

0.35 Ω CMOS 1.65 V to 3.6 V Single SPDT Switch/2:1 MUX

ADG839

FEATURES

1.65 V to 3.6 V operation Ultralow on resistance:

0.35 Ω typical

 0.5Ω max at 2.7 V supply

Excellent audio performance, ultralow distortion:

0.055 Ω typical

 $0.09 \Omega max R_{ON} flatness$

High current carrying capability:

300 mA continuous

500 mA peak current at 3.3 V

Automotive temperature range: -40°C to +125°C

Rail-to-rail switching operation

Typical power consumption (<0.1 μW)

APPLICATIONS
Cellular phones

PDAs

MP3 players

Power routing

Battery-powered systems

PCMCIA cards

Modems

Audio and video signal routing

Communication systems

GENERAL DESCRIPTION

The ADG839 is a low voltage CMOS device containing a single-pole, double-throw (SPDT) switch. This device offers ultralow on resistance of less than 0.6 Ω over the full temperature range. The ADG839 is fully specified for 1.8 V, 2.5 V, and 3.3 V supply operation.

Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. The ADG839 exhibits break-before-make switching action.

The ADG839 is available in a 6-lead SC70 package.

FUNCTIONAL BLOCK DIAGRAM

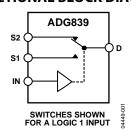


Figure 1.

PRODUCT HIGHLIGHTS

- 1. 0.6 Ω over full temperature range of -40°C to +125°C.
- 2. Compatible with 1.8 V CMOS logic.
- 3. High current handling capability (300 mA continuous current at 3.3 V).
- 4. Low THD + N (0.01% typ).
- 5. Tiny SC70 package.

Table 1. ADG839 Truth Table

Logic Switch 2		Switch 2 (S2)	Switch 1 (S1)
C)	Off	On
1		On	Off

ADG839* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

DOCUMENTATION

Data Sheet

• ADG839: 0.35 Ω CMOS 1.65 V to 3.6 V Single SPDT Switch/ 2:1 MUX Data Sheet

TOOLS AND SIMULATIONS \Box

· ADG839 SPICE Macro Model

REFERENCE MATERIALS 🖳

Product Selection Guide

• Switches and Multiplexers Product Selection Guide

DESIGN RESOURCES 🖵

- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

SAMPLE AND BUY 🖳

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.

TABLE OF CONTENTS

Specifications—2./ V to 3.6 V	-
Specifications—2.3 V to 2.7 V	4
Specifications—1.65 V to 1.95 V	5
Absolute Maximum Ratings	ť
ESD Caution	ť
Pin Configuration and Function Descriptions	7

Typical Performance Characteristics8
Terminology11
Test Circuits
Outline Dimensions
Ordering Guide14

