR to GND	-	_	1	nF
Output Resistive Load	R _L	VIOUT to GND, VIOUT to VCC	10	_	_	kΩ
Reference Resistive Load	R _{VZCR}	VIOUT to GND, VZCR to VCC	10	_	_	kΩ
Output High Saturation Voltage ²	V _{OH}	VIOUT, T _A = 25°C	V _{CC} - 0.4	V _{CC} - 0.3	_	V
Output Low Saturation Voltage ²	V _{OL}	VIOUT, T _A = 25°C	_	0.1	0.2	V
Primary Conductor Resistance	R _{IP}	T _A = 25°C	_	1.2	_	mΩ
Magnetic Coupling Factor	MCF	T _A = 25°C	_	10	_	G/A
Rise Time	t _r	$T_A = 25$ °C, $C_L = 0.47$ nF, 1 V step on output	_	0.6	_	μs
Response Time	t _{RESPONSE}	$T_A = 25$ °C, $C_L = 0.47$ nF, 1 V step on output	_	0.7	_	μs
Internal Bandwidth	BW	Small signal –3 dB; C _L = 0.47 nF	_	1	_	MHz
Noise Density	I _{ND(rms)}	Input referenced noise density; T _A = 25°C, C _L = 0.47 nF	-	40	_	µA _(rms) / √Hz
Power Supply Rejection Ratio	PSRR	0 to 200 Hz, 100 mV pk-pk ripple on V_{CC} , I_{P} = 0 A, VIOUT and VZCR	-	35	_	dB
Sensitivity Power Supply Rejection Ratio	SPSRR	DC, $V_{CC}(min) < V_{CC} < V_{CC}(max)$, $I_P = I_{PR}(max)$	-	15	_	dB
Offset Power Supply Rejection Ratio	OPSRR	DC, V _{CC} (min) < V _{CC} < V _{CC} (max)	-	30	_	dB
Output Source Current	I _{OUT(src)}	VIOUT shorted to GND	-	5.5	-	mA
Output Sink Current	I _{OUT(snk)}	VIOUT shorted to VCC	-	3	-	mA
Zero Current Reference Voltage	V _{ZCR}	T _A = 25°C	-	2.5	_	V
		T _A = 25°C	-10	±3	10	mV
Zero Current Reference Offset Voltage	V _{ZCR(ofs)}	T _A = 25°C to 125°C	-20	±10	20	mV
		T _A = -40°C to 25°C	-	±10	_	mV
Reference Source Current	I _{VZCR(src)}	VZCR shorted to GND	_	2	_	mA
Reference Sink Current	I _{VZCR(snk)}	VZCR shored to VCC	_	14	_	mA

¹ Device may be operated at higher primary current levels, I_P, ambient temperatures, T_A, and internal leadframe temperatures, provided the Maximum Junction Temperature, T_J(max), is not exceeded.

² The sensor IC will continue to respond to current beyond the range of I_P until the high or low saturation voltage; however, the nonlinearity in this region will be worse than through the rest of the measurement range.

xKLCTR-20AB PERFORMANCE CHARACTERISTICS: Valid over full range of T_A , V_{CC} = 5 V, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ.1	Max.	Unit
NOMINAL PERFORMANCE						
Current Sensing Range	I _{PR}			_	20	Α
Sensitivity	Sens		_	100	_	mV/A
Zero Current Output Voltage	V _{IOUT(Q)}	I _P = 0 A, T _A = 25°C	_	2.5	-	V
ACCURACY PERFORMANCE						
Total Output Error?	_	I _P = 20 A; T _A = 25°C to 125°C	-4	±3	4	%
Total Output Error ²	E _{TOT}	I _P = 20 A; T _A = -40°C to 25°C	_	±4	_	%
Concitivity Error		I _P = 20 A; T _A = 25°C to 125°C	-2.5	±1.5	2.5	%
Sensitivity Error	E _{sens}	I _P = 20 A; T _A = -40°C to 25°C	_	±4	_	%
Offeet Veltage	V	I _P = 0 A; T _A = 25°C to 125°C	-75	±50	75	mV
Offset Voltage	V _{OE}	I _P = 0 A; T _A = -40°C to 25°C	_	±50	-	mV
Nantinaguite	_	I _P within I _{POA} , T _A = 25°C to 125°C	-2	±0.75	2	%
Nonlinearity E _{LIN}		I_P within I_{POA} , $T_A = -40^{\circ}$ C to 25°C	_	±0.75	-	%
LIFETIME DRIFT CHARACTE	RISTICS					
Total Output Error Lifetime Drift	E _{tot_drift}	I _P = 20 A		±1.5	_	%
Sensitivity Error Lifetime Drift	E _{sens_drift}	I _P = 20 A	_	±1	_	%
Offset Voltage Lifetime Drift	V _{off_drift}	I _P = 0 A	_	±20	_	mV

¹ Typical values with ± are 3 sigma values, except for Lifetime Drift which are mean values.

