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700 MHz to 2700 MHz
Quadrature Modulator

AD8349

FEATURES

Output frequency range: 700 MHz to 2700 MHz
Modulation bandwidth: dc to 160 MHz (large signal BW)

1 dB output compression: 5.6 dBm @ 2140 MHz

Output disable function: output below -50 dBm in < 50 ns
Noise floor: -156 dBm/Hz

Phase quadrature error: 0.3 degrees @ 2140 MHz
Amplitude balance: 0.1 dB

Single supply:4.75Vto 5.5V

Pin compatible with AD8345/AD8346s

16-lead, exposed-paddle TSSOP package

APPLICATIONS

Cellular/PCS communication systems infrastructure
WCDMA/CDMA2000/PCS/GSM/EDGE

Wireless LAN/wireless local loop

LMDS/broadband wireless access systems

PRODUCT DESCRIPTION

The AD8349 is a silicon, monolithic, RF quadrature modulator
that is designed for use from 700 MHz to 2700 MHz. Its
excellent phase accuracy and amplitude balance enable high
performance direct RF modulation for communication systems.

The differential LO input signal is buffered, and then split into
an in-phase (I) signal and a quadrature-phase (Q) signal using a
polyphase phase splitter. These two LO signals are further
buffered and then mixed with the corresponding I channel and
Q channel baseband signals in two Gilbert cell mixers. The
mixers outputs are then summed together in the output
amplifier. The output amplifier is designed to drive 50 Q loads.

The RF output can be switched on and off within 50 ns by
applying a control pulse to the ENOP pin.
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Figure 1.

The AD8349 can be used as a direct-to-RF modulator in digital
communication systems such as GSM, CDMA, and WCDMA
base stations, and QPSK or QAM broadband wireless access
transmitters. Its high dynamic range and high modulation
accuracy also make it a perfect IF modulator in local multipoint
distribution systems (LMDS) using complex modulation
formats.

The AD8349 is fabricated using Analog Devices’ advanced
complementary silicon bipolar process, and is available in a 16-
lead, exposed-paddle TSSOP package. Its performance is
specified over a -40°C to +85°C temperature range.
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AD8349

SPECIFICATIONS

Vs =5 V; ambient temperature (Ta) = 25°C; LO = -6 dBm; I/Q inputs = 1.2 V p-p differential sine waves in quadrature on a 400 mV dc
bias; baseband frequency = 1 MHz; LO source and RF output load impedances are 50 (), unless otherwise noted.

Table 1.
Parameter Conditions Min  Typ Max | Unit
Operating Frequency 700 2700 | MHz
LO =900 MHz
Output Power 1.5 4 6 dBm
Output P1 dB 7.6 dBm
Carrier Feedthrough -45 -30 | dBm
Sideband Suppression -35 -31 dBc
Third Harmonic’ Pour — (Fio + (3 X Fes)), Pour =4 dBm -39 -36 dBc
Output IP3 F1ss = 3 MHz, F28s = 4 MHz, Pour = -4.2 dBm 21 dBm
Quadrature Error 1.9 degree
I/Q Amplitude Balance 0.1 dB
Noise Floor 20 MHz offset from LO, all BB inputs 400 mV dc bias only -155 dBm/Hz
20 MHz offset from LO, BB inputs = 1.2V p-p differential on 400 mV dc -150 dBm/Hz
GSM Sideband Noise LO = 884.8 MHz, 6 MHz offset from LO, Pour = 2 dBm -152 dBc/Hz
LO =1900 MHz
Output Power 0 3.8 6 dBm
Output P1dB 6.8 dBm
Carrier Feedthrough -38 dBm
Sideband Suppression -40 -36 | dBc
Third Harmonic'’ Pout - (FLo + (3 X Feg)), Pour = 3.8 dBm -37 -36 dBc
Output IP3 F1ss = 3 MHz, F28s = 4 MHz, Pour = -4.5 dBm 22 dBm
Quadrature Error 0.7 degree
I/Q Amplitude Balance 0.1 dB
Noise Floor 20 MHz offset from LO, all BB inputs 400 mV dc bias only -156 dBm/Hz
20 MHz offset from LO, BB inputs = 1.2V p-p differential on 400 mV dc -150 dBm/Hz
GSM Sideband Noise LO = 1960 MHz, 6 MHz offset from LO, Pour = 2 dBm -151 dBc/Hz
LO =2140 MHz
Output Power -2 24 5.1 dBm
Output P1dB 5.6 dBm
Carrier Feedthrough -42 -30 | dBm
Sideband Suppression -43 -36 | dBc
Third Harmonic' Pout - (FLo + (3 X Feg)), Pour = 2.4 dBm -37 -36 dBc
Output IP3 F1ss = 3 MHz, F28s = 4 MHz, Pour = -6.5 dBm 19 dBm
Quadrature Error 03 degree
I/Q Amplitude Balance 0.1 dB
Noise Floor 20 MHz offset from LO, all BB inputs 400 mV dc bias only -156 dBm/Hz
20 MHz offset from LO, BB inputs = 1.2V p-p differential on 400 mV dc -151 dBm/Hz
WCDMA Noise Floor LO = 2140 MHz. 30 MHz offset from LO, Pcian = -17.3 dBm -156 dBm/Hz
LO INPUTS Pins LOIP and LOIN
LO Drive Level Characterization performed at typical level -10 -6 0 dBm
Nominal Impedance 50 Q
Input Return Loss Drive via 1:1 balun, LO = 2140 MHz -8.6 dB
BASEBAND INPUTS Pins IBBP, IBBN, QBBP, QBBN
I and Q Input Bias Level 400 mV
Input Bias Current 11 HA
Input Offset Current 1.8 MA
Bandwidth (0.1 dB) LO = 1500 MHz, baseband input = 600 mV p-p sine wave on 400 mV dc 10 MHz
LO = 1500 MHz, baseband input = 60 mV p-p sine wave on 400 mV dc 24 MHz
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Parameter Conditions Min Typ Max | Unit
Bandwidth (3 dB) LO = 1500 MHz, baseband input = 600 mV p-p sine wave on 400 mV dc 160 MHz
LO = 1500 MHz, baseband input = 60 mV p-p sine wave on 400 mV dc 340 MHz
OUTPUT ENABLE Pin ENOP
Off Isolation ENOP Low -78 -50 | dBm
Turn-On Settling Time ENOP Low to High (90% of envelope) 20 ns
Turn-Off Settling Time ENOP High to Low (10% of envelope) 50 ns
ENOP High Level (Logic 1) 2.0 \Y
ENOP Low Level (Logic 0) 0.8 \
POWER SUPPLIES Pins VPS1 and VPS2
Voltage 4.75 55 Vv
Supply Current ENOP = High 135 150 | mA
ENOP = Low 130 145 mA

