

AS1500/AS1501/AS1502/AS1503 Digital Potentiometer

Data Sheet

1 General Description

The AS1500 is a digital potentiometer with 256 programmable steps. The values of the resistor can be controlled via 3 wire serial interface capable to handle programming rates up to 10MHz.

The AS1500 is available in four different resistor values. The AS1500 incorporates a $10k\Omega,$ the AS1501 a $20k\Omega,$ the AS1502 a $50k\Omega$ and the AS1503 a $100k\Omega$ fixed resistor. The wiper contact taps the fixed resistor at points determined by the 8-bit digital code word. The resistance between the wiper and the endpoint of the resistor is linear. The switching action is performed in a way that no glitches occur.

The AS150x is available in an 8-pin SOIC package. All parts are guaranteed to operate over the extended industrial temperature range of -40° to +125°.

2 Key Features

- 256 Taps
- Available in four Resistance values
 - AS1500 resistance $10k\Omega$
 - AS1501 resistance 20kΩ
 - AS1502 resistance $50k\Omega$
 - AS1503 resistance $100k\Omega$
- Standby current Less than 1 μA
- 3-Wire Serial Data Interface
- 10 MHz Update Data Loading Rate
- 2.7 V to 5.5 V Single-Supply Operation
- Temperature Range –40° to +125°
- 8-pin SOIC Package

3 Applications

The AS1500 is ideal for volume controls in TV sets and audio systems, and applications that require line impedance matching, programmable filters or power supply adjustment. The AS1500 can also be designed in as a replacement for mechanical potentiometers.

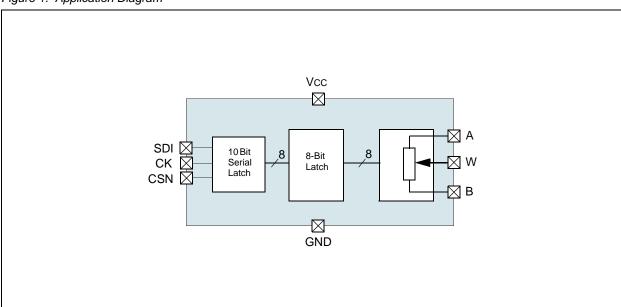
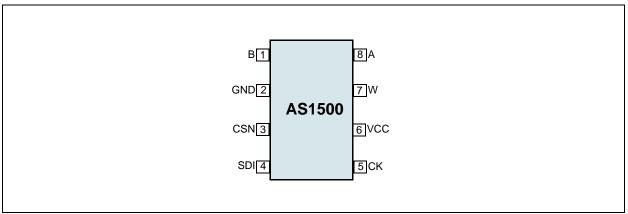



Figure 1. Application Diagram

4 Pin Assignments

Figure 2. Pin Assignments (Top View)

Pin Descriptions

Table 1. Pin Description

Pin Name	Pin Number	Description
В	1	Terminal B RDAC
GND	2	Ground
CSN	3	Chip Select Input, Active Low. When CSN returns high, data in the serial input register is loaded into the DAC register.
SDI	4	Serial Data Input
CK	5	Serial Clock Input, Positive Edge Triggered.
VCC	6	Positive power supply, specified for operation at both 3V and 5V.
W	7	Wiper RDAC
А	8	Terminal A RDAC

5 Absolute Maximum Ratings

(TA = 25° C, unless otherwise noted)

Table 2. Absolute Maximum Ratings

Parameter	Min	Max	Units	Notes
Vcc to GND	-0.3	+7	V	
VA, VB, VW to GND	0	Vcc	V	
AX – BX, AX – WX, BX – WX	±.	20	mA	
Digital Input and Output Voltage to GND	0	+7	V	
Operating Temperature Range	-40	+125	°C	
Maximum Junction Temperature (TJ max)		+150	°C	
Storage Temperature	-65	+150	°C	
Package body temperature		+260	°C	The reflow peak soldering temperature (body temperature) specified is in accordance with IPC/JEDEC J-STD-020C "Moisture/Reflow Sensitivity Classification for Non-Hermetic Solid State Surface Mount Devices". The lead finish for Pb-free leaded packages is matte tin (100% Sn).
Package Power Dissipation				(TJ max - TA) / θJA
ESD		1	kV	HBM MIL-Std883E 3015.7methods.