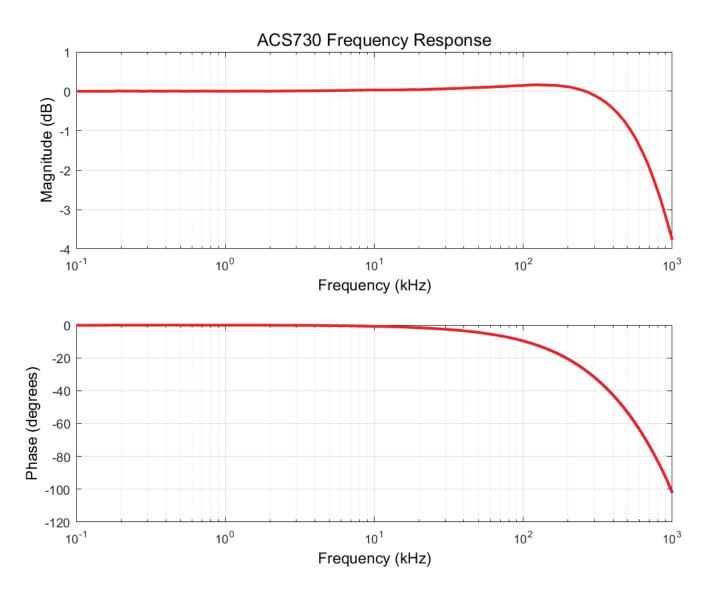
xKLCTR-40AB PERFORMANCE CHARACTERISTICS: Valid over full range of T_A , V_{CC} = 5 V, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ.1	Max.	Unit
NOMINAL PERFORMANCE						
Current Sensing Range	I _{PR}		-40	_	40	Α
Sensitivity	Sens		_	50	_	mV/A
Zero Current Output Voltage	V _{IOUT(Q)}	I _P = 0 A, T _A = 25°C	_	2.5	_	V
ACCURACY PERFORMANCE						
		I _P = 20 A; T _A = 25°C to 125°C	-4	±3	4	%
Tatal Outroot France?	_	I _P = 20 A; T _A = -40°C to 25°C	_	±4.5	_	%
Total Output Error ²	E _{TOT}	I _P = 40 A; T _A = 25°C to 125°C	-5	±3 5	%	
		I _P = 40 A; T _A = -40°C to 25°C	_	±5	_	%
oneithight France		I _P = 20 A; T _A = 25°C to 125°C	-2.5	±2	2.5	%
	_	I _P = 20 A; T _A = -40°C to 25°C	_	±3.5	_	%
Sensitivity Error	E _{sens}	I _P = 40 A; T _A = 25°C to 125°C	-3.5	±2.5	3.5	%
		$I_P = 40 \text{ A}; T_A = -40^{\circ}\text{C to } 25^{\circ}\text{C}$		±5	_	%
Officet Voltage	\/	I _P = 0 A; T _A = 25°C to 125°C	-40	±20	40	mV
Offset Voltage V _{OE}		I _P = 0 A; T _A = -40°C to 25°C	_	±30	_	mV
Ni a a Bara a a abi	_	I _P within I _{POA} , T _A = 25°C to 125°C	-2	±0.75	2	%
Nonlinearity	E _{LIN}	I_P within I_{POA} , $T_A = -40$ °C to 25°C	_	±0.75	_	%
LIFETIME DRIFT CHARACTE	RISTICS					
Total Output Error Lifetime Drift	E _{tot_drift}	= 40 A		±1.5	_	%
Sensitivity Error Lifetime Drift	E _{sens_drift}	I _P = 20 A	_	±1	_	%
Offset Voltage Lifetime Drift	V _{off_drift}	I _P = 0 A	_	±20	_	mV

¹ Typical values with ± are 3 sigma values, except for Lifetime Drift which are mean values.