REVISION HISTORY

10/04—Initial Version: Revision 0

SPECIFICATIONS¹—2.7 V TO 3.6 V

 V_{DD} = 2.7 V to 3.6 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	+25°C	−40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
	+25°C	+85°C	+125°C	Unit	rest Conditions/Comments
ANALOG SWITCH			0.17.	.,	V 27V
Analog Signal Range	0.05		$0 V to V_{DD}$	V	$V_{DD} = 2.7 \text{ V}$
On Resistance (R _{ON})	0.35			Ωtyp	$V_{DD} = 2.7 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 100 \text{ mA};$
	0.5	0.56	0.61	Ω max	Figure 19
On Resistance Match between	0.04			Ωtyp	$V_{DD} = 2.7 \text{ V}, V_S = 0.9 \text{ V}, I_S = 100 \text{ mA}$
Channels (ΔR_{ON})	0.075	0.085	0.095	Ω max	
On Resistance Flatness	0.055			Ω typ	$V_{DD} = 2.7 \text{ V}, V_S = 0 \text{ V to } V_{DD},$
(R _{FLAT (ON)})	0.07	0.082	0.09	Ωmax	$I_S = 100 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = 3.6 \text{ V}$
Source Off Leakage I₅ (OFF)	±0.2			nA typ	$V_S = 0.6 \text{ V}/3.3 \text{ V}, V_D = 3.3 \text{ V}/0.6 \text{ V}$; Figure 20
Channel On Leakage ID, Is (ON)	±0.2			nA typ	$V_S = V_D = 0.6 \text{ V or } 3.3 \text{ V; Figure } 21$
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current					
I _{INL} or I _{INH}	0.005			μA typ	V _{IN} = V _{INL} or V _{INH}
			±0.1	μA max	
C _{IN} , Digital Input Capacitance	3.2			pF typ	
DYNAMIC CHARACTERISTICS ²				. ,,	
ton	12			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	16	18	19	ns max	$V_S = 1.5 \text{ V/O V}$; Figure 22
t _{OFF}	6.5			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
-511	8.5	9	9.5	ns max	$V_S = 1.5 \text{ V}$; Figure 22
Break-Before-Make Time Delay	5		2.3	ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$; Figure 23
(t _{BBM})			1	ns min	$V_{S1} = V_{S2} = 1.5 \text{ V};$
Charge Injection	70		•	pC typ	$V_S = 1.5 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF; Figure 24}$
Off Isolation	_57			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; Figure 25
Channel-to-Channel Crosstalk	-57 -57			dB typ	S1 – S2;
Chamiler to-Chamile Closstalk	_5/			ub typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; Figure 26
Total Harmonic Distortion	0.013			%	$R_L = 32 \Omega$, $f = 20 Hz$ to 20 kHz, $V_S = 3 V p-p$
(THD + N)					
Insertion Loss	-0.01			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 27
–3 dB Bandwidth	25			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 27
C _s (OFF)	74			pF typ	
C _D , C _s (ON)	120			pF typ	$V_{DD} = 3.6 \text{ V}$
POWER REQUIREMENTS					Digital inputs = 0 V or 3.6 V
I _{DD}	0.003			μA typ	
		1	4	μA max	

 $^{^1}$ Temperature range for the Y version is -40°C to +125°C. 2 Guaranteed by design; not subject to production test.

SPECIFICATIONS¹—2.3 V TO 2.7 V

 $V_{\rm DD}$ = 2.5 V \pm 0.2 V, GND = 0 V, unless otherwise noted.

Table 3.

_		−40°C to	−40°C to		
Parameter	+25°C	+85°C	+125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to VDD	V	
On Resistance (R _{ON})	0.35			Ω typ	$V_{DD} = 2.3 \text{ V}, V_S = 0 \text{ V to } V_{DD},$
	0.5	0.55	0.6	Ω max	I _s = 100 mA; Figure 19
On Resistance Match between	0.04			Ω typ	$V_{DD} = 2.3 \text{ V}, V_S = 0.95 \text{ V},$
Channels (ΔR _{ON})	0.075	0.085	0.095	Ω max	$I_S = 100 \text{ mA}$
On Resistance Flatness (R _{FLAT (ON)})	0.045			Ω typ	$V_{DD} = 2.3 \text{ V}, V_S = 0 \text{ V to } V_{DD},$
		0.13	0.13	Ω max	$I_S = 100 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = 2.7 \text{ V}$
Source Off Leakage Is (OFF)	±0.2			nA typ	$V_S = 0.6 \text{ V}/2.4 \text{ V}, V_D = 2.4 \text{ V}/0.6 \text{ V}; Figure 20$
Channel On Leakage ID, IS (ON)	±0.2			nA typ	$V_S = V_D = 0.6 \text{ V or } 2.4 \text{ V; Figure } 21$
DIGITAL INPUTS					
Input High Voltage, V _{INH}			1.7	V min	
Input Low Voltage, V _{INL}			0.7	V max	
Input Current					
I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			±0.1	μA max	
C _{IN} , Digital Input Capacitance	3.2			pF typ	
DYNAMIC CHARACTERISTICS ²					
ton	14.5			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	18	20	21	ns max	$V_S = 1.5 \text{ V/O V}$; Figure 22
toff	7.5			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	9.2	9.5	9.8	ns max	V _s = 1.5 V; Figure 22
Break-before-Make Time Delay (t _{BBM})	7			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$; Figure 23
,			1	ns min	$V_{S1} = V_{S2} = 1.5 \text{ V};$
Charge Injection	60			pC typ	$V_S = 1.25 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}; Figure 24$
Off Isolation	-57			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; Figure 25
Channel-to-Channel Crosstalk	-57			dB typ	S1–S2;
					$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; Figure 26
Total Harmonic Distortion (THD $+$ N)	0.021			%	$R_L = 32 \Omega$, $f = 20 \text{ Hz to } 20 \text{ kHz}$, $V_S = 2 \text{ V p-p}$
Insertion Loss	-0.01			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 27
–3 dB Bandwidth	25			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 27
C _S (OFF)	78			pF typ	
C _D , C _s (ON)	127			pF typ	$V_{DD} = 2.7 \text{ V}$
POWER REQUIREMENTS					Digital inputs = 0 V or 2.7 V
I _{DD}	0.003			μA typ	· .
		1	4	μA max	