6 Electrical Characteristics

AS1500 / AS1501 - SPECIFICATIONS

 $Vcc = 3V\pm10\% \text{ or } 5V\pm10\%, \ V_A = Vcc, \ V_B = 0V, \ -40^{o}C \le T_A \le +125^{o}C \text{ unless otherwise noted}.$

Table 3. Electrical Characteristics - 10k and 20k Versions

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$k\Omega$ $k\Omega$ $ppm/^{\circ}C$ Ω LSB LSB
$\begin{array}{c} \text{RAB} & \text{Nominal Resistance}^2 & \text{Version: } 50 \text{k}\Omega \\ \hline T_A = 25^{\circ}\text{C}, \ \text{Vcc} = 5\text{V}, \ \text{AS1501}, \\ \text{Version: } 100 \text{k}\Omega \\ \hline \end{array} & 16 & 20 & 24 \\ \hline \\ \Delta R_{AB}/\Delta T & \text{Resistance Tempco}^3 & \text{VAB} = \text{Vcc}, \ \text{Wiper} = \text{No Connect} \\ \hline R_W & \text{Wiper Resistance} & \text{Vcc} = 5\text{V} \\ \hline R_{\text{CDNL}} & \text{Resistor Differential NL}^4 & \text{RWB}, \ \text{Vcc} = 5\text{V}, \ \text{VA} = \text{No Connect} \\ \hline R_{\text{CNDL}} & \text{Resistor Integral NL} & \text{RWB}, \ \text{Vcc} = 5\text{V}, \ \text{VA} = \text{No Connect} \\ \hline \end{array} & 20 & 24 \\ \hline \\ \Delta R_{\text{CND}} & 200 & 200 \\ \hline \\ \Delta R_{\text{CND}$	kΩ ppm/°C Ω LSB LSB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ppm/°C Ω LSB LSB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ω LSB LSB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LSB LSB
R-INL Resistor Integral NL R _{WB} , Vcc = 5V, V _A = No Connect -2 ±1/2 +2 DC Characteristics Potentiometer Divider	LSB
R-INL Resistor Integral NL R _{WB} , Vcc = 5V, V _A = No Connect -2 ±1/2 +2 DC Characteristics Potentiometer Divider	
	Bits
	Bits
N Resolution 8	
VCC = 5.5 V T _A = 25 °C	LSB
INL Integral Nonlinearity $VCC = 2.7V T_A = 25^{\circ}C$ -2 $\pm 1/2$ $+2$	LSB
DNL Differential Nonlinearity VCC = 5.5V T _A = 25°C -1 ±1/4 +1	LSB
DNL Differential Nonlinearity $VCC = 2.7V T_A = 25^{\circ}C$ -1 $\pm 1/4$ +1	LSB
$\Delta V_W / \Delta T$ Voltage Divider Tempco Code = 80_H 15	ppm/°C
V _{WFSE} Full-Scale Error Code = FF _H , Vcc = 5.5V -4 -2.8 0	LSB
V_{WFSE} Zero-Scale Error Code = 00_H , $V_{CC} = 5.5V$ 0 1.3 2	LSB
Resistor Terminals	-
VA, B, W Voltage Range ⁵ 0 Vcc	V
CA, B Capacitance Ax, Bx f =1MHz, Measured to GND, Code = 80H	pF
C_W Capacitance Wx $f = 1MHz$, Measured to GND, $Code = 80_H$ 120	pF
Digital Inputs and Outputs	. 1
VIH Input Logic High Vcc = 5V 2.4	V
VIL Input Logic Low Vcc = 5V 0.8	V
VIH Input Logic High Vcc = 3V 2.1	V
VIL Input Logic Low Vcc = 3V 0.6	V
IIH, IIL Input Current VIN = 5V or 0V, VCC = 5V ±1	μA
C _{IL} Input Capacitance 5	pF
Power Supplies	-
Vcc Power Supply Range 2.7 5.5	V
IDD Supply Current (CMOS) VIH = VCC or VIL = 0V, VCC = 5.5V 0.1 1	μA
IDD Supply Current $(TTL)^7$ VIH = 2.4V or 0.8V, Vcc = 5.5V 0.9 4	mA