² Percentage of I_P, output filtered.

² Percentage of I_P, output filtered.

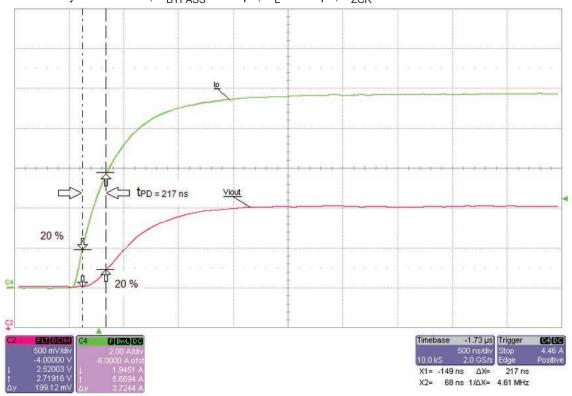

xKLCTR-50AB PERFORMANCE CHARACTERISTICS: Valid over full range of T_A , V_{CC} = 5 V, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ.1	Max.	Unit
NOMINAL PERFORMANCE			•			
Current Sensing Range	I _{PR}		-50	-	50	А
Sensitivity	Sens			40	_	mV/A
Zero Current Output Voltage	V _{IOUT(Q)}	I _P = 0 A, T _A = 25°C	_	2.5	_	V
ACCURACY PERFORMANCE						
		I _P = 25 A; T _A = 25°C to 125°C	-4	±3	4	%
Tatal Outrout France?	_	I _P = 25 A; T _A = -40°C to 25°C	_	±5	_	%
Total Output Error ²	E _{TOT}	I _P = 50 A; T _A = 25°C to 125°C	-5	±3	5	%
		I _P = 50 A; T _A = -40°C to 25°C	_	±5	_	%
	E _{sens}	I _P = 25 A; T _A = 25°C to 125°C	-2.5	±2	2.5	%
		I _P = 25 A; T _A = -40°C to 25°C	_	±4	_	%
Sensitivity Error		I _P = 50 A; T _A = 25°C to 125°C	-3.5	±3	3.5	%
		I _P = 50 A; T _A = -40°C to 25°C	_	±5	_	%
Offe at Maltage	\/	I _P = 0 A; T _A = 25°C to 125°C	-40	±20	40	mV
Offset Voltage	V _{OE}	I _P = 0 A; T _A = -40°C to 25°C	_	±30	_	mV
Nie olio e evito :	_	I _P within I _{POA} , T _A = 25°C to 125°C	-2	±0.75	2	%
Nonlinearity E _{LIN}	LIN	I _P within I _{POA} , T _A = -40°C to 25°C	_	±0.75	_	%
LIFETIME DRIFT CHARACTE	RISTICS					
Total Output Error Lifetime Drift	E _{tot_drift}	I _P = 50 A	_	±1.5	_	%
Sensitivity Error Lifetime Drift	E _{sens_drift}	I _P = 25 A	_	±1	_	%
Offset Voltage Lifetime Drift	V _{off_drift}	I _P = 0 A	_	±20	_	mV

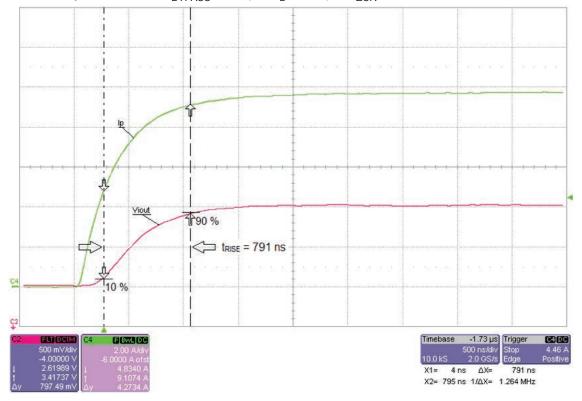
 $^{^{\}rm 1}$ Typical values with \pm are 3 sigma values, except for Lifetime Drift which are mean values. $^{\rm 2}$ Percentage of Ip, output filtered.

