ANALOG
DEVICES

Word-Slice
Program Sequencer

ADSP-1401

FEATURES
16-Bit Microcode Addressing Capability
Look-Ahead™ Pipeline
Extensive Interrupt Processing, With Ten On-Chip
Interrupt Vectors
70ns Cycle Time; 25ns Clock-to-Address Delay
64-Word RAM for Storing:
Subroutine Linkage
Jump Addresses
Counters
Status Register
375mW Maximum Power Dissipation with
CMOS Technology
48-Pin Ceramic or Plastic DIP and
52-Lead Plastic Leaded Chip Carrier

GENERAL DESCRIPTION

The ADSP-1401 is a high-speed microprogram controller op-
timized for the demanding sequencing tasks found in digital
signal processors and general purpose computers. In addition to
high speed (25ns clock-to-address delay) and large addressing
range (64K of program memory), this Word-Slice® component
has unique features that make it highly versatile:

® on-chip storage and control of ten prioritized and
maskable interrupts

® four decrementing event counters

® absolute, relative and indirect addressing capability

® download capability (writeable control store) and

® a dynamically configurable 64-word RAM.

The ADSP-1401 microprogram sequencer’s main task is to
provide the appropriate microprogram addressing to support
programming requirements (e.g., looping, jumping, branching,
subroutines, condition testing and interrupts). An internal Look-
Ahead pipeline, controlled by both phases of the clock, allows
the ADSP-1401 to satisfy these requirements at very high speed.

During each micro-instruction, the ADSP-1401 monitors the
conditions and instructions to determine the next microprogram
address. This address can come from one of several sources: the
stack, the jump address space in the RAM, the data port, the
interrupt vectors, or the microprogram counter. An extensive
set of conditional instructions are also available, including jumps,
branches, subroutines, interrupts, and writeable control store.

Look-Ahead is a trademark of Analog Devices, Inc.
Word-Slice is a registered trademark of Analog Devices, Inc.

WORD-SLICE® MICROCODED SYSTEM WITH ADSP-1401

The ADSP-1401’s internal 64-word RAM is user-configurable
into three regions; subroutine stack, register stack and indirect
jump address space. The subroutine stack is used for linking
interrupts and subroutines and, during their execution, allow
storage of system states. The register stack allows association of
unique jump addresses with various levels of interrupts and
subroutines (both local and global stacks are provided). Indirect
jump capability is also supported, addressing for which is provided
at the data port.

Interrupts are handled entirely on chip. The ADSP-1401’s internal
interrupt control logic includes registers for eight external (user)
interrupt vectors, a mask register, and a priority decoder. Two
additional vectors are reserved for internally-generated interrupts
resulting from counter underflow and stack limit violation. A
stack limit violation is caused by stack overflow, underflow or
collision. A mechanism is provided for recovering from stack viola-
tions.

The ADSP-1401s four decrementing 16-bit counters are used to
track loops and events. These counters generate a signal when
negative. This negative condition is used by several conditional
instructions and can also trigger an internal interrupt.

MICROCODED SUPPORT COMPONENTS 3-5

T-LATCH EN [

16 4
L L
I4 (2] Z
o ‘I | J
/ BTATUS
REGISTER
WIDTH
8TACK) A CONTROL COUNTERS
LIMiT SIGN s
‘ 2
17 SIGN S
INTERRUPT
a|mijea Vecrons
| nam aporessing mux | db
s4x16 ADDER

{

RAM L J
COMPARE J L Jb]| mool L
OVRFL ||_microrroaram ADDRESS MuLTIPLEXER | | FROGRAM

nggnlete [e wimer [gzt ‘ H li
' -t
INSTRUCTION Ly I SIGN | ¢
[I > 75 -
g oecooe -;-
FLAGI >——§ HH oLk
GONTROLS
[TTR cLK Yia
Figure 1. ADSP-1401 Block Diagram
ADDRESSING MODES ADSP-1401 PIN ASSIGNMENTS
Direct: both absolute and relative PinN:
Indirect: from internal RAM ame Descripton _
| PR P The 7-bit microinstruction controlling the
HARDWARE FEATURES ADSP-1401.
Instruction Port Yis-Yo Output bus which provides addresses to the micro-
Bidirectional Data Port) program memory.
Four Input Address Multiplexer Dys-Do Bidirectional Data bus for transferring data to or
Three Stack Pointers
from the ADSP-1401.
Four Event Counters
Condition Flag EXIR,.; Four external interrupt request lines. Note that in-
Eight Prioritized and Maskable User Interrupts ternal circuitry supports 8 interrupts with the aid of
TTR Pin: an external 2 to 1 multiplexer.
Trap CLK External clock input
Three-State FLAG An input used for conditional instructions. Its
source is usually a condition multiplexer.
INSTRUCTION TYPES TTR A multi-purpose pin accommodating traps, output
Jumps and Branches disable and reset.
Stack Operations
Status Register Operations Vop + 5 Volt supply.
Counter Operations GND Ground.
Interrupt Control
Relative Address Width Controls
Instruction Hold Control
Writeable Control Store
Dedicated Counter Underflow Interrupt
Dedicated Stack Overflow Interrupt

3-6 MICROCODED SUPPORT COMPONENTS

ADSP-1401

1.0 ARCHITECTURE

1.1 Look-Ahead Pipeline

Logically, the Look-Ahead pipeline is split into two halves: the
first, located at the instruction and data ports; and the second,
located at the address port. Each half of the pipeline (input vs.
output) has a transparent latch which operates out of phase with
the other; the address latch is transparent during the first half
of the cycle (clock HI), while the input latches (instruction and
data) are transparent during the second half of the cycle (clock
LO). This complementary arrangement allows new instructions
to be decoded (in preparation for the following cycle) while the
program address for the current cycle is held steady.

1.2 Instruction Port

The instruction port receives 7-bit instructions defining the next
operation to perform from microcode. The ADSP-1401 has a
built-in Look-Ahead pipeline latch, eliminating the need for an
external microcode latch to hold instructions. This implementation
has the further benefit of allowing instruction “look-ahead”; the
sequencer is able to decode the next instruction during execution
of the current cycle. During the “look-ahead” period, the sequencer
precalculates the next address, allowing its output as early as
possible in the next cycle.

External instructions are internally latched during clock HI, and
passed directly to the instruction decoder during clock LO
(transparent phase); thus, implementing the first half of the
Look-Ahead pipeline latch,

The use of the instruction hold mode (sce: Instruction Set De-
scription, 2.7; and Instruction Hold Control, appendix 4.1)
allows an instruction to be held in the instruction latch for
execution over several cycles (freeing microcode for use by other
devices).

1.3 Address Port and Multiplexer Sources

The address port provides 16-bit program addresses with three-
state drivers designed for driving large microcode memories.
Addresses come from a four-to-one microprogram address mul-
tiplexer. Between the multiplexer and output port is a transparent
latch which is transparent during clock HI and latched during
clock LO, permitting addresses to be output as early as possible
during phase one (clock HI) while holding the address constant
during phase two (clock LO) ~ implementing the second half of
the Look-Ahead pipeline latch.

Inputs to the microprogram address multiplexer are the:

® 16-Bit Program Counter
® 16-Bit Adder

® Interrupt Vector File and
o Internal 64-Word RAM.

Addressing Modes

The ADSP-1401 supports two addressing modes: direct and
indirect. The direct addressing mode uscs the internal adder to
generate cither absolute addresses from the data port (without
modification) or relative addresses from the program counter
(with or without extension: see Status Register, 1.4.4). The
indirect addressing mode uses the lower order bits at the data
port to access the contents of internal RAM for output.

Output Drivers

The address port output drivers are always active unless placed
in the high-impedance state by the IDLE instruction or appro-
priately asserting the TTR pin (see TTR Pin, 1.7). This allows
other devices to supply microcode addresses, which is particularly
useful in multi-tasking or context switching applications where
several ADSP-1401s may be sharing common microcode
memory.

1.3.1 Program Counter

The program counter (PC) consists of a 16-bit incrementing
counter. For most instructions, the PC is incremented by the
end of the cycle (post-increment) as follows:

PC < =output address+1.

1.3.2 Adder and Width Control

For absolute jumps, data from the data port is passed unchanged K|
through the adder directly to the microprogram address port.

For relative jumps, a twos complement offset is supplied from

the data port and added with the 16-bit PC. Since the PC normally
points to the next instruction, the jump distance is (offset +1)

from the jump instruction. See Status Register (1.4.4) for more
details.

The width control block permits microcode width to be reduced
in systems not requiring full, 16-bit jump distances. Internal
width control logic sign-extends reduced offsets of 8- and 12-bits
to full 16-bit precision, accommodating jumps in either direction
(positive or negative displacement).

1.3.3 Interrupt Vector File

Ten prioritized interrupt vectors may be stored in the interrupt
vector file. The associated interrupts are internally latched and
may be individually masked or entirely disabled by the “Disable
Interrupts” (DISIR) instruction. The highest priority interrupt
vector displaces the usual address on the next cycle following its
detection. See Interrupts (1.4.3) for more details.

1.3.4 Internal RAM
Any of the 64 words of RAM may be output on the address
port. Four distinct address sources may access the RAM:

® Local Stack Pointer
@ Global Stack Pointer
® Subroutine Stack Pointer and
o Lower Order Data Port Bits.

The use of internal RAM and its various address sources are
described in section 1.4.2.

