
ADNK-6003
Optical Mouse Designer’s Kit

Design Guide

Introduction

The Universal Serial Bus (USB) is an industry standard serial
interface between a computer and peripherals such as
a mouse, joystick, keyboard, UPS, etc. This design guide
describes how a cost-effective USB-PS/2 optical mouse can
be built using the Cypress Semiconductor CY7C63743-PXC
USB microcontroller and the Avago ADNS-6000 optical
sensor. The document starts with the basic operations of a
computer mouse peripheral followed by an introduction
to the CY7C63743-PXC USB microcontroller and the Avago
Technologies ADNS-6000 Optical Navigation Sensor. A
schematic of the CY7C63743-PXC USB microcontroller to
the ADNS-6000 optical sensor and buttons of a standard
mouse can be found in Appendix A. The software section
of this application note describes the architecture of the
firmware required to implement the USB and PS/2 mouse
functions. The CY7C63743-PXC data sheet is available from
the Cypress web site at www.cypress.com . The ADNS-6000
data sheet is available from the Avago web site at www.
semiconductor.Avago.com. USB documentation can be
found at the USB Implementers Forum web site at www.
usb.org.

ADNB-6001 laser mouse bundle set is the world’s first
laser-illuminated navigation system. With laser navigation
technology, the mouse can operate on many surfaces that

prove difficult for traditional LED-based optical navigation.
Its high-performance architecture is capable of sensing
high-speed mouse motion — velocities up to 20 inches
per second and accelerations up to 8g.

The ADNS-6000 sensor along with the ADNS-6120 lens,
ADNS-6220 clip and ADNV-6330 laser diode form a
complete and compact laser mouse tracking system. There
are no moving parts, which means high reliability and
less maintenance for the end user. In addition, precision
optical alignment is not required, facilitating high volume
assembly.

Optical Mouse Basics

The optical mouse measures changes in position by
optically acquiring sequential surface images (frames), and
mathematically determining the direction and magnitude
of movement. The Z-wheel movement is done in the
traditional method by decoding the quadrature signal
generated by optical sensors. This design guide shows
how to connect to and manage a standard configuration
of mouse hardware, as well as handle the USB and PS/2
protocols. Each of these protocols provides a standard
way of reporting mouse movement and button presses
to the PC.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844043/ADNK-6003.html

�

Figure 1. CY7C63743-PXC –ADNS-6000 Optical Mouse Hardware Block Diagram

Left Button

Agilent ADNS-6000
optical mouse sensor

Wheel Button

Right Button

Z Optics

Cypress
CY7C63743-PXC

enCoRe
USB Controller

USB/PS2 Interface

MISO

MOSI

SCLK

NCS

D+/D-
SCLK/SDATA

VREG

1.3 k Ohm

Introduction to the CY7C63743-PXC

The CY7C63743-PXC is an 8-bit RISC microcontroller with
an integrated USB Serial Interface Engine (SIE). The archi-
tecture executes general-purpose instructions that are
optimized for USB applications. The CY7C63743-PXC has a
built-in clock oscillator and timers as well as programmable
drive strength and pull-up resistors on each I/O line. High
performance, low-cost human interface type computer pe-
ripherals can be implemented with a minimum of external
components and firmware effort.

Serial Peripheral Interface (SPI)

The CY7C63743-PXC provides a SPI compatible interface.
The SPI circuit supports byte serial transfer in either
Master or Slave mode. The integrated SPI circuit allows
the CY7C63743-PXC to communicate with external SPI
compatible hardware, in this case the ADNS-6000.

Hardware Implementation

The standard hardware to implement a mouse is shown in
Figure 1. For X and Y movement, the optical sensor is used.
The Z- wheel movement is detected by a set of optical
sensors that output quadrature signals. For each button
there is a switch that is pulled up internally by the built in
pull up resistors. The D - line is pulled up via a 1.3k ohm
resistor connected to the VREG pin.

Firmware Configurable GPIO

The reference firmware is configured to use the GPIO pins
as shown on the schematic in Appendix A. However, it
may be more optimal to use a different I/O configuration
to meet the mechanical constraints of PCB design. The
reference firmware is designed to be easily configured
to another set of pin connections. This is accomplished
through changes in the I/O definitions at the beginning
of the adns-6000.asm listing. The following statements are

the pin definitions as they exist today. The firmware will
use these definitions to read and configure the GPIO pins,
without any other modifications.

Communications between the CY7C63743-PXC and the
ADNS-6000 are done through the integrated SPI interface.
The serial port cannot be activated while the chip is in
power down mode (NPD low) or reset (RESET high). When
the SPI is enabled thru P0.4 (NCS), the P0.7 (SCLK), P0.6
(MISO), and P0.5 (MOSI) GPIO pins serve special functions
to enable the SPI interface to talk with external hardware.
During normal operation, the CY7C63743-PXC SPI is always
configured as a Master to output the serial clock on P0.7.
Therefore, the USB microcontroller always initiates com-
munication. Data sent by the ADNS-6000 optical sensor is
received on the P0.6 (MISO), and data is shifted out to the
ADNS-6000 through the P0.5 (MOSI). See the schematic in
Appendix A. When writing to the ADNS-6000, the micro-
controller drive both the SCLK and the MOSI lines. When
reading from the ADNS-6000, the microcontroller drives
both the SCLK and MOSI lines initially. After tSRAD delay,
the ADNS-6000 will drive the data via MISO. The microcon-
troller is only driving the SCLK line (outputs SCLK for the
serial interface).

Optical Sensor

Avago’s ADNS-6000 optical sensor is used in this reference
design as the primary navigation engine. This Optical Navi-
gation Technology contains an Image Acquisition System, a
Digital Signal Processor, a two channel quadrature output,
and a four-wire serial port. The CY7C63743-PXC periodi-
cally reads the ADNS-6000’s Delta_X and Delta_Y registers
to obtain any horizontal and vertical motion information
happening as a result of the mouse being moved. The
output of the ADNS-6000 optical sensor is 4-wire serial
port.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844043/ADNK-6003.html

�

This motion information will be reported to the PC to
update the position of the cursor. The advantages of using
ADNS-6000 optical sensor are the best tracking accuracy,
flexibility of programming the optical sensor via the SPI
port, and the automatic frame rate feature (1000fps to
6400fps). Besides, ADNS-6000 optical sensor performs
excellent tracking on difficult surfaces which conventional
Led based technology is unable to track such as glossy and
smooth surfaces. In addition, Burst mode is another special
serial port operation mode that may be used to reduce the
serial transaction time for three predefined operations:
motion read and SROM download and frame capture.
The speed improvement is achieved by continuous data
clocking to or from multiple registers.