CHARACTERISTIC PERFORMANCE

7

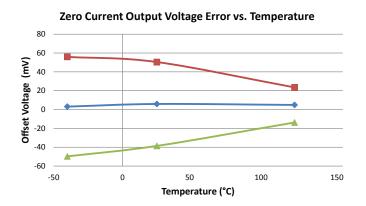

Response Time ($t_{RESPONSE}$) 10 A input signal (I_P) with rise time < 1 μs Sensitivity = 100 mV/A, C_{BYPASS} = 0.1 μ F, C_{L} = 470 pF, V_{ZCR} = 1 nF

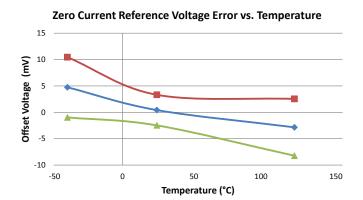
90 % TRESPONSE = 210 ns 90 % -1.73 µs Trigger Timebase X1= 585 ns ΔX= X2= 795 ns 1/ΔX= 4.76 MHz

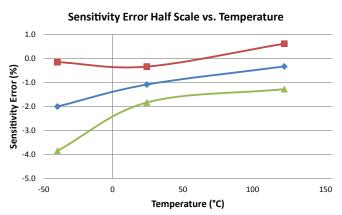


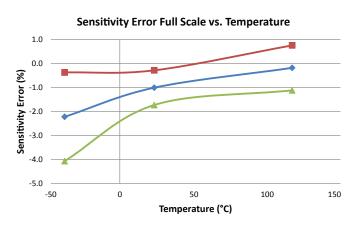
Propagation Delay (t_{PD})

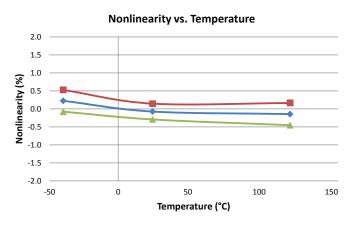
10 A input signal (I_P) with rise time < 1 μ s Sensitivity = 100 mV/A, C_{BYPASS} = 0.1 μ F, C_L = 470 pF, V_{ZCR} = 1 nF

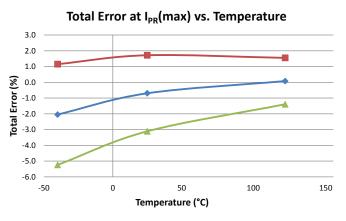


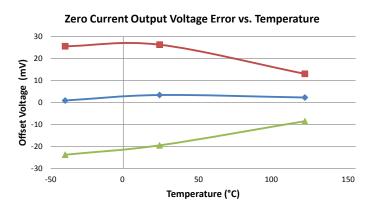

Rise Time (t_{RISE}) 10 A input signal (I_P) with rise time < 1 μs Sensitivity = 100 mV/A, C_{BYPASS} = 0.1 μF , C_L = 470 pF, V_{ZCR} = 1 nF