1.4 Bidirectional Data Port

The 16-bit bidirectional data port (D;s_o) supplies direct or
indirect jump addresses and permits loading or dumping of all
internal registers. The input data latch freezes incoming data
(for counter or register writes executed during that cycle) during
the first half-cycle (clock HI) and is transparent for the remainder
of the cycle. The output data driver asserts output data only
during the first haif-cycle of a data output instruction and is
independent of the address port drivers. This complementary
1/0 arrangement permits data to be output from the sequencer
(as in a read register instruction) during the first half-cycle
while accommodating external data setups (for the next cycle)
during the second half-cycle.

MICROCODED SUPPORT COMPONENTS 3-7

Direct addressing via the data port may be either relative or
absolute. For indirect addressing, the six LS data bits (Ds_g)
are used to address internal RAM, containing the desired jump
address (see Internal RAM, 1.4.2).

1.4.1 Counters

Four independent 16-bit counters are provided for maintaining
loops and event tracking. These counters hold twos complement
values that may be decremented or preloaded through dedicated
instructions. The sign bit associated with the most recently used
counter, prior to its decrement, is always saved in the status
register (SR,). Simultaneously, the sign bit is also made available
to control various conditional instructions or for asserting the
lowest priority interrupt, IRy, reserved for counter underflow
(see: Instruction Set Description, 2.0; and Interrupts, 1.4.3),

Note that interrupt IRy is primarily used for ending writeable
control store downloads (see Instruction Set Description — WCS,
2.7). Use of IR, in the context of a “Decrement Counter and
Interrupt on Underflow” operation represents the worst case
instruction and flag setup times because of the additional overhead
in processing the interrupt after determining whether the counter
was underflowed. These setup times are specified two ways:

1. all conditions and
2. IRp masked.

The source of SIGN (applied to the condition test) depends
upon the type of instruction used (see Instruction Set Description,
2.1). Two possibilities exist:

1. If an explicit counter is selected, then the sign applied is that
of the counter, prior to the decrement.

2. If no counter is selected, then the sign applied is implicitly
that of the status register, SR ;.

1.4.2 Internal RAM

The ADSP-1401’s internal 64-word RAM implements two distinct
stacks: a Subroutine Stack (§S) and a Register Stack (RS). The
subroutine stack has a dedicated, Subroutine Stack Pointer
(SSP), while the register stack shares two pointers: the Local
Stack Pointer (LLSP) and the Global Stack Pointer (GSP). The
three stack pointers are each held in 6-bit, preloadable, up/down
counters.

Upon reset, (TTR pin held HI for three cycles, see TTR Pin,
1.7) the SSP is initialized to 0 (top of RAM). The RS pointers
(LSP and GSP) are typically configured as shown in Figure 2
using the “Write RSP” instruction (WRRSP). The SSP pushes
down while the RS pointers push up. Selection of the active RS
pointer (LSP or GSP) is made in the status register.

Stack overflow detection is provided via a stack limit register to
protect software integrity and allow stack expansion (see In-
struction Set Description — SLRIVP, 2.5).

Each RS pointer may be explicitly initialized by performing the
“Write RS Pointer” (WRRSP) instruction. The LSP should be
located above the GSP, allowing the local stack to grow upwards
as the level of nested subroutines increases. Finally, indirect
jump address space {as needed) should be reserved below the
global stack.

The sequencer will generate a stack underflow interrupt whenever
RAM location zero is popped. This facility may be used in
support of stack paging. IV, should be masked if not using
stack paging, allowing location zero to be used as the first stack
location without interrupting. When using paged stacking, location
zero must be reserved as an underflow buffer to avoid a subsequent

3-8 MICROCODED SUPPORT COMPONENTS

stack POP (which may otherwise occur, depending upon the
next instruction) prior to the interrupt routine saving the stack.

TOPOFRAM

00 UNDERFLOW BUFFER - sSP
o (PUSH)
02

L]

°

L]
XX s SLA

L]

[]

L]
33
M I (PUSH)
35
36 --— LSP
kis
3 I [PUSH)
39
3 - GSP
38 INITIALIZED
3ic FOR
30 INDIRECT
3E ADDRESSING
3F (AS NEEDED)

BOTTOM OF RAM

Figure 2. Typical RAM Initialization

Register Stack Pointers (LSP and GSP)

Upon entering a routine, up to four jump addresses may be
pushed onto the register stack. A Push onto the register stack
first decrements the RS pointer (either LSP or GSP, depending
upon the status register) and then writes the appropriate data to
RAM. A Pop from the register stack first reads the RAM location
and then increments the RS pointer (LSP or GSP).

Four registers are available within context of any routine which
are addressed relative to the stack pointer (LSP or GSP) by
the two LSBs of the relevant instruction. For example, the
instruction:

IF CONDITION, JMP R,

accesses the location (LSP+ 2 or GSP+2) in RAM as the condi-
tional address source. Prior to exiting a routine, local or global
registers can be effectively removed from the RS by the “ADD i
TO RSP” (AIRSP) instruction (see Instruction Set Description,
2.2).

Often, the same set of jump addresses are used by several different
routines. The GSP is available for addressing these common
registers — conserving RAM space and eliminating repeated
stack pushes and pops. Global registers can be pushed, popped,
and used by conditional instructions in the same way that local
registers are handled. In addition, the GSP can itself be pushed
and popped to/from the subroutine stack, allowing different
routines to access different subsets of the global stack area.

Subroutine Stack Pointer (SSP)

A Push onto the SS (jump subroutine or interrupt) first increments
the SSP and then writes the return address to RAM. A pop
from the SS first reads the return location and then decrements
the SSP, effectively removing the data from the stack (although
the data remains in RAM). For interrupts, the return address is
the one that would have been output in the cycle when the

ADSP-1401

interrupt vector was output. For subroutine jumps, the return
address is the instruction immediately following the subroutine
call. For further information, see: Return from Interrupt with
Pending Interrupt, appendix 4.2; and the Instruction Set De-
scription, 2.0.

The subroutine stack can also be used to save key program
parameters such as the status register, GSP, or counter values.
After entering a new routine, critical parameters from the calling
routine are pushed onto the stack, thus freeing the associated
hardware for use by the new routine. Prior to the end of the
routine, the original parameters are restored with their former
values for continued use by the calling routine.

The Stack Usage Example (appendix 4.3) illustrates the state of
RAM after three subroutine calls.

Stack Limit Register and Stack Overflow

The preloadable Stack Limit Register (SLR) and associated
circuitry warns the user of impending stack overflows, permitting
stack overflow recovery. The highest priority interrupt, IRy, is
assigned to stack overflow, although it may be masked. A stack
overflow interrupt will occur under any of the following three cir-
cumstances:

@ a push causing the SSP to increment to the value in the
stack limit register

@ a pop from SS location 00 (underflow)

® a push causing the RS pointer (LSP or GSP) to decre-
ment to the value in the stack limit register +3.

The three location buffer between the SLR and the RS pointer
allows for three extra pushes that may occur (in a worst case)
prior to entering the stack overflow service routine. These pushes
would be:

1. the push causing the initial overflow
2. a possible push operation while IV, is output and
3. the IRy return address push.

Sec: Interrupts, 1.4.3; and Three Stack Pushes on Stack Overflow
(appendix 4.2.5) for more details.

The SLR is only 4-bits wide and is compared to the 4 MS bits
of the 6-bit RAM address. Therefore, stack limits may only be
set at integer multiples of 22, i.e., RAM locations 0, 4, 8, 12,
... 60. The SLR is right-filled the additional two bits with
zeros or oncs, depending upon the direction of the push being
performed (‘00' for SS pushes and ‘11° for RS pushes, see In-
struction Set Description — SLRIVP, 2.5). In the cycle following
a stack overflow, the highest priority interrupt vector IRV (also
used for trapping; see TTR Pin, 1.7) is output. To determine
the cause of this interrupt, both SS and RS pointers must be
tested in the first several cycles of the service routine. Prior to
returning from the overflow interrupt routine, the SLRIVP
instruction must be exccuted, to clear the calling IRy from the
interrupt latch.

1.4.3 Interrupts

The ADSP-1401 processes cight external and two internal inter-
rupts. All external interrupts are level sensitive (positive logic:
see IR Latch, this section) and are processed by the interrupt
logic block. The block elements (sec Figure 4) are comprised of
an interrupt de-multiplexer followed by an interrupt latch, masking
logic and priority decoder for selecting the most urgent interrupt
(IR, having the highest priority, and IR, the lowest), and special
one-shot to override the address multiplexer with the interrupt

vector (IVy_o) on the cycle following the interrupt request.

The external interrupts (IRg_;) may be used for any purpose,
however, unused inputs must ot be left floating (i.c., tic them
to logic LO so as to preclude the associated interrupt). Two
additional interrupts which are internal are reserved for stack
overflow — IR, (see Stack Limit Register and Stack Overflow,
1.4.2) and counter underflow — IR, (see Counters, 1.4.1). See
Counters (1.4.1) for implications of using IR, for other than
writable control store downloading.

Interrupt vectors are always output (assuming interrupts are
enabled and the associated interrupt is not masked) on the cycle
immediately following the acceptance of the interrupt request.
Contextual saves (stacking and storing) should be made im-
mediately upon entering the interrupt service routine and restored
immediately prior to its exit.

Up to four external interrupts may be connected directly to the
external interrupt pins, EXIR4_, and are treated as interrupts
IRg_g, respectively. Lower priority interrupts, IR,_,, must be
masked out in this case.

Up to cight external interrupts may be accommodated using
time-division multiplexing. An external 2:1 multiplexer reduces
the eight external interrupts to two groups of four (see Figure
3). An internal de-multiplexer automatically restores the external
interrupts back to eight.

The interrupt vector file may be directly read and written via
the data bus with the aid of the Interrupt Vector Pointer (see
Instruction Set Description, Interrupts, 2.5).

