

AP2403

Current-Mode PWM Step-Down DC-DC Converter

1. General Description

The AP2403 is a Current-Mode Synchronous Step-Down DC-DC Converter with excellent transient response. The output voltage is selectable from the range of 0.8V to 5.0V by an external resistor. The input voltage ranges from 3.0V to 5.5V which is most suitable to generate a 1.0V, a 1.2V, and a 1.8V power supplies. Power MOSFETs are built in the AP2403; the maximum output current of the AP2403 is 2.5A. The switching frequency is selectable from 300 kHz to 4 MHz by the external resistor. For the protections, the AP2403 has Over-Current protection, Low-Input Voltage protection, Thermal protection and Power-Good function.

2. Features

1. **Input Voltage Range:** $V_{in} = 3.0V \text{ to } 5.5V$
2. **Output Voltage Range:** $V_{out} = 0.8V \text{ to } 5.0V$
(by the external resistor)
3. **Maximum Output Load Current:** $I_{out(max)} = 2.5A$
4. **Operation Temperature:** $T_a = -40^{\circ}\text{C} \text{ to } 105^{\circ}\text{C}$
5. **Switching Frequency:** 300kHz to 4MHz (Selectable by an external resistor and
External Synchronous Mode is available by an external clock)
6. **Internal Reference Voltage:** $0.6V \pm 1.5\%$
7. **Maximum Duty:** 100%
8. **Low Input Voltage Protection**
9. **Power-Good Function**
10. **Over-Current Protection (Automatic recovery type)**
11. **Thermal Protection**
12. **Soft Start Function**
13. **Package:** 16-pin HTSSOP

<http://akm.transim.com/>

3. Table of Contents

1. General Description.....	1
2. Features.....	1
3. Table of Contents.....	2
4. Block Diagram and Functions	3
5. Pin Configurations and Functions.....	4
■ Ordering Guide.....	4
■ Pin Layout	4
■ Pin Functions	4
6. Absolute Maximum Ratings	6
7. Recommended Operating Conditions	6
8. Electrical Characteristics	7
9. Functional Descriptions.....	8
■ Start-up Timing	10
■ Over Current Protection Timing.....	11
■ External Synchronization Timing.....	12
10. Application Information	13
11. Recommended External Circuits	15
12. PCB Layout Example	16
13. Package.....	17
■ Outline Dimensions	17
■ Marking	18
14. Revision History	19
IMPORTANT NOTICE	20

