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Low Distortion,
Differential ADC Driver

AD8138

FEATURES

Easy to use, single-ended-to-differential conversion
Adjustable output common-mode voltage
Externally adjustable gain
Low harmonic distortion
—94 dBc SFDR at 5 MHz
—85 dBc SFDR at 20 MHz
-3 dB bandwidth of 320 MHz, G = +1
Fast settling to 0.01% of 16 ns
Slew rate 1150 V/ps
Fast overdrive recovery of 4 ns
Low input voltage noise of 5 nV/vVHz
1 mV typical offset voltage
Wide supply range +3Vto +5V
Low power 90 mWon5V
0.1 dB gain flatness to 40 MHz
Available in 8-Lead SOIC and MSOP packages

APPLICATIONS

ADC drivers
Single-ended-to-differential converters
IF and baseband gain blocks
Differential buffers

Line drivers

GENERAL DESCRIPTION

The AD8138 is a major advancement over op amps for
differential signal processing. The AD8138 can be used as a
single-ended-to-differential amplifier or as a differential-to-
differential amplifier. The AD8138 is as easy to use as an op
amp and greatly simplifies differential signal amplification and
driving. Manufactured on the proprietary ADI XFCB bipolar
process, the AD8138 has a —3 dB bandwidth of 320 MHz and
delivers a differential signal with the lowest harmonic distortion
available in a differential amplifier. The AD8138 has a unique
internal feedback feature that provides balanced output gain
and phase matching, suppressing even order harmonics. The
internal feedback circuit also minimizes any gain error that
would be associated with the mismatches in the external gain
setting resistors.

The differential output of the AD8138 helps balance the input
to differential ADCs, maximizing the performance of the ADC.
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Figure 2.

The AD8138 eliminates the need for a transformer with high
performance ADCs, preserving the low frequency and dc infor-
mation. The common-mode level of the differential output is
adjustable by a voltage on the Vocu pin, easily level-shifting the
input signals for driving single-supply ADCs. Fast overload
recovery preserves sampling accuracy.

The AD8138 distortion performance makes it an ideal ADC
driver for communication systems, with distortion performance
good enough to drive state-of-the-art 10-bit to 16-bit converters
at high frequencies. The high bandwidth and IP3 of the
AD8138 also make it appropriate for use as a gain block in IF
and baseband signal chains. The AD8138 offset and dynamic
performance makes it well suited for a wide variety of signal
processing and data acquisition applications.

The AD8138 is available in both SOIC and MSOP packages for
operation over —40°C to +85°C temperatures.
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AD8138

SPECIFICATIONS
+Dy TO +OUT SPECIFICATIONS

At 25°C, Vs =15V, Voem = 0, G = +1, Re,am = 500 Q, unless otherwise noted. Refer to Figure 39 for test setup and label descriptions. All
specifications refer to single-ended input and differential outputs, unless otherwise noted.

Table 1.
Parameter Conditions Min Typ Max | Unit
DYNAMIC PERFORMANCE
—3 dB Small Signal Bandwidth Vour=0.5V p-p, Cr =0 pF 290 320 MHz
Vour=0.5V p-p, Cr =1 pF 225 MHz
Bandwidth for 0.1 dB Flatness Vour=0.5V p-p, Cr =0 pF 30 MHz
Large Signal Bandwidth Vour=2V p-p, CGr=0 pF 265 MHz
Slew Rate Vour =2V p-p, CGr =0 pF 1150 V/us
Settling Time 0.01%, Vour=2V p-p,Cr=1pF 16 ns
Overdrive Recovery Time Vn=5Vto0Vstep, G=+2 4 ns
NOISE/HARMONIC PERFORMANCE!
Second Harmonic Vour =2V p-p, 5 MHz, Ri,dam = 800 Q -94 dBc
Vour = 2V p-p, 20 MHz, Re,am = 800 Q -87 dBc
Vour =2V p-p, 70 MHz, R, am = 800 Q -62 dBc
Third Harmonic Vour =2V p-p, 5 MHz, Ri,dam = 800 Q -114 dBc
Vour = 2V p-p, 20 MHz, Re,am = 800 Q -85 dBc
Vour =2V p-p, 70 MHz, R, am = 800 Q -57 dBc
IMD 20 MHz =77 dBc
IP3 20 MHz 37 dBm
Voltage Noise (RTI) =100 kHz to 40 MHz 5 nV/vHz
Input Current Noise f =100 kHz to 40 MHz 2 pA/VHz
INPUT CHARACTERISTICS
Offset Voltage Vos, dm = Vout,dm/2; Voint = Voin- =Voecm =0V -2.5 +1 +2.5 mV
T to Twax variation +4 pv/°C
Input Bias Current 35 7 pA
Twin to Tumax variation -0.01 pA/°C
Input Resistance Differential 6 MQ
Common mode 3 MQ
Input Capacitance 1 pF
Input Common-Mode Voltage —-4.7t0+3.4 \Y
CMRR AVour, dm/AVIN, cm; AVIN,em = 21V -77 -70 dB
OUTPUT CHARACTERISTICS
Output Voltage Swing Maximum AVour; single-ended output 7.75 Vp-p
Output Current 95 mA
Output Balance Error AVout, em/AVour, dm; AVour,dm =1V -66 dB