IRQE ——oqd 1A
IRQ7 ——m=y 28
1RQ6 ——n=q 3A S v
5’
1RQS ——==f 4A QUAD 2:1 2y EXIR3
IRQ4 —=] 18 MUX 3y EXIR2
IRQ3 ——=1 28 L4 EXIR1
IRO2 ——u] 38 CLK
IRQ1 =1 4B SELB

EXIR4

ADSP-1401
SEQUENCER

CLOCK l

Figure 3. Expanding Externalinterrupts

IR Latch

Interrupt requests IRg_s are latched during the first half-cycle
(clock HI), while IR,_ are latched during the second half-cycle
(clock LO). Once latched, external interrupt requests are held
until processed, even if the external request signal goes away.
This latching technique allows removal of external interrupt
sources after they have been recognized by the sequencer.

Latched user interrupt requests (IRg_;) are held until: i) the
interrupt is processed and a “Return from Interrupt” (RTNIR)
instruction is executed; ii) the interrupt service routine executes
a “Clear Current Interrupt” instruction (allowing nested inter-
rupts); or, iii) a “Clear All Interrupts” instruction is executed.
Reserved interrupts (IRg and IRy) are cleared from the interrupt
latch by utilizing the SLRIVP and CLRS instructions, respectively.
See Internal IR Control Logic (1.4.3) for details.

The user may bypass the interrupt latch with the “Select Trans-
parent Interrupts” (STIR) instruction (setting status register bit
SRy). In the transparent mode, the interrupting device must
assert the interrupt request until the interrupt service routine
resets the request source.

MICROCODED SUPPORT COMPONENTS 3-9

MASKBITS(5R8-01

"
4
. 0
EXIR4-1 —plamm . -
INTERRUPT P
LATCH 7 DECODER
s, (
75> ReseT
SIGNISA1} VP IRQ
TRAP
wl
A
OVRFL
R9) UNDRFL
(IRo)
TRANS-)
LATCH
|, EN RTNIR
. CIR
urve-11.1's c A
SELA
10 { (1RV8-0)
SR2 s
CLOCK INTERRUPTIN
INTERRUPT | Rap PAOGAESS (IRIP]
VECTOR a
FILE
1IvV8-0) I/
ATNIR
cciR
CAIR
RAM ADDER pC ONE.
I | i SHOT
B 3]

MICROPROGRAM ADDRESS MULTIPLEXER

SELA

TO ADDRESS PORT

Figure 4. Internalinterrupt Control Logic

IR Mask

All ten interrupts may be independently masked using status
register bits SR s_g (corresponding to interrupts IRg_q). Setting
a particular mask bit prevents the interrupt from being executed.
Note that the status register may be read or written via the Data
port, and also pushed and popped to/from the subroutine stack,
allowing nesting and servicing of interrupts in any desired order
(see: Internal IR Control Logic, 1.4.3; and Status Register,
1.4.4).

Two instructions allow bitwise clearing or setting of the interrupt
mask. “IR Mask Bit Clear” (IRMBC) will clear those mask bits
for which the corresponding data bits (Ds_¢, as applied to
IRy_o) are set, while “IR Mask Bit Set”” (IRMBS) will set those
mask bits for which the corresponding data bits are set. In both
cases, zeros in the data field will preserve the corresponding
mask bit. See Instruction Set Description — Status Register, 2.3.

IR Priority Decoder

Unmasked interrupts are passed to the priority decoder which
determines the most urgent, valid interrupt and generates an
internal Interrupt Request Signal (IRS). The corresponding
vector is then fetched from the interrupt vector file and passed
to the address port.

Minimum IR Servicing Requirements

Interrupt vectors are output on the cycie following the acceptance
of an interrupt request. Interrupt jumps differ from subroutine
jumps in that subroutine jumps push the return address in the
same cycle as the jump address is output, whereas interrupt
return addresses are not pushed until the following cycle. This is

3-10 MICROCODED SUPPORT COMPONENTS

because the instruction executing while the interrupt vector is
output may be utilizing RAM and must complete its execution
prior to pushing the interrupt return address. Thus, the PC
(interrupt return address) is pushed automatically in the first
cycle of the interrupt service routine, i.e., the cycle following the
interrupt request acceptance.

For this reason, the first instruction of any interrupt service
routine is always ignored; it must be a no-op (CONT). Note that
a minimum interrupt service routine would be a CONT followed
by a RTNIR.

Internal IR Control Logic

The interrupt enable bit of the status register, SRz, must be set
for interrupt servicing to occur. Interrupt servicing may be
inhibited by clearing this bit, although external interrupt requests
will continue to be {atched.

Only one interrupt is ever active at a time. Additional interrupts
are “locked out” by an internal “Interrupt In Progress” signal
(IRIP) during interrupt servicing (except for TRAP), although
they continue to be latched. The IRIP signal is automatically
reset upon the “Return from Interrupt” (RTNIR) instruction
which pops the return address from the subroutine stack to the
PC.

Normally, multiple interrupts are accumulated in the interrupt
latch. Whenever a valid interrupt is pending, the internal signal
“Interrupt Request” (IRQ) is asserted. Upon each RTNIR, the
highest priority, unmasked, pending interrupt is serviced.

ADSP-1401

Nested interrupts are supported with two instructions: “Clear
Current Interrupt” (CCIR) or “Clear All Interrupts” (CAIR).
The CCIR instruction clears the IRIP signal and interrupt latch
bit for the interrupt in progress. This action re-enables inter-
rupting, relegating the interrupt in progress to & subroutine
status. If an external interrupt is pending, the associated IR
vector will be output on the cycle following CCIR. To cancel all
pending interrupt requests, the CAIR instruction clears the
IRIP signal and the entire interrupt latch.

Normally, it is good practice to convert interrupts to subroutines.
This can be done by executing the “Clear Current Interrupt”
(CCIR) instruction (resetting IRIP) and should be done as early
as possible in the interrupt service routine. There are two reasons
for changing the status of an interrupt to that of a subroutine.
Firstly, if IRIP is allowed to remain active throughout the interrupt
service routine, then the occurrence of either internal interrupt
(stack overflow or counter underflow, IR, or IR,, respectively)
will remain undetected until the current interrupt concludes;

the user will be unaware of these interrupt requests,

When using the TRAP capability (see TTR Pin, 1.7), there is a
second reason to clear IRIP. Because TRAP must have the
highest priority, interrupt IRy (when invoked by a TRAP request)
is not locked out by IRIP. This allows TRAP to displace an
interrupt in progress, but also means that upon completion of
the trap service routine, IRIP will be cleared by the RTNIR
instruction; re-enabling interrupting in spite of the incomplete
interrupt which TRAP displaced.

Either of these instructions (CCIR or CAIR) require an “extra”
cycle before a pending interrupt vector may be output. A typical
scenario being an interrupt in progress, IR, (containing a CCIR
instruction), with a interrupt pending, IR,:

CCIR E: -
wCode Instruction Output
Location Executing Address Commants
n IR, Routine n+l IR, Pending
n+l CCIR n+2 Clear IRIP
n+2 IR, Routine Vg IR, Recognized
Vu IRm Routine Vg+1 -

1.4.4 Status Register

The ADSP-1401 has a 16-bit status register for storing various
operational modes. The ten MS bits of this register (SR;s_¢)
comprise the interrupt mask for interrupts IRg_g, respectively.
The remaining six LS bits (SRs..o) control the operational modes
as shown below.

Status Register Bit Assigaments
Bit# Fuaction (HI'LO)
SR IR, Mask Bit
SRy IR Mask Bit
SRs.4 Relative Jump Width Selection:
‘00" = 16-bit relative address width
‘01" = 8-bit width
'10' = THC Mode (8-bit width)
‘11" = 12-bit width
SR; Select GSP/LSP
SR; Ensbile/Disable Interrupts
SR, Set/Clear Sign Bit
SRo Select Transp Latched 1 p

The status register can be directly read and written via the data
port and also pushed and popped to/from the subroutine stack.
In addition, status register bits SR;s_¢ (the interrupt mask) may
be bitwise cleared or set with dedicated instructions. See: In-
struction Set Description - Status Register, 2.3; and Interrupts
~ IR Mask, 1.4.3,

1.5 Clock

The input clock employs both HI and LO levels to control the
various transparent latches throughout the device. Generally,
the clock should be symmetric; however, in some instances the
clock may be stretched during the second half-cycle (LO) to
accommodate unusual circumstances such as a cache memory
miss (see: TTR Pin - Trap, 1.7).

1.6 External Flag

The external flag input may be used to control conditional in-
structions. FLAG is latched similarly to instructions (latched
during clock HI and transparent during clock LO), but requires
less setup time. Two instructions make explicit use of FLAG as
their condition (JPCOF and JPCNF), while others employ a
condition mode selection (UNCONDITIONAL, NOT FLAG,
FLAG, or SIGN; see Instruction Set Description, 2.0) to be
specified as part of their opcode.

1.7 TTR Pin (Trap, Three-State and Reset)
The Trap, Three-State and Reset pin (TTR) is a time-multiplexed,
three-purpose pin used to

@ provide program trap capability
® control the address port output drivers and
® reset the ADSP-1401.

If the TTR pin is held HI for an entire cycle, the RESET sequence
begins and TTR must be held HI for at least two more complete
cycles (RESET requires three cycles to complete). If trap and
three-state control capabilities are also needed, the combination
of the 1401’s internal circuits and the external circuitry shown
in Figure 5 can be used to effectively time-multiplex the TTR
pin.