Motion Read is activated by reading the Motion_Burst
register. The ADNS-6000 will respond with the contents
of the Motion, Delta_X, Delta_Y, SQUAL, Shutter_Upper,
Shutter_Lower and Maximum_Pixel registers in that order.
SROM download uses Burst Mode to load the Avago-
supplied firmware file contents into the ADNS-6000. The
firmware file is an ASCII text file with each 2-character byte
on a single line. Frame Capture is a fast way to download a
full array of pixel values from a single frame.

To learn more about sensor’s technical information, please
visit the Avago web site at:

http://www.semiconductor.Avago.com

Mouse Optics

The motion of Z-wheel is detected using the traditional
method by decoding the quadrature signal generated by
optical sensors. Two phototransistors are connected in
a source-follower configuration. An infrared LED shines,
causing the phototransistors to turn on. In between the
phototransistors and LED is a pinwheel that turns on the
mouse ball rollers. The fan of this pinwheel is mechanically
designed to block the infrared light such that the photo-
transistors are turned on and off in a quadrature output
pattern. Every change in the phototransistor outputs rep-
resents a count of mouse movement. Comparing the last
state of the optics to the current state derives direction
information. As shown in Figure 2 below, traveling along
the quadrature signal to the right produces a unique set of
state transitions, and traveling to the left produces another
set of unique state transitions. In this reference design, only
the motion at the Z-wheel is detected using this method.

Mouse Buttons

Mouse buttons are connected as standard switches. These
switches are pulled up by the pull up resistors inside the
microcontroller. When the user presses a button, the switch
will be closed and the pin will be pulled LOW to GND. A
LOW state at the pin is interpreted as the button being
pressed. A HIGH state is interpreted as the button has been

released or the button is not being pressed. Normally the
switches are debounced in firmware for 15-20ms. In this
reference design there are three switches: left, Z-wheel,
and right.

USB and PS/2 Connection

The CY7C63743-PXC has a configuration register that
switches control from the SIE to manual control on the
D+ and D- pins. This allows the firmware to dynamically
configure itself to operate as a USB or PS/2 mouse allowing
signaling lines to be shared without using extra GPIO pins
for PS/2 operation. The firmware for this reference design
will automatically detect the host topology (USB or PS/2)
at plug-in and will configure itself for operation on that
bus. If a USB host connection is detected then the firmware
will enable the VREG pin, such that the 1.3k ohm resistor
connected to the D- line can be pulled up to 3.3V. It is this
action that causes the host to recognize that there is a
low-speed USB peripheral attached. The connections for
the connectors are shown in Figure 3 below.

Figure 2. Optics Quadrature Signal Generation

Some details on ADNK-6003

The ADNK-6003 reference design mouse unit allows users
to evaluate the performance of the Optical Tracking Engine
(sensor, lens, LASER assembly clip, LASER) over both a USB
or PS/2 connection, using a Cypress enCoRe USB Control-
ler. This kit also enables users to understand the recom-
mended mechanical assembly. (See Appendix C and D)

System Requirements

PCs using Windows 95/ Windows 98/ Windows NT/
Windows 2000 with PS/2 port and standard 3-button
USB mouse driver loaded.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844043/ADNK-6003.html

�

Figure 3. USB and PS/2 peripheral connectors

Functionality

3-button, scroll wheel mouse.

Operating (For PS/2 Mode)

1.	 Turn off the PC.

2.	 Plug the mouse unit’s PS/2 connector into the PC’s
PS/2 port.

3.	 Turn on the PC. All of the mouse buttons and scroll
wheel will function exactly like a standard PS/2 mouse.

Operating (For USB Mode)

Hot pluggable with USB port. The PC does not need to be
powered off when plugging or unplugging the evaluation
mouse.

To Disassemble the ADNK-6003 Unit

The ADNK-6003 comprises of the plastic mouse casing,
printed circuit board (PCB), lens, buttons, and USB cable.
(See Figure 4.) Unscrewing the one screw located at the
base of the unit can open the ADNK-6003 unit. Lifting and
pulling the PCB out of the base plate can further disas-
semble the mouse unit.

Caution: The lens is not permanently attached to the sensor and will
drop out of the assembly.

Figure 4. Exploded view drawing of optical tracking engine with ADNS-6000 optical mouse sensor.

ADNS-6000 (sensor)

Customer Supplied PCB

ADNS-6120 (lens)*

Customer Supplied Base Plate
With Recommended Features
Per IGES Drawing

Customer Supplied VCSEL PCB

ADNV-6330 (VCSEL)

ADNS-6230-001 (clip)

*or ADNS-6130-001 for trim lens

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844043/ADNK-6003.html

�

Figure 5. Distance from lens reference plane to surface

While reassembling the components, please make sure
that the Z height (Distance from lens reference plane to
surface) is valid. Refer to Figure 5.

Sensor

Sensor PCB

Lens Surface

VCSEL PCB
VCSEL

VCSEL Clip

2.40
0.094

Eye Safety

The ADNS-6000 and the associated components in the
schematic of Figure A1 are intended to comply with
Class 1 Eye Safety Requirements of IEC 60825-1. Avago
Technologies suggests that manufacturers perform
testing to verify eye safety on each mouse. It is also rec-
ommended to review possible single fault mechanisms
beyond those described below in the section “Single
Fault Detection”.