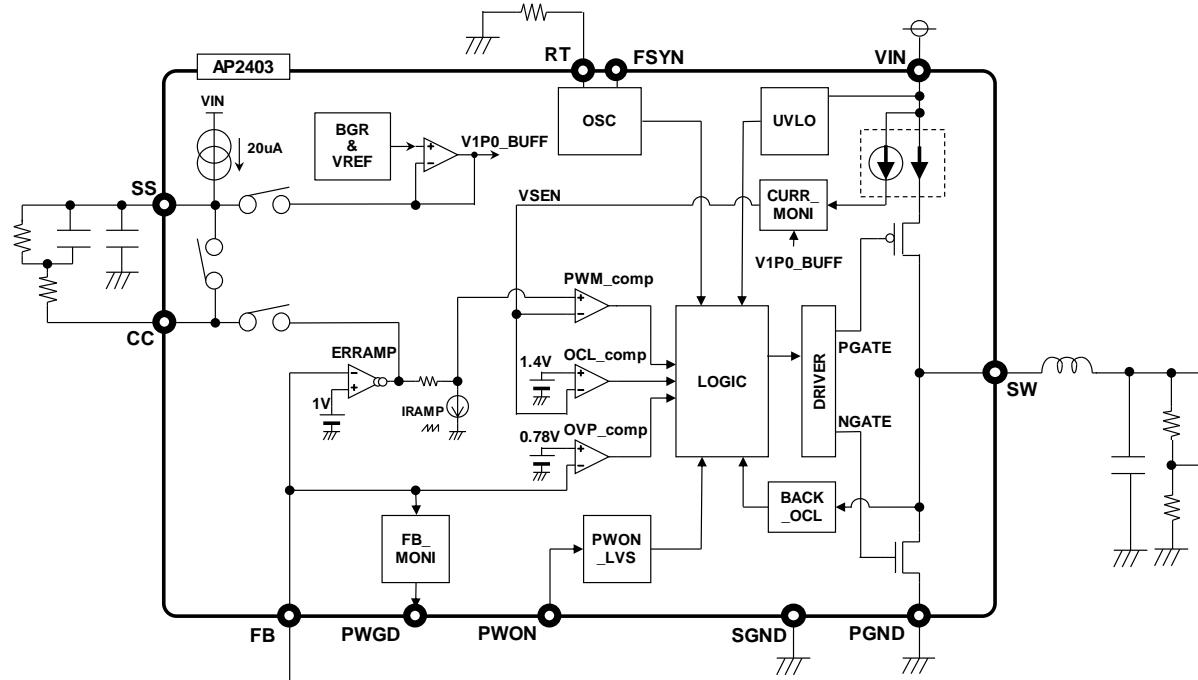

4. Block Diagram and Functions

Figure 1. Block Diagram

5. Pin Configurations and Functions

■ Ordering Guide

AP2403 -40°C to 105°C 16-pin HTSSOP

■ Pin Layout

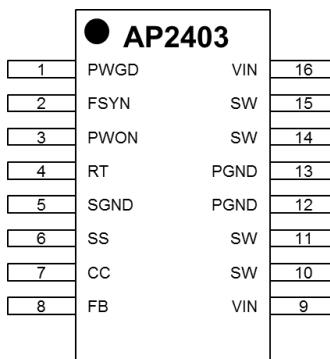


Figure 2. Pin Layout

■ Pin Functions

No.	Pin Name	I/O	Function	Condition (Note 1)
1	PWGD	O	Power-Good Pin When the output voltage reaches the level that is $\pm 20\%$ of the setting voltage, this pin becomes "H".	GND
2	FSYN	I	External Synchronous Clock Input Pin An external clock within $\pm 20\%$ of setting value which is set by the resistor at the RT pin is available.	Internal pull-up resistor to VIN pin is $300\text{k}\Omega$.
3	PWON	I	Power-ON Pin The AP2403 starts operation by inputting a 1.5V or more voltage to this pin.	-
4	RT	O	Operation Frequency Setting Pin The operation frequency is determined by a resistor connected to this pin.	HiZ (connect an external resistor between the GND)
5	SGND		Signal Ground	-
6	SS	O	Soft Start Pin Connect a capacitor of $0.047\mu\text{F}$ or more between the SS pin and the GND. The AP2403 charges this external capacitor when starts up, and a Soft Start operation is executed. When the over current protection is activated, the external capacitor is discharged and it generates a suspended time in a hiccup operation.	GND
7	CC	O	Output pin of Output Voltage Feedback Amplifier (Error Amp.) Connect a resistor and a capacitor between the CC pin and the SS pin in parallel. These devices compensate the amplifier phase.	GND

8	FB	I	Input pin of Output Voltage Feedback Amplifier (Error Amp.) It controls the output voltage so that the voltage at this pin becomes 0.6V. Connect two resistors for feedback between the output stage and the GND in series, and the FB pin must be connected to the middle point of these two resistors.	HiZ (there is an external resistor between the GND)
9	VIN		Main Power Voltage Input Connect a capacitor of 4.7μF or more between the VIN pin and the GND.	-
10	SW	O	Internal Switching MOSFET Output It is connected to the middle point of the internal output N-channel MOSFET and the P-channel MOSFET.	HiZ
11	SW	O	Internal Switching MOSFET Output It is connected to the middle point of the internal output N-channel MOSFET and the P-channel MOSFET.	HiZ
12	PGND		Power Ground	-
13	PGND		Power Ground	-
14	SW	O	Internal Switching MOSFET Output It is connected to the middle point of the internal output N-channel MOSFET and the P-channel MOSFET.	HiZ
15	SW	O	Internal Switching MOSFET Output It is connected to the middle point of the internal output N-channel MOSFET and the P-channel MOSFET.	HiZ
16	VIN		Main Power Voltage Input Connect a capacitor of 4.7μF or more between the VIN pin and the GND.	-

Note 1. Pin state when the PWON pin = "L"

6. Absolute Maximum Ratings

(GND=0V: Note 2)

Parameters	Symbol	min	max	Unit
VIN pin	Vin	-0.3	6.0	V
SW pin	VSW	-0.3	Vin + 0.3	V
All pins (Except SW pin, VIN pin)	VIND	-0.3	Vin	V
Junction Temperature (Note 4)	Tj1	-40	150	°C
Junction Temperature (Guaranteed Lifetime)	Tj2	-40	135	°C
Operating Ambient Temperature	Ta	-40	105	°C
Storage Ambient Temperature	TSTG	-40	150	°C
Power Dissipation (Ta=25°C) (Note 3)	Pd		2750	mW

Note 2. All voltages with respect to the GND pin

Note 3. Thermal Resistance of the package (Rth): 40°C/W (JEDEC51, four layers PCB)

Note 4. Continuous operation above Tj=135°C may impair device reliability.

WARNING: Operation at or beyond these limits may result in permanent damage to the device.

Normal operation is not guaranteed at these extremes.

7. Recommended Operating Conditions

(GND=0V)

Parameter	Symbol	min	typ	max	Unit
VIN pin voltage	Vin	3.0	—	5.5	V
Output Current	Iout	0	—	2.5	A
Operating Ambient Temperature	Top	-40	—	105	°C

* AKM assumes no responsibility for the usage beyond the conditions in this datasheet.

8. Electrical Characteristics

(VIN=5.0V, Tj=−40°C to 135°C, unless otherwise specified)