TRAP a
74F287
ADSP-1401
21 ¥ [—=q TTR
AESET MUX SEQUENCER
THREE- 8
STATE SELB CLK
cLocK 3 4
Figure 5. External Logic for TTR Pin
Trap

For a trap to occur, the TTR pin must be asserted during clock
LO only. The primary reason to invoke a trap is in support of
cache memory systems, or in case of system emergencies. Cache
memory systems generally utilize a large microcode memory
space, of which only a small area (that currently under execution)
is comprised of high-speed RAM (the balance consisting of
slower, less costly memory). The high-speed RAM is directly
accessible by the sequencer, whereas the bulk of (slow) memory
is usually accessible indirectly (via a cache memory controller
which controls downloads of code to the cache memory area).

MICROCODED SUPPORT COMPONENTS 3-11

In a cache-based system, microcode is generally executed from
the high-speed cache. If an access is attempted to code not
resident in the cache area, the cache memory controller must
detect the discrepancy and generate an exception to the access (a
“cache miss”). Then, the missing code segment must be down-
loaded to the cache memory area (see: Instruction Set Description
- Writeable Control Store, 2.7).

When a cache miss occurs, the cache memory control logic
asserts the TTR pin while stretching the system clock LO.
Upon detecting the trap request, the sequencer immediately
generates the highest priority interrupt, IR, replacing the current
address (that causing the cache miss). The cache miss address is
pushed on the subroutine stack and popped sfter the interrupt
service routine has reloaded the cache area with the missing
code segment.

Note: Trap requests which occur on the first cycle of an interrupt
service routine are not recognized. The ADSP-1401 always executes
a CONT instruction in this cycle, and ignores its instruction
port and therefore trap requests as well,

The trap interrupt differs from the standard interrupt protocol
in three ways:

1. The interrupt vector, IV, is output asynchronously, i.e., it
occurs tygap after asserting the Trap signal and must occur
before the next cycle! To accomplish this, a clock stretch
cycle may be needed to allow enough time to fetch the new
instruction.

2. The current address is pushed onto the SS for later restoration
(after the cache miss is resolved), whereas standard interrupts
push the current address+ 1.

3. Trap interrupts cannot be masked or disabled. Note that if
IR, is also used for stack overflow and underflow, the service
routine must discriminate which actually occurred.

Caution; because trapping is asynchronous, spikes on the TTR
pin wider than 3ns during clock LO may initiate inadvertent
trapping.

Three-State

The address port is placed in a high-impedance state when the
TTR pin is HI during clock HI and LO during clock LO. The
TTR signal is latched during clock LO and transparent during
clock HI. This facilitates full cycle, three-state control. (Note
that the IDLE instruction can also place the address port in a
high-impedance state.)

Reset

The TTR pin may be used to initialize the ADSP-1401 by asserting
it (HI for both clock phases) for at least three full cycles. Use of
the reset operation alone does not require the multiplexing
described above. However, if the trap and/or three-state controls
are also needed, they must not occur in the same cycle (this
would be an abnormal situation), as this constitutes a reset. The
RESET signal forces a zero output address, places the data port
in the high-impedance state, and resets internal registers as
follows:

Sequencer Status after RESET Operation

Parameter Reset Condition

Program Counter wCode Location 0000,
Subroutine Stack Pointer (SSP) | RAM Location 00,9

Local Stack Pointer (LSP) Undefined

Global Stack Pointer (GSP) Undefined

Stack Limit Register (SLR) RAM Location 32,9

RAM Data NoChange

Counters No Change

Interrupt Mask (SR;5_¢) All Bits to ‘0’ (Unmasked)
Interrupt Vector File NoChange

Interrupt Vector Pointer (IVP) | Undefined

SRs_4 ‘00’ (16-Bit Relative Offsets)
SR, ‘0’ (LSP Selected)

SR, ‘0’ (Interrupts Disabled)
SR, ‘0’ (Sign Bit Cleared)

SRy ‘0’ (Latched Interrupt Mode)
'Writeable Control Store Mode Cleared

NOTE:

The first instruction (microcode location 0000,4) must be a “CONT”.

2.0 INSTRUCTION SET DESCRIPTION

The instruction set is divided into seven categories pertaining to
generic operation (see data sheet outline or Mnemonics and
Opcodes, 4.5).

Several instructions employ two instruction bits (I, and Io) to
specify a counter (C3_g) and/or a local register (R3_g, relative to
the RSP) as arguments. Nine of the conditional instructions use
another two instruction bits (I3 and I,) to select one of the four
condition modes:

‘00’ UNCONDITIONAL
‘or NOT FLAG

‘0 FLAG

‘11 SIGN

The sign bit of the status register, SR, may also be used to
(implicitly or explicitly) store an external condition. This is
useful if the condition results from an operation performed in
the middle of a loop, but is not tested until the end; the loop is
exited with an “If Sign: Jump” instruction. Recall that any
subsequent counter operations will overwrite SR,.

2.1 Jump and Branch Instructions

Jump and branch instructions provide flow control of microcode
execution, offering three-way branches, jumps, subroutine calls,
returns, and addressing mode selection (see Figure 6). These

3-12 MICROCODED SUPPORT COMPONENTS

instructions support conditional control, allowing addressing
from the register stack, the data port, or the indirect jump
address space in the RAM. Generally, they are of the form:

If Condition: Do Operation; Else, Continue.

JPCOF IFFLAG: JUMPPC

The address is not incremented while the flag is at a logic HI,
i.e., PC<=PC. If the flag is LO, the next address is (PC+1).
JPCNF IFNOT FLAG: JUMPPC

The address is not incremented while the flag is at a logic LO,
i.e., PC<=PC. If the flag is HI, the next address is (PC+1).

JTWO IFCONDITION: JUMPPC +2

If the condition specified is met, this instruction causes the next
sequential microprogram address to be skipped. This instruction
allows single instruction bypassing or interleaving without need
to provide explicit addressing.

JDA IF CONDITION: JUMP DATA, ABSOLUTE

If the specified condition is met, this instruction causes a jump
to the absolute address at the data port. If the condition is not
met, the next sequential instruction will be executed.

ADSP-1401

17
TAUE FALSE
18
FALSE TRUE
1 18 "
20
JPCOF JPCNF JTWO
DATA =40 FOR ABS., 22 FOR REL.| DATA=13 RAM (13)=40 DATA=10
16 1 1 10
17 it W
TRUE TRUE TRUE | Ci<=Ri
FALSE FALSE FALSE
1] ® 40 8
Ci<=Ci-1
JDA, JOR Jol JDRST

RSP =26, |=2, RAM (28) = R2 = 40

RSP =26, =3, RAM (29)=RA3=12,
1 C3m2°* 18+N-~1

12

DATA =40 FOR ABS,, 22 FOR REL.

18
17
Ci<=Ca-1
17
o TRUE
18 40
FALSE
@ CI<=C3-1
JRC JRS JBA, JSR
S$8P =37, RAM (37) =40 RSP =26, i=2, RAM (28)=RA2=40, DATA =83
1 DATA=75
18 WS "
17
Co~=C0-1
ot PC< =PC+1
FLAG TRUE
9 40 FALSE
€2-.=C2-1
RTN BRANCH wCs

Figure 6. Instruction Flow Charts

JDR IF CONDITION: JUMP DATA, RELATIVE

If the condition specified is met, the address at the data port
will be added to the PC and output (jump distance is offset plus
one). The offset width is determined by the address width selection
(8, 12, or 16-bits). If the condition is not met, the next sequential
instruction will be executed.

JDI IF CONDITION: JUMP DATA, INDIRECT

If the condition specified is met, this instruction will output the
address stored in the RAM address given by bits Ds_g of the
data port. If the condition is not met, the next sequential instruction
will be executed.

JDRST IFSIGNOFC;: JUMPDATA,C,<=R;;
ELSE,Ci<=C;~1

This instruction first tests the sign of the counter, C;. If negative,
the address at the data port is output and the counter is re-initialized
(reset) with the data in the register pointed to by (RSP +1i). If
the sign is positive, the counter is decremented and the next
sequential address is output. The register and counter use the
same subscript, i.

JRC IF CONDITION: JUMPR,;. (COND # SIGN)

If the condition specified is met, output the address in RAM at
the location (RSP + i), where i is given by I, _; of the instruction.
The selected condition may not be SIGN, as this is the JRS
instruction. The PC may be pushed on the register stack and
referenced as a register thus allowing a “jump to stack” instruction
which is useful for looping.

JRS IFSIGNOFC;: JUMPR;,C;i<=C;—|;
ELSE,Ci<=C;-1

This instruction first tests the sign of counter, C;. If negative,
output the address in RAM at location (RSP +1). If the sign is
positive, the next sequential microprogram address is output.
The counter is always decremented after the test.

JsA IF CONDITION: JUMP SUBROUTINE,
ABSOLUTE

If the condition specified is met, the 16-bit absolute address at
the data port is output and the PC will be pushed onto the
subroutine stack. If the condition is not met, the next sequential
instruction will be executed.

MICROCODED SUPPORT COMPONENTS 3-13

JSR IF CONDITION: JUMP SUBROUTINE,
RELATIVE

If the condition specified is met, the address at the data port is
added to the PC and output (jump distance is offset plus one)
and the PC is pushed onto the subroutine stack. The offset
width is determined by the address width selection (8, 12, or
16-bits). If the condition is not met, the next sequential instruction
will be executed.

RTN IF CONDITION: RETURN FROM
SUBROUTINE

This instruction is used to return from subroutines. If the condition
specified is met, the subroutine stack is POPped, which outputs
the return address and decrements the SSP. If the condition is
not met, the next sequential instruction will be executed.
BRANCH IFSIGN OFC;: JUMPR,,C;i<=C;~-1;
ELSE, IF CONDITION:
JUMPDATA,Ci<=C;—-1;
ELSE, C;<=C;— 1(COND # SIGN)
This instruction impiements a three-way branch with the address
source from the data port, register R;, or the PC. The instruction
first tests the sign bit of the counter C;; if negative, the output
address is given by R;, i.c., RSP +i. If the sign was not true,
but the specified condition is true, the address source is the data
port. If the sign was not true and the condition is not met, the
next sequential instruction is executed.