Table 3. Electrical Characteristics – 10k and 20k Versions

Symbol	Parameter	Cond	itions	Min	Typ ¹	Max	Units
P _{DISS}	Power Dissipation (CMOS) ⁸	VIH = VCC or VIL =			27.5	μW	
PSSR	Power Supply	VCC = 5V+0.5V _P	AS1500, Version: 10kΩ		-54	-25	dB
1 JOIN	Suppression Ratio	sine wave @ 1kHz	AS1501, Version: $20k\Omega$		-52	-25	dB
Dynamic Characteristics ⁹							
BW_10k	Bandwidth –3dB	$R_{WB} = 10k\Omega$, Vcc	$R_{WB} = 10k\Omega$, $VCC = 5V$		1000		kHz
BW_20k	Bandwidth –3dB	$R_{WB} = 20k\Omega$, Vcc	= 5V		500		kHz
THD _W	Total Harmonic Distortion	$V_A = 1V_{RMS} + 2V_I$ f = 1kHz		0.003		%	
t _S _10k	V/M Cottling Time	$R_{WB} = 5k\Omega$, $V_A = \pm 1\%$ Error Band		2		μs	
t _S _20k	VW Settling Time	$R_{WB} = 10k\Omega$, $V_A = \pm 1\%$ Error Band	VCC, V _B = 0V,		4		μs
e _{NWB} _10k	Posistor Noiso Voltago	$R_{WB} = 5k\Omega$, $f = 1k$	$R_{WB} = 5k\Omega$, $f = 1kHz$		9		nV/ √ Hz
e _{NWB} _20k	Resistor Noise Voltage	$R_{WB} = 10k\Omega$, $f = 1$	kHz		13		nV/ √ Hz

- 1. Typicals represent average readings at 25°C and Vcc = 5V.
- 2. Wiper is not connected. $I_{AB} = 350\mu A$ for the $10k\Omega$ version and $175\mu A$ for the $20k\Omega$ version.
- 3. All Tempcos are guaranteed by design and not subject to production test.
- 4. Terminal A is not connected. I_W = 350 μ A for the 10 $k\Omega$ version and 175 μ A for the 20 $k\Omega$ version.
- 5. Resistor terminals A, B, W have no limitations on polarity with respect to each other.
- 6. All capacitances are guaranteed by design and not subject to production test. Resistor-terminal capacitance tests are measured with 2.5V bias on the measured terminal. The remaining resistor terminals are left open circuit
- 7. Worst-case supply current consumed when input logic level at 2.4V, standard characteristic of CMOS logic.
- 8. P_{DISS} is calculated from (IDD×Vcc). CMOS logic level inputs result in minimum power dissipation.
- 9. All dynamic characteristics are guaranteed by design and not subject to production test. All dynamic characteristics use Vcc=5V.

AS1502 / AS1503 - SPECIFICATIONS

 $VCC = 3V\pm10\%$ or $5V\pm10\%$, $V_A = VCC$, $V_B = 0V$, $-40^{\circ}C \le T_A \le +125^{\circ}C$ unless otherwise noted.

Table 4. Electrical Characteristics – 50k and 100k Versions

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Units
DC Characteristics Rheostat Mode						
Pan		$T_A = 25^{\circ}C$, Vcc = 5V, AS1502, Version: $50k\Omega$	40	50	60	kΩ
R _{AB}	Nominal Resistance ²	$T_A = 25$ °C, Vcc = 5V, AS1503, Version: 100k Ω	80	100	120	kΩ
ΔR _{AB} /ΔT	Resistance Tempco ³	V _{AB} = V _{CC} , Wiper = No Connect		500		ppm/ºC
Rw	Wiper Resistance	Vcc = 5V	20	100	200	Ω
R-DNL	Resistor Differential NL ⁴	R _{WB} , Vcc = 5V, V _A = No Connect	-1	±1/4	+1	LSB
R-INL	Resistor Integral NL	R _{WB} , Vcc = 5V, V _A = No Connect	-2	±1/2	+2	LSB