Parameter	Symbol	min	typ	max	Unit	Conditions
Operating Input Voltage Range	V _{in}	3.0	-	5.5	V	
Feedback REF Voltage	V _{FBref}	591	600	609	mV	T _j =25°C
Operation Current Consumption (No Switching)	I _{SUPPLY}	0.48	0.8	1.12	mA	T _j =25°C
Stand-by Current	I _{standby}	-	-	10	μA	T _j =25°C
Load Regulation (Note 5)	ΔV _{LOAD}	-	1	-	%	0A to 2A, Ta=−40°C to 105°C
Output Pch MOSFET R _{DS(ON)}	R _{pmos}	-	65	100	mΩ	T _j =25°C
Output Nch MOSFET R _{DS(ON)}	R _{nmos}	-	65	100	mΩ	T _j =25°C
Over-Current Detection	I _{oclpk}	3.15	4.5	-	A	T _j =25°C
Oscillator Frequency	F _{osc}	300	-	4000	kHz	RT=702kΩ to 47kΩ
FSYN Input Frequency Range	F _{ext300}	240	-	360	kHz	RT=702kΩ (at 300kHz)
	F _{ext2000}	1600	-	2400	kHz	RT=100kΩ (at 2MHz)
Oscillator Accuracy	F _{acu}	−20	0	20	%	RT=100kΩ (at 2MHz), T _j =25°C
Maximum ON Duty (Note 5)	MAXDuty	-	-	100	%	
UVLO Detection Voltage	V _{uvlo}	2.30	2.50	2.85	V	
UVLO Release Voltage	V _{uvlorel}	2.35	2.70	2.90	V	
UVLO Hysteresis	V _{uvhys}	0.05	0.20	0.50	V	
Output Over Voltage Detection	V _{ovp}	+26	+30	+34	%	against V _{FBref}
Charge Current (to Capacitor of Soft Start)	I _{ss+}	18.0	20.0	22.0	μA	C _{ss} =0V → 1.0V (at rise) T _j =25°C
Discharge Current (to Capacitor of Soft Start)	I _{ss-}	0.70	1.0	1.30	μA	C _{ss} =1.0V → 0.40V (at fall) T _j =25°C (in hiccup operation)
Thermal Protection Detection (Note 6)	T _{sd}	135	155	185	°C	
Thermal Protection Hysteresis (Note 6)	T _{sdhys}	5	15	25	°C	
High side Power Good Detection	V _{pgonh}	+16	+20	+24	%	by contrast with V _{FBref}
High side Power Good Release	V _{pgoffh}	+21	+25	+29	%	by contrast with V _{FBref}
Low side Power Good Detection	V _{pgonl}	−16	−20	−24	%	by contrast with V _{FBref}
Low side Power Good Release	V _{pgoffl}	−21	−25	−29	%	by contrast with V _{FBref}
Power Good Hysteresis	V _{pghys}	3	5	7	%	
Power-OFF Threshold	V _{ponl}	-	-	0.4	V	
Power-ON Threshold	V _{ponh}	1.5	-	-	V	
Power-ON Hysteresis	V _{ponhys}	50	100	150	mV	
Gm (Error amplifier)	G _m	360	500	730	μA/V	T _j =25°C
Threshold voltage (of FSYN pin)	V _{Eih}	0.7*VIN	-	-	V	T _j =25°C
	V _{Eil}	-	-	0.3*VIN	V	T _j =25°C
Output voltage (of PWGD pin)	V _{Poh}	VIN−0.4	-	-	V	I _{poh} =−100μA
	V _{Pol}	-	-	0.4	V	I _{pol} =100μA

Note 5. A reference value with the recommended circuit

Note 6. Design assurance values

9. Functional Descriptions

1. Shutdown

The AP2403 is in shutdown condition when a Low signal is input to the PWON pin even if power supply was input to the VIN pin. When a High signal is input to the PWON pin, the AP2403 is powered up in soft-start mode.

2. Soft Start Mode:

This function prevents an overshoot of the output voltage when the AP2403 is powered up. It controls the output voltage slowly. During the soft-start period a capacitor connected to the SS pin is charged from 0V to 1.0V by a $20\mu\text{A}$ constant current. In soft start, an output voltage rising is controlled by changing the over-voltage limitation value linearly in accordance with the SS pin voltage. When this function starts, the over-current limitation value is fixed in 50% (2.25A typ.). It changes linearly during the period which the SS pin voltage increases to 1.0V from 0.5V. When a soft start operation is completed, the AP2403 shifts to a PWM control.

3. Constant Voltage Operation:

The AP2403 operates by Current-mode PWM controls. It determines the target value of inductance current by amplifying the voltage difference between the FB pin and 0.6V which is feedback reference voltage. The internal P-channel MOSFET is powered on until the inductance current meets the target value. When the inductance current reaches the target value, the built-in P-channel MOSFET becomes OFF and the built-in N-channel MOSFET becomes ON. Then the AP2403 operates in synchronous rectification mode.

4. Prevention of Incorrect Operation in Low Voltage (UVLO: Under Voltage Lock Out):

When the V5 pin voltage becomes less than 2.5V by a main power supply voltage decrease, all circuit blocks in the AP2403 are stopped and the AP2403 becomes UVLO state. The UVLO state has hysteresis, and the AP2403 keeps UVLO state until the main power supply voltage rises again and exceeds 2.5V. When the UVLO state is released, the AP2403 restarts by a soft start operation.

5. Output Over-Voltage Protection (OVP):

When the output voltage becomes +30% or more of the setting value, the built-in P-channel MOSFET and the built-in N-channel MOSFET become OFF state and the AP2403 enters protection mode. This state is maintained until the built-in P-channel MOSFET is turned on by the FB amplifier. The AP2403 is in normal operation when recovering from the output over-voltage protection. It does not shift to soft-start mode.

6. Hiccup type Output Over-Current Limitation (OCL):

This function reduces the output voltage and the output current by Hiccup operation in an over-current condition. When the over-current condition is detected, the built-in P-channel MOSFET and the built-in N-channel MOSFET become OFF and the SS pin voltage which is 1.0V discharged from 1.0V to 0.4V by a continuous current of $1.0\mu\text{A}$. The AP2403 stops its operation without shifting to a soft start operation in this discharging period of the SS pin. When the SS pin voltage decreases to 0.4V, the AP2403 enters a soft start operation after the SS pin voltage is discharged further to the GND level by the internal switch. The AP2403 repeats this sequence until the over current condition is removed.