 $^{^1}$ Temperature range for the Y version is -40°C to $+125^\circ\text{C}.$ 2 Guaranteed by design; not subject to production test.

SPECIFICATIONS¹—1.65 V TO 1.95 V

 V_{DD} = 1.65 V \pm 1.95 V, GND = 0 V, unless otherwise noted.

Table 4.

		−40°C to	−40°C to		
Parameter	+25°C	+85°C	+125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0\ V\ to\ V_{DD}$	V	
On Resistance (RoN)	0.5			Ωtyp	$V_{DD} = 1.8 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 100 \text{ mA};$
	0.8	1.2	1.2	Ω max	Figure 19
	1.3	2.5	2.5	Ω max	$V_{DD} = 1.65 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 100 \text{ mA}$
On Resistance Match between	0.04			Ω typ	$V_{DD} = 1.65 \text{ V}, V_S = \text{TBD}, I_S = 100 \text{ mA}$
Channels (ΔR _{ON})	0.075	0.08	0.08	Ω max	$I_S = 100 \text{ mA}$
On Resistance Flatness (RFLAT (ON))	0.3			Ω typ	$V_{DD} = 1.65 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 100 \text{ mA}$
LEAKAGE CURRENTS					V _{DD} = 1.95 V
Source Off Leakage I _s (OFF)	±0.2			nA typ	$V_S = 0.6 \text{ V}/1.65 \text{ V}, V_D = 1.65 \text{ V}/0.6 \text{ V};$ Figure 20
Channel On Leakage ID, Is (ON)	±0.2			nA typ	$V_S = V_D = 0.6 \text{ V or } 1.65 \text{ V; Figure } 21$
DIGITAL INPUTS					
Input High Voltage, V _{INH}			0.65 V _{DD}	V min	
Input Low Voltage, VINL			$0.35\ V_{DD}$	V max	
Input Current					
I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			±0.1	μA max	
C _{IN} , Digital Input Capacitance	3.2			pF typ	
DYNAMIC CHARACTERISTICS ²					
ton	20			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	28	30	31	ns max	$V_S = 1.5 \Omega/0 V$; Figure 22
toff	8			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	10.1	10.5	10.7	ns max	V _s = 1.5 V; Figure 22
Break-before-Make Time Delay (tbbm)	12			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
			1	ns min	$V_{S1} = V_{S2} = 1 \text{ V; Figure 23}$
Charge Injection	50			pC typ	$V_S = 1 \text{ V}, R_S = 0 \text{ V}, C_L = 1 \text{ nF}; Figure 24$
Off Isolation	-57			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; Figure 25
Channel-to-Channel Crosstalk	-57			dB typ	S1 –S2;
					$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; Figure 26
Total Harmonic Distortion (THD + N)	0.033			%	$R_L = 32 \Omega$, $f = 20 Hz$ to 20 kHz,
					$V_S = 1 V p-p$
Insertion Loss	-0.01			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 27
–3 dB Bandwidth	25			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 27
C _S (OFF)	83			pF typ	V _{DD} = 1.95 V
C_D , C_S (ON)	132			pF typ	Digital inputs = 0 V or 1.95 V
POWER REQUIREMENTS					Digital inputs = 0 V or 1.95 V
I_{DD}	0.003			μA typ	
		1	4	μA max	

 $^{^{1}}$ Temperature range for the Y version is -40° C to $+125^{\circ}$ C.

² Guaranteed by design; not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 5

Table 5.	
Parameter	Rating
V _{DD} to GND	−0.3 V to +4.6 V
Analog Inputs ¹	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$
Digital Inputs	–0.3 V to 4.6 V or 10 mA, whichever occurs first
Peak Current, S or D	
3.3 V Operation	500 mA
2.5 V Operation	460 mA
1.8 V Operation	420 mA (pulsed at 1 ms, 10% duty cycle max)
Continuous Current, S or D	
3.3 V Operation	300 mA
2.5 V Operation	275 mA
1.8 V Operation	250 mA
Operating Temperature Range	
Automotive (Y Version)	−40°C to +125°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
SC70 Package	332°C/W
θ_{JA} Thermal Impedance	120°C/W
Lead Temperature,	300°C
Soldering (10 seconds)	
IR Reflow, Peak Temperature	220°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

¹ Overvoltages at S or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

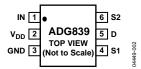


Figure 2. Pin Configuration

Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	IN	Logic control input.
2	V_{DD}	Most positive power supply potential.
3	GND	Ground (0 V) reference.
4, 6	S1, S2	Source terminal. Can be an input or output.
5	D	Drain terminal. Can be an input or output.

For more information, refer to the Terminology section.

TYPICAL PERFORMANCE CHARACTERISTICS

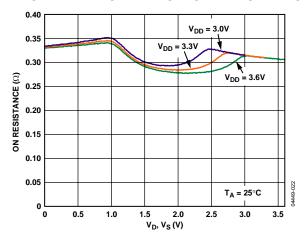


Figure 3. On Resistance vs. $V_D(V_S) V_{DD} = 3 V \text{ to } 3.6 V$

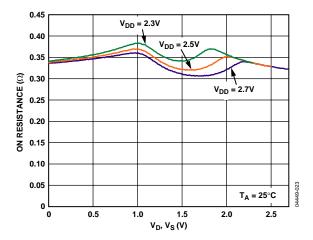


Figure 4. On Resistance vs. V_D (V_S) V_{DD} = 2.5 $V \pm 0.2 V$

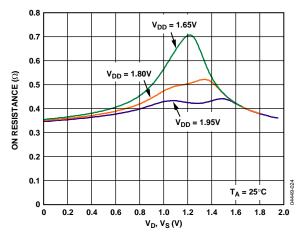


Figure 5. On Resistance vs. V_D (V_S) V_{DD} = 1.8 $V \pm 0.15 V$

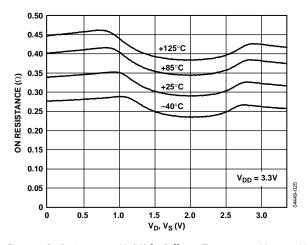


Figure 6. On Resistance vs. V_D (V_S) for Different Temperature, $V_{DD} = 3.3 \text{ V}$

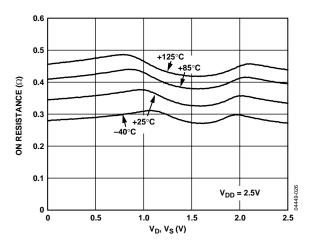


Figure 7. On Resistance vs. V_D (V_S) for Different Temperature, $V_{DD} = 2.5 \text{ V}$

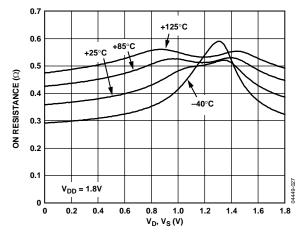


Figure 8. On Resistance vs. V_D (V_S) for Different Temperature, $V_{DD} = 1.8 \text{ V}$