Under normal conditions, the ADNS-6000 generates the
drive current for the laser diode (ADNV-6330). In order
to stay below the Class 1 power requirements, resistor
Rbin must be set at least as high as the value in the bin
table, based on the bin number of the laser diode and
LP_CFG0 and LP_CFG1 must be programmed to ap-
propriate values. Avago recommends using the exact
Rbin value specified in the bin table to ensure sufficient
laser power for navigation. The system comprised of the
ADNS-6000 and ADNV-6330 is designed to maintain the
output beam power within Class 1 requirements over
component manufacturing tolerances and the recom-
mended temperature range when adjusted per the
procedure below and when implemented as shown in
the recommended application circuit of Figure A1. For
more information, please refer to Eye Safety Application
Note 5088.

Enabling the SROM

The ADNS-6000 must operate from the externally loaded
programming. This architecture enables immediate
adoption of new features and improved performance al-
gorithms. The external program is supplied by Avago as a
file which may be burned into a programmable device. A
microcontroller with sufficient memory may be used. On
power-up and reset, the ADNS-6000 program is download-
ed into volatile memory using the burst-mode procedure
described in the Synchronous Serial Port section. The
program size is 1986 x 8 bits.

For more information, please refer to the ADNS-6000
datasheet.

Regulatory Requirements
	 Passes FCC B and worldwide analogous emission lim-

its when assembled into a mouse with shielded cable
and following Avago recommendations.

	 Passes IEC-1000-4-3 radiated susceptibility level when
assembled into a mouse with shielded cable and fol-
lowing Avago recommendations.

	 Passes EN61000-4-4/IEC801-4 EFT tests when assem-
bled into a mouse with shielded cable and following
Avago recommendations.

	 UL flammability level UL94 V-0.

	 Provides sufficient ESD creepage/clearance distance
to avoid discharge up to 15kV when assembled into a
mouse according to usage instructions above.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844043/ADNK-6003.html

�

LASER Power Adjustment Procedure
1.	 The ambient temperature should be 25C +/- 5C.

2.	 Set VDD3 to its permanent value.

3. Ensure that the laser drive is at 100% duty cycle by set-
ting bit 6 of register 0x0A to 0.

4. Program the LP_CFG0 and LP_CFG1 registers to
achieve an output power as close to 506uW as pos-
sible without exceeding it.

Good engineering practices should be used to guarantee
performance, reliability and safety for the product
design.

LASER Output Power

The laser beam output power as measured at the naviga-
tion surface plane is specified below. The following condi-
tions apply:

1.	 The system is adjusted according to the above proce-
dure.

2.	 The system is operated within the recommended op-
erating temperature range.

3.	 The VDD3 value is no greater than 50mV above its
value at the time of adjustment.

4.	 No allowance for optical power meter accuracy is as-
sumed.

Below is the summary of the components contained in the
ADNK-6003 Designer’s Kit.

Sensor

The sensor technical information is contained in the ADNS-
6000 Data Sheet.

USB Controller

Technical information on the Cypress encore USB control-
ler is contained in the CY7C63743-PXC Data Sheet. The
enclosed “Cypress Lab” CD-ROM contains the development
tools for the CY7C63743-PXC. These tools will allow the
designer to make changes and recompile the source code.
To perform In-Circuit Emulation for easier debugging of
new code development, contact Cypress to purchase the
CY3654 Development Kit and the CY3654-P05 Personality
Board.

Programming support and programmer adaptors for the
Cypress CY7C63743-PXC can be found through Cypress
(CY3649-xxxV + CY3083-SC28 + CY3083-08) or through
most 3rd party programming companies. For further
information on this product, please contact Cypress Semi-
conductor.

Lens

The lens technical information is contained in the ADNS-
6120 Data Sheet. The flange on the standard ADNS-6120
lens is for ESD protection.

LASER Assembly Clip

The information on the assembly clip is contained in the
ADNS-6220 Data Sheet.

LASER

The LASER technical information is contained in the ADNV-
6330 Data Sheet and Application Note AN-5088. Additional
application notes regarding Eye Safety Requirements are
also available at Avago’s website.

Base Plate Feature – IGES File

The IGES file on the CD-ROM provides recommended
base plate molding features to ensure optical alignment.
This includes PCB assembly diagrams like solder fixture in
assembly and exploded view, as well as solder plate. See
Appendix D for details.

Reference Design Documentation – Gerber File

The Gerber File presents detailed schematics used in ADNK-
6003 in PCB layout form. See Appendix C for more details.

Overall circuit

A schematic of the overall circuit is shown in Appendix A of
this document. Appendix B lists the bill of materials.

Firmware Implementation

The firmware for this reference design is written in the
Cypress assembly language. The following files are required
to compile the mouse firmware 637xx.inc – the CY7C63743-
PXC I/O registers definition.

adns-6000.asm – main mouse firmware

macros.inc – general macros used with this design

ps2.inc – PS/2 interface constants

usb.inc – USB interface constants

adns-6000_srom_25.inc – SROM firmware

At power up, the firmware examines the host interface and
automatically determines if the mouse is plugged into a
USB or a PS/2 host connection. After the interface type
has been determined, the host firmware configures itself
to operate on the detected interface.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844043/ADNK-6003.html

�

USB Interface

All USB Human Interface Device (HID) class applications
follow the same USB start-up procedure. The procedure is
as follows

1. Device Plug-in

When a USB device is first connected to the bus, it is
powered and running firmware, but communications on
the USB remain non-functional until the host has issued
a USB bus reset.

2. Bus Reset

The pull-up resistor on D– notifies the hub that a low
speed (1.5 Mbps) device has just been connected. The
host recognizes the presence of a new USB device and
initiates a bus reset to that device.

3. Enumeration

The host initiates SETUP transactions that reveal general
and device specific information about the mouse. When
the description is received, the host assigns a new and
unique USB address to the mouse. The mouse begins
responding to communication with the newly assigned
address, while the host continues to ask for information
about the device description, configuration descrip-
tion and HID report description. Using the information
returned from the mouse, the host now knows the
number of data endpoints supported by the mouse (2).
At this point, the process of enumeration is completed.

Notes:
 1.	 idVendor should be changed to the value as supplied by the USB-IF
2.	 idProduct should be assigned for specific product.
3.	 MaxPower value should be changed as per specific circuit’s current

draw.