Table 4. Electrical Characteristics – 50k and 100k Versions

Symbol	Parameter	Conc	ditions	Min	Typ ¹	Max	Units
DC Charac	teristics Potentiometer Di	vider					
N	Resolution			8		Bits	
INII	Lata and Marilia and to	Vcc = 5.5V T _A = 2	25°C	-4	±1	+4	LSB
INL	Integral Nonlinearity	VCC = 2.7V T _A = 2	25°C	-4	±1	+4	LSB
DNII	D''' (1 1 1 1 1 1 1	$Vcc = 5.5V T_A = 2$	25°C	-1	±1/4	+1	LSB
DNL	Differential Nonlinearity	Vcc = 2.7V T _A = 2	25°C	-1	±1/4	+1	LSB
$\Delta V_W / \Delta T$	Voltage Divider Tempco	Code = 80 _H			15		ppm/ºC
V _{WFSE}	Full-Scale Error	Code = FF _H , Vcc:	= 5.5V	-1	-0.25	0	LSB
V _{WFSE}	Zero-Scale Error	Code = 00 _H , Vcc	= 5.5V	0	0.1	1	LSB
Resistor Te	erminals	1		1			
V _{A, B, W}	Voltage Range ⁵			0		Vcc	V
C _{A, B}	Capacitance ⁶ Ax, Bx	f =1MHz, Measure Code = 80 _H	ed to GND,		15		pF
C _W	Capacitance Wx	f =1MHz, Measure Code = 80 _H		80		pF	
Digital Inpu	its and Outputs						
VIH	Input Logic High	Vcc = 5V		2.4			V
VIL	Input Logic Low	Vcc = 5V				0.8	V
VIH	Input Logic High	Vcc = 3V		2.1			V
VIL	Input Logic Low	Vcc = 3V				0.6	V
lih, lil	Input Current	VIN = 5V or 0V, V	cc = 5V			±1	μΑ
C _{IL}	Input Capacitance				5		pF
Power Sup	plies	1					
Vcc	Power Supply Range			2.7		5.5	V
IDD	Supply Current (CMOS)	VIH = VCC or VIL =	= 0V, Vcc = 5.5V		0.1	1	μΑ
IDD	Supply Current (TTL) ⁷	VIH = 2.4V or 0.8\	/, Vcc = 5.5V		0.9	4	mA
P _{DISS}	Power Dissipation (CMOS) ⁸	VIH = VCC or VIL =	= 0V, VCC = 5.5V			27.5	μW
DOOD	Power Supply	Vcc = 5V+0.5V _P	AS1502, Version: $50k\Omega$		-43		dB
PSSR	Suppression Ratio	sine wave @ 1kHz	AS1503, Version: $100k\Omega$		-52		dB
Dynamic C	haracteristics ⁹			•	•		•
BW_50k	Bandwidth –3dB	$R_{WB} = 50k\Omega$, VCC		220		kHz	
BW_100k	Bandwidth –3dB	R _{WB} = 100kΩ, Vc	c = 5V		110		kHz
THDW	Total Harmonic Distortion	$V_A = 1V_{RMS} + 2V_I$ f = 1kHz	$_{DC}$, $V_{B} = 2V_{DC}$,		0.003		%

Table 4. Electrical Characteristics – 50k and 100k Versions

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Units
t _S _50k	VW Settling Time	$R_{WB} = 50k\Omega$, $V_A = VCC$, $V_B = 0V$, ±1% Error Band		9		μs
t _S _100k	VVV Settling Time	$R_{WB} = 100k\Omega$, $V_A = Vcc$, $V_B = 0V$, ±1% Error Band		18		μs
e _{NWB} _50k	Resistor Noise Voltage	$R_{WB} = 50k\Omega$, $f = 1kHz$		20		nV/ √ Hz
e _{NWB} _100k	The sistor Horse Voltage	$R_{WB} = 100k\Omega$, $f = 1kHz$		29		nV/ √ Hz

- 1. Typicals represent average readings at 25°C and Vcc = 5V.
- 2. Wiper is not connected. $I_{AB} = 70\mu A$ for the $50k\Omega$ version and $35\mu A$ for the $100k\Omega$ version.
- 3. All Tempcos are guaranteed by design and not subject to production test.
- 4. Terminal A is not connected. $I_W=70\mu A$ for the $50k\Omega$ version and $35\mu A$ for the $100k\Omega$ version.
- 5. Resistor terminals A, B, W have no limitations on polarity with respect to each other.
- All capacitances are guaranteed by design and not subject to production test. Resistor-terminal capacitance tests are measured with 2.5V bias on the measured terminal. The remaining resistor terminals are left open circuit.
- 7. Worst-case supply current consumed when input logic level at 2.4V, standard characteristic of CMOS logic.
- 8. PDISS is calculated from (IDDxVcc). CMOS logic level inputs result in minimum power dissipation.
- All dynamic characteristics are guaranteed by design and not subject to production test. All dynamic characteristics use Vcc=5V.