The counter and the register use the same subscript value i.
The counter is always decremented. Note that this instruction
uses only absolute data addresses; relative addressing is not
available with the three-way branch instruction.

2.2 Stack Operations

Subroutine Stack

Subroutine Stack Pointer (SSP) instructions are used for main-
taining the subroutine stack. These instructions may also be
used to upload or download the entire RAM for examination,
stack expansion or context switches.

PSDSS PUSH DATA ONTO S$

Increments the stack pointer and then loads the RAM location
specified by the SSP with the data at the data port.

PPSSD POPSSTODATAPORT

Transfers the contents of the stack location given by the stack
pointer to the data port and decrements the stack pointer.

WRSSP WRITE SSP
Loads the SSP with bits Ds_g of the data port.

RDSSP READ SSP

Read the 6-bit subroutine stack pointer. This allows the value of
the stack pointer to be saved or examined. Bits Ds_g of the data
port correspond to bits 5-0 of the SSP. The 10 MSB's of the
data port (D;s._¢) are undefined.

DSSP DECREMENT SSP
Decrements the stack pointer without reading.

Register Stack

Register Stack Pointer (RSP) instructions are used to upload
and download the entire RAM for initialization, examination, or

3-14 MICROCODED SUPPORT COMPONENTS

context switching and to maintain the RAM space allocated to
local and global jump registers. As previously discussed, register
stack instructions refer to cither the Local Stack Pointer (L.SP)
or the Global Stack Pointer (GSP), depending upon the status
register (SR;). If SR; is LO, register stack instructions pertain
to the LSP. If SR, is HI, register stack instructions pertain to
the GSP.

SGSP SELECT GSP

Select the Global Register Stack Pointer. Set Status bit SR,
(HD).

SLSP SELECT LSP

Select the Local Register Stack Pointer. Clear Status bit SR,
(LO).

RDRSP READRSP

Transfers the RSP to the data port bits Ds_g for examination o1
storage. The 10 MSBs (D,5_¢) of the D port are undefined.

WRRSP WRITERSP

Preload the selected RSP (LSP or GSP) with bits Dy_g of the
data port.

PSPC PUSHPCONTORS

Decrements the RSP and writes the PC to the register stack.
This instruction may be used to set up a JRC loop (IF
CONDITION: JUMP R;=PC).

PSGSP PUSHGSPONTO SS

Increment the SSP and write the GSP onto the subroutine
stack.

PPGSP POP GSPFROM SS

Werite the subroutine stack to the GSP and decrement the SSP.

PSDRS PUSHDATAONTORS

Decrement the RSP and then write the data at the data port
into the location specified by the updated RSP.

PPRSD POPRSTODATAPORT

Transfers RAM data pointed to by the RSP to the daw port and
then increments the RSP.

AIRSP ADDiTORSP

Add i to the register stack pointer. Note that i=0, 1, 2, or 3 in
this instruction corresponds to 4, 1, 2, or 3, respectively. This
instruction effectively removes up to four registers from the
stack.

SIRSP SUBTRACT ONEFROM RSP

Subtract 1 from the RSP without a write. This instruction is
used to modify the RSP without explicitly reloading it.
S4RSP SUBTRACT FOUR FROM RSP

Subtract four from the RSP without a write. This instruction
may be used to modify the RSP without explicitly reloading it.

2.3 Status Register Operations
The status register bits, SRs_o, contain ten mask bits, SR;s_g,
for masking interrupts IRy_o, and six control bits, SRs_, (see

ADSP-1401

Bidirectional Data Port, 1.4). The entire status register can be
read or written via the data port, or pushed or popped to/from
the subroutine stack. Upon RESET, the entire status register is
initialized to zero.

RDSR READ SR

The entire status register (SR;s_o) is output over the data port
(D1s-0)-

WRSR WRITE SR
Write the data port (D,s_o) to the status register (SR;s_o).

PSSR PUSHSRONTOSS

Increment the SSP and then write the status register to the
subroutine stack.

PPSR POP SR FROM S8

The top of the subroutine stack is written into the status register,
and then the SSP is decremented.

2.4 Counter Operations

Counters may be pushed and popped to/from the subroutine
stack or loaded directly from the data port. The counters may
be read externally by pushing the counters onto the subroutine
stack then popping the subroutine stack to the data port. The
device has four counters, denoted C;, which are indexed by the
two LSBs of the instruction.

If a jump is required afier N events (until sign), the counter
should be loaded with two less than the number of events desired
(N —2). If a jump is required for N events (while sign), the
counter is loaded with 2!* + N— 2= 8000,6+ N - 2.

Care must be taken when using the counter underflow interrupt
(IR, see 1.4.3) to clear the sign bit before the IR, mask bit is
cleared.

WRCNTR WRITEC;
Write to the selected counter, C;, from the data port.

CLRS CLEAR SIGN BIT
Clear status register bit SR;.
SETS SET SIGN BIT

Set status register bit SR;.

PSCNTR PUSHC,ONTOSS

Increment the SSP and write the specified counter onto the
subroutine stack.

PPCNTR POPC;FROM $§

Transfer the data from the subroutine stack to the counter
specified by the instruction, then decrement the SSP.

DCCNTR DECREMENTC;
Unconditionally decrement counter C,.

IFCDEC IF CONDITION: DECREMENT G,

Decrement counter C; on condition. If the sign condition is
selected, the sign is taken from the status register bit SR, rather

than from the counter sign (which normally provides the sign
condition).

Normally, if the counter underflow interrupt (IR,) is enabled, it
is activated by the counter sign bit going HI. However, if IFCDEC
is used to decrement Cy, the IR, interrupt is activated by the
SR, bit, rather than the sign bit of Co. Since the SR, bit goes
HI only after Cy has underflowed, IFCDEC must be executed
once more after the Co underflow to generate the IR, interrupt.
Alternatively, the preloaded value of Co may be reduced by one.

2.5 Interrupt Control

Detailed interrupt operation is described in the Interrupts section
(1.4.3). Here, specific interrupt operations such as interrupt
clearing, IRV read/write, interrupt mask manipulation, etc., are
described.

CCIR CLEAR CURRENT INTERRUPT

Allows nesting of user interrupts IRg_; on subsequent instructions
by clearing both the interrupt latch bit currently being serviced
and the interrupt in progress signal (IRIP), re-enabling interrupts.
If an external interrupt is pending, the associated IR vector

will not be output until the cycle following CCIR. Internal
interrupts (IRy and IR,) are not cleared by CCIR and must be
explicitly cleared through the SLRIVP and CLRS instructions,
respectively.

CAIR CLEAR ALL INTERRUPTS

Clears external interrupt latches IRg_;, and re-enables the interrupt
interface (IRIP cleared LO). The next sequential instruction
will be executed prior to the jump to a pending interrupt. Internal
interrupts (IR and IR,) are not cleared by CAIR and must be
explicitly cleared through the SLRIVP and CLRS instructions,
respectively,

RTNIR RETURN FROM INTERRUPT

Clears the current interrupt latch for IR;_;, re-enables interrupts
(IRIP cleared LO), and pops the return address from the sub-
routine stack. The next sequential instruction will be executed
prior to the jump to a pending interrupt routine. Internal interrupts
are not cleared and the IRy and IR, interrupt latches must be
cleared explicitly through the SLRIVP and CLRS instructions,
respectively.

RDIV READ IRV AND INCREMENT IVP

Outputs the interrupt vector currently pointed to by IVP to the
data port and then increments the IVP. Interrupts should be
disabled when writing or reading interrupt vectors.

WRIV WRITE IRV AND INCREMENT IVP

Writes the interrupt vector currently pointed to by the IVP
from the data port and then increments the IVP. Interrupts
should be disabled when writing or reading interrupt vectors.

IRMBC IR MASK BITWISECLEAR

Allows selected IR mask bits to be cleared. Data port bits Dys_¢
are applied to status register bits SR15-6 (corresponding to
mask bits for IRg_o). Those data bits which are HI will clear
the mask bit, while those data bits which are LO will leave the
mask bit intact. Data port bits Ds_g are ignored.

MICROCODED SUPPORT COMPONENTS 3-15

IRMBS IR MASK BITWISE SET

Allows selected IR mask bits to be set. Data port bits D)s_g are
applied to status register bits SR;s_¢ (corresponding to mask
bits for IRg_p). Those data bits which are HI will set the mask
bit, while those data bits which are LO will leave the mask bit
intact. Data port bits Ds_g are ignored.

DISIR DISABLEINTERRUPTS

Disables the execution of all further interrupts by clearing the
enable interrupt flag (SR;). External interrupts continue to be
latched.

ENAIR ENABLE INTERRUPTS
Enables execution of interrupts by setting the enable interrupt

flag (SRy).

SLIR SELECT LATCHED INTERRUPTS

Places the interrupt request latches in the latched mode for
interrupts IRg_; (SRo LO). Interrupts are latched if they are
valid at the appropriate clock edge. Interrupts IRg_ arc latched
at the positive going clock edge while IR, _, are latched at the
negative going clock edge.

STIR SELECT TRANSPARENT INTERRUPTS

Places the interrupt request latches in the transparent mode
(SRo HI) for interrupts IR;._ ;. The interrupt request is only
valid while the external interrupt inputs are high. Interrupts are
still processed on the next cycle, so long as they meet the minimum
interrupt setup specification. Note that selecting transparent
interrupting will clear any pending interrupts stored in the
interrupt latch.