4. Post Enumeration Operation

Once communication between the host and mouse is
established, the peripheral now has the task of sending
and receiving data on the control and data endpoints.
In this case, when the host configures endpoint 1, the
mouse starts to transmit button and motion data back
to the host when there is data to send. At any time the
peripheral may be reset or reconfigured by the host.

USB Requests – Endpoint 0

Endpoint 0 acts as the control endpoint for the host. On
power-up endpoint 0 is the default communication channel
for all USB devices. The host initiates Control- Read and
Control-Write (see Chapter 8 of the USB specification) to
determine the device type and how to configure com-
munications with the device. In this particular design,
only Control-Read transactions are required to enumerate
a mouse. For a list of valid requests see Chapter 9 of the
USBG specification. In addition to the standard “Chapter
9” requests, a mouse must also support all valid HID class
requests for a mouse.

USB Requests – Endpoint 1

Endpoint 1 is the data transfer communications channel for
mouse button, wheel, and movement information. Requests
to this endpoint are not recognized until the host configures
endpoint 1. Once this endpoint is enabled, then interrupt
IN requests are sent from the host to the mouse to gather
mouse data. When the mouse is left idle (i.e. no movement,
no new button presses, no wheel movement) the firmware
will NAK requests to this endpoint. Data is only reported
when there is a status change with the mouse.

Two HID report formats are used in this design. The boot
protocol, as defined by the HID specification, is the default
report protocol that all USB enabled systems understands.
The boot protocol has a three-byte format, and so does not
report wheel information. The HID report descriptor defines
the report protocol format. This format is four bytes and is
the same as the report format with the exception of the
fourth byte, which is the wheel information. Appendix F of
this document lists the USB Data Reporting Format.

PS/2 Interface

The host driver determines the PS/2 mouse start up
sequence. However, a few standard commands must be
sent in order to enable all PS/2 mice. The mouse is the clock
master on this bus. The host must request the mouse to
clock data into itself.

1. Device Plug-in

When a PS/2 mouse is first connected to the bus, it is
powered and is running firmware. PS/2 communications
generally begin with the host sending a RESET command
to the mouse. The mouse will not report button, wheel, or
movement back to the host until the ENABLE command
is sent. Depending on the particular operating system the
mouse is used with, the start up sequence will vary.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844043/ADNK-6003.html

�

2. Device Configuration

During this time the host will set the standard PS/2 pa-
rameters such as scaling, resolution, stream mode, and
eventually enabling stream mode for data reports. For a
list of the valid PS/2 commands that this mouse recognizes
see Appendix G.

3. Wheel Enable (optional)

Since the wheel is not part of the standard PS/2 specifica-
tion, there is a sequence of commands that enable the
wheel. Wheel-aware drivers, such as those for Microsoft
and Linux operating systems will initiate this special
sequence.

After the following sequence of commands, the wheel
report format is enabled.

0xF3, 0xC8 Set Sampling Rate 200 per second

0xF3, 0x64 Set Sampling Rate 100 per second

0xF3, 0x32 Set Sampling Rate 50 per second

0xF2, 0x03 Read Device Type returns a value of 0x03

After the Read Device Type command returns 0x03 to
indicate that this is a Microsoft compatible three button
wheel mouse, the wheel report format is enabled. See
Appendix G for information on PS/2 standard and wheel
reporting formats.

4. Post Start Up Operation

After the streaming mode is set and data reports are
enabled, the mouse will send button, movement, and
optionally wheel reports back to the host. Whenever the
mouse has new data to send it will initiate a transfer to
the host.

USB Firmware Description

A function call map for USB operation is shown in Figure 6.
The following are descriptions of the functions in adns-6000.
asm.

Dual USB and PS2 Functions

GetMouseType – called in dualMain when the mouse is first
plugged into the PC. This routine returns the interface of
the mouse. The following sequences are performed by
the microcontroller to determine the mouse type. Delay
50mS. Initialize the PS2 BAT delay counter. For a period
of 2ms, poll the SCLK and SDATA lines every 10us. If we
get 4 samples in a row with non-zero data on either line,
detect a PS2 interface. If 2mS expires, enable the USB pull
up resistor and delay 500uS. Poll the SCLK and SDATA lines
indefinitely until a non-zero condition exists on either
line. During this polling period, we begin to count down
the PS2 BAT delay. If SCLK(D+) is sampled high, detect a
PS2 interface. If SDATA(D-) sampled high, disable the USB

connect resistor and Delay 100uS. If D+ and D- are both 0,
detect a USB interface, else detect a PS2 interface.

SPIInit – This routine is called in the try_download to enable
the SPI interface. The CY7C63743-PXC is always configured
as a Master to drive the serial clock on P0.7. The clock is set
to HIGH in idle state, and the SCLK frequency is set to send
a bit rate of 1Mbit/s.

SensorReset – This routine resets the serial interface and the
ADND-6000 internal registers by generating a pulse on
the RESET pin.

LoadSROM - called in try_download after the initialization of
the SPI interface. This routine is used to load the SROM
(Shadow ROM) firmware into the ADNS-6000 optical
sensor. It should be called after SensorReset.

AdjustLASER - called to calibrate the laser to the required
506uW. This will ensure that the LASER meets Class 1 eye
safety. Customer must ensure that the correct LP_CFG0
and LP_CFG1 register values are written into the registers
for proper LASER operation.

ProcessButtons – This routine is called within the infinite us-
bTaskLoop and ps2TaskLoop loops. The state of the buttons
are updated every one ms in the Dual1msTimer Interrupt
Service Routine (ISR). This routine compares the current
state of the buttons with their last state to detect any
changes in the status. If the status change of the buttons
remains until the expiration of debounce timer (15ms), the
new button state is confirmed. This routine will record the
new button state in the [buttonValue] variable which will
be reported to the host in the main loop.

ReadProcessOptics – This routine returns any updates in the
X, Y and Z-wheel motion information. The motion of the
Z-wheel is detected using the traditional method by
decoding the quadrature signal generated by the pho-
totransistors. The X and Y directions of the movement
are obtained by calling the ReadDeltaX and ReadDeltaY
routines. The X, Y, and Z-wheel movement is stored in the
[xCount], [yCount], and [zCount] variables which will be sent
to the host in the main routine.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844043/ADNK-6003.html

�

ReadMotionReg – Reads the ADNS-6000 Motion register. The
data returned from this register will be used to determine if
any motion has occurred or if any fault condition exists.