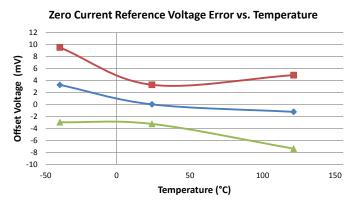


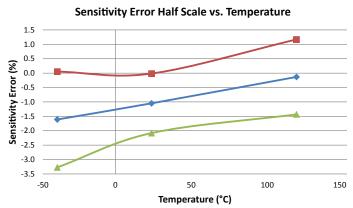

CHARACTERISTIC PERFORMANCE

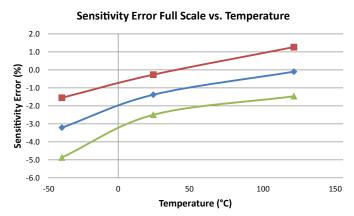

xKLCTR-20AB Key Parameters

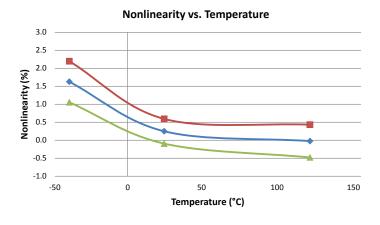


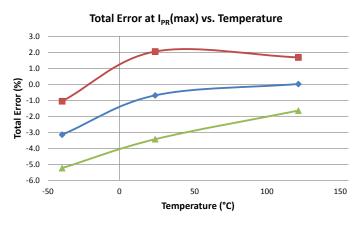


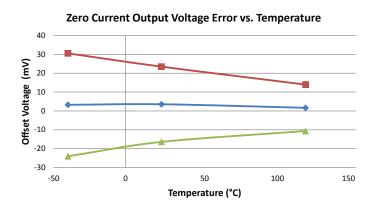


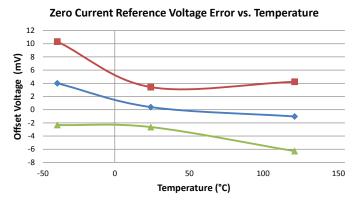

Average

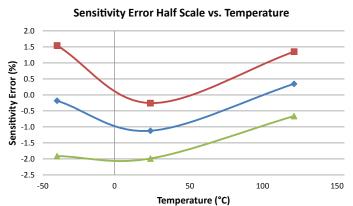

+3 Sigma

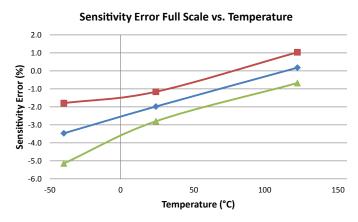

xKLCTR-40AB Key Parameters

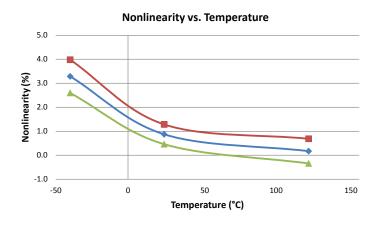


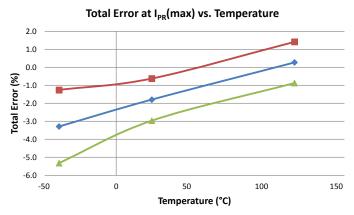



-3 Sigma


Average


- +3 Sigma


xKLCTR-50AB Key Parameters



Average

+3 Sigma

DEFINITIONS OF ACCURACY CHARACTERISTICS

Sensitivity (Sens). The change in sensor IC output in response to a 1A change through the primary conductor. The sensitivity is the product of the magnetic circuit sensitivity (G/A) (1 G = 0.1 mT) and the linear IC amplifier gain (mV/G). The linear IC amplifier gain is programmed at the factory to optimize the sensitivity (mV/A) for the full-scale current of the device.

Nonlinearity (E_{LIN}). The nonlinearity is a measure of how linear the output of the sensor IC is over the full current measurement range. The nonlinearity is calculated as:

$$E_{LIN} = \left\{ 1 - \frac{V_{IOUT}(I_R(max)) - V_{IOUT(Q)}}{2 \cdot V_{IOUT}(I_R(max)/2) - V_{IOUT(Q)}} \right\} \cdot 100(\%)$$

Zero Current Output Voltage (V_{IOUT(Q)}**).** The output of the sensor when the primary current is zero. For a unipolar supply voltage, it nominally remains at 2.5 V for a bidirectional device. Variation in $V_{IOUT(Q)}$ can be attributed to the resolution of the Allegro linear IC quiescent voltage trim and thermal drift.

Offset Voltage (V $_{\text{OE}}$). The deviation of the device output from its ideal quiescent value of 2.5 V due to nonmagnetic causes. To convert this voltage to amperes, divide by the device sensitivity, Sens.

Total Output Error (E_{TOT}). The difference between the current measurement from the sensor IC and the actual current (I_p), relative to the actual current. This is equivalent to the difference between the ideal output voltage and the actual output voltage, divided by the ideal sensitivity, relative to the current flowing through the primary conduction path:

$$E_{TOT}(I_P) = \frac{V_{IOUT_IDEAL}(I_P) - V_{IOUT}(I_P)}{Sens_{IDEAL} \times I_P} \bullet 100 (\%)$$

The Total Output Error incorporates all sources of error and is a function of I_P . At relatively high currents, E_{TOT} will be mostly due to sensitivity error, and at relatively low currents, E_{TOT} will be mostly due to Offset Voltage (V_{OE}). In fact, at $I_P=0,\,E_{TOT}$ approaches infinity due to the offset. This is illustrated in Figure 1 and Figure 2. Figure 1 shows a distribution of output voltages versus I_P at 25°C and across temperature. Figure 2 shows the corresponding E_{TOT} versus I_P .