' The amplitude of the third harmonic relative to the single sideband power decreases with decreasing baseband drive level (see Figure 19, Figure 20, and Figure 21).

Rev. B | Page 4 of 28




AD8349

ABSOLUTE MAXIMUM RATINGS

tresses above those listed under Absolute Maximum Ratings

Table 2.
Parameter Rating may cause permanent damage to the device. This is a stress
Supply Voltage VPOS S5V rating only; functional operation of the device at these or any
IBBP, IBBN, QBBP, QBBN O.V 25V other conditions above those indicated in the operational
LOIP, and I:OIN ' 10 ,dBm section of this specification is not implied. Exposure to absolute
Internal Power Dissipation 800 mW maximum rating conditions for extended periods may affect
ice reliability.
6,a (Exposed Paddle Soldered Down) 30°C/W device reliability
Maximum Junction Temperature 125°C ESD CAUTION
Operating Temperature Range —40°C to +85°C ESD (electrostatic discharge) sensitive device.
Storage Temperature Range —65°C to +150°C Charged devices and circuit boards can discharge
A without detection. Although this product features

patented or proprietary protection circuitry, damage

‘!ﬁ I\ may occur on devices subjected to high energy ESD.

Therefore, proper ESD precautions should be taken to
avoid performance degradation or loss of functionality.
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PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
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1. CONNECT EXPOSED PAD TO THE GROUND LANE
VIA A LOW IMPEDANCE PATH.

Table 3. Pin Function Descriptions

Figure 2.