SLRIVP WRITESLRWITHD:_,,
ANDIVPWITHD;s_)2

Loads the 4-bit stack limit register (SLR) and the 4-bit interrupt
vector pointer (IVP) from the data port. This instruction also
clears the stack overflow interrupt request IR,.

For stack overflow detection, the active 6-bit stack pointer
(SSP, LSP or GSP) is compared to a 6-bit word comprised of
the 4-bit SLR (MSBs) and the two LSBs determined by the
instruction type, as follows:

‘00’ for subroutine stack push (PSDSS); or,
‘11’ for register stack push (PSDRS).

For example, if a stack limit of 36,5 and positioning of the IVP
at IRV, is desired, the value ‘0111xxxxxx1001xx’ is provided at
the data port. Note that the SLR and IVP cannot be read.

The interrupt vector pointer (IVP) addresses the vector file for
reading or writing interrupt vectors. To write interrupt vectors
IRVy_g, the IVP must first be initialized by SLRIVP. The
WRIV instruction (see above) is then used to write the interrupt
vector pointed to by the IVP, which is then incremented
automatically.

2.6 Relative Address Width Controls

The width control instructions allow reduction of microcode
when Jump Data Relative and Jump Subroutine Relative in-
structions need less than the full, 16-bit range. Use these in-
structions to sign extend the 8, 12 or 16-bit wide jump data
presented at the data port. The jump width may be selected by
the explicit instructions or by directly setting the status register
bits SRs_4 as described below. Any of these three instructions

3-16 MICROCODED SUPPORT COMPONENTS

will reset the Instruction Hold Control mode (see Misc. Instruc-
tions — IHC, 2.7).

Note that selection of 8-bit width can be made with or without
IHC. For all relative jumps, the jump distance is the offset +1.

REL16 SELECT 16-BIT RELATIVE JUMPS

Select the 16-bit relative jump. This adds D,s_g at the data port
to the PC to obtain the jump address. The status bits SRy _4 are
set to ‘00°.

REL12 SELECT 12-BIT RELATIVE JUMPS

Selects the jump data from D, _.g. The offset is sign-extended
allowing relative jumps in the range +2047 to —2048. The
status bits SRy _, are set to ‘11,

RELS SELECT 8-BIT RELATIVE JUMPS

Selects the jump data from D;_,. The offset is sign-extended
allowing relative jumps in the range +127 to — 128. The status
bits SRy are set to ‘01,

2.7 Miscellancous Instructions

CONT CONTINUE

Increment and output the next location in microcode memory
without any other changes. Allows straight line microcode
execution.

IDLE DISABLEOUTPUTS AND JUMPPC

Places the address port into the high-impedance state, inhibiting
program counter (PC) increments. Useful in applications where
multiple sequencers share a common microcode address bus.

This instruction causes the ADSP-1401 to behave as if the clock
had stopped. The IDLE instruction may be latched internally
by using IHC, frecing microcode for use by another device.

External interrupt requests must be inhibited during IDLE. If
interrupts are not inhibited, the ADSP-1401 will attempt to
process an interrupt that goes active. However, it will be unable
to output an interrupt vector because the IDLE instruction
places the address port in the high-impedance state; more im-
portantly, it will set its IRIP flag, which will inhibit further
interrupt processing even after the IDLE state is exited.

Interrupts can be inhibited using the interrupt mask or the
DISIR instruction. While inhibited, interrupt requests will still
be latched in the interrupt latch.

IHC ENABLE INSTRUCTION HOLD CONTROL

Sets SRs._4 to ‘10’ and redefines the function of IR, to allow a
subsequent instruction to be held for repeated execution, regardless
of the instruction port. Use of the [HC mode requires that the
mask bit for IR, be set. See Instruction Hold Control, appendix
4.1 for more details.

While in the [HC mode, asserting IR, HI (prior to the second
half-cycle of any instruction) will hold that instruction and
disable all interrupts (although they continue to be latched)
until IR, is brought LO again (agsin, prior to the second half-cycle
of any instruction).

It is recommended that IR be dedicated to control of the IHC
mode (if needed). However, if it must also be used for subsequent
interrupting, then the CAIR instruction should be executed
before unmasking IR (to clear the interrupt request resulting
from use of IR; as the IHC control).

ADSP-1401

Use of THC is constrained to 8-bit relative addressing (see Relative
Address Width Controls, 2.6) and clearing IHC is accomplished

by executing any of the relative address width control instructions
(changing status register bits SRs_4).

WCS WRITECONTROL STORE

Provides sequential addressing during microcode downloads to a
RAM based microcode store. The instruction may be interpreted
as:

JUMP DATA;
IF FLAG: DECREMENT Cy, AND CONTINUE UNTIL
INTERRUPTED.

Upon initiation of the WCS instruction, the sequencer outputs
the address found at the data port (that of the first instruction
to be downloaded). The external flag is then used to gate sub-
sequent sequential addressing for the download and decrementing
of counter Cy. This action continues until an interrupt is detected
(from either a Cy underflow, externally or the chip is RESET).
Instructions at the instruction port are ignored during WCS,
until the interrupt or reset occurs.

The external flag allows synchronization of an external memory
with the sequencer. FLLAG should be asserted HI as each new
pcode word is made available for writing to pcode memory.

Notes on Using a Writeable Control Store:

® If a counter interrupt is desired, counter Cy must be in-
itialized with swo less than the length of microcode seg-
ment to be downloaded.

@ If counter interrupting is 1o be used to exit the WCS
mode, IRV, should be unmasked and initialized with the
address of the instruction to be executed upon WCS com-
pletion (see Interrupts, 1.4.3 for timing).

® Since interrupting is used to exit the WCS mode, the last

address downloaded is pushed onto the 8§ stack as an in-

terrupt return address. However, because it is not actually

a return address, the $S should be popped immediately

by decrementing the SSP (DSSP) to clear it of this last

address.

Since FLAG is used to gate the download, it should not

become active until after the WCS instruction is executed.

See application note ‘“Writeable Control Store using the
ADSP-1401."

3.0 SPECIFICATIONS

This section describes the ADSP-1401's performance parameters.
The Specifications Table lists the device’s relevant electrical and
switching characteristics, while Figure 7 presents the corres-
ponding timing diagram.

[e e T

CLOCK

! {

INSTRUCTION |
INPUTS
e T T
oaramwurs DOOC_— XOOOOX_ 1)OO
] tos e | o[- |
outpuT AooRESS | 4’X | X [
| | b f |

L

OUTPUT DATA

el t00 | e l'-'g" |
et mror POOOOX XXX I XX
I] s | — f—t |
mes XX TXRXRXXX — TIKXRXX
L]] e f— e |

)

LI 970000700 N 000N
o tw] | e ts |

ADDRESS PORT ||

|

|
|
|
(DLE-TO-THREE- O] !
TATE | = o | ——l tao e |
)
TTRPINFOR t l |
THREE STATE ‘l ["_si—_._J{ T |
b trs0v
ADDRESS PORT [| |
[trse pn— _J to fmm
cLock | ‘ |
ISTRETCHED|
‘ l
RPN/ I\ |
FORTRAP [| o] | oo
OUTPUT ADDRESS m) [X wser |

“—‘mnu—.‘ =] o e

Figure 7. ADSP-1401 Timing Diagram

-t
j 01V

01V
- f

Figure 8. Three-State Reference Levels

HIGH IMPEDANCE

—
N

ORDERING INFORMATION

Temperature Package
Part Number Range Package Outline
ADSP-1401JN 0to +70°C 48-Pin Plastic DIP N-48A
ADSP-1401KN 0to +70°C 48-Pin Plastic DIP N-48A
ADSP-1401JP 0to +70°C 52-Lead PLCC P-52
ADSP-1401KP 0to +70°C 52-Lead PLCC P-52
ADSP-1401)D O0to +70°C 48-Pin Ceramic DIP D-48A
ADSP-1401KD 0to +70°C 48-Pin Ceramic DIP D-48A
ADSP-1401SD -55°Cto +125°C 48-Pin Ceramic DIP D-48A
ADSP-1401TD -55°Cto +125°C 48-Pin Ceramic DIP D-48A
ADSP-14015D/883B —55°Cto +125°C 48-Pin Ceramic DIP D-48A
ADSP-1401TD/883B —55°Cto +125°C 48-Pin Ceramic DIP D-48A

MICROCODED SUPPORT COMPONENTS 3-17

SPECIFICATIONS'
RECOMMENDED OPERATING CONDITIONS

J & K Grades S & T Grades?

Parameter Min Max Min Max Unit
Vpp Supply Voluage 4.75 5.25 4.5 5.5 A
Tuug Ambient Operating Temp. 0 70 -~55 125 °C
ELECTRICAL CHARACTERISTICS

Test J& K Grades S & T Grades’
Parameter Conditions Min Max Min Max Unit
Viu Hi-Level Input Voltage Vpp = max 2.0 2.0 \Y%
Vine Clock Input Hi-Level Input Voltage Vpp = max 3.0 3.5 \%
Vi, Lo-Level Input Voltage Vpp = min 0.8 0.8 v
Vou Hi-Level Output Voltage Vpp =min, gy = — ImA 2.4 24 \%
Vo Lo-Level Qutput Voltage Vpp = min, I, =3mA 0.6 0.6 A%
Iin Hi-Level Input Current, All Inputs Vpp=max, Viy =5V 10 10 pA
I, Lo-Level Input Current, All Inputs Vpp = max, Vi =0V 10 10 pA
lgzn Three-State Leakage Current Vpp = max, V= max 50 S0 wA
Ioz1, Three-State Leakage Current Vpp =max, Viy=0 S0 50 pA
Ipp Supply Current max clock rate, TTL inputs 90 115 mA
Ipp Quiescent Supply Current Vin=2.4V 50 65 mA

ABSOLUTE MAXIMUM RATINGS

Supply Voltage -0.3Viwo 7V
Input Voltage ~0.3Vto Vpp
Output Voltage Swing -0.3V 1o Vpp
Operating Temperature Range (Ambient) . . —55°C 1o +125°C
Storage Temperature Range -65°C to +150°C
Lead Temperature (10 Seconds) 300°C
ESD SENSITIVITY

The ADSP-1401 features proprietary input protection circuitry. Per Method 3015 of MIL-STD-883,
the ADSP-1401] has been classified as a Class 1 device.

