

ADM811/ADM812—SPECIFICATIONS

(V_{CC} = Full Operating Range, $T_A = T_{MIN}$ to T_{MAX} , V_{CC} typ = +5 V for L/M, +3.3 V for T/S, +3 V for R Models unless otherwise noted)

Parameter	Min	Typ	Max	Units	Test Conditions/Comments
SUPPLY Voltage	1.0 1.2		5.5	V V	$T_A = 0^\circ\text{C}$ to $+70^\circ\text{C}$ $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$
Current		8 5	15 10	μA μA	$V_{CC} < +5.5$ V, ADM81_L/M, $I_{OUT} = 0$ A $V_{CC} < +3.6$ V, ADM81_R/S/T, $I_{OUT} = 0$ A
RESET VOLTAGE THRESHOLD					
ADM81_L	4.54	4.63	4.72	V	$T_A = +25^\circ\text{C}$
ADM81_L	4.50		4.75	V	$T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$
ADM81_M	4.30	4.38	4.46	V	$T_A = +25^\circ\text{C}$
ADM81_M	4.25		4.50	V	$T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$
ADM81_T	3.03	3.08	3.14	V	$T_A = +25^\circ\text{C}$
ADM81_T	3.00		3.15	V	$T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$
ADM81_S	2.88	2.93	2.98	V	$T_A = +25^\circ\text{C}$
ADM81_S	2.85		3.00	V	$T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$
ADM81_R	2.58	2.63	2.68	V	$T_A = +25^\circ\text{C}$
ADM81_R	2.55		2.70	V	$T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$
RESET THRESHOLD TEMPERATURE COEFFICIENT		30		ppm/ $^\circ\text{C}$	
V_{CC} TO RESET/RESET $\bar{}$ DELAY		40 20		μs μs	$V_{OD} = 125$ mV, ADM81_L/M $V_{OD} = 125$ mV, ADM81_R/S/T
RESET ACTIVE TIMEOUT PERIOD	140 300	560 700		ms ms	$V_{CC} = V_{TH(MAX)}$ (ADM811-3T Only)
MANUAL RESET					
Minimum Pulsewidth	10			μs	
Glitch Immunity		100		ns	
RESET/RESET $\bar{}$ Propagation Delay		0.5		μs	
Pull-Up Resistance	10	20	30	k Ω	
The Manual Reset Circuit Will Act On					
An Input Rising Above	2.3			V	$V_{CC} > V_{TH(MAX)}$, ADM81_L/M
An Input Falling Below		0.8		V	$V_{CC} > V_{TH(MAX)}$, ADM81_L/M
An Input Rising Above	0.7 $\times V_{CC}$			V	$V_{CC} > V_{TH(MAX)}$, ADM81_R/S/T
An Input Falling Below		0.25 $\times V_{CC}$		V	$V_{CC} > V_{TH(MAX)}$, ADM81_R/S/T
RESET Output Voltage					
Low (ADM812R/S/T)		0.3		V	$V_{CC} = V_{TH(MAX)}$, $I_{SINK} = 1.2$ mA
Low (ADM812L/M)		0.4		V	$V_{CC} = V_{TH(MAX)}$, $I_{SINK} = 3.2$ mA
High (ADM812R/S/T/L/M)	0.8 V_{CC}			V	1.8 V < V_{CC} < $V_{TH(MIN)}$, $I_{SOURCE} = 150$ μA
Low (ADM811R/S/T)		0.3		V	$V_{CC} = V_{TH(MIN)}$, $I_{SINK} = 1.2$ mA
Low (ADM811L/M)		0.4		V	$V_{CC} = V_{TH(MIN)}$, $I_{SINK} = 3.2$ mA
Low (ADM811R/S/T/L/M)		0.3		V	$V_{CC} > 1.0$ V, $I_{SINK} = 50$ μA
High (ADM811R/S/T)	0.8 V_{CC}			V	$V_{CC} > V_{TH(MAX)}$, $I_{SOURCE} = 500$ μA
High (ADM811L/M)	$V_{CC} - 1.5$			V	$V_{CC} > V_{TH(MAX)}$, $I_{SOURCE} = 800$ μA

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

(Typical values are at $T_A = +25^\circ\text{C}$ unless otherwise noted)

Terminal Voltage (With Respect to Ground)

V_{CC} -0.3 V to +6 V
All Other Inputs -0.3 V to $V_{CC} + 0.3$ V

Input Current

V_{CC} 20 mA
 MR 20 mA

Output Current

RESET, RESET $\bar{}$ 20 mA

Power Dissipation ($T_A = +70^\circ\text{C}$)

RT-4, SOT-143 200 mW

Derate by 4 mW/ $^\circ\text{C}$ above $+70^\circ\text{C}$

θ_{JA} Thermal Impedance 330 $^\circ\text{C}/\text{W}$

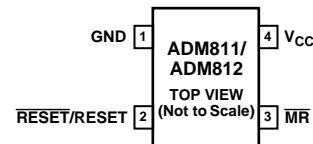
Operating Temperature Range -40 $^\circ\text{C}$ to +85 $^\circ\text{C}$

Storage Temperature Range -65 $^\circ\text{C}$ to +160 $^\circ\text{C}$

Lead Temperature (Soldering, 10 sec) +300 $^\circ\text{C}$

Vapor Phase (60 sec) +215 $^\circ\text{C}$

Infrared (15 secs) +220 $^\circ\text{C}$


ESD Rating 3 kV

*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods of time may affect device reliability.

PIN FUNCTION DESCRIPTIONS

PIN CONFIGURATION

Pin	Mnemonic	Function
1	GND	0 V. Ground reference for all signals.
2	<u>RESET</u> (ADM811)	Active Low Logic Output. <u>RESET</u> remains low while V_{CC} is below the reset threshold or when \overline{MR} is low, <u>RESET</u> then remains low for at least 140 ms (at least 300 ms for the ADM811-3T) after V_{CC} rises above the reset threshold.
2	RESET (ADM812)	Active High Logic Output. RESET remains high while V_{CC} is below the reset threshold or when \overline{MR} is low, RESET then remains high for 240 ms (typical) after V_{CC} rises above the reset threshold.
3	<u>MR</u>	Manual Reset. This active low debounced input will ignore input pulses of 100 ns or less (typical) and is guaranteed to accept input pulses of greater than 10 μ s. Leave floating when not used.
4	V_{CC}	+3 V, +3.3 V or +5 V monitored supply voltage.

ORDERING GUIDE

Model*	Reset Threshold	Temperature Range	Brand Information	Quantity
ADM811LART-REEL	4.63 V	-40°C to +85°C	MBV	10K
ADM811LART-REEL-7	4.63 V	-40°C to +85°C	MBV	3K
ADM811MART-REEL	4.38 V	-40°C to +85°C	MBT	10K
ADM811MART-REEL-7	4.38 V	-40°C to +85°C	MBT	3K
ADM811TART-REEL	3.08 V	-40°C to +85°C	MBG	10K
ADM811TART-REEL-7	3.08 V	-40°C to +85°C	MBG	3K
ADM811-3TART-REEL	3.08 V	-40°C to +85°C	MB3	10K
ADM811-3TART-RL7	3.08 V	-40°C to +85°C	MB3	3K
ADM811SART-REEL	2.93 V	-40°C to +85°C	MBE	10K
ADM811SART-REEL-7	2.93 V	-40°C to +85°C	MBE	3K
ADM811RART-REEL	2.63 V	-40°C to +85°C	MBB	10K
ADM811RART-REEL-7	2.63 V	-40°C to +85°C	MBB	3K
ADM812LART-REEL	4.63 V	-40°C to +85°C	MCV	10K
ADM812LART-REEL-7	4.63 V	-40°C to +85°C	MCV	3K
ADM812MART-REEL	4.38 V	-40°C to +85°C	MCT	10K
ADM812MART-REEL-7	4.38 V	-40°C to +85°C	MCT	3K
ADM812TART-REEL	3.08 V	-40°C to +85°C	MCG	10K
ADM812TART-REEL-7	3.08 V	-40°C to +85°C	MCG	3K
ADM812SART-REEL	2.93 V	-40°C to +85°C	MCE	10K
ADM812SART-REEL-7	2.93 V	-40°C to +85°C	MCE	3K
ADM812RART-REEL	2.63 V	-40°C to +85°C	MCB	10K
ADM812RART-REEL-7	2.63 V	-40°C to +85°C	MCB	3K

*Only available in reels.

Parts in **bold** are ex-stock, please contact factory for availability.

ADM811/ADM812—Typical Performance Characteristics

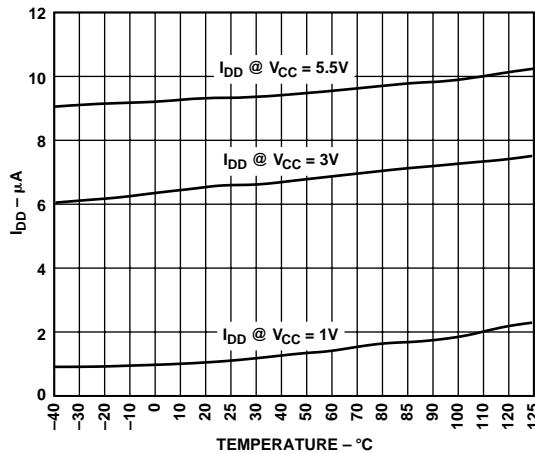


Figure 2. Supply Current vs. Temperature (ADM81_R/S/T)

Figure 5. Supply Current vs. Temperature (ADM81_L/M)

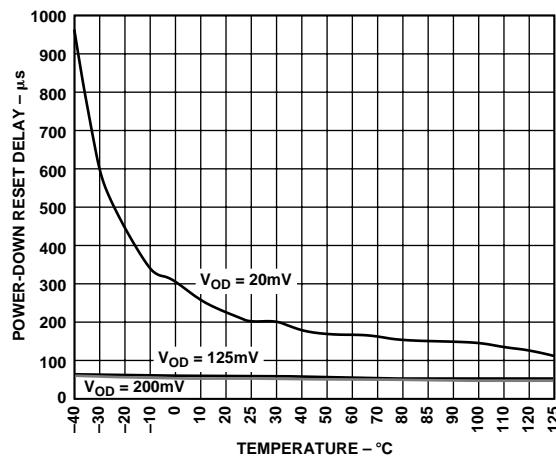


Figure 3. Power-Down RESET Delay vs. Temperature (ADM81_R/S/T)

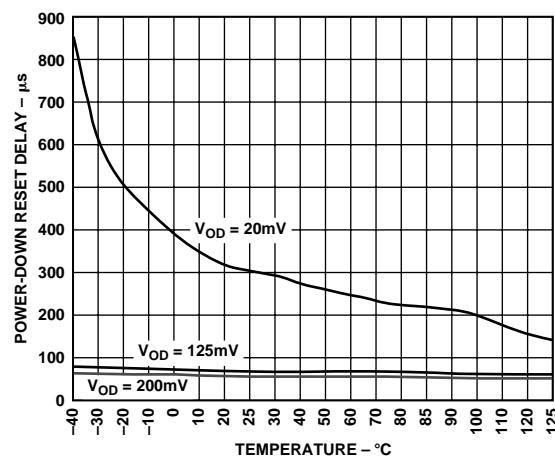


Figure 6. Power-Down RESET Delay vs. Temperature (ADM81_L/M)

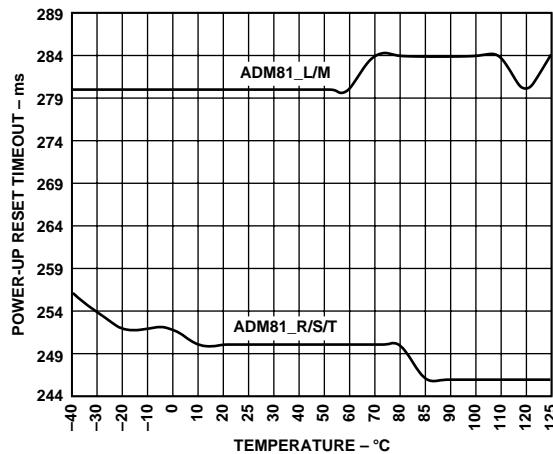


Figure 4. Power-Up Reset Timeout vs. Temperature

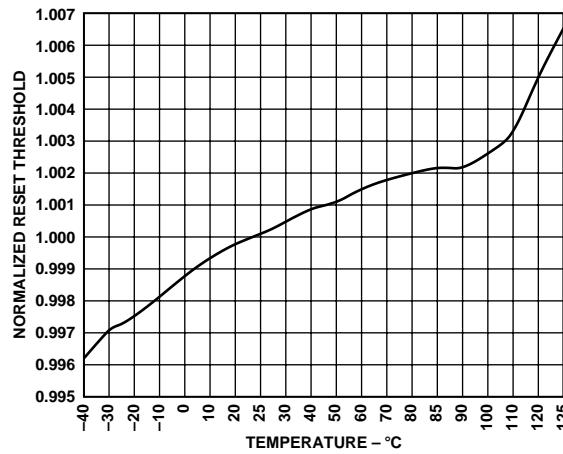


Figure 7. Reset Threshold Deviation vs. Temperature

CIRCUIT INFORMATION

RESET THRESHOLDS

The reset output provides a $\overline{\text{RESET}}$ (for the ADM811) or a RESET (for the ADM812) output to the microprocessor whenever the V_{CC} input is below the reset threshold. The actual reset threshold is dependant on whether a L, M, T, S or R suffix is used. Please refer to Table I.

Table I. Reset Threshold Options

Model	RESET Threshold
ADM811LART	4.63 V
ADM811MART	4.38 V
ADM811TART	3.08 V
ADM811-3TART	3.08 V
ADM811SART	2.93 V
ADM811RART	2.63 V
ADM812LART	4.63 V
ADM812MART	4.38 V
ADM812TART	3.08 V
ADM812SART	2.93 V
ADM812RART	2.63 V

Parts in bold type are ex-stock, please contact factory for availability.

RESET OUTPUT

On power-up and after V_{CC} rises above the reset threshold, an internal timer holds the reset output active for 240 ms (typical). This is intended as a power-on reset signal for the processor. It allows time for both the power supply and the microprocessor to stabilize after power-up. If a power supply brownout or interruption occurs, the reset output is similarly activated and remains active for 240 ms (typical) after the supply recovers. This allows time for the power supply and microprocessor to stabilize.

The ADM811 provides an active low reset output ($\overline{\text{RESET}}$) while the ADM812 provides an active high output (RESET).

During power-down of the ADM811, the $\overline{\text{RESET}}$ output remains valid (low) with V_{CC} as low as 1 V. This ensures that the microprocessor is held in a stable shutdown condition as the supply falls and also ensures that no spurious activity can occur via the μP as it powers up.

MANUAL RESET

The ADM811/ADM812 is equipped with a manual reset input. This input is designed to operate in a noisy environment where unwanted glitches could be induced. These glitches could be produced by the bouncing action of a switch contact or where a Manual Reset switch may be located some distance away from the circuit (the cabling of which may pickup noise).

The Manual Reset input is guaranteed to ignore logically valid inputs which are faster than 100 ns and accept inputs longer in duration than 10 μs .

GLITCH IMMUNITY

The ADM811/ADM812 contain internal filtering circuitry providing glitch immunity from fast transient glitches on the power supply line.

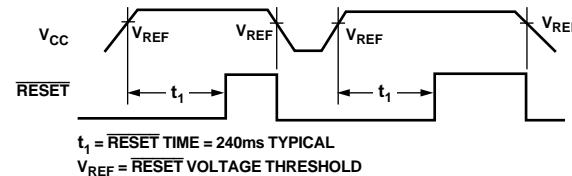


Figure 8. Power Fail $\overline{\text{RESET}}$ Timing

INTERFACING TO OTHER DEVICES

Output

The ADM811/ADM812 series is designed to integrate with as many devices as possible. One feature of the ADM811/ADM812 is the reset output, which is directly proportional to V_{CC} (this is guaranteed only while V_{CC} is greater than 1 V). This enables the part to be used in both 3 V and 5 V or any nominal voltage within the minimum and maximum specifications for V_{CC} .

THE BENEFITS OF A VERY ACCURATE RESET THRESHOLD

Because the ADM811/ADM812 series can operate effectively even when there are large degradations of the supply voltages, the possibility of a malfunction during a power failure is greatly reduced. Another advantage of the ADM811/ADM812 series is its very accurate internal voltage reference circuit. Combined, these benefits produce an exceptionally reliable Microprocessor Supervisory Circuit.

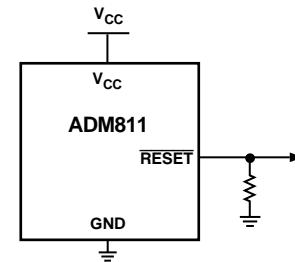
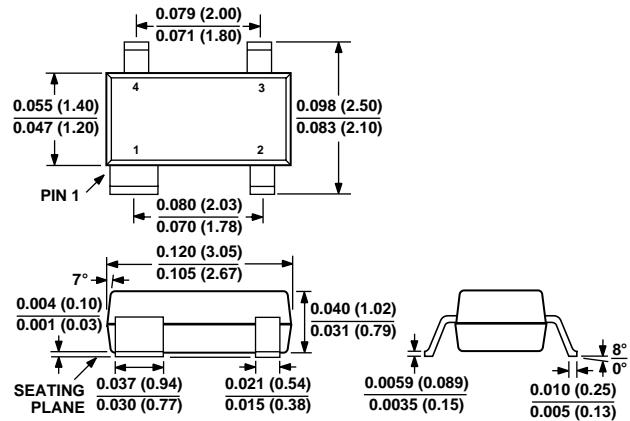


Figure 9. Ensuring a Valid $\overline{\text{RESET}}$ Output Down to $V_{CC} = 0$ V

ENSURING A VALID RESET OUTPUT DOWN TO $V_{CC} = 0$ V


When V_{CC} falls below 0.8 V, ADM811's $\overline{\text{RESET}}$ no longer sinks current. Therefore, a high impedance CMOS logic input connected to $\overline{\text{RESET}}$ may drift to undetermined logic levels. To eliminate this problem a 100 k Ω resistor should be connected from $\overline{\text{RESET}}$ to ground.

ADM811/ADM812

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

4-Lead Plastic Surface Mount Package (SOT-143)

C3140-8-3/99

PRINTED IN U.S.A.