7. Thermal Protection (TSD: Thermal Shutdown)

The chip temperature is monitored, and the built-in P-channel MOSFET and the built-in N-channel MOSFET are stopped when the chip temperature becomes about 150°C. The thermal protection function discharges electrical charge of the SS pin at this time, therefore a recovery sequence from the thermal protection is always in a soft start operation. This function has a hysteresis, and the AP2403 is restarted by soft start when the chip temperature decreases 15°C from the thermal shutdown threshold.

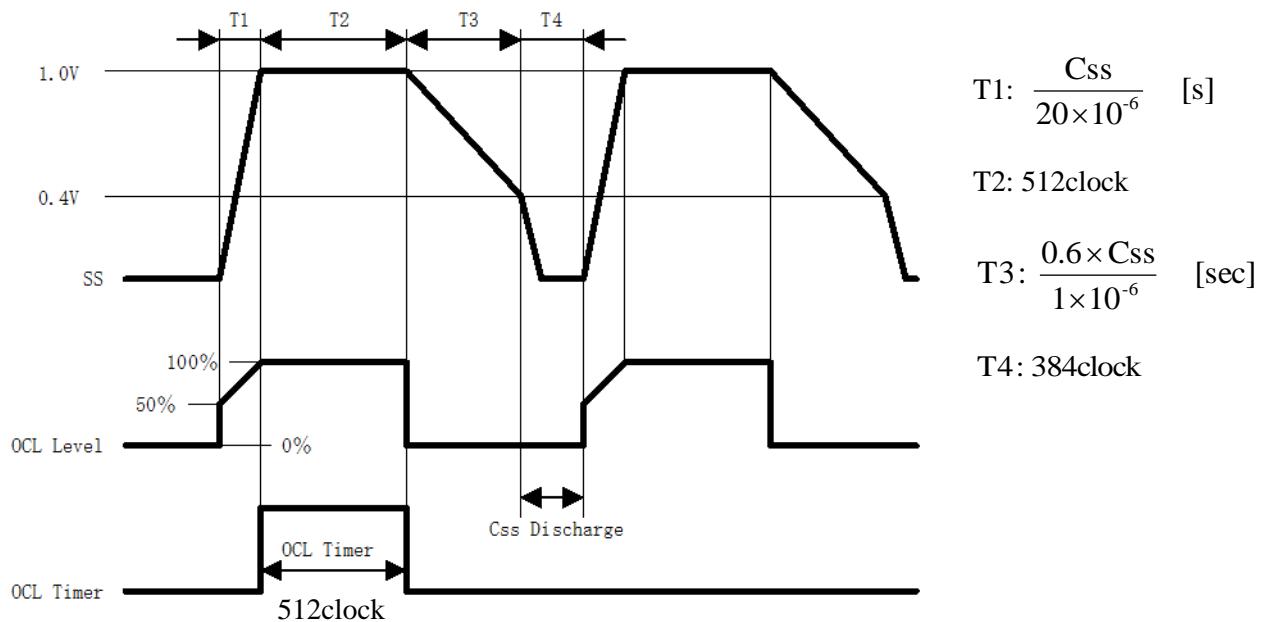
8. Oscillation Frequency Setting:

The oscillation frequency is determined by a resistor which is connected between the RT pin and the GND. Refer to the equation of this resistor value for frequency setting in the page of the application information.

9. External Synchronization

External synchronization is available by inputting a clock to the FSYN pin. The external synchronization frequency is determined by a resistor which is connected between the RT pin and the GND, and the AP2403 accepts a frequency within $\pm 20\%$ of this setting value.

10. Power Good


The AP2403 has a power-good function which indicates output voltage condition. The PWGD pin becomes High level (VIN level), when the output voltage reaches a level that is within $\pm 25\%$ of the setting value. The PWGD pin is always in Low level, during a power-off condition and a soft start operation.