" Harmonic distortion performance is equal or slightly worse with higher values of R, am. See Figure 17 and Figure 18 for more information.
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AD8138

Vocm TO £OUT SPECIFICATIONS

At 25°C, Vs =5V, Voem = 0, G = +1, Re,am = 500 Q, unless otherwise noted. Refer to Figure 39 for test setup and label descriptions. All

specifications refer to single-ended input and differential outputs, unless otherwise noted.

Table 2.
Parameter Conditions Min Typ Max Unit
DYNAMIC PERFORMANCE
—3 dB Bandwidth 250 MHz
Slew Rate 330 V/us
INPUT VOLTAGE NOISE (RTI) f=0.1 MHz to 100 MHz 17 nV/Hz
DC PERFORMANCE
Input Voltage Range +3.8 \
Input Resistance 200 kQ
Input Offset Voltage Vos,cm = Vout, cm; Voine = Voin- =Vocm =0V -35 +1 +3.5 mV
Input Bias Current 0.5 HA
Vocm CMRR AVout, dm/AVocm; AVoem = 1V -75 dB
Gain AVout, em/AVocw; AVoew = £1V 0.9955 1 1.0045 V/V
POWER SUPPLY
Operating Range +14 +5.5 Vv
Quiescent Current 18 20 23 mA
Tmn to Tumax variation 40 pA/°C
Power Supply Rejection Ratio AVout,dm/AVs; AVs = 1V -90 -70 dB
OPERATING TEMPERATURE RANGE —-40 +85 °C
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AD8138

+D\y TO +OUT SPECIFICATIONS

At 25°C, Vs =5V, Voem = 2.5V, G = +1, Ry, am = 500 Q, unless otherwise noted. Refer to Figure 39 for test setup and label descriptions. All

specifications refer to single-ended input and differential output, unless otherwise noted.

Table 3.
Parameter Conditions Min Typ Max | Unit
DYNAMIC PERFORMANCE
—3 dB Small Signal Bandwidth Vour=0.5V p-p, Cr =0 pF 280 310 MHz
Vour=0.5V p-p, Cr =1 pF 225 MHz
Bandwidth for 0.1 dB Flatness Vour=0.5V p-p, Cr =0 pF 29 MHz
Large Signal Bandwidth Vour=2V p-p, G =0 pF 265 MHz
Slew Rate Vour =2V p-p, CGr =0 pF 950 V/us
Settling Time 0.01%, Vour=2V p-p,Cr=1pF 16 ns
Overdrive Recovery Time Vin=25Vto0Vstep, G=+2 4 ns
NOISE/HARMONIC PERFORMANCE!
Second Harmonic Vour =2V p-p, 5 MHz, Ri,am = 800 Q -90 dBc
Vour = 2V p-p, 20 MHz, Re,am = 800 Q -79 dBc
Vour =2V p-p, 70 MHz, Rt ¢m = 800 Q -60 dBc
Third Harmonic Vour =2V p-p, 5 MHz, Ri,dam = 800 Q -100 dBc
Vour = 2V p-p, 20 MHz, Re,am = 800 Q -82 dBc
Vour =2V p-p, 70 MHz, R, ¢m = 800 Q -53 dBc
IMD 20 MHz -74 dBc
IP3 20 MHz 35 dBm
Voltage Noise (RTI) f =100 kHz to 40 MHz 5 nV/vHz
Input Current Noise f =100 kHz to 40 MHz 2 pA/VHz
INPUT CHARACTERISTICS
Offset Voltage Vos, dm = Vout, dm/2; Voine = Voin- =Voecm =0V -2.5 +1 +2.5 mV
Twmin to Tmax variation +4 pv/°C
Input Bias Current 35 7 HA
Tmin to Twax variation -0.01 pA/°C
Input Resistance Differential 6 MQ
Common mode 3 MQ
Input Capacitance 1 pF
Input Common-Mode Voltage -0.3t0+3.2 \Y
CMRR AVout, dm/AVIN, cm; AVIN,em = TV -77 -70 dB
OUTPUT CHARACTERISTICS
Output Voltage Swing Maximum AVour; single-ended output 29 Vp-p
Output Current 95 mA
Output Balance Error AVout, cm/AVour, dm; AVout,dm =1V —65 dB