AS150x - SPECIFICATIONS

 $Vcc = 3V\pm10\%$ or $5V\pm10\%$, $V_A = Vcc$, $V_B = 0V$, $-40^{\circ}C \le T_A \le +125^{\circ}C$ unless otherwise noted.

Table 5. Switching Characteristics

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Unit
Switching	Characteristics ^{2 3}					
t _{CH} , t _{CL}	Input Clock Pulsewidth	Clock Level High or Low	50			ns
t _{DS}	Data Setup Time		5			ns
t _{DH}	Data Hold Time		5			ns
t _{CSS}	CSN Setup Time		10			ns
tcswh	CSN High Pulsewidth		10			ns
t _{CSWL}	CSN Low Pulsewidth				100	ms
tcsh	CK Fall to CSN Rise Hold Time		0			ns
t _{CS1}	CSN Rise to Clock Rise Setup		10			ns

- 1. Typicals represent average readings at 25°C and Vcc=5V.
- 2. Guaranteed by design and not subject to production test. Resistor-terminal capacitance tests are measured with 2.5V bias on the measured terminal. The remaining resistor terminals are left open circuit.
- 3. See timing diagram for location of measured values. All input control voltages are specified with tR = tF = 1ns (10% to 90% of Vcc) and timed from a voltage level of 1.6V. Switching characteristics are measured using Vcc=3V or 5V. To avoid false clocking, a minimum input logic slew rate of 1V/µs should be maintained.

7 Detailed Description

Serial-Programming

Programming of the AS150x is done via the 3 wire serial interface. The three input signals are serial data input (SDI), clock(CK) and chip select (CSN). A programming sequence consists of 10-bit, where the last eight bit contain the code word for the resistor value. The first two bits A1 and A0 have to be low to program the resistor value (see Table 6). Otherwise the resistor value is not affected. The data is shifted into the internal 10 Bit register with the rising edge of the CK signal. With the rising edge of the CSN signal the data become valid and the resistance is updated (see Figure 3). A detailed block diagram is shown in Figure 4.

Table 6. Serial data format (10 bits)

A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
0	0	MSB				Data			LSB

Figure 3. Timing Diagram

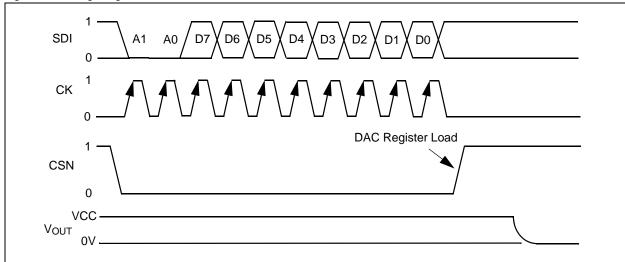
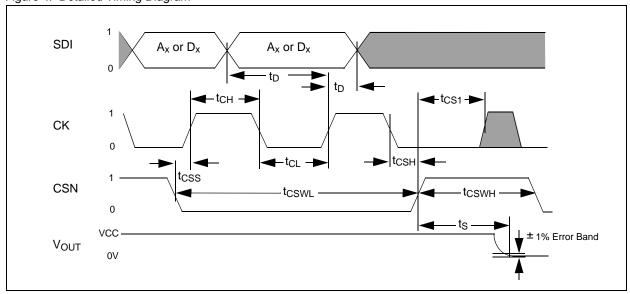



Figure 4. Detailed Timing Diagram

Rheostat Operation

The digital potentiometer family AS150x offers nominal resistor values of $10k\Omega$, $20k\Omega$, $50k\Omega$ and $100k\Omega$. The resistor has 256 contact points where the wiper can access the resistor. The 8-bit code word determines the position of the wiper and is decoded through an internal logic. The lowest code 00h is related to the terminal B. The resistance is then only determined by the wiper resistance (100Ω). The resistance for the next code 01h is the nominal resistor RAB ($10k\Omega$, $20k\Omega$, $50k\Omega$ or $100k\Omega$) divided through 256 plus the wiper resistor. In case of AS1501 ($10k\Omega$) the total resistance is $39\Omega+100\Omega=139\Omega$. Accordingly the resistor for code 02h is $78\Omega+100\Omega=178\Omega$. The last code 255h does not connect to terminal A directly (see Figure 5). So the maximum value is $10000\Omega-39\Omega+100\Omega=10061\Omega$. The general formula for the calculation of the resistance R_{WB} is:

$$R_{WB} (Dx) = (Dx)/256 \bullet R_{AB} + R_W \tag{EQ 1}$$

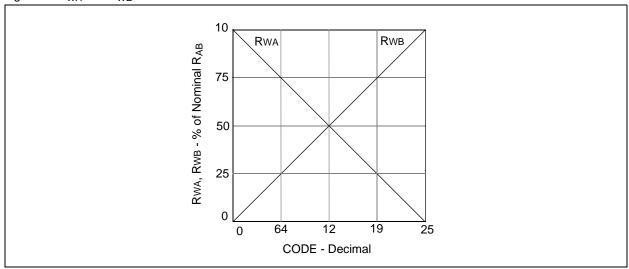

where R_{AB} is the nominal resistance between terminal A and B, R_W is the wiper resistance and D_X is the 8-Bit Code word. In Table 7 the resistor values between the wiper and terminal B for AS1500 are given for specific codes D_X . In the zero-scale condition the wiper resistance of 100Ω remains present.

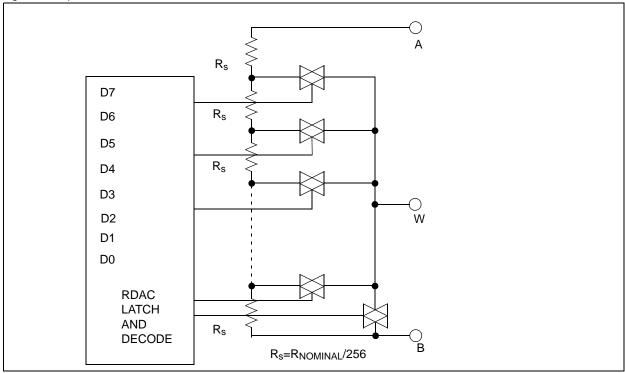
Table 7. RDAC-Codes WB

D _X (Dec)	R _{WB} (Ω)	Output State
255	10061	Full Scale
128	5100	Midscale
1	139	1 LSB
0	100	Zero-Scale (Wiper Contact Resistance)

The maximum current through the wiper and terminal B is 5mA. If the current exceeds this limit the internal switches can degrade or even be damaged. As a mechanical potentiometer the resistances R_{WA} and R_{WB} are totally symmetrical. The relation between them is shown in Figure 5.

Figure 5. R_{WA} and R_{WB} versa code

The resistance R_{WA} is the complimentary resistor to R_{WB} and can be controlled digitally as well. R_{WA} starts at the maximum value of the nominal resistance and is reduced with increasing 8-Bit code words. The formula to calculate R_{WA} is given below:


$$R_{WA} (Dx) = (256 - Dx)/256 \cdot R_{AB} + R_{W}$$
 (EQ 2)

where R_{AB} is the nominal resistance between terminal A and B, R_{W} is the wiper resistance and Dx is the 8-Bit Code word. In Table 8 the resistor values between the wiper and terminal B for AS1500 are given for specific codes Dx.

Table 8. RDAC-Codes WA

D _X (Dec)	R _{WA} (Ω)	Output State
255	89	Full Scale
128	5050	Midscale
1	10011	1 LSB
0	10050	Zero-Scale

Figure 6. Equivalent RDAC Circuit

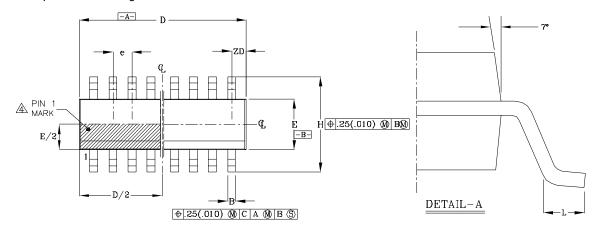
Voltage Output Operation

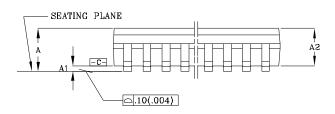
The AS150x family can easily used in an voltage output mode, where the output voltage is proportional to an applied voltage to a given terminal. When 5V are applied to terminal A and B is set to ground the output voltage at the wiper starts at zero volts up to 1LSB less then 5V. One LSB of voltage corresponds to the voltage applied at terminal AB divided through 256 steps of possible wiper settings. The formula is given by