■ Start-up Timing

Figure 3. Start Up Timing

■ Over Current Protection Timing

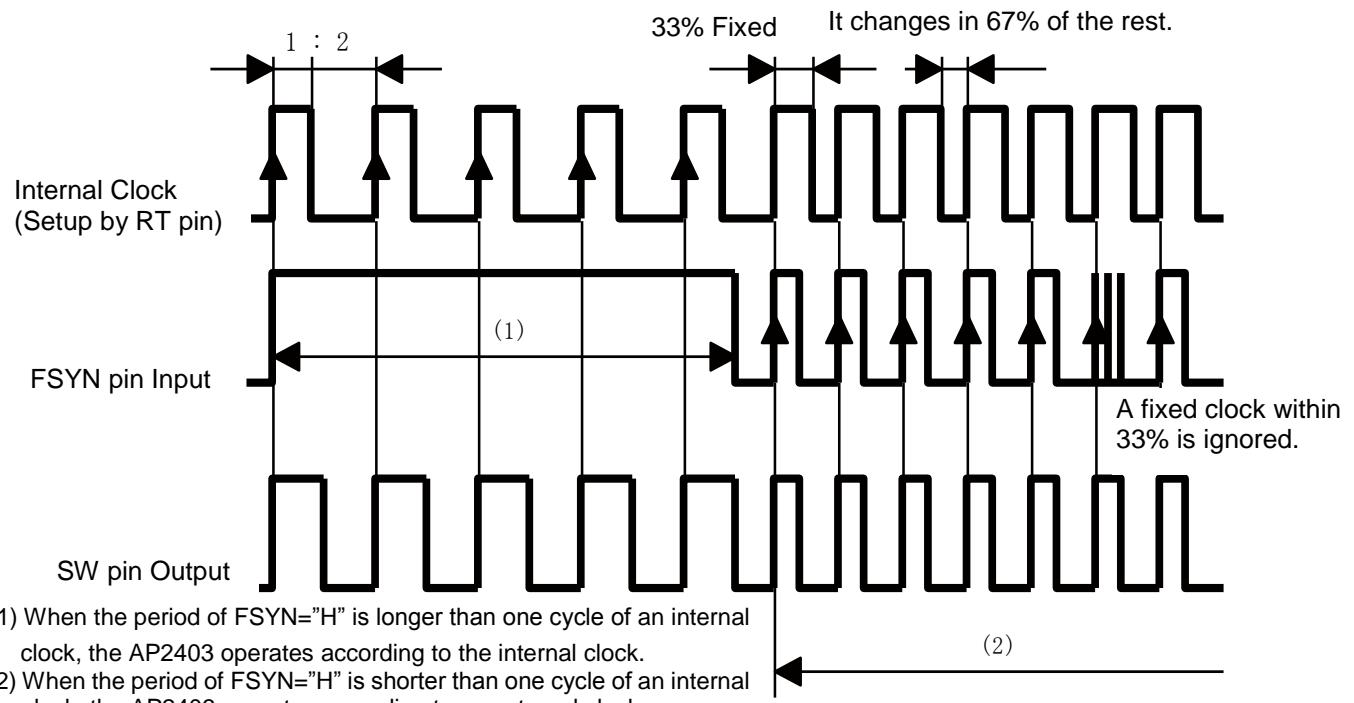
When $SS=0.1\mu F$,

T1: Soft Start Time is 5ms,

T3: Rest Time is 60ms

When $C_{ss}=0.22\mu F$,

T2: 256 μs (512 clocks/2MHz),


T4: 192 μs (384 clocks/2MHz)

T1: Soft Start Time is 11ms,

T3: Rest Time is 132ms

Figure 4. Over Current Protection Timing

■ External Synchronization Timing

The AP2403 accepts an external clock within $\pm 20\%$ of the setting frequency which is determined by the resistor of the RT pin for an external synchronization.

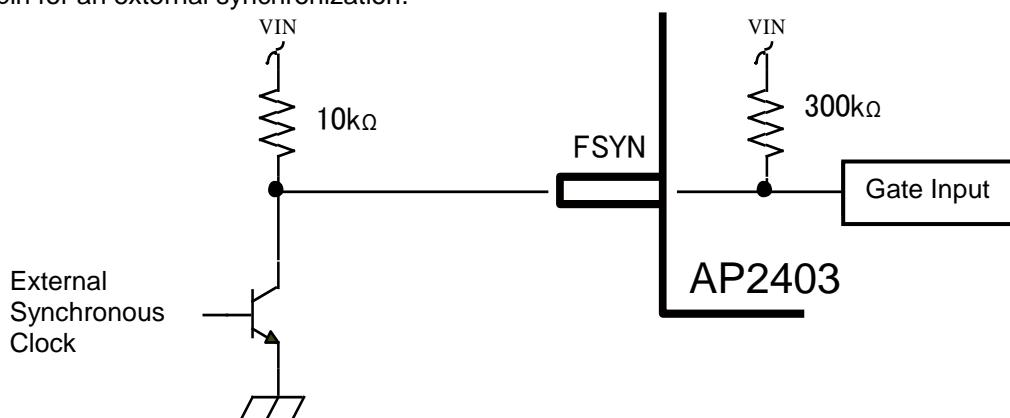


Figure 5. External Synchronous Timing

10. Application Information

1. Inductance:

An external inductor must be selected so that the maximum ripple current will be 30% of the rated current. The main power voltage (Vin) is the maximum value of input voltage range. The external inductor value is determined by following equation.

$$L = \frac{V_{out} \times (V_{in} - V_{out})}{0.6 \times V_{in} \times \text{Frequency}} \quad [\text{H}]$$

2. Phase Compensation:

Resistors and a capacitor for phase compensation are connected between the CC pin and the Vref/SS pin. Recommended values of these are shown below but they are not fixed. These values can be changed according to the VIN and VOUT frequency settings to optimize the phase compensation. (values shown below is in the case of “11. Recommended External Circuits”)

$$R4 = 220[\text{k}\Omega], \quad R5 = 4.7[\text{k}\Omega], \quad C5 = 2200[\text{pF}]$$

3. Soft Start Time:

Soft-start time is determined by the C4 capacitor which is connected between the SS pin and the GND. The relation of the capacitance and the soft-start time is calculated by the following equation.

$$T_{ss} = C4 / 20 \times 10^{-6} \quad [\text{s}]$$

4. Suspended Time in Hiccup Operation:

The suspended time in Hiccup operation is determined by the C4 capacitor which is connected between the SS pin and the GND. The relation of the capacitance and the suspended time is calculated by the following equation.

$$T_{hic} = \frac{0.6 \times C4}{1 \times 10^{-6}} \quad [\text{s}]$$

5. Output Voltage:

The output voltage is determined by the feedback resistors, and those two resistors are placed in series between the output capacitor and the GND. Those resistor value of R2 (the output capacitor to FB pin) and R1 (FB pin to GND) are calculated by the following equation.

$$V_{out} = 0.6 \times \left(1 + \frac{R2}{R1} \right) \quad [\text{V}]$$

Please note that the operation may become unstable by an influence of the switching noise when the current which flows in the resistor becomes too small.