ReadDeltaX – Reads the ADNS-6000 Delta_X register for the
X movement. Calls the ReadSPI routine to enable the SPI
interface and perform reading operations through the
two wire serial interface. Any new X motion information is
added to the [xCount] variable.

ReadDeltaY – Reads the ADNS-6000 Delta_Y register for the
Y movement. Calls the ReadSPI routine to enable the SPI
interface and perform reading operations through the
two wire serial interface. Any new Y motion information is
added to the [yCount] variable.

WriteSPI – Writes to the ADNS-6000 register. A write
operation consists of two bytes. The first byte contains
the address (7 bits) and has “1” as its MSB. The second byte
contains data. The microcontroller to drive both the SCLK
and the MOSI lines. SPIWriteRoutine is called to carry the
write operation.

ReadSPI – Reads the desired ADNS-6000 registers. A read
operation is composed of two parts. First, the microcon-
troller performs a write to the ADNS-6000, sending the
address of the target register to be read. The microcon-
troller drives both the SCLK and MOSI lines. After tSRAD
delay, the ADNS-6000 will drive the data via MISO. The
microcontroller is only driving the SCLK line (outputs SCLK
for the serial interface). SPIWriteRoutine is called to carry
the write operation.

SPIWriteRoutine – Writes the data to be transmitted onto the
SPI pins.

CheckProductID – This function checks the product ID of the
sensor chip being used. The ID returned should match with
the ADNS-6000’s ID.

GetButtons – Returns the current state of the buttons.

USB Functions

usbMain – This routine initializes the USB related parameters
and enables VREG to signal the host that the mouse has
been connected. The program then goes to the usbTask-
Loop .

usbTaskLoop – This function spins in an infinite loop waiting
for an event that needs servicing. The ProcessButtons and
ReadProcessOptics functions are called within this loop
to retrieve any new motion or button information. The
data received from these functions will be loaded into the
endpoint 1 buffer to be sent to the host.

ep0SetupReceived – This routine is entered whenever a SETUP
packet is received in on endpoint 0. It parses the packet
and calls the appropriate routine to handle the packet.

ep0InReceived – This routine is entered whenever an IN
packet is received on endpoint 0.

ep0OutReceived – This routine is entered whenever an OUT
packet is received on endpoint 0.

setDeviceConfiguration – This routine is entered when a SET
CONFIGURATION request has been received from the
host.

setDeviceAddress – This routine is entered whenever a SET
ADDRESS request has been received. The device address
change cannot actually take place until after the status
stage of this no-data control transaction, so the address is
saved and a flag is set to indicate that a new address was
just received. The code that handles IN transactions will
recognize this and set the address properly.

getDescriptor – This routine is entered when a GET DESCRIP-
TOR request is received from the host. This function
decodes the descriptor request and sends the proper
descriptor.

setInterfaceIdle – This routine is entered whenever a SET
IDLE request is received. See the HID specification for the
rules on setting idle periods. This function sets the HID idle
time. See the HID documentation for details on handling
the idle timer.

setInterfaceProtocol – This routine is entered whenever a SET
PROTOCOL request is received. This no-data control trans-
action enables boot or report protocol.

getInterfaceReport – This routine is entered whenever a GET
REPORT request is received.

getInterfaceIdle – This routine is entered whenever a GET IDLE
request is received. This function then initiates a control-
read transaction that returns the idle time. See the HID
class documentation for more details.

getInterfaceProtocol – This routine is entered whenever a GET
PROTOCOL request is received. This request initiates a
control-read transaction that tells the host if the mouse is
configured for boot or report protocol. See the HID class
documentation for more details.

getDeviceConfiguration – This routine is entered whenever a
GET CONFIGURATION Request is received. This function
then starts a control read transaction that sends the con-
figuration, interface, endpoint, and HID descriptors to the
host.

requestNotSupported – Unsupported or invalid descriptor
requests will cause this firmware to STALL these transac-
tions.

PS/2 Firmware Description

A function call map for PS/2 operation is shown in Figure
7. The following are descriptions of the functions in Adns-
6000.asm

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844043/ADNK-6003.html

10

DualMain

GetMouseType

USB Main PS2 Interface

System
Initialization

USB Initialization

USBTaskLoop

ProcessButtons

ProcessOptics

ReadMotionReg

ReadDeltaX

ReadDeltaY

Read Z Wheel
Load new mouse

packet to EP1
buffer & enable

EP1

Load SROM

AdjustLASER

Figure 6. USB Operation Function Call Map

PS/2 Functions

PS2Main – Initializes the PS/2 related parameter to their
default state, enables the serial interface and sends a BAT
code (AAh followed by 00h) to the host. After the initializa-
tion, the program goes into the infinite PS2TaskLoop loop.

PS2TaskLoop – This function spins in an infinite loop waiting
for an event that needs servicing. The ProcessButtons and
ReadProcessOptics functions are called within this loop
to retrieve any new motion or button information. The
data received from these functions will be loaded into the
endpoint 1 buffer to be sent to the host.

PS2BAT – delays for 500 milliseconds, then sends the AAh
followed by 00h initialization string to the host for the PS/2
Basic Assurance Test.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844043/ADNK-6003.html

11

PS2SendResponseByte – Sends a response byte (ACK, ERROR,
RESEND) to the host

PS2Send – This routine sends a byte to the host according
to the standard PS/2 protocol. This routine calls send_0
and send_1 routines that shift the bits out serially over the
PS/2 interface.

PS2Receive – This routine receives a byte from the host
according to the standard PS/2 protocol. This routine calls
the GetBit function to clocks each bit in.

PS2Resend – A copy of the last transmission is always left
intact in the message buffer. To re-send it, this routine
simply resets the message length.

PS2SetDefault – This routine is called in response to a SET
DEFAULT command from the host. It then sets the mouse
parameters to the default settings.

PS2DisableMouse – Disables the mouse.

PS2EnableMouse – Enables the mouse.