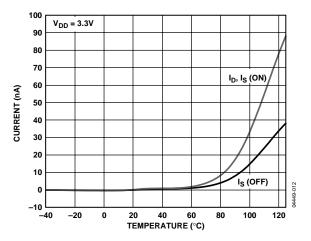


Figure 9. Leakage Current vs. Temperature, $V_{DD} = 3.3 V$

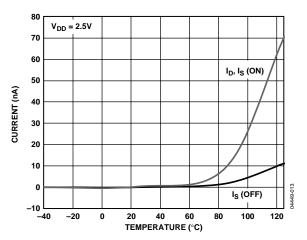


Figure 10. Leakage Current vs. Temperature, $V_{DD} = 2.5 \text{ V}$

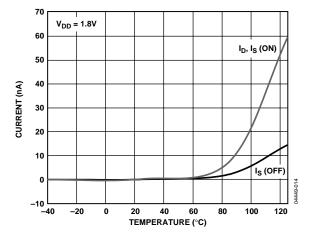


Figure 11. Leakage Current vs. Temperature, $V_{\text{DD}} = 1.8 \text{ V}$

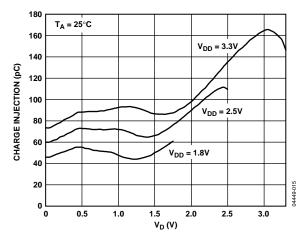


Figure 12. Charge Injection vs. Source Voltage

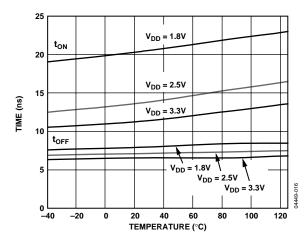


Figure 13. ton/toff Times vs. Temperature

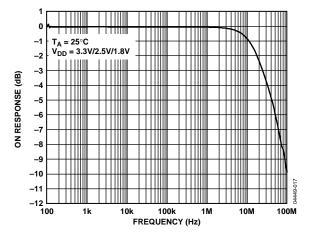


Figure 14. Bandwidth

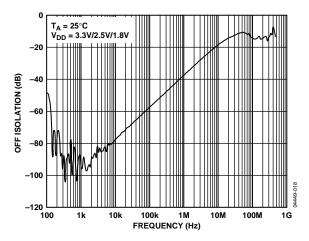


Figure 15. Off Isolation vs. Frequency

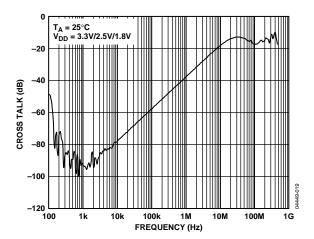


Figure 16. Crosstalk vs. Frequency

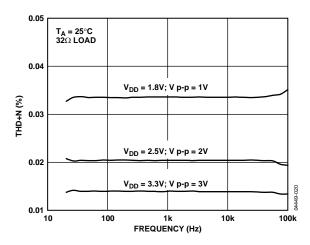


Figure 17. Total Harmonic Distortion + Noise

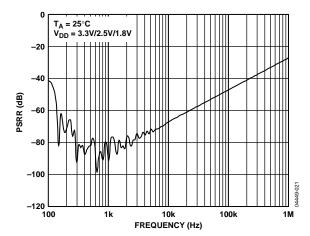


Figure 18. AC PSRR

TERMINOLOGY

I_{DD}

Positive supply current.

$V_D(V_S)$

Analog voltage on Terminals D and S.

Ron

Ohmic resistance between D and S.

RELATION

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured.

ΔR_{ON}

On resistance match between any two channels.

Is (OFF)

Source leakage current with the switch off.

I_D (OFF)

Drain leakage current with the switch off.

I_D , I_S (ON)

Channel leakage current with the switch on.

V_{INI}

Maximum input voltage for Logic 0.

V_{INH}

Minimum input voltage for Logic 1.

$I_{\text{INL}}\left(I_{\text{INH}}\right)$

Input current of the digital input.

C_s (OFF)

Off switch source capacitance. Measured with reference to ground.

C_D (OFF)

Off switch drain capacitance. Measured with reference to ground.

C_D , C_S (ON)

On switch capacitance. Measured with reference to ground.

C_{IN}

Digital input capacitance.

ton

Delay time between the 50% and the 90% points of the digital input and switch on condition.

toff

Delay time between the 50% and the 90% points of the digital input and switch off condition.

t_{BBM}

On or off time measured between the 80% points of both switches when switching from one to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during on-off switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.

-3 dB Bandwidth

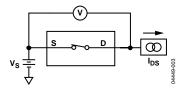
The frequency at which the output is attenuated by 3 dB.

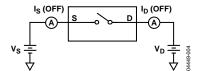
On Response

The frequency response of the on switch.

Insertion Loss

The attenuation between the input and output ports of the switch when the switch is in the on condition, and is due to the on resistance of the switch.


THD + N


The ratio of the harmonic amplitudes plus noise of a signal to the fundamental.

PSRR

Power Supply Rejection Ratio. This is a measure of the coupling of unwanted ac signals on the power supply to the switch output when the supply is not decoupled.

TEST CIRCUITS

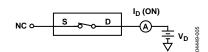


Figure 19. On Resistance

Figure 20. Off Leakage

Figure 21. On Leakage

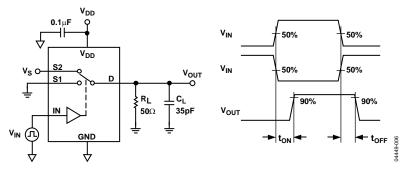


Figure 22. Switching Times, t_{ON} , t_{OFF}

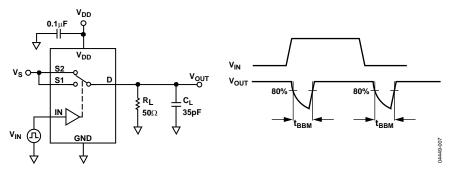


Figure 23. Break-before-Make Time Delay, t_{BBM}

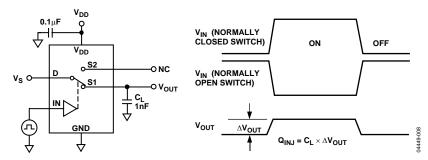


Figure 24. Charge Injection

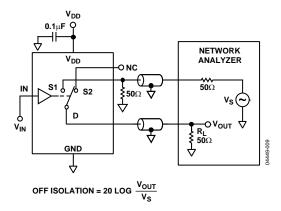


Figure 25. Off Isolation

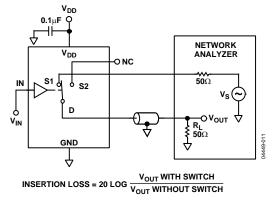


Figure 27. Bandwidth

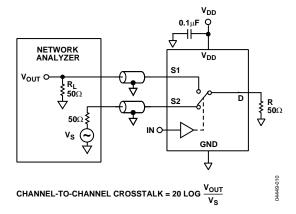


Figure 26. Channel-to-Channel Crosstalk

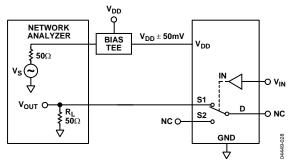
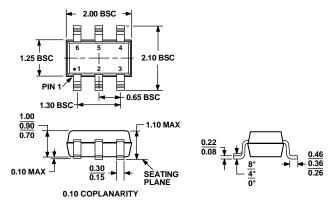



Figure 27. PSRR

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-203AB

Figure 28. 6-Lead Thin Shrink Small Outline Transistor Package [SC70] (KS-6) Dimensions shown in millimeters

ORDERING GUIDE

Model Temperature Range		Package Description	Package Option	Branding ¹
ADG839YKSZ-500RL7 ²	-40°C to +125°C	6-Lead Thin Shrink Small Outline Transistor Package	KS-6	SUA
ADG839YKSZ-REEL ²	-40°C to +125°C	6-Lead Thin Shrink Small Outline Transistor Package	KS-6	SUA
ADG839YKSZ-REEL7 ²	-40°C to +125°C	6-Lead Thin Shrink Small Outline Transistor Package	KS-6	SUA

¹ Branding on this package is limited to three characters due to space constraints.

 $^{^{2}}$ Z = Pb-free part.

NOTES

NOTES

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

ADG839YKSZ-REEL ADG839YKSZ-500RL7 ADG839YKSZ-REEL7