" Harmonic distortion performance is equal or slightly worse with higher values of R, am. See Figure 17 and Figure 18 for more information.
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AD8138

Vocm TO £OUT SPECIFICATIONS

At 25°C, Vs =5V, Voem = 2.5V, G = +1, Ry, am = 500 Q, unless otherwise noted. Refer to Figure 39 for test setup and label descriptions. All
specifications refer to single-ended input and differential output, unless otherwise noted.

Table 4.
Parameter Conditions Min Typ Max Unit
DYNAMIC PERFORMANCE
—3 dB Bandwidth 220 MHz
Slew Rate 250 V/us
INPUT VOLTAGE NOISE (RTI) f=0.1 MHz to 100 MHz 17 nV/vHz
DC PERFORMANCE
Input Voltage Range 1.0t03.8 \
Input Resistance 100 kQ
Input Offset Voltage Vos,cm = Vout, cm; Voine = Voin- =Vocm =0V -5 +1 +5 mV
Input Bias Current 0.5 A
Vocm CMRR AVour, dm/AVocw; AVocm = 2.5V £1V -70 dB
Gain AVout, cm/AVocm; AVocm = 2.5V +1V 0.9968 1 1.0032 VIV
POWER SUPPLY
Operating Range 2.7 1 \Y
Quiescent Current 15 20 21 mA
Twmin to Tumax variation 40 pA/°C
Power Supply Rejection Ratio AVour,dam/AVs; AVs =+ 1V -90 -70 dB
OPERATING TEMPERATURE RANGE —-40 +85 °C
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AD8138

ABSOLUTE MAXIMUM RATINGS

Table 5.

Parameter Ratings

Supply Voltage +55V

Voem +Vs

Internal Power Dissipation 550 mW
Operating Temperature Range —40°C to +85°C
Storage Temperature Range —65°C to +150°C
Lead Temperature (Soldering 10 sec) 300°C

Junction Temperature 150°C

Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.

THERMAL RESISTANCE

0)a is specified for the worst-case conditions, that is, Oja is
specified for the device soldered in a circuit board in still air.

Table 6.

Package Type 0:a Unit
8-Lead SOIC/4-Layer 121 °C/W
8-Lead MSOP/4-Layer 145 °C/W

Maximum Power Dissipation

The maximum safe power dissipation in the AD8138 packages
is limited by the associated rise in junction temperature (Tj) on
the die. At approximately 150°C, which is the glass transition
temperature, the plastic changes its properties. Even temporarily
exceeding this temperature limit can change the stresses that the
package exerts on the die, permanently shifting the parametric
performance of the AD8138. Exceeding a junction temperature
of 150°C for an extended period can result in changes in the
silicon devices, potentially causing failure.

The power dissipated in the package (Pp) is the sum of the
quiescent power dissipation and the power dissipated in the
package due to the load drive for all outputs. The quiescent
power is the voltage between the supply pins (Vs) times the
quiescent current (Is). The load current consists of the differential
and common-mode currents flowing to the load, as well as
currents flowing through the external feedback networks and
internal common-mode feedback loop. The internal resistor tap
used in the common-mode feedback loop places a negligible
differential load on the output. RMS voltages and currents
should be considered when dealing with ac signals.