PS2SetSampleRate – This routine is called in response to a SET
SAMPLE RATE command from the host. It then verifies that
the requested sample rate is valid and sets the sample rate
for the mouse. Valid sample rates are defined in the PS/2
Mouse specification.

PS2ReadDeviceType – This routine is called in response to a
READ DEVICE TYPE request from the host. This mouse
always sends a 0x00 in response to this request.

PS2SetRemoteMode – This routine is called in response to a SET
REMOTE MODE command from the host. The PS/2 mode is
then set to remote mode.

PS2SetWrapMode – This routine is called in response to a SET
WRAP MODE command from the host. It then sets the
mouse mode to wrap mode. See the PS/2 specification for
more details on wrap mode.

PS2ResetWrapMode - This routine is called in response to a
RESET WRAP MODE command from the host. The mode
is then reset to the previous mode. According to the IBM
PS/2 specification, if stream mode is enabled, the mouse
is disabled when the wrap mode is reset.

PS2ReadData – This routine is called in response to a READ
DATA command from the host. This routine then sends a
mouse packet in response to the command.

PS2SetStreamMode – This routine is called in response to a SET
STREAM MODE command from the host. Stream mode is
then enabled. See the PS/2 specification for more informa-
tion about stream mode.

PS2StatusRequest – This routine is called in response to a
STATUS REQUEST command from the host. A three byte
report is sent to the host in response to this request. See
the PS/2 mouse specification for more details.

PS2SetResolution – This routine is called in response to a SET
RESOLUTION command from the host. Set Resolution is
a two byte command; the 2nd byte being the resolution
itself. This routine is called after reception of the first byte,
and so does nothing by itself.

PS2SetScaling – This routine is called in response to a SET
SCALING command from the host. Scaling then changes
to 2:1.

PS2ResetScaling – This routine is called in response to a RESET
SCALING command from the host. The scaling is then reset
back to 1:1.

PS2GetHostByte(void) – This routine checks to see if the host is
requesting to send data, and if so, it clocks in a data byte
from the host. The function returns the received byte in
the accumulator and implicitly clears the carry to 0 if the
reception occurred without errors.

PS2DoCommand – This routine dispatches the received PS/2
command byte to the proper handler.

LoadMousePacket – This routine formats a mouse packet
according to the PS/2 Mouse specification and loads it to
the buffer.

PS2SendNextByte – This routine sends the next byte in buffer
to the host.

ResetMouseReportInterval – This routine resets the mouse
report interval to the value last sent by the host. The report
interval is counted down in the main loop to provide a
time base for sending mouse data packets.

CheckWheel – This function checks whether the proper
sequence of commands have been issued by the host
to enable the wheel of the mouse. The sequence is three
consecutive setting rate commands of 200, 100 and 80
reports/second.

ApplyResolution(void) – This routine scales the mouse output
by right-shifting the mouse counts to achieve a /2 for each
resolution factor.

void ApplyScaling(void) – This routine scales the mouse output
according to the following to the PS/2 mouse specification,
when scaling is enabled by the host.

send_1 – sends a PS/2 1 bit

send_0 – sends a PS/2 0 bit

GetBit – receives a PS/2 bit from the host

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844043/ADNK-6003.html

12

ps2Main

PS2 Initialization

ps2TaskLoop

PS2BAT

SetDefault

ps2SendNextByte ProcessOptics PS2DoCommand ProcessButtons GetHostByte LoadMousePacket

HostRequestToSend

PS2Receive

GetBit

send0

ReadMotionReg PS2SendResponseByte

PS2Send

Send_1

Send_0

ResetInterval

PS2SetScaling

SetWrapMode

SetDefault

PS2StatusRequest

SetRemoteMode

CheckWheel

Resend

PS2SetStreamMode

ReadDeviceType

Reset

Enable

ResetWrapMode

Disable

PS2ResetScaling

ReadDeltaX

ReadDeltaY

Read Z Wheel

HostRequestToSend

PS2HostINhibit

PS2Send

Send_1

Send_0

Figure 7. PS/2 Operation Function Call Map

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844043/ADNK-6003.html

13

SET RESOLUTION Command

The SET RESOLUTION command is conditionally enabled
by the statement “#define ENABLE_RESOLUTION”. On most
systems this command is not supported. If you wish to
disable this command in the firmware, comment out the
aforementioned statement.

SET SCALING Command

The SET SCALING command is conditionally enabled
by the statement “#define ENABLE_SCALING”. On most
systems this command is not supported. If you wish to
disable this command in the firmware, comment out the
aforementioned statement.

Interrupt Service Routines (ISR)

The CY7C63743-PXC features 12 different sources of inter-
rupts. There are only four ISRs implemented in this applica-
tion. If an interrupt is enabled and the conditions for the
interrupts are met, the microcontroller will generate an
interrupt. Upon servicing the interrupt, the hardware will
first disable all interrupts by clearing the Global Interrupt
Enable bit. This is followed by an automatic CALL instruc-
tion to the ROM address of the interrupt being serviced
in the Interrupt Vector. The instruction in the Interrupt
Vector is typically a JMP instruction to the Interrupt Service
Routine (ISR). A RETI or RET instruction at the end of the ISR
brings the program counter (PC) back to the location prior
to the interrupt (POR and USB Bus Reset are exceptions).

DualMain – When power is first applied to the CY7C63743-
PXC, a Power On Reset (POR) occurs; the microcontroller
starts executing code from address 0x00. This is a JMP
instruction to the DualMain routine. This routine initial-
izes the program stack pointer (PSP), data stack pointer
(DSP), ram variables, and the GPIO pins. This routine calls
GetMouseType which returns the interface of the mouse.
If a USB interface is detected, the program jumps to the
usbMain loop. Otherwise, the program goes to the ps2Main
loop.

DualUsbBusReset_ps2Error – The USB-PS2 Interrupt Mode bit
in the USB Status and Control Register is defaulted to
“0”, or USB mode. This indicates that the USB Bus Reset
interrupt will be generated if the SE0 condition (D+ and
D- are both LOW) exists for 256us. This ISR enables the USB
Device Address, sets up the endpoint modes and jumps to
usbMain for the USB initialization.