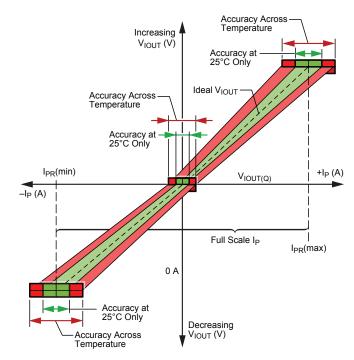


Figure 1: Output Voltage versus Sensed Current

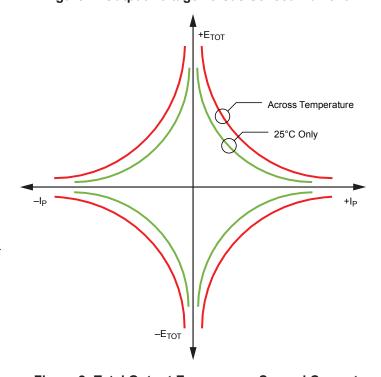


Figure 2: Total Output Error versus Sensed Current

Power Supply Rejection Ratio (PSRR). The ratio of the change on VIOUT or VZCR to a change in V_{CC} in dB.

$$PSRR = 20 \log_{10} \left(\left| \frac{\Delta V_{CC}}{\Delta V_{IOUT}} \right| \right)$$

Sensitivity Power Supply Rejection Ratio (PSRR). The ratio of the percent change in sensitivity from the sensitivity at 5 V to the percent change in V_{CC} in dB.

$$SPSRR (V_{CC}) = 20 \log_{10} \left(\left| \frac{Sens_{5V} \times (V_{CC} - 5 \text{ V})}{[Sens_{VCC} \times Sens_{5V}] \times 5 \text{ V}} \right| \right)$$

A SPSRR value of 15 dB means that a ten percent change in V_{CC} (going from 5 to 5.5 V, for example) results in around a 1.75 percent change in sensitivity.

Offset Power Supply Rejection Ratio (OPSRR). The ratio of the change in offset to a change in V_{CC} in dB.

$$OPSRR = 20 \log_{10} \left(\left| \frac{\Delta V_{CC}}{\Delta V_{OE}} \right| \right)$$

An OPSRR value of 30 dB means that a 500 mV change in $V_{\rm CC}$ (going from 5 to 5.5 V, for example) results in around 15 mV of change in the offset.

APPLICATION INFORMATION

Impact of External Magnetic Fields

The ACS730 works by sensing the magnetic field created by the current flowing through the package. However, the sensor cannot differentiate between fields created by the current flow and external magnetic fields. This means that external magnetic fields can cause errors in the output of the sensor. Magnetic fields which are perpendicular to the surface of the package affect the output of the sensor, as it only senses fields in that one plane. The error in Amperes can be quantified as:

$$Error(B) = \frac{B}{MCF}$$

where B is the strength of the external field perpendicular to the surface of the package in gauss (G), and MCF is the magnetic coupling factor in gauss/amperes (G/A). Then, multiplying by the sensitivity of the part (Sens) gives the error in mV seen at the output.

For example, an external field of 1 gauss will result in around 0.1 A of error. If the ACS730KLCTR-20AB, which has a nominal sensitivity of 100~mV/A, is being used, that equates to 10~mV of error on the output of the sensor.

External Field	Error		Error (mV)	
(Gauss)	(A)	20B	40B	50B
0.5	0.05	5	2.5	2
1	0.1	10	5	4
2	0.2	20	10	8

Estimating Total Error vs. Sensed Current

The Performance Characteristics tables give distribution values (± 3 sigma) for Total Error at $I_p(max)$ and $I_p(half)$; however, one often wants to know what error to expect at a particular current. This can be estimated by using the distribution data for the components of Total Error, Sensitivity Error, and Offset Voltage. The ± 3 sigma value for Total Error (E_{TOT}) as a function of the sensed current (I_p) is estimated as:

$$E_{TOT}(I_p) = \sqrt{E_{SENS}^2 + \left(\frac{100 \times V_{OE}}{Sens \times I_p}\right)^2}$$

Here, E_{SENS} and V_{OE} are the ± 3 sigma values for those error terms. If there is an average offset voltage, then the average Total Error is estimated as:

$$E_{TOT_{AVG}}(I_P) = E_{SENS_{AVG}} + \frac{100 \times V_{OE_{AVG}}}{Sens \times I_P}$$

The resulting total error will be a sum of E_{TOT} and E_{TOT_AVG} . Using these equations and the 3 sigma distributions for Sensitivity Error and Offset Voltage, the Total Error versus sensed current (I_p) is below for the ACS730KLCTR-20AB. As expected, as the sensed current (I_p) approaches zero, the error in percent goes towards infinity due to division by zero (refer to Figure 3).