6. Oscillation Frequency:

The oscillation frequency is determined by the R3 resistor which is connected between the RT pin and the GND. The relation of the resistor value and the oscillation frequency is calculated by the following equation.

$$R3 = \frac{0.6 \times (1/\text{Frequency} - 33 \times 10^{-9})}{1.2 \times 2.35 \times 10^{-12}} \quad [\Omega]$$

7. Power Dissipation

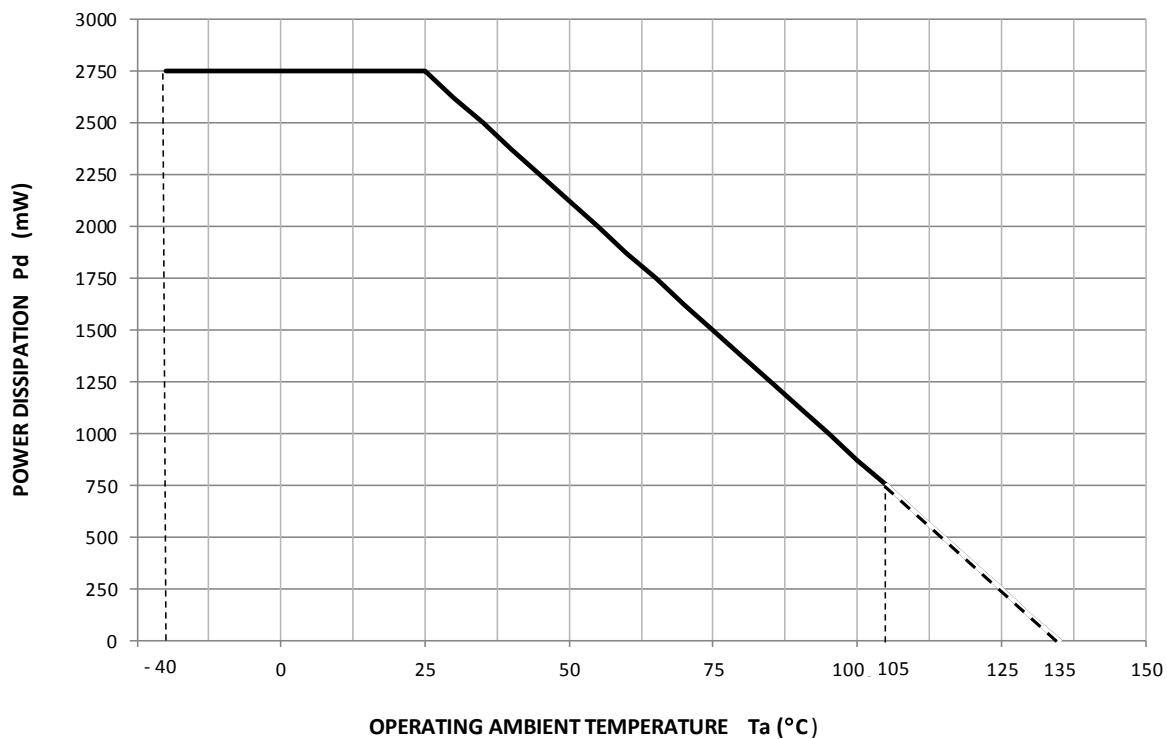


Figure 6. HTSSOP-16 DERATING CURVE

The derating curve of Package of HTSSOP-16 is above. The junction temperature (T_j) may become high temperature, even if the operating ambient temperature (T_a) is room temperature (25°C). This IC must be operated within the power dissipation.