Dual1msTimer – This ISR reads the current status of the
buttons. Therefore, every one millisecond the button
state is updated; the button status information will be
used by the ProcessButtons function at a later time. This
ISR maintains the dualInterface1ms counter variable
which is used as a 1ms timing reference in other parts of
the program. This routine also handles the entrance/exit
from suspend. The mouse will prepare to enter a suspend
(low power) state if there is no bus activity in 3ms. If the
mouse is configured for remote wakeup, the Bus Reset and
wakeup interrupts are enabled prior to suspending the
chip. The program then enters a suspended state, and will
wake at least as often as the wakeup timer interrupts or as
a result of the USB Bus Reset interrupt. Each time the chip
wakes up due to the wake up timer interrupt, the state of
the buttons is examined by the GetButtons function. If a
change in the button state has occurred, the mouse will
generate a resume signal to the host and exit the ISR. If
the device is not enabled for remote wakeup, only the USB
bus reset interrupt is enabled, and the part is suspended.
Only a Bus Reset can wake up the chip. If the resume was
due to bus activity, the firmware returns to the main loop.
If the resume was due to a button press, a K state is driven
upstream for 14 milliseconds prior to returning to the main
loop. Moving the mouse will not wake the suspended
system.

DualUsbEndpoint0_ps2Error – This ISR is entered upon receiving
an Endpoint 0 interrupt. Endpoint 0 interrupts occur during
the Setup, data, and status phases of a control transfer. This
ISR handler jumps to the proper routine to handle one of
these phases.

DualUsbEndpoint1_ps2Error – This ISR is entered upon receiving
an Endpoint 1 interrupt. If the ACK bit is set, indicating
that a mouse packet was just transmitted to the host suc-
cessfully, the SIE automatically sets the endpoint mode
to NAK_IN mode, and the data toggle bit is flipped for
the next transaction. The data toggle bit should never be
toggled if the interrupt was a result of a NAK transaction.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844043/ADNK-6003.html

14

Manufacturer String*1

A request for the manufacturer string will return the following string.

“Avago Reference Design Mouse”

Product String*2

A request for the product string will return the following string.

“ADNS-6000 Mouse”

Configuration String

A request for the configuration string will return the following string.

“HID-Compliant Mouse”

Endpoint 1 String

A request for the endpoint string will return the following string.

“Endpoint 1 Interrupt Pipe”

Note 1: The Manufacturer String should be changed to the name of your company.

Note 2: The Product String should be changed to your product’s name.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844043/ADNK-6003.html

15

Appendix A: Schematic Diagram of the Overall Circuit

Figure A1. Circuit-level block diagram for ADNK-6003 designer’s kit optical mouse using the Avago ADNS-6000 optical mouse sensor and Cypress CY7C63743-
PXC enCoRe USB Controller.

CY
PR

ES
S

CY
7C

63
74

3-
PX

C
14

5

Vcc

9

GND

16

15

Vreg
11

19

17

GND

12

13
 XTALOUT

20

* Outputs configured as open drain

D1
VCSEL

P0.5 *

P0.4 *

P0.7 *

P0.6

P1.4

P0.2

P0.0

P0.3

P1.5

VPP

R4 20K

Vcc

P1.0

P1.1

P1.2

P1.3

P1.6

P1.7

P0.1

R3 20K

A
D

N
S-

60
00

Vcc

QA

QB

Rbin
Selected
to match
laser

RBIN

24

MOSI23

SCLK21

MISO
22

R2
20K

NCS
3

RESET

NPD
4

R1
20K

R9

10 K

R10
10 K

24
MHz

OSC_OUT

OSC_IN

GUARD

X1

REFC

REFB

C9
0.1

C8
2.2

LASER_NEN

XY_LASER

Q2
2N3906

C2
0.1

C3
0.1

GND

GND

V
D

D
3

V
D

D
3

Vout Vin

Gnd

+3.3V

C7
4.7

C4
0.1

C6
4.7

1

2

3

Vcc
U4 LP2950ACZ-3.3

3.3V Regulator

Vcc

3

SW4
ALPS
EC10E

Scroll wheel encoder

__
CS

 SCLK

SI

S0

 VCC

 WP

 HLD

GND

U1 25LC160A

1

 6

5

2

8

3

7

4

R7 100K

C5
0.1

N/C

N/C
D-/SDAT

D+/SCLK

XTALIN/P2.1

6

8

 1

 2

3

4

Vcc

VBUS

D+

D-

USB Port

R5
1.30K

C1
0.1

Buttons
SW2

SW1

SW3

middle

right

left

16 KBit EEPROM (optional)

7

18

1
2

10

1

2

USB
microcontroller

R6 2.7K

C10
470pF

Murata
CSALS24MOX53-B0

Optional
Ground
Plane

6

9

13

7

15

4

1

5

19

12

11

20

3

2

10

14

8

17

16 18

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844043/ADNK-6003.html

16

Appendix B: Bill of Materials for Components Shown on schematic

Comment Footprint Quantity

Cer. Cap 0.1uF (104) 0805_CUS 5

Cer. Cap 470pF 50V 0805_CUS 1

Chip RES. 10K 1% 0.125W 0805_CUS 2

Chip RES. 1K3 1% 0.125W 0805_CUS 1

Chip RES 2K7 1% 0.125W 0805_CUS 1

Chip RES 20K 1% 0.125W 0805_CUS 2

Chip RES 22K 1% 0.125W 0805_CUS 2

Chip RES 240R 1% 0.125W 0805_CUS 1

Resistor 18K7 1% 0.25W AXIAL0.4 1

Resonator 24MHz RAD0.2B 1

MMBT3906 SOT-23 1

E.Cap 2.2uF 50V CODE A 1

E. Cap 4.7uF 50V CODE A 2

ADNS-6000 sensor * DIP1x2MM 1

CY7C63743 * DIP24 1

IC socket 24-pin DIP24 1

LP2950ACZ-3.3 TO92C 1

MOLEX-5P HEADER CON5-MACH2-PWR 1

Mouse switch SW-SPDT-ZIPPY 3

VCSEL* LED 1

VCSEL socket pins VCSEL-2P 2

WIRES 2

Z-ENCODER ZDET 1

Z-LED ZLED 1

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844043/ADNK-6003.html

17

Figure C2. PCB Schematic (Top Layer)

Figure C1. PCB Schematic (Bottom Layer)

Appendix C: PCB Layout

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844043/ADNK-6003.html

18

Figure C4. PCB Schematic (Bottom Overlay)

Figure C3. PCB Schematic (Top Overlay)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844043/ADNK-6003.html

19

Appendix D: Base Plate Feature

Figure D1. Overall view of base plate

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844043/ADNK-6003.html

20

Appendix F: USB data reporting format

The USB report has two formats, depending on if boot or report protocol is enabled. The following format is the boot
protocol and is understood by a USB aware BIOS.