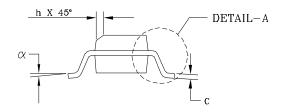
$$V_W (Dx) = (Dx)/256 \bullet V_{AB} + V_B \tag{EQ 3}$$

where V_{AB} is the voltage applied between terminal A and B, VW is the voltage at the wiper, Dx is the 8-Bit Code word and V_{B} is the voltage at terminal B. The temperature drift is significant better than in Rheostat mode, since the temperature coefficient is determined by the internal resistor ratio. Therefore the temperature drift is only 15ppm/°C.

Applications


The digital potentiometer can replace in many applications the analog trimming potentiometer. The digital potentiometer is not sensitive to vibrations and shocks. It has an extremely small form-factor and can be adjusted very fast (e.g. AS1500 has an update rate of 600kHz). Furthermore the temperature drift, resolution and noise are significant better and cannot be achieved with a mechanical trimming potentiometer. Due to the programmability the resistor settings can be stored in the system memory, so that after a power down the exact settings can be recalled easily.


All analog signals must remain within 0 to Vcc range. For standard potentiometer applications the wiper output can be used directly. In the case of a low impedance load, a buffer shall be used.



8 Package Drawings and Markings

Figure 7. 8-pin SOIC Package

Notes:

- 1. Lead coplanarity should be 0 to 0.10mm (.004") max.
- 2. Package surface finishing:
 - (2.1) Top: matte (charmilles #18-30).
 - (2.2) All sides: matte (charmilles #18-30).
 - (2.3) Bottom: smooth or matte (charmilles #18-30).
- 3. All dimensions exclusive of mold flash, and end flash from the package body shall not exceed 0.24mm (0.10") per side (D).
- 4. Details of pin #1 identifier are optional but must be located within the zone indicated.

Symbol	Min	Max	
A1	0.10	0.25	
В	0.36	0.46	
С	0.19	0.25	
D	4.80	4.98	
E	3.81	3.99	
е	1.27	BSC	
Н	5.80	6.20	
h	0.25	0.50	
L	.041	1.27	
Α	1.52	1.72	
	0°	8°	
ZD	0.53REF		
A2	1.37	1.57	

9 Ordering Information

Table 9.

Model	Resistor	Delivery Form	Package	Description
AS1500	10kΩ	Tubes	8-pin SOIC	8-bit Digital Potentiometer
AS1501	20kΩ	Tubes	8-pin SOIC	8-bit Digital Potentiometer
AS1502	50kΩ	Tubes	8-pin SOIC	8-bit Digital Potentiometer
AS1503	100kΩ	Tubes	8-pin SOIC	8-bit Digital Potentiometer
AS1500-T	10kΩ	T&R	8-pin SOIC	8-bit Digital Potentiometer
AS1501-T	20kΩ	T&R	8-pin SOIC	8-bit Digital Potentiometer
AS1502-T	50kΩ	T&R	8-pin SOIC	8-bit Digital Potentiometer
AS1503-T	100kΩ	T&R	8-pin SOIC	8-bit Digital Potentiometer

Copyrights

Copyright © 1997-2008, austriamicrosystems AG, Schloss Premstaetten, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

All products and companies mentioned are trademarks or registered trademarks of their respective companies.

Disclaimer

Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. austriamicrosystems AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems AG for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by austriamicrosystems AG for each application. For shipments of less than 100 parts the manufacturing flow might show deviations from the standard production flow, such as test flow or test location.

The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However, austriamicrosystems AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of austriamicrosystems AG rendering of technical or other services.

Contact Information

Headquarters

austriamicrosystems AG A-8141 Schloss Premstaetten, Austria

Tel: +43 (0) 3136 500 0 Fax: +43 (0) 3136 525 01

For Sales Offices, Distributors and Representatives, please visit:

http://www.austriamicrosystems.com/contact-us