Airflow reduces 0. In addition, more metal directly in contact
with the package leads from metal traces through holes, ground,
and power planes reduces the 0ja.

Figure 3 shows the maximum safe power dissipation in the
package vs. the ambient temperature for the 8-lead SOIC
(121°C/W) and 8-lead MSOP (61 = 145°C/W) packages on a
JEDEC standard 4-layer board. 6;a values are approximations.

175

1.50

/

1.25
N

1.00

SOIC

0.75

MsOP [N N

0.50

MAXIMUM POWER DISSIPATION (W)

SN

0.25

—40 -30 20 <10 0 10 20 30 40 50 60 70 80 90 100 110 120
AMBIENT TEMPERATURE (°C)

01073-049

Figure 3. Maximum Power Dissipation vs. Temperature

ESD CAUTION
ESD (electrostatic discharge) sensitive device.
Charged devices and circuit boards can discharge
A without detection. Although this product features

patented or proprietary protection circuitry, damage

‘!ﬁ I\ may occur on devices subjected to high energy ESD.
Therefore, proper ESD precautions should be taken to

avoid performance degradation or loss of functionality.
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AD8138

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

-IN [1] - 8] +IN
Vocm [2] [7]NC

v+ 3] 6] V-
+ouT [4]- AD8138 {5]-ouT

01073-004

NC = NO CONNECT
Figure 4. Pin Configuration

Table 7. Pin Function Descriptions

Pin No. Mnemonic Description

1 —IN Negative Input Summing Node.

2 Vocm Voltage applied to this pin sets the common-mode output voltage with a ratio of 1:1. For example,
1V dc on Vocu sets the dc bias level on +OUT and —OUT to 1 V.

3 V+ Positive Supply Voltage.

4 +OUT Positive Output. Note that the voltage at —Du is inverted at +OUT (see Figure 42).

5 -ouT Negative Output. Note that the voltage at +Du is inverted at —OUT (see Figure 42).

6 V- Negative Supply Voltage.

7 NC No Connect.

8 +IN Positive Input Summing Node.
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AD8138

TYPICAL PERFORMANCE CHARACTERISTICS

Unless otherwise noted, Gain = 1, R = Ry = Ri,am = 499 V, Ta = 25°C; refer to Figure 39 for test setup.
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Figure 10. Small Signal Frequency Response for Various Gains
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Figure 13. Harmonic Distortion vs. Vocm
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TEST CIRCUITS
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Figure 40. Test Circuit for Cap Load Drive
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OPERATIONAL DESCRIPTION

DEFINITION OF TERMS
Cr
Il
LA}
Re
Rs _
Oy o nC N out o-
Vocm o—— | AD8138 SR dm Vour, dm
-Din o—wAr O+
Rg —IN +OUT
Re
Ce %

Figure 42. Circuit Definitions

Differential voltage refers to the difference between two node
voltages. For example, the output differential voltage (or
equivalently output differential-mode voltage) is defined as

Vour, am = (Viour — V-our)

where V.ourand V-our refer to the voltages at the +OUT and
—OUT terminals with respect to a common reference.

Common-mode voltage refers to the average of two node
voltages. The output common-mode voltage is defined as

Vour,em = (Viour + Voour)/2

Balance is a measure of how well differential signals are
matched in amplitude and exactly 180° apart in phase. Balance
is most easily determined by placing a well-matched resistor
divider between the differential voltage nodes and comparing
the magnitude of the signal at the midpoint of the divider with
the magnitude of the differential signal (see Figure 41). By this
definition, output balance is the magnitude of the output
common-mode voltage divided by the magnitude of the output
differential mode voltage:

VOUT, cm

Output Balance Error =
Vour, dm
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THEORY OF OPERATION

The AD8138 differs from conventional op amps in that it has
two outputs whose voltages move in opposite directions. Like
an op amp, it relies on high open-loop gain and negative
feedback to force these outputs to the desired voltages. The
ADB8138 behaves much like a standard voltage feedback op
amp and makes it easy to perform single-ended-to-differential
conversion, common-mode level-shifting, and amplification of
differential signals. Also like an op amp, the AD8138 has high
input impedance and low output impedance.