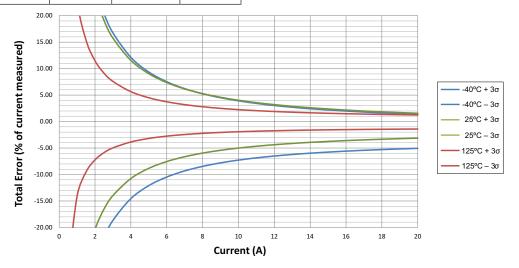


Figure 3: Predicted Total Error as a Function of the Sensed Current for the ACS730KLCTR-20AB

DEFINITIONS OF DYNAMIC RESPONSE CHARACTERISTICS

Power-On Time (t_{PO}) . When the supply is ramped to its operating voltage, the device requires a finite time to power its internal components before responding to an input magnetic field. Power-On Time, t_{PO}, is defined as the time it takes for the output voltage to settle within $\pm 10\%$ of its steady-state value under an applied magnetic field, after the power supply has reached its minimum specified operating voltage, V_{CC}(min), as shown in the chart at right.

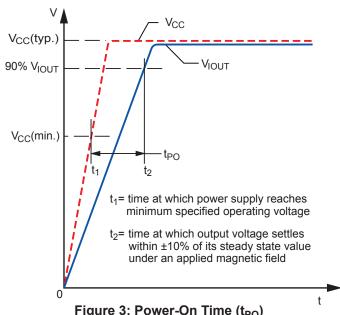


Figure 3: Power-On Time (t_{PO})

Rise Time (t_r) . The time interval between a) when the sensor reaches 10% of its full-scale value, and b) when it reaches 90% of its full scale value.

Propagation Delay (t_{pd}) . The time interval between a) when the sensed input current reaches 20% of its full-scale value, and b) when the sensor output reaches 20% of its full-scale value.

(%) Primary Current 90 V_{IOUT} Rise Time, tr 20 10 Propagation Delay, tod

Figure 4: Rise Time (t_r) and Propagation Delay (t_{pd})

Response Time ($t_{RESPONSE}$). The time interval between a) when the sensed input current reaches 90% of its final value, and b) when the sensor output reaches 90% of its full-scale value.

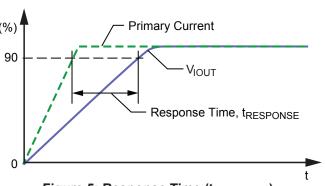


Figure 5: Response Time (t_{RESPONSE})

PACKAGE OUTLING DRAWING

For Reference Only — Not for Tooling Use
(Reference MS-012AA)
Dimensions in millimeters — NOT TO SCALE
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions Exact case and lead configuration at supplier discretion within limits shown

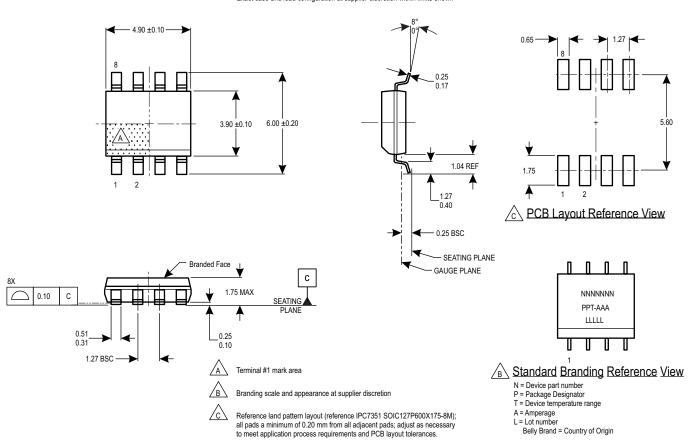


Figure 6: Package LC, 8-Pin SOICN

ACS730

1 MHz Bandwidth, Galvanically Isolated Current Sensor IC in Small Footprint SOIC8 Package

Revision History

Number	Date	Description
-	February 29, 2016	Initial release
1	August 19, 2016	Updated Isolation Characteristics table and added Frequency Response charts

Copyright ©2016, Allegro MicroSystems, LLC

Allegro MicroSystems, LLC reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro's products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro's product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, LLC assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

For the latest version of this document, visit our website:

www.allegromicro.com

19