Proper ESD precautions are strongly recommended to avoid functional damage or performance degra- - . N
UL

WARNING'

dation. Charges as high as 4000 volts readily accumulate on the human body and test equipment and
discharge without detection. Unused devices must be stored in conductive foam or shunts, and the
foam should be discharged to the destination socket before devices are removed. For further informa-
tion on ESD precautions, refer to Analog Devices’ ESD Prevention Manual.

3-18 MICROCODED SUPPORT COMPONENTS

ADSP-1401

SWITCHING CHARACTERISTICS?

J Grade K Grade S Grade® T Grade®
Parameter Min Max Min Max Min Max Min Max Unit
th Clock HI 50 40 60 50 ns
tio Clock LO 40 30 50 40 ns
s Instruction Setup Time 36 30 45 40 ns
tps Data Setup Time 10 * 15 15 ns
[Input Signal Hold Time 3 * * * ns
tap Address Delay*(C= S0pF) 35 25 45 35 ns
tay Address Hold Time 3 * 1 1 ns
topp Output Data Delay (C = 30pF) 50 35 60 45 ns
topis Output Data Disable Time 20 15 25 20 ns
tipsw Input Flag Setup Time (IR0 masked) 15 10 20 15 ns
trsy Input Flag Setup Time
{no constraints) 30 26 35 30 ns

tyirs Upper Interrupts (IRg_s) Setup Time | 30 25 35 30 ns
trrs Lower Interrupts (IR4_) Setup Time | 20 15 25 20 ns
trss Three-State (TTR) Setup Time 10 * 15 15 ns
trsoy Three-State (TTR) Overlap Time

(With Trap) 13 13 s S ns
trsg Three-State (TTR) Disable Delay 20 15 25 20 ns
tiprs IDLE-to-Three-State Disable Delay 20 15 25 20 ns
trrov Trap(TTR)Overlap Time

(With Three-State) 10 8 10 10 ns
trpap Trap(TTR)to Address Delay 60 45 70 ss ns
NOTES

*Specifications same as] grade.

'All specifications are over the recommended operating conditions.

5 and T grade parts are available processed and tested in accordance with MIL-STD-883B. The processing and test methods used
for $/883B and T/883B versions of the ADSP-1401 can be found in Analog Devices' Military Databook.

*Input levels are GND and 3.0V. Rise times are Sns. Input timing reference levels and output reference levels are 1.5V

except for three-state reference levels, which are shown in Figure 8. For capacitive loads greater than 100pF,

we recommend the use of external buffers.
*Address delays may be derated from the specified SOpF test loading shown in Figure 12 by adding 7ns/SOpF for

increased capacitive loading.

Specifications subject to change without notice.

o
Voo
Voo
r 3 ouTrs +18V
PIN
INPUT O l ot
ou
3pF _[F 3 I

lon
Figure 9. Equivalentinput Figure 10. Normalload for Figure 11. Equivalent Output
Circuit ac Measurements Circuit

MICROCODED SUPPOART COMPONENTS 3-19

4.0 APPENDICES

4.1 Instruction Hold Control (IHC)

The THC function allows external microcode width to be reduced
by allowing the 1401’s microcode field to be shared with another
device. This sharing is accomplished by temporarily latching an
instruction that is used repetitively within the ADSP-1401 and
re-directing its microcode to a different device. Control of the
latching is accomplished by the IHC instruction, which re-assigns
the function of interrupt signal IR,, becoming the latch/unlatch
control line.

To use this mode, execute the IHC instruction, which sets
status register bits SRs_4 to ‘10°, Interrupt line IR, now controls
the instruction hold mode (not interrupt), so IR; must be masked.
The shared signal, IR (recall, IRy_s and IR,_, share the same
pins), is still used normally, since it is active during clock low.

To initiate an instruction hold, execute the instruction to be
repeated, while asserting IR, (HI) prior to the clock falling edge
of the same cycle. For so long as IR, is kept high (on the falling
edge of the clock), the instruction will repeat. All interrupts are
automatically disabled while the instruction is held.

When IR, is needed for interrupts (instead of controlling the
instruction hold mode) the IHC mode may be disabled by:
executing one of the relative jump width control instructions;
or, by changing status register bits SRs_, directly. Prior to
unmasking IR, execute the CAIR (clear all interrupts) instruction
to clear the interrupt latch.

4.2 Programming Examples
The following examples are given to illustrate some fine points
of programming the ADSP-1401.

4.2.1 Jump Register (Sec Figure 13a)

In this example, three jump registers (R;_;) are loaded with
external data and one (Rg) is loaded with the program counter,
enabling a jump to the top-of-stack.

Current Instruction Output

Address Executed Address Comments RSP

20 PSDRS 21 PushR, 57

21 PSDRS 22 PushR, 56

22 PSDRS 23 PushR, 55

23 PSPC 24 PushPC(Rg=24) 54

24 Startof Loop . . . 25

30 c R

31 JRC(Ry) 32/24 Cond. Jumpto
[Ro]=24

32/24

4.2.2 Return from Interrupt with Pending Interrupt (See Figure
13b)

This example shows the program flow when two interrupts
occur in the same cycle or an interrupt is latched while another
interrupt is being executed. The “Return from Interrupt” in-
struction (RTNIR) will execute one instruction of the mainline
routine before servicing a pending interrupt since interrupts are
not re-enabled until the end of the cycle. Here, IV,=60 and
IV3=21.

3-20 MICROCODED SUPPORT COMPONENTS

CO=2°"154+8

s Lmsnpc *

24 "
.

H 2

LOOP
n TRUE STIMES P
FALSE "
2

A. JUMP REGISTER

& "y
ROUTINE

n

"z
2 pouTINE
»n

8. PENDINGINTERRUPT ONRTNI

/NN

8 SUBRTN At} ”n
" » ATNBAS 1. M
2 H BAVE
 Im7ROUTINE
n 2 s . $ T REsTORE
: noUTINE
ket " [}

C. INTERRUPT ONRTN D. INTERAUPT USING OLOBAL REGS

180 MAOUTINE
CONTY
180 (PUSHES)

)
1%
1OVRFL] g7 o1 [H %0

PUSHCO SUBROUTINE
me

L]
PUSHCY

L 190 a

" H
0 AN

E. THAEE PUSHES ON OVAPFL F. INTERRUPT ON JUMP SUBROUTINE

Figure 13. Programming Examples

Current Instruction
Address Executed

Output
Address Comments

89 RN 90 A,

90 N 91 Interrupts [; & I, valid.

91 N 60 IV; output. Instruction 91
still executed.

60 CONT 61 92 is pushed on stack.

61 A 62 -

81 RTNIR 92 92 popped and interrupts
re-cnabled.

92 e 21 IV, output. Instruction 92
still executed.

2] CONT 22 93 pushed on stack.

22 . 23 e

28 RTNIR 93 93 is popped from stack.

93 Ca

4.2.3 Interrupt on a Return from Subroutine (See Figure 13¢)
If an interrupt occurs on a subroutine return, no instructions in
the main program are executed prior to servicing the interrupt
routine. Here, IVs=20,

Current Instruction Output

Address Executed Address Comments

91 . 92 .

92 JSR (3] Jumpto65. 93 pushed.

65 N 66 IRs becomes valid.

66 RTN 20 IV5 address output. 93
popped.

20 CONT 21 93 pushed.

29 RTNIR 93 93 popped.

93 -

ADSP-1401

4.2.4 Interrupt Routine using Global Registers (See Figure
13d)

Current Instruction Output

Address Executed Address Comments

12 . 13 Mainline . . .

13 N 14 IR, occurs here.

14 CONT 93 OutputIV,.

93 PSSR 94 Push status register.

94 PSCNTR(C,) 95 Save previous values . . .

95 PSCNTR(Cy) 96 ..

96 PSGSP 97 R

97 WRSR 98 Write new values . . .

98 WRCNTR(Cy) 99

99 WRCNTR(C,) 100

100 WRRSP 101 e

101 e 102 Begin interrupt servicing . .

123 e 124 End of interrupt service
routine.

124 PPGSP 125 Pop in reverse order of
pushes . . .

125 PPCNTR(C)) 126
126 PPCNTR (C;) 127

127 PPSR 128 N
128 RTNIR 15 Jump back to mainline.
15 . 16 B

4.2.5 Three Stack Pushes on Stack Overflow (See Figure 13¢)
The four register buffer between the subroutine stack and the
register stack will be filled with three values whenever the stack
push that caused the overflow is followed by another instruction
that causes a stack push. The second stack push occurs since
the instruction that is interrupted (the second stack push) must
complete internally to preserve the correct state of the ADSP-1401
after the interrupt. The third push occurs to provide the return
address to the main program. The sequence is illustrated below.
Assume that the address of the stack overflow service routine
(IVy) is at 150.

Current Instruction Output

Address Executed Address Comments

86 - 87

87 PSCNTR (Co) 88 The push causes a stack
overflow.

88 PSCNTR(C,) 150 The interrupted instruc-
tion executes.

150 CONT 151 89 is pushed onto the stack.

151

4.2.6 Interrupt on Jump Subroutine Instruction (See Figure
13f)

Current Instruction Output

Address Executed Address Comments

86 e 87 Interrupt occurs to loca-
tion 150

87 JSA (40) 150

150 CONT 151 40 Pushed on stack

Ce . 160 e

161 RTNIR 40 Return from interrupt

40 41

4.3 Use of RAM by Multiple Subroutines

This diagram (Figure 14) shows the state of RAM after three
nested subroutine calls.

Prior to the first subroutine call, the RSP was used to preload
the bottom portion of the RAM with indirect jump addresses.
Next, global jump registers were preloaded. In the mainline
program, only global jump registers are used.

UNDERLOW BUFFIA
NETURN AGOA
&

] SUBRDUTIVE #1
ase
STATUS REGINTER
NETUNH ACOMSE
2]
c2
ase
RETURN ADDAESS
STATUS MOISTER

SUBROUTINE
$TACK

10CAL
$T4CK

aLoRaL
STACK

SUBRDUTINE 1

AN L

i
-

};

Figure 14. RAM Status after Subroutine Calls

The instruction calling the first subroutine pushes the return
address of the main program onto the subroutine stack. The
values of counters 1 and 3 are also pushed onto the stack to free
counters 1 and 3 for use in subroutine #1. The GSP is saved
since different routines will require different GSPs. Similarly,
the status register of the main program is saved. As shown,
routine #1 uses both global and local jump registers. It selects
the GSP or LSP at the appropriate times in the routine by executing
SGSP or SLSP instructions.

Routine #2 saves the return address, some counters, and the
GSP for routine #1. Since no local registers are used in routine
#2, none are loaded.

Routine #3 saves the return address and the status register.
Since the GSP and counters are not used in this routine, they
are not saved. After the new status register is loaded (selecting
the LSP), local registers are pushed onto the stack.

4.4 Bus Drive Considerations with the Word-Slice Family
The various members of Analog Devices' Word-Slice family are
designed with high-speed drivers on all output pins. This capability
means that large peak currents may pass through the ground
and Vpp pins when all the bus lines are simultaneously charging
their load capacitance from LO to HI, or vice versa.

To calculate the peak current for a typical family member (such
as the ADSP-1401 Program Sequencer), we assume that all
output drivers are switching from a HI to a LO state. From a

MICROCODED SUPPORT COMPONENTS 3-21

fall time and capacitance measurement, we can determine that The internal ground and supply lines may undergo a large dis-

the peak current in each driver is: turbance during this transition unless the ADSP-1401 is tied o
Ipeak = Cioad'AV/AY, a solid ground planc and good high frequency decoupling is

- used (0.1uF ceramic between GND and Vpp a8 close as possible

where AV/At is the initial slew rate. 10 the device). Otherwise, is it possible that internal data in the

In the case of the program sequencer, for an external load capaci- ~ ADSP-1401 may be lost.
tance of SOpF and a measured slew rate of 0.6V/ns, the peak

current will be about 30mA. Since there are 16 such drivers, the

total peak current may gpprosch 480mA!

4.5 Maemonics and Opcodes Mﬁm%&
Opoode bits “ii” select the relevant register (R;_o) and/or counter rm TR
(Ci-o). Opcode bits “cc” select the condition to be applied: v ;
‘00’ UNCONDITIONAL ° *
O NOTFLAG SRe IRg Mask Bit
FLAG SRs_¢ Relative Jump Width Selection:
‘11" SIGN ‘00" = 16-bit relative address width
o) , ‘01" = 8-bit width
T!ne SIGN condition is precluded from instructions prefixed 410’ = IHC Mode (8-bit width)
with “**, ‘11 = 12-bit width
SR, Select GSP/LSP
SR, Enable/Disable Interrupts
SR, Set/Clear Sign Bit
5Ro Select Transparent/Latched Interrup
- RDSR 0101110 READ SR
Jump snd Branch Instructions: 1
JPCOF 0010101 IF FLAG: JUMP PC (uif) WRSR 0011100 WRITE SR
JRCNF 0110101 IF NOT FLAG: JUMP PC PSSR 0100001 FUSH SR ONTO S§
el PPSR 0100010 POP SR FROM $§
JTWO 101ccOl IF COND: JUMP PC+2 (ship)
JDA Illccll IF COND: JUMP DATA, Cowntes Operations:
ABSOLUTE WRCNTR 01110ii WRITEG
JDR 111ccOl [F COND: JUMP DATA, CLRS 0010100 CLEAR SIGN BIT
RELATIVE SETS 0110100 SET SIGN BIT
JDI 101¢c10 IF COND: JUMP DATA, PSCNTR 000 10ii PUSH G ONTO S§
INDIRECT PPCNTR 001 10ii POPC, FROM S§
JDRST 100 11ii IF SIGN OF C;: JUMP DATA, DCCNTR 01100ii DECREMENT G
Ci<=Ry; ELSE, G< =Gy~ 1 IFCDEC 101 ¢c00 IF COND: DECREMENT Gy
*JRC 110ccii IF COND: JUMPR,
JRS 11011ii IF SIGN OF C;: JUMPR,, Interrupt Control:
CemCom1 CCIR 0010001 CLEAR CURRENT
JSA 1lcco0 IF COND: JUMP SUB, INTERRUPT
ABSOLUTE CAIR 0000001 CLEAR ALL INTERRUPTS
ISR 111 cclo IF COND: JUMP SUB, RTNIR 0000011 RETURN FROM
RELATIVE INTERRUPT
RTN 01 ccll IF COND: RETURN FROM RDIV 0101101 READ INTERRUPT VECTOR
SUB AND INCREMENT IVP
*BRANCH 100 ccii IF SIGN OF C;: JUMPR; WRIV. 0001101 WRITE INTERRUPT
ELSE, C,< =C,1, IF COND: VECTOR AND INCREMENT
JUMP DATA Ivp
IRMBC 0010011 IR MASK BITWISE CLEAR
Stack Operations: IRMBS 0010010 IR MASK BITWISE SET
Subrostine Ssack DISIR 0010110 DISABLE INTERRUPTS
PSDSS 0011110 PUSH DATA ONTO SS ENAIR o1l 0110 ENABLE INTERRUPTS
PPSSD 0111110 POP $§ TO DATA PORT SLIR 0010111 SELECT LATCHED
WRSSP 0001110 WRITE SSP INTERRUPTS
RDSSP 0101100 READ SSP STIR 01t 0111 SELECT TRANSPARENT
DSSP 0000010 DECREMENT SSP INTERRUPTS
Rersar Stack SLRIVP 001 1101 wm-naguz«n,_z AND
SGSP 0000111 SELECT GSP VP<=Dis-n
SLSP 0000110 SELECT LSP Relative Address Width Coatrol
npnssl; g;oo L : :Kl) READ Rgl;r RELI6 0100100 SELECT 16-BIT RELATIVE
WRR WRITE ADDRESSING
;:ggp g‘l’g g‘l’ 3 : ;ggg 22 fg:'?okgs RELIZ 0100111 SELECT 12.BIT RELATIVE
ADDRESSING
l':sl’giz gg? (l’m ‘;8’8’ :ﬂ’ﬂ_’:o(ﬂ)‘ S8 RS REL8 0100110 SELECT 8-BIT RELATIVE
NTO RE
PPRSD 0111111 POP RS TO DATA PORT ADDRESSING
AIRSP 010 10ii ADD i TO RSP Miscellaneous Instructions:
SIRSP 000 1111 SUBTRACT | FROM RSP CONT . 0000000 CONTINUE
SRSP 0111100 SUBTRACT 4 FROM RSP IDLE 001 0000 IDLE
IHC 0100101 ENABLE INSTRUCTION
HOLD CONTROL
wCs 0100000 WRITE CONTROL STORE

3-22 MICROCODED SUPPORT COMPONENTS

ADSP-1401

ADSP-1401 PIN CONFIGURATIONS

DIP
D-48A
N-48A
PIN FUNCTION | PIN FUNCTION
1 D7 48 D6
2 D8 47 DS
3 D9 46 D4
4 D10 a5 D3
5 p11 a4 D2
6 D12 43 D1
7 D13 42 Do
8 D14 a1 CLK
9 D15 40 FLAG
10 EXIR1 39 16
1 EXIR2 38 15
12 GND 37 Voo
13 EXIR3 36 "
14 EXIR4 35 13
15 TTR 3 12
16 Y15 33 n
17 Y14 32 i0
18 Y13 31 Yo
19 Y12 30 Y1
20 Y1 29 Y2
21 Y10 28 Y3
22 Y9 27 Y4
23 Y8 26 Y5
24 Y7 25 Y6
PLCC
P52
PIN FUNCTION | PIN FUNCTION
1 D7 52 D6
2 D8 51 D6
3 D9 50 D4
4 p10 a9 D3
5 b1 a8 D2
6 D12 47 D1
7 GND 46 GND
8 D13 a5 Do
9 014 a4 CLK
10 015 43 FLAG
1 EXIR1 a2 16
12 EXIR2 41 15
13 GND 40 Voo
14 EXIR3 39 "
15 EXIR4 38 13
16 TTR 37 12
17 Yis 36 n
18 Y14 35 10
19 Y13 34 Yo
20 GND 33 GND
21 v12 32 Y1
22 Y11 3 Y2
23 Y10 30 Y3
24 7] 29 va
25 v8 28 Y5
26 v7 27 7]

MICROCODED SUPPORT COMPONENTS 3-23