Previous differential drivers, both discrete and integrated
designs, have been based on using two independent amplifiers
and two independent feedback loops, one to control each of the
outputs. When these circuits are driven from a single-ended
source, the resulting outputs are typically not well balanced.
Achieving a balanced output has typically required exceptional
matching of the amplifiers and feedback networks.

DC common-mode level-shifting has also been difficult with
previous differential drivers. Level-shifting has required the use
of a third amplifier and feedback loop to control the output
common-mode level. Sometimes the third amplifier has also
been used to attempt to correct an inherently unbalanced
circuit. Excellent performance over a wide frequency range

has proven difficult with this approach.

The AD8138 uses two feedback loops to separately control the
differential and common-mode output voltages. The differential
feedback, set with external resistors, controls only the differential
output voltage. The common-mode feedback controls only the
common-mode output voltage. This architecture makes it easy
to arbitrarily set the output common-mode level. It is forced, by
internal common-mode feedback, to be equal to the voltage
applied to the Vocu input, without affecting the differential
output voltage.

The AD8138 architecture results in outputs that are very highly
balanced over a wide frequency range without requiring tightly
matched external components. The common-mode feedback
loop forces the signal component of the output common-mode
voltage to be zeroed. The result is nearly perfectly balanced
differential outputs of identical amplitude and exactly 180°apart
in phase.

ANALYZING AN APPLICATION CIRCUIT

The AD8138 uses high open-loop gain and negative feedback to
force its differential and common-mode output voltages in such
a way as to minimize the differential and common-mode error
voltages. The differential error voltage is defined as the voltage
between the differential inputs labeled +IN and —IN in Figure 42.
For most purposes, this voltage can be assumed to be zero.
Similarly, the difference between the actual output common-
mode voltage and the voltage applied to Vocm can also be
assumed to be zero. Starting from these two assumptions, any
application circuit can be analyzed.

SETTING THE CLOSED-LOOP GAIN

Neglecting the capacitors Cr, the differential-mode gain of the
circuit in Figure 42 can be determined to be described by

R.°

Re’

VOUT, dm

VIN,dm

This assumes the input resistors, R¢’, and feedback resistors, R#,
on each side are equal.

ESTIMATING THE OUTPUT NOISE VOLTAGE

Similar to the case of a conventional op amp, the differential
output errors (noise and offset voltages) can be estimated by
multiplying the input referred terms, at +IN and —IN, by the
circuit noise gain. The noise gain is defined as

GN =1 +[R_FJ
RG

To compute the total output referred noise for the circuit of
Figure 42, consideration must also be given to the contribution
of the Resistors Rr and Rc. Refer to Table 8 for the estimated
output noise voltage densities at various closed-loop gains.

Table 8.

Gain R:(Q) Rr (Q) Bandwidth -3 dB Output Noise AD8138 Only Output Noise AD8138 + Rg, Rr
1 499 499 320 MHz 10 nV/\Hz 11.6 nV/v/Hz

2 499 1.0k 180 MHz 15 nV/v/Hz 18.2 nV/vHz

5 499 249k 70 MHz 30 nV/vHz 37.9 nV/VHz

10 499 4,99 k 30 MHz 55 nV/yHz 70.8 nV/vHz
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AD8138

When using the AD8138 in gain configurations where Re/Rc of
one feedback network is unequal to Rr/Rq of the other network,
there is a differential output noise due to input-referred voltage
in the Vocwm circuitry. The output noise is defined in terms of
the following feedback terms (refer to Figure 42):

Rg

&_&+&

for —OUT to +IN loop, and
__ R
R +R;

B,

for +OUT to —IN loop. With these defined,

B1 B Bz
VnOUT,dm = ZVWINvVOCM |:B + B
1 2

where Viour am is the output differential noise, and V,y,, is

CcoM

the input-referred voltage noise in Vocm.

THE IMPACT OF MISMATCHES IN THE FEEDBACK
NETWORKS

As previously mentioned, even if the external feedback
networks (Rr/Rg) are mismatched, the internal common-mode
feedback loop still forces the outputs to remain balanced. The
amplitudes of the signals at each output remains equal and 180°
out of phase. The input-to-output differential-mode gain varies
proportionately to the feedback mismatch, but the output
balance is unaffected.

Ratio matching errors in the external resistors result in a
degradation of the ability of the circuit to reject input common-
mode signals, much the same as for a four-resistor difference
amplifier made from a conventional op amp.

In addition, if the dc levels of the input and output common-
mode voltages are different, matching errors result in a small
differential-mode output offset voltage. For the G = 1 case, with
a ground referenced input signal and the output common-mode
level set for 2.5V, an output offset of as much as 25 mV (1% of
the difference in common-mode levels) can result if 1% tolerance
resistors are used. Resistors of 1% tolerance result in a worst-
case input CMRR of about 40 dB, worst-case differential mode
output offset of 25 mV due to 2.5 V level-shift, and no significant
degradation in output balance error.

CALCULATING THE INPUT IMPEDANCE OF AN
APPLICATION

The effective input impedance of a circuit such as the one in
Figure 42, at +DIN and -DIN, depends on whether the amplifier is
being driven by a single-ended or differential signal source. For
balanced differential input signals, the input impedance (R, 4m)
between the inputs (+Dw and —Di) is simply

R, am =2 X Rg

In the case of a single-ended input signal (for example if —Di is
grounded and the input signal is applied to +D), the input
impedance becomes

— RG
IN,dm —
m RF

2x(R; +R,)

The input impedance of the circuit is effectively higher than it
would be for a conventional op amp connected as an inverter

because a fraction of the differential output voltage appears at
the inputs as a common-mode signal, partially bootstrapping

the voltage across the input resistor Re.

INPUT COMMON-MODE VOLTAGE RANGE IN
SINGLE-SUPPLY APPLICATIONS

The AD8138 is optimized for level-shifting, ground-referenced
input signals. For a single-ended input, this would imply, for
example, that the voltage at —Di in Figure 42 would be 0 V
when the negative power supply voltage of the amplifier (at V-)
is also setto 0 V.

SETTING THE OUTPUT COMMON-MODE VOLTAGE

The Vocwm pin of the AD8138 is internally biased at a voltage
approximately equal to the midsupply point (average value of
the voltages on V+ and V-). Relying on this internal bias results
in an output common-mode voltage that is within about

100 mV of the expected value.

In cases where more accurate control of the output common-
mode level is required, it is recommended that an external
source, or resistor divider (made up of 10 k(2 resistors), be used.
The output common-mode offset listed in the Specifications
section assumes the Vocwm input is driven by a low impedance
voltage source.

DRIVING A CAPACITIVE LOAD

A purely capacitive load can react with the pin and bondwire
inductance of the AD8138, resulting in high frequency ringing
in the pulse response. One way to minimize this effect is to
place a small capacitor across each of the feedback resistors. The
added capacitance should be small to avoid destabilizing the
amplifier. An alternative technique is to place a small resistor in
series with the outputs of the amplifier, as shown in Figure 40.
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AD8138

LAYOUT, GROUNDING, AND BYPASSING

As a high speed device, the AD8138 is sensitive to the PCB
environment in which it has to operate. Realizing its superior
specifications requires attention to various details of good high
speed PCB design.

The first requirement is for a good solid ground plane that
covers as much of the board area around the AD8138 as
possible. The only exception to this is that the two input pins
(Pin 1 and Pin 8) should be kept a few millimeters from the
ground plane, and ground should be removed from inner layers
and the opposite side of the board under the input pins. This
minimizes the stray capacitance on these nodes and helps
preserve the gain flatness vs. frequency.

The power supply pins should be bypassed as close as possible
to the device to the nearby ground plane. Good high frequency
ceramic chip capacitors should be used. This bypassing should
be done with a capacitance value of 0.01 pF to 0.1 pF for each
supply. Further away, low frequency bypassing should be provided
with 10 pF tantalum capacitors from each supply to ground.

The signal routing should be short and direct to avoid parasitic
effects. Wherever there are complementary signals, a symmetrical
layout should be provided to the extent possible to maximize
the balance performance. When running differential signals
over a long distance, the traces on the PCB should be close
together or any differential wiring should be twisted together to
minimize the area of the loop that is formed. This reduces the
radiated energy and makes the circuit less susceptible to
interference.
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BALANCED TRANSFORMER DRIVER

Transformers are among the oldest devices used to perform a
single-ended-to-differential conversion (and vice versa). Trans-
formers can also perform the additional functions of galvanic
isolation, step-up or step-down of voltages, and impedance
transformation. For these reasons, transformers always find
uses in certain applications.

However, when driving the transformer in a single-ended
manner, there is an imbalance at the output due to the parasitics
inherent in the transformer. The primary (or driven) side of the
transformer has one side at dc potential (usually ground), while
the other side is driven. This can cause problems in systems that
require good balance of the differential output signals of the
transformer.

If the interwinding capacitance (Csrray) is assumed to be
uniformly distributed, a signal from the driving source couples
to the secondary output terminal that is closest to the driven
side of the primary. On the other hand, no signal is coupled to
the opposite terminal of the secondary because its nearest
primary terminal is not driven (see Figure 43). The exact
amount of this imbalance depends on the particular parasitics
of the trans-former, but is mostly a problem at higher
frequencies.

The balance of a differential circuit can be measured by
connecting an equal-valued resistive voltage divider across the
differential outputs and then measuring the center point of the
circuit with respect to ground. Since the two differential outputs
are supposed to be of equal amplitude, but 180° opposite phase,
there should be no signal present for perfectly balanced outputs.

The circuit in Figure 43 shows a Mini-Circuits® T1-6T
transformer connected with its primary driven single-endedly
and the secondary connected with a precision voltage divider
across its terminals. The voltage divider is made up of two

500 €, 0.005% precision resistors. The voltage Vunsar, which is
also equal to the ac common-mode voltage, is a measure of how
closely the outputs are balanced.

Figure 45 compares the transformer being driven single-
endedly by a signal generator and being driven differentially
using an AD8138. The top signal trace of Figure 45 shows the
balance of the single-ended configuration, while the bottom
shows the differentially driven balance response. The 100 MHz
balance is 35 dB better when using the AD8138.

The well-balanced outputs of the AD8138 provide a drive signal
to each of the primary inputs of the transformer that are of
equal amplitude and 180° out of phase. Therefore, depending
on how the polarity of the secondary is connected, the signals
that conduct across the interwinding capacitance either both
assist the secondary signal of the transformer equally, or both
buck the secondary signals. In either case, the parasitic effect is
symmetrical and provides a well-balanced transformer output
(see Figure 45).
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Figure 43. Transformer Single-Ended-to-Differential Converter Is Inherently
Imbalanced
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Figure 44. AD8138 Forms a Balanced Transformer Driver
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Figure 45. Output Balance Error for Circuits of Figure 43 and Figure 44
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AD8138

HIGH PERFORMANCE ADC DRIVING

The circuit in Figure 46 shows a simplified front-end
connection for an AD8138 driving an AD9224, a 12-bit,

40 MSPS ADC. The ADC works best when driven differentially,
which minimizes its distortion. The AD8138 eliminates the
need for a transformer to drive the ADC and performs single-
ended-to-differential conversion, common-mode level-shifting,
and buffering of the driving signal.

The positive and negative outputs of the AD8138 are connected
to the respective differential inputs of the AD9224 via a pair of
49.9 Q) resistors to minimize the effects of the switched-capacitor
front end of the AD9224. For best distortion performance, it
runs from supplies of +5 V.

The AD8138 is configured with unity gain for a single-ended,
input-to-differential output. The additional 23 Q), 523 Q total, at
the input to —IN is to balance the parallel impedance of the

50 Q2 source and its 50 ) termination that drives the
noninverting input.

50Q
SOURCE 49.9Q

0.1pF

The signal generator has a ground-referenced, bipolar output,
that is, it drives symmetrically above and below ground.
Connecting Vocu to the CML pin of the AD9224 sets the output
common-mode of the AD8138 at 2.5 V, which is the midsupply
level for the AD9224. This voltage is bypassed by a 0.1 uF
capacitor.

The full-scale analog input range of the AD9224 is set to
4V p-p, by shorting the SENSE terminal to AVSS. This has
been determined to be the scaling to provide minimum
harmonic distortion.

For the AD8138 to swing at 4 V p-p, each output swings 2 V p-p
while providing signals that are 180° out of phase. With a
common-mode voltage at the output of 2.5 V, each AD8138
output swings between 1.5V and 3.5 V.

A ground-referenced 4 V p-p, 5 MHz signal at Din+ was used to
test the circuit in Figure 46. When the combined-device circuit
was run with a sampling rate of 20 MSPS, the spurious-free
dynamic range (SFDR) was measured at —85 dBc.

DIGITAL
OUTPUTS

@) VINA Avss SENSE CML DRVSS
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Figure 46. AD8138 Driving an AD9224, a 12-Bit, 40 MSPS ADC
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AD8138

3 V OPERATION

The circuit in Figure 47 shows a simplified front-end
connection for an AD8138 driving an AD9203, a 10-bit,

40 MSPS ADC that is specified to work on a single 3 V supply.
The ADC works best when driven differentially to make the
best use of the signal swing available within the 3 V supply.
The appropriate outputs of the AD8138 are connected to the
appropriate differential inputs of the AD9203 via a low-pass filter.

The AD8138 is configured for unity gain for a single-ended
input to differential output. The additional 23 Q at the input to
—IN is to balance the impedance of the 50 Q source and its 50 Q)
termination that drives the noninverting input.

The signal generator has ground-referenced, bipolar output,
that is, it can drive symmetrically above and below ground.
Even though the AD8138 has ground as its negative supply, it
can still function as a level-shifter with such an input signal.

The output common mode is raised up to midsupply by the
voltage divider that biases Vocu. In this way, the AD8138
provides dc coupling and level-shifting of a bipolar signal,
without inverting the input signal.

The low-pass filter between the AD8138 and the AD9203
provides filtering that helps to improve the signal-to-noise ratio
(SNR). Lower noise can be realized by lowering the pole
frequency, but the bandwidth of the circuit is lowered.

@ AVDD DRVDD

AINP DIGITAL

OUTPUTS

Figure 47. AD8138 Driving an AD9203, a 10-Bit, 40 MSPS Analog-to-Digital
Converter
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The circuit was tested with a —0.5 dBFS signal at various
frequencies. Figure 48 shows a plot of the total harmonic
distortion (THD) vs. frequency at signal amplitudes of 1 V and
2V differential drive levels.
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Figure 48. AD9203 THD at —0.5 dBFS AD8138

01073-047

Figure 49 shows the signal-to-noise-and-distortion (SINAD)
under the same conditions as above. For the smaller signal
swing, the AD8138 performance is quite good, but its
performance degrades when trying to swing too close to the
supply rails.
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Figure 49. AD9203 SINAD at —0.5 dBFS AD8138
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OUTLINE DIMENSIONS
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REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 50. 8-Lead Standard Small Outline Package [SOIC]
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Figure 51. 8-Lead Mini Small Outline Package [MSOP]
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Dimensions shown in millimeters and (inches) Dimensions shown in millimeters
ORDERING GUIDE
Model’ Temperature Range Package Description Package Option Branding
AD8138AR —40°C to +85°C 8-Lead SOIC R-8
ADS8138AR-REEL —40°C to +85°C 8-Lead SOIC, 13" Tape and Reel R-8
AD8138AR-REEL7 —40°C to +85°C 8-Lead SOIC, 7" Tape and Reel R-8
AD8138ARZ —40°C to +85°C 8-Lead SOIC R-8
AD8138ARZ-RL —40°Cto +85°C 8-Lead SOIC, 13" Tape and Reel R-8
AD8138ARZ-R7 —40°C to +85°C 8-Lead SOIC, 7" Tape and Reel R-8
AD8138ARM —40°C to +85°C 8-Lead MSOP RM-8 HBA
AD8138ARM-REEL —40°C to +85°C 8-Lead MSOP, 13" Tape and Reel RM-8 HBA
AD8138ARM-REEL7 —40°Cto +85°C 8-Lead MSOP, 7" Tape and Reel RM-8 HBA
AD8138ARMZ —40°C to +85°C 8-Lead MSOP RM-8 HBA#
AD8138ARMZ-REEL —40°C to +85°C 8-Lead MSOP, 13" Tape and Reel RM-8 HBA#
AD8138ARMZ-REEL7 —40°C to +85°C 8-Lead MSOP, 7" Tape and Reel RM-8 HBA#

' Z = RoHS Compliant Part. # denotes RoHS compliant part may be top or bottom marked.
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