 Bit 7 Bit 0

Byte 0 0 0 0 0 0 Middle Right Left

Byte 1 X X X X X X X X

Byte 2 Y Y Y Y Y Y Y Y

 Bit 7 Bit 0

Byte 0 0 0 0 0 0 Middle Right Left

Byte 1 X X X X X X X X

Byte 2 Y Y Y Y Y Y Y Y

Byte 3 R R R R R R R F/R

The following is the USB report protocol format and allows the additional wheel movement information in the fourth
byte. When the wheel is moved forward the fourth byte reports a 0x01, and when moved backward the fourth byte
reports 0xFF. When the wheel is idle, then this byte is assigned 0x00.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844043/ADNK-6003.html

21

Appendix G: PS/2 reporting format

The PS/2 portion of the firmware handles the following requests and commands listed in the table below.

Hex Code Command Action

0xFF Reset Resets mouse to default states

0xFE Resend Resends last data to host

0xF6 Set Default Sets mouse to use default parameters

0xF5 Disable Disables the mouse

0xF4 Enable Enables the mouse

0xF3 Set Sampling Rate Set sampling rate to 10,20,40,60,80,100,200/second

0xF2 Read Device Type Returns 0x00 to host, indicating the device is a mouse

0xF0 Set Remote Mode Sets remote mode so data values are only reported after a read
data command

0xEE Set Wrap Mode Set wrap mode until 0xFF or 0xEC is received

0xEC Reset Wrap Mode Reset to previous mode of operation.

0xEB Read Data Responds by sending a mouse report packet to host

0xEA Set Stream Mode Sets stream mode

0xE9 Status Request Returns current mode, en/disabled, scaling, button, resolution,
and sampling rate information to the host.

0xE8 Set Resolution Sets resolution to 1,2,4,8 counts/mm

0xE7 Set Scaling 2:1 Sets scaling to 2:1

0xE6 Reset Scaling Resets scaling to 1:1

0xAA Completion Code Command completion code

0xFA Peripheral ACK Sent to acknowledge host requests

 Bit 7 Bit 0

Byte 0 Y Over-
flow

X Over-
flow

Y sign X sign Reserved
0

Reserved
0

Right but-
ton

Left but-
ton

Byte 1 X X X X X X X X

Byte 2 Y Y Y Y Y Y Y Y

The PS/2 specification calls out the following default mouse report format. Byte 0 is the button data (1=pressed,
0=released), X and Y optics sign bits, and X and Y overflow bits. Byte 1 is the X optics data in 2’s complement format. Byte
2 has the Y optics data in 2’s complement format. At reset or power-on the standard PS/2 reporting format is enabled.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844043/ADNK-6003.html

22

 Bit 7 Bit 0

Byte 0 Y Over-
flow

X Over-
flow

Y sign X sign Always 1 Middle
Button

Right
button

Left but-
ton

Byte 1 X X X X X X X X

Byte 2 Y Y Y Y Y Y Y Y

Byte 3 Wheel* Wheel* Wheel* Wheel* Wheel* Wheel* Wheel* Wheel*

Start Bit
(Always
0)

Data
Bit 0

Data
Bit 1

Data
Bit 2

Data
Bit 3

Data
Bit 4

Data
Bit 5

Data
Bit 6

Data
Bit 7

Odd
Parity
Bit

Stop Bit
(Always
1)

After the following sequence of commands, the wheel report format is enabled.

0xF3, 0xC8 	 Set Sampling Rate 200 per second

0xF3, 0x64 	 Set Sampling Rate 100 per second

0xF3, 0x32 	 Set Sampling Rate 50 per second

0xF2, 0x03 	 Read Device Type returns a value of 0x03

After the Read Device Type command returns 0x03 to indicate that this is a Microsoft compatible three button-wheel
mouse, the wheel report format is enabled. After this initialization sequence, the PS/2 wheel reporting format is enabled.
The fourth byte represents the wheel data. This byte is assigned 0x01 for forward wheel movement and 0xFF for backward
wheel movement. When the wheel is idle, this value is 0x00.

The PS2 data transmission according to the PS/2 Hardware Interface Technical Reference including eleven bits for
each byte sent. The bits are sent in the following order with data valid on the falling edge of the clock. See the PS/2
Hardware Interface Technical Reference manual for timing information.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844043/ADNK-6003.html

Appendix H: Kit Components

The designer’s kit contains components as follows:

Part Number Description Name Quantity

ADNS-6000 Solid-State Optical Mouse Sensor Sensor 5

ADNS-6120 Round Lens Plate Lens 5

ADNS-6130-001 Trim Lens Plate Lens 5

ADNS-6230-001 LASER Assembly Clip LASER Clip 5

ADNV-6330 Single Mode Vertical Cavity Surface Emitting LASER (VCSEL) LASER 5

ADNK-6003 CD Includes Documentation and Support Files for ADNK-6003

Documentation
 a. ADNB-6001 and ADNB-6002 Data Sheet
 b. AN-5088 LASER Mouse Sensor Eye Safety CalculationsHardware

Support Files
 a. ADNK-6003 BOM List
 b. ADNK-6003 Schematic
 c. IGES Base Plate Feature File
 d. Gerber File

Software Support Files
 a. Microcontroller Firmware

1

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844043/ADNK-6003.html

24

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries.
Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved.
5989-3119EN - April 18, 2007

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/844043/ADNK-6003.html