11. Recommended External Circuits

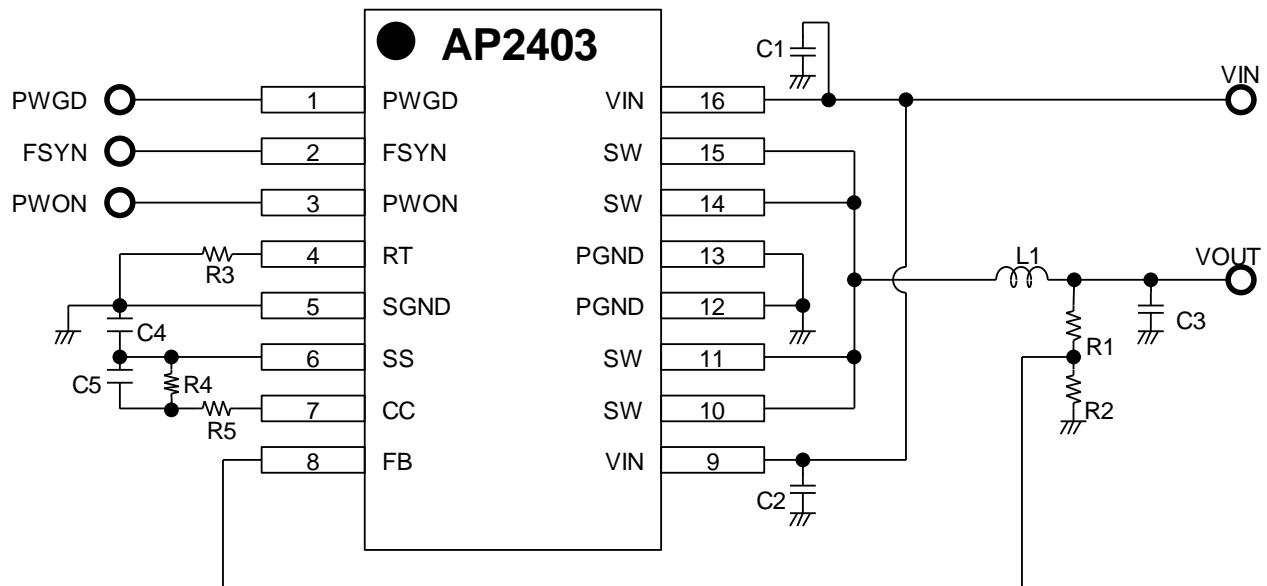


Figure 7. Standard Recommended Circuit Example

Parts List (VIN=5V, VOUT=1.8V, F=2MHz)

Symbol	Parts name	Parts value	Manufacturer
C1	Input capacitor	10μF Ceramic	
C2	Input capacitor	10μF Ceramic	
C3	Output capacitor	10μF Ceramic	
C4	SS capacitor	0.1μF Ceramic	
C5	Phase compensation capacitor	2200pF Ceramic	
R1	FB resistor (High)	150kΩ	
R2	FB resistor (Low)	100kΩ	
R3	Frequency set-up resistor	100kΩ	
R4	Phase compensation resistor	220kΩ	
R5	Phase compensation resistor	4.7kΩ	
L1	Power Inductor	2.7μH	TDK LTF5022-2R2N3R2-LC