Equivalent
Pin No. | Mnemonic Description Circuit
1,2, IBBP, IBBN, Differential In-Phase and Quadrature Baseband Inputs. These high impedance inputs must be Circuit A
15,16 QBBN, QBBP dc-biased to approximately 400 mV dc, and must be driven from a low impedance source.
Nominal characterized ac signal swing is 600 mV p-p on each pin (100 mV to 700 mV). This
results in a differential drive of 1.2V p-p with a 400 mV dc bias. These inputs are not self-biased
and must be externally biased.
3,4 COM1 Common Pin for LO Phase Splitter and LO Buffers. COM1, COM2, and COM3 should all be
connected to a ground plane via a low impedance path.
56 LOIN, LOIP Differential Local Oscillator Inputs. Internally dc-biased to approximately 1.8V when Vs =5.0 V. Circuit B
Pins must be ac-coupled. Single-ended drive is possible with degradation in performance.
7 VPS1 Positive Supply Voltage (4.75 V to 5.5 V) for the LO Bias-Cell and Buffer. VPS1 and VPS2 should be
connected to the same supply. To ensure adequate external bypassing, connect 0.1 uF and 100
pF capacitors between VPS1 and ground.
8 ENOP Output Enable. This pin can be used to enable or disable the RF output. Connect to high logic Circuit C
level for normal operation. Connect to low logic level to disable output.
9 com2 Common Pin for the Output Amplifier. COM1, COM2, and COM3 should all be connected to a
ground plane via a low impedance path.
10,13, | COM3 Common Pin for Input V-to- Converters and Mixer Cores. COM1, COM2, and COM3 should all be
14 connected to a ground plane via a low impedance path.
11 VOUT Device Output. Single-ended, 50 Q internally biased RF output. Pin must be ac-coupled to the Circuit D
load.
12 VPS2 Positive Supply Voltage (4.75 V to 5.5 V) for the Baseband Input V-to-l Converters, Mixer Core,
Band Gap Reference, and Output Amplifer. VPS1 and VPS2 should be connected to the same
supply. To ensure adequate external bypassing, connect 0.1 uF and 100 pF capacitors between
VPS2 and ground.
EP Exposed Paddle. Connect to the ground plane via a low impedance path.
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EQUIVALENT CIRCUITS
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TYPICAL PERFORMANCE CHARACTERISTICS
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Figure 8.1and Q Input Bandwidth Normalized to Gain @ 1 MHz Figure 11. Carrier Feedthrough vs. Fio (Fes = 1 MHz, | and Q Inputs Driven in
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Figure 13. Sideband Suppression vs. Fio (Fss = 1 MHz, | and Q Inputs
Driven in Quadrature at 1.2 V p-p Differential, Ta = 25°C)
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Figure 14. Sideband Suppression vs. Fes (Flo = 2140 MHz, | and Q Inputs
Driven in Quadrature at 1.2 V p-p Differential, Ta = 25°C)
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Figure 15. Sideband Suppression vs. Temperature (F.o = 2140 MHz,
Fss =1 MHz, | and Q Inputs Driven in Quadrature at 1.2V p-p Differential)
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Figure 16. Third Order Distortion vs. Fio (Fss = 1 MHz, | and Q Inputs
Driven in Quadrature at 1.2 V p-p Differential, Ta = 25°C)
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Figure 17. Third Order Distortion vs. Fss (Flo = 2140 MHz, | and Q Inputs
Driven in Quadrature at 1.2 V p-p Differential, Ta = 25°C)
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Figure 18. Third Order Distortion vs. Temperature (F.o = 2140 MHz,
Fgs=1MHz, | and Q Inputs Driven in Quadrature at 1.2V p-p Differential)
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Figure 20. Third Order Distortion (3USB), Carrier Feedthrough, Sideband Figure 23. Smith Chart of LOIP Port S1; (LOIN Pin AC-Coupled
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Figure 27. 20 MHz Offset Noise Floor Distribution at Fro = 2140 MHz
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(BB Inputs at a Bias of 400 mV with no AC signal, Ta = 25°C)
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Figure 28. 20 MHz Offset Noise Floor Distribution at Fro = 940 MHz
(Fes =1 MHz, 1 and Q Inputs Driven in Quadrature at 1.2V p-p, Ta=25°C)
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Figure 29. 20 MHz Offset Noise Floor Distribution at F.o = 1960 MHz
(Fes =1 MHz, 1 and Q Inputs Driven in Quadrature at 1.2V p-p, Ta=25°C)
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Figure 30. 20 MHz Offset Noise Floor Distribution at F.o = 2140 MHz
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CIRCUIT DESCRIPTION

OVERVIEW

The AD8349 can be divided into five sections: the local oscil-
lator (LO) interface, the baseband voltage-to-current (V-to-I)
converter, the mixers, the differential-to-single-ended (D-to-S)
amplifier, and the bias circuit. A detailed block diagram of the
device is shown in Figure 42.

LOIP — PHASE
LOIN —— SPLITTER

IBBP —
IBBN ———

QBBP —
QBBN ——

Figure 42. Block Diagram

03570-0-043

The LO interface generates two LO signals at 90 degrees of
phase difference to drive two mixers in quadrature. Baseband
signals are converted into currents by the V-to-I converters,
which feed into the two mixers. The outputs of the mixers
combine to feed the differential-to-single-ended amplifier,
which provides a 50 Q output interface. Reference currents to
each section are generated by the bias circuit. Additionally, the
RF output is controlled by an output enable pin (ENOP), which
is capable of switching the output on and off within 50 ns. A
detailed description of each section follows.

LO INTERFACE

The LO interface consists of interleaved stages of buffer
amplifiers and polyphase phase splitters. An input buffer
provides a 50 Q) termination to the LO signal source driving
LOIP and LOIN. The buffer also increases the LO signal
amplitude to drive the phase splitter. The phase splitter is
formed by an R-C polyphase network that splits the buffered
LO signal into two parts in precise quadrature phase relation
with each other. Each LO signal then passes through a buffer
amplifier to compensate for the signal loss through the phase
splitter. The two signals pass through another polyphase
network to enhance the quadrature accuracy over the full
operating frequency range. The outputs of the second phase
splitter are fed into the driver amplifiers for the mixers’ LO
inputs.

V-TO-1 CONVERTER

The differential baseband input voltages that are applied to the
baseband input pins are fed to two op amps that perform a
differential voltage-to-current conversion. The differential
output currents of these op amps then feed each of their
respective mixers.

MIXERS

The AD8349 has two double-balanced mixers, one for the in-
phase channel (I channel) and one for the quadrature channel
(Q channel). Both mixers are based on the Gilbert cell design of
four cross-connected transistors. The output currents from the
two mixers sum together in a pair of resistor-inductor (R-L)
loads. The signals developed across the R-L loads are sent to the
D-to-S amplifier.

D-TO-S AMPLIFIER

The output D-to-S amplifier consists of two emitter followers
driving a totem pole output stage. Output impedance is estab-
lished by the emitter resistors in the output transistors. The
output of this stage connects to the output (VOUT) pin.

BIAS CIRCUIT

A band gap reference circuit generates the proportional-to-
absolute-temperature (PTAT) reference currents used by
different sections. The band gap reference circuit also generates
a temperature stable current in the V-to-I converters to produce
a temperature independent slew rate.

OUTPUT ENABLE

During normal operation (ENOP = high), the output current
from the V-to-I converters feeds into the mixers, where they
mix with the two phases of LO signals. When ENOP is pulled
low, the V-to-I output currents are steered away from the
mixers, thus turning off the RF output. Power to the final stage
of LO drivers is also removed to minimize LO feedthrough.
Even when the output is disabled, the differential-to-single-
ended stage is still powered up to maintain constant output
impedance.
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BASIC CONNECTIONS

The basic connections for operating the AD8349 are shown in
Figure 43. A single power supply of between 4.75 V and 5.5 V is
applied to pins VPS1 and VPS2. A pair of ESD protection
diodes connect internally between VPS1 and VPS2, so these
must be tied to the same potential. Both pins should be
individually decoupled using 100 pF and 0.1 pF capacitors to
ground. These capacitors should be located as close as possible
to the device. For normal operation, the output enable pin,
ENOP, must be pulled high. The turn-on threshold for ENOP is
2 V. Pins COM1, COM2, and COM3 should all be tied to the
same ground plane through low impedance paths.

BASEBAND | AND Q INPUTS

The I and Q inputs should be driven differentially. The typical
differential drive level (as used for characterization measure-
ments) for the I and Q baseband signals is 1.2 V p-p, which is
equivalent to 600 mV p-p on each baseband input. The base-
band inputs have to be externally biased to a level between
400 mV and 500 mV. The optimum level for the best perfor-
mance is 400 mV. The recommended drive level of 1.2 V p-p
does not indicate a maximum drive level. If operation closer to
compression is desired, the 1.2 V p-p differential limit can be
exceeded.

For baseband signals with a high peak-to-average ratio (e.g.,
CDDA or WCDMA), the peak signal level will have to be below
the AD8349’s compression level in order to prevent clipping of
the signal peaks. Clipping of signal peaks increases distortion.
In the case of CDMA and WCDMA inputs, clipping results in
an increase of signal leakage into adjacent channels. In general,
the baseband drive should be at a level where the peak signal

power of the output signal is at least a crest factor below the
AD8349’s output compression point. Refer to the Applications
section for drive-level considerations in WCDMA and
GSM/EDGE systems.

Reducing the baseband drive level also has the benefit of
increasing the bandwidth of the baseband input. This would
allow the AD8349 to be used in applications requiring a high
modulation bandwidth, e.g., as the IF modulator in high data-
rate microwave radios.

SINGLE-ENDED BASEBAND DRIVE

Where only single-ended I and Q signals are available, a
differential amplifier, such as the AD8132 or AD8138, can be
used to generate the required differential drive signal for the
AD8349.

Figure 44 shows an example of a circuit that converts a ground-
referenced, single-ended signal to a differential signal, and adds
the required 400 mV bias voltage.

The baseband inputs can also be driven with a single-ended
signal biased to 400 mV, with the unused inputs biased to

400 mV dc. This mode of operation is not recommended,
however, because any dc level difference between the bias level
of the drive signal and the dc level on the unused input
(including the effect of temperature drift), can result in
increased LO feedthrough. Additionally, the maximum low
distortion output power will be reduced by 6 dB.
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Figure 43. Basic Connections
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Figure 44. Single-Ended |Q Drive Circuit

LO INPUT DRIVE LEVEL

The local oscillator inputs are designed to be driven differen-
tially. The device is specified with an LO drive level of -6 dBm.
This level was chosen to provide the best noise performance.
Increasing the LO drive level degrades sideband suppression
and increases carrier feedthrough, while improving noise
performance. Reducing the LO drive level creates the opposite
effect: improved sideband suppression and reduced carrier
feedthrough.

FREQUENCY RANGE

The LO frequency range is from 700 MHz to 2700 MHz. These
limits are defined by the nature of the LO phase splitter
circuitry. The phase splitter generates LO drive signals for the
internal mixers, which are 90 degrees out of phase from each
other. Outside of the specified frequency range (700 MHz to
2700 MHz), this quadrature accuracy degrades, resulting in
poor sideband rejection performance. Figure 45 and Figure 46
show the sideband suppression of a typical device operating
outside the specified LO frequency range. The level of sideband
suppression and degradation is also influenced by manufac-
turing process variations.

LO INPUT IMPEDANCE MATCHING

Single-ended LO sources are transformed into a differential
signal via a 1:1 balun (ETC1-1-13). A 200 () shunt resistor to
GND on each LO input on the device side of the balun reduces
the return loss for the LO input port. Because the LO input pins
are internally dc-biased, ac coupling capacitors must be used on
each LO input pin.
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SINGLE-ENDED LO DRIVE

The LO input can be driven single-ended at the expense of
higher LO feedthrough at most frequencies (see Figure 48).
LOIN is ac-coupled to ground, and LOIP is driven through a
coupling capacitor from a single-ended 50 Q source (see
Figure 47).

A 400 Q) shunt resistor on the signal-source side of the ac
coupling capacitor was used for the measurement.

100pF

100pF AD8349

Lo F—¢6]Lor
4000

03570-0-048

Figure 47. Schematic for Single-Ended LO Drive
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Figure 48. LO Feedthrough vs. Frequency, Single-Ended vs. Differential LO
Drive (Single-Sideband Modulation)

RF OUTPUT

The RF output is designed to drive a 50 Q2 load, but should be
ac-coupled, as shown in Figure 43, because of internal dc
biasing. The RF output impedance is close to 50 Q and provides
fairly good return loss over the specified operating frequency
range (see Figure 24). As a result, no additional matching
circuitry is required if the output is driving a 50 Q load. The
output power of the AD8349 under nominal conditions

(1.2 V p-p differential baseband drive, 400 mV dc baseband
bias, and a 5 V supply) is shown in Figure 7.

OUTPUT ENABLE

The ENOP pin can be used to turn the RF output on and off.
This pin should be held high (greater than 2 V) for normal
operation. Taking ENOP low (less than 800 mV) disables the
output power and provides an off-isolation level of < -50 dBm
at the output.

Figure 49 and Figure 50 show the enable and disable time
domain responses of the ENOP function at 900 MHz. Typical
enable and disable times are approximately 20 ns and

50 ns, respectively.
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Figure 49. ENOP Enable Time, 900 MHz
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Figure 50. ENOP Disable Time, 900 MHz

BASEBAND DACINTERFACE

The recommended baseband input swing and bias levels of the
ADB8349’s differential baseband inputs allow for direct
connection to most baseband DACs without the need for any
external active components. Typically these DACs have a
differential full-scale output current from 0 mA to 20 mA on
each differential output. These currents can be easily converted
to voltages using ground-referenced shunt resistors. Most
baseband DACs for transmit chains are designed with two
DAC:s in a single package.

AD9777 INTERFACE

The AD977x family of dual DACs is well suited to driving the
baseband inputs of the AD8349. The AD9777 is a dual 16-bit
DAC that can generate either a baseband output or a complex
IF using the device’s complex modulator.

The basic interface between the AD9777’s Iour outputs and the
ADB8349’s differential baseband inputs is shown in Figure 51.
The Resistors R1 and R2 set the dc bias level, and R3 sets the
amplitude of the baseband input voltage swing.

AD9777 AD8349
73 O 1
loutar O———4—% o ) IBBP
R1I S ! OPTIONAL
b LOW-PASS | ¢
1 b3
. FILTER I 2RI
7 R2Ig = : 1 2
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69 CTTTTTTTTTTS 16
loutaz O——4—% ol ) QBBP
> 1
RIQ2 ! OPTIONAL | |
— LOW-PASS 1  $R3Q
1 <
R2Q3 = 1 FILTER ! 5
68 !
louts2 CJ—_OI o— ) QBBN o

Figure 51. Basic AD9777 to AD8349 Interface
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Figure 52. Relationship Between R3 in Figure 51 and Peak
Baseband Input Voltage
BIASING AND FILTERING

A value of 40 Q on R1 and R2 in Figure 51 will generate the
required 400 mV dc bias. Note that this is independent of the
value of R3. Figure 52 shows the relationship between the value
of R3 and the peak baseband input voltage with the 40 Q
resistors in place. From Figure 52, it can be seen that a value of
240 Q will provide a peak-to-peak swing of approximately

1.2 V p-p differential into the AD8349’s baseband inputs.

The closest available resistor values are 40.2 Q) and 240 Q, and
these values were used in the characterization of the AD8349
when the DAC was used as a signal source.

When using a DAC, low-pass image reject filters are typically
used to eliminate images that are produced by the DAC. They
provide the added benefit of eliminating broadband noise that
might feed into the modulator from the DAC.

Figure 53 shows a single sideband spectrum at 2140 MHz. The
baseband sine and cosine signals come from the digital output
of a Rohde & Schwarz AMIQ arbitrary waveform generator.
These signals drive the AD9777 dual DAC, which in turn drives
the AD8349’s baseband inputs. Note that the AD9777’s complex
modulator is not being used.

Due to offset voltages, internal device mismatch, and imperfect
quadrature over the AD8349’s operating range, the SSB
spectrum has a number of undesirable components such as LO
feedthrough and undesired sideband leakage. When the
ADB8349 is driven by a modulated baseband signal, (e.g. 8-PSK,
GMSK, QPSK, or QAM), these nonidealities will manifest
themselves as degraded error vector magnitude (EVM) and
degraded spectral purity.
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Figure 53. AD8349 Single Sideband Spectrum at 2140 MHz

REDUCING UNDESIRED SIDEBAND LEAKAGE

Undesired sideband leakage is the result of phase and amplitude
imbalances between the I and Q channel baseband signals.
Therefore, to reduce the undesired sideband leakage, the
amplitude and phase of the baseband signals have to be
matched at the mixer cores. Because of mismatches in the
baseband input paths leading to the mixers, perfectly matched
baseband signals at the pins of the device may not be perfectly
matched when they reach the mixers. Therefore, slight
adjustments have to be made to the phase and amplitudes of the
baseband signals to compensate for these mismatches.

Begin by making one of the inputs, say the I channel, the
reference signal. Then adjust the amplitude and phase of the

Q channel’s signal until the unwanted sideband power reaches a
trough. The AD9777 has built-in gain adjust registers that allow
this to be performed easily. If an iterative adjustment is
performed between the amplitude and the phase, the undesired
sideband leakage can be minimized significantly.

Note that the compensated sideband rejection performance
degrades as the operating baseband frequency is moved away
from the frequency at which the compensation was performed.
As a result, the frequency of the I and Q sine waves should be
approximately half the baseband bandwidth of the modulated
carrier. For example, if the modulator is being used to transmit
a single WCDMA carrier whose baseband spectrum spans from
dc to 3.84/2 MHz, the calibration could be effectively
performed with 1 MHz I and Q sine waves.

REDUCTION OF LO FEEDTHROUGH

Because the I and Q signals are being multiplied with the LO,
any internal offset voltages on these inputs will result in leakage
of the LO to the output. Additionally, any imbalance in the LO
to RF in the mixers will also cause the LO signal to leak through
the mixer to the RF output. The LO feedthrough is clearly
visible in the single sideband spectrum. The nominal LO
feedthrough of —-42 dBm can be reduced further by applying
offset compensation voltages on the I and Q inputs. Note that

the LO feedthrough is reduced by varying the differential offset
voltages on the I and Q inputs (xBBP - xBBN), not by varying
the nominal bias level of 400 mV. This is easily accomplished by
programming and then storing the appropriate DAC offset code
required to minimize the LO feedthrough. This, however,
requires a dc-coupled path from the DAC to the I and Q inputs.

The procedure for reducing the LO feedthrough is simple. A
differential offset voltage is applied from the I DAC until the LO
feedthrough reaches a trough. With this offset level held, a
differential offset voltage is applied to the Q DAC until a lower
trough is reached (This is an iterative process).

Figure 54 shows a plot of LO feedthrough vs. I channel offset
(in mV) after the Q channel offset has been nulled. This
suggests that the compensating offset voltage should have a
resolution of at least 100 pV to reduce the LO feedthrough to be
less than -65 dBm. Figure 55 shows the single sideband
spectrum at 2140 MHz after the nulling of the LO. The reduced
LO feedthrough can clearly be seen when compared with the
performance shown in Figure 53.

Compensated LO feedthrough degrades somewhat as the LO
frequency is moved away from the frequency at which the
compensation was performed. This variation is very small
across a 30 MHz or 60 MHz cellular band, however. This small
variation is due to the effects of LO-to-RF output leakage
around the package and on the board.
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Figure 54. Plot of LO Feedthrough vs. | Channel Baseband Offset
(Q Channel Offset Nulled)
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APPLICATIONS
3GPP WCDMA SINGLE-CARRIER APPLICATION

The interpolation filter used for the measurement of WCDMA
performance is shown in Figure 57. This third order Bessel filter
has a 3 dB bandwidth of 12 MHz. While the 3GPP single
channel bandwidth is only 3.84 MHz, this wide 3 dB bandwidth
of 12 MHz was driven by the need for a flat group delay out to
at least half the bandwidth of the baseband signal. Figure 58
shows a plot of a WCDMA spectrum at 2140 MHz using the

3 GPP Test Model 1 (64 channels active). At an output power of

-17.3 dBm, an adjacent channel power ratio (ACPR) just shy of
-69 dBc was measured.

Figure 59 shows the variation in ACPR with output power at
1960 MHz and 2140 MHz. It also shows the noise floor
measured at an offset of 30 MHz from the center of the modu-
lated WCDMA signal. From the graphs, it can be seen that there
is an optimal output power at which to operate that delivers the
best ACPR. If the output power is increased beyond that point,
the ACPR degrades as the result of increased distortion. Below
that optimum, the ACPR degrades due to a reduction in the
signal-to-noise ratio of the signal.

62 ~147
-63 /’ / -148
—64 N 1960 ADJ CPR —149
N
65 N | -150
\\ \t / &
~ _66 -151
m N Ch
2 p.4 \ o
x -67 152 &
& 2140 ADJ CPR\\ 9
< -68 | -153 T
— 7
-69 1960 NOISE —154 9
-70 | = -155
2140 NOISE
-71 T 1 -156
72 -157 &
26 24 22 20 -18 -16 12 -10 -8 2

CHANNEL POWER (DBM)

Figure 59. Single-Carrier WCDMA ACPR and Noise Floor (dBm/Hz) at 30 MHz
Carrier Offset vs. Channel Power at 1960 MHz and 2140 MHz
(Test Model 1 with 64 Active Channels)

WCDMA MULTICARRIER APPLICATION

The high dynamic range of the AD8349 also permits use in
multicarrier WCDMA applications. Figure 60 shows a 4-carrier
WCDMA spectrum at 1960 MHz. At a per-carrier power of
-24.2 dBm, an ACPR of -60.4dB is achieved. Figure 61 shows
the variation in ACP and noise floor (dBc/Hz) with output
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Figure 57. Single-Carrier WCDMA Application Circuit
(DAC-Modulator Interconnect)
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Figure 61. 4-Carrier WCDMA Adjacent and Alternate Channel Power Ratio
and 50 MHz Noise Floor (dBm/Hz) vs. Per-Channel Power
at 1960 MHz and 2140 MHz

GSM/EDGE APPLICATION

Figure 62 and Figure 64 show plots of GMSK error vector
magnitude (EVM), spectral performance, and noise floor
(dBc/100 kHz at 6 MHz carrier offset) at 885 MHz and

1960 MHz. Based on spectral performance, a maximum output
power level of around 2 dBm is appropriate. Note, however, that
as the output power decreases below this level, there is only a
very slight increase in the dBc noise floor. This indicates that
baseband drive variation can be used to control or correct the
gain of the signal chain over a range of at least 5 dB, with little
or no SNR penalty.

Figure 63 and Figure 65 show plots of 8-PSK EVM, spectral
performance, and noise floor at 885 MHz and 1960 MHz.

An LO drive level of approximately -6 dBm is recommended
for GMSK and 8-PSK. A higher LO drive power will improve
the noise floor slightly; however, it also tends to degrade EVM.
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Figure 62.GMSK EVM, Spectral Performance, and Noise Floor
vs. Channel Power (Frequency = 885 MHz)
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Figure 63. 8-PSK EVM, Spectral Performance, and Noise Floor
vs. Channel Power (Frequency = 885 MHz)
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CHANNEL POWER (dBm)
Figure 64. GMSK EVM, Spectral Performance, and Noise Floor
vs. Channel Power (Frequency = 1960 MHz)
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SOLDERING INFORMATION

The AD8349 is available in a 16-lead TSSOP package with an
exposed paddle. The exposed paddle must be soldered to the
exposed metal of a ground plane for a lowered thermal
impedance and reduced inductance to ground. This results in a
junction-to-air thermal impedance (61) of 30°C/W. If multiple
ground planes are present, the area under the exposed paddle
should be stitched together with vias.

LO GENERATION USING PLLS

Analog Devices has a line of PLLs that can be used for
generating the LO signal. Table 4 lists the PLLs together with
their maximum frequency and phase noise performance.

Table 4. ADI PLL Selection Table

Table 5. ADF4360 Family Operating Frequencies

Frequency Fin At 1 kHz Phase Noise
ADI Model (MHz) dBc/Hz, 200 kHz PFD
ADF4111BRU | 1200 -78
ADF4111BCP | 1200 -78
ADF4112BRU | 3000 -86
ADF4112BCP | 3000 -86
ADF4117BRU | 1200 -87
ADF4118BRU | 3000 -90

ADI Model Output Frequency Range (MHz)
ADF4360-1 2150/2450

ADF4360-2 1800/2150

ADF4360-3 1550/1950

ADF4360-4 1400/1800

ADF4360-5 1150/1400

ADF4360-6 1000/1250

ADF4360-7 Lower frequencies set by external L
TRANSMIT DAC OPTIONS

The AD9777 recommended in the previous sections of this data
sheet is by no means the only DAC that can be used to drive the
ADB8349. There are other DACs that are appropriate, depending
on the level of performance required. Table 6 lists the dual
Tx-DACs that ADI offers.

Table 6. ADI Dual Tx - DAC Selection Table

Analog Devices also offers the ADF4360 fully integrated
synthesizer and VCO on a single chip that offers differential
outputs for driving the local oscillator input of the AD8349.
This means that the user can eliminate the use of the balun
necessary for the single-ended-to-differential conversion. The
ADF4360 comes as a family of chips with six operating
frequency ranges. One can be chosen depending on the local
oscillator frequency required. The user should be aware that
while the use of the integrated synthesizer might come at the
expense of slightly degraded noise performance from the
ADB8349, it can be a much cheaper alternative to a separate PLL
and VCO solution. Figure 61 shows the options available.

Part Resolution (Bits) Update Rate (MSPS Min)
AD9709 8 125

AD9761 10 40

AD9763 10 125

AD9765 12 125

AD9767 14 125

AD9773 12 160

AD9775 14 160

AD9777 16 160

Rev. B | Page 23 of 28




AD8349

EVALUATION BOARD

A populated AD8349 evaluation board is available. board so that heat may be applied under the AD8349 for easy

The AD8349 has an exposed paddle underneath the package,

removal and replacement of the DUT.

which is soldered to the board. The evaluation board is
designed without any components on the underside of the

..
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& @
s p o =
Sllccs cdinll2 o w
LO Cl(lql:l oDUT —cto o«
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Figure 66. Layout of Evaluation Board, Top Layer Figure 67. Evaluation Board Silkscreen

Table 7. Evaluation Board Configuration Options

Component Function Default Condition
TP1,TP4,TP3 Power Supply and Ground Vector Pins. Not applicable
SW1, ENOP, Output Enable: Place in the A position to connect the ENOP pin to +Vs via pull-up resistor R10. SW1=A
TP2 Place in the B position to disable the device by grounding the pin ENOP through a 49.9 Q pull-

down resistor. The device may be enabled via an external voltage applied to the SMA connector

ENOP or TP2.
R1, R2,R5, R9, Baseband Input Filters: These components can be used to implement a low-pass filter for the R1,R2,R5,R9=0Q,
c8-C11 baseband signals. C8-C11=0PEN
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Figure 68. Evaluation Board Schematic
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CHARACTERIZATION SETUPS

SSB SETUP

The primary setup used to characterize the AD8349 is shown in
Figure 69. This setup was used to evaluate the product as a
single-sideband modulator. The interface board has circuitry
that converts the single-ended I and Q inputs from the arbitrary
function generator to differential inputs with a dc bias of

400 mV. Additionally, the interface board provides connections
for power supply routing. The HP34970A and its associated
plug-in 34901 were used to monitor power supply currents and
voltages being supplied to the AD8349 characterization board.

Two HP34907 plug-ins were used to provide additional
miscellaneous dc and control signals to the interface board. The
LO input was driven directly by an RF signal generator and the
output was measured directly with a spectrum analyzer. With
the I channel driven by a sine wave and the Q channel by a
cosine wave, the lower sideband is the single sideband (SSB)
output. The typical SSB output spectrum is shown in Figure 53.
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Figure 69. Characterization Board SSB Test Setup
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OUTLINE DIMENSIONS
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Figure 70. 16-Lead Thin Shrink Small Outline with Exposed Pad [TSSOP_EP]

02-17-2012-A

(RE-16-2)
Dimensions shown in millimeters

ORDERING GUIDE
Model' Temperature Range (°C) Package Description Package Option
AD8349ARE-REEL7 -40 to +85 16-Lead TSSOP_EP, 7" Tape and Reel RE-16-2
AD8349AREZ -40 to +85 16-Lead TSSOP_EP, Tube RE-16-2
AD8349AREZ-RL7 -40to +85 16-Lead TSSOP_EP, 7" Tape and Reel RE-16-2
AD8349-EVALZ Evaluation Board

' Z = RoHS Compliant Part.
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NOTES
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