12. PCB Layout Example

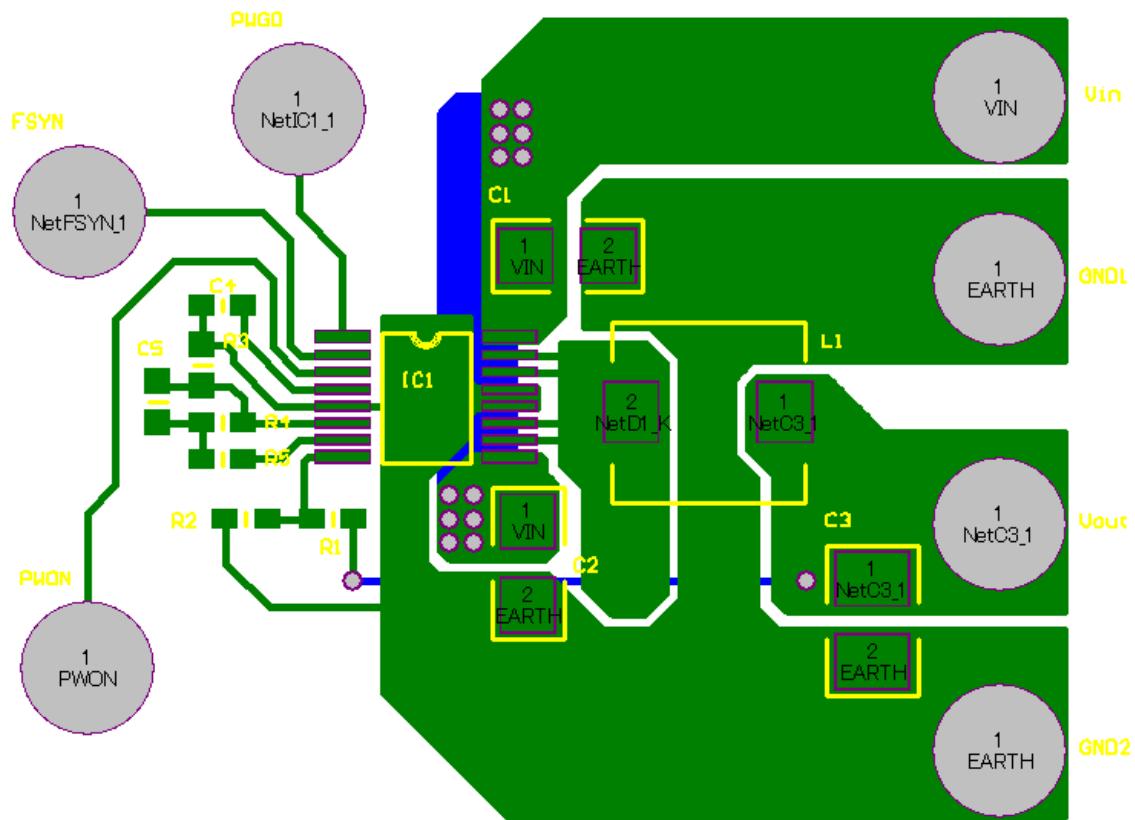
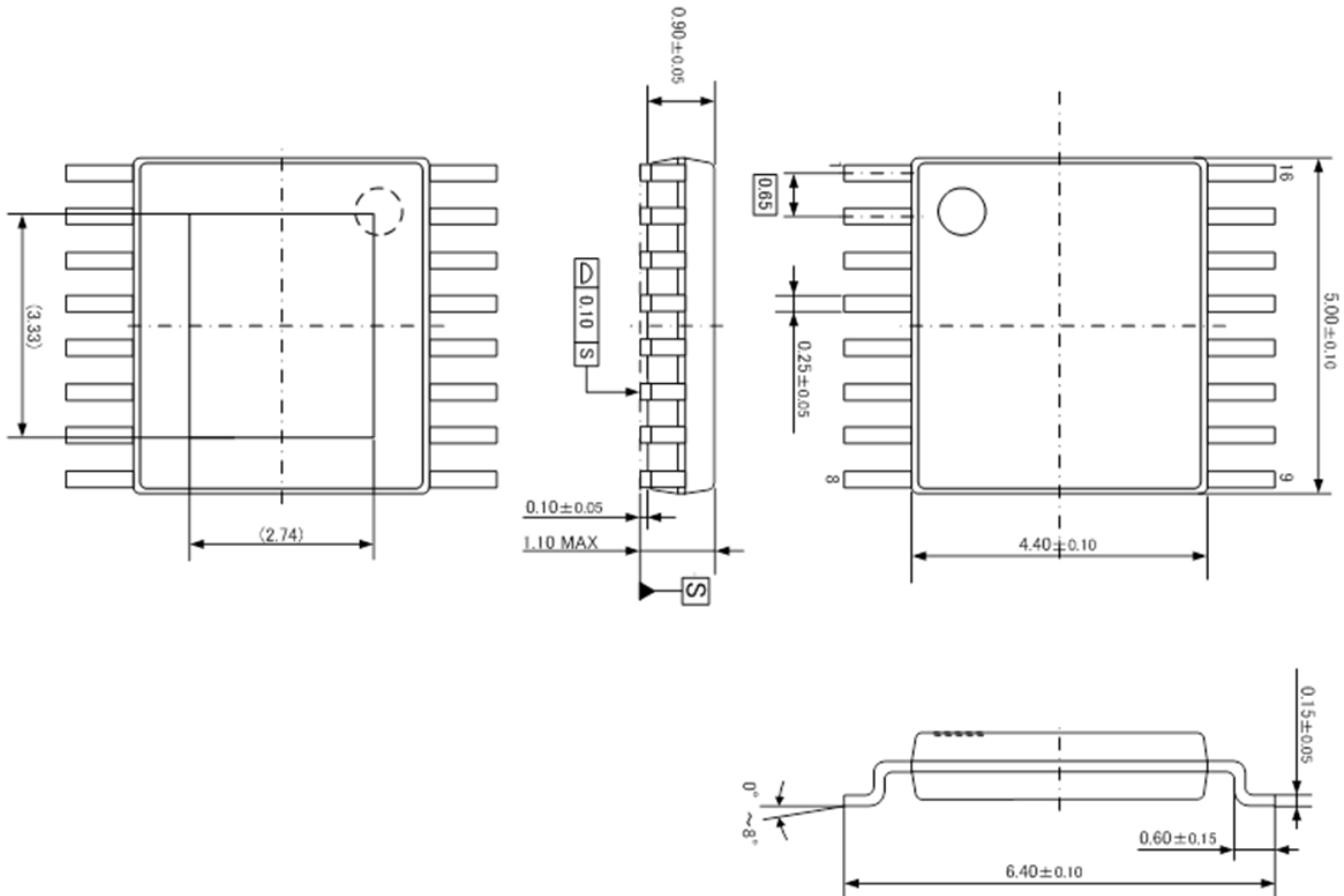
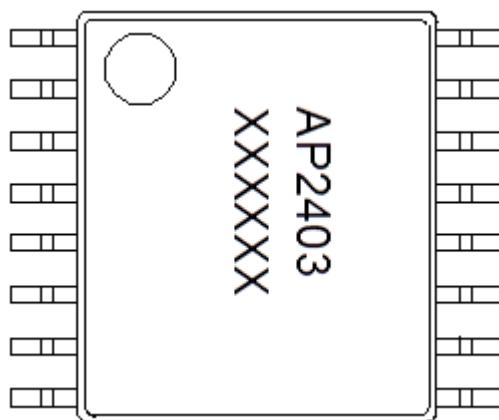




Figure 8. Recommended Layout Pattern

13. Package**■ Outline Dimensions**

HTSSOP 16-pin (Unit: mm)

■ Marking

- 1) Pin #1 indication
- 2) Date Code : XXXXXX (6 digits: Date Code)
- 3) Marketing Code : AP2403

14. Revision History

Date (Y/M/D)	Revision	Page	Contents
13/04/23	00		First edition
13/07/02	01	4, 9, 12, 13	<ul style="list-style-type: none">• The correction of the description of I/O in Pin Configuration and Functions• The correction of the type error in TIMING CHART AT OVER CURRENT PROTECTION (the shifting of the equations of T3 and T4)• Deletion of the diode of D1 in Figure 7• Deletion of the symbol of D1 in Figure 8
14/01/24	02	14	<ul style="list-style-type: none">• Addition of “Power Dissipation”

IMPORTANT NOTICE

0. Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document (“Product”), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products.
1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. **AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.**
2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing.
3. Though AKM works continually to improve the Product’s quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption.
4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.
6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM.
7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM.