
8-bit Atmel
Microcontroller
with 4/8/16K
Bytes In-System
Programmable
Flash

ATmega48/V
ATmega88/V
ATmega168/V

Rev. 2545U–AVR–11/2015
Features
• High performance, low power Atmel® AVR® 8-bit microcontroller

• Advanced RISC architecture
– 131 powerful instructions – most single clock cycle execution
– 32 × 8 general purpose working registers
– Fully static operation
– Up to 20 MIPS throughput at 20MHz
– On-chip 2-cycle multiplier

• High endurance non-volatile memory segments
– 4/8/16 Kbytes of in-system self-programmable flash program memory
– 256/512/512 bytes EEPROM
– 512/1K/1Kbytes internal SRAM
– Write/erase cyles: 10,000 flash/100,000 EEPROM
– Data retention: 20 years at 85°C/100 years at 25°C(1)

– Optional boot code section with independent lock bits
In-system programming by on-chip boot program
True read-while-write operation

– Programming lock for software security
• QTouch® library support

– Capacitive touch buttons, sliders and wheels
– QTouch and QMatrix acquisition
– Up to 64 sense channels

• Peripheral features
– Two 8-bit timer/counters with separate prescaler and compare mode
– One 16-bit timer/counter with separate prescaler, compare mode, and capture mode
– Real time counter with separate oscillator
– Six PWM channels
– 8-channel 10-bit ADC in TQFP and QFN/MLF package
– 6-channel 10-bit ADC in PDIP Package
– Programmable serial USART
– Master/slave SPI serial interface
– Byte-oriented 2-wire serial interface (Philips I2C compatible)
– Programmable watchdog timer with separate on-chip oscillator
– On-chip analog comparator
– Interrupt and wake-up on pin change

• Special microcontroller features
– DebugWIRE on-chip debug system
– Power-on reset and programmable brown-out detection
– Internal calibrated oscillator
– External and internal interrupt sources
– Five sleep modes: Idle, ADC noise reduction, power-save, power-down, and standby

• I/O and packages
– 23 programmable I/O lines
– 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF

• Operating voltage:
– 1.8V - 5.5V for Atmel ATmega48V/88V/168V
– 2.7V - 5.5V for Atmel ATmega48/88/168

• Temperature range:
– -40°C to 85°C

• Speed grade:
– ATmega48V/88V/168V: 0 - 4MHz @ 1.8V - 5.5V, 0 - 10MHz @ 2.7V - 5.5V
– ATmega48/88/168: 0 - 10MHz @ 2.7V - 5.5V, 0 - 20MHz @ 4.5V - 5.5V

• Low power consumption
– Active mode:

250µA at 1MHz, 1.8V
15µA at 32kHz, 1.8V (including oscillator)

– Power-down mode:
0.1µA at 1.8V

Note: 1. See “Data retention” on page 8 for details.

ATmega48/88/168
1. Pin configurations

Figure 1-1. Pinout Atmel ATmega48/88/168.

1
2
3
4
5
6
7
8

24
23
22
21
20
19
18
17

(PCINT19/OC2B/INT1) PD3
(PCINT20/XCK/T0) PD4

GND
VCC
GND
VCC

(PCINT6/XTAL1/TOSC1) PB6
(PCINT7/XTAL2/TOSC2) PB7

PC1 (ADC1/PCINT9)
PC0 (ADC0/PCINT8)
ADC7
GND
AREF
ADC6
AVCC
PB5 (SCK/PCINT5)

32 31 30 29 28 27 26 25

9 10 11 12 13 14 15 16

(P
C

IN
T

21
/O

C
0B

/T
1)

 P
D

5
(P

C
IN

T
22

/O
C

0A
/A

IN
0)

 P
D

6
(P

C
IN

T
23

/A
IN

1)
 P

D
7

(P
C

IN
T

0/
C

LK
O

/IC
P

1)
 P

B
0

(P
C

IN
T

1/
O

C
1A

)
P

B
1

(P
C

IN
T

2/
S

S
/O

C
1B

)
P

B
2

(P
C

IN
T

3/
O

C
2A

/M
O

S
I)

 P
B

3
(P

C
IN

T
4/

M
IS

O
)

P
B

4

P
D

2
(I

N
T

0/
P

C
IN

T
18

)
P

D
1

(T
X

D
/P

C
IN

T
17

)
P

D
0

(R
X

D
/P

C
IN

T
16

)
P

C
6

(R
E

S
E

T
/P

C
IN

T
14

)
P

C
5

(A
D

C
5/

S
C

L/
P

C
IN

T
13

)
P

C
4

(A
D

C
4/

S
D

A
/P

C
IN

T
12

)
P

C
3

(A
D

C
3/

P
C

IN
T

11
)

P
C

2
(A

D
C

2/
P

C
IN

T
10

)

TQFP Top View

1
2
3
4
5
6
7
8
9
10
11
12
13
14

28
27
26
25
24
23
22
21
20
19
18
17
16
15

(PCINT14/RESET) PC6
(PCINT16/RXD) PD0
(PCINT17/TXD) PD1
(PCINT18/INT0) PD2

(PCINT19/OC2B/INT1) PD3
(PCINT20/XCK/T0) PD4

VCC
GND

(PCINT6/XTAL1/TOSC1) PB6
(PCINT7/XTAL2/TOSC2) PB7

(PCINT21/OC0B/T1) PD5
(PCINT22/OC0A/AIN0) PD6

(PCINT23/AIN1) PD7
(PCINT0/CLKO/ICP1) PB0

PC5 (ADC5/SCL/PCINT13)
PC4 (ADC4/SDA/PCINT12)
PC3 (ADC3/PCINT11)
PC2 (ADC2/PCINT10)
PC1 (ADC1/PCINT9)
PC0 (ADC0/PCINT8)
GND
AREF
AVCC
PB5 (SCK/PCINT5)
PB4 (MISO/PCINT4)
PB3 (MOSI/OC2A/PCINT3)
PB2 (SS/OC1B/PCINT2)
PB1 (OC1A/PCINT1)

PDIP

1
2
3
4
5
6
7
8

24
23
22
21
20
19
18
17

32 31 30 29 28 27 26 25

9 10 11 12 13 14 15 16

32 MLF Top View

(PCINT19/OC2B/INT1) PD3
(PCINT20/XCK/T0) PD4

GND
VCC
GND
VCC

(PCINT6/XTAL1/TOSC1) PB6
(PCINT7/XTAL2/TOSC2) PB7

PC1 (ADC1/PCINT9)
PC0 (ADC0/PCINT8)
ADC7
GND
AREF
ADC6
AVCC
PB5 (SCK/PCINT5)

(P
C

IN
T

21
/O

C
0B

/T
1)

 P
D

5
(P

C
IN

T
22

/O
C

0A
/A

IN
0)

 P
D

6
(P

C
IN

T
23

/A
IN

1)
 P

D
7

(P
C

IN
T

0/
C

LK
O

/IC
P

1)
 P

B
0

(P
C

IN
T

1/
O

C
1A

)
P

B
1

(P
C

IN
T

2/
S

S
/O

C
1B

)
P

B
2

(P
C

IN
T

3/
O

C
2A

/M
O

S
I)

 P
B

3
(P

C
IN

T
4/

M
IS

O
)

P
B

4

P
D

2
(I

N
T

0/
P

C
IN

T
18

)
P

D
1

(T
X

D
/P

C
IN

T
17

)
P

D
0

(R
X

D
/P

C
IN

T
16

)
P

C
6

(R
E

S
E

T
/P

C
IN

T
14

)
P

C
5

(A
D

C
5/

S
C

L/
P

C
IN

T
13

)
P

C
4

(A
D

C
4/

S
D

A
/P

C
IN

T
12

)
P

C
3

(A
D

C
3/

P
C

IN
T

11
)

P
C

2
(A

D
C

2/
P

C
IN

T
10

)

NOTE: Bottom pad should be soldered to ground.

1
2
3
4
5
6
7

21
20
19
18
17
16
15

28 27 26 25 24 23 22

8 9 10 11 12 13 14

28 MLF Top View

(PCINT19/OC2B/INT1) PD3
(PCINT20/XCK/T0) PD4

VCC
GND

(PCINT6/XTAL1/TOSC1) PB6
(PCINT7/XTAL2/TOSC2) PB7

(PCINT21/OC0B/T1) PD5

(P
C

IN
T

22
/O

C
0A

/A
IN

0)
 P

D
6

(P
C

IN
T

23
/A

IN
1)

 P
D

7
(P

C
IN

T
0/

C
LK

O
/IC

P
1)

 P
B

0
(P

C
IN

T
1/

O
C

1A
)

P
B

1
(P

C
IN

T
2/

S
S

/O
C

1B
)

P
B

2
(P

C
IN

T
3/

O
C

2A
/M

O
S

I)
 P

B
3

(P
C

IN
T

4/
M

IS
O

)
P

B
4

P
D

2
(I

N
T

0/
P

C
IN

T
18

)
P

D
1

(T
X

D
/P

C
IN

T
17

)
P

D
0

(R
X

D
/P

C
IN

T
16

)
P

C
6

(R
E

S
E

T
/P

C
IN

T
14

)
P

C
5

(A
D

C
5/

S
C

L/
P

C
IN

T
13

)
P

C
4

(A
D

C
4/

S
D

A
/P

C
IN

T
12

)
P

C
3

(A
D

C
3/

P
C

IN
T

11
)

PC2 (ADC2/PCINT10)
PC1 (ADC1/PCINT9)
PC0 (ADC0/PCINT8)
GND
AREF
AVCC
PB5 (SCK/PCINT5)

NOTE: Bottom pad should be soldered to ground.
2
2545U–AVR–11/2015

ATmega48/88/168
1.1 Pin descriptions

1.1.1 VCC

Digital supply voltage.

1.1.2 GND

Ground.

1.1.3 Port B (PB7:0) XTAL1/XTAL2/TOSC1/TOSC2

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Depending on the clock selection fuse settings, PB6 can be used as input to the inverting
Oscillator amplifier and input to the internal clock operating circuit.

Depending on the clock selection fuse settings, PB7 can be used as output from the inverting
Oscillator amplifier.

If the Internal Calibrated RC Oscillator is used as chip clock source, PB7..6 is used as TOSC2..1
input for the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set.

The various special features of Port B are elaborated in “Alternate functions of port B” on page
83 and “System clock and clock options” on page 27.

1.1.4 Port C (PC5:0)

Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
PC5..0 output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

1.1.5 PC6/RESET

If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical
characteristics of PC6 differ from those of the other pins of Port C.

If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin
for longer than the minimum pulse length will generate a Reset, even if the clock is not running.
The minimum pulse length is given in Table 29-3 on page 314. Shorter pulses are not
guaranteed to generate a Reset.

The various special features of Port C are elaborated in “Alternate functions of port C” on page
86.

1.1.6 Port D (PD7:0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
3
2545U–AVR–11/2015

ATmega48/88/168
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

The various special features of Port D are elaborated in “Alternate functions of port D” on page
89.

1.1.7 AVCC

AVCC is the supply voltage pin for the A/D Converter, PC3:0, and ADC7:6. It should be externally
connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC
through a low-pass filter. Note that PC6..4 use digital supply voltage, VCC.

1.1.8 AREF

AREF is the analog reference pin for the A/D Converter.

1.1.9 ADC7:6 (TQFP and QFN/MLF package only)

In the TQFP and QFN/MLF package, ADC7:6 serve as analog inputs to the A/D converter.
These pins are powered from the analog supply and serve as 10-bit ADC channels.
4
2545U–AVR–11/2015

ATmega48/88/168
2. Overview

The Atmel ATmega48/88/168 is a low-power CMOS 8-bit microcontroller based on the AVR
enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the
ATmega48/88/168 achieves throughputs approaching 1 MIPS per MHz allowing the system
designer to optimize power consumption versus processing speed.

2.1 Block diagram

Figure 2-1. Block diagram.

The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting

PORT C (7)PORT B (8)PORT D (8)

USART 0

8bit T/C 2

16bit T/C 18bit T/C 0 A/D conv.

Internal
bandgap

Analog
comp.

SPI TWI

SRAMFlash

EEPROM

Watchdog
oscillator

Watchdog
timer

Oscillator
circuits /

clock
generation

Power
supervision
POR / BOD &

RESET

V
C

C

G
N

D

PROGRAM
LOGIC

debugWIRE

2

GND

AREF

AVCC

D
AT

A
B

U
S

ADC[6..7]PC[0..6]PB[0..7]PD[0..7]

6

RESET

XTAL[1..2]

CPU
5
2545U–AVR–11/2015

ATmega48/88/168
architecture is more code efficient while achieving throughputs up to ten times faster than
conventional CISC microcontrollers.

The Atmel ATmega48/88/168 provides the following features: 4K/8K/16K bytes of In-System
Programmable Flash with Read-While-Write capabilities, 256/512/512 bytes EEPROM,
512/1K/1K bytes SRAM, 23 general purpose I/O lines, 32 general purpose working registers,
three flexible Timer/Counters with compare modes, internal and external interrupts, a serial
programmable USART, a byte-oriented 2-wire Serial Interface, an SPI serial port, a 6-channel
10-bit ADC (8 channels in TQFP and QFN/MLF packages), a programmable Watchdog Timer
with internal Oscillator, and five software selectable power saving modes. The Idle mode stops
the CPU while allowing the SRAM, Timer/Counters, USART, 2-wire Serial Interface, SPI port,
and interrupt system to continue functioning. The Power-down mode saves the register contents
but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware
reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to
maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode
stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching
noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running
while the rest of the device is sleeping. This allows very fast start-up combined with low power
consumption.

Atmel offers the QTouch Library for embedding capacitive touch buttons, sliders and wheels
functionality into AVR microcontrollers. The patented charge-transfer signal acquisition offers
robust sensing and includes fully debounced reporting of touch keys and includes Adjacent Key
Suppression® (AKS®) technology for unambigiuous detection of key events. The easy-to-use
QTouch Suite toolchain allows you to explore, develop and debug your own touch applications.

The device is manufactured using the Atmel high density non-volatile memory technology. The
On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI
serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot
program running on the AVR core. The Boot program can use any interface to download the
application program in the Application Flash memory. Software in the Boot Flash section will
continue to run while the Application Flash section is updated, providing true Read-While-Write
operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a
monolithic chip, the Atmel ATmega48/88/168 is a powerful microcontroller that provides a highly
flexible and cost effective solution to many embedded control applications.

The ATmega48/88/168 AVR is supported with a full suite of program and system development
tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit
Emulators, and Evaluation kits.

2.2 Comparison between Atmel ATmega48, Atmel ATmega88, and Atmel ATmega168

The ATmega48, ATmega88 and ATmega168 differ only in memory sizes, boot loader support,
and interrupt vector sizes. Table 2-1 summarizes the different memory and interrupt vector sizes
for the three devices.

Table 2-1. Memory size summary.

Device Flash EEPROM RAM Interrupt vector size

ATmega48 4Kbytes 256Bytes 512Bytes 1 instruction word/vector

ATmega88 8Kbytes 512Bytes 1Kbytes 1 instruction word/vector

ATmega168 16Kbytes 512Bytes 1Kbytes 2 instruction words/vector
6
2545U–AVR–11/2015

ATmega48/88/168
ATmega88 and ATmega168 support a real Read-While-Write Self-Programming mechanism.
There is a separate Boot Loader Section, and the SPM instruction can only execute from there.
In ATmega48, there is no Read-While-Write support and no separate Boot Loader Section. The
SPM instruction can execute from the entire Flash.
7
2545U–AVR–11/2015

ATmega48/88/168
3. Resources

A comprehensive set of development tools, application notes and datasheets are available for
download on http://www.atmel.com/avr.

4. Data retention

Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C or 100 years at 25°C.

5. About code examples

This documentation contains simple code examples that briefly show how to use various parts of
the device. These code examples assume that the part specific header file is included before
compilation. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler
documentation for more details.

For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

6. Capacitive touch sensing

The Atmel QTouch Library provides a simple to use solution to realize touch sensitive interfaces
on most Atmel AVR microcontrollers. The QTouch Library includes support for the QTouch and
QMatrix acquisition methods.

Touch sensing can be added to any application by linking the appropriate Atmel QTouch Library
for the AVR Microcontroller. This is done by using a simple set of APIs to define the touch
channels and sensors, and then calling the touch sensing API’s to retrieve the channel
information and determine the touch sensor states.

The QTouch Library is FREE and downloadable from the Atmel website at the following location:
www.atmel.com/qtouchlibrary. For implementation details and other information, refer to the
Atmel QTouch Library User Guide - also available for download from the Atmel website.
8
2545U–AVR–11/2015

www.atmel.com/qtouchlibrary
http://www.atmel.com/dyn/resources/prod_documents/doc8207.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc8207.pdf

ATmega48/88/168
7. AVR CPU core

7.1 Overview

This section discusses the AVR core architecture in general. The main function of the CPU core
is to ensure correct program execution. The CPU must therefore be able to access memories,
perform calculations, control peripherals, and handle interrupts.

7.2 Architectural overview

Figure 7-1. Block diagram of the AVR architecture.

In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with
separate memories and buses for program and data. Instructions in the program memory are
executed with a single level pipelining. While one instruction is being executed, the next
instruction is pre-fetched from the program memory. This concept enables instructions to be

Flash
program
memory

Instruction
register

Instruction
decoder

Program
counter

Control lines

32 x 8
general
purpose

registrers

ALU

Status
and control

I/O lines

EEPROM

Data bus 8-bit

Data
SRAM

D
ire

ct
 a

dd
re

ss
in

g

In
di

re
ct

 a
dd

re
ss

in
g

Interrupt
unit

SPI
unit

Watchdog
timer

Analog
comparator

I/O module 2

I/O module 1

I/O module n
9
2545U–AVR–11/2015

ATmega48/88/168
executed in every clock cycle. The program memory is In-System Reprogrammable Flash
memory.

The fast-access Register File contains 32 × 8-bit general purpose working registers with a single
clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a
typical ALU operation, two operands are output from the Register File, the operation is executed,
and the result is stored back in the Register File – in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data
Space addressing – enabling efficient address calculations. One of the these address pointers
can also be used as an address pointer for look up tables in Flash program memory. These
added function registers are the 16-bit X-register, Y-register, and Z-register, described later in
this section.

The ALU supports arithmetic and logic operations between registers or between a constant and
a register. Single register operations can also be executed in the ALU. After an arithmetic
operation, the Status Register is updated to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to
directly address the whole address space. Most AVR instructions have a single 16-bit word
format. Every program memory address contains a 16-bit or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and the
Application Program section. Both sections have dedicated Lock bits for write and read/write
protection. The SPM instruction that writes into the Application Flash memory section must
reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the
Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack
size is only limited by the total SRAM size and the usage of the SRAM. All user programs must
initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack
Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed
through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional Global
Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the
Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector
position. The lower the Interrupt Vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control
Registers, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as the
Data Space locations following those of the Register File, 0x20 - 0x5F. In addition, the
ATmega48/88/168 has Extended I/O space from 0x60 - 0xFF in SRAM where only the
ST/STS/STD and LD/LDS/LDD instructions can be used.

7.3 ALU – Arithmetic Logic Unit

The high-performance AVR ALU operates in direct connection with all the 32 general purpose
working registers. Within a single clock cycle, arithmetic operations between general purpose
registers or between a register and an immediate are executed. The ALU operations are divided
into three main categories – arithmetic, logical, and bit-functions. Some implementations of the
architecture also provide a powerful multiplier supporting both signed/unsigned multiplication
and fractional format. See “Instruction set summary” on page 354 for a detailed description.
10
2545U–AVR–11/2015

ATmega48/88/168
7.4 Status register

The Status Register contains information about the result of the most recently executed
arithmetic instruction. This information can be used for altering program flow in order to perform
conditional operations. Note that the Status Register is updated after all ALU operations, as
specified in the Instruction Set Reference. This will in many cases remove the need for using the
dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored
when returning from an interrupt. This must be handled by software.

7.4.1 SREG – AVR Status Register

The AVR Status Register – SREG – is defined as:

• Bit 7 – I: Global interrupt enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual
interrupt enable control is then performed in separate control registers. If the Global Interrupt
Enable Register is cleared, none of the interrupts are enabled independent of the individual
interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is
set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared
by the application with the SEI and CLI instructions, as described in the instruction set reference.

• Bit 6 – T: Bit copy storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or
destination for the operated bit. A bit from a register in the Register File can be copied into T by
the BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the
BLD instruction.

• Bit 5 – H: Half carry flag

The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful
in BCD arithmetic. See the “Instruction Set Description” for detailed information.

• Bit 4 – S: Sign bit, S = N V

The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement
Overflow Flag V. See the “Instruction Set Description” for detailed information.

• Bit 3 – V: Two’s complement overflow flag

The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the
“Instruction Set Description” for detailed information.

• Bit 2 – N: Negative flag

The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

• Bit 1 – Z: Zero flag

Bit 7 6 5 4 3 2 1 0

0x3F (0x5F) I T H S V N Z C SREG

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0
11
2545U–AVR–11/2015

http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf

ATmega48/88/168
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction
Set Description” for detailed information.

• Bit 0 – C: Carry flag

The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.

7.5 General purpose register file

The register file is optimized for the AVR enhanced RISC instruction set. In order to achieve the
required performance and flexibility, the following input/output schemes are supported by the
register file:

l One 8-bit output operand and one 8-bit result input

l Two 8-bit output operands and one 8-bit result input

l Two 8-bit output operands and one 16-bit result input

l One 16-bit output operand and one 16-bit result input

Figure 7-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 7-2. AVR CPU general purpose working registers.

Most of the instructions operating on the register file have direct access to all registers, and most
of them are single cycle instructions.

As shown in Figure 7-2, each register is also assigned a data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically
implemented as SRAM locations, this memory organization provides great flexibility in access of
the registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file.

7 0 Addr.

R0 0x00

R1 0x01

R2 0x02

…

R13 0x0D

General R14 0x0E

purpose R15 0x0F

working R16 0x10

registers R17 0x11

…

R26 0x1A X-register low byte

R27 0x1B X-register high byte

R28 0x1C Y-register low byte

R29 0x1D Y-register high byte

R30 0x1E Z-register low byte

R31 0x1F Z-register high byte
12
2545U–AVR–11/2015

http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf

ATmega48/88/168
7.5.1 The X-register, Y-register, and Z-register

The registers R26..R31 have some added functions to their general purpose usage. These
registers are 16-bit address pointers for indirect addressing of the data space. The three indirect
address registers X, Y, and Z are defined as described in Figure 7-3.

Figure 7-3. The X-, Y-, and Z-registers.

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the instruction set reference for details).

7.6 Stack pointer

The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. The Stack Pointer Register always points
to the top of the Stack. Note that the Stack is implemented as growing from higher memory
locations to lower memory locations. This implies that a Stack PUSH command decreases the
Stack Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt
Stacks are located. This Stack space in the data SRAM must be defined by the program before
any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to
point above 0x0100, preferably RAMEND. The Stack Pointer is decremented by one when data
is pushed onto the Stack with the PUSH instruction, and it is decremented by two when the
return address is pushed onto the Stack with subroutine call or interrupt. The Stack Pointer is
incremented by one when data is popped from the Stack with the POP instruction, and it is
incremented by two when data is popped from the Stack with return from subroutine RET or
return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of
bits actually used is implementation dependent. Note that the data space in some
implementations of the AVR architecture is so small that only SPL is needed. In this case, the
SPH Register will not be present.

15 XH XL 0

X-register 7 0 7 0

R27 (0x1B) R26 (0x1A)

15 YH YL 0

Y-register 7 0 7 0

R29 (0x1D) R28 (0x1C)

15 ZH ZL 0

Z-register 7 0 7 0

R31 (0x1F) R30 (0x1E)
13
2545U–AVR–11/2015

http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf

ATmega48/88/168
7.6.1 SPH and SPL – Stack pointer high and stack pointer low register

7.7 Instruction execution timing

This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the
chip. No internal clock division is used.

Figure 7-4 shows the parallel instruction fetches and instruction executions enabled by the
Harvard architecture and the fast-access Register File concept. This is the basic pipelining
concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per
cost, functions per clocks, and functions per power-unit.

Figure 7-4. The parallel instruction fetches and instruction executions.

Figure 7-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU
operation using two register operands is executed, and the result is stored back to the
destination register.

Figure 7-5. Single cycle ALU operation.

Bit 15 14 13 12 11 10 9 8

0x3E (0x5E) SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH

0x3D (0x5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial value RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND

RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND

clk

1st instruction fetch

1st instruction execute
2nd instruction fetch

2nd instruction execute
3rd instruction fetch

3rd instruction execute
4th instruction fetch

T1 T2 T3 T4

CPU

Total execution time

Register operands fetch

ALU operation execute

Result write back

T1 T2 T3 T4

clkCPU
14
2545U–AVR–11/2015

ATmega48/88/168
7.8 Reset and interrupt handling

The AVR provides several different interrupt sources. These interrupts and the separate Reset
Vector each have a separate program vector in the program memory space. All interrupts are
assigned individual enable bits which must be written logic one together with the Global Interrupt
Enable bit in the Status Register in order to enable the interrupt. Depending on the Program
Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12
are programmed. This feature improves software security. See the section “Memory
programming” on page 292 for details.

The lowest addresses in the program memory space are by default defined as the Reset and
Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 56. The list also
determines the priority levels of the different interrupts. The lower the address the higher is the
priority level. RESET has the highest priority, and next is INT0 – the External Interrupt Request
0. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the IVSEL
bit in the MCU Control Register (MCUCR). Refer to “Interrupts” on page 56 for more information.
The Reset Vector can also be moved to the start of the Boot Flash section by programming the
BOOTRST Fuse, see “Boot loader support – Read-while-write self-programming, Atmel
ATmega88 and Atmel ATmega168” on page 275.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are
disabled. The user software can write logic one to the I-bit to enable nested interrupts. All
enabled interrupts can then interrupt the current interrupt routine. The I-bit is automatically set
when a Return from Interrupt instruction – RETI – is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the
Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt
Vector in order to execute the interrupt handling routine, and hardware clears the corresponding
Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s)
to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is
cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is
cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt
Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the
Global Interrupt Enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These
interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the
interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one
more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor
restored when returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled.
No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the
CLI instruction. The following example shows how this can be used to avoid interrupts during the
timed EEPROM write sequence.
15
2545U–AVR–11/2015

ATmega48/88/168
When using the SEI instruction to enable interrupts, the instruction following SEI will be
executed before any pending interrupts, as shown in this example.

7.8.1 Interrupt response time

The interrupt execution response for all the enabled AVR interrupts is four clock cycles
minimum. After four clock cycles the program vector address for the actual interrupt handling
routine is executed. During this four clock cycle period, the Program Counter is pushed onto the
Stack. The vector is normally a jump to the interrupt routine, and this jump takes three clock
cycles. If an interrupt occurs during execution of a multi-cycle instruction, this instruction is
completed before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode,
the interrupt execution response time is increased by four clock cycles. This increase comes in
addition to the start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock
cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack Pointer is
incremented by two, and the I-bit in SREG is set.

Assembly code example

in r16, SREG ; store SREG
value
cli ; disable interrupts during timed
sequence
sbi EECR, EEMPE ; start
EEPROM write
sbi EECR, EEPE
out SREG, r16 ; restore
SREG value (I-bit)

C code example

char cSREG;
cSREG = SREG; /* store
SREG value */
/* disable interrupts during timed sequence */
_CLI();
EECR |= (1<<EEMPE); /* start EEPROM write */
EECR |= (1<<EEPE);
SREG = cSREG; /* restore SREG value (I-bit) */

Assembly code example

sei ; set Global Interrupt Enable
sleep ; enter sleep, waiting for interrupt
; note: will enter sleep before any pending interrupt(s)

C code example

__enable_interrupt(); /* set Global Interrupt Enable */
__sleep(); /* enter sleep, waiting for interrupt */
/* note: will enter sleep before any pending interrupt(s) */
16
2545U–AVR–11/2015

ATmega48/88/168
8. AVR memories

8.1 Overview

This section describes the different memories in the Atmel ATmega48/88/168. The AVR
architecture has two main memory spaces, the Data Memory and the Program Memory space.
In addition, the ATmega48/88/168 features an EEPROM Memory for data storage. All three
memory spaces are linear and regular.

8.2 In-system reprogrammable flash program memory

The ATmega48/88/168 contains 4K/8K/16K bytes On-chip In-System Reprogrammable Flash
memory for program storage. Since all AVR instructions are 16 or 32 bits wide, the Flash is
organized as 2K/4K/8K × 16. For software security, the Flash Program memory space is divided
into two sections, Boot Loader Section and Application Program Section in ATmega88 and
ATmega168. ATmega48 does not have separate Boot Loader and Application Program
sections, and the SPM instruction can be executed from the entire Flash. See SELFPRGEN
description in section “SPMCSR – Store program memory control and status register” on page
273 and page 290for more details.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The
ATmega48/88/168 Program Counter (PC) is 11/12/13 bits wide, thus addressing the 2K/4K/8K
program memory locations. The operation of Boot Program section and associated Boot Lock
bits for software protection are described in detail in “Self-programming the flash, Atmel
ATmega48” on page 268 and “Boot loader support – Read-while-write self-programming, Atmel
ATmega88 and Atmel ATmega168” on page 275. “Memory programming” on page 292 contains
a detailed description on Flash Programming in SPI- or Parallel Programming mode.

Constant tables can be allocated within the entire program memory address space (see the LPM
– Load Program Memory instruction description).

Timing diagrams for instruction fetch and execution are presented in “Instruction execution
timing” on page 14.
17
2545U–AVR–11/2015

ATmega48/88/168
Figure 8-1. Program memory map, Atmel ATmega48.

Figure 8-2. Program memory map, Atmel ATmega88 and Atmel ATmega168.

0x0000

0x7FF

Program memory

Application flash section

0x0000

0x0FFF/0x1FFF

Program memory

Application flash section

Boot flash section
18
2545U–AVR–11/2015

ATmega48/88/168
8.3 SRAM data memory

Figure 8-3 shows how the Atmel ATmega48/88/168 SRAM Memory is organized.

The ATmega48/88/168 is a complex microcontroller with more peripheral units than can be
supported within the 64 locations reserved in the Opcode for the IN and OUT instructions. For
the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.

The lower 768/1280/1280 data memory locations address both the Register File, the I/O
memory, Extended I/O memory, and the internal data SRAM. The first 32 locations address the
Register File, the next 64 location the standard I/O memory, then 160 locations of Extended I/O
memory, and the next 512/1024/1024 locations address the internal data SRAM.

The five different addressing modes for the data memory cover: Direct, Indirect with
Displacement, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the
Register File, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address given
by the Y-register or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-
increment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 I/O Registers, 160 Extended I/O Registers, and
the 512/1024/1024 bytes of internal data SRAM in the ATmega48/88/168 are all accessible
through all these addressing modes. The Register File is described in “General purpose register
file” on page 12.

Figure 8-3. Data memory map.

8.3.1 Data memory access times

This section describes the general access timing concepts for internal memory access. The
internal data SRAM access is performed in two clkCPU cycles as described in Figure 8-4 on page
20.

32 registers
64 I/O registers

Internal SRAM
(512/1024/1024 x 8)

0x0000 - 0x001F
0x0020 - 0x005F

0x02FF/0x04FF/0x04FF

0x0060 - 0x00FF

Data memory

160 Ext. I/O registers
0x0100
19
2545U–AVR–11/2015

ATmega48/88/168
Figure 8-4. On-chip data SRAM access cycles.

8.4 EEPROM data memory

The Atmel ATmega48/88/168 contains 256/512/512 bytes of data EEPROM memory. It is
organized as a separate data space, in which single bytes can be read and written. The
EEPROM has an endurance of at least 100,000 write/erase cycles. The access between the
EEPROM and the CPU is described in the following, specifying the EEPROM Address
Registers, the EEPROM Data Register, and the EEPROM Control Register.

“Memory programming” on page 292 contains a detailed description on EEPROM Programming
in SPI or Parallel Programming mode.

8.4.1 EEPROM read/write access

The EEPROM Access Registers are accessible in the I/O space.

The write access time for the EEPROM is given in Table 8-2 on page 24. A self-timing function,
however, lets the user software detect when the next byte can be written. If the user code
contains instructions that write the EEPROM, some precautions must be taken. In heavily
filtered power supplies, VCC is likely to rise or fall slowly on power-up/down. This causes the
device for some period of time to run at a voltage lower than specified as minimum for the clock
frequency used. See “Preventing EEPROM corruption” on page 20 for details on how to avoid
problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.
Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed.

8.4.2 Preventing EEPROM corruption

During periods of low VCC, the EEPROM data can be corrupted because the supply voltage is
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.

clk

WR

RD

Data

Data

Address Address valid

T1 T2 T3

Compute address

R
ea

d
W

rit
e

CPU

Memory access instruction Next instruction
20
2545U–AVR–11/2015

ATmega48/88/168
An EEPROM data corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly.
Secondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can
be done by enabling the internal Brown-out Detector (BOD). If the detection level of the internal
BOD does not match the needed detection level, an external low VCC reset Protection circuit can
be used. If a reset occurs while a write operation is in progress, the write operation will be
completed provided that the power supply voltage is sufficient.

8.5 I/O memory

The I/O space definition of the Atmel ATmega48/88/168 is shown in “Register summary” on
page 350.

All ATmega48/88/168 I/Os and peripherals are placed in the I/O space. All I/O locations may be
accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data between the 32
general purpose working registers and the I/O space. I/O Registers within the address range
0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the
value of single bits can be checked by using the SBIS and SBIC instructions. Refer to
“Instruction set summary” on page 354 for more details. When using the I/O specific commands
IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O Registers as
data space using LD and ST instructions, 0x20 must be added to these addresses. The
ATmega48/88/168 is a complex microcontroller with more peripheral units than can be
supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the
Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most
other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore
be used on registers containing such Status Flags. The CBI and SBI instructions work with
registers 0x00 to 0x1F only.

The I/O and peripherals control registers are explained in later sections.

8.5.1 General purpose I/O registers

The ATmega48/88/168 contains three General Purpose I/O Registers. These registers can be
used for storing any information, and they are particularly useful for storing global variables and
Status Flags. General Purpose I/O Registers within the address range 0x00 - 0x1F are directly
bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.
21
2545U–AVR–11/2015

ATmega48/88/168
8.6 Register description

8.6.1 EEARH and EEARL – The EEPROM address register

• Bits 15..9 – Res: Reserved bits

These bits are reserved bits in the Atmel ATmega48/88/168 and will always read as zero.

• Bits 8..0 – EEAR8..0: EEPROM address

The EEPROM Address Registers – EEARH and EEARL specify the EEPROM address in the
256/512/512 bytes EEPROM space. The EEPROM data bytes are addressed linearly between 0
and 255/511/511. The initial value of EEAR is undefined. A proper value must be written before
the EEPROM may be accessed.

EEAR8 is an unused bit in ATmega48 and must always be written to zero.

8.6.2 EEDR – The EEPROM data register

• Bits 7..0 – EEDR7.0: EEPROM data

For the EEPROM write operation, the EEDR Register contains the data to be written to the
EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the
EEDR contains the data read out from the EEPROM at the address given by EEAR.

8.6.3 EECR – The EEPROM control register

• Bits 7..6 – Res: Reserved bits

These bits are reserved bits in the ATmega48/88/168 and will always read as zero.

• Bits 5, 4 – EEPM1 and EEPM0: EEPROM programming mode bits

The EEPROM Programming mode bit setting defines which programming action that will be
triggered when writing EEPE. It is possible to program data in one atomic operation (erase the
old value and program the new value) or to split the Erase and Write operations in two different
operations. The Programming times for the different modes are shown in Table 8-1 on page 23.

Bit 15 14 13 12 11 10 9 8

0x22 (0x42) – – – – – – – EEAR8 EEARH

0x21 (0x41) EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

7 6 5 4 3 2 1 0

Read/write R R R R R R R R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 X

X X X X X X X X

Bit 7 6 5 4 3 2 1 0

0x20 (0x40) MSB LSB EEDR

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1F (0x3F) – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE EECR

Read/write R R R/W R/W R/W R/W R/W R/W

Initial value 0 0 X X 0 0 X 0
22
2545U–AVR–11/2015

ATmega48/88/168
While EEPE is set, any write to EEPMn will be ignored. During reset, the EEPMn bits will be
reset to 0b00 unless the EEPROM is busy programming.

• Bit 3 – EERIE: EEPROM ready interrupt enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the I-bit in SREG is set. Writing
EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a constant
interrupt when EEPE is cleared. The interrupt will not be generated during EEPROM write or
SPM.

• Bit 2 – EEMPE: EEPROM master write enable

The EEMPE bit determines whether setting EEPE to one causes the EEPROM to be written.
When EEMPE is set, setting EEPE within four clock cycles will write data to the EEPROM at the
selected address If EEMPE is zero, setting EEPE will have no effect. When EEMPE has been
written to one by software, hardware clears the bit to zero after four clock cycles. See the
description of the EEPE bit for an EEPROM write procedure.

• Bit 1 – EEPE: EEPROM write enable

The EEPROM Write Enable Signal EEPE is the write strobe to the EEPROM. When address
and data are correctly set up, the EEPE bit must be written to one to write the value into the
EEPROM. The EEMPE bit must be written to one before a logical one is written to EEPE,
otherwise no EEPROM write takes place. The following procedure should be followed when
writing the EEPROM (the order of steps three and four is not essential):

1. Wait until EEPE becomes zero.

2. Wait until SELFPRGEN in SPMCSR becomes zero.

3. Write new EEPROM address to EEAR (optional).

4. Write new EEPROM data to EEDR (optional).

5. Write a logical one to the EEMPE bit while writing a zero to EEPE in EECR.

6. Within four clock cycles after setting EEMPE, write a logical one to EEPE.

The EEPROM can not be programmed during a CPU write to the flash memory. The software
must check that the Flash programming is completed before initiating a new EEPROM write.
Step two is only relevant if the software contains a Boot Loader allowing the CPU to program the
Flash. If the Flash is never being updated by the CPU, step two can be omitted. See “Boot
loader support – Read-while-write self-programming, Atmel ATmega88 and Atmel ATmega168”
on page 275 for details about Boot programming.

Caution: An interrupt between step five and step six will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is
interrupting another EEPROM access, the EEAR or EEDR Register will be modified, causing the

Table 8-1. EEPROM mode bits.

EEPM1 EEPM0
Programming

time Operation

0 0 3.4ms Erase and write in one operation (atomic operation)

0 1 1.8ms Erase only

1 0 1.8ms Write only

1 1 – Reserved for future use
23
2545U–AVR–11/2015

ATmega48/88/168
interrupted EEPROM access to fail. It is recommended to have the Global Interrupt Flag cleared
during all the steps to avoid these problems.

When the write access time has elapsed, the EEPE bit is cleared by hardware. The user
software can poll this bit and wait for a zero before writing the next byte. When EEPE has been
set, the CPU is halted for two cycles before the next instruction is executed.

• Bit 0 – EERE: EEPROM read enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the correct
address is set up in the EEAR Register, the EERE bit must be written to a logic one to trigger the
EEPROM read. The EEPROM read access takes one instruction, and the requested data is
available immediately. When the EEPROM is read, the CPU is halted for four cycles before the
next instruction is executed.

The user should poll the EEPE bit before starting the read operation. If a write operation is in
progress, it is neither possible to read the EEPROM, nor to change the EEAR Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 8-2 lists the typical
programming time for EEPROM access from the CPU.

The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (for example by disabling
interrupts globally) so that no interrupts will occur during execution of these functions. The
examples also assume that no Flash Boot Loader is present in the software. If such code is
present, the EEPROM write function must also wait for any ongoing SPM command to finish.

Table 8-2. EEPROM programming time.

Symbol Number of calibrated RC oscillator cycles Typical programming time

EEPROM write
(from CPU)

26,368 3.3ms
24
2545U–AVR–11/2015

ATmega48/88/168
The next code examples show assembly and C functions for reading the EEPROM. The
examples assume that interrupts are controlled so that no interrupts will occur during execution
of these functions.

Assembly code example

EEPROM_write:
; Wait for completion of previous write
sbic EECR,EEPE
rjmp EEPROM_write
; Set up address (r18:r17) in address register
out EEARH, r18
out EEARL, r17
; Write data (r16) to Data Register
out EEDR,r16
; Write logical one to EEMPE
sbi EECR,EEMPE
; Start eeprom write by setting EEPE
sbi EECR,EEPE
ret

C code example

void EEPROM_write(unsigned int uiAddress, unsigned char ucData)
{

/* Wait for completion of previous write */
while(EECR & (1<<EEPE))

;
/* Set up address and Data Registers */
EEAR = uiAddress;
EEDR = ucData;
/* Write logical one to EEMPE */
EECR |= (1<<EEMPE);
/* Start eeprom write by setting EEPE */
EECR |= (1<<EEPE);

}

25
2545U–AVR–11/2015

ATmega48/88/168
8.6.4 GPIOR2 – General purpose I/O register 2

8.6.5 GPIOR1 – General purpose I/O register 1

8.6.6 GPIOR0 – General purpose I/O register 0

Assembly code example

EEPROM_read:
; Wait for completion of previous write
sbic EECR,EEPE
rjmp EEPROM_read
; Set up address (r18:r17) in address register
out EEARH, r18
out EEARL, r17
; Start eeprom read by writing EERE
sbi EECR,EERE
; Read data from Data Register
in r16,EEDR
ret

C code example

unsigned char EEPROM_read(unsigned int uiAddress)
{

/* Wait for completion of previous write */
while(EECR & (1<<EEPE))

;
/* Set up address register */
EEAR = uiAddress;
/* Start eeprom read by writing EERE */
EECR |= (1<<EERE);
/* Return data from Data Register */
return EEDR;

}

Bit 7 6 5 4 3 2 1 0

0x2B (0x4B) MSB LSB GPIOR2

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x2A (0x4A) MSB LSB GPIOR1

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1E (0x3E) MSB LSB GPIOR0

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0
26
2545U–AVR–11/2015

ATmega48/88/168
9. System clock and clock options

9.1 Clock systems and their distribution

Figure 9-1 presents the principal clock systems in the AVR and their distribution. All of the clocks
need not be active at a given time. In order to reduce power consumption, the clocks to modules
not being used can be halted by using different sleep modes, as described in “Power
management and sleep modes” on page 39. The clock systems are detailed below.

Figure 9-1. Clock distribution.

9.1.1 CPU clock – clkCPU

The CPU clock is routed to parts of the system concerned with operation of the AVR core.
Examples of such modules are the General Purpose Register File, the Status Register and the
data memory holding the Stack Pointer. Halting the CPU clock inhibits the core from performing
general operations and calculations.

9.1.2 I/O clock – clkI/O

The I/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, and USART.
The I/O clock is also used by the External Interrupt module, but note that some external
interrupts are detected by asynchronous logic, allowing such interrupts to be detected even if the
I/O clock is halted. Also note that start condition detection in the USI module is carried out
asynchronously when clkI/O is halted, TWI address recognition in all sleep modes.

General I/O
modules

Asynchronous
timer/counter

CPU core RAM

clkI/O

clkASY

AVR clock
control unit

clkCPU

Flash and
EEPROM

clkFLASH

Source clock

Watchdog timer

Watchdog
oscillator

Reset logic

Clock
multiplexer

Watchdog clock

Calibrated RC
oscillator

Timer/counter
oscillator

Crystal
oscillator

Low-frequency
crystal oscillator

External clock

ADC

clkADC

System clock
prescaler
27
2545U–AVR–11/2015

ATmega48/88/168
9.1.3 Flash clock – clkFLASH

The Flash clock controls operation of the Flash interface. The Flash clock is usually active
simultaneously with the CPU clock.

9.1.4 Asynchronous timer clock – clkASY

The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked directly
from an external clock or an external 32kHz clock crystal. The dedicated clock domain allows
using this Timer/Counter as a real-time counter even when the device is in sleep mode.

9.1.5 ADC clock – clkADC

The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks
in order to reduce noise generated by digital circuitry. This gives more accurate ADC conversion
results.

9.2 Clock sources

The device has the following clock source options, selectable by Flash Fuse bits as shown
below. The clock from the selected source is input to the AVR clock generator, and routed to the
appropriate modules.

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

9.2.1 Default clock source

The device is shipped with internal RC oscillator at 8.0MHz and with the fuse CKDIV8
programmed, resulting in 1.0MHz system clock. The startup time is set to maximum and time-
out period enabled. (CKSEL = "0010", SUT = "10", CKDIV8 = "0"). The default setting ensures
that all users can make their desired clock source setting using any available programming
interface.

9.2.2 Clock startup sequence

Any clock source needs a sufficient VCC to start oscillating and a minimum number of oscillating
cycles before it can be considered stable.

To ensure sufficient VCC, the device issues an internal reset with a time-out delay (tTOUT) after
the device reset is released by all other reset sources. “System control and reset” on page 45
describes the start conditions for the internal reset. The delay (tTOUT) is timed from the Watchdog
Oscillator and the number of cycles in the delay is set by the SUTx and CKSELx fuse bits. The

Table 9-1. Device clocking options select(1).

Device clocking option CKSEL3..0

Low power crystal oscillator 1111 - 1000

Full swing crystal oscillator 0111 - 0110

Low frequency crystal oscillator 0101 - 0100

Internal 128kHz RC oscillator 0011

Calibrated internal RC oscillator 0010

External clock 0000

Reserved 0001
28
2545U–AVR–11/2015

ATmega48/88/168
selectable delays are shown in Table 9-2. The frequency of the Watchdog Oscillator is voltage
dependent as shown in “Typical characteristics” on page 322.

Main purpose of the delay is to keep the AVR in reset until it is supplied with minimum VCC. The
delay will not monitor the actual voltage and it will be required to select a delay longer than the
VCC rise time. If this is not possible, an internal or external Brown-Out Detection circuit should be
used. A BOD circuit will ensure sufficient VCC before it releases the reset, and the time-out delay
can be disabled. Disabling the time-out delay without utilizing a Brown-Out Detection circuit is
not recommended.

The oscillator is required to oscillate for a minimum number of cycles before the clock is
considered stable. An internal ripple counter monitors the oscillator output clock, and keeps the
internal reset active for a given number of clock cycles. The reset is then released and the
device will start to execute. The recommended oscillator start-up time is dependent on the clock
type, and varies from 6 cycles for an externally applied clock to 32K cycles for a low frequency
crystal.

The start-up sequence for the clock includes both the time-out delay and the start-up time when
the device starts up from reset. When starting up from Power-save or Power-down mode, VCC is
assumed to be at a sufficient level and only the start-up time is included.

9.3 Low power crystal oscillator

Pins XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be
configured for use as an On-chip Oscillator, as shown in Figure 9-2 on page 30. Either a quartz
crystal or a ceramic resonator may be used.

This Crystal Oscillator is a low power oscillator, with reduced voltage swing on the XTAL2
output. It gives the lowest power consumption, but is not capable of driving other clock inputs,
and may be more susceptible to noise in noisy environments. In these cases, refer to the “Full
swing crystal oscillator” on page 31.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the
capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the
electromagnetic noise of the environment. Some initial guidelines for choosing capacitors for
use with crystals are given in Table 9-3 on page 30. For ceramic resonators, the capacitor
values given by the manufacturer should be used.

Table 9-2. Number of watchdog oscillator cycles.

Typical time-out (VCC = 5.0V) Typical time-out (VCC = 3.0V) Number of cycles

0ms 0ms 0

4.1ms 4.3ms 4K (4,096)

65ms 69ms 8K (8,192)
29
2545U–AVR–11/2015

ATmega48/88/168
Figure 9-2. Crystal oscillator connections.

The Low Power Oscillator can operate in three different modes, each optimized for a specific
frequency range. The operating mode is selected by the fuses CKSEL3..1 as shown in Table 9-
3.

Notes: 1. This is the recommended CKSEL settings for the different frequency ranges.

2. This option should not be used with crystals, only with ceramic resonators.

3. If 8MHz frequency exceeds the specification of the device (depends on VCC), the CKDIV8
Fuse can be programmed in order to divide the internal frequency by eight. It must be
ensured that the resulting divided clock meets the frequency specification of the device.

The CKSEL0 Fuse together with the SUT1..0 Fuses select the start-up times as shown in Table
9-4.

Table 9-3. Low power crystal oscillator operating modes(3).

 Frequency range
(MHz)

Recommended range for
capacitors C1 and C2 (pF) CKSEL3..1(1)

0.4 - 0.9 – 100(2)

0.9 - 3.0 12 - 22 101

3.0 - 8.0 12 - 22 110

8.0 - 16.0 12 - 22 111

Table 9-4. Start-up times for the low power crystal oscillator clock selection.

Oscillator source/
power conditions

Start-up time from
power-down and

power-save

Additional delay
from reset

(VCC = 5.0V) CKSEL0 SUT1..0

Ceramic resonator,
fast rising power

258CK 14CK + 4.1ms(1) 0 00

Ceramic resonator,
slowly rising power

258CK 14CK + 65ms(1) 0 01

Ceramic resonator,
BOD enabled

1KCK 14CK(2) 0 10

Ceramic resonator,
fast rising power

1KCK 14CK + 4.1ms(2) 0 11

Ceramic resonator,
slowly rising power

1KCK 14CK + 65ms(2) 1 00

XTAL2

XTAL1

GND

C2

C1
30
2545U–AVR–11/2015

ATmega48/88/168
Notes: 1. These options should only be used when not operating close to the maximum frequency of
the device, and only if frequency stability at start-up is not important for the application. These
options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency
stability at start-up. They can also be used with crystals when not operating close to the
maximum frequency of the device, and if frequency stability at start-up is not important for the
application.

9.4 Full swing crystal oscillator

Pins XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be
configured for use as an On-chip Oscillator, as shown in Figure 9-2 on page 30. Either a quartz
crystal or a ceramic resonator may be used.

This Crystal Oscillator is a full swing oscillator, with rail-to-rail swing on the XTAL2 output. This is
useful for driving other clock inputs and in noisy environments. The current consumption is
higher than the “Low power crystal oscillator” on page 29. Note that the Full Swing Crystal
Oscillator will only operate for VCC = 2.7V - 5.5V.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the
capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the
electromagnetic noise of the environment. Some initial guidelines for choosing capacitors for
use with crystals are given in Table 9-6 on page 32. For ceramic resonators, the capacitor
values given by the manufacturer should be used.

The operating mode is selected by the fuses CKSEL3..1 as shown in Table 9-5.

Notes: 1. If 8MHz frequency exceeds the specification of the device (depends on VCC), the CKDIV8
Fuse can be programmed in order to divide the internal frequency by eight. It must be
ensured that the resulting divided clock meets the frequency specification of the device.

Crystal Oscillator,
BOD enabled

16KCK 14CK 1 01

Crystal Oscillator,
fast rising power

16KCK 14CK + 4.1ms 1 10

Crystal Oscillator,
slowly rising power

16KCK 14CK + 65ms 1 11

Table 9-4. Start-up times for the low power crystal oscillator clock selection. (Continued)

Oscillator source/
power conditions

Start-up time from
power-down and

power-save

Additional delay
from reset

(VCC = 5.0V) CKSEL0 SUT1..0

Table 9-5. Full swing crystal oscillator operating modes(1).

Frequency range (MHz)
Recommended range for
capacitors C1 and C2 (pF) CKSEL3..1

0.4 - 20 12 - 22 011
31
2545U–AVR–11/2015

ATmega48/88/168
Figure 9-3. Crystal oscillator connections.

Notes: 1. These options should only be used when not operating close to the maximum frequency of
the device, and only if frequency stability at start-up is not important for the application. These
options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency
stability at start-up. They can also be used with crystals when not operating close to the
maximum frequency of the device, and if frequency stability at start-up is not important for the
application.

Table 9-6. Start-up times for the full swing crystal oscillator clock selection.

Oscillator source/
power conditions

Start-up time from
power-down and

power-save

Additional delay
from reset

(VCC = 5.0V) CKSEL0 SUT1..0

Ceramic resonator,
fast rising power

258CK 14CK + 4.1ms(1) 0 00

Ceramic resonator,
slowly rising power

258CK 14CK + 65ms(1) 0 01

Ceramic resonator,
BOD enabled

1KCK 14CK(2) 0 10

Ceramic resonator,
fast rising power

1KCK 14CK + 4.1ms(2) 0 11

Ceramic resonator,
slowly rising power

1KCK 14CK + 65ms(2) 1 00

Crystal Oscillator,
BOD enabled

16KCK 14CK 1 01

Crystal Oscillator,
fast rising power

16KCK 14CK + 4.1ms 1 10

Crystal Oscillator,
slowly rising power

16KCK 14CK + 65ms 1 11

XTAL2

XTAL1

GND

C2

C1
32
2545U–AVR–11/2015

ATmega48/88/168
9.5 Low frequency crystal oscillator

The device can utilize a 32.768kHz watch crystal as clock source by a dedicated low frequency
crystal oscillator. The crystal should be connected as shown in Figure 9-2 on page 30. When this
oscillator is selected, start-up times are determined by the SUT fuses and CKSEL0 as shown in
Table 9-7.

Note: 1. These options should only be used if frequency stability at start-up is not important for the
application.

9.6 Calibrated internal RC oscillator

By default, the internal RC oscillator provides an approximate 8.0MHz clock. Though voltage
and temperature dependent, this clock can be very accurately calibrated by the user. The device
is shipped with the CKDIV8 fuse programmed. See “System clock prescaler” on page 36 for
more details.

This clock may be selected as the system clock by programming the CKSEL fuses as shown in
Table 9-8 on page 33. If selected, it will operate with no external components. During reset,
hardware loads the pre-programmed calibration value into the OSCCAL Register and thereby
automatically calibrates the RC Oscillator. The accuracy of this calibration is shown as Factory
calibration in Table 29-1 on page 313.

By changing the OSCCAL register from SW, see “OSCCAL – Oscillator calibration register” on
page 37, it is possible to get a higher calibration accuracy than by using the factory calibration.
The accuracy of this calibration is shown as user calibration in Table 29-1 on page 313.

When this oscillator is used as the chip clock, the Watchdog Oscillator will still be used for the
watchdog timer and for the reset time-out. For more information on the pre-programmed
calibration value, see the section “Calibration byte” on page 295.

Table 9-7. Start-up times for the low frequency crystal oscillator clock selection.

Power conditions

Start-up time from
power-down and

power-save

Additional delay
from reset

(VCC = 5.0V) CKSEL0 SUT1..0

BOD enabled 1KCK 14CK(1) 0 00

Fast rising power 1KCK 14CK + 4.1ms(1) 0 01

Slowly rising power 1KCK 14CK + 65ms(1) 0 10

Reserved 0 11

BOD enabled 32KCK 14CK 1 00

Fast rising power 32KCK 14CK + 4.1ms 1 01

Slowly rising power 32KCK 14CK + 65ms 1 10

Reserved 1 11

Table 9-8. Internal calibrated RC oscillator operating modes(1)(2).

Frequency range (MHz) CKSEL3..0

7.3 - 8.1 0010
33
2545U–AVR–11/2015

ATmega48/88/168
Notes: 1. The device is shipped with this option selected.

2. If 8MHz frequency exceeds the specification of the device (depends on VCC), the CKDIV8
Fuse can be programmed in order to divide the internal frequency by 8.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in
Table 9-9.

Note: 1. If the RSTDISBL fuse is programmed, this start-up time will be increased to
14CK + 4.1ms to ensure programming mode can be entered.

2. The device is shipped with this option selected.

9.7 128kHz internal oscillator

The 128kHz internal oscillator is a low power oscillator providing a clock of 128kHz. The
frequency is nominal at 3V and 25°C. This clock may be select as the system clock by
programming the CKSEL fuses to “11” as shown in Table 9-10.

Note: 1. Note that the 128kHz oscillator is a very low power clock source, and is not designed for a
high accuracy.

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in
Table 9-11.

Note: 1. If the RSTDISBL fuse is programmed, this start-up time will be increased to
14CK + 4.1ms to ensure programming mode can be entered.

Table 9-9. Start-up times for the internal calibrated RC Oscillator clock selection.

Power conditions
Start-up time from

power-down and power-save
Additional delay from

reset (VCC = 5.0V) SUT1..0

BOD enabled 6CK 14CK(1) 00

Fast rising power 6CK 14CK + 4.1ms 01

Slowly rising power 6CK 14CK + 65ms(2) 10

Reserved 11

Table 9-10. 128kHz internal oscillator operating modes.

Nominal frequency CKSEL3..0

128kHz 0011

Table 9-11. Start-up times for the 128kHz internal oscillator.

Power conditions
Start-up time from

power-down and power-save
Additional delay from

reset SUT1..0

BOD enabled 6CK 14CK(1) 00

Fast rising power 6CK 14CK + 4ms 01

Slowly rising power 6CK 14CK + 64ms 10

Reserved 11
34
2545U–AVR–11/2015

ATmega48/88/168
9.8 External clock

To drive the device from an external clock source, XTAL1 should be driven as shown in Figure
9-4. To run the device on an external clock, the CKSEL fuses must be programmed to “0000”
(see Table 9-12).

Figure 9-4. External clock drive configuration.

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in
Table 9-13.

When applying an external clock, it is required to avoid sudden changes in the applied clock
frequency to ensure stable operation of the MCU. A variation in frequency of more than 2% from
one clock cycle to the next can lead to unpredictable behavior. If changes of more than 2% is
required, ensure that the MCU is kept in Reset during the changes.

Note that the system clock prescaler can be used to implement run-time changes of the internal
clock frequency while still ensuring stable operation. Refer to “System clock prescaler” on page
36 for details.

9.9 Clock output buffer

The device can output the system clock on the CLKO pin. To enable the output, the CKOUT
Fuse has to be programmed. This mode is suitable when the chip clock is used to drive other
circuits on the system. The clock also will be output during reset, and the normal operation of I/O
pin will be overridden when the fuse is programmed. Any clock source, including the internal RC

Table 9-12. Crystal oscillator clock frequency.

Frequency CKSEL3..0

0 - 20MHz 0000

Table 9-13. Start-up times for the external clock selection.

Power conditions
Start-up time from

power-down and power-save
Additional delay from

reset (VCC = 5.0V) SUT1..0

BOD enabled 6CK 14CK 00

Fast rising power 6CK 14CK + 4.1ms 01

Slowly rising power 6CK 14CK + 65ms 10

Reserved 11

EXTERNAL
CLOCK
SIGNAL

XTAL2

XTAL1

GND

NC / PB7
35
2545U–AVR–11/2015

ATmega48/88/168
oscillator, can be selected when the clock is output on CLKO. If the System Clock Prescaler is
used, it is the divided system clock that is output.

9.10 Timer/counter oscillator

The device can operate its Timer/Counter2 from an external 32.768kHz watch crystal or a
external clock source. The Timer/Counter Oscillator Pins (TOSC1 and TOSC2) are shared with
XTAL1 and XTAL2. This means that the Timer/Counter Oscillator can only be used when an
internal RC Oscillator is selected as system clock source. See Figure 9-2 on page 30 for crystal
connection.

Applying an external clock source to TOSC1 requires EXTCLK in the ASSR Register written to
logic one. See “Asynchronous operation of Timer/Counter2” on page 155 for further description
on selecting external clock as input instead of a 32kHz crystal.

9.11 System clock prescaler

The Atmel ATmega48/88/168 has a system clock prescaler, and the system clock can be
divided by setting the “CLKPR – Clock prescale register” on page 37. This feature can be used
to decrease the system clock frequency and the power consumption when the requirement for
processing power is low. This can be used with all clock source options, and it will affect the
clock frequency of the CPU and all synchronous peripherals. clkI/O, clkADC, clkCPU, and clkFLASH
are divided by a factor as shown in Table 9-14 on page 38.

When switching between prescaler settings, the System Clock Prescaler ensures that no
glitches occurs in the clock system. It also ensures that no intermediate frequency is higher than
neither the clock frequency corresponding to the previous setting, nor the clock frequency
corresponding to the new setting. The ripple counter that implements the prescaler runs at the
frequency of the undivided clock, which may be faster than the CPU's clock frequency. Hence, it
is not possible to determine the state of the prescaler - even if it were readable, and the exact
time it takes to switch from one clock division to the other cannot be exactly predicted. From the
time the CLKPS values are written, it takes between T1 + T2 and T1 + 2 × T2 before the new
clock frequency is active. In this interval, two active clock edges are produced. Here, T1 is the
previous clock period, and T2 is the period corresponding to the new prescaler setting.

To avoid unintentional changes of clock frequency, a special write procedure must befollowed to
change the CLKPS bits:

1. Write the Clock Prescaler Change Enable (CLKPCE) bit to one and all other bits in
CLKPR to zero.

2. Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE.

Interrupts must be disabled when changing prescaler setting to make sure the write procedure is
not interrupted.
36
2545U–AVR–11/2015

ATmega48/88/168
9.12 Register description

9.12.1 OSCCAL – Oscillator calibration register

• Bits 7..0 – CAL7..0: Oscillator calibration value

The oscillator calibration register is used to trim the calibrated internal RC oscillator to remove
process variations from the oscillator frequency. A pre-programmed calibration value is
automatically written to this register during chip reset, giving the factory calibrated frequency as
specified in Table 29-1 on page 313. The application software can write this register to change
the oscillator frequency. The oscillator can be calibrated to frequencies as specified in Table 29-
1 on page 313. Calibration outside that range is not guaranteed.

Note that this oscillator is used to time EEPROM and flash write accesses, and these write times
will be affected accordingly. If the EEPROM or flash are written, do not calibrate to more than
8.8MHz. Otherwise, the EEPROM or flash write may fail.

The CAL7 bit determines the range of operation for the oscillator. Setting this bit to 0 gives the
lowest frequency range, setting this bit to 1 gives the highest frequency range. The two
frequency ranges are overlapping, in other words a setting of OSCCAL = 0x7F gives a higher
frequency than OSCCAL = 0x80.

The CAL6..0 bits are used to tune the frequency within the selected range. A setting of 0x00
gives the lowest frequency in that range, and a setting of 0x7F gives the highest frequency in the
range.

9.12.2 CLKPR – Clock prescale register

• Bit 7 – CLKPCE: Clock prescaler change enable

The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE
bit is only updated when the other bits in CLKPR are simultaneously written to zero. CLKPCE is
cleared by hardware four cycles after it is written or when CLKPS bits are written. Rewriting the
CLKPCE bit within this time-out period does neither extend the time-out period, nor clear the
CLKPCE bit.

• Bits 3..0 – CLKPS3..0: Clock prescaler select bits 3 - 0

These bits define the division factor between the selected clock source and the internal system
clock. These bits can be written run-time to vary the clock frequency to suit the application
requirements. As the divider divides the master clock input to the MCU, the speed of all
synchronous peripherals is reduced when a division factor is used. The division factors are given
in Table 9-14 on page 38.

Bit 7 6 5 4 3 2 1 0

(0x66) CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value Device specific calibration value

Bit 7 6 5 4 3 2 1 0

(0x61) CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 CLKPR

Read/write R/W R R R R/W R/W R/W R/W

Initial value 0 0 0 0 See bit description
37
2545U–AVR–11/2015

ATmega48/88/168
The CKDIV8 fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed,
the CLKPS bits will be reset to “0000”. If CKDIV8 is programmed, CLKPS bits are reset to
“0011”, giving a division factor of eight at start up. This feature should be used if the selected
clock source has a higher frequency than the maximum frequency of the device at the present
operating conditions. Note that any value can be written to the CLKPS bits regardless of the
CKDIV8 Fuse setting. The Application software must ensure that a sufficient division factor is
chosen if the selected clock source has a higher frequency than the maximum frequency of the
device at the present operating conditions. The device is shipped with the CKDIV8 fuse
programmed.

Table 9-14. Clock prescaler select.

CLKPS3 CLKPS2 CLKPS1 CLKPS0 Clock division factor

0 0 0 0 1

0 0 0 1 2

0 0 1 0 4

0 0 1 1 8

0 1 0 0 16

0 1 0 1 32

0 1 1 0 64

0 1 1 1 128

1 0 0 0 256

1 0 0 1 Reserved

1 0 1 0 Reserved

1 0 1 1 Reserved

1 1 0 0 Reserved

1 1 0 1 Reserved

1 1 1 0 Reserved

1 1 1 1 Reserved
38
2545U–AVR–11/2015

ATmega48/88/168
10. Power management and sleep modes

Sleep modes enable the application to shut down unused modules in the MCU, thereby saving
power. The AVR provides various sleep modes allowing the user to tailor the power
consumption to the application’s requirements.

10.1 Sleep modes

Figure 9-1 on page 27 presents the different clock systems in the Atmel ATmega48/88/168, and
their distribution. The figure is helpful in selecting an appropriate sleep mode. Table 10-1 shows
the different sleep modes and their wake up sources.

Notes: 1. Only recommended with external crystal or resonator selected as clock source.

2. If Timer/Counter2 is running in asynchronous mode.

3. For INT1 and INT0, only level interrupt.

To enter any of the five sleep modes, the SE bit in SMCR must be written to logic one and a
SLEEP instruction must be executed. The SM2, SM1, and SM0 bits in the SMCR Register select
which sleep mode (Idle, ADC Noise Reduction, Power-down, Power-save, or Standby) will be
activated by the SLEEP instruction. See Table 10-2 on page 43 for a summary.

If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU
is then halted for four cycles in addition to the start-up time, executes the interrupt routine, and
resumes execution from the instruction following SLEEP. The contents of the Register File and
SRAM are unaltered when the device wakes up from sleep. If a reset occurs during sleep mode,
the MCU wakes up and executes from the reset vector.

10.2 Idle mode

When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle
mode, stopping the CPU but allowing the SPI, USART, analog comparator, ADC, 2-wire serial

Table 10-1. Active clock domains and wake-up sources in the different sleep modes.

Active clock domains Oscillators Wake-up sources

Sleep mode

cl
k C

P
U

cl
k F

L
A

S
H

cl
k I

O

cl
k A

D
C

cl
k A

S
Y

M
ai

n
cl

oc
k

so
ur

ce
 e

na
bl

e
d

T
im

er
 o

sc
ill

at
or

e
na

bl
ed

IN
T

1,
 IN

T
0

a
nd

p

in
 c

ha
n

ge

T
W

I a
dd

re
ss

m

at
ch

T
im

er
2

S
P

M
/E

E
P

R
O

M
re

ad
y

A
D

C

W
D

T

O
th

er
/O

Idle X X X X X(2) X X X X X X X

ADC noise
reduction

X X X X(2) X(3) X X(2) X X X

Power-down X(3) X X

Power-save X X(2) X(3) X X X

Standby(1) X X(3) X X
39
2545U–AVR–11/2015

ATmega48/88/168
interface, timer/counters, watchdog, and the interrupt system to continue operating. This sleep
mode basically halts clkCPU and clkFLASH, while allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal
ones like the timer overflow and USART transmit complete interrupts. If wake-up from the
analog comparator interrupt is not required, the analog comparator can be powered down by
setting the ACD bit in the analog comparator control and status register – ACSR. This will
reduce power consumption in Idle mode. If the ADC is enabled, a conversion starts
automatically when this mode is entered.

10.3 ADC noise reduction mode

When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC
Noise Reduction mode, stopping the CPU but allowing the ADC, the external interrupts, the 2-
wire Serial Interface address watch, Timer/Counter2(1), and the Watchdog to continue operating
(if enabled). This sleep mode basically halts clkI/O, clkCPU, and clkFLASH, while allowing the other
clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If
the ADC is enabled, a conversion starts automatically when this mode is entered. Apart from the
ADC Conversion Complete interrupt, only an External Reset, a Watchdog System Reset, a
Watchdog Interrupt, a Brown-out Reset, a 2-wire Serial Interface address match, a
Timer/Counter2 interrupt, an SPM/EEPROM ready interrupt, an external level interrupt on INT0
or INT1 or a pin change interrupt can wake up the MCU from ADC Noise Reduction mode.

Note: 1. Timer/Counter2 will only keep running in asynchronous mode, see “8-bit Timer/Counter2 with
PWM and asynchronous operation” on page 144 for details.

10.4 Power-down mode

When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter power-
down mode. In this mode, the external oscillator is stopped, while the external interrupts, the 2-
wire serial Interface address watch, and the Watchdog continue operating (if enabled). Only an
external reset, a watchdog system reset, a watchdog interrupt, a brown-out reset, a 2-wire serial
interface address match, an external level interrupt on INT0 or INT1, or a pin change interrupt
can wake up the MCU. This sleep mode basically halts all generated clocks, allowing operation
of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from power-down mode, the changed
level must be held for some time to wake up the MCU. Refer to “External interrupts” on page 70
for details.

When waking up from power-down mode, there is a delay from the wake-up condition occurs
until the wake-up becomes effective. This allows the clock to restart and become stable after
having been stopped. The wake-up period is defined by the same CKSEL fuses that define the
reset time-out period, as described in “Clock sources” on page 28.

10.5 Power-save mode

When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter power-
save mode. This mode is identical to power-down, with one exception:

If Timer/Counter2 is enabled, it will keep running during sleep. The device can wake up from
either timer overflow or output compare event from Timer/Counter2 if the corresponding
40
2545U–AVR–11/2015

ATmega48/88/168
Timer/Counter2 interrupt enable bits are set in TIMSK2, and the global interrupt enable bit in
SREG is set.

If Timer/Counter2 is not running, power-down mode is recommended instead of power-save
mode.

The Timer/Counter2 can be clocked both synchronously and asynchronously in power-save
mode. If Timer/Counter2 is not using the asynchronous clock, the timer/counter oscillator is
stopped during sleep. If Timer/Counter2 is not using the synchronous clock, the clock source is
stopped during sleep. Note that even if the synchronous clock is running in power-save, this
clock is only available for Timer/Counter2.

10.6 Standby mode

When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected, the
SLEEP instruction makes the MCU enter standby mode. This mode is identical to power-down
with the exception that the oscillator is kept running. From standby mode, the device wakes up in
six clock cycles.

10.7 Power reduction register

The power reduction register (PRR), see “PRR – Power reduction register” on page 44, provides
a method to stop the clock to individual peripherals to reduce power consumption. The current
state of the peripheral is frozen and the I/O registers can not be read or written. Resources used
by the peripheral when stopping the clock will remain occupied, hence the peripheral should in
most cases be disabled before stopping the clock. Waking up a module, which is done by
clearing the bit in PRR, puts the module in the same state as before shutdown.

Module shutdown can be used in Idle mode and Active mode to significantly reduce the overall
power consumption. See “Power-down supply current” on page 330 for examples. In all other
sleep modes, the clock is already stopped.

10.8 Minimizing power consumption

There are several possibilities to consider when trying to minimize the power consumption in an
AVR controlled system. In general, sleep modes should be used as much as possible, and the
sleep mode should be selected so that as few as possible of the device’s functions are
operating. All functions not needed should be disabled. In particular, the following modules may
need special consideration when trying to achieve the lowest possible power consumption.

10.8.1 Analog to digital converter

If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be
disabled before entering any sleep mode. When the ADC is turned off and on again, the next
conversion will be an extended conversion. Refer to “Analog-to-digital converter” on page 250
for details on ADC operation.

10.8.2 Analog comparator

When entering Idle mode, the analog comparator should be disabled if not used. When entering
ADC noise reduction mode, the analog comparator should be disabled. In other sleep modes,
the analog comparator is automatically disabled. However, if the analog comparator is set up to
use the internal voltage reference as input, the analog comparator should be disabled in all
sleep modes. Otherwise, the internal voltage reference will be enabled, independent of sleep
41
2545U–AVR–11/2015

ATmega48/88/168
mode. Refer to “Analog comparator” on page 246 for details on how to configure the analog
comparator.

10.8.3 Brown-out detector

If the brown-out detector is not needed by the application, this module should be turned off. If the
brown-out detector is enabled by the BODLEVEL Fuses, it will be enabled in all sleep modes,
and hence, always consume power. In the deeper sleep modes, this will contribute significantly
to the total current consumption. Refer to “Brown-out detection” on page 47 for details on how to
configure the brown-out detector.

10.8.4 Internal voltage reference

The internal voltage reference will be enabled when needed by the brown-out detection, the
analog comparator or the ADC. If these modules are disabled as described in the sections
above, the internal voltage reference will be disabled and it will not be consuming power. When
turned on again, the user must allow the reference to start up before the output is used. If the
reference is kept on in sleep mode, the output can be used immediately. Refer to “Internal
voltage reference” on page 48 for details on the start-up time.

10.8.5 Watchdog timer

If the watchdog timer is not needed in the application, the module should be turned off. If the
watchdog timer is enabled, it will be enabled in all sleep modes and hence always consume
power. In the deeper sleep modes, this will contribute significantly to the total current
consumption. Refer to “Watchdog timer” on page 49 for details on how to configure the
watchdog timer.

10.8.6 Port pins

When entering a sleep mode, all port pins should be configured to use minimum power. The
most important is then to ensure that no pins drive resistive loads. In sleep modes where both
the I/O clock (clkI/O) and the ADC clock (clkADC) are stopped, the input buffers of the device will
be disabled. This ensures that no power is consumed by the input logic when not needed. In
some cases, the input logic is needed for detecting wake-up conditions, and it will then be
enabled. Refer to the section “Digital input enable and sleep modes” on page 80 for details on
which pins are enabled. If the input buffer is enabled and the input signal is left floating or have
an analog signal level close to VCC/2, the input buffer will use excessive power.

For analog input pins, the digital input buffer should be disabled at all times. An analog signal
level close to VCC/2 on an input pin can cause significant current even in active mode. Digital
input buffers can be disabled by writing to the digital input disable registers (DIDR1 and DIDR0).
Refer to “DIDR1 – Digital input disable register 1” on page 248 and “DIDR0 – Digital Input
Disable Register 0” on page 265 for details.

10.8.7 On-chip debug system

If the on-chip debug system is enabled by the DWEN Fuse and the chip enters sleep mode, the
main clock source is enabled and hence always consumes power. In the deeper sleep modes,
this will contribute significantly to the total current consumption.
42
2545U–AVR–11/2015

ATmega48/88/168
10.9 Register description

10.9.1 SMCR – Sleep mode control register

The sleep mode control register contains control bits for power management.

• Bits 7..4 Res: Reserved bits

These bits are unused bits in the Atmel ATmega48/88/168, and will always read as zero.

• Bits 3..1 – SM2..0: Sleep mode select bits 2, 1, and 0

These bits select between the five available sleep modes as shown in Table 10-2.

Note: 1. Standby mode is only recommended for use with external crystals or resonators.

• Bit 0 – SE: Sleep enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP
instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s
purpose, it is recommended to write the sleep enable (SE) bit to one just before the execution of
the SLEEP instruction and to clear it immediately after waking up.

Bit 7 6 5 4 3 2 1 0

0x33 (0x53) – – – – SM2 SM1 SM0 SE SMCR

Read/write R R R R R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Table 10-2. Sleep mode select.

SM2 SM1 SM0 Sleep mode

0 0 0 Idle

0 0 1 ADC noise reduction

0 1 0 Power-down

0 1 1 Power-save

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Standby(1)

1 1 1 Reserved
43
2545U–AVR–11/2015

ATmega48/88/168
10.9.2 PRR – Power reduction register

• Bit 7 - PRTWI: Power reduction TWI

Writing a logic one to this bit shuts down the TWI by stopping the clock to the module. When
waking up the TWI again, the TWI should be re initialized to ensure proper operation.

• Bit 6 - PRTIM2: Power reduction Timer/Counter2

Writing a logic one to this bit shuts down the Timer/Counter2 module in synchronous mode (AS2
is 0). When the Timer/Counter2 is enabled, operation will continue like before the shutdown.

• Bit 5 - PRTIM0: Power reduction Timer/Counter0

Writing a logic one to this bit shuts down the Timer/Counter0 module. When the Timer/Counter0
is enabled, operation will continue like before the shutdown.

• Bit 4 - Res: Reserved bit

This bit is reserved in Atmel ATmega48/88/168 and will always read as zero.

• Bit 3 - PRTIM1: Power reduction Timer/Counter1

Writing a logic one to this bit shuts down the Timer/Counter1 module. When the Timer/Counter1
is enabled, operation will continue like before the shutdown.

• Bit 2 - PRSPI: Power reduction serial peripheral interface

If using debugWIRE On-chip Debug System, this bit should not be written to one.

Writing a logic one to this bit shuts down the Serial Peripheral Interface by stopping the clock to
the module. When waking up the SPI again, the SPI should be re initialized to ensure proper
operation.

• Bit 1 - PRUSART0: Power reduction USART0

Writing a logic one to this bit shuts down the USART by stopping the clock to the module. When
waking up the USART again, the USART should be re initialized to ensure proper operation.

• Bit 0 - PRADC: Power reduction ADC

Writing a logic one to this bit shuts down the ADC. The ADC must be disabled before shut down.
The analog comparator cannot use the ADC input MUX when the ADC is shut down.

Bit 7 6 5 4 3 2 1 0

(0x64) PRTWI PRTIM2 PRTIM0 – PRTIM1 PRSPI PRUSART0 PRADC PRR

Read/write R/W R/W R/W R R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0
44
2545U–AVR–11/2015

ATmega48/88/168
11. System control and reset

11.1 Resetting the AVR

During reset, all I/O registers are set to their initial values, and the program starts execution from
the reset vector. For the Atmel ATmega168, the instruction placed at the reset vector must be a
JMP – absolute jump – instruction to the reset handling routine. For the Atmel ATmega48 and
Atmel ATmega88, the instruction placed at the reset vector must be an RJMP – relative jump –
instruction to the reset handling routine. If the program never enables an interrupt source, the
Interrupt Vectors are not used, and regular program code can be placed at these locations. This
is also the case if the reset vector is in the application section while the interrupt vectors are in
the boot section or vice versa (ATmega88/168 only). The circuit diagram in Figure 11-1 on page
46 shows the reset logic. Table 29-3 on page 314 defines the electrical parameters of the reset
circuitry.

The I/O ports of the AVR are immediately reset to their initial state when a reset source goes
active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal
reset. This allows the power to reach a stable level before normal operation starts. The time-out
period of the delay counter is defined by the user through the SUT and CKSEL Fuses. The
different selections for the delay period are presented in “Clock sources” on page 28.

11.2 Reset sources

The ATmega48/88/168 has four sources of reset:

l Power-on reset. The MCU is reset when the supply voltage is below the power-on reset
threshold (VPOT)

l External reset. The MCU is reset when a low level is present on the RESET pin for longer
than the minimum pulse length

l Watchdog system reset. The MCU is reset when the watchdog timer period expires and
the watchdog system reset mode is enabled

l Brown-out reset. The MCU is reset when the supply voltage VCC is below the Brown-out
Reset threshold (VBOT) and the brown-out detector is enabled
45
2545U–AVR–11/2015

ATmega48/88/168
Figure 11-1. Reset logic.

11.3 Power-on reset

A power-on reset (POR) pulse is generated by an On-chip detection circuit. The detection level
is defined in “System and reset characteristics” on page 314. The POR is activated whenever
VCC is below the detection level. The POR circuit can be used to trigger the start-up Reset, as
well as to detect a failure in supply voltage.

A power-on reset (POR) circuit ensures that the device is reset from power-on. Reaching the
power-on reset threshold voltage invokes the delay counter, which determines how long the
device is kept in RESET after VCC rise. The RESET signal is activated again, without any delay,
when VCC decreases below the detection level.

Figure 11-2. MCU start-up, RESET tied to VCC.

MCU status
register (MCUSR)

Brown-out
reset circuitBODLEVEL [2..0]

Delay counters

CKSEL[3:0]

CK
TIMEOUT

W
D

R
F

B
O

R
F

E
X

T
R

F

P
O

R
F

DATA BUS

Clock
generator

SPIKE
FILTER

Pull-up resistor

Watchdog
oscillator

SUT[1:0]

Power-on reset
circuit

RSTDISBL

Watchdog
timer

Reset circuit

V

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST

CC
46
2545U–AVR–11/2015

ATmega48/88/168
Figure 11-3. MCU start-up, RESET extended externally.

11.4 External reset

An external reset is generated by a low level on the RESET pin. Reset pulses longer than the
minimum pulse width (see “System and reset characteristics” on page 314) will generate a reset,
even if the clock is not running. Shorter pulses are not guaranteed to generate a reset. When the
applied signal reaches the reset threshold voltage – VRST – on its positive edge, the delay
counter starts the MCU after the time-out period – tTOUT – has expired. The external reset can be
disabled by the RSTDISBL fuse, see Table 28-6 on page 294.

Figure 11-4. External reset during operation.

11.5 Brown-out detection

The Atmel ATmega48/88/168 has an on-chip brown-out detection (BOD) circuit for monitoring
the VCC level during operation by comparing it to a fixed trigger level. The trigger level for the
BOD can be selected by the BODLEVEL Fuses. The trigger level has a hysteresis to ensure
spike free brown-out detection. The hysteresis on the detection level should be interpreted as
VBOT+ = VBOT + VHYST/2 and VBOT- = VBOT - VHYST/2.When the BOD is enabled, and VCC
decreases to a value below the trigger level (VBOT- in Figure 11-5 on page 48), the brown-out
reset is immediately activated. When VCC increases above the trigger level (VBOT+ in Figure 11-5
on page 48), the delay counter starts the MCU after the Time-out period tTOUT has expired.

The BOD circuit will only detect a drop in VCC if the voltage stays below the trigger level for
longer than tBOD given in “System and reset characteristics” on page 314.

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST

VCC

CC
47
2545U–AVR–11/2015

ATmega48/88/168
Figure 11-5. Brown-out reset during operation.

11.6 Watchdog system reset

When the watchdog times out, it will generate a short reset pulse of one CK cycle duration. On
the falling edge of this pulse, the delay timer starts counting the Time-out period tTOUT. Refer to
page 49 for details on operation of the watchdog timer.

Figure 11-6. Watchdog system reset during operation.

11.7 Internal voltage reference

The Atmel ATmega48/88/168 features an internal bandgap reference. This reference is used for
brown-out detection, and it can be used as an input to the analog comparator or the ADC.

11.7.1 Voltage reference enable signals and start-up time

The voltage reference has a start-up time that may influence the way it should be used. The
start-up time is given in “System and reset characteristics” on page 314. To save power, the
reference is not always turned on. The reference is on during the following situations:

1. When the BOD is enabled (by programming the BODLEVEL [2:0] Fuses).

2. When the bandgap reference is connected to the analog comparator (by setting the ACBG
bit in ACSR).

3. When the ADC is enabled.

VCC

RESET

TIME-OUT

INTERNAL
RESET

VBOT-
VBOT+

tTOUT

CK

CC
48
2545U–AVR–11/2015

ATmega48/88/168
Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user
must always allow the reference to start up before the output from the analog comparator or
ADC is used. To reduce power consumption in power-down mode, the user can avoid the three
conditions above to ensure that the reference is turned off before entering power-down mode.

11.8 Watchdog timer

11.8.1 Features

• Clocked from separate on-chip oscillator

• Three operating modes

– Interrupt

– System reset

– Interrupt and system reset

• Selectable time-out period from 16ms to 8s

• Possible hardware fuse watchdog always on (WDTON) for fail-safe mode

Figure 11-7. Watchdog timer.

The Atmel ATmega48/88/168 has an enhanced watchdog timer (WDT). The WDT is a timer
counting cycles of a separate on-chip 128kHz oscillator. The WDT gives an interrupt or a system
reset when the counter reaches a given time-out value. In normal operation mode, it is required
that the system uses the WDR - watchdog timer reset - instruction to restart the counter before
the time-out value is reached. If the system doesn't restart the counter, an interrupt or system
reset will be issued.

In interrupt mode, the WDT gives an interrupt when the timer expires. This interrupt can be used
to wake the device from sleep-modes, and also as a general system timer. One example is to
limit the maximum time allowed for certain operations, giving an interrupt when the operation
has run longer than expected. In system reset mode, the WDT gives a reset when the timer
expires. This is typically used to prevent system hang-up in case of runaway code. The third
mode, Interrupt and system reset mode, combines the other two modes by first giving an
interrupt and then switch to system reset mode. This mode will for instance allow a safe
shutdown by saving critical parameters before a system reset.

128kHz
OSCILLATOR

O
SC

/2
K

O
SC

/4
K

O
SC

/8
K

O
SC

/1
6K

O
SC

/3
2K

O
SC

/6
4K

O
SC

/1
28

K
O

SC
/2

56
K

O
SC

/5
12

K
O

SC
/1

02
4K

WDP0
WDP1
WDP2
WDP3

WATCHDOG
RESET

WDE

WDIF

WDIE

MCU RESET

INTERRUPT
49
2545U–AVR–11/2015

ATmega48/88/168
The watchdog always on (WDTON) fuse, if programmed, will force the watchdog timer to system
reset mode. With the fuse programmed the system reset mode bit (WDE) and Interrupt mode bit
(WDIE) are locked to 1 and 0 respectively. To further ensure program security, alterations to the
Watchdog setup must follow timed sequences. The sequence for clearing WDE and changing
time-out configuration is as follows:

1. In the same operation, write a logic one to the watchdog change enable bit (WDCE) and
WDE. A logic one must be written to WDE regardless of the previous value of the WDE
bit.

2. Within the next four clock cycles, write the WDE and watchdog prescaler bits (WDP) as
desired, but with the WDCE bit cleared. This must be done in one operation.

The following code example shows one assembly and one C function for turning off the
watchdog timer. The example assumes that interrupts are controlled (for example by disabling
interrupts globally) so that no interrupts will occur during the execution of these functions.
50
2545U–AVR–11/2015

ATmega48/88/168
Note: 1. See ”About code examples” on page 8.

Note: If the watchdog is accidentally enabled, for example by a runaway pointer or brown-out
condition, the device will be reset and the watchdog timer will stay enabled. If the code is not set
up to handle the watchdog, this might lead to an eternal loop of time-out resets. To avoid this
situation, the application software should always clear the watchdog system reset flag (WDRF)
and the WDE control bit in the initialisation routine, even if the watchdog is not in use.

Assembly code example(1)

WDT_off:
; Turn off global interrupt
cli
; Reset Watchdog Timer
wdr
; Clear WDRF in MCUSR
in r16, MCUSR
andi r16, (0xff & (0<<WDRF))
out MCUSR, r16
; Write logical one to WDCE and WDE
; Keep old prescaler setting to prevent unintentional

time-out
lds r16, WDTCSR
ori r16, (1<<WDCE) | (1<<WDE)
sts WDTCSR, r16
; Turn off WDT
ldi r16, (0<<WDE)
sts WDTCSR, r16
; Turn on global interrupt
sei
ret

C code example(1)

void WDT_off(void)
{

__disable_interrupt();
__watchdog_reset();
/* Clear WDRF in MCUSR */
MCUSR &= ~(1<<WDRF);
/* Write logical one to WDCE and WDE */
/* Keep old prescaler setting to prevent unintentional

time-out */
WDTCSR |= (1<<WDCE) | (1<<WDE);
/* Turn off WDT */
WDTCSR = 0x00;
__enable_interrupt();

}

51
2545U–AVR–11/2015

ATmega48/88/168
The following code example shows one assembly and one C function for changing the time-out
value of the watchdog timer.

Note: 1. See ”About code examples” on page 8.

Note: The watchdog timer should be reset before any change of the WDP bits, since a change in
the WDP bits can result in a time-out when switching to a shorter time-out period.

Assembly code example(1)

WDT_Prescaler_Change:
; Turn off global interrupt
cli
; Reset Watchdog Timer
wdr
; Start timed sequence
lds r16, WDTCSR
ori r16, (1<<WDCE) | (1<<WDE)
sts WDTCSR, r16
; -- Got four cycles to set the new values from here -
; Set new prescaler(time-out) value = 64K cycles (~0.5 s)
ldi r16, (1<<WDE) | (1<<WDP2) | (1<<WDP0)
sts WDTCSR, r16
; -- Finished setting new values, used 2 cycles -
; Turn on global interrupt
sei
ret

C code example(1)

void WDT_Prescaler_Change(void)
{

__disable_interrupt();
__watchdog_reset();
/* Start timed equence */
WDTCSR |= (1<<WDCE) | (1<<WDE);
/* Set new prescaler(time-out) value = 64K cycles (~0.5

s) */
WDTCSR = (1<<WDE) | (1<<WDP2) | (1<<WDP0);
__enable_interrupt();

}

52
2545U–AVR–11/2015

ATmega48/88/168
11.9 Register description

11.9.1 MCUSR – MCU status register

The MCU status register provides information on which reset source caused an MCU reset.

• Bit 7..4: Res: Reserved bits

These bits are unused bits in the Atmel ATmega48/88/168, and will always read as zero.

• Bit 3 – WDRF: Watchdog system reset flag

This bit is set if a watchdog system reset occurs. The bit is reset by a power-on reset, or by
writing a logic zero to the flag.

• Bit 2 – BORF: Brown-out reset flag

This bit is set if a brown-out reset occurs. The bit is reset by a power-on reset, or by writing a
logic zero to the flag.

• Bit 1 – EXTRF: External reset flag

This bit is set if an external reset occurs. The bit is reset by a power-on reset, or by writing a logic
zero to the flag.

• Bit 0 – PORF: Power-on reset flag

This bit is set if a power-on reset occurs. The bit is reset only by writing a logic zero to the flag.

To make use of the reset flags to identify a reset condition, the user should read and then reset
the MCUSR as early as possible in the program. If the register is cleared before another reset
occurs, the source of the reset can be found by examining the reset flags.

11.9.2 WDTCSR – Watchdog timer control register

• Bit 7 - WDIF: Watchdog interrupt flag

This bit is set when a time-out occurs in the watchdog timer and the watchdog timer is
configured for interrupt. WDIF is cleared by hardware when executing the corresponding
interrupt handling vector. Alternatively, WDIF is cleared by writing a logic one to the flag. When
the I-bit in SREG and WDIE are set, the Watchdog time-out interrupt is executed.

• Bit 6 - WDIE: Watchdog interrupt enable

When this bit is written to one and the I-bit in the status register is set, the watchdog interrupt is
enabled. If WDE is cleared in combination with this setting, the watchdog timer is in interrupt
mode, and the corresponding interrupt is executed if time-out in the watchdog timer occurs.

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) – – – – WDRF BORF EXTRF PORF MCUSR

Read/write R R R R R/W R/W R/W R/W

Initial value 0 0 0 0 See Bit Description

Bit 7 6 5 4 3 2 1 0

(0x60) WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 WDTCSR

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 X 0 0 0
53
2545U–AVR–11/2015

ATmega48/88/168
If WDE is set, the watchdog timer is in interrupt and system reset mode. The first time-out in the
watchdog timer will set WDIF. Executing the corresponding interrupt vector will clear WDIE and
WDIF automatically by hardware (the watchdog goes to system reset mode). This is useful for
keeping the watchdog timer security while using the interrupt. To stay in interrupt and system
reset mode, WDIE must be set after each interrupt. This should however not be done within the
interrupt service routine itself, as this might compromise the safety-function of the watchdog
system reset mode. If the interrupt is not executed before the next time-out, a system reset will
be applied.

Note: 1. WDTON fuse set to “0“ means programmed and “1“ means unprogrammed.

• Bit 4 - WDCE: Watchdog change enable

This bit is used in timed sequences for changing WDE and prescaler bits. To clear the WDE bit,
and/or change the prescaler bits, WDCE must be set.

Once written to one, hardware will clear WDCE after four clock cycles.

• Bit 3 - WDE: Watchdog system reset enable

WDE is overridden by WDRF in MCUSR. This means that WDE is always set when WDRF is
set. To clear WDE, WDRF must be cleared first. This feature ensures multiple resets during
conditions causing failure, and a safe start-up after the failure.

Table 11-1. Watchdog timer configuration.

WDTON(1) WDE WDIE Mode Action on time-out

1 0 0 Stopped None

1 0 1 Interrupt mode Interrupt

1 1 0 System reset mode Reset

1 1 1
Interrupt and system reset
mode

Interrupt, then go to system
reset mode

0 x x System reset mode Reset
54
2545U–AVR–11/2015

ATmega48/88/168
• Bit 5, 2..0 - WDP3..0: Watchdog timer prescaler 3, 2, 1, and 0

The WDP3..0 bits determine the watchdog timer prescaling when the watchdog timer is running.
The different prescaling values and their corresponding time-out periods are shown in Table 11-
2.

Table 11-2. Watchdog timer prescale select.

WDP3 WDP2 WDP1 WDP0
Number of

WDT oscillator cycles
Typical time-out at

VCC = 5.0V

0 0 0 0 2K (2048) cycles 16ms

0 0 0 1 4K (4096) cycles 32ms

0 0 1 0 8K (8192) cycles 64ms

0 0 1 1 16K (16384) cycles 0.125s

0 1 0 0 32K (32768) cycles 0.25s

0 1 0 1 64K (65536) cycles 0.5s

0 1 1 0 128K (131072) cycles 1.0s

0 1 1 1 256K (262144) cycles 2.0s

1 0 0 0 512K (524288) cycles 4.0s

1 0 0 1 1024K (1048576) cycles 8.0s

1 0 1 0

Reserved

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1
55
2545U–AVR–11/2015

ATmega48/88/168
12. Interrupts

12.1 Overview

This section describes the specifics of the interrupt handling as performed in the Atmel
ATmega48/88/168. For a general explanation of the AVR interrupt handling, refer to “Reset and
interrupt handling” on page 15.

The interrupt vectors in ATmega48, ATmega88 and ATmega168 are generally the same, with
the following differences:

l Each interrupt vector occupies two instruction words in ATmega168, and one instruction
word in ATmega48 and ATmega88

l ATmega48 does not have a separate boot loader section. In ATmega88 and ATmega168,
the reset vector is affected by the BOOTRST fuse, and the interrupt vector start address is
affected by the IVSEL bit in MCUCR

12.2 Interrupt vectors in ATmega48

Table 12-1. Reset and interrupt vectors in ATmega48.

Vector no. Program address Source Interrupt definition

1 0x000 RESET External pin, power-on reset, brown-out reset and watchdog system reset

2 0x001 INT0 External interrupt request 0

3 0x002 INT1 External interrupt request 1

4 0x003 PCINT0 Pin change interrupt request 0

5 0x004 PCINT1 Pin change interrupt request 1

6 0x005 PCINT2 Pin change interrupt request 2

7 0x006 WDT Watchdog time-out interrupt

8 0x007 TIMER2 COMPA Timer/Counter2 compare match A

9 0x008 TIMER2 COMPB Timer/Counter2 compare match B

10 0x009 TIMER2 OVF Timer/Counter2 overflow

11 0x00A TIMER1 CAPT Timer/Counter1 capture event

12 0x00B TIMER1 COMPA Timer/Counter1 compare match A

13 0x00C TIMER1 COMPB Timer/Coutner1 compare match B

14 0x00D TIMER1 OVF Timer/Counter1 overflow

15 0x00E TIMER0 COMPA Timer/Counter0 compare match A

16 0x00F TIMER0 COMPB Timer/Counter0 compare match B

17 0x010 TIMER0 OVF Timer/Counter0 overflow

18 0x011 SPI, STC SPI serial transfer complete

19 0x012 USART, RX USART Rx complete

20 0x013 USART, UDRE USART, data register empty

21 0x014 USART, TX USART, Tx complete
56
2545U–AVR–11/2015

ATmega48/88/168
The most typical and general program setup for the reset and interrupt vector addresses in the
Atmel ATmega48 is:

Address Labels CodeComments
0x000 rjmpRESET;
Reset Handler
0x001 rjmpEXT_INT0;
IRQ0 Handler
0x002 rjmpEXT_INT1;
IRQ1 Handler
0x003 rjmpPCINT0;
PCINT0 Handler
0x004 rjmpPCINT1;
PCINT1 Handler
0x005 rjmpPCINT2;
PCINT2 Handler
0x006 rjmpWDT;
Watchdog Timer Handler
0x007 rjmpTIM2_COMPA
; Timer2 Compare A Handler
0x008 rjmpTIM2_COMPB
; Timer2 Compare B Handler
0x009 rjmpTIM2_OVF;
Timer2 Overflow Handler
0x00A rjmpTIM1_CAPT;
Timer1 Capture Handler
0x00B rjmpTIM1_COMPA
; Timer1 Compare A Handler
0x00C rjmpTIM1_COMPB
; Timer1 Compare B Handler
0x00D rjmpTIM1_OVF;
Timer1 Overflow Handler
0x00E rjmpTIM0_COMPA
; Timer0 Compare A Handler
0x00F rjmpTIM0_COMPB
; Timer0 Compare B Handler
0x010 rjmpTIM0_OVF;
Timer0 Overflow Handler
0x011 rjmpSPI_STC;
SPI Transfer Complete Handler
0x012 rjmpUSART_RXC;
USART, RX Complete Handler
0x013 rjmpUSART_UDRE
; USART, UDR Empty Handler

22 0x015 ADC ADC conversion complete

23 0x016 EE READY EEPROM ready

24 0x017 ANALOG COMP Analog comparator

25 0x018 TWI 2-wire serial interface

26 0x019 SPM READY Store program memory ready

Table 12-1. Reset and interrupt vectors in ATmega48. (Continued)

Vector no. Program address Source Interrupt definition
57
2545U–AVR–11/2015

ATmega48/88/168
0x014 rjmpUSART_TXC;
USART, TX Complete Handler
0x015 rjmpADC; ADC
Conversion Complete Handler
0x016 rjmpEE_RDY;
EEPROM Ready Handler
0x017 rjmpANA_COMP;
Analog Comparator Handler
0x018 rjmpTWI; 2-
wire Serial Interface Handler
0x019 rjmpSPM_RDY;
Store Program Memory Ready Handler
;
0x01A RESET: ldir16,
high(RAMEND) ; Main program
start
0x01B out SPH,r16;
Set Stack Pointer to top of RAM
0x01C ldi r16,
low(RAMEND)
0x01D out SPL,r16
0x01E sei; Enable
interrupts
0x01F <instr> xxx

12.3 Interrupt vectors in Atmel ATmega88

Table 12-2. Reset and interrupt vectors in ATmega88.

Vector no.
Program

address(2) Source Interrupt definition

1 0x000(1) RESET External pin, power-on reset, brown-out reset and watchdog system reset

2 0x001 INT0 External interrupt request 0

3 0x002 INT1 External interrupt request 1

4 0x003 PCINT0 Pin change interrupt request 0

5 0x004 PCINT1 Pin change interrupt request 1

6 0x005 PCINT2 Pin change interrupt request 2

7 0x006 WDT Watchdog time-out interrupt

8 0x007 TIMER2 COMPA Timer/Counter2 compare match A

9 0x008 TIMER2 COMPB Timer/Counter2 compare match B

10 0x009 TIMER2 OVF Timer/Counter2 overflow

11 0x00A TIMER1 CAPT Timer/Counter1 capture event

12 0x00B TIMER1 COMPA Timer/Counter1 compare match A

13 0x00C TIMER1 COMPB Timer/Coutner1 compare match B

14 0x00D TIMER1 OVF Timer/Counter1 overflow

15 0x00E TIMER0 COMPA Timer/Counter0 compare match A
58
2545U–AVR–11/2015

ATmega48/88/168
Notes: 1. When the BOOTRST fuse is programmed, the device will jump to the boot loader address at
reset, see “Boot loader support – Read-while-write self-programming, Atmel ATmega88 and
Atmel ATmega168” on page 275.

2. When the IVSEL bit in MCUCR is set, interrupt vectors will be moved to the start of the boot
flash section. The address of each Interrupt Vector will then be the address in this table
added to the start address of the boot flash section.

Table 12-3 on page 59 shows reset and interrupt vectors placement for the various
combinations of BOOTRST and IVSEL settings. If the program never enables an interrupt
source, the Interrupt Vectors are not used, and regular program code can be placed at these
locations. This is also the case if the reset vector is in the application section while the interrupt
vectors are in the boot section or vice versa.

Note: 1. The boot reset address is shown in Table 27-6 on page 287. For the BOOTRST Fuse “1”
means unprogrammed while “0” means programmed.

The most typical and general program setup for the reset and interrupt vector addresses in
ATmega88 is:

Address Labels CodeComments
0x000 rjmpRESET;
Reset Handler
0x001 rjmpEXT_INT0;
IRQ0 Handler
0x002 rjmpEXT_INT1;
IRQ1 Handler
0x003 rjmpPCINT0;
PCINT0 Handler

16 0x00F TIMER0 COMPB Timer/Counter0 compare match B

17 0x010 TIMER0 OVF Timer/Counter0 overflow

18 0x011 SPI, STC SPI serial transfer complete

19 0x012 USART, RX USART Rx complete

20 0x013 USART, UDRE USART, data register empty

21 0x014 USART, TX USART, Tx complete

22 0x015 ADC ADC conversion complete

23 0x016 EE READY EEPROM ready

24 0x017 ANALOG COMP Analog comparator

25 0x018 TWI 2-wire serial interface

26 0x019 SPM READY Store program memory ready

Table 12-2. Reset and interrupt vectors in ATmega88. (Continued)

Vector no.
Program

address(2) Source Interrupt definition

Table 12-3. Reset and interrupt vectors placement in Atmel ATmega88(1).

BOOTRST IVSEL Reset address Interrupt vectors start address

1 0 0x000 0x001

1 1 0x000 Boot reset address + 0x001

0 0 Boot reset address 0x001

0 1 Boot reset address Boot reset address + 0x001
59
2545U–AVR–11/2015

ATmega48/88/168
0x004 rjmpPCINT1;
PCINT1 Handler
0x005 rjmpPCINT2;
PCINT2 Handler
0x006 rjmpWDT;
Watchdog Timer Handler
0x007 rjmpTIM2_COMPA
; Timer2 Compare A Handler
0X008 rjmpTIM2_COMPB
; Timer2 Compare B Handler
0x009 rjmpTIM2_OVF;
Timer2 Overflow Handler
0x00A rjmpTIM1_CAPT;
Timer1 Capture Handler
0x00B rjmpTIM1_COMPA
; Timer1 Compare A Handler
0x00C rjmpTIM1_COMPB
; Timer1 Compare B Handler
0x00D rjmpTIM1_OVF;
Timer1 Overflow Handler
0x00E rjmpTIM0_COMPA
; Timer0 Compare A Handler
0x00F rjmpTIM0_COMPB
; Timer0 Compare B Handler
0x010 rjmpTIM0_OVF;
Timer0 Overflow Handler
0x011 rjmpSPI_STC;
SPI Transfer Complete Handler
0x012 rjmpUSART_RXC;
USART, RX Complete Handler
0x013 rjmpUSART_UDRE
; USART, UDR Empty Handler
0x014 rjmpUSART_TXC;
USART, TX Complete Handler
0x015 rjmpADC; ADC
Conversion Complete Handler
0x016 rjmpEE_RDY;
EEPROM Ready Handler
0x017 rjmpANA_COMP;
Analog Comparator Handler
0x018 rjmpTWI; 2-
wire Serial Interface Handler
0x019 rjmpSPM_RDY;
Store Program Memory Ready Handler
;
0x01A RESET: ldir16,
high(RAMEND) ; Main program
start
0x01B out SPH,r16;
Set Stack Pointer to top of RAM
0x01C ldi r16,
low(RAMEND)
60
2545U–AVR–11/2015

ATmega48/88/168
0x01D out SPL,r16
0x01E sei; Enable
interrupts
0x01F <instr> xxx

When the BOOTRST fuse is unprogrammed, the boot section size set to 2Kbytes and the IVSEL
bit in the MCUCR register is set before any interrupts are enabled, the most typical and general
program setup for the reset and interrupt vector addresses in Atmel ATmega88 is:

Address Labels CodeComments
0x000 RESET: ldi
r16,high(RAMEND) ; Main program
start
0x001 outSPH,r16;
Set Stack Pointer to top of RAM
0x002 ldi
r16,low(RAMEND)
0x003 outSPL,r16
0x004 sei; Enable
interrupts
0x005 <instr> xxx
;
.org 0xC01
0xC01 rjmpEXT_INT0;
IRQ0 Handler
0xC02 rjmpEXT_INT1;
IRQ1 Handler
...;
0xC19 rjmpSPM_RDY;
Store Program Memory Ready Handler

When the BOOTRST fuse is programmed and the boot section size set to 2Kbytes, the most
typical and general program setup for the reset and interrupt vector addresses in ATmega88 is:

Address Labels CodeComments
.org 0x001
0x001 rjmpEXT_INT0;
IRQ0 Handler
0x002 rjmpEXT_INT1;
IRQ1 Handler
...;
0x019 rjmpSPM_RDY;
Store Program Memory Ready Handler
;
.org 0xC00
0xC00 RESET: ldi
r16,high(RAMEND) ; Main program
start
0xC01 outSPH,r16;
Set Stack Pointer to top of RAM
0xC02 ldi
r16,low(RAMEND)
0xC03 outSPL,r16
0xC04 sei; Enable
interrupts
0xC05 <instr> xxx
61
2545U–AVR–11/2015

ATmega48/88/168
When the BOOTRST fuse is programmed, the boot section size set to 2Kbytes and the IVSEL
bit in the MCUCR register is set before any interrupts are enabled, the most typical and general
program setup for the reset and interrupt vector addresses in ATmega88 is:

Address Labels CodeComments
;
.org 0xC00
0xC00 rjmpRESET;
Reset handler
0xC01 rjmpEXT_INT0;
IRQ0 Handler
0xC02 rjmpEXT_INT1;
IRQ1 Handler
...;
0xC19 rjmpSPM_RDY;
Store Program Memory Ready Handler
;
0xC1A RESET: ldi
r16,high(RAMEND) ; Main program
start
0xC1B outSPH,r16;
Set Stack Pointer to top of RAM
0xC1C ldi
r16,low(RAMEND)
0xC1D outSPL,r16
0xC1E sei; Enable
interrupts
0xC1F <instr> xxx

12.4 Interrupt vectors in Atmel ATmega168

Table 12-4. Reset and interrupt vectors in ATmega168.

Vector no.
Program

address(2) Source Interrupt definition

1 0x0000(1) RESET External pin, power-on reset, brown-out reset and watchdog system reset

2 0x0002 INT0 External interrupt request 0

3 0x0004 INT1 External interrupt request 1

4 0x0006 PCINT0 Pin change interrupt request 0

5 0x0008 PCINT1 Pin change interrupt request 1

6 0x000A PCINT2 Pin change interrupt request 2

7 0x000C WDT Watchdog time-out interrupt

8 0x000E TIMER2 COMPA Timer/Counter2 compare match A

9 0x0010 TIMER2 COMPB Timer/Counter2 compare match B

10 0x0012 TIMER2 OVF Timer/Counter2 overflow

11 0x0014 TIMER1 CAPT Timer/Counter1 capture event

12 0x0016 TIMER1 COMPA Timer/Counter1 compare match A

13 0x0018 TIMER1 COMPB Timer/Coutner1 compare match B
62
2545U–AVR–11/2015

ATmega48/88/168
Notes: 1. When the BOOTRST fuse is programmed, the device will jump to the boot loader address at
reset, see “Boot loader support – Read-while-write self-programming, Atmel ATmega88 and
Atmel ATmega168” on page 275.

2. When the IVSEL bit in MCUCR is set, interrupt vectors will be moved to the start of the boot
flash section. The address of each Interrupt Vector will then be the address in this table
added to the start address of the boot flash section.

Table 12-5 shows reset and interrupt vectors placement for the various combinations of
BOOTRST and IVSEL settings. If the program never enables an interrupt source, the interrupt
vectors are not used, and regular program code can be placed at these locations. This is also
the case if the reset vector is in the application section while the interrupt vectors are in the boot
section or vice versa.

Note: 1. The boot reset address is shown in Table 27-6 on page 287. For the BOOTRST fuse “1”
means unprogrammed while “0” means programmed.

The most typical and general program setup for the reset and interrupt vector addresses in
ATmega168 is:

Address Labels CodeComments
0x0000 jmpRESET;
Reset Handler
0x0002 jmpEXT_INT0;
IRQ0 Handler

14 0x001A TIMER1 OVF Timer/Counter1 overflow

15 0x001C TIMER0 COMPA Timer/Counter0 compare match A

16 0x001E TIMER0 COMPB Timer/Counter0 compare match B

17 0x0020 TIMER0 OVF Timer/Counter0 overflow

18 0x0022 SPI, STC SPI serial transfer complete

19 0x0024 USART, RX USART Rx complete

20 0x0026 USART, UDRE USART, data register empty

21 0x0028 USART, TX USART, Tx complete

22 0x002A ADC ADC conversion complete

23 0x002C EE READY EEPROM ready

24 0x002E ANALOG COMP Analog comparator

25 0x0030 TWI 2-wire serial interface

26 0x0032 SPM READY Store program memory ready

Table 12-4. Reset and interrupt vectors in ATmega168. (Continued)

Vector no.
Program

address(2) Source Interrupt definition

Table 12-5. Reset and interrupt vectors placement in Atmel ATmega168(1).

BOOTRST IVSEL Reset address Interrupt vectors start address

1 0 0x000 0x001

1 1 0x000 Boot reset address + 0x0002

0 0 Boot reset address 0x001

0 1 Boot reset address Boot reset address + 0x0002
63
2545U–AVR–11/2015

ATmega48/88/168
0x0004 jmpEXT_INT1;
IRQ1 Handler
0x0006 jmpPCINT0;
PCINT0 Handler
0x0008 jmpPCINT1;
PCINT1 Handler
0x000A jmpPCINT2;
PCINT2 Handler
0x000C jmpWDT;
Watchdog Timer Handler
0x000E jmpTIM2_COMPA;
Timer2 Compare A Handler
0x0010 jmpTIM2_COMPB;
Timer2 Compare B Handler
0x0012 jmpTIM2_OVF;
Timer2 Overflow Handler
0x0014 jmpTIM1_CAPT;
Timer1 Capture Handler
0x0016 jmpTIM1_COMPA;
Timer1 Compare A Handler
0x0018 jmpTIM1_COMPB;
Timer1 Compare B Handler
0x001A jmpTIM1_OVF;
Timer1 Overflow Handler
0x001C jmpTIM0_COMPA;
Timer0 Compare A Handler
0x001E jmpTIM0_COMPB;
Timer0 Compare B Handler
0x0020 jmpTIM0_OVF;
Timer0 Overflow Handler
0x0022 jmpSPI_STC;
SPI Transfer Complete Handler
0x0024 jmpUSART_RXC;
USART, RX Complete Handler
0x0026 jmpUSART_UDRE;
USART, UDR Empty Handler
0x0028 jmpUSART_TXC;
USART, TX Complete Handler
0x002A jmpADC; ADC
Conversion Complete Handler
0x002C jmpEE_RDY;
EEPROM Ready Handler
0x002E jmpANA_COMP;
Analog Comparator Handler
0x0030 jmpTWI; 2-wire
Serial Interface Handler
0x0032 jmpSPM_RDY;
Store Program Memory Ready Handler
;
0x0033 RESET: ldir16,
high(RAMEND) ; Main program
start
0x0034 out SPH,r16;
Set Stack Pointer to top of RAM
64
2545U–AVR–11/2015

ATmega48/88/168
0x0035 ldi r16,
low(RAMEND)
0x0036 out SPL,r16
0x0037 sei; Enable
interrupts
0x0038 <instr> xxx

When the BOOTRST fuse is unprogrammed, the boot section size set to 2Kbytes and the IVSEL
bit in the MCUCR Register is set before any interrupts are enabled, the most typical and general
program setup for the reset and interrupt vector addresses in Atmel ATmega168 is:

Address Labels CodeComments
0x0000 RESET: ldi
r16,high(RAMEND) ; Main program
start
0x0001 outSPH,r16;
Set Stack Pointer to top of RAM
0x0002 ldi
r16,low(RAMEND)
0x0003 outSPL,r16
0x0004 sei; Enable
interrupts
0x0005 <instr> xxx
;
.org 0xC02
0x1C02 jmpEXT_INT0;
IRQ0 Handler
0x1C04 jmpEXT_INT1;
IRQ1 Handler
...;
0x1C32 jmpSPM_RDY;
Store Program Memory Ready Handler

When the BOOTRST fuse is programmed and the boot section size set to 2Kbytes, the most
typical and general program setup for the reset and interrupt vector addresses in ATmega168 is:

Address Labels CodeComments
.org 0x0002
0x0002 jmpEXT_INT0;
IRQ0 Handler
0x0004 jmpEXT_INT1;
IRQ1 Handler
...;
0x0032 jmpSPM_RDY;
Store Program Memory Ready Handler
;
.org 0x1C00
0x1C00 RESET: ldi
r16,high(RAMEND) ; Main program
start
0x1C01 outSPH,r16;
Set Stack Pointer to top of RAM
0x1C02 ldi
r16,low(RAMEND)
65
2545U–AVR–11/2015

ATmega48/88/168
0x1C03 outSPL,r16
0x1C04 sei; Enable
interrupts
0x1C05 <instr> xxx

When the BOOTRST fuse is programmed, the boot section size set to 2Kbytes and the IVSEL
bit in the MCUCR register is set before any interrupts are enabled, the most typical and general
program setup for the reset and interrupt vector addresses in ATmega168 is:
66
2545U–AVR–11/2015

ATmega48/88/168
Address Labels CodeComments
;
.org 0x1C00
0x1C00 jmpRESET;
Reset handler
0x1C02 jmpEXT_INT0;
IRQ0 Handler
0x1C04 jmpEXT_INT1;
IRQ1 Handler
...;
0x1C32 jmpSPM_RDY;
Store Program Memory Ready Handler
;
0x1C33 RESET: ldi
r16,high(RAMEND) ; Main program
start
0x1C34 outSPH,r16;
Set Stack Pointer to top of RAM
0x1C35 ldi
r16,low(RAMEND)
0x1C36 outSPL,r16
0x1C37 sei; Enable
interrupts
0x1C38 <instr> xxx

12.4.1 Moving interrupts between application and boot space, Atmel ATmega88 and Atmel ATmega168

The MCU control register controls the placement of the interrupt vector table.

12.5 Register description

12.5.1 MCUCR – MCU control register

• Bit 1 – IVSEL: Interrupt vector select

When the IVSEL bit is cleared (zero), the interrupt vectors are placed at the start of the flash
memory. When this bit is set (one), the interrupt vectors are moved to the beginning of the boot
loader section of the flash. The actual address of the start of the boot flash section is determined
by the BOOTSZ fuses. Refer to the section “Boot loader support – Read-while-write self-
programming, Atmel ATmega88 and Atmel ATmega168” on page 275 for details. To avoid
unintentional changes of interrupt vector tables, a special write procedure must be followed to
change the IVSEL bit:

a. Write the interrupt vector change enable (IVCE) bit to one.

1. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled
in the cycle IVCE is set, and they remain disabled until after the instruction following the write to

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) – – – PUD – – IVSEL IVCE MCUCR

Read/write R R R R/W R R R/W R/W

Initial value 0 0 0 0 0 0 0 0
67
2545U–AVR–11/2015

ATmega48/88/168
IVSEL. If IVSEL is not written, interrupts remain disabled for four cycles. The I-bit in the status
register is unaffected by the automatic disabling.

Note: If interrupt vectors are placed in the boot loader section and boot lock bit BLB02 is programmed,
interrupts are disabled while executing from the Application section. If interrupt vectors are placed
in the Application section and boot lock bit BLB12 is programmed, interrupts are disabled while
executing from the Boot Loader section. Refer to the section “Boot loader support – Read-while-
write self-programming, Atmel ATmega88 and Atmel ATmega168” on page 275 for details on
Boot Lock bits.

This bit is not available in Atmel ATmega48.
68
2545U–AVR–11/2015

ATmega48/88/168
• Bit 0 – IVCE: Interrupt vector change enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by
hardware four cycles after it is written or when IVSEL is written. Setting the IVCE bit will disable
interrupts, as explained in the IVSEL description above. See code example below.

This bit is not available in Atmel ATmega48.

Assembly code example

Move_interrupts:
; Get MCUCR
in r16, MCUCR
mov r17, r16
; Enable change of Interrupt Vectors
ori r16, (1<<IVCE)
out MCUCR, r16
; Move interrupts to Boot Flash section
ldi r17, (1<<IVSEL)
out MCUCR, r17
ret

C code example

void Move_interrupts(void)
{
uchar temp;

/* Get MCUCR*/
temp = MCUCR
/* Enable change of Interrupt Vectors */
MCUCR = temp|(1<<IVCE);
/* Move interrupts to Boot Flash section */
MCUCR = temp|(1<<IVSEL);

}

69
2545U–AVR–11/2015

ATmega48/88/168
13. External interrupts

The external interrupts are triggered by the INT0 and INT1 pins or any of the PCINT23..0 pins.
Observe that, if enabled, the interrupts will trigger even if the INT0 and INT1 or PCINT23..0 pins
are configured as outputs. This feature provides a way of generating a software interrupt. The
pin change interrupt PCI2 will trigger if any enabled PCINT23..16 pin toggles. The pin change
interrupt PCI1 will trigger if any enabled PCINT14..8 pin toggles. The pin change interrupt PCI0
will trigger if any enabled PCINT7..0 pin toggles. The PCMSK2, PCMSK1 and PCMSK0
registers control which pins contribute to the pin change interrupts. Pin change interrupts on
PCINT23..0 are detected asynchronously. This implies that these interrupts can be used for
waking the part also from sleep modes other than idle mode.

The INT0 and INT1 interrupts can be triggered by a falling or rising edge or a low level. This is
set up as indicated in the specification for the external interrupt control register A – EICRA.
When the INT0 or INT1 interrupts are enabled and are configured as level triggered, the
interrupts will trigger as long as the pin is held low. Note that recognition of falling or rising edge
interrupts on INT0 or INT1 requires the presence of an I/O clock, described in “Clock systems
and their distribution” on page 27. Low level interrupt on INT0 and INT1 is detected
asynchronously. This implies that this interrupt can be used for waking the part also from sleep
modes other than Idle mode. The I/O clock is halted in all sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from power-down, the required level
must be held long enough for the MCU to complete the wake-up to trigger the level interrupt. If
the level disappears before the end of the start-up time, the MCU will still wake up, but no
interrupt will be generated. The start-up time is defined by the SUT and CKSEL Fuses as
described in “System clock and clock options” on page 27.

13.1 Pin change interrupt timing

An example of timing of a pin change interrupt is shown in Figure 13-1.
70
2545U–AVR–11/2015

ATmega48/88/168
Figure 13-1. Timing of pin change interrupts.

13.2 Register description

13.2.1 EICRA – External interrupt control register A

The external interrupt control register A contains control bits for interrupt sense control.

• Bit 7..4 – Res: Reserved bits

These bits are unused bits in the Atmel ATmega48/88/168, and will always read as zero.

• Bit 3, 2 – ISC11, ISC10: Interrupt sense control 1 bit 1 and bit 0

The external interrupt 1 is activated by the external pin INT1 if the SREG I-flag and the
corresponding interrupt mask are set. The level and edges on the external INT1 pin that activate
the interrupt are defined in Table 13-1. The value on the INT1 pin is sampled before detecting
edges. If edge or toggle interrupt is selected, pulses that last longer than one clock period will
generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level
interrupt is selected, the low level must be held until the completion of the currently executing
instruction to generate an interrupt.

clk

PCINT(0)

pin_lat

pin_sync

pcint_in_(0)

pcint_syn

pcint_setflag

PCIF

PCINT(0)

pin_sync
pcint_syn

pin_lat
D Q

LE

pcint_setflag
PCIF

clk

clk
PCINT(0) in PCMSK(x)

pcint_in_(0) 0

x

Bit 7 6 5 4 3 2 1 0

(0x69) – – – – ISC11 ISC10 ISC01 ISC00 EICRA

Read/write R R R R R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Table 13-1. Interrupt 1 sense control.

ISC11 ISC10 Description

0 0 The low level of INT1 generates an interrupt request

0 1 Any logical change on INT1 generates an interrupt request

1 0 The falling edge of INT1 generates an interrupt request

1 1 The rising edge of INT1 generates an interrupt request
71
2545U–AVR–11/2015

ATmega48/88/168
• Bit 1, 0 – ISC01, ISC00: Interrupt sense control 0 bit 1 and bit 0

The external interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the
corresponding interrupt mask are set. The level and edges on the external INT0 pin that activate
the interrupt are defined in Table 13-2. The value on the INT0 pin is sampled before detecting
edges. If edge or toggle interrupt is selected, pulses that last longer than one clock period will
generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level
interrupt is selected, the low level must be held until the completion of the currently executing
instruction to generate an interrupt.

Table 13-2. Interrupt 0 sense control.

ISC01 ISC00 Description

0 0 The low level of INT0 generates an interrupt request

0 1 Any logical change on INT0 generates an interrupt request

1 0 The falling edge of INT0 generates an interrupt request

1 1 The rising edge of INT0 generates an interrupt request
72
2545U–AVR–11/2015

ATmega48/88/168
13.2.2 EIMSK – External interrupt mask register

• Bit 7..2 – Res: Reserved bits

These bits are unused bits in the Atmel ATmega48/88/168, and will always read as zero.

• Bit 1 – INT1: External interrupt request 1 enable

When the INT1 bit is set (one) and the I-bit in the status register (SREG) is set (one), the
external pin interrupt is enabled. The interrupt sense control1 bits 1/0 (ISC11 and ISC10) in the
external interrupt control register A (EICRA) define whether the external interrupt is activated on
rising and/or falling edge of the INT1 pin or level sensed. Activity on the pin will cause an
interrupt request even if INT1 is configured as an output. The corresponding interrupt of external
interrupt request 1 is executed from the INT1 interrupt vector.

• Bit 0 – INT0: External interrupt request 0 enable

When the INT0 bit is set (one) and the I-bit in the status register (SREG) is set (one), the
external pin interrupt is enabled. The interrupt sense Control0 bits 1/0 (ISC01 and ISC00) in the
external interrupt control register A (EICRA) define whether the external interrupt is activated on
rising and/or falling edge of the INT0 pin or level sensed. Activity on the pin will cause an
interrupt request even if INT0 is configured as an output. The corresponding interrupt of external
interrupt request 0 is executed from the INT0 interrupt vector.

13.2.3 EIFR – External interrupt flag register

• Bit 7..2 – Res: Reserved bits

These bits are unused bits in the ATmega48/88/168, and will always read as zero.

• Bit 1 – INTF1: External interrupt flag 1

When an edge or logic change on the INT1 pin triggers an interrupt request, INTF1 becomes set
(one). If the I-bit in SREG and the INT1 bit in EIMSK are set (one), the MCU will jump to the
corresponding interrupt vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared
when INT1 is configured as a level interrupt.

• Bit 0 – INTF0: External interrupt flag 0

When an edge or logic change on the INT0 pin triggers an interrupt request, INTF0 becomes set
(one). If the I-bit in SREG and the INT0 bit in EIMSK are set (one), the MCU will jump to the
corresponding interrupt vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared
when INT0 is configured as a level interrupt.

Bit 7 6 5 4 3 2 1 0

0x1D (0x3D) – – – – – – INT1 INT0 EIMSK

Read/write R R R R R R R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1C (0x3C) – – – – – – INTF1 INTF0 EIFR

Read/write R R R R R R R/W R/W

Initial value 0 0 0 0 0 0 0 0
73
2545U–AVR–11/2015

ATmega48/88/168
13.2.4 PCICR – Pin change interrupt control register

• Bit 7..3 - Res: Reserved bits

These bits are unused bits in the Atmel ATmega48/88/168, and will always read as zero.

• Bit 2 - PCIE2: Pin change interrupt enable 2

When the PCIE2 bit is set (one) and the I-bit in the status register (SREG) is set (one), pin
change interrupt 2 is enabled. Any change on any enabled PCINT23..16 pin will cause an
interrupt. The corresponding interrupt of pin change interrupt request is executed from the PCI2
interrupt vector. PCINT23..16 pins are enabled individually by the PCMSK2 register.

• Bit 1 - PCIE1: Pin change interrupt enable 1

When the PCIE1 bit is set (one) and the I-bit in the status register (SREG) is set (one), pin
change interrupt 1 is enabled. Any change on any enabled PCINT14..8 pin will cause an
interrupt. The corresponding interrupt of pin change interrupt request is executed from the PCI1
interrupt vector. PCINT14..8 pins are enabled individually by the PCMSK1 register.

• Bit 0 - PCIE0: Pin change interrupt enable 0

When the PCIE0 bit is set (one) and the I-bit in the status register (SREG) is set (one), pin
change interrupt 0 is enabled. Any change on any enabled PCINT7..0 pin will cause an interrupt.
The corresponding interrupt of pin change interrupt request is executed from the PCI0 interrupt
vector. PCINT7..0 pins are enabled individually by the PCMSK0 register.

13.2.5 PCIFR – Pin change interrupt flag register

• Bit 7..3 - Res: Reserved bits

These bits are unused bits in the ATmega48/88/168, and will always read as zero.

• Bit 2 - PCIF2: Pin change interrupt flag 2

When a logic change on any PCINT23..16 pin triggers an interrupt request, PCIF2 becomes set
(one). If the I-bit in SREG and the PCIE2 bit in PCICR are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it.

• Bit 1 - PCIF1: Pin change interrupt flag 1

When a logic change on any PCINT14..8 pin triggers an interrupt request, PCIF1 becomes set
(one). If the I-bit in SREG and the PCIE1 bit in PCICR are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it.

Bit 7 6 5 4 3 2 1 0

(0x68) – – – – – PCIE2 PCIE1 PCIE0 PCICR

Read/write R R R R R R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1B (0x3B) – – – – – PCIF2 PCIF1 PCIF0 PCIFR

Read/write R R R R R R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0
74
2545U–AVR–11/2015

ATmega48/88/168
• Bit 0 - PCIF0: Pin change interrupt flag 0

When a logic change on any PCINT7..0 pin triggers an interrupt request, PCIF0 becomes set
(one). If the I-bit in SREG and the PCIE0 bit in PCICR are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it.

13.2.6 PCMSK2 – Pin change mask register 2

• Bit 7..0 – PCINT23..16: Pin change enable mask 23..16

Each PCINT23..16-bit selects whether pin change interrupt is enabled on the corresponding I/O
pin. If PCINT23..16 is set and the PCIE2 bit in PCICR is set, pin change interrupt is enabled on
the corresponding I/O pin. If PCINT23..16 is cleared, pin change interrupt on the corresponding
I/O pin is disabled.

13.2.7 PCMSK1 – Pin change mask register 1

• Bit 7 – Res: Reserved bit

This bit is an unused bit in the Atmel ATmega48/88/168, and will always read as zero.

• Bit 6..0 – PCINT14..8: Pin change enable mask 14..8

Each PCINT14..8-bit selects whether pin change interrupt is enabled on the corresponding I/O
pin. If PCINT14..8 is set and the PCIE1 bit in PCICR is set, pin change interrupt is enabled on
the corresponding I/O pin. If PCINT14..8 is cleared, pin change interrupt on the corresponding
I/O pin is disabled.

13.2.8 PCMSK0 – Pin change mask register 0

• Bit 7..0 – PCINT7..0: Pin change enable mask 7..0

Each PCINT7..0 bit selects whether pin change interrupt is enabled on the corresponding I/O
pin. If PCINT7..0 is set and the PCIE0 bit in PCICR is set, pin change interrupt is enabled on the
corresponding I/O pin. If PCINT7..0 is cleared, pin change interrupt on the corresponding I/O pin
is disabled.

Bit 7 6 5 4 3 2 1 0

(0x6D) PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 PCMSK2

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6C) – PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 PCMSK1

Read/write R R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6B) PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 PCMSK0

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0
75
2545U–AVR–11/2015

ATmega48/88/168
14. I/O-ports

14.1 Overview

All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports.
This means that the direction of one port pin can be changed without unintentionally changing
the direction of any other pin with the SBI and CBI instructions. The same applies when
changing drive value (if configured as output) or enabling/disabling of pull-up resistors (if
configured as input). Each output buffer has symmetrical drive characteristics with both high sink
and source capability. The pin driver is strong enough to drive LED displays directly. All port pins
have individually selectable pull-up resistors with a supply-voltage invariant resistance. All I/O
pins have protection diodes to both VCC and Ground as indicated in Figure 14-1. Refer to
“Electrical characteristics” on page 310 for a complete list of parameters.

Figure 14-1. I/O pin equivalent schematic.

All registers and bit references in this section are written in general form. A lower case “x”
represents the numbering letter for the port, and a lower case “n” represents the bit number.
However, when using the register or bit defines in a program, the precise form must be used. For
example, PORTB3 for bit no. 3 in Port B, here documented generally as PORTxn. The physical
I/O Registers and bit locations are listed in “Register description” on page 92.

Three I/O memory address locations are allocated for each port, one each for the Data Register
– PORTx, Data Direction Register – DDRx, and the Port Input Pins – PINx. The Port Input Pins
I/O location is read only, while the Data Register and the Data Direction Register are read/write.
However, writing a logic one to a bit in the PINx Register, will result in a toggle in the
corresponding bit in the Data Register. In addition, the Pull-up Disable – PUD bit in MCUCR
disables the pull-up function for all pins in all ports when set.

Using the I/O port as General Digital I/O is described in “Ports as general digital I/O” on page 77.
Most port pins are multiplexed with alternate functions for the peripheral features on the device.
How each alternate function interferes with the port pin is described in “Alternate port functions”
on page 81. Refer to the individual module sections for a full description of the alternate
functions.

Cpin

Logic

Rpu

See figure
"General Digital I/O" for

details

Pxn
76
2545U–AVR–11/2015

ATmega48/88/168
Note that enabling the alternate function of some of the port pins does not affect the use of the
other pins in the port as general digital I/O.

14.2 Ports as general digital I/O

The ports are bi-directional I/O ports with optional internal pull-ups. Figure 14-2 shows a
functional description of one I/O-port pin, here generically called Pxn.

Figure 14-2. General digital I/O(1).

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O,
SLEEP, and PUD are common to all ports.

14.2.1 Configuring the pin

Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in “Register
description” on page 92, the DDxn bits are accessed at the DDRx I/O address, the PORTxn bits
at the PORTx I/O address, and the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one,
Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input
pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is
activated. To switch the pull-up resistor off, PORTxn has to be written logic zero or the pin has to
be configured as an output pin. The port pins are tri-stated when reset condition becomes active,
even if no clocks are running.

clk

RPx

RRx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER
RPx: READ PORTx PIN

PUD: PULLUP DISABLE

clkI/O: I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

RESET

RESET

Q

QD

Q

Q D

CLR

PORTxn

Q

Q D

CLR

DDxn

PINxn

D
A
TA

 B
U

S

SLEEP

SLEEP: SLEEP CONTROL

Pxn

I/O

WPx

0

1

WRx

WPx: WRITE PINx REGISTER
77
2545U–AVR–11/2015

ATmega48/88/168
If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven
high (one). If PORTxn is written logic zero when the pin is configured as an output pin, the port
pin is driven low (zero).

14.2.2 Toggling the pin

Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn.
Note that the SBI instruction can be used to toggle one single bit in a port.

14.2.3 Switching between input and output

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn}
= 0b11), an intermediate state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output
low ({DDxn, PORTxn} = 0b10) must occur. Normally, the pull-up enabled state is fully
acceptable, as a high-impedance environment will not notice the difference between a strong
high driver and a pull-up. If this is not the case, the PUD bit in the MCUCR Register can be set to
disable all pull-ups in all ports.

Switching between input with pull-up and output low generates the same problem. The user
must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn}
= 0b11) as an intermediate step.

Table 14-1 summarizes the control signals for the pin value.

14.2.4 Reading the pin value

Independent of the setting of Data Direction bit DDxn, the port pin can be read through the
PINxn Register bit. As shown in Figure 14-2 on page 77, the PINxn Register bit and the
preceding latch constitute a synchronizer. This is needed to avoid metastability if the physical
pin changes value near the edge of the internal clock, but it also introduces a delay. Figure 14-3
on page 79 shows a timing diagram of the synchronization when reading an externally applied
pin value. The maximum and minimum propagation delays are denoted tpd,max and tpd,min
respectively.

Table 14-1. Port pin configurations.

DDxn PORTxn
PUD

(in MCUCR) I/O Pull-up Comment

0 0 X Input No Tri-state (Hi-Z)

0 1 0 Input Yes Pxn will source current if ext. pulled low

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Output low (sink)

1 1 X Output No Output high (source)
78
2545U–AVR–11/2015

ATmega48/88/168
Figure 14-3. Synchronization when reading an externally applied pin value.

Consider the clock period starting shortly after the first falling edge of the system clock. The latch
is closed when the clock is low, and goes transparent when the clock is high, as indicated by the
shaded region of the “SYNC LATCH” signal. The signal value is latched when the system clock
goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As
indicated by the two arrows tpd,max and tpd,min, a single signal transition on the pin will be
delayed between ½ and 1½ system clock period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as
indicated in Figure 14-4. The out instruction sets the “SYNC LATCH” signal at the positive edge
of the clock. In this case, the delay tpd through the synchronizer is one system clock period.

Figure 14-4. Synchronization when reading a software assigned pin value.

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define
the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin
values are read back again, but as previously discussed, a nop instruction is included to be able
to read back the value recently assigned to some of the pins.

XXX in r17, PINx

0x00 0xFF

INSTRUCTIONS

SYNC LATCH

PINxn

r17

XXX

SYSTEM CLK

tpd, max

tpd, min

out PORTx, r16 nop in r17, PINx

0xFF

0x00 0xFF

SYSTEM CLK

r16

INSTRUCTIONS

SYNC LATCH

PINxn

r17

tpd
79
2545U–AVR–11/2015

ATmega48/88/168
Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-
ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and bit
3 as low and redefining bits 0 and 1 as strong high drivers.

14.2.5 Digital input enable and sleep modes

As shown in Figure 14-2 on page 77, the digital input signal can be clamped to ground at the
input of the Schmitt Trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep
Controller in Power-down mode, Power-save mode, and Standby mode to avoid high power
consumption if some input signals are left floating, or have an analog signal level close to VCC/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt
request is not enabled, SLEEP is active also for these pins. SLEEP is also overridden by various
other alternate functions as described in “Alternate port functions” on page 81.

If a logic high level (“one”) is present on an asynchronous external interrupt pin configured as
“Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the external interrupt
is not enabled, the corresponding External Interrupt Flag will be set when resuming from the
above mentioned Sleep mode, as the clamping in these sleep mode produces the requested
logic change.

14.2.6 Unconnected pins

If some pins are unused, it is recommended to ensure that these pins have a defined level. Even
though most of the digital inputs are disabled in the deep sleep modes as described above,

Assembly code example(1)

...
; Define pull-ups and set outputs high
; Define directions for port pins
ldi

r16,(1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0)
ldi

r17,(1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)
out PORTB,r16
out DDRB,r17
; Insert nop for synchronization
nop
; Read port pins
in r16,PINB
...

C code example

unsigned char i;
...
/* Define pull-ups and set outputs high */
/* Define directions for port pins */
PORTB = (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0);
DDRB = (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0);
/* Insert nop for synchronization*/
__no_operation();
/* Read port pins */
i = PINB;
...
80
2545U–AVR–11/2015

ATmega48/88/168
floating inputs should be avoided to reduce current consumption in all other modes where the
digital inputs are enabled (Reset, Active mode and Idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal pull-up.
In this case, the pull-up will be disabled during reset. If low power consumption during reset is
important, it is recommended to use an external pull-up or pull-down. Connecting unused pins
directly to VCC or GND is not recommended, since this may cause excessive currents if the pin is
accidentally configured as an output.

14.3 Alternate port functions

Most port pins have alternate functions in addition to being general digital I/Os. Figure 14-5
shows how the port pin control signals from the simplified Figure 14-2 on page 77 can be
overridden by alternate functions. The overriding signals may not be present in all port pins, but
the figure serves as a generic description applicable to all port pins in the AVR microcontroller
family.

Figure 14-5. Alternate port functions(1).

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O,
SLEEP, and PUD are common to all ports. All other signals are unique for each pin.

clk

RPx

RRx
WRx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER

RPx: READ PORTx PIN

PUD: PULLUP DISABLE

clkI/O: I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

SET

CLR

0

1

0

1

0

1

DIxn

AIOxn

DIEOExn

PVOVxn

PVOExn

DDOVxn

DDOExn

PUOExn

PUOVxn

PUOExn: Pxn PULL-UP OVERRIDE ENABLE
PUOVxn: Pxn PULL-UP OVERRIDE VALUE
DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE
DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE
PVOExn: Pxn PORT VALUE OVERRIDE ENABLE
PVOVxn: Pxn PORT VALUE OVERRIDE VALUE

DIxn: DIGITAL INPUT PIN n ON PORTx
AIOxn: ANALOG INPUT/OUTPUT PIN n ON PORTx

RESET

RESET

Q

Q D

CLR

Q

Q D

CLR

Q

QD

CLR

PINxn

PORTxn

DDxn

D
AT

A
 B

U
S

0

1
DIEOVxn

SLEEP

DIEOExn: Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE
DIEOVxn: Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE
SLEEP: SLEEP CONTROL

Pxn

I/O

0

1

PTOExn

PTOExn: Pxn, PORT TOGGLE OVERRIDE ENABLE

WPx: WRITE PINx

WPx
81
2545U–AVR–11/2015

ATmega48/88/168
Table 14-2 summarizes the function of the overriding signals. The pin and port indexes from
Figure 14-5 on page 81 are not shown in the succeeding tables. The overriding signals are
generated internally in the modules having the alternate function.

The following subsections shortly describe the alternate functions for each port, and relate the
overriding signals to the alternate function. Refer to the alternate function description for further
details.

Table 14-2. Generic description of overriding signals for alternate functions.

Signal name Full name Description

PUOE
Pull-up override
enable

If this signal is set, the pull-up enable is controlled by the PUOV
signal. If this signal is cleared, the pull-up is enabled when
{DDxn, PORTxn, PUD} = 0b010.

PUOV
Pull-up override
value

If PUOE is set, the pull-up is enabled/disabled when PUOV is
set/cleared, regardless of the setting of the DDxn, PORTxn,
and PUD Register bits.

DDOE
Data direction
override enable

If this signal is set, the Output Driver Enable is controlled by the
DDOV signal. If this signal is cleared, the Output driver is
enabled by the DDxn Register bit.

DDOV
Data direction
override value

If DDOE is set, the Output Driver is enabled/disabled when
DDOV is set/cleared, regardless of the setting of the DDxn
Register bit.

PVOE
Port value override
enable

If this signal is set and the Output Driver is enabled, the port
value is controlled by the PVOV signal. If PVOE is cleared, and
the Output Driver is enabled, the port Value is controlled by the
PORTxn Register bit.

PVOV
Port value override
value

If PVOE is set, the port value is set to PVOV, regardless of the
setting of the PORTxn Register bit.

PTOE
Port toggle
override enable

If PTOE is set, the PORTxn Register bit is inverted.

DIEOE
Digital input enable
override enable

If this bit is set, the Digital Input Enable is controlled by the
DIEOV signal. If this signal is cleared, the Digital Input Enable
is determined by MCU state (Normal mode, sleep mode).

DIEOV
Digital input enable
override value

If DIEOE is set, the Digital Input is enabled/disabled when
DIEOV is set/cleared, regardless of the MCU state (Normal
mode, sleep mode).

DI Digital input

This is the Digital Input to alternate functions. In the figure, the
signal is connected to the output of the Schmitt Trigger but
before the synchronizer. Unless the Digital Input is used as a
clock source, the module with the alternate function will use its
own synchronizer.

AIO
Analog
input/output

This is the Analog Input/output to/from alternate functions. The
signal is connected directly to the pad, and can be used bi-
directionally.
82
2545U–AVR–11/2015

ATmega48/88/168
14.3.1 Alternate functions of port B

The port B pins with alternate functions are shown in Table 14-3.

The alternate pin configuration is as follows:

• XTAL2/TOSC2/PCINT7 – Port B, bit 7

XTAL2: Chip clock oscillator pin 2. Used as clock pin for crystal Oscillator or Low-frequency
crystal Oscillator. When used as a clock pin, the pin can not be used as an I/O pin. When
external clock is connected to XTAL1 this pin can be used as an I/O pin.

TOSC2: Timer Oscillator pin 2. Used only if internal calibrated RC Oscillator is selected as chip
clock source, and the asynchronous timer is enabled by the correct setting in ASSR. When the
AS2 bit in ASSR is set (one) and the EXCLK bit is cleared (zero) to enable asynchronous
clocking of Timer/Counter2 using the Crystal Oscillator, pin PB7 is disconnected from the port,
and becomes the inverting output of the Oscillator amplifier. In this mode, a crystal Oscillator is
connected to this pin, and the pin cannot be used as an I/O pin.

PCINT7: Pin Change Interrupt source 7. The PB7 pin can serve as an external interrupt source.

If PB7 is used as a clock pin, DDB7, PORTB7 and PINB7 will all read 0.

• XTAL1/TOSC1/PCINT6 – Port B, bit 6

XTAL1: Chip clock oscillator pin 1. Used for all chip clock sources except internal calibrated RC
Oscillator. When used as a clock pin, the pin can not be used as an I/O pin.

Table 14-3. Port B pins alternate functions.

Port pin Alternate functions

PB7
XTAL2 (chip clock oscillator pin 2)
TOSC2 (timer oscillator pin 2)
PCINT7 (pin change interrupt 7)

PB6
XTAL1 (chip clock oscillator pin 1 or external clock input)
TOSC1 (timer oscillator pin 1)
PCINT6 (pin change interrupt 6)

PB5
SCK (SPI bus master clock Input)
PCINT5 (pin change interrupt 5)

PB4
MISO (SPI bus master input/slave output)
PCINT4 (pin change interrupt 4)

PB3
MOSI (SPI bus master output/slave input)
OC2A (Timer/Counter2 output compare match A output)
PCINT3 (pin change interrupt 3)

PB2
SS (SPI bus master slave select)
OC1B (Timer/Counter1 output compare match B output)
PCINT2 (pin change interrupt 2)

PB1
OC1A (Timer/Counter1 output compare match A output)
PCINT1 (pin change interrupt 1)

PB0
ICP1 (Timer/Counter1 input capture input)
CLKO (divided system clock output)
PCINT0 (pin change interrupt 0)
83
2545U–AVR–11/2015

ATmega48/88/168
TOSC1: Timer Oscillator pin 1. Used only if internal calibrated RC Oscillator is selected as chip
clock source, and the asynchronous timer is enabled by the correct setting in ASSR. When the
AS2 bit in ASSR is set (one) to enable asynchronous clocking of Timer/Counter2, pin PB6 is
disconnected from the port, and becomes the input of the inverting Oscillator amplifier. In this
mode, a crystal Oscillator is connected to this pin, and the pin can not be used as an I/O pin.

PCINT6: Pin Change Interrupt source 6. The PB6 pin can serve as an external interrupt source.

If PB6 is used as a clock pin, DDB6, PORTB6 and PINB6 will all read 0.

• SCK/PCINT5 – Port B, bit 5

SCK: Master Clock output, Slave Clock input pin for SPI channel. When the SPI is enabled as a
Slave, this pin is configured as an input regardless of the setting of DDB5. When the SPI is
enabled as a Master, the data direction of this pin is controlled by DDB5. When the pin is forced
by the SPI to be an input, the pull-up can still be controlled by the PORTB5 bit.

PCINT5: Pin Change Interrupt source 5. The PB5 pin can serve as an external interrupt source.

• MISO/PCINT4 – Port B, bit 4

MISO: Master Data input, Slave Data output pin for SPI channel. When the SPI is enabled as a
Master, this pin is configured as an input regardless of the setting of DDB4. When the SPI is
enabled as a Slave, the data direction of this pin is controlled by DDB4. When the pin is forced
by the SPI to be an input, the pull-up can still be controlled by the PORTB4 bit.

PCINT4: Pin Change Interrupt source 4. The PB4 pin can serve as an external interrupt source.

• MOSI/OC2/PCINT3 – Port B, bit 3

MOSI: SPI Master Data output, Slave Data input for SPI channel. When the SPI is enabled as a
Slave, this pin is configured as an input regardless of the setting of DDB3. When the SPI is
enabled as a Master, the data direction of this pin is controlled by DDB3. When the pin is forced
by the SPI to be an input, the pull-up can still be controlled by the PORTB3 bit.

OC2, Output Compare Match Output: The PB3 pin can serve as an external output for the
Timer/Counter2 Compare Match. The PB3 pin has to be configured as an output (DDB3 set
(one)) to serve this function. The OC2 pin is also the output pin for the PWM mode timer
function.

PCINT3: Pin Change Interrupt source 3. The PB3 pin can serve as an external interrupt source.

• SS/OC1B/PCINT2 – Port B, bit 2

SS: Slave Select input. When the SPI is enabled as a Slave, this pin is configured as an input
regardless of the setting of DDB2. As a Slave, the SPI is activated when this pin is driven low.
When the SPI is enabled as a Master, the data direction of this pin is controlled by DDB2. When
the pin is forced by the SPI to be an input, the pull-up can still be controlled by the PORTB2 bit.

OC1B, Output Compare Match output: The PB2 pin can serve as an external output for the
Timer/Counter1 Compare Match B. The PB2 pin has to be configured as an output (DDB2 set
(one)) to serve this function. The OC1B pin is also the output pin for the PWM mode timer
function.

PCINT2: Pin Change Interrupt source 2. The PB2 pin can serve as an external interrupt source.
84
2545U–AVR–11/2015

ATmega48/88/168
• OC1A/PCINT1 – Port B, bit 1

OC1A, Output Compare Match output: The PB1 pin can serve as an external output for the
Timer/Counter1 Compare Match A. The PB1 pin has to be configured as an output (DDB1 set
(one)) to serve this function. The OC1A pin is also the output pin for the PWM mode timer
function.

PCINT1: Pin Change Interrupt source 1. The PB1 pin can serve as an external interrupt source.

• ICP1/CLKO/PCINT0 – Port B, bit 0

ICP1, Input Capture Pin: The PB0 pin can act as an Input Capture Pin for Timer/Counter1.

CLKO, Divided System Clock: The divided system clock can be output on the PB0 pin. The
divided system clock will be output if the CKOUT Fuse is programmed, regardless of the
PORTB0 and DDB0 settings. It will also be output during reset.

PCINT0: Pin Change Interrupt source 0. The PB0 pin can serve as an external interrupt source.

Table 14-4 and Table 14-5 on page 86 relate the alternate functions of Port B to the overriding
signals shown in Figure 14-5 on page 81. SPI MSTR INPUT and SPI SLAVE OUTPUT
constitute the MISO signal, while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE
INPUT.

Table 14-4. Overriding signals for alternate functions in PB7..PB4.

Signal
name

PB7/XTAL2/
TOSC2/PCINT7(1)

PB6/XTAL1/
TOSC1/PCINT6(1)

PB5/SCK/
PCINT5

PB4/MISO/
PCINT4

PUOE
INTRC • EXTCK+
AS2

INTRC + AS2 SPE • MSTR SPE • MSTR

PUOV 0 0 PORTB5 • PUD PORTB4 • PUD

DDOE
INTRC • EXTCK+
AS2

INTRC + AS2 SPE • MSTR SPE • MSTR

DDOV 0 0 0 0

PVOE 0 0 SPE • MSTR SPE • MSTR

PVOV 0 0 SCK OUTPUT
SPI SLAVE
OUTPUT

DIEOE
INTRC • EXTCK +
AS2 + PCINT7 •
PCIE0

INTRC + AS2 +
PCINT6 • PCIE0

PCINT5 • PCIE0 PCINT4 • PCIE0

DIEOV
(INTRC + EXTCK) •
AS2

INTRC • AS2 1 1

DI PCINT7 INPUT PCINT6 INPUT
PCINT5 INPUT

SCK INPUT

PCINT4 INPUT

SPI MSTR INPUT

AIO Oscillator Output
Oscillator/Clock
Input

– –
85
2545U–AVR–11/2015

ATmega48/88/168
Notes: 1. INTRC means that one of the internal RC Oscillators are selected (by the CKSEL fuses),
EXTCK means that external clock is selected (by the CKSEL fuses).

14.3.2 Alternate functions of port C

The port C pins with alternate functions are shown in Table 14-6.

The alternate pin configuration is as follows:

Table 14-5. Overriding signals for alternate functions in PB3..PB0.

Signal
name

PB3/MOSI/
OC2/PCINT3

PB2/SS/
OC1B/PCINT2

PB1/OC1A/
PCINT1

PB0/ICP1/
PCINT0

PUOE SPE • MSTR SPE • MSTR 0 0

PUOV PORTB3 • PUD PORTB2 • PUD 0 0

DDOE SPE • MSTR SPE • MSTR 0 0

DDOV 0 0 0 0

PVOE
SPE • MSTR +
OC2A ENABLE

OC1B ENABLE OC1A ENABLE 0

PVOV
SPI MSTR OUTPUT
+ OC2A

OC1B OC1A 0

DIEOE PCINT3 • PCIE0 PCINT2 • PCIE0 PCINT1 • PCIE0 PCINT0 • PCIE0

DIEOV 1 1 1 1

DI
PCINT3 INPUT

SPI SLAVE INPUT

PCINT2 INPUT

SPI SS
PCINT1 INPUT

PCINT0 INPUT

ICP1 INPUT

AIO – – – –

Table 14-6. Port C pins alternate functions.

Port pin Alternate function

PC6
RESET (reset pin)
PCINT14 (pin change interrupt 14)

PC5
ADC5 (ADC input channel 5)
SCL (2-wire serial bus clock line)
PCINT13 (pin change interrupt 13)

PC4
ADC4 (ADC input channel 4)
SDA (2-wire serial bus data input/output line)
PCINT12 (pin change interrupt 12)

PC3
ADC3 (ADC Input Channel 3)
PCINT11 (Pin Change Interrupt 11)

PC2
ADC2 (ADC input channel 2)
PCINT10 (pin change interrupt 10)

PC1
ADC1 (ADC input channel 1)
PCINT9 (pin change interrupt 9)

PC0
ADC0 (ADC input channel 0)
PCINT8 (pin change interrupt 8)
86
2545U–AVR–11/2015

ATmega48/88/168
• RESET/PCINT14 – Port C, bit 6

RESET, Reset pin: When the RSTDISBL Fuse is programmed, this pin functions as a normal I/O
pin, and the part will have to rely on Power-on Reset and Brown-out Reset as its reset sources.
When the RSTDISBL Fuse is unprogrammed, the reset circuitry is connected to the pin, and the
pin can not be used as an I/O pin.

If PC6 is used as a reset pin, DDC6, PORTC6 and PINC6 will all read 0.

PCINT14: Pin Change Interrupt source 14. The PC6 pin can serve as an external interrupt
source.

• SCL/ADC5/PCINT13 – Port C, bit 5

SCL, 2-wire Serial Interface Clock: When the TWEN bit in TWCR is set (one) to enable the 2-
wire Serial Interface, pin PC5 is disconnected from the port and becomes the Serial Clock I/O
pin for the 2-wire Serial Interface. In this mode, there is a spike filter on the pin to suppress
spikes shorter than 50ns on the input signal, and the pin is driven by an open drain driver with
slew-rate limitation.

PC5 can also be used as ADC input Channel 5. Note that ADC input channel 5 uses digital
power.

PCINT13: Pin Change Interrupt source 13. The PC5 pin can serve as an external interrupt
source.

• SDA/ADC4/PCINT12 – Port C, bit 4

SDA, 2-wire Serial Interface Data: When the TWEN bit in TWCR is set (one) to enable the 2-wire
Serial Interface, pin PC4 is disconnected from the port and becomes the Serial Data I/O pin for
the 2-wire Serial Interface. In this mode, there is a spike filter on the pin to suppress spikes
shorter than 50ns on the input signal, and the pin is driven by an open drain driver with slew-rate
limitation.

PC4 can also be used as ADC input Channel 4. Note that ADC input channel 4 uses digital
power.

PCINT12: Pin Change Interrupt source 12. The PC4 pin can serve as an external interrupt
source.

• ADC3/PCINT11 – Port C, bit 3

PC3 can also be used as ADC input Channel 3. Note that ADC input channel 3 uses analog
power.

PCINT11: Pin Change Interrupt source 11. The PC3 pin can serve as an external interrupt
source.

• ADC2/PCINT10 – Port C, bit 2

PC2 can also be used as ADC input Channel 2. Note that ADC input channel 2 uses analog
power.

PCINT10: Pin Change Interrupt source 10. The PC2 pin can serve as an external interrupt
source.

• ADC1/PCINT9 – Port C, bit 1

PC1 can also be used as ADC input Channel 1. Note that ADC input channel 1 uses analog
power.
87
2545U–AVR–11/2015

ATmega48/88/168
PCINT9: Pin Change Interrupt source 9. The PC1 pin can serve as an external interrupt source.

• ADC0/PCINT8 – Port C, bit 0

PC0 can also be used as ADC input Channel 0. Note that ADC input channel 0 uses analog
power.

PCINT8: Pin Change Interrupt source 8. The PC0 pin can serve as an external interrupt source.

Table 14-7 and Table 14-8 relate the alternate functions of Port C to the overriding signals
shown in Figure 14-5 on page 81.

Note: 1. When enabled, the 2-wire Serial Interface enables slew-rate controls on the output pins PC4
and PC5. This is not shown in the figure. In addition, spike filters are connected between the
AIO outputs shown in the port figure and the digital logic of the TWI module.

Table 14-7. Overriding signals for alternate functions in PC6..PC4(1).

Signal
name PC6/RESET/PCINT14 PC5/SCL/ADC5/PCINT13 PC4/SDA/ADC4/PCINT12

PUOE RSTDISBL TWEN TWEN

PUOV 1 PORTC5 • PUD PORTC4 • PUD

DDOE RSTDISBL TWEN TWEN

DDOV 0 SCL_OUT SDA_OUT

PVOE 0 TWEN TWEN

PVOV 0 0 0

DIEOE
RSTDISBL + PCINT14 •
PCIE1

PCINT13 • PCIE1 + ADC5D PCINT12 • PCIE1 + ADC4D

DIEOV RSTDISBL PCINT13 • PCIE1 PCINT12 • PCIE1

DI PCINT14 INPUT PCINT13 INPUT PCINT12 INPUT

AIO RESET INPUT ADC5 INPUT / SCL INPUT ADC4 INPUT / SDA INPUT

Table 14-8. Overriding signals for alternate functions in PC3..PC0.

Signal
name

PC3/ADC3/
PCINT11

PC2/ADC2/
PCINT10

PC1/ADC1/
PCINT9

PC0/ADC0/
PCINT8

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

DIEOE
PCINT11 • PCIE1 +
ADC3D

PCINT10 • PCIE1 +
ADC2D

PCINT9 • PCIE1 +
ADC1D

PCINT8 • PCIE1 +
ADC0D

DIEOV PCINT11 • PCIE1 PCINT10 • PCIE1 PCINT9 • PCIE1 PCINT8 • PCIE1

DI PCINT11 INPUT PCINT10 INPUT PCINT9 INPUT PCINT8 INPUT

AIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADC0 INPUT
88
2545U–AVR–11/2015

ATmega48/88/168
14.3.3 Alternate functions of port D

The port D pins with alternate functions are shown in Table 14-9.

The alternate pin configuration is as follows:

• AIN1/OC2B/PCINT23 – Port D, bit 7

AIN1, Analog Comparator Negative Input. Configure the port pin as input with the internal pull-up
switched off to avoid the digital port function from interfering with the function of the Analog
Comparator.

PCINT23: Pin Change Interrupt source 23. The PD7 pin can serve as an external interrupt
source.

• AIN0/OC0A/PCINT22 – Port D, bit 6

AIN0, Analog Comparator Positive Input. Configure the port pin as input with the internal pull-up
switched off to avoid the digital port function from interfering with the function of the Analog
Comparator.

OC0A, Output Compare Match output: The PD6 pin can serve as an external output for the
Timer/Counter0 Compare Match A. The PD6 pin has to be configured as an output (DDD6 set
(one)) to serve this function. The OC0A pin is also the output pin for the PWM mode timer
function.

PCINT22: Pin Change Interrupt source 22. The PD6 pin can serve as an external interrupt
source.

Table 14-9. Port D pins alternate functions.

Port pin Alternate function

PD7
AIN1 (analog comparator negative input)
PCINT23 (pin change interrupt 23)

PD6
AIN0 (analog comparator positive input)
OC0A (Timer/Counter0 output compare match A output)
PCINT22 (pin change interrupt 22)

PD5
T1 (Timer/Counter 1 external counter input)
OC0B (Timer/Counter0 output compare match B output)
PCINT21 (pin change interrupt 21)

PD4
XCK (USART external clock input/output)
T0 (Timer/Counter0 external counter input)
PCINT20 (pin change interrupt 20)

PD3
INT1 (external interrupt 1 input)
OC2B (Timer/Counter2 output compare match B output)
PCINT19 (pin change interrupt 19)

PD2
INT0 (external interrupt 0 input)
PCINT18 (pin change interrupt 18)

PD1
TXD (USART output pin)
PCINT17 (pin change interrupt 17)

PD0
RXD (USART input pin)
PCINT16 (pin change interrupt 16)
89
2545U–AVR–11/2015

ATmega48/88/168
• T1/OC0B/PCINT21 – Port D, bit 5

T1, Timer/Counter1 counter source.

OC0B, Output Compare Match output: The PD5 pin can serve as an external output for the
Timer/Counter0 Compare Match B. The PD5 pin has to be configured as an output (DDD5 set
(one)) to serve this function. The OC0B pin is also the output pin for the PWM mode timer
function.

PCINT21: Pin Change Interrupt source 21. The PD5 pin can serve as an external interrupt
source.

• XCK/T0/PCINT20 – Port D, bit 4

XCK, USART external clock.

T0, Timer/Counter0 counter source.

PCINT20: Pin Change Interrupt source 20. The PD4 pin can serve as an external interrupt
source.

• INT1/OC2B/PCINT19 – Port D, bit 3

INT1, External Interrupt source 1: The PD3 pin can serve as an external interrupt source.

OC2B, Output Compare Match output: The PD3 pin can serve as an external output for the
Timer/Counter0 Compare Match B. The PD3 pin has to be configured as an output (DDD3 set
(one)) to serve this function. The OC2B pin is also the output pin for the PWM mode timer
function.

PCINT19: Pin Change Interrupt source 19. The PD3 pin can serve as an external interrupt
source.

• INT0/PCINT18 – Port D, bit 2

INT0, External Interrupt source 0: The PD2 pin can serve as an external interrupt source.

PCINT18: Pin Change Interrupt source 18. The PD2 pin can serve as an external interrupt
source.

• TXD/PCINT17 – Port D, bit 1

TXD, Transmit Data (Data output pin for the USART). When the USART Transmitter is enabled,
this pin is configured as an output regardless of the value of DDD1.

PCINT17: Pin Change Interrupt source 17. The PD1 pin can serve as an external interrupt
source.

• RXD/PCINT16 – Port D, bit 0

RXD, Receive Data (Data input pin for the USART). When the USART Receiver is enabled this
pin is configured as an input regardless of the value of DDD0. When the USART forces this pin
to be an input, the pull-up can still be controlled by the PORTD0 bit.

PCINT16: Pin Change Interrupt source 16. The PD0 pin can serve as an external interrupt
source.

Table 14-10 on page 91 and Table 14-11 on page 91 relate the alternate functions of Port D to
the overriding signals shown in Figure 14-5 on page 81.
90
2545U–AVR–11/2015

ATmega48/88/168
Table 14-10. Overriding signals for alternate functions PD7..PD4.

Signal
name

PD7/AIN1
/PCINT23

PD6/AIN0/
OC0A/PCINT22

PD5/T1/OC0B/
PCINT21

PD4/XCK/
T0/PCINT20

PUOE 0 0 0 0

PUO 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 OC0A ENABLE OC0B ENABLE UMSEL

PVOV 0 OC0A OC0B XCK OUTPUT

DIEOE PCINT23 • PCIE2 PCINT22 • PCIE2 PCINT21 • PCIE2 PCINT20 • PCIE2

DIEOV 1 1 1 1

DI PCINT23 INPUT PCINT22 INPUT
PCINT21 INPUT
T1 INPUT

PCINT20 INPUT
XCK INPUT
T0 INPUT

AIO AIN1 INPUT AIN0 INPUT – –

Table 14-11. Overriding signals for alternate functions in PD3..PD0.

Signal
name

PD3/OC2B/INT1/
PCINT19

PD2/INT0/
PCINT18

PD1/TXD/
PCINT17

PD0/RXD/
PCINT16

PUOE 0 0 TXEN RXEN

PUO 0 0 0 PORTD0 • PUD

DDOE 0 0 TXEN RXEN

DDOV 0 0 1 0

PVOE OC2B ENABLE 0 TXEN 0

PVOV OC2B 0 TXD 0

DIEOE
INT1 ENABLE +
PCINT19 • PCIE2

INT0 ENABLE +
PCINT18 • PCIE1

PCINT17 • PCIE2 PCINT16 • PCIE2

DIEOV 1 1 1 1

DI
PCINT19 INPUT
INT1 INPUT

PCINT18 INPUT
INT0 INPUT

PCINT17 INPUT
PCINT16 INPUT
RXD

AIO – – – –
91
2545U–AVR–11/2015

ATmega48/88/168
14.4 Register description

14.4.1 MCUCR – MCU control register

• Bit 4 – PUD: Pull-up disable

When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and
PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See
“Configuring the pin” on page 77 for more details about this feature.

14.4.2 PORTB – The port B data register

14.4.3 DDRB – The port B data direction register

14.4.4 PINB – The port B input pins address

14.4.5 PORTC – The port C data register

14.4.6 DDRC – The port C data direction register

14.4.7 PINC – The port C input pins address

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) – – – PUD – – IVSEL IVCE MCUCR

Read/write R R R R/W R R R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x05 (0x25) PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 PORTB

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x04 (0x24) DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 DDRB

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x03 (0x23) PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 PINB

Read/write R R R R R R R R

Initial value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

0x08 (0x28) – PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 PORTC

Read/write R R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x07 (0x27) – DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 DDRC

Read/write R R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
92
2545U–AVR–11/2015

ATmega48/88/168
14.4.8 PORTD – The port D data register

14.4.9 DDRD – The port D data direction register

14.4.10 PIND – The port D input pins address

0x06 (0x26) – PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 PINC

Read/write R R R R R R R R

Initial value 0 N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

0x0B (0x2B) PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 PORTD

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x0A (0x2A) DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 DDRD

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x09 (0x29) PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 PIND

Read/write R R R R R R R R

Initial value N/A N/A N/A N/A N/A N/A N/A N/A
93
2545U–AVR–11/2015

ATmega48/88/168
15. 8-bit Timer/Counter0 with PWM

15.1 Features
• Two independent output compare units

• Double buffered output compare registers

• Clear timer on compare match (auto reload)

• Glitch free, phase correct pulse width modulator (PWM)

• Variable PWM period

• Frequency generator

• Three independent interrupt sources (TOV0, OCF0A, and OCF0B)

15.2 Overview

Timer/Counter0 is a general purpose 8-bit Timer/Counter module, with two independent Output
Compare Units, and with PWM support. It allows accurate program execution timing (event
management) and wave generation.

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 15-1 on page 95. For
the actual placement of I/O pins, refer to “Pinout Atmel ATmega48/88/168.” on page 2. CPU
accessible I/O Registers, including I/O bits and I/O pins, are shown in bold. The device-specific
I/O Register and bit locations are listed in the “Register description” on page 106.

The PRTIM0 bit in “Minimizing power consumption” on page 41 must be written to zero to enable
Timer/Counter0 module.
94
2545U–AVR–11/2015

ATmega48/88/168
Figure 15-1. 8-bit timer/counter block diagram.

15.2.1 Definitions

Many register and bit references in this section are written in general form. A lower case “n”
replaces the Timer/Counter number, in this case 0. A lower case “x” replaces the Output
Compare Unit, in this case Compare Unit A or Compare Unit B. However, when using the
register or bit defines in a program, the precise form must be used, that is, TCNT0 for accessing
Timer/Counter0 counter value and so on.

The definitions in Table 15-1 are also used extensively throughout the document.

15.2.2 Registers

The Timer/Counter (TCNT0) and Output Compare Registers (OCR0A and OCR0B) are 8-bit
registers. Interrupt request (abbreviated to Int.req. in the figure) signals are all visible in the
Timer Interrupt Flag Register (TIFR0). All interrupts are individually masked with the Timer
Interrupt Mask Register (TIMSK0). TIFR0 and TIMSK0 are not shown in the figure.

Clock select

Timer/counter
D

AT
A

 B
U

S

OCRnA

OCRnB

=

=

TCNTn

Waveform
generation

Waveform
generation

OCnA

OCnB

=

Fixed
TOP
value

Control logic

= 0

TOP BOTTOM

Count

Clear

Direction

TOVn
(Int.req.)

OCnA
(Int.req.)

OCnB
(Int.req.)

TCCRnA TCCRnB

Tn
Edge

detector

(From prescaler)

clkTn

Table 15-1. Definitions.

BOTTOM The counter reaches the BOTTOM when it becomes 0x00.

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP

The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value 0xFF
(MAX) or the value stored in the OCR0A Register. The assignment is
dependent on the mode of operation.
95
2545U–AVR–11/2015

ATmega48/88/168
The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the T0 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the Clock Select logic is referred to as the timer clock (clkT0).

The double buffered Output Compare Registers (OCR0A and OCR0B) are compared with the
Timer/Counter value at all times. The result of the compare can be used by the Waveform
Generator to generate a PWM or variable frequency output on the Output Compare pins (OC0A
and OC0B). See “Using the output compare unit” on page 123. for details. The compare match
event will also set the Compare Flag (OCF0A or OCF0B) which can be used to generate an
Output Compare interrupt request.

15.3 Timer/counter clock sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CS02:0) bits
located in the Timer/Counter Control Register (TCCR0B). For details on clock sources and
prescaler, see “Timer/Counter0 and Timer/Counter1 prescalers” on page 141.

15.4 Counter unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure
15-2 shows a block diagram of the counter and its surroundings.

Figure 15-2. Counter unit block diagram.

Signal description (internal signals):

count : Increment or decrement TCNT0 by 1.

direction: Select between increment and decrement.

clear : Clear TCNT0 (set all bits to zero).

clkTn : Timer/Counter clock, referred to as clkT0 in the following.

top : Signalize that TCNT0 has reached maximum value.

bottom : Signalize that TCNT0 has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clkT0). clkT0 can be generated from an external or internal clock source,
selected by the Clock Select bits (CS02:0). When no clock source is selected (CS02:0 = 0) the
timer is stopped. However, the TCNT0 value can be accessed by the CPU, regardless of
whether clkT0 is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

DATA BUS

TCNTn Control logic

count

TOVn
(Int.req.)

Clock select

top

Tn
Edge

detector

(From prescaler)

clkTn

bottom

direction

clear
96
2545U–AVR–11/2015

ATmega48/88/168
The counting sequence is determined by the setting of the WGM01 and WGM00 bits located in
the Timer/Counter Control Register (TCCR0A) and the WGM02 bit located in the Timer/Counter
Control Register B (TCCR0B). There are close connections between how the counter behaves
(counts) and how waveforms are generated on the Output Compare outputs OC0A and OC0B.
For more details about advanced counting sequences and waveform generation, see “Modes of
operation” on page 99.

The Timer/Counter Overflow Flag (TOV0) is set according to the mode of operation selected by
the WGM02:0 bits. TOV0 can be used for generating a CPU interrupt.

15.5 Output compare unit

The 8-bit comparator continuously compares TCNT0 with the Output Compare Registers
(OCR0A and OCR0B). Whenever TCNT0 equals OCR0A or OCR0B, the comparator signals a
match. A match will set the Output Compare Flag (OCF0A or OCF0B) at the next timer clock
cycle. If the corresponding interrupt is enabled, the Output Compare Flag generates an Output
Compare interrupt. The Output Compare Flag is automatically cleared when the interrupt is
executed. Alternatively, the flag can be cleared by software by writing a logical one to its I/O bit
location. The Waveform Generator uses the match signal to generate an output according to
operating mode set by the WGM02:0 bits and Compare Output mode (COM0x1:0) bits. The max
and bottom signals are used by the Waveform Generator for handling the special cases of the
extreme values in some modes of operation (“Modes of operation” on page 99).

Figure 15-3 shows a block diagram of the Output Compare unit.

Figure 15-3. Output compare unit, block diagram.

The OCR0x Registers are double buffered when using any of the Pulse Width Modulation
(PWM) modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the
double buffering is disabled. The double buffering synchronizes the update of the OCR0x
Compare Registers to either top or bottom of the counting sequence. The synchronization
prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the
output glitch-free.

OCFnx (Int.req.)

= (8-bit comparator)

OCRnx

OCnx

DATA BUS

TCNTn

WGMn1:0

Waveform generator

top

FOCn

COMnx1:0

bottom
97
2545U–AVR–11/2015

ATmega48/88/168
The OCR0x Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCR0x Buffer Register, and if double buffering is
disabled the CPU will access the OCR0x directly.

15.5.1 Force output compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC0x) bit. Forcing compare match will not set the
OCF0x Flag or reload/clear the timer, but the OC0x pin will be updated as if a real compare
match had occurred (the COM0x1:0 bits settings define whether the OC0x pin is set, cleared or
toggled).

15.5.2 Compare match blocking by TCNT0 write

All CPU write operations to the TCNT0 Register will block any compare match that occur in the
next timer clock cycle, even when the timer is stopped. This feature allows OCR0x to be
initialized to the same value as TCNT0 without triggering an interrupt when the Timer/Counter
clock is enabled.

15.5.3 Using the output compare unit

Since writing TCNT0 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT0 when using the Output Compare Unit,
independently of whether the Timer/Counter is running or not. If the value written to TCNT0
equals the OCR0x value, the compare match will be missed, resulting in incorrect waveform
generation. Similarly, do not write the TCNT0 value equal to BOTTOM when the counter is
downcounting.

The setup of the OC0x should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC0x value is to use the Force Output
Compare (FOC0x) strobe bits in Normal mode. The OC0x Registers keep their values even
when changing between Waveform Generation modes.

Be aware that the COM0x1:0 bits are not double buffered together with the compare value.
Changing the COM0x1:0 bits will take effect immediately.

15.6 Compare match output unit

The Compare Output mode (COM0x1:0) bits have two functions. The Waveform Generator uses
the COM0x1:0 bits for defining the Output Compare (OC0x) state at the next compare match.
Also, the COM0x1:0 bits control the OC0x pin output source. Figure 15-4 on page 99 shows a
simplified schematic of the logic affected by the COM0x1:0 bit setting. The I/O Registers, I/O
bits, and I/O pins in the figure are shown in bold. Only the parts of the general I/O port control
registers (DDR and PORT) that are affected by the COM0x1:0 bits are shown. When referring to
the OC0x state, the reference is for the internal OC0x Register, not the OC0x pin. If a system
reset occur, the OC0x Register is reset to “0”.
98
2545U–AVR–11/2015

ATmega48/88/168
Figure 15-4. Compare match output unit, schematic.

The general I/O port function is overridden by the Output Compare (OC0x) from the Waveform
Generator if either of the COM0x1:0 bits are set. However, the OC0x pin direction (input or
output) is still controlled by the Data Direction Register (DDR) for the port pin. The Data
Direction Register bit for the OC0x pin (DDR_OC0x) must be set as output before the OC0x
value is visible on the pin. The port override function is independent of the Waveform Generation
mode.

The design of the Output Compare pin logic allows initialization of the OC0x state before the
output is enabled. Note that some COM0x1:0 bit settings are reserved for certain modes of
operation. See “Register description” on page 106.

15.6.1 Compare output mode and waveform generation

The Waveform Generator uses the COM0x1:0 bits differently in Normal, CTC, and PWM modes.
For all modes, setting the COM0x1:0 = 0 tells the Waveform Generator that no action on the
OC0x Register is to be performed on the next compare match. For compare output actions in the
non-PWM modes refer to Table 15-2 on page 106. For fast PWM mode, refer to Table 15-3 on
page 106, and for phase correct PWM refer to Table 15-4 on page 107.

A change of the COM0x1:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOC0x strobe bits.

15.7 Modes of operation

The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins,
is defined by the combination of the Waveform Generation mode (WGM02:0) and Compare
Output mode (COM0x1:0) bits. The Compare Output mode bits do not affect the counting
sequence, while the Waveform Generation mode bits do. The COM0x1:0 bits control whether
the PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-
PWM modes the COM0x1:0 bits control whether the output should be set, cleared, or toggled at
a compare match (See “Compare match output unit” on page 98.).

PORT

DDR

D Q

D Q

OCnx
pinOCnx

D Q
Waveform
generator

COMnx1

COMnx0

0

1

D
AT

A
 B

U
S

FOCn

clkI/O
99
2545U–AVR–11/2015

ATmega48/88/168
For detailed timing information refer to “Timer/counter timing diagrams” on page 104.

15.7.1 Normal mode

The simplest mode of operation is the Normal mode (WGM02:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the
bottom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV0) will be set in the
same timer clock cycle as the TCNT0 becomes zero. The TOV0 Flag in this case behaves like a
ninth bit, except that it is only set, not cleared. However, combined with the timer overflow
interrupt that automatically clears the TOV0 Flag, the timer resolution can be increased by
software. There are no special cases to consider in the Normal mode, a new counter value can
be written anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the
Output Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

15.7.2 Clear timer on compare match (CTC) mode

In Clear Timer on Compare or CTC mode (WGM02:0 = 2), the OCR0A Register is used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter
value (TCNT0) matches the OCR0A. The OCR0A defines the top value for the counter, hence
also its resolution. This mode allows greater control of the compare match output frequency. It
also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 15-5. The counter value (TCNT0)
increases until a compare match occurs between TCNT0 and OCR0A, and then counter
(TCNT0) is cleared.

Figure 15-5. CTC mode, timing diagram.

An interrupt can be generated each time the counter value reaches the TOP value by using the
OCF0A Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating
the TOP value. However, changing TOP to a value close to BOTTOM when the counter is
running with none or a low prescaler value must be done with care since the CTC mode does
not have the double buffering feature. If the new value written to OCR0A is lower than the
current value of TCNT0, the counter will miss the compare match. The counter will then have to
count to its maximum value (0xFF) and wrap around starting at 0x00 before the compare match
can occur.

For generating a waveform output in CTC mode, the OC0A output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode

TCNTn

OCn
(toggle)

OCnx interrupt flag set

1 4Period 2 3

(COMnx1:0 = 1)
100
2545U–AVR–11/2015

ATmega48/88/168
(COM0A1:0 = 1). The OC0A value will not be visible on the port pin unless the data direction for
the pin is set to output. The waveform generated will have a maximum frequency of fOC0 =
fclk_I/O/2 when OCR0A is set to zero (0x00). The waveform frequency is defined by the following
equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV0 Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x00.

15.7.3 Fast PWM mode

The fast Pulse Width Modulation or fast PWM mode (WGM02:0 = 3 or 7) provides a high
frequency PWM waveform generation option. The fast PWM differs from the other PWM option
by its single-slope operation. The counter counts from BOTTOM to TOP then restarts from
BOTTOM. TOP is defined as 0xFF when WGM2:0 = 3, and OCR0A when WGM2:0 = 7. In non-
inverting Compare Output mode, the Output Compare (OC0x) is cleared on the compare match
between TCNT0 and OCR0x, and set at BOTTOM. In inverting Compare Output mode, the
output is set on compare match and cleared at BOTTOM. Due to the single-slope operation, the
operating frequency of the fast PWM mode can be twice as high as the phase correct PWM
mode that use dual-slope operation. This high frequency makes the fast PWM mode well suited
for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the TOP value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast
PWM mode is shown in Figure 15-6. The TCNT0 value is in the timing diagram shown as a
histogram for illustrating the single-slope operation. The diagram includes non-inverted and
inverted PWM outputs. The small horizontal line marks on the TCNT0 slopes represent compare
matches between OCR0x and TCNT0.

Figure 15-6. Fast PWM Mode, timing diagram.

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches TOP. If the
interrupt is enabled, the interrupt handler routine can be used for updating the compare value.

fOCnx

fclk_I/O

2 N 1 OCRnx+  
--=

TCNTn

OCRnx update and
TOVn interrupt flag set

1Period 2 3

OCn

OCn

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx interrupt flag set

4 5 6 7
101
2545U–AVR–11/2015

ATmega48/88/168
In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC0x pins.
Setting the COM0x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COM0x1:0 to three: Setting the COM0A1:0 bits to one allows
the OC0A pin to toggle on Compare Matches if the WGM02 bit is set. This option is not available
for the OC0B pin (see Table 15-6 on page 107). The actual OC0x value will only be visible on
the port pin if the data direction for the port pin is set as output. The PWM waveform is
generated by setting (or clearing) the OC0x Register at the compare match between OCR0x and
TCNT0, and clearing (or setting) the OC0x Register at the timer clock cycle the counter is
cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0A Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR0A is set equal to BOTTOM, the output will
be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR0A equal to MAX will result
in a constantly high or low output (depending on the polarity of the output set by the COM0A1:0
bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by
setting OC0x to toggle its logical level on each compare match (COM0x1:0 = 1). The waveform
generated will have a maximum frequency of fOC0 = fclk_I/O/2 when OCR0A is set to zero. This
feature is similar to the OC0A toggle in CTC mode, except the double buffer feature of the
Output Compare unit is enabled in the fast PWM mode.

15.7.4 Phase correct PWM mode

The phase correct PWM mode (WGM02:0 = 1 or 5) provides a high resolution phase correct
PWM waveform generation option. The phase correct PWM mode is based on a dual-slope
operation. The counter counts repeatedly from BOTTOM to TOP and then from TOP to
BOTTOM. TOP is defined as 0xFF when WGM2:0 = 1, and OCR0A when WGM2:0 = 5. In non-
inverting Compare Output mode, the Output Compare (OC0x) is cleared on the compare match
between TCNT0 and OCR0x while upcounting, and set on the compare match while
downcounting. In inverting Output Compare mode, the operation is inverted. The dual-slope
operation has lower maximum operation frequency than single slope operation. However, due to
the symmetric feature of the dual-slope PWM modes, these modes are preferred for motor
control applications.

In phase correct PWM mode the counter is incremented until the counter value matches TOP.
When the counter reaches TOP, it changes the count direction. The TCNT0 value will be equal
to TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown
on Figure 15-7 on page 103. The TCNT0 value is in the timing diagram shown as a histogram for
illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM
outputs. The small horizontal line marks on the TCNT0 slopes represent compare matches
between OCR0x and TCNT0.

fOCnxPWM

fclk_I/O

N 256
------------------=
102
2545U–AVR–11/2015

ATmega48/88/168
Figure 15-7. Phase correct PWM mode, timing diagram.

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches BOTTOM. The
Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM
value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OC0x pins. Setting the COM0x1:0 bits to two will produce a non-inverted PWM. An inverted
PWM output can be generated by setting the COM0x1:0 to three: Setting the COM0A0 bits to
one allows the OC0A pin to toggle on Compare Matches if the WGM02 bit is set. This option is
not available for the OC0B pin (see Table 15-7 on page 108). The actual OC0x value will only be
visible on the port pin if the data direction for the port pin is set as output. The PWM waveform is
generated by clearing (or setting) the OC0x Register at the compare match between OCR0x and
TCNT0 when the counter increments, and setting (or clearing) the OC0x Register at compare
match between OCR0x and TCNT0 when the counter decrements. The PWM frequency for the
output when using phase correct PWM can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0A Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR0A is set equal to BOTTOM, the
output will be continuously low and if set equal to MAX the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of period 2 in Figure 15-7 OCnx has a transition from high to low even though
there is no Compare Match. The point of this transition is to guarantee symmetry around
BOTTOM. There are two cases that give a transition without Compare Match.

l OCRnx changes its value from MAX, like in Figure 15-7. When the OCR0A value is MAX
the OCn pin value is the same as the result of a down-counting Compare Match. To

TOVn interrupt flag set

OCnx interrupt flag set

1 2 3

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx update

fOCnxPCPWM

fclk_I/O

N 510
------------------=
103
2545U–AVR–11/2015

ATmega48/88/168
ensure symmetry around BOTTOM the OCnx value at MAX must correspond to the result
of an up-counting Compare Match

l The timer starts counting from a value higher than the one in OCRnx, and for that reason
misses the Compare Match and hence the OCnx change that would have happened on
the way up

15.8 Timer/counter timing diagrams

The Timer/Counter is a synchronous design and the timer clock (clkT0) is therefore shown as a
clock enable signal in the following figures. The figures include information on when interrupt
flags are set. Figure 15-8 contains timing data for basic Timer/Counter operation. The figure
shows the count sequence close to the MAX value in all modes other than phase correct PWM
mode.

Figure 15-8. Timer/counter timing diagram, no prescaling.

Figure 15-9 shows the same timing data, but with the prescaler enabled.

Figure 15-9. Timer/counter timing diagram, with prescaler (fclk_I/O/8).

Figure 15-10 on page 105 shows the setting of OCF0B in all modes and OCF0A in all modes
except CTC mode and PWM mode, where OCR0A is TOP.

clkTn
(clkI/O/1)

TOVn

clkI/O

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

TOVn

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)
104
2545U–AVR–11/2015

ATmega48/88/168
Figure 15-10. Timer/counter timing diagram, setting of OCF0x, with prescaler (fclk_I/O/8).

Figure 15-11 shows the setting of OCF0A and the clearing of TCNT0 in CTC mode and fast
PWM mode where OCR0A is TOP.

Figure 15-11. Timer/counter timing diagram, clear timer on compare match mode, with prescaler
(fclk_I/O/8).

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clkI/O

clkTn
(clkI/O/8)

OCFnx

OCRnx

TCNTn
(CTC)

TOP

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)
105
2545U–AVR–11/2015

ATmega48/88/168
15.9 Register description

15.9.1 TCCR0A – Timer/counter control register A

• Bits 7:6 – COM0A1:0: Compare match output A mode

These bits control the Output Compare pin (OC0A) behavior. If one or both of the COM0A1:0
bits are set, the OC0A output overrides the normal port functionality of the I/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to the OC0A pin
must be set in order to enable the output driver.

When OC0A is connected to the pin, the function of the COM0A1:0 bits depends on the
WGM02:0 bit setting. Table 15-2 shows the COM0A1:0 bit functionality when the WGM02:0 bits
are set to a normal or CTC mode (non-PWM).

Table 15-3 shows the COM0A1:0 bit functionality when the WGM01:0 bits are set to fast PWM
mode.

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the
Compare Match is ignored, but the set or clear is done at BOTTOM. See “Fast PWM mode”
on page 101 for more details.

Bit 7 6 5 4 3 2 1 0

0x24 (0x44) COM0A1 COM0A0 COM0B1 COM0B0 – – WGM01 WGM00 TCCR0A

Read/write R/W R/W R/W R/W R R R/W R/W

Initial value 0 0 0 0 0 0 0 0

Table 15-2. Compare output mode, non-PWM mode.

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected

0 1 Toggle OC0A on compare match

1 0 Clear OC0A on compare match

1 1 Set OC0A on compare match

Table 15-3. Compare output mode, fast PWM mode(1).

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected

0 1
WGM02 = 0: Normal port operation, OC0A disconnected
WGM02 = 1: Toggle OC0A on compare match

1 0
Clear OC0A on compare match, set OC0A at BOTTOM,
(non-inverting mode)

1 1
Set OC0A on compare match, clear OC0A at BOTTOM,
(inverting mode)
106
2545U–AVR–11/2015

ATmega48/88/168
Table 15-4 shows the COM0A1:0 bit functionality when the WGM02:0 bits are set to phase
correct PWM mode.

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the
Compare Match is ignored, but the set or clear is done at TOP. See “Phase correct PWM
mode” on page 128 for more details.

• Bits 5:4 – COM0B1:0: Compare match output B mode

These bits control the Output Compare pin (OC0B) behavior. If one or both of the COM0B1:0
bits are set, the OC0B output overrides the normal port functionality of the I/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to the OC0B pin
must be set in order to enable the output driver.

When OC0B is connected to the pin, the function of the COM0B1:0 bits depends on the
WGM02:0 bit setting. Table 15-5 shows the COM0B1:0 bit functionality when the WGM02:0 bits
are set to a normal or CTC mode (non-PWM).

Table 15-6 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to fast PWM
mode.

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the
Compare Match is ignored, but the set or clear is done at TOP. See “Fast PWM mode” on
page 101 for more details.

Table 15-4. Compare output mode, phase correct PWM mode(1).

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected

0 1
WGM02 = 0: Normal Port Operation, OC0A Disconnected
WGM02 = 1: Toggle OC0A on Compare Match

1 0
Clear OC0A on Compare Match when up-counting
Set OC0A on Compare Match when down-counting

1 1
Set OC0A on Compare Match when up-counting
Clear OC0A on Compare Match when down-counting

Table 15-5. Compare output mode, non-PWM mode.

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected

0 1 Toggle OC0B on compare match

1 0 Clear OC0B on compare match

1 1 Set OC0B on compare match

Table 15-6. Compare output mode, fast PWM mode(1).

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected

0 1 Reserved

1 0
Clear OC0B on compare match, set OC0B at BOTTOM,
(non-inverting mode)

1 1
Set OC0B on compare match, clear OC0B at BOTTOM,
(inverting mode)
107
2545U–AVR–11/2015

ATmega48/88/168
Table 15-7 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to phase
correct PWM mode.

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the
Compare Match is ignored, but the set or clear is done at TOP. See “Phase correct PWM
mode” on page 102 for more details.

• Bits 3, 2 – Res: Reserved bits

These bits are reserved bits in the Atmel ATmega48/88/168 and will always read as zero.

• Bits 1:0 – WGM01:0: Waveform generation mode

Combined with the WGM02 bit found in the TCCR0B Register, these bits control the counting
sequence of the counter, the source for maximum (TOP) counter value, and what type of
waveform generation to be used, see Table 15-8. Modes of operation supported by the
Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare Match (CTC) mode,
and two types of Pulse Width Modulation (PWM) modes (see “Modes of operation” on page 99).

Notes: 1. MAX = 0xFF

2. BOTTOM = 0x00

Table 15-7. Compare output mode, phase correct PWM mode(1).

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected

0 1 Reserved

1 0
Clear OC0B on compare match when up-counting
Set OC0B on compare match when down-counting

1 1
Set OC0B on compare match when up-counting
Clear OC0B on compare match when down-counting

Table 15-8. Waveform generation mode bit description.

Mode WGM02 WGM01 WGM00

Timer/counter
mode of

operation TOP
Update of
OCRx at

TOV flag
set on(1)(2)

0 0 0 0 Normal 0xFF Immediate MAX

1 0 0 1
PWM,

phase correct
0xFF TOP BOTTOM

2 0 1 0 CTC OCRA Immediate MAX

3 0 1 1 Fast PWM 0xFF BOTTOM MAX

4 1 0 0 Reserved – – –

5 1 0 1
PWM,

phase correct
OCRA TOP BOTTOM

6 1 1 0 Reserved – – –

7 1 1 1 Fast PWM OCRA BOTTOM TOP
108
2545U–AVR–11/2015

ATmega48/88/168
15.9.2 TCCR0B – Timer/counter control register B

• Bit 7 – FOC0A: Force output compare A

The FOC0A bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCR0B is written when operating in PWM mode. When writing a logical one to the FOC0A bit,
an immediate Compare Match is forced on the Waveform Generation unit. The OC0A output is
changed according to its COM0A1:0 bits setting. Note that the FOC0A bit is implemented as a
strobe. Therefore it is the value present in the COM0A1:0 bits that determines the effect of the
forced compare.

A FOC0A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR0A as TOP.

The FOC0A bit is always read as zero.

• Bit 6 – FOC0B: Force output compare B

The FOC0B bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCR0B is written when operating in PWM mode. When writing a logical one to the FOC0B bit,
an immediate Compare Match is forced on the Waveform Generation unit. The OC0B output is
changed according to its COM0B1:0 bits setting. Note that the FOC0B bit is implemented as a
strobe. Therefore it is the value present in the COM0B1:0 bits that determines the effect of the
forced compare.

A FOC0B strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR0B as TOP.

The FOC0B bit is always read as zero.

• Bits 5:4 – Res: Reserved bits

These bits are reserved bits in the Atmel ATmega48/88/168 and will always read as zero.

• Bit 3 – WGM02: Waveform generation mode

See the description in the “TCCR0A – Timer/counter control register A” on page 106.

• Bits 2:0 – CS02:0: Clock select

The three Clock Select bits select the clock source to be used by the Timer/Counter.

Bit 7 6 5 4 3 2 1 0

0x25 (0x45) FOC0A FOC0B – – WGM02 CS02 CS01 CS00 TCCR0B

Read/write W W R R R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0
109
2545U–AVR–11/2015

ATmega48/88/168
If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

15.9.3 TCNT0 – Timer/counter register

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNT0 Register blocks (removes) the Compare
Match on the following timer clock. Modifying the counter (TCNT0) while the counter is running,
introduces a risk of missing a Compare Match between TCNT0 and the OCR0x Registers.

15.9.4 OCR0A – Output compare register A

The Output Compare Register A contains an 8-bit value that is continuously compared with the
counter value (TCNT0). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC0A pin.

15.9.5 OCR0B – Output compare register B

The Output Compare Register B contains an 8-bit value that is continuously compared with the
counter value (TCNT0). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC0B pin.

Table 15-9. Clock select bit description.

CS02 CS01 CS00 Description

0 0 0 No clock source (timer/counter stopped)

0 0 1 clkI/O/(no prescaling)

0 1 0 clkI/O/8 (from prescaler)

0 1 1 clkI/O/64 (from prescaler)

1 0 0 clkI/O/256 (from prescaler)

1 0 1 clkI/O/1024 (from prescaler)

1 1 0 External clock source on T0 pin. Clock on falling edge.

1 1 1 External clock source on T0 pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

0x26 (0x46) TCNT0[7:0] TCNT0

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x27 (0x47) OCR0A[7:0] OCR0A

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x28 (0x48) OCR0B[7:0] OCR0B

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0
110
2545U–AVR–11/2015

ATmega48/88/168
15.9.6 TIMSK0 – Timer/counter interrupt mask register

• Bits 7..3 – Res: Reserved bits

These bits are reserved bits in the Atmel ATmega48/88/168 and will always read as zero.

• Bit 2 – OCIE0B: Timer/counter output compare match B interrupt enable

When the OCIE0B bit is written to one, and the I-bit in the Status Register is set, the
Timer/Counter Compare Match B interrupt is enabled. The corresponding interrupt is executed if
a Compare Match in Timer/Counter occurs, that is, when the OCF0B bit is set in the
Timer/Counter Interrupt Flag Register – TIFR0.

• Bit 1 – OCIE0A: Timer/Counter0 output compare match A interrupt enable

When the OCIE0A bit is written to one, and the I-bit in the Status Register is set, the
Timer/Counter0 Compare Match A interrupt is enabled. The corresponding interrupt is executed
if a Compare Match in Timer/Counter0 occurs, that is, when the OCF0A bit is set in the
Timer/Counter 0 Interrupt Flag Register – TIFR0.

• Bit 0 – TOIE0: Timer/Counter0 overflow interrupt enable

When the TOIE0 bit is written to one, and the I-bit in the Status Register is set, the
Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter0 occurs, that is, when the TOV0 bit is set in the Timer/Counter 0
Interrupt Flag Register – TIFR0.

15.9.7 TIFR0 – Timer/Counter0 interrupt flag register

• Bits 7..3 – Res: Reserved bits

These bits are reserved bits in the ATmega48/88/168 and will always read as zero.

• Bit 2 – OCF0B: Timer/Counter0 output compare B match flag

The OCF0B bit is set when a Compare Match occurs between the Timer/Counter and the data in
OCR0B – Output Compare Register0 B. OCF0B is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, OCF0B is cleared by writing a logic one to
the flag. When the I-bit in SREG, OCIE0B (Timer/Counter Compare B Match Interrupt Enable),
and OCF0B are set, the Timer/Counter Compare Match Interrupt is executed.

• Bit 1 – OCF0A: Timer/Counter0 output compare A match flag

The OCF0A bit is set when a Compare Match occurs between the Timer/Counter0 and the data
in OCR0A – Output Compare Register0. OCF0A is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, OCF0A is cleared by writing a logic one to

Bit 7 6 5 4 3 2 1 0

(0x6E) – – – – – OCIE0B OCIE0A TOIE0 TIMSK0

Read/write R R R R R R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x15 (0x35) – – – – – OCF0B OCF0A TOV0 TIFR0

Read/write R R R R R R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0
111
2545U–AVR–11/2015

ATmega48/88/168
the flag. When the I-bit in SREG, OCIE0A (Timer/Counter0 Compare Match Interrupt Enable),
and OCF0A are set, the Timer/Counter0 Compare Match Interrupt is executed.

• Bit 0 – TOV0: Timer/Counter0 overflow flag

The bit TOV0 is set when an overflow occurs in Timer/Counter0. TOV0 is cleared by hardware
when executing the corresponding interrupt handling vector. Alternatively, TOV0 is cleared by
writing a logic one to the flag. When the SREG I-bit, TOIE0 (Timer/Counter0 Overflow Interrupt
Enable), and TOV0 are set, the Timer/Counter0 Overflow interrupt is executed.

The setting of this flag is dependent of the WGM02:0 bit setting. Refer to Table 15-8, “Waveform
generation mode bit description.” on page 108.
112
2545U–AVR–11/2015

ATmega48/88/168
16. 16-bit Timer/Counter1 with PWM

16.1 Features
• True 16-bit design (that is, allows 16-bit PWM)

• Two independent output compare units

• Double buffered output compare registers

• One input capture unit

• Input capture noise canceler

• Clear timer on compare match (auto reload)

• Glitch-free, phase correct pulse width modulator (PWM)

• Variable PWM period

• Frequency generator

• External event counter

• Four independent interrupt sources (TOV1, OCF1A, OCF1B, and ICF1)

16.2 Overview

The 16-bit Timer/Counter unit allows accurate program execution timing (event management),
wave generation, and signal timing measurement.

Most register and bit references in this section are written in general form. A lower case “n”
replaces the Timer/Counter number, and a lower case “x” replaces the Output Compare unit
channel. However, when using the register or bit defines in a program, the precise form must be
used, that is, TCNT1 for accessing Timer/Counter1 counter value and so on.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 16-1 on page 114. For
the actual placement of I/O pins, refer to “Pinout Atmel ATmega48/88/168.” on page 2. CPU
accessible I/O Registers, including I/O bits and I/O pins, are shown in bold. The device-specific
I/O Register and bit locations are listed in the “Register description” on page 134.

The PRTIM1 bit in “PRR – Power reduction register” on page 44 must be written to zero to
enable Timer/Counter1 module.
113
2545U–AVR–11/2015

ATmega48/88/168
Figure 16-1. 16-bit timer/counter block diagram(1).

Note: 1. Refer to Figure 1-1 on page 2, Table 14-3 on page 83 and Table 14-9 on page 89 for
Timer/Counter1 pin placement and description.

16.2.1 Registers

The Timer/Counter (TCNT1), Output Compare Registers (OCR1A/B), and Input Capture
Register (ICR1) are all 16-bit registers. Special procedures must be followed when accessing
the 16-bit registers. These procedures are described in the section “Accessing 16-bit registers”
on page 115. The Timer/Counter Control Registers (TCCR1A/B) are 8-bit registers and have no
CPU access restrictions. Interrupt requests (abbreviated to Int.Req. in the figure) signals are all
visible in the Timer Interrupt Flag Register (TIFR1). All interrupts are individually masked with
the Timer Interrupt Mask Register (TIMSK1). TIFR1 and TIMSK1 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the T1 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the Clock Select logic is referred to as the timer clock (clkT1).

The double buffered Output Compare Registers (OCR1A/B) are compared with the
Timer/Counter value at all time. The result of the compare can be used by the Waveform
Generator to generate a PWM or variable frequency output on the Output Compare pin
(OC1A/B). See “Output compare units” on page 121.. The compare match event will also set the

Clock select

Timer/counter
D

AT
A

 B
U

S

OCRnA

OCRnB

ICRn

=

=

TCNTn

Waveform
generation

Waveform
generation

OCnA

OCnB

Noise
canceler

ICPn

=

Fixed
TOP

values

Edge
detector

Control logic

= 0

TOP BOTTOM

Count

Clear

Direction

TOVn
(Int.req.)

OCnA
(Int.req.)

OCnB
(Int.req.)

ICFn (Int.req.)

TCCRnA TCCRnB

(From analog
comparator output)

Tn
Edge

detector

(From prescaler)

clkTn
114
2545U–AVR–11/2015

ATmega48/88/168
Compare Match Flag (OCF1A/B) which can be used to generate an Output Compare interrupt
request.

The Input Capture Register can capture the Timer/Counter value at a given external (edge
triggered) event on either the Input Capture pin (ICP1) or on the Analog Comparator pins (See
“Analog comparator” on page 246.) The Input Capture unit includes a digital filtering unit (Noise
Canceler) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined
by either the OCR1A Register, the ICR1 Register, or by a set of fixed values. When using
OCR1A as TOP value in a PWM mode, the OCR1A Register can not be used for generating a
PWM output. However, the TOP value will in this case be double buffered allowing the TOP
value to be changed in run time. If a fixed TOP value is required, the ICR1 Register can be used
as an alternative, freeing the OCR1A to be used as PWM output.

16.2.2 Definitions

The following definitions are used extensively throughout the section:

16.3 Accessing 16-bit registers

The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR CPU via
the 8-bit data bus. The 16-bit register must be byte accessed using two read or write operations.
Each 16-bit timer has a single 8-bit register for temporary storing of the high byte of the 16-bit
access. The same temporary register is shared between all 16-bit registers within each 16-bit
timer. Accessing the low byte triggers the 16-bit read or write operation. When the low byte of a
16-bit register is written by the CPU, the high byte stored in the temporary register, and the low
byte written are both copied into the 16-bit register in the same clock cycle. When the low byte of
a 16-bit register is read by the CPU, the high byte of the 16-bit register is copied into the
temporary register in the same clock cycle as the low byte is read.

Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCR1A/B 16-
bit registers does not involve using the temporary register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low
byte must be read before the high byte.

The following code examples show how to access the 16-bit Timer Registers assuming that no
interrupts updates the temporary register. The same principle can be used directly for accessing
the OCR1A/B and ICR1 Registers. Note that when using “C”, the compiler handles the 16-bit
access.

BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.

MAX The counter reaches its MAXimum when it becomes 0xFFFF (decimal 65535).

TOP

The counter reaches the TOP when it becomes equal to the highest value in the count
sequence. The TOP value can be assigned to be one of the fixed values: 0x00FF, 0x01FF,
or 0x03FF, or to the value stored in the OCR1A or ICR1 register. The assignment is
dependent of the mode of operation.
115
2545U–AVR–11/2015

ATmega48/88/168
Note: 1. See ”About code examples” on page 8.
For I/O registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt
occurs between the two instructions accessing the 16-bit register, and the interrupt code
updates the temporary register by accessing the same or any other of the 16-bit Timer
Registers, then the result of the access outside the interrupt will be corrupted. Therefore, when
both the main code and the interrupt code update the temporary register, the main code must
disable the interrupts during the 16-bit access.

The following code examples show how to do an atomic read of the TCNT1 Register contents.
Reading any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

Assembly code examples(1)

...
; Set TCNT1 to 0x01FF
ldi r17,0x01
ldi r16,0xFF
out TCNT1H,r17
out TCNT1L,r16
; Read TCNT1 into r17:r16
in r16,TCNT1L
in r17,TCNT1H
...

C code examples(1)

unsigned int i;
...
/* Set TCNT1 to 0x01FF */
TCNT1 = 0x1FF;
/* Read TCNT1 into i */
i = TCNT1;
...
116
2545U–AVR–11/2015

ATmega48/88/168
Note: 1. See ”About code examples” on page 8.
For I/O registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

The following code examples show how to do an atomic write of the TCNT1 Register contents.
Writing any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

Assembly code example(1)

TIM16_ReadTCNT1:
; Save global interrupt flag
in r18,SREG
; Disable interrupts
cli
; Read TCNT1 into r17:r16
in r16,TCNT1L
in r17,TCNT1H
; Restore global interrupt flag
out SREG,r18
ret

C code example(1)

unsigned int TIM16_ReadTCNT1(void)
{

unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
_CLI();
/* Read TCNT1 into i */
i = TCNT1;
/* Restore global interrupt flag */
SREG = sreg;
return i;

}

117
2545U–AVR–11/2015

ATmega48/88/168
Note: 1. See ”About code examples” on page 8.
For I/O registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example requires that the r17:r16 register pair contains the value to be
written to TCNT1.

16.3.1 Reusing the temporary high byte register

If writing to more than one 16-bit register where the high byte is the same for all registers written,
then the high byte only needs to be written once. However, note that the same rule of atomic
operation described previously also applies in this case.

16.4 Timer/counter clock sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CS12:0) bits
located in the Timer/Counter control Register B (TCCR1B). For details on clock sources and
prescaler, see “Timer/Counter0 and Timer/Counter1 prescalers” on page 141.

Assembly code example(1)

TIM16_WriteTCNT1:
; Save global interrupt flag
in r18,SREG
; Disable interrupts
cli
; Set TCNT1 to r17:r16
out TCNT1H,r17
out TCNT1L,r16
; Restore global interrupt flag
out SREG,r18
ret

C code example(1)

void TIM16_WriteTCNT1(unsigned int i)
{

unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
_CLI();
/* Set TCNT1 to i */
TCNT1 = i;
/* Restore global interrupt flag */
SREG = sreg;

}

118
2545U–AVR–11/2015

ATmega48/88/168
16.5 Counter unit

The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit.
Figure 16-2 shows a block diagram of the counter and its surroundings.

Figure 16-2. Counter unit block diagram.

Signal description (internal signals):

Count : Increment or decrement TCNT1 by 1.

Direction : Select between increment and decrement.

Clear : Clear TCNT1 (set all bits to zero).

clkT1 : Timer/Counter clock.

TOP : Signalize that TCNT1 has reached maximum value.

BOTTOM : Signalize that TCNT1 has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNT1H)
containing the upper eight bits of the counter, and Counter Low (TCNT1L) containing the lower
eight bits. The TCNT1H Register can only be indirectly accessed by the CPU. When the CPU
does an access to the TCNT1H I/O location, the CPU accesses the high byte temporary register
(TEMP). The temporary register is updated with the TCNT1H value when the TCNT1L is read,
and TCNT1H is updated with the temporary register value when TCNT1L is written. This allows
the CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data
bus. It is important to notice that there are special cases of writing to the TCNT1 Register when
the counter is counting that will give unpredictable results. The special cases are described in
the sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clkT1). The clkT1 can be generated from an external or internal clock source,
selected by the Clock Select bits (CS12:0). When no clock source is selected (CS12:0 = 0) the
timer is stopped. However, the TCNT1 value can be accessed by the CPU, independent of
whether clkT1 is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the Waveform Generation mode bits
(WGM13:0) located in the Timer/Counter Control Registers A and B (TCCR1A and TCCR1B).
There are close connections between how the counter behaves (counts) and how waveforms
are generated on the Output Compare outputs OC1x. For more details about advanced counting
sequences and waveform generation, see “Modes of operation” on page 124.

The Timer/Counter Overflow Flag (TOV1) is set according to the mode of operation selected by
the WGM13:0 bits. TOV1 can be used for generating a CPU interrupt.

TEMP (8-bit)

DATA BUS (8-bit)

TCNTn (16-bit counter)

TCNTnH (8-bit) TCNTnL (8-bit)
Control logic

Count

Clear

Direction

TOVn
(Int.req.)

Clock select

TOP BOTTOM

Tn
Edge

detector

(From prescaler)

clkTn
119
2545U–AVR–11/2015

ATmega48/88/168
16.6 Input capture unit

The Timer/Counter incorporates an Input Capture unit that can capture external events and give
them a time-stamp indicating time of occurrence. The external signal indicating an event, or
multiple events, can be applied via the ICP1 pin or alternatively, via the analog-comparator unit.
The time-stamps can then be used to calculate frequency, duty-cycle, and other features of the
signal applied. Alternatively the time-stamps can be used for creating a log of the events.

The Input Capture unit is illustrated by the block diagram shown in Figure 16-3. The elements of
the block diagram that are not directly a part of the Input Capture unit are gray shaded. The
small “n” in register and bit names indicates the Timer/Counter number.

Figure 16-3. Input capture unit block diagram.

When a change of the logic level (an event) occurs on the Input Capture pin (ICP1), alternatively
on the Analog Comparator output (ACO), and this change confirms to the setting of the edge
detector, a capture will be triggered. When a capture is triggered, the 16-bit value of the counter
(TCNT1) is written to the Input Capture Register (ICR1). The Input Capture Flag (ICF1) is set at
the same system clock as the TCNT1 value is copied into ICR1 Register. If enabled (ICIE1 = 1),
the Input Capture Flag generates an Input Capture interrupt. The ICF1 Flag is automatically
cleared when the interrupt is executed. Alternatively the ICF1 Flag can be cleared by software
by writing a logical one to its I/O bit location.

Reading the 16-bit value in the Input Capture Register (ICR1) is done by first reading the low
byte (ICR1L) and then the high byte (ICR1H). When the low byte is read the high byte is copied
into the high byte temporary register (TEMP). When the CPU reads the ICR1H I/O location it will
access the TEMP Register.

The ICR1 Register can only be written when using a Waveform Generation mode that utilizes
the ICR1 Register for defining the counter’s TOP value. In these cases the Waveform
Generation mode (WGM13:0) bits must be set before the TOP value can be written to the ICR1
Register. When writing the ICR1 Register the high byte must be written to the ICR1H I/O location
before the low byte is written to ICR1L.

For more information on how to access the 16-bit registers refer to “Accessing 16-bit registers”
on page 115.

ICFn (Int.req.)

Analog
comparator

WRITE ICRn (16-bit register)

ICRnH (8-bit)

Noise
canceler

ICPn

Edge
detector

TEMP (8-bit)

DATA BUS (8-bit)

ICRnL (8-bit)

TCNTn (16-bit counter)

TCNTnH (8-bit) TCNTnL (8-bit)

ACIC* ICNC ICESACO*
120
2545U–AVR–11/2015

ATmega48/88/168
16.6.1 Input capture trigger source

The main trigger source for the Input Capture unit is the Input Capture pin (ICP1).
Timer/Counter1 can alternatively use the Analog Comparator output as trigger source for the
Input Capture unit. The Analog Comparator is selected as trigger source by setting the Analog
Comparator Input Capture (ACIC) bit in the Analog Comparator Control and Status Register
(ACSR). Be aware that changing trigger source can trigger a capture. The Input Capture Flag
must therefore be cleared after the change.

Both the Input Capture pin (ICP1) and the Analog Comparator output (ACO) inputs are sampled
using the same technique as for the T1 pin (Figure 17-1 on page 141). The edge detector is also
identical. However, when the noise canceler is enabled, additional logic is inserted before the
edge detector, which increases the delay by four system clock cycles. Note that the input of the
noise canceler and edge detector is always enabled unless the Timer/Counter is set in a
Waveform Generation mode that uses ICR1 to define TOP.

An Input Capture can be triggered by software by controlling the port of the ICP1 pin.

16.6.2 Noise canceler

The noise canceler improves noise immunity by using a simple digital filtering scheme. The
noise canceler input is monitored over four samples, and all four must be equal for changing the
output that in turn is used by the edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNC1) bit in
Timer/Counter Control Register B (TCCR1B). When enabled the noise canceler introduces
additional four system clock cycles of delay from a change applied to the input, to the update of
the ICR1 Register. The noise canceler uses the system clock and is therefore not affected by the
prescaler.

16.6.3 Using the input capture unit

The main challenge when using the Input Capture unit is to assign enough processor capacity
for handling the incoming events. The time between two events is critical. If the processor has
not read the captured value in the ICR1 Register before the next event occurs, the ICR1 will be
overwritten with a new value. In this case the result of the capture will be incorrect.

When using the Input Capture interrupt, the ICR1 Register should be read as early in the
interrupt handler routine as possible. Even though the Input Capture interrupt has relatively high
priority, the maximum interrupt response time is dependent on the maximum number of clock
cycles it takes to handle any of the other interrupt requests.

Using the Input Capture unit in any mode of operation when the TOP value (resolution) is
actively changed during operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after
each capture. Changing the edge sensing must be done as early as possible after the ICR1
Register has been read. After a change of the edge, the Input Capture Flag (ICF1) must be
cleared by software (writing a logical one to the I/O bit location). For measuring frequency only,
the clearing of the ICF1 Flag is not required (if an interrupt handler is used).

16.7 Output compare units

The 16-bit comparator continuously compares TCNT1 with the Output Compare Register
(OCR1x). If TCNT equals OCR1x the comparator signals a match. A match will set the Output
Compare Flag (OCF1x) at the next timer clock cycle. If enabled (OCIE1x = 1), the Output
121
2545U–AVR–11/2015

ATmega48/88/168
Compare Flag generates an Output Compare interrupt. The OCF1x Flag is automatically
cleared when the interrupt is executed. Alternatively the OCF1x Flag can be cleared by software
by writing a logical one to its I/O bit location. The Waveform Generator uses the match signal to
generate an output according to operating mode set by the Waveform Generation mode
(WGM13:0) bits and Compare Output mode (COM1x1:0) bits. The TOP and BOTTOM signals
are used by the Waveform Generator for handling the special cases of the extreme values in
some modes of operation (See “Modes of operation” on page 124.)

A special feature of Output Compare unit A allows it to define the Timer/Counter TOP value (that
is, counter resolution). In addition to the counter resolution, the TOP value defines the period
time for waveforms generated by the Waveform Generator.

Figure 16-4 shows a block diagram of the Output Compare unit. The small “n” in the register and
bit names indicates the device number (n = 1 for Timer/Counter 1), and the “x” indicates Output
Compare unit (A/B). The elements of the block diagram that are not directly a part of the Output
Compare unit are gray shaded.

Figure 16-4. Output compare unit, block diagram.

The OCR1x Register is double buffered when using any of the twelve Pulse Width Modulation
(PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the
double buffering is disabled. The double buffering synchronizes the update of the OCR1x
Compare Register to either TOP or BOTTOM of the counting sequence. The synchronization
prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the
output glitch-free.

The OCR1x Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCR1x Buffer Register, and if double buffering is
disabled the CPU will access the OCR1x directly. The content of the OCR1x (Buffer or
Compare) Register is only changed by a write operation (the Timer/Counter does not update this
register automatically as the TCNT1 and ICR1 Register). Therefore OCR1x is not read via the
high byte temporary register (TEMP). However, it is a good practice to read the low byte first as

OCFnx (Int.req.)

= (16-bit comparator)

OCRnx buffer (16-bit register)

OCRnxH buffer (8-bit)

OCnx

TEMP (8-bit)

DATA BUS (8-bit)

OCRnxL buffer (8-bit)

TCNTn (16-bit counter)

TCNTnH (8-bit) TCNTnL (8-bit)

COMnx1:0WGMn3:0

OCRnx (16-bit register)

OCRnxH (8-bit) OCRnxL (8-bit)

Waveform generator
TOP

BOTTOM
122
2545U–AVR–11/2015

ATmega48/88/168
when accessing other 16-bit registers. Writing the OCR1x Registers must be done via the TEMP
Register since the compare of all 16 bits is done continuously. The high byte (OCR1xH) has to
be written first. When the high byte I/O location is written by the CPU, the TEMP Register will be
updated by the value written. Then when the low byte (OCR1xL) is written to the lower eight bits,
the high byte will be copied into the upper 8-bits of either the OCR1x buffer or OCR1x Compare
Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to “Accessing 16-bit registers”
on page 115.

16.7.1 Force output compare

In non-PWM Waveform Generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC1x) bit. Forcing compare match will not set the
OCF1x Flag or reload/clear the timer, but the OC1x pin will be updated as if a real compare
match had occurred (the COM11:0 bits settings define whether the OC1x pin is set, cleared or
toggled).

16.7.2 Compare match blocking by TCNT1 write

All CPU writes to the TCNT1 Register will block any compare match that occurs in the next timer
clock cycle, even when the timer is stopped. This feature allows OCR1x to be initialized to the
same value as TCNT1 without triggering an interrupt when the Timer/Counter clock is enabled.

16.7.3 Using the output compare unit

Since writing TCNT1 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT1 when using any of the Output Compare
channels, independent of whether the Timer/Counter is running or not. If the value written to
TCNT1 equals the OCR1x value, the compare match will be missed, resulting in incorrect
waveform generation. Do not write the TCNT1 equal to TOP in PWM modes with variable TOP
values. The compare match for the TOP will be ignored and the counter will continue to 0xFFFF.
Similarly, do not write the TCNT1 value equal to BOTTOM when the counter is downcounting.

The setup of the OC1x should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC1x value is to use the Force Output
Compare (FOC1x) strobe bits in Normal mode. The OC1x Register keeps its value even when
changing between Waveform Generation modes.

Be aware that the COM1x1:0 bits are not double buffered together with the compare value.
Changing the COM1x1:0 bits will take effect immediately.

16.8 Compare match output unit

The Compare Output mode (COM1x1:0) bits have two functions. The Waveform Generator uses
the COM1x1:0 bits for defining the Output Compare (OC1x) state at the next compare match.
Secondly the COM1x1:0 bits control the OC1x pin output source. Figure 16-5 on page 124
shows a simplified schematic of the logic affected by the COM1x1:0 bit setting. The I/O
Registers, I/O bits, and I/O pins in the figure are shown in bold. Only the parts of the general I/O
Port Control Registers (DDR and PORT) that are affected by the COM1x1:0 bits are shown.
When referring to the OC1x state, the reference is for the internal OC1x Register, not the OC1x
pin. If a system reset occur, the OC1x Register is reset to “0”.
123
2545U–AVR–11/2015

ATmega48/88/168
Figure 16-5. Compare match output unit, schematic.

The general I/O port function is overridden by the Output Compare (OC1x) from the Waveform
Generator if either of the COM1x1:0 bits are set. However, the OC1x pin direction (input or
output) is still controlled by the Data Direction Register (DDR) for the port pin. The Data
Direction Register bit for the OC1x pin (DDR_OC1x) must be set as output before the OC1x
value is visible on the pin. The port override function is generally independent of the Waveform
Generation mode, but there are some exceptions. Refer to Table 16-1 on page 134, Table 16-2
on page 134 and Table 16-3 on page 135 for details.

The design of the Output Compare pin logic allows initialization of the OC1x state before the
output is enabled. Note that some COM1x1:0 bit settings are reserved for certain modes of
operation. See “Register description” on page 134.

The COM1x1:0 bits have no effect on the Input Capture unit.

16.8.1 Compare output mode and waveform generation

The Waveform Generator uses the COM1x1:0 bits differently in normal, CTC, and PWM modes.
For all modes, setting the COM1x1:0 = 0 tells the Waveform Generator that no action on the
OC1x Register is to be performed on the next compare match. For compare output actions in the
non-PWM modes refer to Table 16-1 on page 134. For fast PWM mode refer to Table 16-2 on
page 134, and for phase correct and phase and frequency correct PWM refer to Table 16-3 on
page 135.

A change of the COM1x1:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOC1x strobe bits.

16.9 Modes of operation

The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins,
is defined by the combination of the Waveform Generation mode (WGM13:0) and Compare

PORT

DDR

D Q

D Q

OCnx
pinOCnx

D Q
Waveform
generator

COMnx1

COMnx0

0

1

D
AT

A
 B

U
S

FOCnx

clkI/O
124
2545U–AVR–11/2015

ATmega48/88/168
Output mode (COM1x1:0) bits. The Compare Output mode bits do not affect the counting
sequence, while the Waveform Generation mode bits do. The COM1x1:0 bits control whether
the PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-
PWM modes the COM1x1:0 bits control whether the output should be set, cleared or toggle at a
compare match (See “Compare match output unit” on page 123.)

For detailed timing information refer to “Timer/counter timing diagrams” on page 132.

16.9.1 Normal mode

The simplest mode of operation is the Normal mode (WGM13:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 16-bit value (MAX = 0xFFFF) and then restarts from the
BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag (TOV1) will be set in
the same timer clock cycle as the TCNT1 becomes zero. The TOV1 Flag in this case behaves
like a 17th bit, except that it is only set, not cleared. However, combined with the timer overflow
interrupt that automatically clears the TOV1 Flag, the timer resolution can be increased by
software. There are no special cases to consider in the Normal mode, a new counter value can
be written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maximum
interval between the external events must not exceed the resolution of the counter. If the interval
between events are too long, the timer overflow interrupt or the prescaler must be used to
extend the resolution for the capture unit.

The Output Compare units can be used to generate interrupts at some given time. Using the
Output Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

16.9.2 Clear timer on compare match (CTC) mode

In Clear Timer on Compare or CTC mode (WGM13:0 = 4 or 12), the OCR1A or ICR1 Register
are used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when
the counter value (TCNT1) matches either the OCR1A (WGM13:0 = 4) or the ICR1 (WGM13:0 =
12). The OCR1A or ICR1 define the top value for the counter, hence also its resolution. This
mode allows greater control of the compare match output frequency. It also simplifies the
operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 16-6 on page 125. The counter value
(TCNT1) increases until a compare match occurs with either OCR1A or ICR1, and then counter
(TCNT1) is cleared.

Figure 16-6. CTC mode, timing diagram.

TCNTn

OCnA
(toggle)

OCnA interrupt flag set
or ICFn interrupt flag set
(interrupt on TOP)

1 4Period 2 3

(COMnA1:0 = 1)
125
2545U–AVR–11/2015

ATmega48/88/168
An interrupt can be generated at each time the counter value reaches the TOP value by either
using the OCF1A or ICF1 Flag according to the register used to define the TOP value. If the
interrupt is enabled, the interrupt handler routine can be used for updating the TOP value.
However, changing the TOP to a value close to BOTTOM when the counter is running with none
or a low prescaler value must be done with care since the CTC mode does not have the double
buffering feature. If the new value written to OCR1A or ICR1 is lower than the current value of
TCNT1, the counter will miss the compare match. The counter will then have to count to its
maximum value (0xFFFF) and wrap around starting at 0x0000 before the compare match can
occur. In many cases this feature is not desirable. An alternative will then be to use the fast
PWM mode using OCR1A for defining TOP (WGM13:0 = 15) since the OCR1A then will be
double buffered.

For generating a waveform output in CTC mode, the OC1A output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COM1A1:0 = 1). The OC1A value will not be visible on the port pin unless the data direction for
the pin is set to output (DDR_OC1A = 1). The waveform generated will have a maximum
frequency of fOC1A = fclk_I/O/2 when OCR1A is set to zero (0x0000). The waveform frequency is
defined by the following equation:

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV1 Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x0000.

16.9.3 Fast PWM mode

The fast Pulse Width Modulation or fast PWM mode (WGM13:0 = 5, 6, 7, 14, or 15) provides a
high frequency PWM waveform generation option. The fast PWM differs from the other PWM
options by its single-slope operation. The counter counts from BOTTOM to TOP then restarts
from BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is cleared
on the compare match between TCNT1 and OCR1x, and set at BOTTOM. In inverting Compare
Output mode output is set on compare match and cleared at BOTTOM. Due to the single-slope
operation, the operating frequency of the fast PWM mode can be twice as high as the phase
correct and phase and frequency correct PWM modes that use dual-slope operation. This high
frequency makes the fast PWM mode well suited for power regulation, rectification, and DAC
applications. High frequency allows physically small sized external components (coils,
capacitors), hence reduces total system cost.

The PWM resolution for fast PWM can be fixed to 8-bit, 9-bit, or 10-bit, or defined by either ICR1
or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the
maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can be
calculated by using the following equation:

In fast PWM mode the counter is incremented until the counter value matches either one of the
fixed values 0x00FF, 0x01FF, or 0x03FF (WGM13:0 = 5, 6, or 7), the value in ICR1 (WGM13:0 =
14), or the value in OCR1A (WGM13:0 = 15). The counter is then cleared at the following timer
clock cycle. The timing diagram for the fast PWM mode is shown in Figure 16-7. The figure
shows fast PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value is in the

fOCnA

fclk_I/O

2 N 1 OCRnA+  
---=

RFPWM
TOP 1+ log

2 log
-----------------------------------=
126
2545U–AVR–11/2015

ATmega48/88/168
timing diagram shown as a histogram for illustrating the single-slope operation. The diagram
includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1
slopes represent compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will
be set when a compare match occurs.

Figure 16-7. Fast PWM mode, timing diagram.

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches TOP. In addition
the OC1A or ICF1 Flag is set at the same timer clock cycle as TOV1 is set when either OCR1A
or ICR1 is used for defining the TOP value. If one of the interrupts are enabled, the interrupt
handler routine can be used for updating the TOP and compare values.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.
Note that when using fixed TOP values the unused bits are masked to zero when any of the
OCR1x Registers are written.

The procedure for updating ICR1 differs from updating OCR1A when used for defining the TOP
value. The ICR1 Register is not double buffered. This means that if ICR1 is changed to a low
value when the counter is running with none or a low prescaler value, there is a risk that the new
ICR1 value written is lower than the current value of TCNT1. The result will then be that the
counter will miss the compare match at the TOP value. The counter will then have to count to the
MAX value (0xFFFF) and wrap around starting at 0x0000 before the compare match can occur.
The OCR1A Register however, is double buffered. This feature allows the OCR1A I/O location
to be written anytime. When the OCR1A I/O location is written the value written will be put into
the OCR1A Buffer Register. The OCR1A Compare Register will then be updated with the value
in the Buffer Register at the next timer clock cycle the TCNT1 matches TOP. The update is done
at the same timer clock cycle as the TCNT1 is cleared and the TOV1 Flag is set.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using
ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However,
if the base PWM frequency is actively changed (by changing the TOP value), using the OCR1A
as TOP is clearly a better choice due to its double buffer feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins.
Setting the COM1x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COM1x1:0 to three (see Table on page 134). The actual OC1x
value will only be visible on the port pin if the data direction for the port pin is set as output

TCNTn

OCRnx/BOTTOM update
and TOVn interrupt flag set
and OCnA interrupt flag set
or ICFn interrupt flag set
(interrupt on TOP)

1 7Period 2 3 4 5 6 8

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)
127
2545U–AVR–11/2015

ATmega48/88/168
(DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x Register at
the compare match between OCR1x and TCNT1, and clearing (or setting) the OC1x Register at
the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR1x is set equal to BOTTOM (0x0000) the
output will be a narrow spike for each TOP+1 timer clock cycle. Setting the OCR1x equal to TOP
will result in a constant high or low output (depending on the polarity of the output set by the
COM1x1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by
setting OC1A to toggle its logical level on each compare match (COM1A1:0 = 1). This applies
only if OCR1A is used to define the TOP value (WGM13:0 = 15). The waveform generated will
have a maximum frequency of fOC1A = fclk_I/O/2 when OCR1A is set to zero (0x0000). This feature
is similar to the OC1A toggle in CTC mode, except the double buffer feature of the Output
Compare unit is enabled in the fast PWM mode.

16.9.4 Phase correct PWM mode

The phase correct Pulse Width Modulation or phase correct PWM mode (WGM13:0 = 1, 2, 3,
10, or 11) provides a high resolution phase correct PWM waveform generation option. The
phase correct PWM mode is, like the phase and frequency correct PWM mode, based on a dual-
slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from
TOP to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is
cleared on the compare match between TCNT1 and OCR1x while upcounting, and set on the
compare match while downcounting. In inverting Output Compare mode, the operation is
inverted. The dual-slope operation has lower maximum operation frequency than single slope
operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes
are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-bit, 9-bit, or 10-bit, or
defined by either ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set
to 0x0003), and the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM
resolution in bits can be calculated by using the following equation:

In phase correct PWM mode the counter is incremented until the counter value matches either
one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGM13:0 = 1, 2, or 3), the value in ICR1
(WGM13:0 = 10), or the value in OCR1A (WGM13:0 = 11). The counter has then reached the
TOP and changes the count direction. The TCNT1 value will be equal to TOP for one timer clock
cycle. The timing diagram for the phase correct PWM mode is shown on Figure 16-8. The figure
shows phase correct PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1
value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The
diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on

fOCnxPWM

fclk_I/O

N 1 TOP+ 
-----------------------------------=

RPCPWM
TOP 1+ log

2 log
-----------------------------------=
128
2545U–AVR–11/2015

ATmega48/88/168
the TCNT1 slopes represent compare matches between OCR1x and TCNT1. The OC1x
Interrupt Flag will be set when a compare match occurs.

Figure 16-8. Phase correct PWM mode, timing diagram.

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches BOTTOM. When
either OCR1A or ICR1 is used for defining the TOP value, the OC1A or ICF1 Flag is set
accordingly at the same timer clock cycle as the OCR1x Registers are updated with the double
buffer value (at TOP). The Interrupt Flags can be used to generate an interrupt each time the
counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.
Note that when using fixed TOP values, the unused bits are masked to zero when any of the
OCR1x Registers are written. As the third period shown in Figure 16-8 illustrates, changing the
TOP actively while the Timer/Counter is running in the phase correct mode can result in an
unsymmetrical output. The reason for this can be found in the time of update of the OCR1x
Register. Since the OCR1x update occurs at TOP, the PWM period starts and ends at TOP. This
implies that the length of the falling slope is determined by the previous TOP value, while the
length of the rising slope is determined by the new TOP value. When these two values differ the
two slopes of the period will differ in length. The difference in length gives the unsymmetrical
result on the output.

It is recommended to use the phase and frequency correct mode instead of the phase correct
mode when changing the TOP value while the Timer/Counter is running. When using a static
TOP value there are practically no differences between the two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the
OC1x pins. Setting the COM1x1:0 bits to two will produce a non-inverted PWM and an inverted
PWM output can be generated by setting the COM1x1:0 to three (See Table on page 135). The
actual OC1x value will only be visible on the port pin if the data direction for the port pin is set as
output (DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x
Register at the compare match between OCR1x and TCNT1 when the counter increments, and
clearing (or setting) the OC1x Register at compare match between OCR1x and TCNT1 when

OCRnx/TOP update and
OCnA interrupt flag set
or ICFn interrupt flag set
(interrupt on TOP)

1 2 3 4

TOVn interrupt flag set
(interrupt on BOTTOM)

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)
129
2545U–AVR–11/2015

ATmega48/88/168
the counter decrements. The PWM frequency for the output when using phase correct PWM can
be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR1x is set equal to BOTTOM the
output will be continuously low and if set equal to TOP the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values. If
OCR1A is used to define the TOP value (WGM13:0 = 11) and COM1A1:0 = 1, the OC1A output
will toggle with a 50% duty cycle.

16.9.5 Phase and frequency correct PWM mode

The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM
mode (WGM13:0 = 8 or 9) provides a high resolution phase and frequency correct PWM
waveform generation option. The phase and frequency correct PWM mode is, like the phase
correct PWM mode, based on a dual-slope operation. The counter counts repeatedly from
BOTTOM (0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output
mode, the Output Compare (OC1x) is cleared on the compare match between TCNT1 and
OCR1x while upcounting, and set on the compare match while downcounting. In inverting
Compare Output mode, the operation is inverted. The dual-slope operation gives a lower
maximum operation frequency compared to the single-slope operation. However, due to the
symmetric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

The main difference between the phase correct, and the phase and frequency correct PWM
mode is the time the OCR1x Register is updated by the OCR1x Buffer Register, (see Figure 16-
8 on page 129 and Figure 16-9 on page 131).

The PWM resolution for the phase and frequency correct PWM mode can be defined by either
ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and
the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can
be calculated using the following equation:

In phase and frequency correct PWM mode the counter is incremented until the counter value
matches either the value in ICR1 (WGM13:0 = 8), or the value in OCR1A (WGM13:0 = 9). The
counter has then reached the TOP and changes the count direction. The TCNT1 value will be
equal to TOP for one timer clock cycle. The timing diagram for the phase correct and frequency
correct PWM mode is shown on Figure 16-9. The figure shows phase and frequency correct
PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value is in the timing
diagram shown as a histogram for illustrating the dual-slope operation. The diagram includes
non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1 slopes
represent compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will be set
when a compare match occurs.

fOCnxPCPWM

fclk_I/O

2 N TOP 
----------------------------=

RPFCPWM
TOP 1+ log

2 log
-----------------------------------=
130
2545U–AVR–11/2015

ATmega48/88/168
Figure 16-9. Phase and frequency correct PWM mode, timing diagram.

The Timer/Counter Overflow Flag (TOV1) is set at the same timer clock cycle as the OCR1x
Registers are updated with the double buffer value (at BOTTOM). When either OCR1A or ICR1
is used for defining the TOP value, the OC1A or ICF1 Flag set when TCNT1 has reached TOP.
The Interrupt Flags can then be used to generate an interrupt each time the counter reaches the
TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.

As Figure 16-9 shows the output generated is, in contrast to the phase correct mode,
symmetrical in all periods. Since the OCR1x Registers are updated at BOTTOM, the length of
the rising and the falling slopes will always be equal. This gives symmetrical output pulses and is
therefore frequency correct.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using
ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However,
if the base PWM frequency is actively changed by changing the TOP value, using the OCR1A as
TOP is clearly a better choice due to its double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM
waveforms on the OC1x pins. Setting the COM1x1:0 bits to two will produce a non-inverted
PWM and an inverted PWM output can be generated by setting the COM1x1:0 to three (See
Table on page 135). The actual OC1x value will only be visible on the port pin if the data
direction for the port pin is set as output (DDR_OC1x). The PWM waveform is generated by
setting (or clearing) the OC1x Register at the compare match between OCR1x and TCNT1
when the counter increments, and clearing (or setting) the OC1x Register at compare match
between OCR1x and TCNT1 when the counter decrements. The PWM frequency for the output
when using phase and frequency correct PWM can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

OCRnx/TOP update and
TOVn interrupt flag set
(interrupt on BOTTOM)

OCnA interrupt flag set
or ICFn interrupt flag set
(interrupt on TOP)

1 2 3 4

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

fOCnxPFCPWM

fclk_I/O

2 N TOP 
----------------------------=
131
2545U–AVR–11/2015

ATmega48/88/168
The extreme values for the OCR1x Register represents special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR1x is set equal to BOTTOM the
output will be continuously low and if set equal to TOP the output will be set to high for non-
inverted PWM mode. For inverted PWM the output will have the opposite logic values. If OCR1A
is used to define the TOP value (WGM13:0 = 9) and COM1A1:0 = 1, the OC1A output will toggle
with a 50% duty cycle.

16.10 Timer/counter timing diagrams

The Timer/Counter is a synchronous design and the timer clock (clkT1) is therefore shown as a
clock enable signal in the following figures. The figures include information on when Interrupt
Flags are set, and when the OCR1x Register is updated with the OCR1x buffer value (only for
modes utilizing double buffering). Figure 16-10 shows a timing diagram for the setting of OCF1x.

Figure 16-10. Timer/counter timing diagram, setting of OCF1x, no prescaling.

Figure 16-11 on page 132 shows the same timing data, but with the prescaler enabled.

Figure 16-11. Timer/counter timing diagram, setting of OCF1x, with prescaler (fclk_I/O/8).

Figure 16-12 shows the count sequence close to TOP in various modes. When using phase and
frequency correct PWM mode the OCR1x Register is updated at BOTTOM. The timing diagrams

clkTn
(clkI/O/1)

OCFnx

clkI/O

OCRnx

TCNTn

OCRnx value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

OCFnx

OCRnx

TCNTn

OCRnx value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clkI/O

clkTn
(clkI/O/8)
132
2545U–AVR–11/2015

ATmega48/88/168
will be the same, but TOP should be replaced by BOTTOM, TOP-1 by BOTTOM+1 and so on.
The same renaming applies for modes that set the TOV1 Flag at BOTTOM.

Figure 16-12. Timer/counter timing diagram, no prescaling.

Figure 16-13 shows the same timing data, but with the prescaler enabled.

Figure 16-13. Timer/counter timing diagram, with prescaler (fclk_I/O/8).

TOVn (FPWM)
and ICFn (if used

as TOP)

OCRnx
(update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx value New OCRnx value

TOP - 1 TOP BOTTOM BOTTOM + 1

clkTn
(clkI/O/1)

clkI/O

TOVn (FPWM)
and ICFn (if used

as TOP)

OCRnx
(update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx value New OCRnx value

TOP - 1 TOP BOTTOM BOTTOM + 1

clk I/O

clkTn
(clkI/O/8)
133
2545U–AVR–11/2015

ATmega48/88/168
16.11 Register description

16.11.1 TCCR1A – Timer/Counter1 control register A

• Bit 7:6 – COM1A1:0: Compare output mode for channel A

• Bit 5:4 – COM1B1:0: Compare output mode for channel B

The COM1A1:0 and COM1B1:0 control the Output Compare pins (OC1A and OC1B
respectively) behavior. If one or both of the COM1A1:0 bits are written to one, the OC1A output
overrides the normal port functionality of the I/O pin it is connected to. If one or both of the
COM1B1:0 bit are written to one, the OC1B output overrides the normal port functionality of the
I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit
corresponding to the OC1A or OC1B pin must be set in order to enable the output driver.

When the OC1A or OC1B is connected to the pin, the function of the COM1x1:0 bits is
dependent of the WGM13:0 bits setting. Table 16-1 shows the COM1x1:0 bit functionality when
the WGM13:0 bits are set to a Normal or a CTC mode (non-PWM).

Table 16-2 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the fast
PWM mode.

Bit 7 6 5 4 3 2 1 0

(0x80) COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 TCCR1A

Read/write R/W R/W R/W R/W R R R/W R/W

Initial value 0 0 0 0 0 0 0 0

Table 16-1. Compare output mode, non-PWM.

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B disconnected

0 1 Toggle OC1A/OC1B on compare match

1 0
Clear OC1A/OC1B on compare match
(set output to low level)

1 1
Set OC1A/OC1B on compare match
(set output to high level)

Table 16-2. Compare output mode, fast PWM(1).

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B disconnected.

0 1

WGM13:0 = 14 or 15: Toggle OC1A on compare
match, OC1B disconnected (normal port operation).
For all other WGM1 settings, normal port operation,
OC1A/OC1B disconnected.

1 0
Clear OC1A/OC1B on compare match,
set OC1A/OC1B at BOTTOM (non-inverting mode)

1 1
Set OC1A/OC1B on compare match,
clear OC1A/OC1B at BOTTOM (invertiong mode)
134
2545U–AVR–11/2015

ATmega48/88/168
Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. In
this case the compare match is ignored, but the set or clear is done at BOTTOM. See “Fast
PWM mode” on page 126. for more details.

Table 16-3 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the phase
correct or the phase and frequency correct, PWM mode.

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. See
“Phase correct PWM mode” on page 128. for more details.

• Bit 1:0 – WGM11:0: Waveform generation mode

Combined with the WGM13:2 bits found in the TCCR1B Register, these bits control the counting
sequence of the counter, the source for maximum (TOP) counter value, and what type of
waveform generation to be used, see Table 16-4 on page 136. Modes of operation supported by
the Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare match (CTC)
mode, and three types of Pulse Width Modulation (PWM) modes. (See “Modes of operation” on
page 124.).

Table 16-3. Compare output mode, phase correct and phase and frequency correct PWM(1).

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B disconnected.

0 1

WGM13:0 = 9 or 11: Toggle OC1A on Compare
Match, OC1B disconnected (normal port operation).
For all other WGM1 settings, normal port operation,
OC1A/OC1B disconnected.

1 0
Clear OC1A/OC1B on Compare Match when up-
counting. Set OC1A/OC1B on Compare Match when
downcounting.

1 1
Set OC1A/OC1B on Compare Match when up-
counting. Clear OC1A/OC1B on Compare Match
when downcounting.
135
2545U–AVR–11/2015

ATmega48/88/168
Note: 1. The CTC1 and PWM11:0 bit definition names are obsolete. Use the WGM12:0 definitions. However, the functionality and
location of these bits are compatible with previous versions of the timer.

16.11.2 TCCR1B – Timer/Counter1 control register B

• Bit 7 – ICNC1: Input capture noise canceler

Setting this bit (to one) activates the Input Capture Noise Canceler. When the noise canceler is
activated, the input from the Input Capture pin (ICP1) is filtered. The filter function requires four
successive equal valued samples of the ICP1 pin for changing its output. The Input Capture is
therefore delayed by four Oscillator cycles when the noise canceler is enabled.

• Bit 6 – ICES1: Input capture edge select

This bit selects which edge on the Input Capture pin (ICP1) that is used to trigger a capture
event. When the ICES1 bit is written to zero, a falling (negative) edge is used as trigger, and
when the ICES1 bit is written to one, a rising (positive) edge will trigger the capture.

When a capture is triggered according to the ICES1 setting, the counter value is copied into the
Input Capture Register (ICR1). The event will also set the Input Capture Flag (ICF1), and this
can be used to cause an Input Capture Interrupt, if this interrupt is enabled.

Table 16-4. Waveform generation mode bit description(1).

Mode WGM13
WGM12
(CTC1)

WGM11
(PWM11)

WGM10
(PWM10)

Timer/counter mode of
operation TOP

Update of
OCR1x at

TOV1 flag
set on

0 0 0 0 0 Normal 0xFFFF Immediate MAX

1 0 0 0 1 PWM, phase correct, 8-bit 0x00FF TOP BOTTOM

2 0 0 1 0 PWM, phase correct, 9-bit 0x01FF TOP BOTTOM

3 0 0 1 1 PWM, phase correct, 10-bit 0x03FF TOP BOTTOM

4 0 1 0 0 CTC OCR1A Immediate MAX

5 0 1 0 1 Fast PWM, 8-bit 0x00FF BOTTOM TOP

6 0 1 1 0 Fast PWM, 9-bit 0x01FF BOTTOM TOP

7 0 1 1 1 Fast PWM, 10-bit 0x03FF BOTTOM TOP

8 1 0 0 0
PWM, phase and frequency
correct

ICR1 BOTTOM BOTTOM

9 1 0 0 1
PWM, phase and frequency
correct

OCR1A BOTTOM BOTTOM

10 1 0 1 0 PWM, phase correct ICR1 TOP BOTTOM

11 1 0 1 1 PWM, phase correct OCR1A TOP BOTTOM

12 1 1 0 0 CTC ICR1 Immediate MAX

13 1 1 0 1 (Reserved) – – –

14 1 1 1 0 Fast PWM ICR1 BOTTOM TOP

15 1 1 1 1 Fast PWM OCR1A BOTTOM TOP

Bit 7 6 5 4 3 2 1 0

(0x81) ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 TCCR1B

Read/write R/W R/W R R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0
136
2545U–AVR–11/2015

ATmega48/88/168
When the ICR1 is used as TOP value (see description of the WGM13:0 bits located in the
TCCR1A and the TCCR1B Register), the ICP1 is disconnected and consequently the Input
Capture function is disabled.

• Bit 5 – Reserved bit

This bit is reserved for future use. For ensuring compatibility with future devices, this bit must be
written to zero when TCCR1B is written.

• Bit 4:3 – WGM13:2: Waveform generation mode

See TCCR1A Register description.

• Bit 2:0 – CS12:0: Clock select

The three Clock Select bits select the clock source to be used by the Timer/Counter, see Figure
16-10 on page 132 and Figure 16-11 on page 132.

If external pin modes are used for the Timer/Counter1, transitions on the T1 pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

16.11.3 TCCR1C – Timer/Counter1 control register C

• Bit 7 – FOC1A: Force output compare for channel A

• Bit 6 – FOC1B: Force output compare for channel B

The FOC1A/FOC1B bits are only active when the WGM13:0 bits specifies a non-PWM mode..
When writing a logical one to the FOC1A/FOC1B bit, an immediate compare match is forced on
the Waveform Generation unit. The OC1A/OC1B output is changed according to its COM1x1:0
bits setting. Note that the FOC1A/FOC1B bits are implemented as strobes. Therefore it is the
value present in the COM1x1:0 bits that determine the effect of the forced compare.

A FOC1A/FOC1B strobe will not generate any interrupt nor will it clear the timer in Clear Timer
on Compare match (CTC) mode using OCR1A as TOP.

Table 16-5. Clock select bit description.

CS12 CS11 CS10 Description

0 0 0 No clock source (timer/counter stopped)

0 0 1 clkI/O/1 (no prescaling)

0 1 0 clkI/O/8 (from prescaler)

0 1 1 clkI/O/64 (from prescaler)

1 0 0 clkI/O/256 (from prescaler)

1 0 1 clkI/O/1024 (from prescaler)

1 1 0 External clock source on T1 pin. Clock on falling edge.

1 1 1 External clock source on T1 pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

(0x82) FOC1A FOC1B – – – – – – TCCR1C

Read/write R/W R/W R R R R R R

Initial value 0 0 0 0 0 0 0 0
137
2545U–AVR–11/2015

ATmega48/88/168
The FOC1A/FOC1B bits are always read as zero.

16.11.4 TCNT1H and TCNT1L – Timer/Counter1

The two Timer/Counter I/O locations (TCNT1H and TCNT1L, combined TCNT1) give direct
access, both for read and for write operations, to the Timer/Counter unit 16-bit counter. To
ensure that both the high and low bytes are read and written simultaneously when the CPU
accesses these registers, the access is performed using an 8-bit temporary High Byte Register
(TEMP). This temporary register is shared by all the other 16-bit registers. See “Accessing 16-bit
registers” on page 115.

Modifying the counter (TCNT1) while the counter is running introduces a risk of missing a
compare match between TCNT1 and one of the OCR1x Registers.

Writing to the TCNT1 Register blocks (removes) the compare match on the following timer clock
for all compare units.

16.11.5 OCR1AH and OCR1AL – Output compare register 1 A

16.11.6 OCR1BH and OCR1BL – Output compare register 1 B

The Output Compare Registers contain a 16-bit value that is continuously compared with the
counter value (TCNT1). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC1x pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and low bytes are
written simultaneously when the CPU writes to these registers, the access is performed using an
8-bit temporary High Byte Register (TEMP). This temporary register is shared by all the other
16-bit registers. See “Accessing 16-bit registers” on page 115.

Bit 7 6 5 4 3 2 1 0

(0x85) TCNT1[15:8] TCNT1H

(0x84) TCNT1[7:0] TCNT1L

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x89) OCR1A[15:8] OCR1AH

(0x88) OCR1A[7:0] OCR1AL

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x8B) OCR1B[15:8] OCR1BH

(0x8A) OCR1B[7:0] OCR1BL

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0
138
2545U–AVR–11/2015

ATmega48/88/168
16.11.7 ICR1H and ICR1L – Input capture register 1

The Input Capture is updated with the counter (TCNT1) value each time an event occurs on the
ICP1 pin (or optionally on the Analog Comparator output for Timer/Counter1). The Input Capture
can be used for defining the counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes are read
simultaneously when the CPU accesses these registers, the access is performed using an 8-bit
temporary High Byte Register (TEMP). This temporary register is shared by all the other 16-bit
registers. See “Accessing 16-bit registers” on page 115.

16.11.8 TIMSK1 – Timer/Counter1 interrupt mask register

• Bit 7, 6 – Res: Reserved bits

These bits are unused bits in the Atmel ATmega48/88/168, and will always read as zero.

• Bit 5 – ICIE1: Timer/Counter1, input capture interrupt enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Input Capture interrupt is enabled. The corresponding Interrupt
Vector (see “Interrupts” on page 56) is executed when the ICF1 Flag, located in TIFR1, is set.

• Bit 4, 3 – Res: Reserved bits

These bits are unused bits in the ATmega48/88/168, and will always read as zero.

• Bit 2 – OCIE1B: Timer/Counter1, output compare B match interrupt enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare B Match interrupt is enabled. The corresponding
Interrupt Vector (see “Interrupts” on page 56) is executed when the OCF1B Flag, located in
TIFR1, is set.

• Bit 1 – OCIE1A: Timer/Counter1, output compare A match interrupt enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare A Match interrupt is enabled. The corresponding
Interrupt Vector (see “Interrupts” on page 56) is executed when the OCF1A Flag, located in
TIFR1, is set.

• Bit 0 – TOIE1: Timer/Counter1, overflow interrupt enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Overflow interrupt is enabled. The corresponding Interrupt Vector
(See “Interrupts” on page 56) is executed when the TOV1 Flag, located in TIFR1, is set.

Bit 7 6 5 4 3 2 1 0

(0x87) ICR1[15:8] ICR1H

(0x86) ICR1[7:0] ICR1L

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6F) – – ICIE1 – – OCIE1B OCIE1A TOIE1 TIMSK1

Read/write R R R/W R R R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0
139
2545U–AVR–11/2015

ATmega48/88/168
16.11.9 TIFR1 – Timer/Counter1 interrupt flag register

• Bit 7, 6 – Res: Reserved bits

These bits are unused bits in the Atmel ATmega48/88/168, and will always read as zero.

• Bit 5 – ICF1: Timer/Counter1, input capture flag

This flag is set when a capture event occurs on the ICP1 pin. When the Input Capture Register
(ICR1) is set by the WGM13:0 to be used as the TOP value, the ICF1 Flag is set when the
counter reaches the TOP value.

ICF1 is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively,
ICF1 can be cleared by writing a logic one to its bit location.

• Bit 4, 3 – Res: Reserved bits

These bits are unused bits in the ATmega48/88/168, and will always read as zero.

• Bit 2 – OCF1B: Timer/Counter1, output compare B match flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output
Compare Register B (OCR1B).

Note that a Forced Output Compare (FOC1B) strobe will not set the OCF1B Flag.

OCF1B is automatically cleared when the Output Compare Match B Interrupt Vector is
executed. Alternatively, OCF1B can be cleared by writing a logic one to its bit location.

• Bit 1 – OCF1A: Timer/Counter1, output compare A match flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output
Compare Register A (OCR1A).

Note that a Forced Output Compare (FOC1A) strobe will not set the OCF1A Flag.

OCF1A is automatically cleared when the Output Compare Match A Interrupt Vector is
executed. Alternatively, OCF1A can be cleared by writing a logic one to its bit location.

• Bit 0 – TOV1: Timer/Counter1, overflow flag

The setting of this flag is dependent of the WGM13:0 bits setting. In Normal and CTC modes,
the TOV1 Flag is set when the timer overflows. Refer to Table 16-4 on page 136 for the TOV1
Flag behavior when using another WGM13:0 bit setting.

TOV1 is automatically cleared when the Timer/Counter1 Overflow Interrupt Vector is executed.
Alternatively, TOV1 can be cleared by writing a logic one to its bit location.

Bit 7 6 5 4 3 2 1 0

0x16 (0x36) – – ICF1 – – OCF1B OCF1A TOV1 TIFR1

Read/write R R R/W R R R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0
140
2545U–AVR–11/2015

ATmega48/88/168
17. Timer/Counter0 and Timer/Counter1 prescalers

“8-bit Timer/Counter0 with PWM” on page 94 and “16-bit Timer/Counter1 with PWM” on page
113 share the same prescaler module, but the Timer/Counters can have different prescaler
settings. The description below applies to both Timer/Counter1 and Timer/Counter0.

17.0.1 Internal clock source

The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This
provides the fastest operation, with a maximum Timer/Counter clock frequency equal to system
clock frequency (fCLK_I/O). Alternatively, one of four taps from the prescaler can be used as a
clock source. The prescaled clock has a frequency of either fCLK_I/O/8, fCLK_I/O/64, fCLK_I/O/256, or
fCLK_I/O/1024.

17.0.2 Prescaler reset

The prescaler is free running, that is, operates independently of the Clock Select logic of the
Timer/Counter, and it is shared by Timer/Counter1 and Timer/Counter0. Since the prescaler is
not affected by the Timer/Counter’s clock select, the state of the prescaler will have implications
for situations where a prescaled clock is used. One example of prescaling artifacts occurs when
the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1). The number of system clock
cycles from when the timer is enabled to the first count occurs can be from 1 to N+1 system
clock cycles, where N equals the prescaler divisor (8, 64, 256, or 1024).

It is possible to use the prescaler reset for synchronizing the Timer/Counter to program
execution. However, care must be taken if the other Timer/Counter that shares the same
prescaler also uses prescaling. A prescaler reset will affect the prescaler period for all
Timer/Counters it is connected to.

17.0.3 External clock source

An external clock source applied to the T1/T0 pin can be used as Timer/Counter clock
(clkT1/clkT0). The T1/T0 pin is sampled once every system clock cycle by the pin synchronization
logic. The synchronized (sampled) signal is then passed through the edge detector. Figure 17-1
shows a functional equivalent block diagram of the T1/T0 synchronization and edge detector
logic. The registers are clocked at the positive edge of the internal system clock (clkI/O). The latch
is transparent in the high period of the internal system clock.

The edge detector generates one clkT1/clkT0 pulse for each positive (CSn2:0 = 7) or negative
(CSn2:0 = 6) edge it detects.

Figure 17-1. T1/T0 pin sampling.

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles
from an edge has been applied to the T1/T0 pin to the counter is updated.

Tn_sync
(to clock
select logic)

Edge detectorSynchronization

D QD Q

LE

D QTn

clkI/O
141
2545U–AVR–11/2015

ATmega48/88/168
Enabling and disabling of the clock input must be done when T1/T0 has been stable for at least
one system clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse is generated.

Each half period of the external clock applied must be longer than one system clock cycle to
ensure correct sampling. The external clock must be guaranteed to have less than half the
system clock frequency (fExtClk < fclk_I/O/2) given a 50/50% duty cycle. Since the edge detector
uses sampling, the maximum frequency of an external clock it can detect is half the sampling
frequency (Nyquist sampling theorem). However, due to variation of the system clock frequency
and duty cycle caused by Oscillator source (crystal, resonator, and capacitors) tolerances, it is
recommended that maximum frequency of an external clock source is less than fclk_I/O/2.5.

An external clock source can not be prescaled.

Figure 17-2. Prescaler for timer/counter0 and timer/counter1(1).

Note: 1. The synchronization logic on the input pins (T1/T0) is shown in Figure 17-1 on page 141.

PSRSYNC

Clear

clkT1 clkT0

T1

T0

clkI/O

Synchronization

Synchronization
142
2545U–AVR–11/2015

ATmega48/88/168
17.1 Register description

17.1.1 GTCCR – General timer/counter control register

• Bit 7 – TSM: Timer/counter synchronization mode

Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this mode, the
value that is written to the PSRASY and PSRSYNC bits is kept, hence keeping the
corresponding prescaler reset signals asserted. This ensures that the corresponding
Timer/Counters are halted and can be configured to the same value without the risk of one of
them advancing during configuration. When the TSM bit is written to zero, the PSRASY and
PSRSYNC bits are cleared by hardware, and the Timer/Counters start counting simultaneously.

• Bit 0 – PSRSYNC: Prescaler reset

When this bit is one, Timer/Counter1 and Timer/Counter0 prescaler will be Reset. This bit is
normally cleared immediately by hardware, except if the TSM bit is set. Note that
Timer/Counter1 and Timer/Counter0 share the same prescaler and a reset of this prescaler will
affect both timers.

Bit 7 6 5 4 3 2 1 0

0x23 (0x43) TSM – – – – – PSRASY PSRSYNC GTCCR

Read/write R/W R R R R R R/W R/W

Initial value 0 0 0 0 0 0 0 0
143
2545U–AVR–11/2015

ATmega48/88/168
18. 8-bit Timer/Counter2 with PWM and asynchronous operation

18.1 Features
• Single channel counter

• Clear timer on compare match (auto reload)

• Glitch-free, phase correct pulse width modulator (PWM)

• Frequency generator

• 10-bit clock prescaler

• Overflow and compare match interrupt sources (TOV2, OCF2A and OCF2B)

• Allows clocking from external 32kHz watch crystal independent of the I/O clock

18.2 Overview

Timer/Counter2 is a general purpose, single channel, 8-bit Timer/Counter module. A simplified
block diagram of the 8-bit Timer/Counter is shown in Figure 18-1. For the actual placement of
I/O pins, refer to “Pinout Atmel ATmega48/88/168.” on page 2. CPU accessible I/O Registers,
including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit
locations are listed in the “Register description” on page 157.

The PRTIM2 bit in “Minimizing power consumption” on page 41 must be written to zero to enable
Timer/Counter2 module.

Figure 18-1. 8-bit timer/counter block diagram.

Clock select

Timer/counter

D
AT

A
 B

U
S

OCRnA

OCRnB

=

=

TCNTn

Waveform
generation

Waveform
generation

OCnA

OCnB

=

Fixed
TOP
value

Control logic

= 0

TOP BOTTOM

Count

Clear

Direction

TOVn
(Int.req.)

OCnA
(Int.req.)

OCnB
(Int.req.)

TCCRnA TCCRnB

Tn
Edge

detector

(From prescaler)

clkTn
144
2545U–AVR–11/2015

ATmega48/88/168
18.2.1 Registers

The Timer/Counter (TCNT2) and Output Compare Register (OCR2A and OCR2B) are 8-bit
registers. Interrupt request (shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag
Register (TIFR2). All interrupts are individually masked with the Timer Interrupt Mask Register
(TIMSK2). TIFR2 and TIMSK2 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from
the TOSC1/2 pins, as detailed later in this section. The asynchronous operation is controlled by
the Asynchronous Status Register (ASSR). The Clock Select logic block controls which clock
source he Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is
inactive when no clock source is selected. The output from the Clock Select logic is referred to
as the timer clock (clkT2).

The double buffered Output Compare Register (OCR2A and OCR2B) are compared with the
Timer/Counter value at all times. The result of the compare can be used by the Waveform
Generator to generate a PWM or variable frequency output on the Output Compare pins (OC2A
and OC2B). See “Output compare unit” on page 146. for details. The compare match event will
also set the Compare Flag (OCF2A or OCF2B) which can be used to generate an Output
Compare interrupt request.

18.2.2 Definitions

Many register and bit references in this document are written in general form. A lower case “n”
replaces the Timer/Counter number, in this case 2. However, when using the register or bit
defines in a program, the precise form must be used, that is, TCNT2 for accessing
Timer/Counter2 counter value and so on.

The definitions in Table 18-1 are also used extensively throughout the section.

18.3 Timer/counter clock sources

The Timer/Counter can be clocked by an internal synchronous or an external asynchronous
clock source. The clock source clkT2 is by default equal to the MCU clock, clkI/O. When the AS2
bit in the ASSR Register is written to logic one, the clock source is taken from the Timer/Counter
Oscillator connected to TOSC1 and TOSC2. For details on asynchronous operation, see “ASSR
– Asynchronous status register” on page 163. For details on clock sources and prescaler, see
“Timer/counter prescaler” on page 156.

18.4 Counter unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure
18-2 on page 146 shows a block diagram of the counter and its surrounding environment.

Table 18-1. Definitions.

BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00).

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP

The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value 0xFF
(MAX) or the value stored in the OCR2A Register. The assignment is
dependent on the mode of operation.
145
2545U–AVR–11/2015

ATmega48/88/168
Figure 18-2. Counter unit block diagram.

Signal description (internal signals):

count : Increment or decrement TCNT2 by 1.

direction : Selects between increment and decrement.

clear : Clear TCNT2 (set all bits to zero).

clkTn : Timer/Counter clock, referred to as clkT2 in the following.

top : Signalizes that TCNT2 has reached maximum value.

bottom : Signalizes that TCNT2 has reached minimum value (zero).

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clkT2). clkT2 can be generated from an external or internal clock source,
selected by the Clock Select bits (CS22:0). When no clock source is selected (CS22:0 = 0) the
timer is stopped. However, the TCNT2 value can be accessed by the CPU, regardless of
whether clkT2 is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the WGM21 and WGM20 bits located in
the Timer/Counter Control Register (TCCR2A) and the WGM22 located in the Timer/Counter
Control Register B (TCCR2B). There are close connections between how the counter behaves
(counts) and how waveforms are generated on the Output Compare outputs OC2A and OC2B.
For more details about advanced counting sequences and waveform generation, see “Modes of
operation” on page 149.

The Timer/Counter Overflow Flag (TOV2) is set according to the mode of operation selected by
the WGM22:0 bits. TOV2 can be used for generating a CPU interrupt.

18.5 Output compare unit

The 8-bit comparator continuously compares TCNT2 with the Output Compare Register
(OCR2A and OCR2B). Whenever TCNT2 equals OCR2A or OCR2B, the comparator signals a
match. A match will set the Output Compare Flag (OCF2A or OCF2B) at the next timer clock
cycle. If the corresponding interrupt is enabled, the Output Compare Flag generates an Output
Compare interrupt. The Output Compare Flag is automatically cleared when the interrupt is
executed. Alternatively, the Output Compare Flag can be cleared by software by writing a logical
one to its I/O bit location. The Waveform Generator uses the match signal to generate an output
according to operating mode set by the WGM22:0 bits and Compare Output mode (COM2x1:0)
bits. The max and bottom signals are used by the Waveform Generator for handling the special
cases of the extreme values in some modes of operation (“Modes of operation” on page 149).

Figure 18-3 on page 147 shows a block diagram of the Output Compare unit.

DATA BUS

TCNTn Control logic

count

TOVn
(Int.req.)

topbottom

direction

clear

TOSC1

T/C
oscillator

TOSC2

Prescaler

clk
I/O

clk
Tn
146
2545U–AVR–11/2015

ATmega48/88/168
Figure 18-3. Output compare unit, block diagram.

The OCR2x Register is double buffered when using any of the Pulse Width Modulation (PWM)
modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the double
buffering is disabled. The double buffering synchronizes the update of the OCR2x Compare
Register to either top or bottom of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR2x Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCR2x Buffer Register, and if double buffering is
disabled the CPU will access the OCR2x directly.

18.5.1 Force output compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC2x) bit. Forcing compare match will not set the
OCF2x Flag or reload/clear the timer, but the OC2x pin will be updated as if a real compare
match had occurred (the COM2x1:0 bits settings define whether the OC2x pin is set, cleared or
toggled).

18.5.2 Compare match blocking by TCNT2 write

All CPU write operations to the TCNT2 Register will block any compare match that occurs in the
next timer clock cycle, even when the timer is stopped. This feature allows OCR2x to be
initialized to the same value as TCNT2 without triggering an interrupt when the Timer/Counter
clock is enabled.

18.5.3 Using the output compare unit

Since writing TCNT2 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT2 when using the Output Compare channel,
independently of whether the Timer/Counter is running or not. If the value written to TCNT2
equals the OCR2x value, the compare match will be missed, resulting in incorrect waveform
generation. Similarly, do not write the TCNT2 value equal to BOTTOM when the counter is
downcounting.

OCFnx (int.req.)

= (8-bit comparator)

OCRnx

OCnx

DATA BUS

TCNTn

WGMn1:0

Waveform generator

top

FOCn

COMnX1:0

bottom
147
2545U–AVR–11/2015

ATmega48/88/168
The setup of the OC2x should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC2x value is to use the Force Output
Compare (FOC2x) strobe bit in Normal mode. The OC2x Register keeps its value even when
changing between Waveform Generation modes.

Be aware that the COM2x1:0 bits are not double buffered together with the compare value.
Changing the COM2x1:0 bits will take effect immediately.

18.6 Compare match output unit

The Compare Output mode (COM2x1:0) bits have two functions. The Waveform Generator uses
the COM2x1:0 bits for defining the Output Compare (OC2x) state at the next compare match.
Also, the COM2x1:0 bits control the OC2x pin output source. Figure 18-4 shows a simplified
schematic of the logic affected by the COM2x1:0 bit setting. The I/O Registers, I/O bits, and I/O
pins in the figure are shown in bold. Only the parts of the general I/O Port Control Registers
(DDR and PORT) that are affected by the COM2x1:0 bits are shown. When referring to the
OC2x state, the reference is for the internal OC2x Register, not the OC2x pin.

Figure 18-4. Compare match output unit, schematic.

The general I/O port function is overridden by the Output Compare (OC2x) from the Waveform
Generator if either of the COM2x1:0 bits are set. However, the OC2x pin direction (input or
output) is still controlled by the Data Direction Register (DDR) for the port pin. The Data
Direction Register bit for the OC2x pin (DDR_OC2x) must be set as output before the OC2x
value is visible on the pin. The port override function is independent of the Waveform Generation
mode.

The design of the Output Compare pin logic allows initialization of the OC2x state before the
output is enabled. Note that some COM2x1:0 bit settings are reserved for certain modes of
operation. See “Register description” on page 157.

PORT

DDR

D Q

D Q

OCnx
pinOCnx

D Q
Waveform
generator

COMnx1

COMnx0

0

1

D
AT

A
 B

U
S

FOCnx

clkI/O
148
2545U–AVR–11/2015

ATmega48/88/168
18.6.1 Compare output mode and waveform generation

The Waveform Generator uses the COM2x1:0 bits differently in normal, CTC, and PWM modes.
For all modes, setting the COM2x1:0 = 0 tells the Waveform Generator that no action on the
OC2x Register is to be performed on the next compare match. For compare output actions in the
non-PWM modes refer to Table 18-5 on page 158. For fast PWM mode, refer to Table 18-6 on
page 159, and for phase correct PWM refer to Table 18-7 on page 159.

A change of the COM2x1:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOC2x strobe bits.

18.7 Modes of operation

The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins,
is defined by the combination of the Waveform Generation mode (WGM22:0) and Compare
Output mode (COM2x1:0) bits. The Compare Output mode bits do not affect the counting
sequence, while the Waveform Generation mode bits do. The COM2x1:0 bits control whether
the PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-
PWM modes the COM2x1:0 bits control whether the output should be set, cleared, or toggled at
a compare match (See “Compare match output unit” on page 148.).

For detailed timing information refer to “Timer/counter timing diagrams” on page 153.

18.7.1 Normal mode

The simplest mode of operation is the Normal mode (WGM22:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the
bottom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV2) will be set in the
same timer clock cycle as the TCNT2 becomes zero. The TOV2 Flag in this case behaves like a
ninth bit, except that it is only set, not cleared. However, combined with the timer overflow
interrupt that automatically clears the TOV2 Flag, the timer resolution can be increased by
software. There are no special cases to consider in the Normal mode, a new counter value can
be written anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the
Output Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

18.7.2 Clear timer on compare match (CTC) mode

In Clear Timer on Compare or CTC mode (WGM22:0 = 2), the OCR2A Register is used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter
value (TCNT2) matches the OCR2A. The OCR2A defines the top value for the counter, hence
also its resolution. This mode allows greater control of the compare match output frequency. It
also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 18-5 on page 150. The counter value
(TCNT2) increases until a compare match occurs between TCNT2 and OCR2A, and then
counter (TCNT2) is cleared.
149
2545U–AVR–11/2015

ATmega48/88/168
Figure 18-5. CTC mode, timing diagram.

An interrupt can be generated each time the counter value reaches the TOP value by using the
OCF2A Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating
the TOP value. However, changing TOP to a value close to BOTTOM when the counter is
running with none or a low prescaler value must be done with care since the CTC mode does
not have the double buffering feature. If the new value written to OCR2A is lower than the
current value of TCNT2, the counter will miss the compare match. The counter will then have to
count to its maximum value (0xFF) and wrap around starting at 0x00 before the compare match
can occur.

For generating a waveform output in CTC mode, the OC2A output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COM2A1:0 = 1). The OC2A value will not be visible on the port pin unless the data direction for
the pin is set to output. The waveform generated will have a maximum frequency of fOC2A =
fclk_I/O/2 when OCR2A is set to zero (0x00). The waveform frequency is defined by the following
equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

As for the normal mode of operation, the TOV2 Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x00.

18.7.3 Fast PWM mode

The fast Pulse Width Modulation or fast PWM mode (WGM22:0 = 3 or 7) provides a high
frequency PWM waveform generation option. The fast PWM differs from the other PWM option
by its single-slope operation. The counter counts from BOTTOM to TOP then restarts from
BOTTOM. TOP is defined as 0xFF when WGM2:0 = 3, and OCR2A when MGM2:0 = 7. In non-
inverting Compare Output mode, the Output Compare (OC2x) is cleared on the compare match
between TCNT2 and OCR2x, and set at BOTTOM. In inverting Compare Output mode, the
output is set on compare match and cleared at BOTTOM. Due to the single-slope operation, the
operating frequency of the fast PWM mode can be twice as high as the phase correct PWM
mode that uses dual-slope operation. This high frequency makes the fast PWM mode well suited
for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the TOP value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast

TCNTn

OCnx
(toggle)

OCnx interrupt flag set

1 4Period 2 3

(COMnx1:0 = 1)

fOCnx

fclk_I/O

2 N 1 OCRnx+  
--=
150
2545U–AVR–11/2015

ATmega48/88/168
PWM mode is shown in Figure 18-6. The TCNT2 value is in the timing diagram shown as a
histogram for illustrating the single-slope operation. The diagram includes non-inverted and
inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes represent compare
matches between OCR2x and TCNT2.

Figure 18-6. Fast PWM mode, timing diagram.

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches TOP. If the
interrupt is enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2x pin.
Setting the COM2x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COM2x1:0 to three. TOP is defined as 0xFF when WGM2:0 = 3,
and OCR2A when MGM2:0 = 7. (See Table 18-3 on page 158). The actual OC2x value will only
be visible on the port pin if the data direction for the port pin is set as output. The PWM
waveform is generated by setting (or clearing) the OC2x Register at the compare match
between OCR2x and TCNT2, and clearing (or setting) the OC2x Register at the timer clock cycle
the counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR2A is set equal to BOTTOM, the output will
be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2A equal to MAX will result
in a constantly high or low output (depending on the polarity of the output set by the COM2A1:0
bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by
setting OC2x to toggle its logical level on each compare match (COM2x1:0 = 1). The waveform
generated will have a maximum frequency of foc2 = fclk_I/O/2 when OCR2A is set to zero. This
feature is similar to the OC2A toggle in CTC mode, except the double buffer feature of the
Output Compare unit is enabled in the fast PWM mode.

TCNTn

OCRnx update and
TOVn interrupt flag set

1Period 2 3

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx interrupt flag set

4 5 6 7

fOCnxPWM

fclk_I/O

N 256
------------------=
151
2545U–AVR–11/2015

ATmega48/88/168
18.7.4 Phase correct PWM mode

The phase correct PWM mode (WGM22:0 = 1 or 5) provides a high resolution phase correct
PWM waveform generation option. The phase correct PWM mode is based on a dual-slope
operation. The counter counts repeatedly from BOTTOM to TOP and then from TOP to
BOTTOM. TOP is defined as 0xFF when WGM2:0 = 3, and OCR2A when MGM2:0 = 7. In non-
inverting Compare Output mode, the Output Compare (OC2x) is cleared on the compare match
between TCNT2 and OCR2x while upcounting, and set on the compare match while
downcounting. In inverting Output Compare mode, the operation is inverted. The dual-slope
operation has lower maximum operation frequency than single slope operation. However, due to
the symmetric feature of the dual-slope PWM modes, these modes are preferred for motor
control applications.

In phase correct PWM mode the counter is incremented until the counter value matches TOP.
When the counter reaches TOP, it changes the count direction. The TCNT2 value will be equal
to TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown
on Figure 18-7. The TCNT2 value is in the timing diagram shown as a histogram for illustrating
the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The
small horizontal line marks on the TCNT2 slopes represent compare matches between OCR2x
and TCNT2.

Figure 18-7. Phase correct PWM mode, timing diagram.

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOTTOM. The
Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM
value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OC2x pin. Setting the COM2x1:0 bits to two will produce a non-inverted PWM. An inverted PWM
output can be generated by setting the COM2x1:0 to three. TOP is defined as 0xFF when
WGM2:0 = 3, and OCR2A when MGM2:0 = 7 (See Table 18-4 on page 158). The actual OC2x
value will only be visible on the port pin if the data direction for the port pin is set as output. The
PWM waveform is generated by clearing (or setting) the OC2x Register at the compare match

TOVn interrupt flag set

OCnx interrupt flag set

1 2 3

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx update
152
2545U–AVR–11/2015

ATmega48/88/168
between OCR2x and TCNT2 when the counter increments, and setting (or clearing) the OC2x
Register at compare match between OCR2x and TCNT2 when the counter decrements. The
PWM frequency for the output when using phase correct PWM can be calculated by the
following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR2A is set equal to BOTTOM, the
output will be continuously low and if set equal to MAX the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of period 2 in Figure 18-7 on page 152 OCnx has a transition from high to low
even though there is no Compare Match. The point of this transition is to guarantee symmetry
around BOTTOM. There are two cases that give a transition without Compare Match.

l OCR2A changes its value from MAX, like in Figure 18-7 on page 152. When the OCR2A
value is MAX the OCn pin value is the same as the result of a down-counting compare
match. To ensure symmetry around BOTTOM the OCn value at MAX must correspond to
the result of an up-counting Compare Match

l The timer starts counting from a value higher than the one in OCR2A, and for that reason
misses the Compare Match and hence the OCn change that would have happened on the
way up

18.8 Timer/counter timing diagrams

The following figures show the Timer/Counter in synchronous mode, and the timer clock (clkT2)
is therefore shown as a clock enable signal. In asynchronous mode, clkI/O should be replaced by
the Timer/Counter Oscillator clock. The figures include information on when Interrupt Flags are
set. Figure 18-8 contains timing data for basic Timer/Counter operation. The figure shows the
count sequence close to the MAX value in all modes other than phase correct PWM mode.

Figure 18-8. Timer/counter timing diagram, no prescaling.

Figure 18-9 on page 154 shows the same timing data, but with the prescaler enabled.

fOCnxPCPWM

fclk_I/O

N 510
------------------=

clkTn
(clkI/O/1)

TOVn

clkI/O

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1
153
2545U–AVR–11/2015

ATmega48/88/168
Figure 18-9. Timer/counter timing diagram, with prescaler (fclk_I/O/8).

Figure 18-10 shows the setting of OCF2A in all modes except CTC mode.

Figure 18-10. Timer/counter timing diagram, setting of OCF2A, with prescaler (fclk_I/O/8).

Figure 18-11 shows the setting of OCF2A and the clearing of TCNT2 in CTC mode.

Figure 18-11. Timer/counter timing diagram, clear timer on compare match mode, with prescaler
(fclk_I/O/8).

TOVn

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

OCFnx

OCRnx

TCNTn

OCRnx value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clkI/O

clkTn
(clkI/O/8)

OCFnx

OCRnx

TCNTn
(CTC)

TOP

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)
154
2545U–AVR–11/2015

ATmega48/88/168
18.9 Asynchronous operation of Timer/Counter2

When Timer/Counter2 operates asynchronously, some considerations must be taken.

l Warning: When switching between asynchronous and synchronous clocking of
Timer/Counter2, the Timer Registers TCNT2, OCR2x, and TCCR2x might be corrupted. A
safe procedure for switching clock source is:

a. Disable the Timer/Counter2 interrupts by clearing OCIE2x and TOIE2.

2. Select clock source by setting AS2 as appropriate.

3. Write new values to TCNT2, OCR2x, and TCCR2x.

4. To switch to asynchronous operation: Wait for TCN2xUB, OCR2xUB, and
TCR2xUB.

5. Clear the Timer/Counter2 Interrupt Flags.

6. Enable interrupts, if needed.

l The CPU main clock frequency must be more than four times the Oscillator frequency

l When writing to one of the registers TCNT2, OCR2x, or TCCR2x, the value is transferred
to a temporary register, and latched after two positive edges on TOSC1. The user should
not write a new value before the contents of the temporary register have been transferred
to its destination. Each of the five mentioned registers have their individual temporary
register, which means that, for example, writing to TCNT2 does not disturb an OCR2x
write in progress. To detect that a transfer to the destination register has taken place, the
Asynchronous Status Register – ASSR has been implemented

l When entering Power-save or ADC Noise Reduction mode after having written to TCNT2,
OCR2x, or TCCR2x, the user must wait until the written register has been updated if
Timer/Counter2 is used to wake up the device. Otherwise, the MCU will enter sleep mode
before the changes are effective. This is particularly important if any of the Output
Compare2 interrupt is used to wake up the device, since the Output Compare function is
disabled during writing to OCR2x or TCNT2. If the write cycle is not finished, and the MCU
enters sleep mode before the corresponding OCR2xUB bit returns to zero, the device will
never receive a compare match interrupt, and the MCU will not wake up

l If Timer/Counter2 is used to wake the device up from Power-save or ADC Noise
Reduction mode, precautions must be taken if the user wants to re-enter one of these
modes: If re-entering sleep mode within the TOSC1 cycle, the interrupt will immidiately
occur and the device wake up again. The result is multiple interrupts and wake-ups within
one TOSC1 cycle from the first interrupt. If the user is in doubt whether the time before re-
entering Power-save or ADC Noise Reduction mode is sufficient, the following algorithm
can be used to ensure that one TOSC1 cycle has elapsed:

a. Write a value to TCCR2x, TCNT2, or OCR2x.

7. Wait until the corresponding Update Busy Flag in ASSR returns to zero.

8. Enter Power-save or ADC Noise Reduction mode.

l When the asynchronous operation is selected, the 32.768kHz Oscillator for
Timer/Counter2 is always running, except in Power-down and Standby modes. After a
Power-up Reset or wake-up from Power-down or Standby mode, the user should be
aware of the fact that this Oscillator might take as long as one second to stabilize. The
user is advised to wait for at least one second before using Timer/Counter2 after power-up
or wake-up from Power-down or Standby mode. The contents of all Timer/Counter2
Registers must be considered lost after a wake-up from Power-down or Standby mode
155
2545U–AVR–11/2015

ATmega48/88/168
due to unstable clock signal upon start-up, no matter whether the Oscillator is in use or a
clock signal is applied to the TOSC1 pin

l Description of wake up from Power-save or ADC Noise Reduction mode when the timer is
clocked asynchronously: When the interrupt condition is met, the wake up process is
started on the following cycle of the timer clock, that is, the timer is always advanced by at
least one before the processor can read the counter value. After wake-up, the MCU is
halted for four cycles, it executes the interrupt routine, and resumes execution from the
instruction following SLEEP

l Reading of the TCNT2 Register shortly after wake-up from Power-save may give an
incorrect result. Since TCNT2 is clocked on the asynchronous TOSC clock, reading
TCNT2 must be done through a register synchronized to the internal I/O clock domain.
Synchronization takes place for every rising TOSC1 edge. When waking up from Power-
save mode, and the I/O clock (clkI/O) again becomes active, TCNT2 will read as the
previous value (before entering sleep) until the next rising TOSC1 edge. The phase of the
TOSC clock after waking up from Power-save mode is essentially unpredictable, as it
depends on the wake-up time. The recommended procedure for reading TCNT2 is thus as
follows:

a. Write any value to either of the registers OCR2x or TCCR2x.

9. Wait for the corresponding Update Busy Flag to be cleared.

10. Read TCNT2.

During asynchronous operation, the synchronization of the Interrupt Flags for the asynchronous
timer takes 3 processor cycles plus one timer cycle. The timer is therefore advanced by at least
one before the processor can read the timer value causing the setting of the Interrupt Flag. The
Output Compare pin is changed on the timer clock and is not synchronized to the processor
clock.

18.10 Timer/counter prescaler

Figure 18-12. Prescaler for Timer/Counter2.

10-BIT T/C PRESCALER

TIMER/COUNTER2 CLOCK SOURCE

clkI/O clkT2S

TOSC1

AS2

CS20
CS21
CS22

cl
k T

2S
/8

cl
k T

2S
/6

4

cl
k T

2S
/1

28

cl
k T

2S
/1

02
4

cl
k T

2S
/2

56

cl
k T

2S
/3

2

0PSRASY

Clear

clkT2
156
2545U–AVR–11/2015

ATmega48/88/168
The clock source for Timer/Counter2 is named clkT2S. clkT2S is by default connected to the main
system I/O clock clkIO. By setting the AS2 bit in ASSR, Timer/Counter2 is asynchronously
clocked from the TOSC1 pin. This enables use of Timer/Counter2 as a Real Time Counter
(RTC). When AS2 is set, pins TOSC1 and TOSC2 are disconnected from Port C. A crystal can
then be connected between the TOSC1 and TOSC2 pins to serve as an independent clock
source for Timer/Counter2. The Oscillator is optimized for use with a 32.768kHz crystal.

For Timer/Counter2, the possible prescaled selections are: clkT2S/8, clkT2S/32, clkT2S/64,
clkT2S/128, clkT2S/256, and clkT2S/1024. Additionally, clkT2S as well as 0 (stop) may be selected.
Setting the PSRASY bit in GTCCR resets the prescaler. This allows the user to operate with a
predictable prescaler.

18.11 Register description

18.11.1 TCCR2A – Timer/counter control register A

• Bits 7:6 – COM2A1:0: Compare match output A mode

These bits control the Output Compare pin (OC2A) behavior. If one or both of the COM2A1:0
bits are set, the OC2A output overrides the normal port functionality of the I/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to the OC2A pin
must be set in order to enable the output driver.

When OC2A is connected to the pin, the function of the COM2A1:0 bits depends on the
WGM22:0 bit setting. Table 18-2 shows the COM2A1:0 bit functionality when the WGM22:0 bits
are set to a normal or CTC mode (non-PWM).

Table 18-3 on page 158 shows the COM2A1:0 bit functionality when the WGM21:0 bits are set
to fast PWM mode.

Bit 7 6 5 4 3 2 1 0

(0xB0) COM2A1 COM2A0 COM2B1 COM2B0 – – WGM21 WGM20 TCCR2A

Read/write R/W R/W R/W R/W R R R/W R/W

Initial value 0 0 0 0 0 0 0 0

Table 18-2. Compare output mode, non-PWM mode.

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected

0 1 Toggle OC2A on compare match

1 0 Clear OC2A on compare match

1 1 Set OC2A on compare match
157
2545U–AVR–11/2015

ATmega48/88/168
Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the
Compare Match is ignored, but the set or clear is done at TOP. See “Fast PWM mode” on
page 150 for more details.

Table 18-4 shows the COM2A1:0 bit functionality when the WGM22:0 bits are set to phase
correct PWM mode.

Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the
Compare Match is ignored, but the set or clear is done at TOP. See “Phase correct PWM
mode” on page 152 for more details.

• Bits 5:4 – COM2B1:0: Compare match output B mode

These bits control the Output Compare pin (OC2B) behavior. If one or both of the COM2B1:0
bits are set, the OC2B output overrides the normal port functionality of the I/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to the OC2B pin
must be set in order to enable the output driver.

When OC2B is connected to the pin, the function of the COM2B1:0 bits depends on the
WGM22:0 bit setting. Table 18-5 shows the COM2B1:0 bit functionality when the WGM22:0 bits
are set to a normal or CTC mode (non-PWM).

Table 18-3. Compare output mode, fast PWM mode(1).

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected

0 1
WGM22 = 0: Normal port operation, OC0A disconnected
WGM22 = 1: Toggle OC2A on compare match

1 0
Clear OC2A on compare match, set OC2A at BOTTOM,
(non-inverting mode)

1 1
Set OC2A on compare match, clear OC2A at BOTTOM,
(inverting mode)

Table 18-4. Compare output mode, phase correct PWM Mode(1).

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected

0 1
WGM22 = 0: Normal port operation, OC2A disconnected
WGM22 = 1: Toggle OC2A on compare match

1 0
Clear OC2A on compare match when up-counting
Set OC2A on compare match when down-counting

1 1
Set OC2A on compare match when up-counting
Clear OC2A on compare match when down-counting

Table 18-5. Compare output mode, non-PWM mode.

COM2B1 COM2B0 Description

0 0 Normal port operation, OC2B disconnected

0 1 Toggle OC2B on compare match

1 0 Clear OC2B on compare match

1 1 Set OC2B on compare match
158
2545U–AVR–11/2015

ATmega48/88/168
Table 18-6 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to fast PWM
mode.

Note: 1. A special case occurs when OCR2B equals TOP and COM2B1 is set. In this case, the
Compare Match is ignored, but the set or clear is done at TOP. See “Phase correct PWM
mode” on page 152 for more details.

Table 18-7 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to phase
correct PWM mode.

Note: 1. A special case occurs when OCR2B equals TOP and COM2B1 is set. In this case, the
Compare Match is ignored, but the set or clear is done at TOP. See “Phase correct PWM
mode” on page 152 for more details.

• Bits 3, 2 – Res: Reserved bits

These bits are reserved bits in the Atmel ATmega48/88/168 and will always read as zero.

• Bits 1:0 – WGM21:0: Waveform generation mode

Combined with the WGM22 bit found in the TCCR2B Register, these bits control the counting
sequence of the counter, the source for maximum (TOP) counter value, and what type of
waveform generation to be used, see Table 18-8 on page 160. Modes of operation supported by
the Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare Match (CTC)
mode, and two types of Pulse Width Modulation (PWM) modes (see “Modes of operation” on
page 149).

Table 18-6. Compare output mode, fast PWM mode(1).

COM2B1 COM2B0 Description

0 0 Normal port operation, OC2B disconnected

0 1 Reserved

1 0
Clear OC2B on compare match, set OC2B at BOTTOM,
(non-inverting mode)

1 1
Set OC2B on compare match, clear OC2B at BOTTOM,
(invertiing mode)

Table 18-7. Compare output mode, phase correct PWM mode(1).

COM2B1 COM2B0 Description

0 0 Normal port operation, OC2B disconnected

0 1 Reserved

1 0
Clear OC2B on compare match when up-counting
Set OC2B on compare match when down-counting

1 1
Set OC2B on compare match when up-counting
Clear OC2B on compare match when down-counting
159
2545U–AVR–11/2015

ATmega48/88/168
Notes: 1. MAX= 0xFF

2. BOTTOM= 0x00

18.11.2 TCCR2B – Timer/counter control register B

• Bit 7 – FOC2A: Force output compare A

The FOC2A bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCR2B is written when operating in PWM mode. When writing a logical one to the FOC2A bit,
an immediate Compare Match is forced on the Waveform Generation unit. The OC2A output is
changed according to its COM2A1:0 bits setting. Note that the FOC2A bit is implemented as a
strobe. Therefore it is the value present in the COM2A1:0 bits that determines the effect of the
forced compare.

A FOC2A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR2A as TOP.

The FOC2A bit is always read as zero.

• Bit 6 – FOC2B: Force output compare B

The FOC2B bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCR2B is written when operating in PWM mode. When writing a logical one to the FOC2B bit,
an immediate Compare Match is forced on the Waveform Generation unit. The OC2B output is
changed according to its COM2B1:0 bits setting. Note that the FOC2B bit is implemented as a
strobe. Therefore it is the value present in the COM2B1:0 bits that determines the effect of the
forced compare.

Table 18-8. Waveform generation mode bit description.

Mode WGM2 WGM1 WGM0

Timer/counter
mode of

operation TOP
Update of
OCRx at

TOV flag
set on(1)(2)

0 0 0 0 Normal 0xFF Immediate MAX

1 0 0 1
PWM,

phase correct
0xFF TOP BOTTOM

2 0 1 0 CTC OCRA Immediate MAX

3 0 1 1 Fast PWM 0xFF BOTTOM MAX

4 1 0 0 Reserved – – –

5 1 0 1
PWM,

phase correct
OCRA TOP BOTTOM

6 1 1 0 Reserved – – –

7 1 1 1 Fast PWM OCRA BOTTOM TOP

Bit 7 6 5 4 3 2 1 0

(0xB1) FOC2A FOC2B – – WGM22 CS22 CS21 CS20 TCCR2B

Read/write W W R R R R R/W R/W

Initial value 0 0 0 0 0 0 0 0
160
2545U–AVR–11/2015

ATmega48/88/168
A FOC2B strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR2B as TOP.

The FOC2B bit is always read as zero.

• Bits 5:4 – Res: Reserved bits

These bits are reserved bits in the Atmel ATmega48/88/168 and will always read as zero.

• Bit 3 – WGM22: Waveform generation mode

See the description in the “TCCR2A – Timer/counter control register A” on page 157.

• Bit 2:0 – CS22:0: Clock select

The three Clock Select bits select the clock source to be used by the Timer/Counter, see Table
18-9.

If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

18.11.3 TCNT2 – Timer/counter register

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNT2 Register blocks (removes) the Compare
Match on the following timer clock. Modifying the counter (TCNT2) while the counter is running,
introduces a risk of missing a Compare Match between TCNT2 and the OCR2x Registers.

18.11.4 OCR2A – Output compare register A

Table 18-9. Clock select bit description.

CS22 CS21 CS20 Description

0 0 0 No clock source (timer/counter stopped)

0 0 1 clkT2S/(no prescaling)

0 1 0 clkT2S/8 (from prescaler)

0 1 1 clkT2S/32 (from prescaler)

1 0 0 clkT2S/64 (from prescaler)

1 0 1 clkT2S/128 (from prescaler)

1 1 0 clkT2S/256 (from prescaler)

1 1 1 clkT2S/1024 (from prescaler)

Bit 7 6 5 4 3 2 1 0

(0xB2) TCNT2[7:0] TCNT2

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xB3) OCR2A[7:0] OCR2A

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0
161
2545U–AVR–11/2015

ATmega48/88/168
The Output Compare Register A contains an 8-bit value that is continuously compared with the
counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC2A pin.

18.11.5 OCR2B – Output compare register B

The Output Compare Register B contains an 8-bit value that is continuously compared with the
counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC2B pin.

18.11.6 TIMSK2 – Timer/Counter2 interrupt mask register

• Bit 2 – OCIE2B: Timer/Counter2 output compare match B interrupt enable

When the OCIE2B bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Compare Match B interrupt is enabled. The corresponding interrupt is executed
if a compare match in Timer/Counter2 occurs, that is, when the OCF2B bit is set in the
Timer/Counter 2 Interrupt Flag Register – TIFR2.

• Bit 1 – OCIE2A: Timer/Counter2 output compare match A interrupt enable

When the OCIE2A bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Compare Match A interrupt is enabled. The corresponding interrupt is executed
if a compare match in Timer/Counter2 occurs, that is, when the OCF2A bit is set in the
Timer/Counter 2 Interrupt Flag Register – TIFR2.

• Bit 0 – TOIE2: Timer/Counter2 overflow interrupt enable

When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter2 occurs, that is, when the TOV2 bit is set in the Timer/Counter2
Interrupt Flag Register – TIFR2.

18.11.7 TIFR2 – Timer/Counter2 interrupt flag register

• Bit 2 – OCF2B: Output compare flag 2 B

The OCF2B bit is set (one) when a compare match occurs between the Timer/Counter2 and the
data in OCR2B – Output Compare Register2. OCF2B is cleared by hardware when executing
the corresponding interrupt handling vector. Alternatively, OCF2B is cleared by writing a logic

Bit 7 6 5 4 3 2 1 0

(0xB4) OCR2B[7:0] OCR2B

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x70) – – – – – OCIE2B OCIE2A TOIE2 TIMSK2

Read/write R R R R R R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x17 (0x37) – – – – – OCF2B OCF2A TOV2 TIFR2

Read/write R R R R R R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0
162
2545U–AVR–11/2015

ATmega48/88/168
one to the flag. When the I-bit in SREG, OCIE2B (Timer/Counter2 Compare match Interrupt
Enable), and OCF2B are set (one), the Timer/Counter2 Compare match Interrupt is executed.

• Bit 1 – OCF2A: Output compare flag 2 A

The OCF2A bit is set (one) when a compare match occurs between the Timer/Counter2 and the
data in OCR2A – Output Compare Register2. OCF2A is cleared by hardware when executing
the corresponding interrupt handling vector. Alternatively, OCF2A is cleared by writing a logic
one to the flag. When the I-bit in SREG, OCIE2A (Timer/Counter2 Compare match Interrupt
Enable), and OCF2A are set (one), the Timer/Counter2 Compare match Interrupt is executed.

• Bit 0 – TOV2: Timer/Counter2 overflow flag

The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared by
hardware when executing the corresponding interrupt handling vector. Alternatively, TOV2 is
cleared by writing a logic one to the flag. When the SREG I-bit, TOIE2A (Timer/Counter2
Overflow Interrupt Enable), and TOV2 are set (one), the Timer/Counter2 Overflow interrupt is
executed. In PWM mode, this bit is set when Timer/Counter2 changes counting direction at
0x00.

18.11.8 ASSR – Asynchronous status register

• Bit 7 – RES: Reserved bit

This bit is reserved and will always read as zero.

• Bit 6 – EXCLK: Enable external clock input

When EXCLK is written to one, and asynchronous clock is selected, the external clock input
buffer is enabled and an external clock can be input on Timer Oscillator 1 (TOSC1) pin instead
of a 32kHz crystal. Writing to EXCLK should be done before asynchronous operation is
selected. Note that the crystal Oscillator will only run when this bit is zero.

• Bit 5 – AS2: Asynchronous Timer/Counter2

When AS2 is written to zero, Timer/Counter2 is clocked from the I/O clock, clkI/O. When AS2 is
written to one, Timer/Counter2 is clocked from a crystal Oscillator connected to the Timer
Oscillator 1 (TOSC1) pin. When the value of AS2 is changed, the contents of TCNT2, OCR2A,
OCR2B, TCCR2A and TCCR2B might be corrupted.

• Bit 4 – TCN2UB: Timer/Counter2 update busy

When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes set.
When TCNT2 has been updated from the temporary storage register, this bit is cleared by
hardware. A logical zero in this bit indicates that TCNT2 is ready to be updated with a new value.

• Bit 3 – OCR2AUB: Output compare Register2 update busy

When Timer/Counter2 operates asynchronously and OCR2A is written, this bit becomes set.
When OCR2A has been updated from the temporary storage register, this bit is cleared by
hardware. A logical zero in this bit indicates that OCR2A is ready to be updated with a new
value.

Bit 7 6 5 4 3 2 1 0

(0xB6) – EXCLK AS2 TCN2UB OCR2AUB OCR2BUB TCR2AUB TCR2BUB ASSR

Read/write R R/W R/W R R R R R

Initial value 0 0 0 0 0 0 0 0
163
2545U–AVR–11/2015

ATmega48/88/168
• Bit 2 – OCR2BUB: Output compare Register2 update busy

When Timer/Counter2 operates asynchronously and OCR2B is written, this bit becomes set.
When OCR2B has been updated from the temporary storage register, this bit is cleared by
hardware. A logical zero in this bit indicates that OCR2B is ready to be updated with a new
value.

• Bit 1 – TCR2AUB: Timer/counter control Register2 update busy

When Timer/Counter2 operates asynchronously and TCCR2A is written, this bit becomes set.
When TCCR2A has been updated from the temporary storage register, this bit is cleared by
hardware. A logical zero in this bit indicates that TCCR2A is ready to be updated with a new
value.

• Bit 0 – TCR2BUB: Timer/counter control Register2 update busy

When Timer/Counter2 operates asynchronously and TCCR2B is written, this bit becomes set.
When TCCR2B has been updated from the temporary storage register, this bit is cleared by
hardware. A logical zero in this bit indicates that TCCR2B is ready to be updated with a new
value.

If a write is performed to any of the five Timer/Counter2 Registers while its update busy flag is
set, the updated value might get corrupted and cause an unintentional interrupt to occur.

The mechanisms for reading TCNT2, OCR2A, OCR2B, TCCR2A and TCCR2B are different.
When reading TCNT2, the actual timer value is read. When reading OCR2A, OCR2B, TCCR2A
and TCCR2B the value in the temporary storage register is read.

18.11.9 GTCCR – General timer/counter control register

• Bit 1 – PSRASY: Prescaler reset Timer/Counter2

When this bit is one, the Timer/Counter2 prescaler will be reset. This bit is normally cleared
immediately by hardware. If the bit is written when Timer/Counter2 is operating in asynchronous
mode, the bit will remain one until the prescaler has been reset. The bit will not be cleared by
hardware if the TSM bit is set. Refer to the description of the “Bit 7 – TSM: Timer/counter
synchronization mode” on page 143 for a description of the Timer/Counter Synchronization
mode.

Bit 7 6 5 4 3 2 1 0

0x23 (0x43) TSM – – – – – PSRASY PSRSYNC GTCCR

Read/write R/W R R R R R R/W R/W

Initial value 0 0 0 0 0 0 0 0
164
2545U–AVR–11/2015

ATmega48/88/168
19. SPI – Serial peripheral interface

19.1 Features
• Full-duplex, three-wire synchronous data transfer

• Master or slave operation

• LSB first or MSB first data transfer

• Seven programmable bit rates

• End of transmission interrupt flag

• Write collision flag protection

• Wake-up from idle mode

• Double speed (CK/2) master SPI mode

19.2 Overview

The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the
Atmel ATmega48/88/168 and peripheral devices or between several AVR devices.

The USART can also be used in Master SPI mode, see “USART in SPI mode” on page 203. The
PRSPI bit in “Minimizing power consumption” on page 41 must be written to zero to enable SPI
module.
165
2545U–AVR–11/2015

ATmega48/88/168
Figure 19-1. SPI block diagram(1).

Note: 1. Refer to Figure 1-1 on page 2, and Table 14-3 on page 83 for SPI pin placement.

The interconnection between Master and Slave CPUs with SPI is shown in Figure 19-2 on page
167. The system consists of two shift Registers, and a Master clock generator. The SPI Master
initiates the communication cycle when pulling low the Slave Select SS pin of the desired Slave.
Master and Slave prepare the data to be sent in their respective shift Registers, and the Master
generates the required clock pulses on the SCK line to interchange data. Data is always shifted
from Master to Slave on the Master Out – Slave In, MOSI, line, and from Slave to Master on the
Master In – Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave
by pulling high the Slave Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This
must be handled by user software before communication can start. When this is done, writing a
byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight
bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of
Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an
interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or
signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be
kept in the Buffer Register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long
as the SS pin is driven high. In this state, software may update the contents of the SPI Data
Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin
until the SS pin is driven low. As one byte has been completely shifted, the end of Transmission

S
P

I2
X

S
P

I2
X

DIVIDER
/2/4/8/16/32/64/128
166
2545U–AVR–11/2015

ATmega48/88/168
Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt
is requested. The Slave may continue to place new data to be sent into SPDR before reading
the incoming data. The last incoming byte will be kept in the Buffer Register for later use.

Figure 19-2. SPI master-slave interconnection.

The system is single buffered in the transmit direction and double buffered in the receive
direction. This means that bytes to be transmitted cannot be written to the SPI Data Register
before the entire shift cycle is completed. When receiving data, however, a received character
must be read from the SPI Data Register before the next character has been completely shifted
in. Otherwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure
correct sampling of the clock signal, the minimum low and high periods should be:

Low periods: Longer than 2 CPU clock cycles.

High periods: Longer than 2 CPU clock cycles.

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden
according to Table 19-1. For more details on automatic port overrides, refer to “Alternate port
functions” on page 81.

Note: See “Alternate functions of port B” on page 83 for a detailed description of how to define the
direction of the user defined SPI pins.

The following code examples show how to initialize the SPI as a Master and how to perform a
simple transmission. DDR_SPI in the examples must be replaced by the actual Data Direction
Register controlling the SPI pins. DD_MOSI, DD_MISO and DD_SCK must be replaced by the
actual data direction bits for these pins. For example if MOSI is placed on pin PB3, replace
DD_MOSI with DDB3 and DDR_SPI with DDRB.

Table 19-1. SPI pin overrides(Note:).

Pin Direction, master SPI Direction, slave SPI

MOSI User defined Input

MISO Input User defined

SCK User defined Input

SS User defined Input

SHIFT
ENABLE
167
2545U–AVR–11/2015

ATmega48/88/168
Note: 1. See ”About code examples” on page 8.

Assembly code example(1)

SPI_MasterInit:
; Set MOSI and SCK output, all others input
ldi r17,(1<<DD_MOSI)|(1<<DD_SCK)
out DDR_SPI,r17
; Enable SPI, Master, set clock rate fck/16
ldi r17,(1<<SPE)|(1<<MSTR)|(1<<SPR0)
out SPCR,r17
ret

SPI_MasterTransmit:
; Start transmission of data (r16)
out SPDR,r16

Wait_Transmit:
; Wait for transmission complete
in r16, SPSR
sbrs r16, SPIF
rjmp Wait_Transmit
ret

C code example(1)

void SPI_MasterInit(void)
{

/* Set MOSI and SCK output, all others input */
DDR_SPI = (1<<DD_MOSI)|(1<<DD_SCK);
/* Enable SPI, Master, set clock rate fck/16 */
SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPR0);

}

void SPI_MasterTransmit(char cData)
{

/* Start transmission */
SPDR = cData;
/* Wait for transmission complete */
while(!(SPSR & (1<<SPIF)))

;
}

168
2545U–AVR–11/2015

ATmega48/88/168
The following code examples show how to initialize the SPI as a Slave and how to perform a
simple reception.

Note: 1. See ”About code examples” on page 8.

Assembly code example(1)

SPI_SlaveInit:
; Set MISO output, all others input
ldi r17,(1<<DD_MISO)
out DDR_SPI,r17
; Enable SPI
ldi r17,(1<<SPE)
out SPCR,r17
ret

SPI_SlaveReceive:
; Wait for reception complete
sbis SPSR,SPIF
rjmp SPI_SlaveReceive
; Read received data and return
in r16,SPDR
ret

C code example(1)

void SPI_SlaveInit(void)
{

/* Set MISO output, all others input */
DDR_SPI = (1<<DD_MISO);
/* Enable SPI */
SPCR = (1<<SPE);

}

char SPI_SlaveReceive(void)
{

/* Wait for reception complete */
while(!(SPSR & (1<<SPIF)))

;
/* Return Data Register */
return SPDR;

}

169
2545U–AVR–11/2015

ATmega48/88/168
19.3 SS pin functionality

19.3.1 Slave mode

When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When SS is
held low, the SPI is activated, and MISO becomes an output if configured so by the user. All
other pins are inputs. When SS is driven high, all pins are inputs, and the SPI is passive, which
means that it will not receive incoming data. Note that the SPI logic will be reset once the SS pin
is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous
with the master clock generator. When the SS pin is driven high, the SPI slave will immediately
reset the send and receive logic, and drop any partially received data in the Shift Register.

19.3.2 Master mode

When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the
direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the SPI
system. Typically, the pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If the SS pin
is driven low by peripheral circuitry when the SPI is configured as a Master with the SS pin
defined as an input, the SPI system interprets this as another master selecting the SPI as a
slave and starting to send data to it. To avoid bus contention, the SPI system takes the following
actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a result of
the SPI becoming a Slave, the MOSI and SCK pins become inputs.

2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG is
set, the interrupt routine will be executed.

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a
possibility that SS is driven low, the interrupt should always check that the MSTR bit is still set. If
the MSTR bit has been cleared by a slave select, it must be set by the user to re-enable SPI
Master mode.

19.4 Data modes

There are four combinations of SCK phase and polarity with respect to serial data, which are
determined by control bits CPHA and CPOL. The SPI data transfer formats are shown in Figure
19-3 on page 171 and Figure 19-4 on page 171. Data bits are shifted out and latched in on
opposite edges of the SCK signal, ensuring sufficient time for data signals to stabilize. This is
clearly seen by summarizing Table 19-3 on page 172 and Table 19-4 on page 172, as done
below.
170
2545U–AVR–11/2015

ATmega48/88/168
Figure 19-3. SPI transfer format with CPHA = 0.

Figure 19-4. SPI transfer format with CPHA = 1.

Table 19-2. CPOL functionality.

Leading edge Trailing edge SPI mode

CPOL=0, CPHA=0 Sample (rising) Setup (falling) 0

CPOL=0, CPHA=1 Setup (rising) Sample (falling) 1

CPOL=1, CPHA=0 Sample (falling) Setup (rising) 2

CPOL=1, CPHA=1 Setup (falling) Sample (rising) 3

Bit 1
Bit 6

LSB
MSB

SCK (CPOL = 0)
mode 0

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 2

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

MSB first (DORD = 0)
LSB first (DORD = 1)

SCK (CPOL = 0)
mode 1

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 3

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB first (DORD = 0)
LSB first (DORD = 1)
171
2545U–AVR–11/2015

ATmega48/88/168
19.5 Register description

19.5.1 SPCR – SPI control register

• Bit 7 – SPIE: SPI interrupt enable

This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if
the Global Interrupt Enable bit in SREG is set.

• Bit 6 – SPE: SPI enable

When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI
operations.

• Bit 5 – DORD: Data order

When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

• Bit 4 – MSTR: Master/slave select

This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic
zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared,
and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable SPI
Master mode.

• Bit 3 – CPOL: Clock polarity

When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low
when idle. Refer to Figure 19-3 on page 171 and Figure 19-4 on page 171 for an example. The
CPOL functionality is summarized below:

• Bit 2 – CPHA: Clock phase

The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or
trailing (last) edge of SCK. Refer to Figure 19-3 on page 171 and Figure 19-4 on page 171 for an
example. The CPOL functionality is summarized below:

Bit 7 6 5 4 3 2 1 0

0x2C (0x4C) SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 SPCR

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Table 19-3. CPOL functionality.

CPOL Leading edge Trailing edge

0 Rising Falling

1 Falling Rising

Table 19-4. CPHA Functionality

CPHA Leading edge Trailing edge

0 Sample Setup

1 Setup Sample
172
2545U–AVR–11/2015

ATmega48/88/168
• Bits 1, 0 – SPR1, SPR0: SPI clock rate select 1 and 0

These two bits control the SCK rate of the device configured as a Master. SPR1 and SPR0 have
no effect on the Slave. The relationship between SCK and the Oscillator Clock frequency fosc is
shown in Table 19-5:

19.5.2 SPSR – SPI status register

• Bit 7 – SPIF: SPI interrupt flag

When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if SPIE in
SPCR is set and global interrupts are enabled. If SS is an input and is driven low when the SPI is
in Master mode, this will also set the SPIF Flag. SPIF is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, the SPIF bit is cleared by first reading the
SPI Status Register with SPIF set, then accessing the SPI Data Register (SPDR).

• Bit 6 – WCOL: Write COLlision flag

The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The
WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register with WCOL set,
and then accessing the SPI Data Register.

• Bit 5..1 – Res: Reserved bits

These bits are reserved bits in the Atmel ATmega48/88/168 and will always read as zero.

• Bit 0 – SPI2X: Double SPI speed bit

When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI
is in Master mode (see Table 19-5). This means that the minimum SCK period will be two CPU
clock periods. When the SPI is configured as Slave, the SPI is only guaranteed to work at fosc/4
or lower.

The SPI interface on the ATmega48/88/168 is also used for program memory and EEPROM
downloading or uploading. See page 305 for serial programming and verification.

Table 19-5. Relationship between SCK and the oscillator frequency.

SPI2X SPR1 SPR0 SCK frequency

0 0 0 fosc/4

0 0 1 fosc/16

0 1 0 fosc/64

0 1 1 fosc/128

1 0 0 fosc/2

1 0 1 fosc/8

1 1 0 fosc/32

1 1 1 fosc/64

Bit 7 6 5 4 3 2 1 0

0x2D (0x4D) SPIF WCOL – – – – – SPI2X SPSR

Read/write R R R R R R R R/W

Initial value 0 0 0 0 0 0 0 0
173
2545U–AVR–11/2015

ATmega48/88/168
19.5.3 SPDR – SPI data register

The SPI Data Register is a read/write register used for data transfer between the Register File
and the SPI Shift Register. Writing to the register initiates data transmission. Reading the
register causes the Shift Register Receive buffer to be read.

Bit 7 6 5 4 3 2 1 0

0x2E (0x4E) MSB LSB SPDR

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value X X X X X X X X Undefined
174
2545U–AVR–11/2015

ATmega48/88/168
20. USART0

20.1 Features
• Full duplex operation (independent serial receive and transmit registers)

• Asynchronous or synchronous operation

• Master or slave clocked synchronous operation

• High resolution baud rate generator

• Supports serial frames with 5, 6, 7, 8, or 9 data bits, and 1 or 2 stop bits

• Odd or even parity generation and parity check supported by hardware

• Data overrun detection

• Framing error detection

• Noise filtering includes false start bit detection and digital low pass filter

• Three separate interrupts on TX complete, TX data register empty and RX complete

• Multi-processor communication mode

• Double speed asynchronous communication mode

The USART can also be used in Master SPI mode, see “USART in SPI mode” on page 203. The
Power Reduction USART bit, PRUSART0, in “Minimizing power consumption” on page 41 must
be disabled by writing a logical zero to it.

20.2 Overview

The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a
highly flexible serial communication device.

A simplified block diagram of the USART Transmitter is shown in Table 20-1 on page 176. CPU
accessible I/O Registers and I/O pins are shown in bold.

The dashed boxes in the block diagram separate the three main parts of the USART (listed from
the top): Clock Generator, Transmitter and Receiver. Control Registers are shared by all units.
The Clock Generation logic consists of synchronization logic for external clock input used by
synchronous slave operation, and the baud rate generator. The XCKn (Transfer Clock) pin is
only used by synchronous transfer mode. The Transmitter consists of a single write buffer, a
serial Shift Register, Parity Generator and Control logic for handling different serial frame
formats. The write buffer allows a continuous transfer of data without any delay between frames.
The Receiver is the most complex part of the USART module due to its clock and data recovery
units. The recovery units are used for asynchronous data reception. In addition to the recovery
units, the Receiver includes a Parity Checker, Control logic, a Shift Register and a two level
receive buffer (UDRn). The Receiver supports the same frame formats as the Transmitter, and
can detect Frame Error, Data OverRun and Parity Errors.
175
2545U–AVR–11/2015

ATmega48/88/168
Figure 20-1. USART block diagram(1).

Note: 1. Refer to Figure 1-1 on page 2 and Table 14-9 on page 89 for USART0 pin placement.

20.3 Clock generation

The Clock Generation logic generates the base clock for the Transmitter and Receiver. The
USART supports four modes of clock operation: Normal asynchronous, Double Speed
asynchronous, Master synchronous and Slave synchronous mode. The UMSELn bit in USART
Control and Status Register C (UCSRnC) selects between asynchronous and synchronous
operation. Double Speed (asynchronous mode only) is controlled by the U2Xn found in the
UCSRnA Register. When using synchronous mode (UMSELn = 1), the Data Direction Register
for the XCKn pin (DDR_XCKn) controls whether the clock source is internal (Master mode) or
external (Slave mode). The XCKn pin is only active when using synchronous mode.

Figure 20-2 on page 177 shows a block diagram of the clock generation logic.

PARITY
GENERATOR

UBRRn [H:L]

UDRn (transmit)

UCSRnA UCSRnB UCSRnC

BAUD RATE GENERATOR

TRANSMIT SHIFT REGISTER

RECEIVE SHIFT REGISTER RxDn

TxDnPIN
CONTROL

UDRn (receive)

PIN
CONTROL

XCKn

DATA
RECOVERY

CLOCK
RECOVERY

PIN
CONTROL

TX
CONTROL

RX
CONTROL

PARITY
CHECKER

D
A

TA
 B

U
S

OSC

SYNC LOGIC

Clock generator

Transmitter

Receiver
176
2545U–AVR–11/2015

ATmega48/88/168
Figure 20-2. Clock generation logic, block diagram.

Signal description:

txclk : Transmitter clock (internal signal).

rxclk : Receiver base clock (internal signal).

xckiI : nput from XCK pin (internal signal). Used for synchronous slave operation.

xcko : Clock output to XCK pin (internal signal). Used for synchronous master
operation.

fosc : System clock frequency.

20.3.1 Internal clock generation – The baud rate generator

Internal clock generation is used for the asynchronous and the synchronous master modes of
operation. The description in this section refers to Figure 20-2.

The USART Baud Rate Register (UBRRn) and the down-counter connected to it function as a
programmable prescaler or baud rate generator. The down-counter, running at system clock
(fosc), is loaded with the UBRRn value each time the counter has counted down to zero or when
the UBRRnL Register is written. A clock is generated each time the counter reaches zero. This
clock is the baud rate generator clock output (= fosc/(UBRRn+1)). The Transmitter divides the
baud rate generator clock output by 2, 8 or 16 depending on mode. The baud rate generator
output is used directly by the Receiver’s clock and data recovery units. However, the recovery
units use a state machine that uses 2, 8 or 16 states depending on mode set by the state of the
UMSELn, U2Xn and DDR_XCKn bits.

Prescaling
down-counter /2

UBRRn

/4 /2

foscn

UBRRn+1

Sync
register

OSC

XCKn
pin

txclk

U2Xn

UMSELn

DDR_XCKn

0

1

0

1

xcki

xcko

DDR_XCKn
rxclk

0

1

1

0
Edge

detector

UCPOLn
177
2545U–AVR–11/2015

ATmega48/88/168
Table 20-1 contains equations for calculating the baud rate (in bits per second) and for
calculating the UBRRn value for each mode of operation using an internally generated clock
source.

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)

BAUDBaud rate (in bits per second, bps)

fOSCSystem clock frequency

UBRRnContents of the UBRRnH and UBRRnL registers, (0-4095)

Some examples of UBRRn values for some system clock frequencies are found in Table 20-9 on
page 199.

20.3.2 Double speed operation (U2Xn)

The transfer rate can be doubled by setting the U2Xn bit in UCSRnA. Setting this bit only has
effect for the asynchronous operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling
the transfer rate for asynchronous communication. Note however that the Receiver will in this
case only use half the number of samples (reduced from 16 to 8) for data sampling and clock
recovery, and therefore a more accurate baud rate setting and system clock are required when
this mode is used. For the Transmitter, there are no downsides.

Table 20-1. Equations for calculating baud rate register setting.

Operating mode
Equation for

calculating baud rate(1)
Equation for

calculating UBRRn value

Asynchronous normal mode
(U2Xn = 0)

Asynchronous double speed
mode (U2Xn = 1)

Synchronous master mode

BAUD
fOSC

16 UBRRn 1+ 
--= UBRRn

fOSC

16BAUD
------------------------ 1–=

BAUD
fOSC

8 UBRRn 1+ 
---------------------------------------= UBRRn

fOSC

8BAUD
-------------------- 1–=

BAUD
fOSC

2 UBRRn 1+ 
---------------------------------------= UBRRn

fOSC

2BAUD
-------------------- 1–=
178
2545U–AVR–11/2015

ATmega48/88/168
20.3.3 External clock

External clocking is used by the synchronous slave modes of operation. The description in this
section refers to Figure 20-2 on page 177 for details.

External clock input from the XCKn pin is sampled by a synchronization register to minimize the
chance of meta-stability. The output from the synchronization register must then pass through
an edge detector before it can be used by the Transmitter and Receiver. This process
introduces a two CPU clock period delay and therefore the maximum external XCKn clock
frequency is limited by the following equation:

Note that fosc depends on the stability of the system clock source. It is therefore recommended to
add some margin to avoid possible loss of data due to frequency variations.

20.3.4 Synchronous clock operation

When synchronous mode is used (UMSELn = 1), the XCKn pin will be used as either clock input
(Slave) or clock output (Master). The dependency between the clock edges and data sampling
or data change is the same. The basic principle is that data input (on RxDn) is sampled at the
opposite XCKn clock edge of the edge the data output (TxDn) is changed.

Figure 20-3. Synchronous mode XCKn timing.

The UCPOLn bit UCRSC selects which XCKn clock edge is used for data sampling and which is
used for data change. As Figure 20-3 shows, when UCPOLn is zero the data will be changed at
rising XCKn edge and sampled at falling XCKn edge. If UCPOLn is set, the data will be changed
at falling XCKn edge and sampled at rising XCKn edge.

20.4 Frame formats

A serial frame is defined to be one character of data bits with synchronization bits (start and stop
bits), and optionally a parity bit for error checking. The USART accepts all 30 combinations of
the following as valid frame formats:

l 1 start bit

l 5, 6, 7, 8, or 9 data bits

l no, even or odd parity bit

l 1 or 2 stop bits

fXCK

fOSC

4
-----------

RxD / TxD

XCK

RxD / TxD

XCKUCPOL = 0

UCPOL = 1

Sample

Sample
179
2545U–AVR–11/2015

ATmega48/88/168
A frame starts with the start bit followed by the least significant data bit. Then the next data bits,
up to a total of nine, are succeeding, ending with the most significant bit. If enabled, the parity bit
is inserted after the data bits, before the stop bits. When a complete frame is transmitted, it can
be directly followed by a new frame, or the communication line can be set to an idle (high) state.
Figure 20-4 illustrates the possible combinations of the frame formats. Bits inside brackets are
optional.

Figure 20-4. Frame formats.

St : Start bit, always low.

(n) : Data bits (0 to 8).

P : Parity bit. Can be odd or even.

Sp : Stop bit, always high.

IDLE : No transfers on the communication line (RxDn or TxDn). An IDLE line must be high.

The frame format used by the USART is set by the UCSZn2:0, UPMn1:0 and USBSn bits in
UCSRnB and UCSRnC. The Receiver and Transmitter use the same setting. Note that changing
the setting of any of these bits will corrupt all ongoing communication for both the Receiver and
Transmitter.

The USART Character SiZe (UCSZn2:0) bits select the number of data bits in the frame. The
USART Parity mode (UPMn1:0) bits enable and set the type of parity bit. The selection between
one or two stop bits is done by the USART Stop Bit Select (USBSn) bit. The Receiver ignores
the second stop bit. An FE (Frame Error) will therefore only be detected in the cases where the
first stop bit is zero.

20.4.1 Parity bit calculation

The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the
result of the exclusive or is inverted. The relation between the parity bit and data bits is as
follows:

PevenParity bit using even parity

PoddParity bit using odd parity

dnData bit n of the character

If used, the parity bit is located between the last data bit and first stop bit of a serial frame.

20.5 USART initialization

The USART has to be initialized before any communication can take place. The initialization
process normally consists of setting the baud rate, setting frame format and enabling the
Transmitter or the Receiver depending on the usage. For interrupt driven USART operation, the

10 2 3 4 [5] [6] [7] [8] [P]St Sp1 [Sp2] (St / IDLE)(IDLE)

FRAME

Peven dn 1–  d3 d2 d1 d0 0
Podd

     
dn 1–  d3 d2 d1 d0 1     

=
=

180
2545U–AVR–11/2015

ATmega48/88/168
Global Interrupt Flag should be cleared (and interrupts globally disabled) when doing the
initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that there are no
ongoing transmissions during the period the registers are changed. The TXCn Flag can be used
to check that the Transmitter has completed all transfers, and the RXC Flag can be used to
check that there are no unread data in the receive buffer. Note that the TXCn Flag must be
cleared before each transmission (before UDRn is written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C
function that are equal in functionality. The examples assume asynchronous operation using
polling (no interrupts enabled) and a fixed frame format. The baud rate is given as a function
parameter. For the assembly code, the baud rate parameter is assumed to be stored in the
r17:r16 Registers.

Note: 1. See ”About code examples” on page 8.

More advanced initialization routines can be made that include frame format as parameters,
disable interrupts and so on. However, many applications use a fixed setting of the baud and

Assembly code example(1)

USART_Init:
; Set baud rate
out UBRRnH, r17
out UBRRnL, r16
; Enable receiver and transmitter
ldi r16, (1<<RXENn)|(1<<TXENn)
out UCSRnB,r16
; Set frame format: 8data, 2stop bit
ldi r16, (1<<USBSn)|(3<<UCSZn0)
out UCSRnC,r16
ret

C code example(1)

#define FOSC 1843200 // Clock Speed
#define BAUD 9600
#define MYUBRR FOSC/16/BAUD-1
void main(void)
{
...

USART_Init(MYUBRR)
...
}
void USART_Init(unsigned int ubrr)
{

/*Set baud rate */
UBRR0H = (unsigned char)(ubrr>>8);
UBRR0L = (unsigned char)ubrr;
Enable receiver and transmitter */
UCSR0B = (1<<RXEN0)|(1<<TXEN0);
/* Set frame format: 8data, 2stop bit */
UCSR0C = (1<<USBS0)|(3<<UCSZ00);

}

181
2545U–AVR–11/2015

ATmega48/88/168
control registers, and for these types of applications the initialization code can be placed directly
in the main routine, or be combined with initialization code for other I/O modules.
182
2545U–AVR–11/2015

ATmega48/88/168
20.6 Data transmission – The USART transmitter

The USART Transmitter is enabled by setting the Transmit Enable (TXEN) bit in the UCSRnB
Register. When the Transmitter is enabled, the normal port operation of the TxDn pin is
overridden by the USART and given the function as the Transmitter’s serial output. The baud
rate, mode of operation and frame format must be set up once before doing any transmissions.
If synchronous operation is used, the clock on the XCKn pin will be overridden and used as
transmission clock.

20.6.1 Sending frames with 5 to 8 data bits

A data transmission is initiated by loading the transmit buffer with the data to be transmitted. The
CPU can load the transmit buffer by writing to the UDRn I/O location. The buffered data in the
transmit buffer will be moved to the Shift Register when the Shift Register is ready to send a new
frame. The Shift Register is loaded with new data if it is in idle state (no ongoing transmission) or
immediately after the last stop bit of the previous frame is transmitted. When the Shift Register is
loaded with new data, it will transfer one complete frame at the rate given by the Baud Register,
U2Xn bit or by XCKn depending on mode of operation.

The following code examples show a simple USART transmit function based on polling of the
Data Register Empty (UDREn) Flag. When using frames with less than eight bits, the most
significant bits written to the UDRn are ignored. The USART has to be initialized before the
function can be used. For the assembly code, the data to be sent is assumed to be stored in
Register R16

Note: 1. See ”About code examples” on page 8.

The function simply waits for the transmit buffer to be empty by checking the UDREn Flag,
before loading it with new data to be transmitted. If the Data Register Empty interrupt is utilized,
the interrupt routine writes the data into the buffer.

Assembly code example(1)

USART_Transmit:
; Wait for empty transmit buffer
sbis UCSRnA,UDREn
rjmp USART_Transmit
; Put data (r16) into buffer, sends the data
out UDRn,r16
ret

C code example(1)

void USART_Transmit(unsigned char data)
{

/* Wait for empty transmit buffer */
while (!(UCSRnA & (1<<UDREn)))

;
/* Put data into buffer, sends the data */
UDRn = data;

}

183
2545U–AVR–11/2015

ATmega48/88/168
20.6.2 Sending frames with 9 data bits

If 9-bit characters are used (UCSZn = 7), the ninth bit must be written to the TXB8 bit in
UCSRnB before the low byte of the character is written to UDRn. The following code examples
show a transmit function that handles 9-bit characters. For the assembly code, the data to be
sent is assumed to be stored in registers R17:R16.

Notes: 1. These transmit functions are written to be general functions. They can be optimized if the
contents of the UCSRnB is static. For example, only the TXB8 bit of the UCSRnB Register is
used after initialization.

2. See ”About code examples” on page 8.

The ninth bit can be used for indicating an address frame when using multi processor
communication mode or for other protocol handling as for example synchronization.

20.6.3 Transmitter flags and interrupts

The USART Transmitter has two flags that indicate its state: USART Data Register Empty
(UDREn) and Transmit Complete (TXCn). Both flags can be used for generating interrupts.

The Data Register Empty (UDREn) Flag indicates whether the transmit buffer is ready to receive
new data. This bit is set when the transmit buffer is empty, and cleared when the transmit buffer
contains data to be transmitted that has not yet been moved into the Shift Register. For
compatibility with future devices, always write this bit to zero when writing the UCSRnA Register.

When the Data Register Empty Interrupt Enable (UDRIEn) bit in UCSRnB is written to one, the
USART Data Register Empty Interrupt will be executed as long as UDREn is set (provided that
global interrupts are enabled). UDREn is cleared by writing UDRn. When interrupt-driven data
transmission is used, the Data Register Empty interrupt routine must either write new data to

Assembly code example(1)(2)

USART_Transmit:
; Wait for empty transmit buffer
sbis UCSRnA,UDREn
rjmp USART_Transmit
; Copy 9th bit from r17 to TXB8
cbi UCSRnB,TXB8
sbrc r17,0
sbi UCSRnB,TXB8
; Put LSB data (r16) into buffer, sends the data
out UDRn,r16
ret

C code example(1)(2)

void USART_Transmit(unsigned int data)
{

/* Wait for empty transmit buffer */
while (!(UCSRnA & (1<<UDREn))))

;
/* Copy 9th bit to TXB8 */
UCSRnB &= ~(1<<TXB8);
if (data & 0x0100)

UCSRnB |= (1<<TXB8);
/* Put data into buffer, sends the data */
UDRn = data;

}

184
2545U–AVR–11/2015

ATmega48/88/168
UDRn in order to clear UDREn or disable the Data Register Empty interrupt, otherwise a new
interrupt will occur once the interrupt routine terminates.

The Transmit Complete (TXCn) Flag bit is set one when the entire frame in the Transmit Shift
Register has been shifted out and there are no new data currently present in the transmit buffer.
The TXCn Flag bit is automatically cleared when a transmit complete interrupt is executed, or it
can be cleared by writing a one to its bit location. The TXCn Flag is useful in half-duplex
communication interfaces (like the RS-485 standard), where a transmitting application must
enter receive mode and free the communication bus immediately after completing the
transmission.

When the Transmit Compete Interrupt Enable (TXCIEn) bit in UCSRnB is set, the USART
Transmit Complete Interrupt will be executed when the TXCn Flag becomes set (provided that
global interrupts are enabled). When the transmit complete interrupt is used, the interrupt
handling routine does not have to clear the TXCn Flag, this is done automatically when the
interrupt is executed.

20.6.4 Parity generator

The Parity Generator calculates the parity bit for the serial frame data. When parity bit is enabled
(UPMn1 = 1), the transmitter control logic inserts the parity bit between the last data bit and the
first stop bit of the frame that is sent.

20.6.5 Disabling the transmitter

The disabling of the Transmitter (setting the TXEN to zero) will not become effective until
ongoing and pending transmissions are completed, that is, when the Transmit Shift Register and
Transmit Buffer Register do not contain data to be transmitted. When disabled, the Transmitter
will no longer override the TxDn pin.

20.7 Data reception – The USART receiver

The USART Receiver is enabled by writing the Receive Enable (RXENn) bit in the
UCSRnB Register to one. When the Receiver is enabled, the normal pin operation of the RxDn
pin is overridden by the USART and given the function as the Receiver’s serial input. The baud
rate, mode of operation and frame format must be set up once before any serial reception can
be done. If synchronous operation is used, the clock on the XCKn pin will be used as transfer
clock.

20.7.1 Receiving frames with 5 to 8 data bits

The Receiver starts data reception when it detects a valid start bit. Each bit that follows the start
bit will be sampled at the baud rate or XCKn clock, and shifted into the Receive Shift Register
until the first stop bit of a frame is received. A second stop bit will be ignored by the Receiver.
When the first stop bit is received, that is, a complete serial frame is present in the Receive Shift
Register, the contents of the Shift Register will be moved into the receive buffer. The receive
buffer can then be read by reading the UDRn I/O location.

The following code example shows a simple USART receive function based on polling of the
Receive Complete (RXCn) Flag. When using frames with less than eight bits the most significant
185
2545U–AVR–11/2015

ATmega48/88/168
bits of the data read from the UDRn will be masked to zero. The USART has to be initialized
before the function can be used.

Note: 1. See ”About code examples” on page 8.

The function simply waits for data to be present in the receive buffer by checking the RXCn Flag,
before reading the buffer and returning the value.

20.7.2 Receiving frames with 9 data bits

If 9-bit characters are used (UCSZn=7) the ninth bit must be read from the RXB8n bit in
UCSRnB before reading the low bits from the UDRn. This rule applies to the FEn, DORn and
UPEn Status Flags as well. Read status from UCSRnA, then data from UDRn. Reading the
UDRn I/O location will change the state of the receive buffer FIFO and consequently the TXB8n,
FEn, DORn and UPEn bits, which all are stored in the FIFO, will change.

The following code example shows a simple USART receive function that handles both nine bit
characters and the status bits.

Assembly code example(1)

USART_Receive:
; Wait for data to be received
sbis UCSRnA, RXCn
rjmp USART_Receive
; Get and return received data from buffer
in r16, UDRn
ret

C code example(1)

unsigned char USART_Receive(void)
{

/* Wait for data to be received */
while (!(UCSRnA & (1<<RXCn)))

;
/* Get and return received data from buffer */
return UDRn;

}

186
2545U–AVR–11/2015

ATmega48/88/168
Note: 1. See ”About code examples” on page 8.
The receive function example reads all the I/O registers into the register file before any
computation is done. This gives an optimal receive buffer utilization since the buffer location
read will be free to accept new data as early as possible.

20.7.3 Receive complete flag and interrupt

The USART Receiver has one flag that indicates the Receiver state.

The Receive Complete (RXCn) Flag indicates if there are unread data present in the receive
buffer. This flag is one when unread data exist in the receive buffer, and zero when the receive
buffer is empty (that is, does not contain any unread data). If the Receiver is disabled (RXENn =
0), the receive buffer will be flushed and consequently the RXCn bit will become zero.

Assembly code example(1)

USART_Receive:
; Wait for data to be received
sbis UCSRnA, RXCn
rjmp USART_Receive
; Get status and 9th bit, then data from buffer
in r18, UCSRnA
in r17, UCSRnB
in r16, UDRn
; If error, return -1
andi r18,(1<<FEn)|(1<<DORn)|(1<<UPEn)
breq USART_ReceiveNoError
ldi r17, HIGH(-1)
ldi r16, LOW(-1)

USART_ReceiveNoError:
; Filter the 9th bit, then return
lsr r17
andi r17, 0x01
ret

C code example(1)

unsigned int USART_Receive(void)
{

unsigned char status, resh, resl;
/* Wait for data to be received */
while (!(UCSRnA & (1<<RXCn)))

;
/* Get status and 9th bit, then data */
/* from buffer */
status = UCSRnA;
resh = UCSRnB;
resl = UDRn;
/* If error, return -1 */
if (status & (1<<FEn)|(1<<DORn)|(1<<UPEn))

return -1;
/* Filter the 9th bit, then return */
resh = (resh >> 1) & 0x01;
return ((resh << 8) | resl);

}

187
2545U–AVR–11/2015

ATmega48/88/168
When the Receive Complete Interrupt Enable (RXCIEn) in UCSRnB is set, the USART Receive
Complete interrupt will be executed as long as the RXCn Flag is set (provided that global
interrupts are enabled). When interrupt-driven data reception is used, the receive complete
routine must read the received data from UDRn in order to clear the RXCn Flag, otherwise a
new interrupt will occur once the interrupt routine terminates.

20.7.4 Receiver error flags

The USART Receiver has three Error Flags: Frame Error (FEn), Data OverRun (DORn) and
Parity Error (UPEn). All can be accessed by reading UCSRnA. Common for the Error Flags is
that they are located in the receive buffer together with the frame for which they indicate the
error status. Due to the buffering of the Error Flags, the UCSRnA must be read before the
receive buffer (UDRn), since reading the UDRn I/O location changes the buffer read location.
Another equality for the Error Flags is that they can not be altered by software doing a write to
the flag location. However, all flags must be set to zero when the UCSRnA is written for upward
compatibility of future USART implementations. None of the Error Flags can generate interrupts.

The Frame Error (FEn) Flag indicates the state of the first stop bit of the next readable frame
stored in the receive buffer. The FEn Flag is zero when the stop bit was correctly read (as one),
and the FEn Flag will be one when the stop bit was incorrect (zero). This flag can be used for
detecting out-of-sync conditions, detecting break conditions and protocol handling. The FEn
Flag is not affected by the setting of the USBSn bit in UCSRnC since the Receiver ignores all,
except for the first, stop bits. For compatibility with future devices, always set this bit to zero
when writing to UCSRnA.

The Data OverRun (DORn) Flag indicates data loss due to a receiver buffer full condition. A
Data OverRun occurs when the receive buffer is full (two characters), it is a new character
waiting in the Receive Shift Register, and a new start bit is detected. If the DORn Flag is set
there was one or more serial frame lost between the frame last read from UDRn, and the next
frame read from UDRn. For compatibility with future devices, always write this bit to zero when
writing to UCSRnA. The DORn Flag is cleared when the frame received was successfully moved
from the Shift Register to the receive buffer.

The Parity Error (UPEn) Flag indicates that the next frame in the receive buffer had a Parity
Error when received. If Parity Check is not enabled the UPEn bit will always be read zero. For
compatibility with future devices, always set this bit to zero when writing to UCSRnA. For more
details see “Parity bit calculation” on page 180 and “Parity checker” on page 188.

20.7.5 Parity checker

The Parity Checker is active when the high USART Parity mode (UPMn1) bit is set. Type of
Parity Check to be performed (odd or even) is selected by the UPMn0 bit. When enabled, the
Parity Checker calculates the parity of the data bits in incoming frames and compares the result
with the parity bit from the serial frame. The result of the check is stored in the receive buffer
together with the received data and stop bits. The Parity Error (UPEn) Flag can then be read by
software to check if the frame had a Parity Error.

The UPEn bit is set if the next character that can be read from the receive buffer had a Parity
Error when received and the Parity Checking was enabled at that point (UPMn1 = 1). This bit is
valid until the receive buffer (UDRn) is read.
188
2545U–AVR–11/2015

ATmega48/88/168
20.7.6 Disabling the receiver

In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing
receptions will therefore be lost. When disabled (that is, the RXENn is set to zero) the Receiver
will no longer override the normal function of the RxDn port pin. The Receiver buffer FIFO will be
flushed when the Receiver is disabled. Remaining data in the buffer will be lost

20.7.7 Flushing the receive buffer

The receiver buffer FIFO will be flushed when the Receiver is disabled, that is, the buffer will be
emptied of its contents. Unread data will be lost. If the buffer has to be flushed during normal
operation, due to for instance an error condition, read the UDRn I/O location until the RXCn Flag
is cleared. The following code example shows how to flush the receive buffer.

Note: 1. See ”About code examples” on page 8.

20.8 Asynchronous data reception

The USART includes a clock recovery and a data recovery unit for handling asynchronous data
reception. The clock recovery logic is used for synchronizing the internally generated baud rate
clock to the incoming asynchronous serial frames at the RxDn pin. The data recovery logic
samples and low pass filters each incoming bit, thereby improving the noise immunity of the
Receiver. The asynchronous reception operational range depends on the accuracy of the
internal baud rate clock, the rate of the incoming frames, and the frame size in number of bits.

20.8.1 Asynchronous clock recovery

The clock recovery logic synchronizes internal clock to the incoming serial frames. Figure 20-5
on page 190 illustrates the sampling process of the start bit of an incoming frame. The sample
rate is 16 times the baud rate for Normal mode, and eight times the baud rate for Double Speed
mode. The horizontal arrows illustrate the synchronization variation due to the sampling
process. Note the larger time variation when using the Double Speed mode (U2Xn = 1) of
operation. Samples denoted zero are samples done when the RxDn line is idle (that is, no
communication activity).

Assembly code example(1)

USART_Flush:
sbis UCSRnA, RXCn
ret
in r16, UDRn
rjmp USART_Flush

C code example(1)

void USART_Flush(void)
{

unsigned char dummy;
while (UCSRnA & (1<<RXCn)) dummy = UDRn;

}

189
2545U–AVR–11/2015

ATmega48/88/168
Figure 20-5. Start bit sampling.

When the clock recovery logic detects a high (idle) to low (start) transition on the RxDn line, the
start bit detection sequence is initiated. Let sample 1 denote the first zero-sample as shown in
the figure. The clock recovery logic then uses samples 8, 9, and 10 for Normal mode, and
samples 4, 5, and 6 for Double Speed mode (indicated with sample numbers inside boxes on
the figure), to decide if a valid start bit is received. If two or more of these three samples have
logical high levels (the majority wins), the start bit is rejected as a noise spike and the Receiver
starts looking for the next high to low-transition. If however, a valid start bit is detected, the clock
recovery logic is synchronized and the data recovery can begin. The synchronization process is
repeated for each start bit.

20.8.2 Asynchronous data recovery

When the receiver clock is synchronized to the start bit, the data recovery can begin. The data
recovery unit uses a state machine that has 16 states for each bit in Normal mode and eight
states for each bit in Double Speed mode. Figure 20-6 shows the sampling of the data bits and
the parity bit. Each of the samples is given a number that is equal to the state of the recovery
unit.

Figure 20-6. Sampling of data and parity bit.

The decision of the logic level of the received bit is taken by doing a majority voting of the logic
value to the three samples in the center of the received bit. The center samples are emphasized
on the figure by having the sample number inside boxes. The majority voting process is done as
follows: If two or all three samples have high levels, the received bit is registered to be a logic 1.
If two or all three samples have low levels, the received bit is registered to be a logic 0. This
majority voting process acts as a low pass filter for the incoming signal on the RxDn pin. The
recovery process is then repeated until a complete frame is received. Including the first stop bit.
Note that the Receiver only uses the first stop bit of a frame.

Figure 20-7 on page 191 shows the sampling of the stop bit and the earliest possible beginning
of the start bit of the next frame.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2

STARTIDLE

00

BIT 0

3

1 2 3 4 5 6 7 8 1 20

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1

BIT n

1 2 3 4 5 6 7 8 1

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)
190
2545U–AVR–11/2015

ATmega48/88/168
Figure 20-7. Stop bit sampling and next start bit sampling.

The same majority voting is done to the stop bit as done for the other bits in the frame. If the stop
bit is registered to have a logic 0 value, the Frame Error (FEn) Flag will be set.

A new high to low transition indicating the start bit of a new frame can come right after the last of
the bits used for majority voting. For Normal Speed mode, the first low level sample can be at
point marked (A) in Figure 20-7. For Double Speed mode the first low level must be delayed to
(B). (C) marks a stop bit of full length. The early start bit detection influences the operational
range of the Receiver.

20.8.3 Asynchronous operational range

The operational range of the Receiver is dependent on the mismatch between the received bit
rate and the internally generated baud rate. If the Transmitter is sending frames at too fast or too
slow bit rates, or the internally generated baud rate of the Receiver does not have a similar (see
Table 20-2 on page 192) base frequency, the Receiver will not be able to synchronize the
frames to the start bit.

The following equations can be used to calculate the ratio of the incoming data rate and internal
receiver baud rate.

DSum of character size and parity size (D = 5 to 10 bit)

SSamples per bit. S = 16 for Normal Speed mode and S = 8 for Double Speed
mode.

SFFirst sample number used for majority voting. SF = 8 for normal speed and SF = 4
for Double Speed mode.

SMMiddle sample number used for majority voting. SM = 9 for normal speed and
SM = 5 for Double Speed mode.

Rslow is the ratio of the slowest incoming data rate that can be accepted in relation to the
receiver baud rate. Rfast is the ratio of the fastest incoming data rate that can be
accepted in relation to the receiver baud rate.

Table 20-2 on page 192 and Table 20-3 on page 192 list the maximum receiver baud rate error
that can be tolerated. Note that Normal Speed mode has higher toleration of baud rate
variations.

1 2 3 4 5 6 7 8 9 10 0/1 0/1 0/1

STOP 1

1 2 3 4 5 6 0/1

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

(A) (B) (C)

Rslow
D 1+ S

S 1– D S SF+ +
---= Rfast

D 2+ S
D 1+ S SM+

-----------------------------------=
191
2545U–AVR–11/2015

ATmega48/88/168
The recommendations of the maximum receiver baud rate error was made under the
assumption that the Receiver and Transmitter equally divides the maximum total error.

There are two possible sources for the receivers baud rate error. The Receiver’s system clock
(XTAL) will always have some minor instability over the supply voltage range and the
temperature range. When using a crystal to generate the system clock, this is rarely a problem,
but for a resonator the system clock may differ more than 2% depending of the resonators
tolerance. The second source for the error is more controllable. The baud rate generator can not
always do an exact division of the system frequency to get the baud rate wanted. In this case an
UBRRn value that gives an acceptable low error can be used if possible.

20.9 Multi-processor communication mode

Setting the Multi-processor Communication mode (MPCMn) bit in UCSRnA enables a filtering
function of incoming frames received by the USART Receiver. Frames that do not contain
address information will be ignored and not put into the receive buffer. This effectively reduces
the number of incoming frames that has to be handled by the CPU, in a system with multiple
MCUs that communicate via the same serial bus. The Transmitter is unaffected by the MPCMn
setting, but has to be used differently when it is a part of a system utilizing the Multi-processor
Communication mode.

If the Receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop bit
indicates if the frame contains data or address information. If the Receiver is set up for frames
with nine data bits, then the ninth bit (RXB8n) is used for identifying address and data frames.

Table 20-2. Recommended maximum receiver baud rate error for normal speed mode
(U2Xn = 0).

D
(Data+parity bit) Rslow (%) Rfast (%) Max. total error (%)

Recommended max.
receiver error (%)

5 93.20 106.67 +6.67/-6.8 ±3.0

6 94.12 105.79 +5.79/-5.88 ±2.5

7 94.81 105.11 +5.11/-5.19 ±2.0

8 95.36 104.58 +4.58/-4.54 ±2.0

9 95.81 104.14 +4.14/-4.19 ±1.5

10 96.17 103.78 +3.78/-3.83 ±1.5

Table 20-3. Recommended maximum receiver baud rate error for double speed mode
(U2Xn = 1).

D
(Data+parity bit) Rslow (%) Rfast (%) Max. total error (%)

Recommended max.
receiver error (%)

5 94.12 105.66 +5.66/-5.88 ±2.5

6 94.92 104.92 +4.92/-5.08 ±2.0

7 95.52 104,35 +4.35/-4.48 ±1.5

8 96.00 103.90 +3.90/-4.00 ±1.5

9 96.39 103.53 +3.53/-3.61 ±1.5

10 96.70 103.23 +3.23/-3.30 ±1.0
192
2545U–AVR–11/2015

ATmega48/88/168
When the frame type bit (the first stop or the ninth bit) is one, the frame contains an address.
When the frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several slave MCUs to receive data from a
master MCU. This is done by first decoding an address frame to find out which MCU has been
addressed. If a particular slave MCU has been addressed, it will receive the following data
frames as normal, while the other slave MCUs will ignore the received frames until another
address frame is received.

20.9.1 Using MPCMn

For an MCU to act as a master MCU, it can use a 9-bit character frame format (UCSZn = 7). The
ninth bit (TXB8n) must be set when an address frame (TXB8n = 1) or cleared when a data frame
(TXB = 0) is being transmitted. The slave MCUs must in this case be set to use a 9-bit character
frame format.

The following procedure should be used to exchange data in Multi-processor Communication
mode:

1. All Slave MCUs are in Multi-processor Communication mode (MPCMn in
UCSRnA is set).

2. The Master MCU sends an address frame, and all slaves receive and read this frame. In
the Slave MCUs, the RXCn Flag in UCSRnA will be set as normal.

3. Each Slave MCU reads the UDRn Register and determines if it has been selected. If so, it
clears the MPCMn bit in UCSRnA, otherwise it waits for the next address byte and keeps
the MPCMn setting.

4. The addressed MCU will receive all data frames until a new address frame is received.
The other Slave MCUs, which still have the MPCMn bit set, will ignore the data frames.

5. When the last data frame is received by the addressed MCU, the addressed MCU sets the
MPCMn bit and waits for a new address frame from master. The process then repeats
from 2.

Using any of the 5-bit to 8-bit character frame formats is possible, but impractical since the
Receiver must change between using n and n+1 character frame formats. This makes full-
duplex operation difficult since the Transmitter and Receiver uses the same character size
setting. If 5-bit to 8-bit character frames are used, the Transmitter must be set to use two stop bit
(USBSn = 1) since the first stop bit is used for indicating the frame type.

Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCMn bit. The
MPCMn bit shares the same I/O location as the TXCn Flag and this might accidentally be
cleared when using SBI or CBI instructions.
193
2545U–AVR–11/2015

ATmega48/88/168
20.10 Register description

20.10.1 UDRn – USART I/O data register n

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers share the
same I/O address referred to as USART Data Register or UDRn. The Transmit Data Buffer
Register (TXB) will be the destination for data written to the UDRn Register location. Reading
the UDRn Register location will return the contents of the Receive Data Buffer Register (RXB).

For 5-bit, 6-bit, or 7-bit characters the upper unused bits will be ignored by the Transmitter and
set to zero by the Receiver.

The transmit buffer can only be written when the UDREn Flag in the UCSRnA Register is set.
Data written to UDRn when the UDREn Flag is not set, will be ignored by the USART
Transmitter. When data is written to the transmit buffer, and the Transmitter is enabled, the
Transmitter will load the data into the Transmit Shift Register when the Shift Register is empty.
Then the data will be serially transmitted on the TxDn pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the
receive buffer is accessed. Due to this behavior of the receive buffer, do not use Read-Modify-
Write instructions (SBI and CBI) on this location. Be careful when using bit test instructions
(SBIC and SBIS), since these also will change the state of the FIFO.

20.10.2 UCSRnA – USART control and status register n A

• Bit 7 – RXCn: USART receive complete

This flag bit is set when there are unread data in the receive buffer and cleared when the receive
buffer is empty (that is, does not contain any unread data). If the Receiver is disabled, the
receive buffer will be flushed and consequently the RXCn bit will become zero. The RXCn Flag
can be used to generate a Receive Complete interrupt (see description of the RXCIEn bit).

• Bit 6 – TXCn: USART transmit complete

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and
there are no new data currently present in the transmit buffer (UDRn). The TXCn Flag bit is
automatically cleared when a transmit complete interrupt is executed, or it can be cleared by
writing a one to its bit location. The TXCn Flag can generate a Transmit Complete interrupt (see
description of the TXCIEn bit).

• Bit 5 – UDREn: USART data register empty

The UDREn Flag indicates if the transmit buffer (UDRn) is ready to receive new data. If UDREn
is one, the buffer is empty, and therefore ready to be written. The UDREn Flag can generate a
Data Register Empty interrupt (see description of the UDRIEn bit).

Bit 7 6 5 4 3 2 1 0

RXB[7:0] UDRn (Read)

TXB[7:0] UDRn (Write)

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

RXCn TXCn UDREn FEn DORn UPEn U2Xn MPCMn UCSRnA

Read/write R R/W R R R R R/W R/W

Initial value 0 0 1 0 0 0 0 0
194
2545U–AVR–11/2015

ATmega48/88/168
UDREn is set after a reset to indicate that the Transmitter is ready.

• Bit 4 – FEn: Frame error

This bit is set if the next character in the receive buffer had a Frame Error when received, that is,
when the first stop bit of the next character in the receive buffer is zero. This bit is valid until the
receive buffer (UDRn) is read. The FEn bit is zero when the stop bit of received data is one.
Always set this bit to zero when writing to UCSRnA.

• Bit 3 – DORn: Data OverRun

This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the receive
buffer is full (two characters), it is a new character waiting in the Receive Shift Register, and a
new start bit is detected. This bit is valid until the receive buffer (UDRn) is read. Always set this
bit to zero when writing to UCSRnA.

• Bit 2 – UPEn: USART parity error

This bit is set if the next character in the receive buffer had a Parity Error when received and the
Parity Checking was enabled at that point (UPMn1 = 1). This bit is valid until the receive buffer
(UDRn) is read. Always set this bit to zero when writing to UCSRnA.

• Bit 1 – U2Xn: Double the USART transmission speed

This bit only has effect for the asynchronous operation. Write this bit to zero when using
synchronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effectively
doubling the transfer rate for asynchronous communication.

• Bit 0 – MPCMn: Multi-processor communication mode

This bit enables the Multi-processor Communication mode. When the MPCMn bit is written to
one, all the incoming frames received by the USART Receiver that do not contain address
information will be ignored. The Transmitter is unaffected by the MPCMn setting. For more
detailed information see “Multi-processor communication mode” on page 192.

20.10.3 UCSRnB – USART control and status register n B

• Bit 7 – RXCIEn: RX complete interrupt enable n

Writing this bit to one enables interrupt on the RXCn Flag. A USART Receive Complete interrupt
will be generated only if the RXCIEn bit is written to one, the Global Interrupt Flag in SREG is
written to one and the RXCn bit in UCSRnA is set.

• Bit 6 – TXCIEn: TX complete interrupt enable n

Writing this bit to one enables interrupt on the TXCn Flag. A USART Transmit Complete interrupt
will be generated only if the TXCIEn bit is written to one, the Global Interrupt Flag in SREG is
written to one and the TXCn bit in UCSRnA is set.

Bit 7 6 5 4 3 2 1 0

RXCIEn TXCIEn UDRIEn RXENn TXENn UCSZn2 RXB8n TXB8n UCSRnB

Read/write R/W R/W R/W R/W R/W R/W R R/W

Initial value 0 0 0 0 0 0 0 0
195
2545U–AVR–11/2015

ATmega48/88/168
• Bit 5 – UDRIEn: USART data register empty interrupt enable n

Writing this bit to one enables interrupt on the UDREn Flag. A Data Register Empty interrupt will
be generated only if the UDRIEn bit is written to one, the Global Interrupt Flag in SREG is written
to one and the UDREn bit in UCSRnA is set.

• Bit 4 – RXENn: Receiver enable n

Writing this bit to one enables the USART Receiver. The Receiver will override normal port
operation for the RxDn pin when enabled. Disabling the Receiver will flush the receive buffer
invalidating the FEn, DORn, and UPEn Flags.

• Bit 3 – TXENn: Transmitter enable n

Writing this bit to one enables the USART Transmitter. The Transmitter will override normal port
operation for the TxDn pin when enabled. The disabling of the Transmitter (writing TXENn to
zero) will not become effective until ongoing and pending transmissions are completed, that is,
when the Transmit Shift Register and Transmit Buffer Register do not contain data to be
transmitted. When disabled, the Transmitter will no longer override the TxDn port.

• Bit 2 – UCSZn2: Character size n

The UCSZn2 bits combined with the UCSZn1:0 bit in UCSRnC sets the number of data bits
(Character SiZe) in a frame the Receiver and Transmitter use.

• Bit 1 – RXB8n: Receive data bit 8 n

RXB8n is the ninth data bit of the received character when operating with serial frames with nine
data bits. Must be read before reading the low bits from UDRn.

• Bit 0 – TXB8n: Transmit data bit 8 n

TXB8n is the ninth data bit in the character to be transmitted when operating with serial frames
with nine data bits. Must be written before writing the low bits to UDRn.

20.10.4 UCSRnC – USART control and status register n C

• Bits 7:6 – UMSELn1:0 USART mode select

These bits select the mode of operation of the USARTn as shown in Table 20-4.

Note: 1. See “USART in SPI mode” on page 203 for full description of the Master SPI Mode (MSPIM)
operation.

Bit 7 6 5 4 3 2 1 0

UMSELn1 UMSELn0 UPMn1 UPMn0 USBSn UCSZn1 UCSZn0 UCPOLn UCSRnC

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 1 1 0

Table 20-4. UMSELn bits settings.

UMSELn1 UMSELn0 Mode

0 0 Asynchronous USART

0 1 Synchronous USART

1 0 (Reserved)

1 1 Master SPI (MSPIM)(1)
196
2545U–AVR–11/2015

ATmega48/88/168
• Bits 5:4 – UPMn1:0: Parity mode

These bits enable and set type of parity generation and check. If enabled, the Transmitter will
automatically generate and send the parity of the transmitted data bits within each frame. The
Receiver will generate a parity value for the incoming data and compare it to the UPMn setting.
If a mismatch is detected, the UPEn Flag in UCSRnA will be set.

• Bit 3 – USBSn: Stop bit select

This bit selects the number of stop bits to be inserted by the Transmitter. The Receiver ignores
this setting.

• Bit 2:1 – UCSZn1:0: Character size

The UCSZn1:0 bits combined with the UCSZn2 bit in UCSRnB sets the number of data bits
(Character SiZe) in a frame the Receiver and Transmitter use.

• Bit 0 – UCPOLn: Clock polarity

This bit is used for synchronous mode only. Write this bit to zero when asynchronous mode is
used. The UCPOLn bit sets the relationship between data output change and data input sample,
and the synchronous clock (XCKn).

Table 20-5. UPMn bits settings.

UPMn1 UPMn0 Parity mode

0 0 Disabled

0 1 Reserved

1 0 Enabled, even parity

1 1 Enabled, odd parity

Table 20-6. USBS bit settings.

USBSn Stop bit(s)

0 1-bit

1 2-bit

Table 20-7. UCSZn bits settings.

UCSZn2 UCSZn1 UCSZn0 Character size

0 0 0 5-bit

0 0 1 6-bit

0 1 0 7-bit

0 1 1 8-bit

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 9-bit
197
2545U–AVR–11/2015

ATmega48/88/168
20.10.5 UBRRnL and UBRRnH – USART baud rate registers

• Bit 15:12 – Reserved bits

These bits are reserved for future use. For compatibility with future devices, these bit must be
written to zero when UBRRnH is written.

• Bit 11:0 – UBRR11:0: USART baud rate register

This is a 12-bit register which contains the USART baud rate. The UBRRnH contains the four
most significant bits, and the UBRRnL contains the eight least significant bits of the USART
baud rate. Ongoing transmissions by the Transmitter and Receiver will be corrupted if the baud
rate is changed. Writing UBRRnL will trigger an immediate update of the baud rate prescaler.

20.11 Examples of baud rate setting

For standard crystal and resonator frequencies, the most commonly used baud rates for
asynchronous operation can be generated by using the UBRRn settings in Table 20-9 on page
199. UBRRn values which yield an actual baud rate differing less than 0.5% from the target baud
rate, are bold in the table. Higher error ratings are acceptable, but the Receiver will have less
noise resistance when the error ratings are high, especially for large serial frames (see
“Asynchronous operational range” on page 191). The error values are calculated using the
following equation:

Table 20-8. UCPOLn bit settings.

UCPOLn
Transmitted data changed (output of
TxDn pin)

Received data sampled (input on RxDn
pin)

0 Rising XCKn edge Falling XCKn edge

1 Falling XCKn edge Rising XCKn edge

Bit 15 14 13 12 11 10 9 8

– – – – UBRRn[11:8] UBRRnH

UBRRn[7:0] UBRRnL

7 6 5 4 3 2 1 0

Read/write R R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Error[%]
BaudRateClosest Match

BaudRate
-- 1– 
  100%=
198
2545U–AVR–11/2015

ATmega48/88/168
Note: 1. UBRRn = 0, error = 0.0%

Table 20-9. Examples of UBRRn settings for commonly used oscillator frequencies.

Baud
rate
(bps)

fosc = 1.0000MHz fosc = 1.8432MHz fosc = 2.0000MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%

4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%

9600 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%

14.4k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%

19.2k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 0.2%

28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%

38.4k 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%

57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%

76.8k – – 1 -18.6% 1 -25.0% 2 0.0% 1 -18.6% 2 8.5%

115.2k – – 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%

230.4k – – – – – – 0 0.0% – – – –

250k – – – – – – – – – – 0 0.0%

Max.(1) 62.5Kbps 125Kbps 115.2Kbps 230.4Kbps 125Kbps 250Kbps
199
2545U–AVR–11/2015

ATmega48/88/168
Note: 1. UBRRn = 0, error = 0.0%

Table 20-10. Examples of UBRRn settings for commonly used oscillator frequencies.

Baud
rate
(bps)

fosc = 3.6864MHz fosc = 4.0000MHz fosc = 7.3728MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%

4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%

9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%

14.4k 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 31 0.0% 63 0.0%

19.2k 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%

28.8k 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 15 0.0% 31 0.0%

38.4k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 11 0.0% 23 0.0%

57.6k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%

76.8k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 11 0.0%

115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%

230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%

250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%

0.5M – – 0 -7.8% – – 0 0.0% 0 -7.8% 1 -7.8%

1M – – – – – – – – – – 0 -7.8%

Max.(1) 230.4Kbps 460.8Kbps 250Kbps 0.5Mbps 460.8Kbps 921.6Kbps
200
2545U–AVR–11/2015

ATmega48/88/168
Note: 1. UBRRn = 0, error = 0.0%

Table 20-11. Examples of UBRRn settings for commonly used oscillator frequencies.

Baud
rate
(bps)

fosc = 8.0000MHz fosc = 11.0592MHz fosc = 14.7456MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 207 0.2% 416 -0.1% 287 0.0% 575 0.0% 383 0.0% 767 0.0%

4800 103 0.2% 207 0.2% 143 0.0% 287 0.0% 191 0.0% 383 0.0%

9600 51 0.2% 103 0.2% 71 0.0% 143 0.0% 95 0.0% 191 0.0%

14.4k 34 -0.8% 68 0.6% 47 0.0% 95 0.0% 63 0.0% 127 0.0%

19.2k 25 0.2% 51 0.2% 35 0.0% 71 0.0% 47 0.0% 95 0.0%

28.8k 16 2.1% 34 -0.8% 23 0.0% 47 0.0% 31 0.0% 63 0.0%

38.4k 12 0.2% 25 0.2% 17 0.0% 35 0.0% 23 0.0% 47 0.0%

57.6k 8 -3.5% 16 2.1% 11 0.0% 23 0.0% 15 0.0% 31 0.0%

76.8k 6 -7.0% 12 0.2% 8 0.0% 17 0.0% 11 0.0% 23 0.0%

115.2k 3 8.5% 8 -3.5% 5 0.0% 11 0.0% 7 0.0% 15 0.0%

230.4k 1 8.5% 3 8.5% 2 0.0% 5 0.0% 3 0.0% 7 0.0%

250k 1 0.0% 3 0.0% 2 -7.8% 5 -7.8% 3 -7.8% 6 5.3%

0.5M 0 0.0% 1 0.0% – – 2 -7.8% 1 -7.8% 3 -7.8%

1M – – 0 0.0% – – – – 0 -7.8% 1 -7.8%

Max.(1) 0.5Mbps 1Mbps 691.2Kbps 1.3824Mbps 921.6Kbps 1.8432Mbps
201
2545U–AVR–11/2015

ATmega48/88/168
Note: 1. UBRRn = 0, error = 0.0%

Table 20-12. Examples of UBRRn settings for commonly used oscillator frequencies.

Baud
rate
(bps)

fosc = 16.0000MHz fosc = 18.4320MHz fosc = 20.0000MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 416 -0.1% 832 0.0% 479 0.0% 959 0.0% 520 0.0% 1041 0.0%

4800 207 0.2% 416 -0.1% 239 0.0% 479 0.0% 259 0.2% 520 0.0%

9600 103 0.2% 207 0.2% 119 0.0% 239 0.0% 129 0.2% 259 0.2%

14.4k 68 0.6% 138 -0.1% 79 0.0% 159 0.0% 86 -0.2% 173 -0.2%

19.2k 51 0.2% 103 0.2% 59 0.0% 119 0.0% 64 0.2% 129 0.2%

28.8k 34 -0.8% 68 0.6% 39 0.0% 79 0.0% 42 0.9% 86 -0.2%

38.4k 25 0.2% 51 0.2% 29 0.0% 59 0.0% 32 -1.4% 64 0.2%

57.6k 16 2.1% 34 -0.8% 19 0.0% 39 0.0% 21 -1.4% 42 0.9%

76.8k 12 0.2% 25 0.2% 14 0.0% 29 0.0% 15 1.7% 32 -1.4%

115.2k 8 -3.5% 16 2.1% 9 0.0% 19 0.0% 10 -1.4% 21 -1.4%

230.4k 3 8.5% 8 -3.5% 4 0.0% 9 0.0% 4 8.5% 10 -1.4%

250k 3 0.0% 7 0.0% 4 -7.8% 8 2.4% 4 0.0% 9 0.0%

0.5M 1 0.0% 3 0.0% – – 4 -7.8% – – 4 0.0%

1M 0 0.0% 1 0.0% – – – – – – – –

Max.(1) 1Mbps 2Mbps 1.152Mbps 2.304Mbps 1.25Mbps 2.5Mbps
202
2545U–AVR–11/2015

ATmega48/88/168
21. USART in SPI mode

21.1 Features
• Full duplex, three-wire synchronous data transfer

• Master operation

• Supports all four SPI modes of operation (mode 0, 1, 2, and 3)

• LSB first or MSB first data transfer (configurable data order)

• Queued operation (double buffered)

• High resolution baud rate generator

• High speed operation (fXCKmax = fCK/2)

• Flexible interrupt generation

21.2 Overview

The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) can be
set to a master SPI compliant mode of operation. Setting both UMSELn1:0 bits to one enables
the USART in Master SPI Mode (MSPIM) logic. In this mode of operation the SPI master control
logic takes direct control over the USART resources. These resources include the transmitter
and receiver shift register and buffers, and the baud rate generator. The parity generator and
checker, the data and clock recovery logic, and the RX and TX control logic is disabled. The
USART RX and TX control logic is replaced by a common SPI transfer control logic. However,
the pin control logic and interrupt generation logic is identical in both modes of operation.

The I/O register locations are the same in both modes. However, some of the functionality of the
control registers changes when using MSPIM.

21.3 Clock generation

The Clock Generation logic generates the base clock for the Transmitter and Receiver. For
USART MSPIM mode of operation only internal clock generation (that is, master operation) is
supported. The Data Direction Register for the XCKn pin (DDR_XCKn) must therefore be set to
one (that is, as output) for the USART in MSPIM to operate correctly. Preferably the DDR_XCKn
should be set up before the USART in MSPIM is enabled (that is, TXENn and RXENn bit set to
one).

The internal clock generation used in MSPIM mode is identical to the USART synchronous
master mode. The baud rate or UBRRn setting can therefore be calculated using the same
equations, see Table 21-1 on page 204:
203
2545U–AVR–11/2015

ATmega48/88/168
Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps).

BAUDBaud rate (in bits per second, bps)

fOSCSystem Oscillator clock frequency

UBRRnContents of the UBRRnH and UBRRnL Registers, (0-4095)

21.4 SPI data modes and timing

There are four combinations of XCKn (SCK) phase and polarity with respect to serial data, which
are determined by control bits UCPHAn and UCPOLn. The data transfer timing diagrams are
shown in Figure 21-1 on page 204. Data bits are shifted out and latched in on opposite edges of
the XCKn signal, ensuring sufficient time for data signals to stabilize. The UCPOLn and
UCPHAn functionality is summarized in Table 21-2. Note that changing the setting of any of
these bits will corrupt all ongoing communication for both the Receiver and Transmitter.

Figure 21-1. UCPHAn and UCPOLn data transfer timing diagrams.

Table 21-1. Equations for calculating baud rate register setting.

Operating mode
Equation for calculating baud

rate(1)
Equation for calculating UBRRn

value

Synchronous Master
mode BAUD

fOSC

2 UBRRn 1+ 
---------------------------------------= UBRRn

fOSC

2BAUD
-------------------- 1–=

Table 21-2. UCPOLn and UCPHAn functionality.

UCPOLn UCPHAn SPI mode Leading edge Trailing edge

0 0 0 Sample (rising) Setup (falling)

0 1 1 Setup (rising) Sample (falling)

1 0 2 Sample (falling) Setup (rising)

1 1 3 Setup (falling) Sample (rising)

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

UCPOL=0 UCPOL=1

U
C

P
H

A
=0

U
C

P
H

A
=1
204
2545U–AVR–11/2015

ATmega48/88/168
21.5 Frame formats

A serial frame for the MSPIM is defined to be one character of 8 data bits. The USART in MSPIM
mode has two valid frame formats:

l 8-bit data with MSB first

l 8-bit data with LSB first

A frame starts with the least or most significant data bit. Then the next data bits, up to a total of
eight, are succeeding, ending with the most or least significant bit accordingly. When a complete
frame is transmitted, a new frame can directly follow it, or the communication line can be set to
an idle (high) state.

The UDORDn bit in UCSRnC sets the frame format used by the USART in MSPIM mode. The
Receiver and Transmitter use the same setting. Note that changing the setting of any of these
bits will corrupt all ongoing communication for both the Receiver and Transmitter.

16-bit data transfer can be achieved by writing two data bytes to UDRn. A UART transmit
complete interrupt will then signal that the 16-bit value has been shifted out.

21.5.1 USART MSPIM initialization

The USART in MSPIM mode has to be initialized before any communication can take place. The
initialization process normally consists of setting the baud rate, setting master mode of operation
(by setting DDR_XCKn to one), setting frame format and enabling the Transmitter and the
Receiver. Only the transmitter can operate independently. For interrupt driven USART
operation, the Global Interrupt Flag should be cleared (and thus interrupts globally disabled)
when doing the initialization.

Note: To ensure immediate initialization of the XCKn output the baud-rate register (UBRRn) must be
zero at the time the transmitter is enabled. Contrary to the normal mode USART operation the
UBRRn must then be written to the desired value after the transmitter is enabled, but before the
first transmission is started. Setting UBRRn to zero before enabling the transmitter is not
necessary if the initialization is done immediately after a reset since UBRRn is reset to zero.

Before doing a re-initialization with changed baud rate, data mode, or frame format, be sure that
there is no ongoing transmissions during the period the registers are changed. The TXCn Flag
can be used to check that the Transmitter has completed all transfers, and the RXCn Flag can
be used to check that there are no unread data in the receive buffer. Note that the TXCn Flag
must be cleared before each transmission (before UDRn is written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C
function that are equal in functionality. The examples assume polling (no interrupts enabled).
205
2545U–AVR–11/2015

ATmega48/88/168
The baud rate is given as a function parameter. For the assembly code, the baud rate parameter
is assumed to be stored in the r17:r16 registers.

Note: 1. See ”About code examples” on page 8.

Assembly code example(1)

USART_Init:
clr r18
out UBRRnH,r18
out UBRRnL,r18
; Setting the XCKn port pin as output, enables master

mode.
sbi XCKn_DDR, XCKn
; Set MSPI mode of operation and SPI data mode 0.
ldi r18,

(1<<UMSELn1)|(1<<UMSELn0)|(0<<UCPHAn)|(0<<UCPOLn)
out UCSRnC,r18
; Enable receiver and transmitter.
ldi r18, (1<<RXENn)|(1<<TXENn)
out UCSRnB,r18
; Set baud rate.
; IMPORTANT: The Baud Rate must be set after the

transmitter is enabled!
out UBRRnH, r17
out UBRRnL, r18
ret

C code example(1)

void USART_Init(unsigned int baud)
{

UBRRn = 0;
/* Setting the XCKn port pin as output, enables master

mode. */
XCKn_DDR |= (1<<XCKn);
/* Set MSPI mode of operation and SPI data mode 0. */
UCSRnC =

(1<<UMSELn1)|(1<<UMSELn0)|(0<<UCPHAn)|(0<<UCPOLn);
/* Enable receiver and transmitter. */
UCSRnB = (1<<RXENn)|(1<<TXENn);
/* Set baud rate. */
/* IMPORTANT: The Baud Rate must be set after the

transmitter is enabled */
UBRRn = baud;

}

206
2545U–AVR–11/2015

ATmega48/88/168
21.6 Data transfer

Using the USART in MSPI mode requires the Transmitter to be enabled, that is, the TXENn bit in
the UCSRnB register is set to one. When the Transmitter is enabled, the normal port operation
of the TxDn pin is overridden and given the function as the Transmitter's serial output. Enabling
the receiver is optional and is done by setting the RXENn bit in the UCSRnB register to one.
When the receiver is enabled, the normal pin operation of the RxDn pin is overridden and given
the function as the Receiver's serial input. The XCKn will in both cases be used as the transfer
clock.

After initialization the USART is ready for doing data transfers. A data transfer is initiated by
writing to the UDRn I/O location. This is the case for both sending and receiving data since the
transmitter controls the transfer clock. The data written to UDRn is moved from the transmit
buffer to the shift register when the shift register is ready to send a new frame.

Note: To keep the input buffer in sync with the number of data bytes transmitted, the UDRn register must
be read once for each byte transmitted. The input buffer operation is identical to normal USART
mode, that is, if an overflow occurs the character last received will be lost, not the first data in the
buffer. This means that if four bytes are transferred, byte 1 first, then byte 2, byte 3, and byte 4,
and the UDRn is not read before all transfers are completed, then byte 3 to be received will be
lost, and not byte 1.

The following code examples show a simple USART in MSPIM mode transfer function based on
polling of the Data Register Empty (UDREn) Flag and the Receive Complete (RXCn) Flag. The
USART has to be initialized before the function can be used. For the assembly code, the data to
be sent is assumed to be stored in Register R16 and the data received will be available in the
same register (R16) after the function returns.

The function simply waits for the transmit buffer to be empty by checking the UDREn Flag,
before loading it with new data to be transmitted. The function then waits for data to be present
in the receive buffer by checking the RXCn Flag, before reading the buffer and returning the
value.
207
2545U–AVR–11/2015

ATmega48/88/168
Note: 1. See ”About code examples” on page 8.

21.6.1 Transmitter and receiver flags and interrupts

The RXCn, TXCn, and UDREn flags and corresponding interrupts in USART in MSPIM mode
are identical in function to the normal USART operation. However, the receiver error status flags
(FE, DOR, and PE) are not in use and is always read as zero.

21.6.2 Disabling the transmitter or receiver

The disabling of the transmitter or receiver in USART in MSPIM mode is identical in function to
the normal USART operation.

Assembly code example(1)

USART_MSPIM_Transfer:
; Wait for empty transmit buffer
sbis UCSRnA, UDREn
rjmp USART_MSPIM_Transfer
; Put data (r16) into buffer, sends the data
out UDRn,r16
; Wait for data to be received

USART_MSPIM_Wait_RXCn:
sbis UCSRnA, RXCn
rjmp USART_MSPIM_Wait_RXCn
; Get and return received data from buffer
in r16, UDRn
ret

C code example(1)

unsigned char USART_Receive(void)
{

/* Wait for empty transmit buffer */
while (!(UCSRnA & (1<<UDREn)));
/* Put data into buffer, sends the data */
UDRn = data;
/* Wait for data to be received */
while (!(UCSRnA & (1<<RXCn)));
/* Get and return received data from buffer */
return UDRn;

}

208
2545U–AVR–11/2015

ATmega48/88/168
21.7 AVR USART MSPIM vs. AVR SPI

The USART in MSPIM mode is fully compatible with the AVR SPI regarding:

l Master mode timing diagram

l The UCPOLn bit functionality is identical to the SPI CPOL bit

l The UCPHAn bit functionality is identical to the SPI CPHA bit

l The UDORDn bit functionality is identical to the SPI DORD bit

However, since the USART in MSPIM mode reuses the USART resources, the use of the
USART in MSPIM mode is somewhat different compared to the SPI. In addition to differences of
the control register bits, and that only master operation is supported by the USART in MSPIM
mode, the following features differ between the two modules:

l The USART in MSPIM mode includes (double) buffering of the transmitter. The SPI has no
buffer

l The USART in MSPIM mode receiver includes an additional buffer level

l The SPI WCOL (Write Collision) bit is not included in USART in MSPIM mode

l The SPI double speed mode (SPI2X) bit is not included. However, the same effect is
achieved by setting UBRRn accordingly

l Interrupt timing is not compatible

l Pin control differs due to the master only operation of the USART in MSPIM mode

A comparison of the USART in MSPIM mode and the SPI pins is shown in Table 21-3.

Table 21-3. Comparison of USART in MSPIM mode and SPI pins.

USART_MSPIM SPI Comment

TxDn MOSI Master out only

RxDn MISO Master in only

XCKn SCK (Functionally identical)

(N/A) SS
Not supported by USART in
MSPIM
209
2545U–AVR–11/2015

ATmega48/88/168
21.8 Register description

The following section describes the registers used for SPI operation using the USART.

21.8.1 UDRn – USART MSPIM I/O data register

The function and bit description of the USART data register (UDRn) in MSPI mode is identical to
normal USART operation. See “UDRn – USART I/O data register n” on page 194.

21.8.2 UCSRnA – USART MSPIM control and status register n A

• Bit 7 - RXCn: USART receive complete

This flag bit is set when there are unread data in the receive buffer and cleared when the receive
buffer is empty (that is, does not contain any unread data). If the Receiver is disabled, the
receive buffer will be flushed and consequently the RXCn bit will become zero. The RXCn Flag
can be used to generate a Receive Complete interrupt (see description of the RXCIEn bit).

• Bit 6 - TXCn: USART transmit complete

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and
there are no new data currently present in the transmit buffer (UDRn). The TXCn Flag bit is
automatically cleared when a transmit complete interrupt is executed, or it can be cleared by
writing a one to its bit location. The TXCn Flag can generate a Transmit Complete interrupt (see
description of the TXCIEn bit).

• Bit 5 - UDREn: USART data register empty

The UDREn Flag indicates if the transmit buffer (UDRn) is ready to receive new data. If UDREn
is one, the buffer is empty, and therefore ready to be written. The UDREn Flag can generate a
Data Register Empty interrupt (see description of the UDRIE bit). UDREn is set after a reset to
indicate that the Transmitter is ready.

• Bit 4:0 - Reserved bits in MSPI mode

When in MSPI mode, these bits are reserved for future use. For compatibility with future devices,
these bits must be written to zero when UCSRnA is written.

21.8.3 UCSRnB – USART MSPIM control and status register n B

• Bit 7 - RXCIEn: RX complete interrupt enable

Writing this bit to one enables interrupt on the RXCn Flag. A USART Receive Complete interrupt
will be generated only if the RXCIEn bit is written to one, the Global Interrupt Flag in SREG is
written to one and the RXCn bit in UCSRnA is set.

Bit 7 6 5 4 3 2 1 0

RXCn TXCn UDREn - - - - - UCSRnA

Read/write R R/W R R R R R R

Initial value 0 0 0 0 0 1 1 0

Bit 7 6 5 4 3 2 1 0

RXCIEn TXCIEn UDRIE RXENn TXENn - - - UCSRnB

Read/write R/W R/W R/W R/W R/W R R R

Initial value 0 0 0 0 0 1 1 0
210
2545U–AVR–11/2015

ATmega48/88/168
• Bit 6 - TXCIEn: TX complete interrupt enable

Writing this bit to one enables interrupt on the TXCn Flag. A USART Transmit Complete interrupt
will be generated only if the TXCIEn bit is written to one, the Global Interrupt Flag in SREG is
written to one and the TXCn bit in UCSRnA is set.

• Bit 5 - UDRIE: USART data register empty interrupt enable

Writing this bit to one enables interrupt on the UDREn Flag. A Data Register Empty interrupt will
be generated only if the UDRIE bit is written to one, the Global Interrupt Flag in SREG is written
to one and the UDREn bit in UCSRnA is set.

• Bit 4 - RXENn: Receiver enable

Writing this bit to one enables the USART Receiver in MSPIM mode. The Receiver will override
normal port operation for the RxDn pin when enabled. Disabling the Receiver will flush the
receive buffer. Only enabling the receiver in MSPI mode (that is, setting RXENn=1 and
TXENn=0) has no meaning since it is the transmitter that controls the transfer clock and since
only master mode is supported.

• Bit 3 - TXENn: Transmitter enable

Writing this bit to one enables the USART Transmitter. The Transmitter will override normal port
operation for the TxDn pin when enabled. The disabling of the Transmitter (writing TXENn to
zero) will not become effective until ongoing and pending transmissions are completed, that is,
when the Transmit Shift Register and Transmit Buffer Register do not contain data to be
transmitted. When disabled, the Transmitter will no longer override the TxDn port.

• Bit 2:0 - Reserved bits in MSPI mode

When in MSPI mode, these bits are reserved for future use. For compatibility with future devices,
these bits must be written to zero when UCSRnB is written.

21.8.4 UCSRnC – USART MSPIM control and status register n C

• Bit 7:6 - UMSELn1:0: USART mode select

These bits select the mode of operation of the USART as shown in Table 21-4. See “UCSRnC –
USART control and status register n C” on page 196 for full description of the normal USART
operation. The MSPIM is enabled when both UMSELn bits are set to one. The UDORDn,
UCPHAn, and UCPOLn can be set in the same write operation where the MSPIM is enabled.

Bit 7 6 5 4 3 2 1 0

UMSELn1 UMSELn0 - - - UDORDn UCPHAn UCPOLn UCSRnC

Read/write R/W R/W R R R R/W R/W R/W

Initial value 0 0 0 0 0 1 1 0

Table 21-4. UMSELn bits settings.

UMSELn1 UMSELn0 Mode

0 0 Asynchronous USART
211
2545U–AVR–11/2015

ATmega48/88/168
• Bit 5:3 - Reserved bits in MSPI mode

When in MSPI mode, these bits are reserved for future use. For compatibility with future devices,
these bits must be written to zero when UCSRnC is written.

• Bit 2 - UDORDn: Data order

When set to one the LSB of the data word is transmitted first. When set to zero the MSB of the
data word is transmitted first. Refer to section “Frame formats” on page 179 for details.

• Bit 1 - UCPHAn: Clock phase

The UCPHAn bit setting determine if data is sampled on the leasing edge (first) or tailing (last)
edge of XCKn. Refer to the “SPI data modes and timing” on page 204 for details.

• Bit 0 - UCPOLn: Clock polarity

The UCPOLn bit sets the polarity of the XCKn clock. The combination of the UCPOLn and
UCPHAn bit settings determine the timing of the data transfer. Refer to the “SPI data modes and
timing” on page 204 for details.

21.8.5 USART MSPIM baud rate registers - UBRRnL and UBRRnH

The function and bit description of the baud rate registers in MSPI mode is identical to normal
USART operation. See “UBRRnL and UBRRnH – USART baud rate registers” on page 198.

0 1 Synchronous USART

1 0 (Reserved)

1 1 Master SPI (MSPIM)

Table 21-4. UMSELn bits settings.

UMSELn1 UMSELn0 Mode
212
2545U–AVR–11/2015

ATmega48/88/168
22. 2-wire serial interface

22.1 Features
• Simple yet powerful and flexible communication interface, only two bus lines needed

• Both master and slave operation supported

• Device can operate as transmitter or receiver

• 7-bit address space allows up to 128 different slave addresses

• Multi-master arbitration support

• Up to 400kHz data transfer speed

• Slew-rate limited output drivers

• Noise suppression circuitry rejects spikes on bus lines

• Fully programmable slave address with general call support

• Address recognition causes wake-up when AVR is in sleep mode

• Compatible with Philips I2C protocol

22.2 2-wire serial interface bus definition

The 2-wire Serial Interface (TWI) is ideally suited for typical microcontroller applications. The
TWI protocol allows the systems designer to interconnect up to 128 different devices using only
two bi-directional bus lines, one for clock (SCL) and one for data (SDA). The only external
hardware needed to implement the bus is a single pull-up resistor for each of the TWI bus lines.
All devices connected to the bus have individual addresses, and mechanisms for resolving bus
contention are inherent in the TWI protocol.

Figure 22-1. TWI bus interconnection.

Device 1 Device 2 Device 3 Device n

SDA

SCL

........ R1 R2

VCC
213
2545U–AVR–11/2015

ATmega48/88/168
22.2.1 TWI terminology

The following definitions are frequently encountered in this section.

The PRTWI bit in “Minimizing power consumption” on page 41 must be written to zero to enable
the 2-wire serial interface.

22.2.2 Electrical interconnection

As depicted in Figure 22-1 on page 213, both bus lines are connected to the positive supply
voltage through pull-up resistors. The bus drivers of all TWI-compliant devices are open-drain or
open-collector. This implements a wired-AND function which is essential to the operation of the
interface. A low level on a TWI bus line is generated when one or more TWI devices output a
zero. A high level is output when all TWI devices tri-state their outputs, allowing the pull-up
resistors to pull the line high. Note that all AVR devices connected to the TWI bus must be
powered in order to allow any bus operation.

The number of devices that can be connected to the bus is only limited by the bus capacitance
limit of 400pF and the 7-bit slave address space. A detailed specification of the electrical
characteristics of the TWI is given in “2-wire serial interface characteristics” on page 315. Two
different sets of specifications are presented there, one relevant for bus speeds below 100kHz,
and one valid for bus speeds up to 400kHz.

22.3 Data transfer and frame format

22.3.1 Transferring bits

Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. The level
of the data line must be stable when the clock line is high. The only exception to this rule is for
generating start and stop conditions.

Table 22-1. TWI terminology.

Term Description

Master
The device that initiates and terminates a transmission. The master also generates the
SCL clock.

Slave The device addressed by a master.

Transmitter The device placing data on the bus.

Receiver The device reading data from the bus.
214
2545U–AVR–11/2015

ATmega48/88/168
Figure 22-2. Data validity.

22.3.2 START and STOP conditions

The Master initiates and terminates a data transmission. The transmission is initiated when the
Master issues a START condition on the bus, and it is terminated when the Master issues a
STOP condition. Between a START and a STOP condition, the bus is considered busy, and no
other master should try to seize control of the bus. A special case occurs when a new START
condition is issued between a START and STOP condition. This is referred to as a REPEATED
START condition, and is used when the Master wishes to initiate a new transfer without
relinquishing control of the bus. After a REPEATED START, the bus is considered busy until the
next STOP. This is identical to the START behavior, and therefore START is used to describe
both START and REPEATED START for the remainder of this datasheet, unless otherwise
noted. As depicted below, START and STOP conditions are signalled by changing the level of
the SDA line when the SCL line is high.

Figure 22-3. START, REPEATED START, and STOP conditions.

22.3.3 Address packet format

All address packets transmitted on the TWI bus are nine bits long, consisting of seven address
bits, one READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is set, a read
operation is to be performed, otherwise a write operation should be performed. When a slave
recognizes that it is being addressed, it should acknowledge by pulling SDA low in the ninth SCL
(ACK) cycle. If the addressed Slave is busy, or for some other reason can not service the
master’s request, the SDA line should be left high in the ACK clock cycle. The master can then
transmit a STOP condition, or a REPEATED START condition to initiate a new transmission. An

SDA

SCL

Data stable Data stable

Data change

SDA

SCL

START STOPREPEATED STARTSTOP START
215
2545U–AVR–11/2015

ATmega48/88/168
address packet consisting of a slave address and a READ or a WRITE bit is called SLA+R or
SLA+W, respectively.

The MSB of the address byte is transmitted first. Slave addresses can freely be allocated by the
designer, but the address 0000 000 is reserved for a general call.

When a general call is issued, all slaves should respond by pulling the SDA line low in the ACK
cycle. A general call is used when a Master wishes to transmit the same message to several
slaves in the system. When the general call address followed by a Write bit is transmitted on the
bus, all slaves set up to acknowledge the general call will pull the SDA line low in the ack cycle.
The following data packets will then be received by all the slaves that acknowledged the general
call. Note that transmitting the general call address followed by a Read bit is meaningless, as
this would cause contention if several slaves started transmitting different data.

All addresses of the format 1111 xxx should be reserved for future purposes.

Figure 22-4. Address packet format.

22.3.4 Data packet format

All data packets transmitted on the TWI bus are nine bits long, consisting of one data byte and
an acknowledge bit. During a data transfer, the Master generates the clock and the START and
STOP conditions, while the Receiver is responsible for acknowledging the reception. An
Acknowledge (ACK) is signalled by the Receiver pulling the SDA line low during the ninth SCL
cycle. If the Receiver leaves the SDA line high, a NACK is signalled. When the Receiver has
received the last byte, or for some reason cannot receive any more bytes, it should inform the
Transmitter by sending a NACK after the final byte. The MSB of the data byte is transmitted first.

Figure 22-5. Data packet format.

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK

1 2 7 8 9

Data MSB Data LSB ACK

Aggregate
SDA

SDA from
Transmitter

SDA from
Receiver

SCL from
Master

SLA+R/W Data byte
STOP, REPEATED

START or next
data byte
216
2545U–AVR–11/2015

ATmega48/88/168
22.3.5 Combining address and data packets into a transmission

A transmission basically consists of a START condition, a SLA+R/W, one or more data packets
and a STOP condition. An empty message, consisting of a START followed by a STOP
condition, is illegal. Note that the Wired-ANDing of the SCL line can be used to implement
handshaking between the Master and the Slave. The Slave can extend the SCL low period by
pulling the SCL line low. This is useful if the clock speed set up by the Master is too fast for the
Slave, or the Slave needs extra time for processing between the data transmissions. The Slave
extending the SCL low period will not affect the SCL high period, which is determined by the
Master. As a consequence, the Slave can reduce the TWI data transfer speed by prolonging the
SCL duty cycle.

Figure 22-6 on page 217 shows a typical data transmission. Note that several data bytes can be
transmitted between the SLA+R/W and the STOP condition, depending on the software protocol
implemented by the application software.

Figure 22-6. Typical data transmission.

22.4 Multi-master bus systems, arbitration and synchronization

The TWI protocol allows bus systems with several masters. Special concerns have been taken
in order to ensure that transmissions will proceed as normal, even if two or more masters initiate
a transmission at the same time. Two problems arise in multi-master systems:

l An algorithm must be implemented allowing only one of the masters to complete the
transmission. All other masters should cease transmission when they discover that they
have lost the selection process. This selection process is called arbitration. When a
contending master discovers that it has lost the arbitration process, it should immediately
switch to Slave mode to check whether it is being addressed by the winning master. The
fact that multiple masters have started transmission at the same time should not be
detectable to the slaves, that is, the data being transferred on the bus must not be
corrupted

l Different masters may use different SCL frequencies. A scheme must be devised to
synchronize the serial clocks from all masters, in order to let the transmission proceed in a
lockstep fashion. This will facilitate the arbitration process

The wired-ANDing of the bus lines is used to solve both these problems. The serial clocks from
all masters will be wired-ANDed, yielding a combined clock with a high period equal to the one
from the Master with the shortest high period. The low period of the combined clock is equal to
the low period of the Master with the longest low period. Note that all masters listen to the SCL
line, effectively starting to count their SCL high and low time-out periods when the combined
SCL line goes high or low, respectively.

1 2 7 8 9

Data Byte

Data MSB Data LSB ACK

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK

SLA+R/W STOP
217
2545U–AVR–11/2015

ATmega48/88/168
Figure 22-7. SCL synchronization between multiple masters.

Arbitration is carried out by all masters continuously monitoring the SDA line after outputting
data. If the value read from the SDA line does not match the value the Master had output, it has
lost the arbitration. Note that a Master can only lose arbitration when it outputs a high SDA value
while another Master outputs a low value. The losing Master should immediately go to Slave
mode, checking if it is being addressed by the winning Master. The SDA line should be left high,
but losing masters are allowed to generate a clock signal until the end of the current data or
address packet. Arbitration will continue until only one Master remains, and this may take many
bits. If several masters are trying to address the same Slave, arbitration will continue into the
data packet.

Figure 22-8. Arbitration between two masters.

TA low TA high

SCL from
Master A

SCL from
Master B

SCL bus
line

TBlow TBhigh

Masters start
counting low period

Masters start
counting high period

SDA from
Master A

SDA from
Master B

SDA line

Synchronized
SCL line

START Master A loses
arbitration, SDAA SDA
218
2545U–AVR–11/2015

ATmega48/88/168
Note that arbitration is not allowed between:

l A REPEATED START condition and a data bit

l A STOP condition and a data bit

l A REPEATED START and a STOP condition

It is the user software’s responsibility to ensure that these illegal arbitration conditions never
occur. This implies that in multi-master systems, all data transfers must use the same
composition of SLA+R/W and data packets. In other words: All transmissions must contain the
same number of data packets, otherwise the result of the arbitration is undefined.
219
2545U–AVR–11/2015

ATmega48/88/168
22.5 Overview of the TWI module

The TWI module is comprised of several submodules, as shown in Figure 22-9. All registers
drawn in a thick line are accessible through the AVR data bus.

Figure 22-9. Overview of the TWI module.

22.5.1 SCL and SDA pins

These pins interface the AVR TWI with the rest of the MCU system. The output drivers contain a
slew-rate limiter in order to conform to the TWI specification. The input stages contain a spike
suppression unit removing spikes shorter than 50ns. Note that the internal pull-ups in the AVR
pads can be enabled by setting the PORT bits corresponding to the SCL and SDA pins, as
explained in the I/O Port section. The internal pull-ups can in some systems eliminate the need
for external ones.

22.5.2 Bit rate generator unit

This unit controls the period of SCL when operating in a Master mode. The SCL period is
controlled by settings in the TWI Bit Rate Register (TWBR) and the Prescaler bits in the TWI
Status Register (TWSR). Slave operation does not depend on Bit Rate or Prescaler settings, but
the CPU clock frequency in the Slave must be at least 16 times higher than the SCL frequency.

T
W

I u
ni

t

Address register
(TWAR)

Address match unit

Address comparator

Control unit

Control register
(TWCR)

Status register
(TWSR)

State machine and
status control

SCL

Slew-rate
control

Spike
filter

SDA

Slew-rate
control

Spike
filter

Bit rate generator

Bit rate register
(TWBR)

Prescaler

Bus interface unit

START / STOP
control

Arbitration detection Ack

Spike suppression

Address/data shift
register (TWDR)
220
2545U–AVR–11/2015

ATmega48/88/168
Note that slaves may prolong the SCL low period, thereby reducing the average TWI bus clock
period. The SCL frequency is generated according to the following equation:

l TWBR = Value of the TWI Bit Rate Register

l PrescalerValue = Value of the prescaler, see Table 22-7 on page 243

Note: Pull-up resistor values should be selected according to the SCL frequency and the capacitive bus
line load. See Table 29-5 on page 315 for value of pull-up resistor.

22.5.3 Bus interface unit

This unit contains the Data and Address Shift Register (TWDR), a START/STOP Controller and
Arbitration detection hardware. The TWDR contains the address or data bytes to be transmitted,
or the address or data bytes received. In addition to the 8-bit TWDR, the Bus Interface Unit also
contains a register containing the (N)ACK bit to be transmitted or received. This (N)ACK
Register is not directly accessible by the application software. However, when receiving, it can
be set or cleared by manipulating the TWI Control Register (TWCR). When in Transmitter mode,
the value of the received (N)ACK bit can be determined by the value in the TWSR.

The START/STOP Controller is responsible for generation and detection of START, REPEATED
START, and STOP conditions. The START/STOP controller is able to detect START and STOP
conditions even when the AVR MCU is in one of the sleep modes, enabling the MCU to wake up
if addressed by a Master.

If the TWI has initiated a transmission as Master, the Arbitration Detection hardware
continuously monitors the transmission trying to determine if arbitration is in process. If the TWI
has lost an arbitration, the Control Unit is informed. Correct action can then be taken and
appropriate status codes generated.

22.5.4 Address match unit

The Address Match unit checks if received address bytes match the seven-bit address in the
TWI Address Register (TWAR). If the TWI General Call Recognition Enable (TWGCE) bit in the
TWAR is written to one, all incoming address bits will also be compared against the General Call
address. Upon an address match, the Control Unit is informed, allowing correct action to be
taken. The TWI may or may not acknowledge its address, depending on settings in the TWCR.
The Address Match unit is able to compare addresses even when the AVR MCU is in sleep
mode, enabling the MCU to wake up if addressed by a Master. If another interrupt (for example,
INT0) occurs during TWI Power-down address match and wakes up the CPU, the TWI aborts
operation and return to it’s idle state. If this cause any problems, ensure that TWI Address Match
is the only enabled interrupt when entering Power-down.

22.5.5 Control unit

The Control unit monitors the TWI bus and generates responses corresponding to settings in the
TWI Control Register (TWCR). When an event requiring the attention of the application occurs
on the TWI bus, the TWI Interrupt Flag (TWINT) is asserted. In the next clock cycle, the TWI
Status Register (TWSR) is updated with a status code identifying the event. The TWSR only
contains relevant status information when the TWI Interrupt Flag is asserted. At all other times,
the TWSR contains a special status code indicating that no relevant status information is

SCL frequency
CPU Clock frequency

16 2(TWBR) PrescalerValue +
---=
221
2545U–AVR–11/2015

ATmega48/88/168
available. As long as the TWINT Flag is set, the SCL line is held low. This allows the application
software to complete its tasks before allowing the TWI transmission to continue.

The TWINT Flag is set in the following situations:

l After the TWI has transmitted a START/REPEATED START condition

l After the TWI has transmitted SLA+R/W

l After the TWI has transmitted an address byte

l After the TWI has lost arbitration

l After the TWI has been addressed by own slave address or general call

l After the TWI has received a data byte

l After a STOP or REPEATED START has been received while still addressed as a Slave

l When a bus error has occurred due to an illegal START or STOP condition

22.6 Using the TWI

The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events, like
reception of a byte or transmission of a START condition. Because the TWI is interrupt-based,
the application software is free to carry on other operations during a TWI byte transfer. Note that
the TWI Interrupt Enable (TWIE) bit in TWCR together with the Global Interrupt Enable bit in
SREG allow the application to decide whether or not assertion of the TWINT Flag should
generate an interrupt request. If the TWIE bit is cleared, the application must poll the TWINT
Flag in order to detect actions on the TWI bus.

When the TWINT Flag is asserted, the TWI has finished an operation and awaits application
response. In this case, the TWI Status Register (TWSR) contains a value indicating the current
state of the TWI bus. The application software can then decide how the TWI should behave in
the next TWI bus cycle by manipulating the TWCR and TWDR Registers.

Figure 22-10 is a simple example of how the application can interface to the TWI hardware. In
this example, a Master wishes to transmit a single data byte to a Slave. This description is quite
abstract, a more detailed explanation follows later in this section. A simple code example
implementing the desired behavior is also presented.

Figure 22-10. Interfacing the application to the TWI in a typical transmission.

START SLA+W A Data A STOP

1. Application
writes to TWCR to

initiate
transmission of

START

2. TWINT set.
Status code indicates
START condition sent

4. TWINT set.
Status code indicates

SLA+W sent, ACK
received

6. TWINT set.
Status code indicates

data sent, ACK received

3. Check TWSR to see if START was
sent. Application loads SLA+W into

TWDR, and loads appropriate control
signals into TWCR, makin sure that

TWINT is written to one,
and TWSTA is written to zero.

5. Check TWSR to see if SLA+W was
sent and ACK received.

Application loads data into TWDR, and
loads appropriate control signals into
TWCR, making sure that TWINT is

written to one

7. Check TWSR to see if data was sent
and ACK received.

Application loads appropriate control
signals to send STOP into TWCR,

making sure that TWINT is written to one

TWI bus

Indicates
TWINT set

A
pp

lic
at

io
n

ac
tio

n
T

W
I

ha
rd

w
ar

e
ac

tio
n

222
2545U–AVR–11/2015

ATmega48/88/168
1. The first step in a TWI transmission is to transmit a START condition. This is done by
writing a specific value into TWCR, instructing the TWI hardware to transmit a START
condition. Which value to write is described later on. However, it is important that the
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will
not start any operation as long as the TWINT bit in TWCR is set. Immediately after the
application has cleared TWINT, the TWI will initiate transmission of the START condition.

2. When the START condition has been transmitted, the TWINT Flag in TWCR is set, and
TWSR is updated with a status code indicating that the START condition has successfully
been sent.

3. The application software should now examine the value of TWSR, to make sure that the
START condition was successfully transmitted. If TWSR indicates otherwise, the
application software might take some special action, like calling an error routine.
Assuming that the status code is as expected, the application must load SLA+W into
TWDR. Remember that TWDR is used both for address and data. After TWDR has been
loaded with the desired SLA+W, a specific value must be written to TWCR, instructing the
TWI hardware to transmit the SLA+W present in TWDR. Which value to write is described
later on. However, it is important that the TWINT bit is set in the value written. Writing a
one to TWINT clears the flag. The TWI will not start any operation as long as the TWINT
bit in TWCR is set. Immediately after the application has cleared TWINT, the TWI will
initiate transmission of the address packet.

4. When the address packet has been transmitted, the TWINT Flag in TWCR is set, and
TWSR is updated with a status code indicating that the address packet has successfully
been sent. The status code will also reflect whether a Slave acknowledged the packet or
not.

5. The application software should now examine the value of TWSR, to make sure that the
address packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some special
action, like calling an error routine. Assuming that the status code is as expected, the
application must load a data packet into TWDR. Subsequently, a specific value must be
written to TWCR, instructing the TWI hardware to transmit the data packet present in
TWDR. Which value to write is described later on. However, it is important that the TWINT
bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will not start
any operation as long as the TWINT bit in TWCR is set. Immediately after the application
has cleared TWINT, the TWI will initiate transmission of the data packet.

6. When the data packet has been transmitted, the TWINT Flag in TWCR is set, and TWSR
is updated with a status code indicating that the data packet has successfully been sent.
The status code will also reflect whether a Slave acknowledged the packet or not.

7. The application software should now examine the value of TWSR, to make sure that the
data packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some special
action, like calling an error routine. Assuming that the status code is as expected, the
application must write a specific value to TWCR, instructing the TWI hardware to transmit
a STOP condition. Which value to write is described later on. However, it is important that
the TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI
will not start any operation as long as the TWINT bit in TWCR is set. Immediately after the
application has cleared TWINT, the TWI will initiate transmission of the STOP condition.
Note that TWINT is NOT set after a STOP condition has been sent.

Even though this example is simple, it shows the principles involved in all TWI transmissions.
These can be summarized as follows:
223
2545U–AVR–11/2015

ATmega48/88/168
l When the TWI has finished an operation and expects application response, the TWINT
Flag is set. The SCL line is pulled low until TWINT is cleared

l When the TWINT Flag is set, the user must update all TWI Registers with the value
relevant for the next TWI bus cycle. As an example, TWDR must be loaded with the value
to be transmitted in the next bus cycle

l After all TWI Register updates and other pending application software tasks have been
completed, TWCR is written. When writing TWCR, the TWINT bit should be set. Writing a
one to TWINT clears the flag. The TWI will then commence executing whatever operation
was specified by the TWCR setting

In the following an assembly and C implementation of the example is given. Note that the code
below assumes that several definitions have been made, for example by using include-files.
224
2545U–AVR–11/2015

ATmega48/88/168
Assembly code example C example Comments

1

ldi
r16,
(1<<TWINT)|(1<<TWSTA
)|

(1<<TWEN)
out
TWCR, r16

TWCR =
(1<<TWINT)|(1<<TWSTA)
|

(1<<TWEN)
Send START condition

2

wait1:
in
r16,TWCR
sbrs
r16,TWINT
rjmp
wait1

while (!(TWCR &
(1<<TWINT)))

; Wait for TWINT Flag set. This
indicates that the START
condition has been transmitted

3

in
r16,TWSR
andi
r16, 0xF8
cpi
r16, START
brne
ERROR

if ((TWSR & 0xF8) !=
START)

ERROR();
Check value of TWI status
register. Mask prescaler bits. If
status different from START go to
ERROR

ldi
r16, SLA_W
out
TWDR, r16
ldi
r16, (1<<TWINT) |
(1<<TWEN)
out
TWCR, r16

TWDR = SLA_W;
TWCR = (1<<TWINT) |
(1<<TWEN);

Load SLA_W into TWDR
Register. Clear TWINT bit in
TWCR to start transmission of
address

4

wait2:
in
r16,TWCR
sbrs
r16,TWINT
rjmp
wait2

while (!(TWCR &
(1<<TWINT)))

; Wait for TWINT Flag set. This
indicates that the SLA+W has
been transmitted, and
ACK/NACK has been received.
225
2545U–AVR–11/2015

ATmega48/88/168
22.7 Transmission modes

The TWI can operate in one of four major modes. These are named Master Transmitter (MT),
Master Receiver (MR), Slave Transmitter (ST) and Slave Receiver (SR). Several of these
modes can be used in the same application. As an example, the TWI can use MT mode to write
data into a TWI EEPROM, MR mode to read the data back from the EEPROM. If other masters
are present in the system, some of these might transmit data to the TWI, and then SR mode
would be used. It is the application software that decides which modes are legal.

5

in
r16,TWSR
andi
r16, 0xF8
cpi
r16, MT_SLA_ACK
brne
ERROR

if ((TWSR & 0xF8) !=
MT_SLA_ACK)

ERROR();
Check value of TWI status
register. Mask prescaler bits. If
status different from
MT_SLA_ACK go to ERROR

ldi
r16, DATA
out
TWDR, r16
ldi
r16, (1<<TWINT) |
(1<<TWEN)
out
TWCR, r16

TWDR = DATA;
TWCR = (1<<TWINT) |
(1<<TWEN);

Load DATA into TWDR register.
Clear TWINT bit in TWCR to start
transmission of data

6

wait3:
in
r16,TWCR
sbrs
r16,TWINT
rjmp
wait3

while (!(TWCR &
(1<<TWINT)))

; Wait for TWINT flag set. This
indicates that the DATA has been
transmitted, and ACK/NACK has
been received.

7

in
r16,TWSR
andi
r16, 0xF8
cpi
r16, MT_DATA_ACK
brne
ERROR

if ((TWSR & 0xF8) !=
MT_DATA_ACK)

ERROR();
Check value of TWI status
register. Mask prescaler bits. If
status different from
MT_DATA_ACK go to ERROR

ldi
r16,
(1<<TWINT)|(1<<TWEN)
|

(1<<TWSTO)
out
TWCR, r16

TWCR =
(1<<TWINT)|(1<<TWEN)|

(1<<TWSTO);

Transmit STOP condition

Assembly code example C example Comments
226
2545U–AVR–11/2015

ATmega48/88/168
The following sections describe each of these modes. Possible status codes are described
along with figures detailing data transmission in each of the modes. These figures contain the
following abbreviations:

S: START condition

Rs: REPEATED START condition

R: Read bit (high level at SDA)

W: Write bit (low level at SDA)

A: Acknowledge bit (low level at SDA)

A: Not acknowledge bit (high level at SDA)

Data:8-bit data byte

P: STOP condition

SLA:Slave Address

In Figure 22-12 on page 230 to Figure 22-18 on page 239, circles are used to indicate that the
TWINT Flag is set. The numbers in the circles show the status code held in TWSR, with the
prescaler bits masked to zero. At these points, actions must be taken by the application to
continue or complete the TWI transfer. The TWI transfer is suspended until the TWINT Flag is
cleared by software.

When the TWINT Flag is set, the status code in TWSR is used to determine the appropriate
software action. For each status code, the required software action and details of the following
serial transfer are given in Table 22-2 on page 228 to Table 22-5 on page 238. Note that the
prescaler bits are masked to zero in these tables.

22.7.1 Master transmitter mode

In the Master Transmitter mode, a number of data bytes are transmitted to a Slave Receiver
(see Figure 22-11 on page 227). In order to enter a Master mode, a START condition must be
transmitted. The format of the following address packet determines whether Master Transmitter
or Master Receiver mode is to be entered. If SLA+W is transmitted, MT mode is entered, if
SLA+R is transmitted, MR mode is entered. All the status codes mentioned in this section
assume that the prescaler bits are zero or are masked to zero.

Figure 22-11. Data transfer in master transmitter mode.

A START condition is sent by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 1 0 X 1 0 X

Device 1
MASTER

TRANSMITTER

Device 2
SLAVE

RECEIVER
Device 3 Device n

SDA

SCL

........ R1 R2

VCC
227
2545U–AVR–11/2015

ATmega48/88/168
TWEN must be set to enable the 2-wire Serial Interface, TWSTA must be written to one to
transmit a START condition and TWINT must be written to one to clear the TWINT Flag. The
TWI will then test the 2-wire Serial Bus and generate a START condition as soon as the bus
becomes free. After a START condition has been transmitted, the TWINT Flag is set by
hardware, and the status code in TWSR will be 0x08 (see Table 22-2 on page 228). In order to
enter MT mode, SLA+W must be transmitted. This is done by writing SLA+W to TWDR.
Thereafter the TWINT bit should be cleared (by writing it to one) to continue the transfer. This is
accomplished by writing the following value to TWCR:

When SLA+W have been transmitted and an acknowledgement bit has been received, TWINT is
set again and a number of status codes in TWSR are possible. Possible status codes in Master
mode are 0x18, 0x20, or 0x38. The appropriate action to be taken for each of these status codes
is detailed in Table 22-2 on page 228.

When SLA+W has been successfully transmitted, a data packet should be transmitted. This is
done by writing the data byte to TWDR. TWDR must only be written when TWINT is high. If not,
the access will be discarded, and the Write Collision bit (TWWC) will be set in the TWCR
Register. After updating TWDR, the TWINT bit should be cleared (by writing it to one) to
continue the transfer. This is accomplished by writing the following value to TWCR:

This scheme is repeated until the last byte has been sent and the transfer is ended by
generating a STOP condition or a repeated START condition. A STOP condition is generated by
writing the following value to TWCR:

A REPEATED START condition is generated by writing the following value to TWCR:

After a repeated START condition (state 0x10) the 2-wire Serial Interface can access the same
Slave again, or a new Slave without transmitting a STOP condition. Repeated START enables
the Master to switch between Slaves, Master Transmitter mode and Master Receiver mode
without losing control of the bus.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 0 1 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 1 0 X 1 0 X

Table 22-2. Status codes for master transmitter mode.

Status code
(TWSR)
prescaler bits
are 0

Status of the 2-wire serial bus
and 2-wire serial interface
hardware

Application software response

Next action taken by TWI hardware

To/from TWDR To TWCR

STA STO TWIN
T

TWE
A

0x08 A START condition has been
transmitted

Load SLA+W 0 0 1 X SLA+W will be transmitted;
ACK or NOT ACK will be received

0x10 A repeated START condition
has been transmitted

Load SLA+W or

load SLA+R

0

0

0

0

1

1

X

X

SLA+W will be transmitted;
ACK or NOT ACK will be received
SLA+R will be transmitted;
Logic will switch to Master Receiver mode

0x18 SLA+W has been transmitted;
ACK has been received

Load data byte or

no TWDR action or
no TWDR action or

no TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
228
2545U–AVR–11/2015

ATmega48/88/168
0x20 SLA+W has been transmitted;
NOT ACK has been received

Load data byte or

no TWDR action or
no TWDR action or

no TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset

0x28 Data byte has been transmit-
ted;
ACK has been received

Load data byte or

no TWDR action or
no TWDR action or

no TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset

0x30 Data byte has been transmit-
ted;
NOT ACK has been received

Load data byte or

no TWDR action or
no TWDR action or

no TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset

0x38 Arbitration lost in SLA+W or
data bytes

No TWDR action or

no TWDR action

0

1

0

0

1

1

X

X

2-wire Serial Bus will be released and not addressed
Slave mode entered
A START condition will be transmitted when the bus
becomes free

Table 22-2. Status codes for master transmitter mode.
229
2545U–AVR–11/2015

ATmega48/88/168
Figure 22-12. Formats and states in the master transmitter mode.

22.7.2 Master receiver mode

In the Master Receiver mode, a number of data bytes are received from a Slave Transmitter
(Slave see Figure 22-13 on page 231). In order to enter a Master mode, a START condition
must be transmitted. The format of the following address packet determines whether Master
Transmitter or Master Receiver mode is to be entered. If SLA+W is transmitted, MT mode is
entered, if SLA+R is transmitted, MR mode is entered. All the status codes mentioned in this
section assume that the prescaler bits are zero or are masked to zero.

S SLA W A DATA A P

$08 $18 $28

R SLA W

$10

A P

$20

P

$30

A or A

$38

A

Other master
continues A or A

$38

Other master
continues

R

A

$68

Other master
continues

$78 $B0
To corresponding
states in slave mode

MT

MR

Successfull
transmission
to a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Not acknowledge
received after a data
byte

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

DATA A

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-wire serial bus. The
prescaler bits are zero or masked to zero

S

230
2545U–AVR–11/2015

ATmega48/88/168
Figure 22-13. Data transfer in master receiver mode.

A START condition is sent by writing the following value to TWCR:

TWEN must be written to one to enable the 2-wire Serial Interface, TWSTA must be written to
one to transmit a START condition and TWINT must be set to clear the TWINT Flag. The TWI
will then test the 2-wire Serial Bus and generate a START condition as soon as the bus
becomes free. After a START condition has been transmitted, the TWINT Flag is set by
hardware, and the status code in TWSR will be 0x08 (See Table 22-2 on page 228). In order to
enter MR mode, SLA+R must be transmitted. This is done by writing SLA+R to TWDR.
Thereafter the TWINT bit should be cleared (by writing it to one) to continue the transfer. This is
accomplished by writing the following value to TWCR:

When SLA+R have been transmitted and an acknowledgement bit has been received, TWINT is
set again and a number of status codes in TWSR are possible. Possible status codes in Master
mode are 0x38, 0x40, or 0x48. The appropriate action to be taken for each of these status codes
is detailed in Table 22-3 on page 232. Received data can be read from the TWDR Register
when the TWINT Flag is set high by hardware. This scheme is repeated until the last byte has
been received. After the last byte has been received, the MR should inform the ST by sending a
NACK after the last received data byte. The transfer is ended by generating a STOP condition or
a repeated START condition. A STOP condition is generated by writing the following value to
TWCR:

A REPEATED START condition is generated by writing the following value to TWCR:

After a repeated START condition (state 0x10) the 2-wire Serial Interface can access the same
Slave again, or a new Slave without transmitting a STOP condition. Repeated START enables

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 1 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 0 1 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 1 0 X 1 0 X

Device 1
MASTER

RECEIVER

Device 2
SLAVE

TRANSMITTER
Device 3 Device n

SDA

SCL

........ R1 R2

VCC
231
2545U–AVR–11/2015

ATmega48/88/168
the Master to switch between Slaves, Master Transmitter mode and Master Receiver mode
without losing control over the bus.

Table 22-3. Status codes for master receiver mode.

Status code
(TWSR)
prescaler bits
are 0

Status of the 2-wire serial bus
and 2-wire serial interface
hardware

Application software response

Next action taken by TWI hardware
To/from TWDR

To TWCR

STA STO TWIN
T

TWE
A

0x08 A START condition has been
transmitted

Load SLA+R 0 0 1 X SLA+R will be transmitted
ACK or NOT ACK will be received

0x10 A repeated START condition
has been transmitted

Load SLA+R or

load SLA+W

0

0

0

0

1

1

X

X

SLA+R will be transmitted
ACK or NOT ACK will be received
SLA+W will be transmitted
Logic will switch to master transmitter mode

0x38 Arbitration lost in SLA+R or
NOT ACK bit

No TWDR action or

no TWDR action

0

1

0

0

1

1

X

X

2-wire serial bus will be released and not addressed
Slave mode will be entered
A START condition will be transmitted when the bus
becomes free

0x40 SLA+R has been transmitted;
ACK has been received

No TWDR action or

no TWDR action

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x48 SLA+R has been transmitted;
NOT ACK has been received

No TWDR action or
no TWDR action or

no TWDR action

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and TWSTO Flag
will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset

0x50 Data byte has been received;
ACK has been returned

Read data byte or

read data byte

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x58 Data byte has been received;
NOT ACK has been returned

Read data byte or
read data byte or

read data byte

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and TWSTO Flag
will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
232
2545U–AVR–11/2015

ATmega48/88/168
Figure 22-14. Formats and states in the master receiver mode.

22.7.3 Slave receiver mode

In the Slave Receiver mode, a number of data bytes are received from a Master Transmitter
(see Figure 22-15). All the status codes mentioned in this section assume that the prescaler bits
are zero or are masked to zero.

Figure 22-15. Data transfer in slave receiver mode.

To initiate the Slave Receiver mode, TWAR and TWCR must be initialized as follows:

S SLA R A DATA A

$08 $40 $50

SLA R

$10

A P

$48

A or A

$38

Other master
continues

$38

Other master
continues

W

A

$68

Other master
continues

$78 $B0
To corresponding
states in slave mode

MR

MT

Successfull
reception
from a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

DATA A

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-wire serial bus. The
prescaler bits are zero or masked to zero

PDATA A

$58

A

RS

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

Value Device’s own slave address

Device 3 Device n

SDA

SCL

........ R1 R2

VCC

Device 2
MASTER

TRANSMITTER

Device 1
SLAVE

RECEIVER
233
2545U–AVR–11/2015

ATmega48/88/168
The upper seven bits are the address to which the 2-wire Serial Interface will respond when
addressed by a Master. If the LSB is set, the TWI will respond to the general call address (0x00),
otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable
the acknowledgement of the device’s own slave address or the general call address. TWSTA
and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own
slave address (or the general call address if enabled) followed by the data direction bit. If the
direction bit is “0” (write), the TWI will operate in SR mode, otherwise ST mode is entered. After
its own slave address and the write bit have been received, the TWINT Flag is set and a valid
status code can be read from TWSR. The status code is used to determine the appropriate
software action. The appropriate action to be taken for each status code is detailed in Table 22-
4 on page 235. The Slave Receiver mode may also be entered if arbitration is lost while the TWI
is in the Master mode (see states 0x68 and 0x78).

If the TWEA bit is reset during a transfer, the TWI will return a “Not Acknowledge” (“1”) to SDA
after the next received data byte. This can be used to indicate that the Slave is not able to
receive any more bytes. While TWEA is zero, the TWI does not acknowledge its own slave
address. However, the 2-wire Serial Bus is still monitored and address recognition may resume
at any time by setting TWEA. This implies that the TWEA bit may be used to temporarily isolate
the TWI from the 2-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA
bit is set, the interface can still acknowledge its own slave address or the general call address by
using the 2-wire Serial Bus clock as a clock source. The part will then wake up from sleep and
the TWI will hold the SCL clock low during the wake up and until the TWINT Flag is cleared (by
writing it to one). Further data reception will be carried out as normal, with the AVR clocks
running as normal. Observe that if the AVR is set up with a long start-up time, the SCL line may
be held low for a long time, blocking other data transmissions.

Note that the 2-wire Serial Interface Data Register – TWDR does not reflect the last byte present
on the bus when waking up from these Sleep modes.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 0 1 0 0 0 1 0 X
234
2545U–AVR–11/2015

ATmega48/88/168
Table 22-4. Status codes for slave receiver mode.

Status code
(TWSR)
prescaler bits
are 0

Status of the 2-wire serial bus
and 2-wire gerial interface hard-
ware

Application software response

Next action taken by TWI hardware
To/from TWDR

To TWCR

STA STO TWIN
T

TWE
A

0x60 Own SLA+W has been received;
ACK has been returned

No TWDR action or

no TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x68 Arbitration lost in SLA+R/W as
Master; own SLA+W has been
received; ACK has been returned

No TWDR action or

no TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x70 General call address has been
received; ACK has been returned

No TWDR action or

no TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x78 Arbitration lost in SLA+R/W as
Master; General call address has
been received; ACK has been
returned

No TWDR action or

no TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x80 Previously addressed with own
SLA+W; data has been received;
ACK has been returned

Read data byte or

read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x88 Previously addressed with own
SLA+W; data has been received;
NOT ACK has been returned

Read data byte or

read data byte or

read data byte or

read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed slave mode;
no recognition of own SLA or GCA
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

0x90 Previously addressed with
general call; data has been re-
ceived; ACK has been returned

Read data byte or

read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x98 Previously addressed with
general call; data has been
received; NOT ACK has been
returned

Read data byte or

read data byte or

read data byte or

read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed slave mode;
no recognition of own SLA or GCA
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

0xA0 A STOP condition or repeated
START condition has been
received while still addressed as
slave

No action 0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed slave mode;
no recognition of own SLA or GCA
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free
235
2545U–AVR–11/2015

ATmega48/88/168
Figure 22-16. Formats and states in the slave receiver mode.

22.7.4 Slave transmitter mode

In the Slave Transmitter mode, a number of data bytes are transmitted to a Master Receiver
(see Figure 22-17). All the status codes mentioned in this section assume that the prescaler bits
are zero or are masked to zero.

Figure 22-17. Data transfer in slave transmitter mode.

S SLA W A DATA A

$60 $80

$88

A

$68

Reception of the own
slave address and one or
more data bytes. All are
acknowledged

Last data byte received
is not acknowledged

Arbitration lost as master
and addressed as slave

Reception of the general call
address and one or more data
bytes

Last data byte received is
not acknowledged

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-wire serial bus. The
prescaler bits are zero or masked to zero

P or SDATA A

$80 $A0

P or SA

A DATA A

$70 $90

$98

A

$78

P or SDATA A

$90 $A0

P or SA

General call

Arbitration lost as master and
addressed as slave by general call

DATA A

Device 3 Device n

SDA

SCL

........ R1 R2

VCC

Device 2
MASTER

RECEIVER

Device 1
SLAVE

TRANSMITTER
236
2545U–AVR–11/2015

ATmega48/88/168
To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:

The upper seven bits are the address to which the 2-wire Serial Interface will respond when
addressed by a Master. If the LSB is set, the TWI will respond to the general call address (0x00),
otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable
the acknowledgement of the device’s own slave address or the general call address. TWSTA
and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own
slave address (or the general call address if enabled) followed by the data direction bit. If the
direction bit is “1” (read), the TWI will operate in ST mode, otherwise SR mode is entered. After
its own slave address and the write bit have been received, the TWINT Flag is set and a valid
status code can be read from TWSR. The status code is used to determine the appropriate
software action. The appropriate action to be taken for each status code is detailed in Table 22-
5 on page 238. The Slave Transmitter mode may also be entered if arbitration is lost while the
TWI is in the Master mode (see state 0xB0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of the
transfer. State 0xC0 or state 0xC8 will be entered, depending on whether the Master Receiver
transmits a NACK or ACK after the final byte. The TWI is switched to the not addressed Slave
mode, and will ignore the Master if it continues the transfer. Thus the Master Receiver receives
all “1” as serial data. State 0xC8 is entered if the Master demands additional data bytes (by
transmitting ACK), even though the Slave has transmitted the last byte (TWEA zero and
expecting NACK from the Master).

While TWEA is zero, the TWI does not respond to its own slave address. However, the 2-wire
Serial Bus is still monitored and address recognition may resume at any time by setting TWEA.
This implies that the TWEA bit may be used to temporarily isolate the TWI from the 2-wire Serial
Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA
bit is set, the interface can still acknowledge its own slave address or the general call address by
using the 2-wire Serial Bus clock as a clock source. The part will then wake up from sleep and
the TWI will hold the SCL clock will low during the wake up and until the TWINT Flag is cleared
(by writing it to one). Further data transmission will be carried out as normal, with the AVR clocks
running as normal. Observe that if the AVR is set up with a long start-up time, the SCL line may
be held low for a long time, blocking other data transmissions.

Note that the 2-wire Serial Interface Data Register – TWDR does not reflect the last byte present
on the bus when waking up from these sleep modes.

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

Value Device’s own slave address

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 0 1 0 0 0 1 0 X
237
2545U–AVR–11/2015

ATmega48/88/168
Table 22-5. Status codes for slave transmitter mode.

Status code
(TWSR)
prescaler bits
are 0

Status of the 2-wire serial bus
and 2-wire serial interface hard-
ware

Application software response

Next action taken by TWI hardware
To/from TWDR

To TWCR

STA STO TWIN
T

TWE
A

0xA8 Own SLA+R has been received;
ACK has been returned

Load data byte or

load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

0xB0 Arbitration lost in SLA+R/W as
Master; own SLA+R has been
received; ACK has been returned

Load data byte or

load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

0xB8 Data byte in TWDR has been
transmitted; ACK has been
received

Load data byte or

load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

0xC0 Data byte in TWDR has been
transmitted; NOT ACK has been
received

No TWDR action or

no TWDR action or

no TWDR action or

no TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed slave mode;
no recognition of own SLA or GCA
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

0xC8 Last data byte in TWDR has been
transmitted (TWEA = “0”); ACK
has been received

No TWDR action or

no TWDR action or

no TWDR action or

no TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed slave mode;
no recognition of own SLA or GCA
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free
238
2545U–AVR–11/2015

ATmega48/88/168
Figure 22-18. Formats and states in the slave transmitter mode.

22.7.5 Miscellaneous states

There are two status codes that do not correspond to a defined TWI state, see Table 22-6.

Status 0xF8 indicates that no relevant information is available because the TWINT Flag is not
set. This occurs between other states, and when the TWI is not involved in a serial transfer.

Status 0x00 indicates that a bus error has occurred during a 2-wire Serial Bus transfer. A bus
error occurs when a START or STOP condition occurs at an illegal position in the format frame.
Examples of such illegal positions are during the serial transfer of an address byte, a data byte,
or an acknowledge bit. When a bus error occurs, TWINT is set. To recover from a bus error, the
TWSTO Flag must set and TWINT must be cleared by writing a logic one to it. This causes the
TWI to enter the not addressed Slave mode and to clear the TWSTO Flag (no other bits in
TWCR are affected). The SDA and SCL lines are released, and no STOP condition is
transmitted.

22.7.6 Combining Several TWI Modes

In some cases, several TWI modes must be combined in order to complete the desired action.
Consider for example reading data from a serial EEPROM. Typically, such a transfer involves
the following steps:

1. The transfer must be initiated.

2. The EEPROM must be instructed what location should be read.

3. The reading must be performed.

4. The transfer must be finished.

S SLA R A DATA A

$A8 $B8

A

$B0

Reception of the own
slave address and one or
more data bytes

Last data byte transmitted.
Switched to not addressed
slave (TWEA = '0')

Arbitration lost as master
and addressed as slave

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-wire serial bus. The
prescaler bits are zero or masked to zero

P or SDATA

$C0

DATA A

A

$C8

P or SAll 1's

A

Table 22-6. Miscellaneous states.

Status code
(TWSR)
prescaler bits
are 0

Status of the 2-wire serial bus
and 2-wire serial interface
hardware

Application software response

Next action taken by TWI hardware
To/from TWDR

To TWCR

STA STO TWIN
T

TWE
A

0xF8 No relevant state information
available; TWINT = “0”

No TWDR action No TWCR action Wait or proceed current transfer

0x00 Bus error due to an illegal
START or STOP condition

No TWDR action 0 1 1 X Only the internal hardware is affected, no STOP condi-
tion is sent on the bus. In all cases, the bus is released
and TWSTO is cleared.
239
2545U–AVR–11/2015

ATmega48/88/168
Note that data is transmitted both from Master to Slave and vice versa. The Master must instruct
the Slave what location it wants to read, requiring the use of the MT mode. Subsequently, data
must be read from the Slave, implying the use of the MR mode. Thus, the transfer direction must
be changed. The Master must keep control of the bus during all these steps, and the steps
should be carried out as an atomical operation. If this principle is violated in a multi master
system, another Master can alter the data pointer in the EEPROM between steps 2 and 3, and
the Master will read the wrong data location. Such a change in transfer direction is accomplished
by transmitting a REPEATED START between the transmission of the address byte and
reception of the data. After a REPEATED START, the Master keeps ownership of the bus.
Figure 22-19 shows the flow in this transfer.

Figure 22-19. Combining several TWI modes to access a serial EEPROM.

22.8 Multi-master systems and arbitration

If multiple masters are connected to the same bus, transmissions may be initiated
simultaneously by one or more of them. The TWI standard ensures that such situations are
handled in such a way that one of the masters will be allowed to proceed with the transfer, and
that no data will be lost in the process. An example of an arbitration situation is depicted below,
where two masters are trying to transmit data to a Slave Receiver.

Figure 22-20. An arbitration example.

Several different scenarios may arise during arbitration, as described below:

l Two or more masters are performing identical communication with the same Slave. In this
case, neither the Slave nor any of the masters will know about the bus contention

l Two or more masters are accessing the same Slave with different data or direction bit. In
this case, arbitration will occur, either in the READ/WRITE bit or in the data bits. The
masters trying to output a one on SDA while another Master outputs a zero will lose the
arbitration. Losing masters will switch to not addressed Slave mode or wait until the bus is
free and transmit a new START condition, depending on application software action

Master transmitter Master receiver

S = START Rs = REPEATED START P = STOP

Transmitted from master to slave Transmitted from slave to master

S SLA+W A ADDRESS A Rs SLA+R A DATA A P

Device 1
MASTER

TRANSMITTER

Device 2
MASTER

TRANSMITTER

Device 3
SLAVE

RECEIVER
Device n

SDA

SCL

........ R1 R2

VCC
240
2545U–AVR–11/2015

ATmega48/88/168
l Two or more masters are accessing different slaves. In this case, arbitration will occur in
the SLA bits. Masters trying to output a one on SDA while another Master outputs a zero
will lose the arbitration. Masters losing arbitration in SLA will switch to Slave mode to
check if they are being addressed by the winning Master. If addressed, they will switch to
SR or ST mode, depending on the value of the READ/WRITE bit. If they are not being
addressed, they will switch to not addressed Slave mode or wait until the bus is free and
transmit a new START condition, depending on application software action

This is summarized in Figure 22-21. Possible status values are given in circles.

Figure 22-21. Possible status codes caused by arbitration.

22.9 Register description

22.9.1 TWBR – TWI bit rate register

• Bits 7..0 – TWI bit rate register

TWBR selects the division factor for the bit rate generator. The bit rate generator is a frequency
divider which generates the SCL clock frequency in the Master modes. See “Bit rate generator
unit” on page 220 for calculating bit rates.

22.9.2 TWCR – TWI control register

The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to initiate a
Master access by applying a START condition to the bus, to generate a Receiver acknowledge,
to generate a stop condition, and to control halting of the bus while the data to be written to the

Own
address / general call

received

Arbitration lost in SLA

TWI bus will be released and not addressed slave mode will be entered
A START condition will be transmitted when the bus becomes free

No

Arbitration lost in Data

Direction

Yes

Write Data byte will be received and NOT ACK will be returned
Data byte will be received and ACK will be returned

Last data byte will be transmitted and NOT ACK should be received
Data byte will be transmitted and ACK should be received

Read
B0

68/78

38

SLASTART Data STOP

Bit 7 6 5 4 3 2 1 0

(0xB8) TWBR7 TWBR6 TWBR5 TWBR4 TWBR3 TWBR2 TWBR1 TWBR0 TWBR

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xBC) TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE TWCR

Read/write R/W R/W R/W R/W R R/W R R/W

Initial value 0 0 0 0 0 0 0 0
241
2545U–AVR–11/2015

ATmega48/88/168
bus are written to the TWDR. It also indicates a write collision if data is attempted written to
TWDR while the register is inaccessible.

• Bit 7 – TWINT: TWI interrupt flag

This bit is set by hardware when the TWI has finished its current job and expects application
software response. If the I-bit in SREG and TWIE in TWCR are set, the MCU will jump to the
TWI Interrupt Vector. While the TWINT Flag is set, the SCL low period is stretched. The TWINT
Flag must be cleared by software by writing a logic one to it. Note that this flag is not
automatically cleared by hardware when executing the interrupt routine. Also note that clearing
this flag starts the operation of the TWI, so all accesses to the TWI Address Register (TWAR),
TWI Status Register (TWSR), and TWI Data Register (TWDR) must be complete before clearing
this flag.

• Bit 6 – TWEA: TWI enable acknowledge bit

The TWEA bit controls the generation of the acknowledge pulse. If the TWEA bit is written to
one, the ACK pulse is generated on the TWI bus if the following conditions are met:

1. The device’s own slave address has been received.

2. A general call has been received, while the TWGCE bit in the TWAR is set.

3. A data byte has been received in Master Receiver or Slave Receiver mode.

By writing the TWEA bit to zero, the device can be virtually disconnected from the 2-wire Serial
Bus temporarily. Address recognition can then be resumed by writing the TWEA bit to one
again.

• Bit 5 – TWSTA: TWI START condition bit

The application writes the TWSTA bit to one when it desires to become a Master on the 2-wire
Serial Bus. The TWI hardware checks if the bus is available, and generates a START condition
on the bus if it is free. However, if the bus is not free, the TWI waits until a STOP condition is
detected, and then generates a new START condition to claim the bus Master status. TWSTA
must be cleared by software when the START condition has been transmitted.

• Bit 4 – TWSTO: TWI STOP condition bit

Writing the TWSTO bit to one in Master mode will generate a STOP condition on the 2-wire
Serial Bus. When the STOP condition is executed on the bus, the TWSTO bit is cleared
automatically. In Slave mode, setting the TWSTO bit can be used to recover from an error
condition. This will not generate a STOP condition, but the TWI returns to a well-defined
unaddressed Slave mode and releases the SCL and SDA lines to a high impedance state.

• Bit 3 – TWWC: TWI write collision flag

The TWWC bit is set when attempting to write to the TWI Data Register – TWDR when TWINT is
low. This flag is cleared by writing the TWDR Register when TWINT is high.

• Bit 2 – TWEN: TWI enable bit

The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is written to
one, the TWI takes control over the I/O pins connected to the SCL and SDA pins, enabling the
slew-rate limiters and spike filters. If this bit is written to zero, the TWI is switched off and all TWI
transmissions are terminated, regardless of any ongoing operation.

• Bit 1 – Res: Reserved bit
242
2545U–AVR–11/2015

ATmega48/88/168
This bit is a reserved bit and will always read as zero.

• Bit 0 – TWIE: TWI interrupt enable

When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will be
activated for as long as the TWINT Flag is high.

22.9.3 TWSR – TWI status register

• Bits 7..3 – TWS: TWI status

These 5 bits reflect the status of the TWI logic and the 2-wire Serial Bus. The different status
codes are described later in this section. Note that the value read from TWSR contains both the
5-bit status value and the 2-bit prescaler value. The application designer should mask the
prescaler bits to zero when checking the Status bits. This makes status checking independent of
prescaler setting. This approach is used in this datasheet, unless otherwise noted.

• Bit 2 – Res: Reserved bit

This bit is reserved and will always read as zero.

• Bits 1..0 – TWPS: TWI prescaler bits

These bits can be read and written, and control the bit rate prescaler.

To calculate bit rates, see “Bit rate generator unit” on page 220. The value of TWPS1..0 is used
in the equation.

22.9.4 TWDR – TWI data register

In Transmit mode, TWDR contains the next byte to be transmitted. In Receive mode, the TWDR
contains the last byte received. It is writable while the TWI is not in the process of shifting a byte.
This occurs when the TWI Interrupt Flag (TWINT) is set by hardware. Note that the Data
Register cannot be initialized by the user before the first interrupt occurs. The data in TWDR
remains stable as long as TWINT is set. While data is shifted out, data on the bus is
simultaneously shifted in. TWDR always contains the last byte present on the bus, except after a

Bit 7 6 5 4 3 2 1 0

(0xB9) TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0 TWSR

Read/write R R R R R R R/W R/W

Initial value 1 1 1 1 1 0 0 0

Table 22-7. TWI bit rate prescaler.

TWPS1 TWPS0 Prescaler value

0 0 1

0 1 4

1 0 16

1 1 64

Bit 7 6 5 4 3 2 1 0

(0xBB) TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWD0 TWDR

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 1 1 1 1 1 1 1 1
243
2545U–AVR–11/2015

ATmega48/88/168
wake up from a sleep mode by the TWI interrupt. In this case, the contents of TWDR is
undefined. In the case of a lost bus arbitration, no data is lost in the transition from Master to
Slave. Handling of the ACK bit is controlled automatically by the TWI logic, the CPU cannot
access the ACK bit directly.

• Bits 7..0 – TWD: TWI data register

These eight bits constitute the next data byte to be transmitted, or the latest data byte received
on the 2-wire Serial Bus.

22.9.5 TWAR – TWI (slave) address register

The TWAR should be loaded with the 7-bit Slave address (in the seven most significant bits of
TWAR) to which the TWI will respond when programmed as a Slave Transmitter or Receiver,
and not needed in the Master modes. In multi master systems, TWAR must be set in masters
which can be addressed as Slaves by other Masters.

The LSB of TWAR is used to enable recognition of the general call address (0x00). There is an
associated address comparator that looks for the slave address (or general call address if
enabled) in the received serial address. If a match is found, an interrupt request is generated.

• Bits 7..1 – TWA: TWI (slave) address register

These seven bits constitute the slave address of the TWI unit.

• Bit 0 – TWGCE: TWI general call recognition enable bit

If set, this bit enables the recognition of a General Call given over the 2-wire Serial Bus.

22.9.6 TWAMR – TWI (slave) address mask register

• Bits 7..1 – TWAM: TWI address mask

The TWAMR can be loaded with a 7-bit Salve Address mask. Each of the bits in TWAMR can
mask (disable) the corresponding address bits in the TWI Address Register (TWAR). If the mask
bit is set to one then the address match logic ignores the compare between the incoming
address bit and the corresponding bit in TWAR. Figure 22-22 on page 245 shown the address
match logic in detail.

Bit 7 6 5 4 3 2 1 0

(0xBA) TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE TWAR

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 1 1 1 1 1 1 1 0

Bit 7 6 5 4 3 2 1 0

(0xBD) TWAM[6:0] – TWAMR

Read/write R/W R/W R/W R/W R/W R/W R/W R

Initial value 0 0 0 0 0 0 0 0
244
2545U–AVR–11/2015

ATmega48/88/168
Figure 22-22. TWI address match logic, block diagram.

• Bit 0 – Res: Reserved bit

This bit is an unused bit in the Atmel ATmega48/88/168, and will always read as zero.

Address
match

Address bit comparator 0

Address bit comparator 6..1

TWAR0

TWAMR0

Address
bit 0
245
2545U–AVR–11/2015

ATmega48/88/168
23. Analog comparator

23.1 Overview

The Analog Comparator compares the input values on the positive pin AIN0 and negative pin
AIN1. When the voltage on the positive pin AIN0 is higher than the voltage on the negative pin
AIN1, the Analog Comparator output, ACO, is set. The comparator’s output can be set to trigger
the Timer/Counter1 Input Capture function. In addition, the comparator can trigger a separate
interrupt, exclusive to the Analog Comparator. The user can select Interrupt triggering on
comparator output rise, fall or toggle. A block diagram of the comparator and its surrounding
logic is shown in Figure 23-1.

The Power Reduction ADC bit, PRADC, in “Minimizing power consumption” on page 41 must be
disabled by writing a logical zero to be able to use the ADC input MUX.

Figure 23-1. Analog comparator block diagram(2).

Notes: 1. See Table 23-1.
2. Refer to Figure 1-1 on page 2 and Table 14-9 on page 89 for analog comparator pin

placement.

23.2 Analog comparator multiplexed input

It is possible to select any of the ADC7..0 pins to replace the negative input to the Analog
Comparator. The ADC multiplexer is used to select this input, and consequently, the ADC must
be switched off to utilize this feature. If the Analog Comparator Multiplexer Enable bit (ACME in
ADCSRB) is set and the ADC is switched off (ADEN in ADCSRA is zero), MUX2..0 in ADMUX
select the input pin to replace the negative input to the Analog Comparator, as shown in Table
23-1. If ACME is cleared or ADEN is set, AIN1 is applied to the negative input to the Analog
Comparator.

ACBG

BANDGAP
REFERENCE

ADC MULTIPLEXER
OUTPUT

ACME
ADEN

(1)

Table 23-1. Analog comparator multiplexed input.

ACME ADEN MUX2..0 Analog comparator negative input

0 x xxx AIN1

1 1 xxx AIN1

1 0 000 ADC0
246
2545U–AVR–11/2015

ATmega48/88/168
23.3 Register description

23.3.1 ADCSRB – ADC control and status register B

• Bit 6 – ACME: Analog comparator multiplexer enable

When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is zero), the
ADC multiplexer selects the negative input to the Analog Comparator. When this bit is written
logic zero, AIN1 is applied to the negative input of the Analog Comparator. For a detailed
description of this bit, see “Analog comparator multiplexed input” on page 246.

23.3.2 ACSR – Analog comparator control and status register

• Bit 7 – ACD: Analog comparator disable

When this bit is written logic one, the power to the Analog Comparator is switched off. This bit
can be set at any time to turn off the Analog Comparator. This will reduce power consumption in
Active and Idle mode. When changing the ACD bit, the Analog Comparator Interrupt must be
disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt can occur when the bit is
changed.

• Bit 6 – ACBG: Analog comparator bandgap select

When this bit is set, a fixed bandgap reference voltage replaces the positive input to the Analog
Comparator. When this bit is cleared, AIN0 is applied to the positive input of the Analog
Comparator. When the bandgap reference voltage is used as input to the Analog Comparator, it
will take a certain time for the voltage to stabilize. If not stabilized, the first conversion may give a
wrong value. See “Internal voltage reference” on page 48.

• Bit 5 – ACO: Analog comparator output

1 0 001 ADC1

1 0 010 ADC2

1 0 011 ADC3

1 0 100 ADC4

1 0 101 ADC5

1 0 110 ADC6

1 0 111 ADC7

Table 23-1. Analog comparator multiplexed input. (Continued)

ACME ADEN MUX2..0 Analog comparator negative input

Bit 7 6 5 4 3 2 1 0

(0x7B) – ACME – – – ADTS2 ADTS1 ADTS0 ADCSRB

Read/write R R/W R R R R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x30 (0x50) ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 ACSR

Read/write R/W R/W R R/W R/W R/W R/W R/W

Initial value 0 0 N/A 0 0 0 0 0
247
2545U–AVR–11/2015

ATmega48/88/168
The output of the Analog Comparator is synchronized and then directly connected to ACO. The
synchronization introduces a delay of 1 - 2 clock cycles.

• Bit 4 – ACI: Analog comparator interrupt flag

This bit is set by hardware when a comparator output event triggers the interrupt mode defined
by ACIS1 and ACIS0. The Analog Comparator interrupt routine is executed if the ACIE bit is set
and the I-bit in SREG is set. ACI is cleared by hardware when executing the corresponding
interrupt handling vector. Alternatively, ACI is cleared by writing a logic one to the flag.

• Bit 3 – ACIE: Analog comparator interrupt enable

When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Analog
Comparator interrupt is activated. When written logic zero, the interrupt is disabled.

• Bit 2 – ACIC: Analog comparator input capture enable

When written logic one, this bit enables the input capture function in Timer/Counter1 to be
triggered by the Analog Comparator. The comparator output is in this case directly connected to
the input capture front-end logic, making the comparator utilize the noise canceler and edge
select features of the Timer/Counter1 Input Capture interrupt. When written logic zero, no
connection between the Analog Comparator and the input capture function exists. To make the
comparator trigger the Timer/Counter1 Input Capture interrupt, the ICIE1 bit in the Timer
Interrupt Mask Register (TIMSK1) must be set.

• Bits 1, 0 – ACIS1, ACIS0: Analog comparator interrupt mode select

These bits determine which comparator events that trigger the Analog Comparator interrupt. The
different settings are shown in Table 23-2.

When changing the ACIS1/ACIS0 bits, the Analog Comparator Interrupt must be disabled by
clearing its Interrupt Enable bit in the ACSR Register. Otherwise an interrupt can occur when the
bits are changed.

23.3.3 DIDR1 – Digital input disable register 1

• Bit 7..2 – Res: Reserved bits

These bits are unused bits in the Atmel ATmega48/88/168, and will always read as zero.

• Bit 1, 0 – AIN1D, AIN0D: AIN1, AIN0 digital input disable

Table 23-2. ACIS1/ACIS0 settings.

ACIS1 ACIS0 Interrupt mode

0 0 Comparator interrupt on output toggle

0 1 Reserved

1 0 Comparator interrupt on falling output edge

1 1 Comparator interrupt on rising output edge

Bit 7 6 5 4 3 2 1 0

(0x7F) – – – – – – AIN1D AIN0D DIDR1

Read/write R R R R R R R/W R/W

Initial value 0 0 0 0 0 0 0 0
248
2545U–AVR–11/2015

ATmega48/88/168
When this bit is written logic one, the digital input buffer on the AIN1/0 pin is disabled. The
corresponding PIN Register bit will always read as zero when this bit is set. When an analog
signal is applied to the AIN1/0 pin and the digital input from this pin is not needed, this bit should
be written logic one to reduce power consumption in the digital input buffer.
249
2545U–AVR–11/2015

ATmega48/88/168
24. Analog-to-digital converter

24.1 Features
• 10-bit resolution

• 0.5LSB integral non-linearity

• ±2LSB absolute accuracy

• 13µs - 260µs conversion time

• Up to 76.9kSPS (Up to 15kSPS at maximum resolution)

• Six multiplexed single ended input channels

• Two additional multiplexed single ended input channels (TQFP and QFN/MLF package only)

• Optional left adjustment for ADC result readout

• 0 - VCC ADC input voltage range

• Selectable 1.1V ADC reference voltage

• Free running or single conversion mode

• Interrupt on ADC conversion complete

• Sleep mode noise canceler

24.2 Overview

The Atmel ATmega48/88/168 features a 10-bit successive approximation ADC. The ADC is
connected to an 8-channel Analog Multiplexer which allows eight single-ended voltage inputs
constructed from the pins of PortC. The single-ended voltage inputs refer to 0V (GND).

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the ADC is
held at a constant level during conversion. A block diagram of the ADC is shown in Figure 24-1
on page 251.

The ADC has a separate analog supply voltage pin, AVCC. AVCC must not differ more than ±0.3V
from VCC. See the paragraph “ADC noise canceler” on page 256 on how to connect this pin.

Internal reference voltages of nominally 1.1V or AVCC are provided On-chip. The voltage
reference may be externally decoupled at the AREF pin by a capacitor for better noise
performance.

The Power Reduction ADC bit, PRADC, in “Minimizing power consumption” on page 41 must be
disabled by writing a logical zero to enable the ADC.

The ADC converts an analog input voltage to a 10-bit digital value through successive
approximation. The minimum value represents GND and the maximum value represents the
voltage on the AREF pin minus 1 LSB. Optionally, AVCC or an internal 1.1V reference voltage
may be connected to the AREF pin by writing to the REFSn bits in the ADMUX Register. The
internal voltage reference may thus be decoupled by an external capacitor at the AREF pin to
improve noise immunity.
250
2545U–AVR–11/2015

ATmega48/88/168
Figure 24-1. Analog to digital converter block schematic operation.

The analog input channel is selected by writing to the MUX bits in ADMUX. Any of the ADC input
pins, as well as GND and a fixed bandgap voltage reference, can be selected as single ended
inputs to the ADC. The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA.
Voltage reference and input channel selections will not go into effect until ADEN is set. The ADC
does not consume power when ADEN is cleared, so it is recommended to switch off the ADC
before entering power saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and
ADCL. By default, the result is presented right adjusted, but can optionally be presented left
adjusted by setting the ADLAR bit in ADMUX.

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read
ADCH. Otherwise, ADCL must be read first, then ADCH, to ensure that the content of the Data
Registers belongs to the same conversion. Once ADCL is read, ADC access to Data Registers
is blocked. This means that if ADCL has been read, and a conversion completes before ADCH is

ADC CONVERSION
COMPLETE IRQ

8-BIT DATA BUS

15 0

ADC MULTIPLEXER
SELECT (ADMUX)

ADC CTRL. & STATUS
REGISTER (ADCSRA)

ADC DATA REGISTER
(ADCH/ADCL)

M
U

X
2

A
D

IE

A
D

F
R

A
D

S
C

A
D

E
N

A
D

IF
A

D
IF

M
U

X
1

M
U

X
0

A
D

P
S

0

A
D

P
S

1

A
D

P
S

2

M
U

X
3

CONVERSION LOGIC

10-BIT DAC

+
-

SAMPLE & HOLD
COMPARATOR

INTERNAL 1.1V
REFERENCE

MUX DECODER

AVCC

ADC7

ADC6

ADC5

ADC4

ADC3

ADC2

ADC1

ADC0

R
E

F
S

0

R
E

F
S

1

A
D

LA
R

C
H

A
N

N
E

L
S

E
LE

C
T

IO
N

A
D

C
[9

:0
]

ADC MULTIPLEXER
OUTPUT

AREF

BANDGAP
REFERENCE

PRESCALER

GND

INPUT
MUX
251
2545U–AVR–11/2015

ATmega48/88/168
read, neither register is updated and the result from the conversion is lost. When ADCH is read,
ADC access to the ADCH and ADCL Registers is re-enabled.

The ADC has its own interrupt which can be triggered when a conversion completes. When ADC
access to the Data Registers is prohibited between reading of ADCH and ADCL, the interrupt
will trigger even if the result is lost.

24.3 Starting a conversion

A single conversion is started by disabling the Power Reduction ADC bit, PRADC, in “Minimizing
power consumption” on page 41 by writing a logical zero to it and writing a logical one to the
ADC Start Conversion bit, ADSC. This bit stays high as long as the conversion is in progress
and will be cleared by hardware when the conversion is completed. If a different data channel is
selected while a conversion is in progress, the ADC will finish the current conversion before
performing the channel change.

Alternatively, a conversion can be triggered automatically by various sources. Auto Triggering is
enabled by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The trigger source is
selected by setting the ADC Trigger Select bits, ADTS in ADCSRB (See description of the ADTS
bits for a list of the trigger sources). When a positive edge occurs on the selected trigger signal,
the ADC prescaler is reset and a conversion is started. This provides a method of starting
conversions at fixed intervals. If the trigger signal still is set when the conversion completes, a
new conversion will not be started. If another positive edge occurs on the trigger signal during
conversion, the edge will be ignored. Note that an Interrupt Flag will be set even if the specific
interrupt is disabled or the Global Interrupt Enable bit in SREG is cleared. A conversion can thus
be triggered without causing an interrupt. However, the Interrupt Flag must be cleared in order to
trigger a new conversion at the next interrupt event.

Figure 24-2. ADC auto trigger logic.

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion as soon
as the ongoing conversion has finished. The ADC then operates in Free Running mode,
constantly sampling and updating the ADC Data Register. The first conversion must be started
by writing a logical one to the ADSC bit in ADCSRA. In this mode the ADC will perform
successive conversions independently of whether the ADC Interrupt Flag, ADIF is cleared or
not.

ADSC

ADIF

SOURCE 1

SOURCE n

ADTS[2:0]

CONVERSION
LOGIC

PRESCALER

START CLKADC

.

.

.

. EDGE
DETECTOR

ADATE
252
2545U–AVR–11/2015

ATmega48/88/168
If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to
one. ADSC can also be used to determine if a conversion is in progress. The ADSC bit will be
read as one during a conversion, independently of how the conversion was started.

24.4 Prescaling and conversion timing

Figure 24-3. ADC prescaler.

By default, the successive approximation circuitry requires an input clock frequency between
50kHz and 200kHz to get maximum resolution. If a lower resolution than 10 bits is needed, the
input clock frequency to the ADC can be higher than 200kHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency
from any CPU frequency above 100kHz. The prescaling is set by the ADPS bits in ADCSRA.
The prescaler starts counting from the moment the ADC is switched on by setting the ADEN bit
in ADCSRA. The prescaler keeps running for as long as the ADEN bit is set, and is continuously
reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion
starts at the following rising edge of the ADC clock cycle.

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is switched
on (ADEN in ADCSRA is set) takes 25 ADC clock cycles in order to initialize the analog circuitry.

When the bandgap reference voltage is used as input to the ADC, it will take a certain time for
the voltage to stabilize. If not stabilized, the first value read after the first conversion may be
wrong.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal
conversion and 13.5 ADC clock cycles after the start of an first conversion. When a conversion
is complete, the result is written to the ADC Data Registers, and ADIF is set. In Single
Conversion mode, ADSC is cleared simultaneously. The software may then set ADSC again,
and a new conversion will be initiated on the first rising ADC clock edge.

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This assures
a fixed delay from the trigger event to the start of conversion. In this mode, the sample-and-hold
takes place two ADC clock cycles after the rising edge on the trigger source signal. Three
additional CPU clock cycles are used for synchronization logic.

7-BIT ADC PRESCALER

ADC CLOCK SOURCE

CK

ADPS0
ADPS1
ADPS2

C
K

/1
28

C
K

/2

C
K

/4

C
K

/8

C
K

/1
6

C
K

/3
2

C
K

/6
4

Reset
ADEN
START
253
2545U–AVR–11/2015

ATmega48/88/168
In Free Running mode, a new conversion will be started immediately after the conversion
completes, while ADSC remains high. For a summary of conversion times, see Table 24-1 on
page 255.

Figure 24-4. ADC timing diagram, first conversion (single conversion mode).

Figure 24-5. ADC timing diagram, single conversion.

Figure 24-6. ADC timing diagram, auto triggered conversion.

Sign and MSB of result

LSB of result

ADC clock

ADSC

Sample & hold

ADIF

ADCH

ADCL

Cycle number

ADEN

1 2 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2

First conversion
Next
conversion

3

MUX and REFS
update

MUX and REFS
update

Conversion
complete

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of result

LSB of result

ADC clock

ADSC

ADIF

ADCH

ADCL

Cycle number 1 2

One conversion Next conversion

3

Sample & hold

MUX and REFS
update

Conversion
complete

MUX and REFS
update

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of result

LSB of result

ADC clock

Trigger
source

ADIF

ADCH

ADCL

Cycle number 1 2

One conversion Next conversion

Conversion
completePrescaler

reset

ADATE

Prescaler
reset

Sample &
hold

MUX and REFS
update
254
2545U–AVR–11/2015

ATmega48/88/168
Figure 24-7. ADC timing diagram, free running conversion.

24.5 Changing channel or reference selection

The MUXn and REFS1:0 bits in the ADMUX Register are single buffered through a temporary
register to which the CPU has random access. This ensures that the channels and reference
selection only takes place at a safe point during the conversion. The channel and reference
selection is continuously updated until a conversion is started. Once the conversion starts, the
channel and reference selection is locked to ensure a sufficient sampling time for the ADC.
Continuous updating resumes in the last ADC clock cycle before the conversion completes
(ADIF in ADCSRA is set). Note that the conversion starts on the following rising ADC clock edge
after ADSC is written. The user is thus advised not to write new channel or reference selection
values to ADMUX until one ADC clock cycle after ADSC is written.

If Auto Triggering is used, the exact time of the triggering event can be indeterministic. Special
care must be taken when updating the ADMUX Register, in order to control which conversion
will be affected by the new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the
ADMUX Register is changed in this period, the user cannot tell if the next conversion is based
on the old or the new settings. ADMUX can be safely updated in the following ways:

a. When ADATE or ADEN is cleared.

11. During conversion, minimum one ADC clock cycle after the trigger event.

12. After a conversion, before the Interrupt Flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next ADC
conversion.

Table 24-1. ADC conversion time.

Condition
Sample & hold

(cycles from start of conversion)
Conversion time

(cycles)

First conversion 13.5 25

Normal conversions, single ended 1.5 13

Auto triggered conversions 2 13.5

11 12 13

Sign and MSB of result

LSB of result

ADC clock

ADSC

ADIF

ADCH

ADCL

Cycle number
1 2

One conversion Next conversion

3 4

Conversion
complete

Sample & hold

MUX and REFS
update
255
2545U–AVR–11/2015

ATmega48/88/168
24.5.1 ADC input channels

When changing channel selections, the user should observe the following guidelines to ensure
that the correct channel is selected:

In Single Conversion mode, always select the channel before starting the conversion. The
channel selection may be changed one ADC clock cycle after writing one to ADSC. However,
the simplest method is to wait for the conversion to complete before changing the channel
selection.

In Free Running mode, always select the channel before starting the first conversion. The
channel selection may be changed one ADC clock cycle after writing one to ADSC. However,
the simplest method is to wait for the first conversion to complete, and then change the channel
selection. Since the next conversion has already started automatically, the next result will reflect
the previous channel selection. Subsequent conversions will reflect the new channel selection.

24.5.2 ADC voltage reference

The reference voltage for the ADC (VREF) indicates the conversion range for the ADC. Single
ended channels that exceed VREF will result in codes close to 0x3FF. VREF can be selected as
either AVCC, internal 1.1V reference, or external AREF pin.

AVCC is connected to the ADC through a passive switch. The internal 1.1V reference is
generated from the internal bandgap reference (VBG) through an internal amplifier. In either
case, the external AREF pin is directly connected to the ADC, and the reference voltage can be
made more immune to noise by connecting a capacitor between the AREF pin and ground. VREF
can also be measured at the AREF pin with a high impedance voltmeter. Note that VREF is a high
impedance source, and only a capacitive load should be connected in a system.

If the user has a fixed voltage source connected to the AREF pin, the user may not use the other
reference voltage options in the application, as they will be shorted to the external voltage. If no
external voltage is applied to the AREF pin, the user may switch between AVCC and 1.1V as
reference selection. The first ADC conversion result after switching reference voltage source
may be inaccurate, and the user is advised to discard this result.

24.6 ADC noise canceler

The ADC features a noise canceler that enables conversion during sleep mode to reduce noise
induced from the CPU core and other I/O peripherals. The noise canceler can be used with ADC
Noise Reduction and Idle mode. To make use of this feature, the following procedure should be
used:

a. Make sure that the ADC is enabled and is not busy converting. Single Conversion
mode must be selected and the ADC conversion complete interrupt must be
enabled.

13. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conversion
once the CPU has been halted.

14. If no other interrupts occur before the ADC conversion completes, the ADC interrupt
will wake up the CPU and execute the ADC Conversion Complete interrupt routine.
If another interrupt wakes up the CPU before the ADC conversion is complete, that
interrupt will be executed, and an ADC Conversion Complete interrupt request will
be generated when the ADC conversion completes. The CPU will remain in active
mode until a new sleep command is executed.
256
2545U–AVR–11/2015

ATmega48/88/168
Note that the ADC will not be automatically turned off when entering other sleep modes than Idle
mode and ADC Noise Reduction mode. The user is advised to write zero to ADEN before
entering such sleep modes to avoid excessive power consumption.

24.6.1 Analog input circuitry

The analog input circuitry for single ended channels is illustrated in Figure 24-8. An analog
source applied to ADCn is subjected to the pin capacitance and input leakage of that pin,
regardless of whether that channel is selected as input for the ADC. When the channel is
selected, the source must drive the S/H capacitor through the series resistance (combined
resistance in the input path).

The ADC is optimized for analog signals with an output impedance of approximately 10k or
less. If such a source is used, the sampling time will be negligible. If a source with higher
impedance is used, the sampling time will depend on how long time the source needs to charge
the S/H capacitor, with can vary widely. The user is recommended to only use low impedance
sources with slowly varying signals, since this minimizes the required charge transfer to the S/H
capacitor.

Signal components higher than the Nyquist frequency (fADC/2) should not be present for either
kind of channels, to avoid distortion from unpredictable signal convolution. The user is advised
to remove high frequency components with a low-pass filter before applying the signals as
inputs to the ADC.

Figure 24-8. Analog input circuitry.

24.6.2 Analog noise canceling techniques

Digital circuitry inside and outside the device generates EMI which might affect the accuracy of
analog measurements. If conversion accuracy is critical, the noise level can be reduced by
applying the following techniques:

a. Keep analog signal paths as short as possible. Make sure analog tracks run over the
analog ground plane, and keep them well away from high-speed switching digital
tracks.

15. The AVCC pin on the device should be connected to the digital VCC supply voltage
via an LC network as shown in Figure 24-9 on page 258.

16. Use the ADC noise canceler function to reduce induced noise from the CPU.

17. If any ADC [3..0] port pins are used as digital outputs, it is essential that these do not
switch while a conversion is in progress. However, using the 2-wire Interface (ADC4

ADCn

IIH

1..100kOhm

CS/H= 14pF

VCC/2

IIL
257
2545U–AVR–11/2015

ATmega48/88/168
and ADC5) will only affect the conversion on ADC4 and ADC5 and not the other
ADC channels.

Figure 24-9. ADC power connections.

24.6.3 ADC accuracy definitions

An n-bit single-ended ADC converts a voltage linearly between GND and VREF in 2n steps
(LSBs). The lowest code is read as 0, and the highest code is read as 2n-1.

Several parameters describe the deviation from the ideal behavior:

l Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal
transition (at 0.5LSB). Ideal value: 0LSB

G
N

D

V
C

C

P
C

5
(A

D
C

5/
S

C
L)

P
C

4
(A

D
C

4/
S

D
A

)

P
C

3
(A

D
C

3)

P
C

2
(A

D
C

2)

PC1 (ADC1)

PC0 (ADC0)

ADC7

GND

AREF

AVCC

ADC6

PB5

10
µH

10
0n

F
A

na
lo

g
gr

ou
nd

 p
la

ne
258
2545U–AVR–11/2015

ATmega48/88/168
Figure 24-10. Offset error.

l Gain error: After adjusting for offset, the gain error is found as the deviation of the last
transition (0x3FE to 0x3FF) compared to the ideal transition (at 1.5LSB below maximum).
Ideal value: 0LSB

Figure 24-11. Gain error.

l Integral Non-linearity (INL): After adjusting for offset and gain error, the INL is the
maximum deviation of an actual transition compared to an ideal transition for any code.
Ideal value: 0LSB

Output code

VREF Input voltage

Ideal ADC

Actual ADC

Offset
error

Output code

VREF Input voltage

Ideal ADC

Actual ADC

Gain
error
259
2545U–AVR–11/2015

ATmega48/88/168
Figure 24-12. Integral non-linearity (INL).

l Differential Non-linearity (DNL): The maximum deviation of the actual code width (the
interval between two adjacent transitions) from the ideal code width (1LSB). Ideal value:
0LSB

Figure 24-13. Differential non-linearity (DNL).

l Quantization Error: Due to the quantization of the input voltage into a finite number of
codes, a range of input voltages (1LSB wide) will code to the same value. Always ±0.5LSB

l Absolute accuracy: The maximum deviation of an actual (unadjusted) transition compared
to an ideal transition for any code. This is the compound effect of offset, gain error,
differential error, non-linearity, and quantization error. Ideal value: ±0.5LSB

Output code

VREF Input voltage

Ideal ADC

Actual ADC

IN
L

Output code

0x3FF

0x000

0 VREF Input voltage

DNL

1 LSB
260
2545U–AVR–11/2015

ATmega48/88/168
24.7 ADC conversion result

After the conversion is complete (ADIF is high), the conversion result can be found in the ADC
Result Registers (ADCL, ADCH).

For single ended conversion, the result is

where VIN is the voltage on the selected input pin and VREF the selected voltage reference (see
Table 24-2 and Table 24-3 on page 262). 0x000 represents analog ground, and 0x3FF
represents the selected reference voltage minus one LSB.

24.8 Register description

24.8.1 ADMUX – ADC multiplexer selection register

• Bit 7:6 – REFS1:0: Reference selection bits

These bits select the voltage reference for the ADC, as shown in Table 24-2. If these bits are
changed during a conversion, the change will not go in effect until this conversion is complete
(ADIF in ADCSRA is set). The internal voltage reference options may not be used if an external
reference voltage is being applied to the AREF pin.

• Bit 5 – ADLAR: ADC left adjust result

The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data Register.
Write one to ADLAR to left adjust the result. Otherwise, the result is right adjusted. Changing the
ADLAR bit will affect the ADC Data Register immediately, regardless of any ongoing
conversions. For a complete description of this bit, see “ADCL and ADCH – The ADC data
register” on page 264.

• Bit 4 – Res: Reserved bit

This bit is an unused bit in the Atmel ATmega48/88/168, and will always read as zero.

ADC
VIN 1024

VREF
--------------------------=

Bit 7 6 5 4 3 2 1 0

(0x7C) REFS1 REFS0 ADLAR – MUX3 MUX2 MUX1 MUX0 ADMUX

Read/write R/W R/W R/W R R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Table 24-2. Voltage reference selections for ADC.

REFS1 REFS0 Voltage reference selection

0 0 AREF, internal Vref turned off

0 1 AVCC with external capacitor at AREF pin

1 0 Reserved

1 1 Internal 1.1V voltage reference with external capacitor at AREF pin
261
2545U–AVR–11/2015

ATmega48/88/168
• Bits 3:0 – MUX3:0: Analog channel selection bits

The value of these bits selects which analog inputs are connected to the ADC. See Table 24-3
for details. If these bits are changed during a conversion, the change will not go in effect until this
conversion is complete (ADIF in ADCSRA is set).

24.8.2 ADCSRA – ADC control and status register A

• Bit 7 – ADEN: ADC enable

Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the
ADC off while a conversion is in progress, will terminate this conversion.

• Bit 6 – ADSC: ADC start conversion

In Single Conversion mode, write this bit to one to start each conversion. In Free Running mode,
write this bit to one to start the first conversion. The first conversion after ADSC has been written
after the ADC has been enabled, or if ADSC is written at the same time as the ADC is enabled,
will take 25 ADC clock cycles instead of the normal 13. This first conversion performs
initialization of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is complete,
it returns to zero. Writing zero to this bit has no effect.

Table 24-3. Input channel selections.

MUX3..0 Single ended input

0000 ADC0

0001 ADC1

0010 ADC2

0011 ADC3

0100 ADC4

0101 ADC5

0110 ADC6

0111 ADC7

1000 (reserved)

1001 (reserved)

1010 (reserved)

1011 (reserved)

1100 (reserved)

1101 (reserved)

1110 1.1V (VBG)

1111 0V (GND)

Bit 7 6 5 4 3 2 1 0

(0x7A) ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSRA

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0
262
2545U–AVR–11/2015

ATmega48/88/168
• Bit 5 – ADATE: ADC auto trigger enable

When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start a
conversion on a positive edge of the selected trigger signal. The trigger source is selected by
setting the ADC Trigger Select bits, ADTS in ADCSRB.

• Bit 4 – ADIF: ADC interrupt flag

This bit is set when an ADC conversion completes and the Data Registers are updated. The
ADC Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in SREG are set.
ADIF is cleared by hardware when executing the corresponding interrupt handling vector.
Alternatively, ADIF is cleared by writing a logical one to the flag. Beware that if doing a Read-
Modify-Write on ADCSRA, a pending interrupt can be disabled. This also applies if the SBI and
CBI instructions are used.

• Bit 3 – ADIE: ADC interrupt enable

When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Complete
Interrupt is activated.

• Bits 2:0 – ADPS2:0: ADC prescaler select bits

These bits determine the division factor between the system clock frequency and the input clock
to the ADC.

Table 24-4. ADC prescaler selections.

ADPS2 ADPS1 ADPS0 Division factor

0 0 0 2

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128
263
2545U–AVR–11/2015

ATmega48/88/168
24.8.3 ADCL and ADCH – The ADC data register

24.8.3.1 ADLAR = 0

24.8.3.2 ADLAR = 1

When an ADC conversion is complete, the result is found in these two registers.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. Consequently, if
the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read
ADCH. Otherwise, ADCL must be read first, then ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is read from
the registers. If ADLAR is set, the result is left adjusted. If ADLAR is cleared (default), the result
is right adjusted.

• ADC9:0: ADC conversion result

These bits represent the result from the conversion, as detailed in “ADC conversion result” on
page 261.

24.8.4 ADCSRB – ADC control and status register B

• Bit 7, 5:3 – Res: Reserved bits

These bits are reserved for future use. To ensure compatibility with future devices, these bist
must be written to zero when ADCSRB is written.

• Bit 2:0 – ADTS2:0: ADC auto trigger source

If ADATE in ADCSRA is written to one, the value of these bits selects which source will trigger
an ADC conversion. If ADATE is cleared, the ADTS2:0 settings will have no effect. A conversion
will be triggered by the rising edge of the selected Interrupt Flag. Note that switching from a
trigger source that is cleared to a trigger source that is set, will generate a positive edge on the

Bit 15 14 13 12 11 10 9 8

(0x79) – – – – – – ADC9 ADC8 ADCH

(0x78) ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL

7 6 5 4 3 2 1 0

Read/write R R R R R R R R

R R R R R R R R

Initial value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

(0x79) ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH

(0x78) ADC1 ADC0 – – – – – – ADCL

7 6 5 4 3 2 1 0

Read/write R R R R R R R R

R R R R R R R R

Initial value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x7B) – ACME – – – ADTS2 ADTS1 ADTS0 ADCSRB

Read/write R R/W R R R R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0
264
2545U–AVR–11/2015

ATmega48/88/168
trigger signal. If ADEN in ADCSRA is set, this will start a conversion. Switching to Free Running
mode (ADTS[2:0]=0) will not cause a trigger event, even if the ADC Interrupt Flag is set.

24.8.5 DIDR0 – Digital Input Disable Register 0

• Bits 7:6 – Res: Reserved bits

These bits are reserved for future use. To ensure compatibility with future devices, these bits
must be written to zero when DIDR0 is written.

• Bit 5:0 – ADC5D..ADC0D: ADC5..0 digital input disable

When this bit is written logic one, the digital input buffer on the corresponding ADC pin is
disabled. The corresponding PIN Register bit will always read as zero when this bit is set. When
an analog signal is applied to the ADC5..0 pin and the digital input from this pin is not needed,
this bit should be written logic one to reduce power consumption in the digital input buffer.

Note that ADC pins ADC7 and ADC6 do not have digital input buffers, and therefore do not
require Digital Input Disable bits.

Table 24-5. ADC auto trigger source selections.

ADTS2 ADTS1 ADTS0 Trigger source

0 0 0 Free running mode

0 0 1 Analog comparator

0 1 0 External interrupt request 0

0 1 1 Timer/counter0 compare match A

1 0 0 Timer/counter0 overflow

1 0 1 Timer/counter1 compare match B

1 1 0 Timer/counter1 overflow

1 1 1 Timer/counter1 capture event

Bit 7 6 5 4 3 2 1 0

(0x7E) – – ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D DIDR0

Read/write R R R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0
265
2545U–AVR–11/2015

ATmega48/88/168
25. debugWIRE on-chip debug system

25.1 Features
• Complete program flow control

• Emulates all on-chip functions, both digital and analog, except RESET pin

• Real-time operation

• Symbolic debugging support (both at C and assembler source level, or for other HLLs)

• Unlimited number of program break points (using software break points)

• Non-intrusive operation

• Electrical characteristics identical to real device

• Automatic configuration system

• High-speed operation

• Programming of non-volatile memories

25.2 Overview

The debugWIRE On-chip debug system uses a One-wire, bi-directional interface to control the
program flow, execute AVR instructions in the CPU and to program the different non-volatile
memories.

25.3 Physical interface

When the debugWIRE Enable (DWEN) Fuse is programmed and Lock bits are unprogrammed,
the debugWIRE system within the target device is activated. The RESET port pin is configured
as a wire-AND (open-drain) bi-directional I/O pin with pull-up enabled and becomes the
communication gateway between target and emulator.

Figure 25-1. The debugWIRE setup.

Figure 25-1 shows the schematic of a target MCU, with debugWIRE enabled, and the emulator
connector. The system clock is not affected by debugWIRE and will always be the clock source
selected by the CKSEL Fuses.

dW

GND

dW(RESET)

VCC

1.8V - 5.5V
266
2545U–AVR–11/2015

ATmega48/88/168
When designing a system where debugWIRE will be used, the following observations must be
made for correct operation:

l Pull-up resistors on the dW/(RESET) line must not be smaller than 10k. The pull-up
resistor is not required for debugWIRE functionality

l Connecting the RESET pin directly to VCC will not work

l Capacitors connected to the RESET pin must be disconnected when using debugWire

l All external reset sources must be disconnected

25.4 Software break points

debugWIRE supports Program memory Break Points by the AVR Break instruction. Setting a
Break Point in AVR Studio® will insert a BREAK instruction in the Program memory. The
instruction replaced by the BREAK instruction will be stored. When program execution is
continued, the stored instruction will be executed before continuing from the Program memory.
A break can be inserted manually by putting the BREAK instruction in the program.

The Flash must be re-programmed each time a Break Point is changed. This is automatically
handled by AVR Studio through the debugWIRE interface. The use of Break Points will therefore
reduce the Flash Data retention. Devices used for debugging purposes should not be shipped to
end customers.

25.5 Limitations of debugWIRE

The debugWIRE communication pin (dW) is physically located on the same pin as External
Reset (RESET). An External Reset source is therefore not supported when the debugWIRE is
enabled.

The debugWIRE system shares system clock with the SPI module. Thus the PRSPI bit in the
PRR register must not be set when debugging. Setting the PRSPI bit will disable the clock to the
debugWIRE module and may lead to lockup of the device.

A programmed DWEN Fuse enables some parts of the clock system to be running in all sleep
modes. This will increase the power consumption while in sleep. Thus, the DWEN Fuse should
be disabled when debugWire is not used.

25.6 Register description

The following section describes the registers used with the debugWire.

25.6.1 DWDR – debugWire data register

The DWDR Register provides a communication channel from the running program in the MCU
to the debugger. This register is only accessible by the debugWIRE and can therefore not be
used as a general purpose register in the normal operations.

Bit 7 6 5 4 3 2 1 0

DWDR[7:0] DWDR

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0
267
2545U–AVR–11/2015

ATmega48/88/168
26. Self-programming the flash, Atmel ATmega48

26.1 Overview

In ATmega48, there is no Read-While-Write support, and no separate Boot Loader Section. The
SPM instruction can be executed from the entire Flash.

The device provides a Self-Programming mechanism for downloading and uploading program
code by the MCU itself. The Self-Programming can use any available data interface and
associated protocol to read code and write (program) that code into the Program memory.

The Program memory is updated in a page-by-page fashion. Before programming a page with
the data stored in the temporary page buffer, the page must be erased. The temporary page
buffer is filled one word at a time using SPM and the buffer can be filled either before the Page
Erase command or between a Page Erase and a Page Write operation:

Alternative 1, fill the buffer before a Page Erase

l Fill temporary page buffer

l Perform a Page Erase

l Perform a Page Write

Alternative 2, fill the buffer after Page Erase

l Perform a Page Erase

l Fill temporary page buffer

l Perform a Page Write

If only a part of the page needs to be changed, the rest of the page must be stored (for example
in the temporary page buffer) before the erase, and then be re-written. When using alternative 1,
the Boot Loader provides an effective Read-Modify-Write feature which allows the user software
to first read the page, do the necessary changes, and then write back the modified data. If
alternative 2 is used, it is not possible to read the old data while loading since the page is
already erased. The temporary page buffer can be accessed in a random sequence. It is
essential that the page address used in both the Page Erase and Page Write operation is
addressing the same page.

26.1.1 Performing page erase by SPM

To execute Page Erase, set up the address in the Z-pointer, write “00000011” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored.
The page address must be written to PCPAGE in the Z-register. Other bits in the Z-pointer will
be ignored during this operation.

l The CPU is halted during the Page Erase operation

26.1.2 Filling the temporary buffer (page loading)

To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write
“00000001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The
content of PCWORD in the Z-register is used to address the data in the temporary buffer. The
temporary buffer will auto-erase after a Page Write operation or by writing the RWWSRE bit in
SPMCSR. It is also erased after a system reset. Note that it is not possible to write more than
one time to each address without erasing the temporary buffer.
268
2545U–AVR–11/2015

ATmega48/88/168
If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded will be
lost.

26.1.3 Performing a page write

To execute Page Write, set up the address in the Z-pointer, write “00000101” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored.
The page address must be written to PCPAGE. Other bits in the Z-pointer must be written to
zero during this operation.

l The CPU is halted during the Page Write operation

26.2 Addressing the flash during self-programming

The Z-pointer is used to address the SPM commands.

Since the Flash is organized in pages (see Table 28-9 on page 296), the Program Counter can
be treated as having two different sections. One section, consisting of the least significant bits, is
addressing the words within a page, while the most significant bits are addressing the pages.
This is shown in Figure 27-3 on page 281. Note that the Page Erase and Page Write operations
are addressed independently. Therefore it is of major importance that the software addresses
the same page in both the Page Erase and Page Write operation.

The LPM instruction uses the Z-pointer to store the address. Since this instruction addresses the
Flash byte-by-byte, also the LSB (bit Z0) of the Z-pointer is used.

Figure 26-1. Addressing the flash during SPM(1).

Note: 1. The different variables used in Figure 27-3 on page 281 are listed in Table 28-9 on page 296.

Bit 15 14 13 12 11 10 9 8

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0

PROGRAM MEMORY

0115

Z - REGISTER

BIT

0

ZPAGEMSB

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

ZPCMSB

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM
COUNTER
269
2545U–AVR–11/2015

ATmega48/88/168
26.2.1 EEPROM write prevents writing to SPMCSR

Note that an EEPROM write operation will block all software programming to Flash. Reading the
Fuses and Lock bits from software will also be prevented during the EEPROM write operation. It
is recommended that the user checks the status bit (EEPE) in the EECR Register and verifies
that the bit is cleared before writing to the SPMCSR Register.

26.2.2 Reading the fuse and lock bits from software

It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the
Z-pointer with 0x0001 and set the BLBSET and SELFPRGEN bits in SPMCSR. When an LPM
instruction is executed within three CPU cycles after the BLBSET and SELFPRGEN bits are set
in SPMCSR, the value of the Lock bits will be loaded in the destination register. The BLBSET
and SELFPRGEN bits will auto-clear upon completion of reading the Lock bits or if no LPM
instruction is executed within three CPU cycles or no SPM instruction is executed within four
CPU cycles. When BLBSET and SELFPRGEN are cleared, LPM will work as described in the
Instruction set Manual.

The algorithm for reading the Fuse Low byte is similar to the one described above for reading
the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and set the BLBSET
and SELFPRGEN bits in SPMCSR. When an LPM instruction is executed within three cycles
after the BLBSET and SELFPRGEN bits are set in the SPMCSR, the value of the Fuse Low byte
(FLB) will be loaded in the destination register as shown below.See Table 28-5 on page 294 for
a detailed description and mapping of the Fuse Low byte.

Similarly, when reading the Fuse High byte (FHB), load 0x0003 in the Z-pointer. When an LPM
instruction is executed within three cycles after the BLBSET and SELFPRGEN bits are set in the
SPMCSR, the value of the Fuse High byte will be loaded in the destination register as shown
below. See Table 28-4 on page 293 for detailed description and mapping of the Extended Fuse
byte.

Similarly, when reading the Extended Fuse byte (EFB), load 0x0002 in the Z-pointer. When an
LPM instruction is executed within three cycles after the BLBSET and SELFPRGEN bits are set
in the SPMCSR, the value of the Extended Fuse byte will be loaded in the destination register as
shown below. See Table 28-5 on page 294 for detailed description and mapping of the Extended
Fuse byte.

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are
unprogrammed, will be read as one.

26.2.3 Preventing flash corruption

During periods of low VCC, the Flash program can be corrupted because the supply voltage is
too low for the CPU and the Flash to operate properly. These issues are the same as for board
level systems using the Flash, and the same design solutions should be applied.

Bit 7 6 5 4 3 2 1 0

Rd – – – – – – LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0
270
2545U–AVR–11/2015

http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf

ATmega48/88/168
A Flash program corruption can be caused by two situations when the voltage is too low. First, a
regular write sequence to the Flash requires a minimum voltage to operate correctly. Secondly,
the CPU itself can execute instructions incorrectly, if the supply voltage for executing instructions
is too low.

Flash corruption can easily be avoided by following these design recommendations (one is
sufficient):

1. Keep the AVR RESET active (low) during periods of insufficient power supply voltage.
This can be done by enabling the internal Brown-out Detector (BOD) if the operating volt-
age matches the detection level. If not, an external low VCC reset protection circuit can be
used. If a reset occurs while a write operation is in progress, the write operation will be
completed provided that the power supply voltage is sufficient.

2. Keep the AVR core in Power-down sleep mode during periods of low VCC. This will prevent
the CPU from attempting to decode and execute instructions, effectively protecting the
SPMCSR Register and thus the Flash from unintentional writes.

26.2.4 Programming time for flash when using SPM

The calibrated RC Oscillator is used to time Flash accesses. Table 27-5 on page 285 shows the
typical programming time for Flash accesses from the CPU.

Note: 1. Minimum and maximum programming time is per individual operation.

26.2.5 Simple assembly code example for a boot loader

Note that the RWWSB bit will always be read as zero in Atmel ATmega48. Nevertheless, it is
recommended to check this bit as shown in the code example, to ensure compatibility with
devices supporting Read-While-Write.

;-the routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y

pointer
; the first data location in Flash is pointed to by the Z-

pointer
;-error handling is not included
;-the routine must be placed inside the Boot space
; (at least the Do_spm sub routine). Only code inside NRWW

section can
; be read during Self-Programming (Page Erase and Page

Write).
;-registers used: r0, r1, temp1 (r16), temp2 (r17), looplo

(r24),
; loophi (r25), spmcrval (r20)
; storing and restoring of registers is not included in the

routine
; register usage can be optimized at the expense of code

size
;-It is assumed that either the interrupt table is moved to

the Boot

Table 26-1. SPM programming time(1).

Symbol Minimum programming time Maximum programming time

Flash write (page erase, page
write, and write lock bits by SPM)

3.7ms 4.5ms
271
2545U–AVR–11/2015

ATmega48/88/168
; loader section or that the interrupts are disabled.
.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is
page size in BYTES, not words
.org SMALLBOOTSTART
Write_page:

; Page Erase
ldi spmcrval, (1<<PGERS) | (1<<SELFPRGEN)
rcall Do_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
rcall Do_spm

; transfer data from RAM to Flash page buffer
ldi looplo, low(PAGESIZEB) ;init loop

variable
ldi loophi, high(PAGESIZEB) ;not required

for PAGESIZEB<=256
Wrloop:

ld r0, Y+
ld r1, Y+
ldi spmcrval, (1<<SELFPRGEN)
rcall Do_spm
adiw ZH:ZL, 2
sbiw loophi:looplo, 2 ;use subi for

PAGESIZEB<=256
brne Wrloop

; execute Page Write
subi ZL, low(PAGESIZEB) ;restore

pointer
sbci ZH, high(PAGESIZEB) ;not required

for PAGESIZEB<=256
ldi spmcrval, (1<<PGWRT) | (1<<SELFPRGEN)
rcall Do_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
rcall Do_spm

; read back and check, optional
ldi looplo, low(PAGESIZEB) ;init loop

variable
ldi loophi, high(PAGESIZEB) ;not required

for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ;restore

pointer
sbci YH, high(PAGESIZEB)

Rdloop:
lpm r0, Z+
ld r1, Y+
cpse r0, r1
rjmp Error
sbiw loophi:looplo, 1 ;use subi for
272
2545U–AVR–11/2015

ATmega48/88/168
PAGESIZEB<=256
brne Rdloop

; return to RWW section
; verify that RWW section is safe to read

Return:
in temp1, SPMCSR
sbrs temp1, RWWSB ; If RWWSB is

set, the RWW section is not ready yet
ret
; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
rcall Do_spm
rjmp Return

Do_spm:
; check for previous SPM complete

Wait_spm:
in temp1, SPMCSR
sbrc temp1, SELFPRGEN
rjmp Wait_spm
; input: spmcrval determines SPM action
; disable interrupts if enabled, store status
in temp2, SREG
cli
; check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEPE
rjmp Wait_ee
; SPM timed sequence
out SPMCSR, spmcrval
spm
; restore SREG (to enable interrupts if originally

enabled)
out SREG, temp2
ret

26.3 Register description

26.3.1 SPMCSR – Store program memory control and status register

The Store Program Memory Control and Status Register contains the control bits needed to
control the Program memory operations.

• Bit 7 – SPMIE: SPM interrupt enable

When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the SPM
ready interrupt will be enabled. The SPM ready Interrupt will be executed as long as the
SELFPRGEN bit in the SPMCSR Register is cleared. The interrupt will not be generated during
EEPROM write or SPM.

Bit 7 6 5 4 3 2 1 0

0x37 (0x57) SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SELFPRGEN SPMCSR

Read/write R/W R R R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0
273
2545U–AVR–11/2015

ATmega48/88/168
• Bit 6 – RWWSB: Read-while-write section busy

This bit is for compatibility with devices supporting Read-While-Write. It will always read as zero
in Atmel ATmega48.

• Bit 5 – Res: Reserved bit

This bit is a reserved bit in the Atmel ATmega48/88/168 and will always read as zero.

• Bit 4 – RWWSRE: Read-while-write section read enable

The functionality of this bit in ATmega48 is a subset of the functionality in ATmega88/168. If the
RWWSRE bit is written while filling the temporary page buffer, the temporary page buffer will be
cleared and the data will be lost.

• Bit 3 – BLBSET: Boot lock bit set

The functionality of this bit in ATmega48 is a subset of the functionality in ATmega88/168. An
LPM instruction within three cycles after BLBSET and SELFPRGEN are set in the SPMCSR
Register, will read either the Lock bits or the Fuse bits (depending on Z0 in the Z-pointer) into the
destination register. See “Reading the fuse and lock bits from software” on page 270 for details.

• Bit 2 – PGWRT: Page write

If this bit is written to one at the same time as SELFPRGEN, the next SPM instruction within four
clock cycles executes Page Write, with the data stored in the temporary buffer. The page
address is taken from the high part of the Z-pointer. The data in R1 and R0 are ignored. The
PGWRT bit will auto-clear upon completion of a Page Write, or if no SPM instruction is executed
within four clock cycles. The CPU is halted during the entire Page Write operation.

• Bit 1 – PGERS: Page erase

If this bit is written to one at the same time as SELFPRGEN, the next SPM instruction within four
clock cycles executes Page Erase. The page address is taken from the high part of the Z-
pointer. The data in R1 and R0 are ignored. The PGERS bit will auto-clear upon completion of a
Page Erase, or if no SPM instruction is executed within four clock cycles. The CPU is halted
during the entire Page Write operation.

• Bit 0 – SELFPRGEN: Self programming enable

This bit enables the SPM instruction for the next four clock cycles. If written to one together with
either RWWSRE, BLBSET, PGWRT, or PGERS, the following SPM instruction will have a
special meaning, see description above. If only SELFPRGEN is written, the following SPM
instruction will store the value in R1:R0 in the temporary page buffer addressed by the Z-pointer.
The LSB of the Z-pointer is ignored. The SELFPRGEN bit will auto-clear upon completion of an
SPM instruction, or if no SPM instruction is executed within four clock cycles. During Page Erase
and Page Write, the SELFPRGEN bit remains high until the operation is completed.

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower
five bits will have no effect.
274
2545U–AVR–11/2015

ATmega48/88/168
27. Boot loader support – Read-while-write self-programming, Atmel ATmega88
and Atmel ATmega168

27.1 Features
• Read-while-write self-programming

• Flexible boot memory size

• High security (separate boot lock bits for a flexible protection)

• Separate fuse to select reset vector

• Optimized page(1) size

• Code efficient algorithm

• Efficient read-modify-write support

Note: 1. A page is a section in the flash consisting of several bytes (see Table 28-9 on page 296) used
during programming. The page organization does not affect normal operation.

27.2 Overview

In ATmega88 and ATmega168, the Boot Loader Support provides a real Read-While-Write Self-
Programming mechanism for downloading and uploading program code by the MCU itself. This
feature allows flexible application software updates controlled by the MCU using a Flash-
resident Boot Loader program. The Boot Loader program can use any available data interface
and associated protocol to read code and write (program) that code into the Flash memory, or
read the code from the program memory. The program code within the Boot Loader section has
the capability to write into the entire Flash, including the Boot Loader memory. The Boot Loader
can thus even modify itself, and it can also erase itself from the code if the feature is not needed
anymore. The size of the Boot Loader memory is configurable with fuses and the Boot Loader
has two separate sets of Boot Lock bits which can be set independently. This gives the user a
unique flexibility to select different levels of protection.

27.3 Application and boot loader flash sections

The Flash memory is organized in two main sections, the Application section and the Boot
Loader section (see Figure 27-2 on page 278). The size of the different sections is configured by
the BOOTSZ Fuses as shown in Table 27-6 on page 287 and Figure 27-2 on page 278. These
two sections can have different level of protection since they have different sets of Lock bits.

27.3.1 Application section

The Application section is the section of the Flash that is used for storing the application code.
The protection level for the Application section can be selected by the application Boot Lock bits
(Boot Lock bits 0), see Table 27-2 on page 279. The Application section can never store any
Boot Loader code since the SPM instruction is disabled when executed from the Application
section.

27.3.2 BLS – Boot loader section

While the Application section is used for storing the application code, the The Boot Loader
software must be located in the BLS since the SPM instruction can initiate a programming when
executing from the BLS only. The SPM instruction can access the entire Flash, including the
275
2545U–AVR–11/2015

ATmega48/88/168
BLS itself. The protection level for the Boot Loader section can be selected by the Boot Loader
Lock bits (Boot Lock bits 1), see Table 27-3 on page 279.

27.4 Read-while-write and no read-while-write flash sections

Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot Loader
software update is dependent on which address that is being programmed. In addition to the two
sections that are configurable by the BOOTSZ Fuses as described above, the Flash is also
divided into two fixed sections, the Read-While-Write (RWW) section and the No Read-While-
Write (NRWW) section. The limit between the RWW- and NRWW sections is given in Table 27-
7 on page 287 and Figure 27-2 on page 278. The main difference between the two sections is:

l When erasing or writing a page located inside the RWW section, the NRWW section can
be read during the operation

l When erasing or writing a page located inside the NRWW section, the CPU is halted
during the entire operation

Note that the user software can never read any code that is located inside the RWW section
during a Boot Loader software operation. The syntax “Read-While-Write section” refers to which
section that is being programmed (erased or written), not which section that actually is being
read during a Boot Loader software update.

27.4.1 RWW – Read-while-write section

If a Boot Loader software update is programming a page inside the RWW section, it is possible
to read code from the Flash, but only code that is located in the NRWW section. During an on-
going programming, the software must ensure that the RWW section never is being read. If the
user software is trying to read code that is located inside the RWW section (that is, by a
call/jmp/lpm or an interrupt) during programming, the software might end up in an unknown
state. To avoid this, the interrupts should either be disabled or moved to the Boot Loader
section. The Boot Loader section is always located in the NRWW section. The RWW Section
Busy bit (RWWSB) in the Store Program Memory Control and Status Register (SPMCSR) will be
read as logical one as long as the RWW section is blocked for reading. After a programming is
completed, the RWWSB must be cleared by software before reading code located in the RWW
section. See “SPMCSR – Store program memory control and status register” on page 290. for
details on how to clear RWWSB.

27.4.2 NRWW – No read-while-write section

The code located in the NRWW section can be read when the Boot Loader software is updating
a page in the RWW section. When the Boot Loader code updates the NRWW section, the CPU
is halted during the entire Page Erase or Page Write operation.

Table 27-1. Read-while-write features.

Which section does the Z-
pointer address during

the programming?
Which section can be read

during programming? CPU halted?
Read-while-write

supported?

RWW section NRWW section No Yes

NRWW section None Yes No
276
2545U–AVR–11/2015

ATmega48/88/168
Figure 27-1. Read-while-write vs. no read-while-write.

Read-while-write
(RWW) section

No read-while-write
(NRWW) section

Z-pointer
addresses RWW
section

Z-pointer
addresses NRWW
section

CPU is halted
during the operation

Code located in
NRWW section.
Can be read during
the operation
277
2545U–AVR–11/2015

ATmega48/88/168
Figure 27-2. Memory sections.

Note: 1. The parameters in Figure 27-2 are given in Table 27-6 on page 287.

27.5 Boot loader lock bits

If no Boot Loader capability is needed, the entire Flash is available for application code. The
Boot Loader has two separate sets of Boot Lock bits which can be set independently. This gives
the user a unique flexibility to select different levels of protection.

The user can select:

l To protect the entire Flash from a software update by the MCU

l To protect only the Boot Loader Flash section from a software update by the MCU

l To protect only the Application Flash section from a software update by the MCU

l Allow software update in the entire Flash

See Table 27-2 on page 279 and Table 27-3 on page 279 for further details. The Boot Lock bits
can be set in software and in Serial or Parallel Programming mode, but they can be cleared by a
Chip Erase command only. The general Write Lock (Lock Bit mode 2) does not control the
programming of the Flash memory by SPM instruction. Similarly, the general Read/Write Lock
(Lock Bit mode 1) does not control reading nor writing by LPM/SPM, if it is attempted.

0x0000

Flashend

Program memory
BOOTSZ = '11'

Application flash section

Boot loader flash section
Flashend

Program memory
BOOTSZ = '10'

0x0000

Program memory
BOOTSZ = '01'

Program memory
BOOTSZ = '00'

Application flash section

Boot loader flash section

0x0000

Flashend

Application flash section

Flashend

End RWW

Start NRWW

Application flash section

Boot loader flash section

Boot loader flash section

End RWW

Start NRWW

End RWW

Start NRWW

0x0000

End RWW, end application

Start NRWW, start boot loader

Application flash sectionApplication flash section

Application flash section

R
ea

d-
w

hi
le

-w
ri

te
 s

ec
tio

n
N

o
re

ad
-w

hi
le

-w
ri

te
 s

ec
tio

n
R

ea
d-

w
hi

le
-w

ri
te

 s
ec

tio
n

N
o

re
ad

-w
hi

le
-w

ri
te

 s
ec

tio
n

R
ea

d-
w

hi
le

-w
ri

te
 s

ec
tio

n
N

o
re

ad
-w

hi
le

-w
ri

te
 s

ec
tio

n
R

ea
d-

w
hi

le
-w

ri
te

 s
ec

tio
n

N
o

re
ad

-w
hi

le
-w

ri
te

 s
ec

tio
n

End application

Start boot loader

End application

Start boot loader

End application

Start boot loader
278
2545U–AVR–11/2015

ATmega48/88/168
Note: 1. “1” means unprogrammed, “0” means programmed.

Note: 1. “1” means unprogrammed, “0” means programmed.

27.6 Entering the boot loader program

Entering the Boot Loader takes place by a jump or call from the application program. This may
be initiated by a trigger such as a command received via USART, or SPI interface. Alternatively,
the Boot Reset Fuse can be programmed so that the Reset Vector is pointing to the Boot Flash
start address after a reset. In this case, the Boot Loader is started after a reset. After the
application code is loaded, the program can start executing the application code. Note that the
fuses cannot be changed by the MCU itself. This means that once the Boot Reset Fuse is
programmed, the Reset Vector will always point to the Boot Loader Reset and the fuse can only
be changed through the serial or parallel programming interface.

Table 27-2. Boot lock Bit0 protection modes (application section)(1).

BLB0 mode BLB02 BLB01 Protection

1 1 1
No restrictions for SPM or LPM accessing the Application
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and LPM
executing from the Boot Loader section is not allowed to read
from the Application section. If Interrupt Vectors are placed in
the Boot Loader section, interrupts are disabled while executing
from the Application section.

4 0 1

LPM executing from the Boot Loader section is not allowed to
read from the Application section. If Interrupt Vectors are placed
in the Boot Loader section, interrupts are disabled while
executing from the Application section.

Table 27-3. Boot lock Bit1 protection modes (boot loader section)(1).

BLB1 mode BLB12 BLB11 Protection

1 1 1
No restrictions for SPM or LPM accessing the Boot Loader
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section, and LPM
executing from the Application section is not allowed to read
from the Boot Loader section. If Interrupt Vectors are placed in
the Application section, interrupts are disabled while executing
from the Boot Loader section.

4 0 1

LPM executing from the Application section is not allowed to
read from the Boot Loader section. If Interrupt Vectors are
placed in the Application section, interrupts are disabled while
executing from the Boot Loader section.
279
2545U–AVR–11/2015

ATmega48/88/168
Note: 1. “1” means unprogrammed, “0” means programmed.

27.7 Addressing the flash during self-programming

The Z-pointer is used to address the SPM commands.

Since the Flash is organized in pages (see Table 28-9 on page 296), the Program Counter can
be treated as having two different sections. One section, consisting of the least significant bits, is
addressing the words within a page, while the most significant bits are addressing the pages.
This is1 shown in Figure 27-3 on page 281. Note that the Page Erase and Page Write
operations are addressed independently. Therefore it is of major importance that the Boot
Loader software addresses the same page in both the Page Erase and Page Write operation.
Once a programming operation is initiated, the address is latched and the Z-pointer can be used
for other operations.

The only SPM operation that does not use the Z-pointer is Setting the Boot Loader Lock bits.
The content of the Z-pointer is ignored and will have no effect on the operation. The LPM
instruction does also use the Z-pointer to store the address. Since this instruction addresses the
Flash byte-by-byte, also the LSB (bit Z0) of the Z-pointer is used.

Table 27-4. Boot reset fuse(1).

BOOTRST Reset address

1 Reset vector = Application reset (address 0x0000)

0 Reset vector = Boot loader reset (see Table 27-6 on page 287)

Bit 15 14 13 12 11 10 9 8

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0
280
2545U–AVR–11/2015

ATmega48/88/168
Figure 27-3. Addressing the flash during SPM(1).

Note: 1. The different variables used in Figure 27-3 are listed in Table 27-8 on page 288.

27.8 Self-programming the flash

The program memory is updated in a page-by-page fashion. Before programming a page with
the data stored in the temporary page buffer, the page must be erased. The temporary page
buffer is filled one word at a time using SPM and the buffer can be filled either before the Page
Erase command or between a Page Erase and a Page Write operation:

Alternative 1, fill the buffer before a Page Erase

l Fill temporary page buffer

l Perform a Page Erase

l Perform a Page Write

Alternative 2, fill the buffer after Page Erase

l Perform a Page Erase

l Fill temporary page buffer

l Perform a Page Write

If only a part of the page needs to be changed, the rest of the page must be stored (for example
in the temporary page buffer) before the erase, and then be rewritten. When using alternative 1,
the Boot Loader provides an effective Read-Modify-Write feature which allows the user software
to first read the page, do the necessary changes, and then write back the modified data. If
alternative 2 is used, it is not possible to read the old data while loading since the page is
already erased. The temporary page buffer can be accessed in a random sequence. It is
essential that the page address used in both the Page Erase and Page Write operation is
addressing the same page. See “Simple assembly code example for a boot loader” on page 285
for an assembly code example.

PROGRAM MEMORY

0115

Z - REGISTER

BIT

0

ZPAGEMSB

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

ZPCMSB

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM
COUNTER
281
2545U–AVR–11/2015

ATmega48/88/168
27.8.1 Performing page erase by SPM

To execute Page Erase, set up the address in the Z-pointer, write “X0000011” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored.
The page address must be written to PCPAGE in the Z-register. Other bits in the Z-pointer will
be ignored during this operation.

l Page Erase to the RWW section: The NRWW section can be read during the Page Erase

l Page Erase to the NRWW section: The CPU is halted during the operation

27.8.2 Filling the temporary buffer (page loading)

To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write
“00000001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The
content of PCWORD in the Z-register is used to address the data in the temporary buffer. The
temporary buffer will auto-erase after a Page Write operation or by writing the RWWSRE bit in
SPMCSR. It is also erased after a system reset. Note that it is not possible to write more than
one time to each address without erasing the temporary buffer.

If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded will be
lost.

27.8.3 Performing a page write

To execute Page Write, set up the address in the Z-pointer, write “X0000101” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored.
The page address must be written to PCPAGE. Other bits in the Z-pointer must be written to
zero during this operation.

l Page Write to the RWW section: The NRWW section can be read during the Page Write

l Page Write to the NRWW section: The CPU is halted during the operation

27.8.4 Using the SPM interrupt

If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the
SELFPRGEN bit in SPMCSR is cleared. This means that the interrupt can be used instead of
polling the SPMCSR Register in software. When using the SPM interrupt, the Interrupt Vectors
should be moved to the BLS section to avoid that an interrupt is accessing the RWW section
when it is blocked for reading. How to move the interrupts is described in “Interrupts” on page
56.

27.8.5 Consideration while updating BLS

Special care must be taken if the user allows the Boot Loader section to be updated by leaving
Boot Lock bit11 unprogrammed. An accidental write to the Boot Loader itself can corrupt the
entire Boot Loader, and further software updates might be impossible. If it is not necessary to
change the Boot Loader software itself, it is recommended to program the Boot Lock bit11 to
protect the Boot Loader software from any internal software changes.

27.8.6 Prevent reading the RWW section during self-programming

During Self-Programming (either Page Erase or Page Write), the RWW section is always
blocked for reading. The user software itself must prevent that this section is addressed during
the self programming operation. The RWWSB in the SPMCSR will be set as long as the RWW
section is busy. During Self-Programming the Interrupt Vector table should be moved to the BLS
282
2545U–AVR–11/2015

ATmega48/88/168
as described in “Interrupts” on page 56, or the interrupts must be disabled. Before addressing
the RWW section after the programming is completed, the user software must clear the
RWWSB by writing the RWWSRE. See “Simple assembly code example for a boot loader” on
page 285 for an example.

27.8.7 Setting the boot loader lock bits by SPM

To set the Boot Loader Lock bits and general lock bits, write the desired data to R0, write
“X0001001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR.

See Table 27-2 on page 279 and Table 27-3 on page 279 for how the different settings of the
Boot Loader bits affect the Flash access.

If bits 5..0 in R0 are cleared (zero), the corresponding Boot Lock bit and general lock bit will be
programmed if an SPM instruction is executed within four cycles after BLBSET and
SELFPRGEN are set in SPMCSR. The Z-pointer is don’t care during this operation, but for
future compatibility it is recommended to load the Z-pointer with 0x0001 (same as used for
reading the lOck bits). For future compatibility it is also recommended to set bits 7 and 6 in R0 to
“1” when writing the Lock bits. When programming the Lock bits the entire Flash can be read
during the operation.

27.8.8 EEPROM write prevents writing to SPMCSR

Note that an EEPROM write operation will block all software programming to Flash. Reading the
Fuses and Lock bits from software will also be prevented during the EEPROM write operation. It
is recommended that the user checks the status bit (EEPE) in the EECR Register and verifies
that the bit is cleared before writing to the SPMCSR Register.

27.8.9 Reading the fuse and lock bits from software

It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the
Z-pointer with 0x0001 and set the BLBSET and SELFPRGEN bits in SPMCSR. When an LPM
instruction is executed within three CPU cycles after the BLBSET and SELFPRGEN bits are set
in SPMCSR, the value of the Lock bits will be loaded in the destination register. The BLBSET
and SELFPRGEN bits will auto-clear upon completion of reading the Lock bits or if no LPM
instruction is executed within three CPU cycles or no SPM instruction is executed within four
CPU cycles. When BLBSET and SELFPRGEN are cleared, LPM will work as described in the
Instruction set Manual.

The algorithm for reading the Fuse Low byte is similar to the one described above for reading
the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and set the BLBSET
and SELFPRGEN bits in SPMCSR. When an LPM instruction is executed within three cycles
after the BLBSET and SELFPRGEN bits are set in the SPMCSR, the value of the Fuse Low byte
(FLB) will be loaded in the destination register as shown below. Refer to Table 28-5 on page 294
for a detailed description and mapping of the Fuse Low byte.

Bit 7 6 5 4 3 2 1 0

R0 1 1 BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd – – BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0
283
2545U–AVR–11/2015

http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf

ATmega48/88/168
Similarly, when reading the Fuse High byte, load 0x0003 in the Z-pointer. When an LPM
instruction is executed within three cycles after the BLBSET and SELFPRGEN bits are set in the
SPMCSR, the value of the Fuse High byte (FHB) will be loaded in the destination register as
shown below. Refer to Table 28-6 on page 294 for detailed description and mapping of the Fuse
High byte.

When reading the Extended Fuse byte, load 0x0002 in the Z-pointer. When an LPM instruction
is executed within three cycles after the BLBSET and SELFPRGEN bits are set in the SPMCSR,
the value of the Extended Fuse byte (EFB) will be loaded in the destination register as shown
below. Refer to Table 28-4 on page 293 for detailed description and mapping of the Extended
Fuse byte.

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are
unprogrammed, will be read as one.

27.8.10 Preventing flash corruption

During periods of low VCC, the Flash program can be corrupted because the supply voltage is
too low for the CPU and the Flash to operate properly. These issues are the same as for board
level systems using the Flash, and the same design solutions should be applied.

A Flash program corruption can be caused by two situations when the voltage is too low. First, a
regular write sequence to the Flash requires a minimum voltage to operate correctly. Secondly,
the CPU itself can execute instructions incorrectly, if the supply voltage for executing instructions
is too low.

Flash corruption can easily be avoided by following these design recommendations (one is
sufficient):

1. If there is no need for a Boot Loader update in the system, program the Boot Loader
Lock bits to prevent any Boot Loader software updates.

2. Keep the AVR RESET active (low) during periods of insufficient power supply voltage.
This can be done by enabling the internal Brown-out Detector (BOD) if the operating
voltage matches the detection level. If not, an external low VCC reset protection circuit can
be used. If a reset occurs while a write operation is in progress, the write operation will be
completed provided that the power supply voltage is sufficient.

3. Keep the AVR core in Power-down sleep mode during periods of low VCC. This will prevent
the CPU from attempting to decode and execute instructions, effectively protecting the
SPMCSR Register and thus the Flash from unintentional writes.

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0

Bit 7 6 5 4 3 2 1 0

Rd – – – – EFB3 EFB2 EFB1 EFB0
284
2545U–AVR–11/2015

ATmega48/88/168
27.8.11 Programming time for flash when using SPM

The calibrated RC Oscillator is used to time Flash accesses. Table 27-5 shows the typical
programming time for Flash accesses from the CPU.

Note: 1. Minimum and maximum programming time is per individual operation.

27.8.12 Simple assembly code example for a boot loader

;-the routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y

pointer
; the first data location in Flash is pointed to by the Z-

pointer
;-error handling is not included
;-the routine must be placed inside the Boot space
; (at least the Do_spm sub routine). Only code inside NRWW

section can
; be read during Self-Programming (Page Erase and Page

Write).
;-registers used: r0, r1, temp1 (r16), temp2 (r17), looplo

(r24),
; loophi (r25), spmcrval (r20)
; storing and restoring of registers is not included in the

routine
; register usage can be optimized at the expense of code

size
;-It is assumed that either the interrupt table is moved to

the Boot
; loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is
page size in BYTES, not words
.org SMALLBOOTSTART
Write_page:

; Page Erase
ldi spmcrval, (1<<PGERS) | (1<<SELFPRGEN)
call Do_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
call Do_spm

; transfer data from RAM to Flash page buffer
ldi looplo, low(PAGESIZEB) ;init loop

variable
ldi loophi, high(PAGESIZEB) ;not required

for PAGESIZEB<=256
Wrloop:

Table 27-5. SPM programming time(1).

Symbol Min. programming time Max. programming time

Flash write (page erase, page write, and
write lock bits by SPM)

3.7ms 4.5ms
285
2545U–AVR–11/2015

ATmega48/88/168
ld r0, Y+
ld r1, Y+
ldi spmcrval, (1<<SELFPRGEN)
call Do_spm
adiw ZH:ZL, 2
sbiw loophi:looplo, 2 ;use subi for

PAGESIZEB<=256
brne Wrloop

; execute Page Write
subi ZL, low(PAGESIZEB) ;restore

pointer
sbci ZH, high(PAGESIZEB) ;not required

for PAGESIZEB<=256
ldi spmcrval, (1<<PGWRT) | (1<<SELFPRGEN)
call Do_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
call Do_spm

; read back and check, optional
ldi looplo, low(PAGESIZEB) ;init loop

variable
ldi loophi, high(PAGESIZEB) ;not required

for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ;restore

pointer
sbci YH, high(PAGESIZEB)

Rdloop:
lpm r0, Z+
ld r1, Y+
cpse r0, r1
jmp Error
sbiw loophi:looplo, 1 ;use subi for

PAGESIZEB<=256
brne Rdloop

; return to RWW section
; verify that RWW section is safe to read

Return:
in temp1, SPMCSR
sbrs temp1, RWWSB ; If RWWSB is

set, the RWW section is not ready yet
ret
; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
call Do_spm
rjmp Return

Do_spm:
; check for previous SPM complete

Wait_spm:
in temp1, SPMCSR
286
2545U–AVR–11/2015

ATmega48/88/168
sbrc temp1, SELFPRGEN
rjmp Wait_spm
; input: spmcrval determines SPM action
; disable interrupts if enabled, store status
in temp2, SREG
cli
; check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEPE
rjmp Wait_ee
; SPM timed sequence
out SPMCSR, spmcrval
spm
; restore SREG (to enable interrupts if originally

enabled)
out SREG, temp2
ret

27.8.13 Atmel ATmega88 boot loader parameters

In Table 27-6 through Table 27-8, the parameters used in the description of the self
programming are given.

Note: The different BOOTSZ Fuse configurations are shown in Figure 27-2 on page 278.

Table 27-6. Boot size configuration, ATmega88.

BOOTSZ1 BOOTSZ0
Boot
size Pages

Application
flash
section

Boot
loader
flash
section

End
application
section

Boot reset
address (start
boot loader
section)

1 1
128
words

4
0x000 -
0xF7F

0xF80 -
0xFFF

0xF7F 0xF80

1 0
256
words

8
0x000 -
0xEFF

0xF00 -
0xFFF

0xEFF 0xF00

0 1
512
words

16
0x000 -
0xDFF

0xE00 -
0xFFF

0xDFF 0xE00

0 0
1024
words

32
0x000 -
0xBFF

0xC00 -
0xFFF

0xBFF 0xC00

Table 27-7. Read-while-write limit, ATmega88.

Section Pages Address

Read-while-write section (RWW) 96 0x000 - 0xBFF

No read-while-write section (NRWW) 32 0xC00 - 0xFFF
287
2545U–AVR–11/2015

ATmega48/88/168
For details about these two section, see “NRWW – No read-while-write section” on page 276
and “RWW – Read-while-write section” on page 276

Note: 1. Z15:Z13: Always ignored.
Z0: Should be zero for all SPM commands, byte select for the LPM instruction.
See “Addressing the flash during self-programming” on page 280 for details about the use of
Z-pointer during self-programming.

27.8.14 Atmel ATmega168 boot loader parameters

In Table 27-9 through Table 27-11 on page 290, the parameters used in the description of the
self programming are given.

Table 27-8. Explanation of different variables used in Figure 27-3 on page 281 and the mapping
to the Z-pointer, ATmega88.

Variable
Corresponding

Z-value(1) Description

PCMSB 11
Most significant bit in the Program Counter. (The
program counter is 12 bits PC[11:0])

PAGEMSB 4
Most significant bit which is used to address the
words within one page (32 words in a page requires
5 bits PC [4:0]).

ZPCMSB Z12
Bit in Z-register that is mapped to PCMSB. Because
Z0 is not used, the ZPCMSB equals PCMSB + 1.

ZPAGEMSB Z5
Bit in Z-register that is mapped to PAGEMSB.
Because Z0 is not used, the ZPAGEMSB equals
PAGEMSB + 1.

PCPAGE PC[11:5] Z12:Z6
Program counter page address: Page select, for
page erase and page write

PCWORD PC[4:0] Z5:Z1
Program counter word address: Word select, for
filling temporary buffer (must be zero during page
write operation)

Table 27-9. Boot size configuration, ATmega168.

BOOTSZ1 BOOTSZ0
Boot
size Pages

Application
flash
section

Boot
loader
flash
section

End
application
section

Boot reset
address (start
boot loader
section)

1 1
128
words

2
0x0000 -
0x1F7F

0x1F80 -
0x1FFF

0x1F7F 0x1F80

1 0
256
words

4
0x0000 -
0x1EFF

0x1F00 -
0x1FFF

0x1EFF 0x1F00

0 1
512
words

8
0x0000 -
0x1DFF

0x1E00 -
0x1FFF

0x1DFF 0x1E00

0 0
1024
words

16
0x0000 -
0x1BFF

0x1C00 -
0x1FFF

0x1BFF 0x1C00
288
2545U–AVR–11/2015

ATmega48/88/168
Note: The different BOOTSZ fuse configurations are shown in Figure 27-2 on page 278.

For details about these two section, see “NRWW – No read-while-write section” on page 276
and “RWW – Read-while-write section” on page 276.

Table 27-10. Read-while-write limit, ATmega168.

Section Pages Address

Read-while-write section (RWW) 112 0x0000 - 0x1BFF

No read-while-write section (NRWW) 16 0x1C00 - 0x1FFF
289
2545U–AVR–11/2015

ATmega48/88/168
Note: 1. Z15:Z14: Always ignored.
Z0: Should be zero for all SPM commands, byte select for the LPM instruction.
See “Addressing the flash during self-programming” on page 280 for details about the use of
Z-pointer during Self-Programming.

27.9 Register description

27.9.1 SPMCSR – Store program memory control and status register

The Store Program Memory Control and Status Register contains the control bits needed to
control the Boot Loader operations.

• Bit 7 – SPMIE: SPM interrupt enable

When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the SPM
ready interrupt will be enabled. The SPM ready Interrupt will be executed as long as the
SELFPRGEN bit in the SPMCSR Register is cleared.

• Bit 6 – RWWSB: Read-while-write section busy

When a Self-Programming (Page Erase or Page Write) operation to the RWW section is
initiated, the RWWSB will be set (one) by hardware. When the RWWSB bit is set, the RWW
section cannot be accessed. The RWWSB bit will be cleared if the RWWSRE bit is written to one
after a Self-Programming operation is completed. Alternatively the RWWSB bit will automatically
be cleared if a page load operation is initiated.

Table 27-11. Explanation of different variables used in Figure 27-3 on page 281 and the mapping
to the Z-pointer, Atmel ATmega168.

Variable
Corresponding

Z-value(1) Description

PCMSB 12
Most significant bit in the Program Counter. (The
program counter is 12 bits PC[11:0])

PAGEMSB 5
Most significant bit which is used to address the
words within one page (64 words in a page requires
6 bits PC [5:0])

ZPCMSB Z13
Bit in Z-register that is mapped to PCMSB. Because
Z0 is not used, the ZPCMSB equals PCMSB + 1

ZPAGEMSB Z6
Bit in Z-register that is mapped to PAGEMSB.
Because Z0 is not used, the ZPAGEMSB equals
PAGEMSB + 1

PCPAGE PC[12:6] Z13:Z7
Program counter page address: Page select, for
page erase and page write

PCWORD PC[5:0] Z6:Z1
Program counter word address: Word select, for
filling temporary buffer (must be zero during page
write operation)

Bit 7 6 5 4 3 2 1 0

0x37 (0x57) SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SELFPRGEN SPMCSR

Read/write R/W R R R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0
290
2545U–AVR–11/2015

ATmega48/88/168
• Bit 5 – Res: Reserved bit

This bit is a reserved bit in the Atmel ATmega48/88/168 and always read as zero.

• Bit 4 – RWWSRE: Read-while-write section read enable

When programming (Page Erase or Page Write) to the RWW section, the RWW section is
blocked for reading (the RWWSB will be set by hardware). To re-enable the RWW section, the
user software must wait until the programming is completed (SELFPRGEN will be cleared).
Then, if the RWWSRE bit is written to one at the same time as SELFPRGEN, the next SPM
instruction within four clock cycles re-enables the RWW section. The RWW section cannot be
re-enabled while the Flash is busy with a Page Erase or a Page Write (SELFPRGEN is set). If
the RWWSRE bit is written while the Flash is being loaded, the Flash load operation will abort
and the data loaded will be lost.

• Bit 3 – BLBSET: Boot lock bit set

If this bit is written to one at the same time as SELFPRGEN, the next SPM instruction within four
clock cycles sets Boot Lock bits and Memory Lock bits, according to the data in R0. The data in
R1 and the address in the Z-pointer are ignored. The BLBSET bit will automatically be cleared
upon completion of the Lock bit set, or if no SPM instruction is executed within four clock cycles.

An LPM instruction within three cycles after BLBSET and SELFPRGEN are set in the SPMCSR
Register, will read either the Lock bits or the Fuse bits (depending on Z0 in the Z-pointer) into the
destination register. See “Reading the fuse and lock bits from software” on page 283 for details.

• Bit 2 – PGWRT: Page write

If this bit is written to one at the same time as SELFPRGEN, the next SPM instruction within four
clock cycles executes Page Write, with the data stored in the temporary buffer. The page
address is taken from the high part of the Z-pointer. The data in R1 and R0 are ignored. The
PGWRT bit will auto-clear upon completion of a Page Write, or if no SPM instruction is executed
within four clock cycles. The CPU is halted during the entire Page Write operation if the NRWW
section is addressed.

• Bit 1 – PGERS: Page erase

If this bit is written to one at the same time as SELFPRGEN, the next SPM instruction within four
clock cycles executes Page Erase. The page address is taken from the high part of the Z-
pointer. The data in R1 and R0 are ignored. The PGERS bit will auto-clear upon completion of a
Page Erase, or if no SPM instruction is executed within four clock cycles. The CPU is halted
during the entire Page Write operation if the NRWW section is addressed.

• Bit 0 – SELFPRGEN: Self programming enable

This bit enables the SPM instruction for the next four clock cycles. If written to one together with
either RWWSRE, BLBSET, PGWRT or PGERS, the following SPM instruction will have a
special meaning, see description above. If only SELFPRGEN is written, the following SPM
instruction will store the value in R1:R0 in the temporary page buffer addressed by the Z-pointer.
The LSB of the Z-pointer is ignored. The SELFPRGEN bit will auto-clear upon completion of an
SPM instruction, or if no SPM instruction is executed within four clock cycles. During Page Erase
and Page Write, the SELFPRGEN bit remains high until the operation is completed.

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower
five bits will have no effect.
291
2545U–AVR–11/2015

ATmega48/88/168
28. Memory programming

28.1 Program and data memory lock bits

The Atmel ATmega88/168 provides six Lock bits which can be left unprogrammed (“1”) or can
be programmed (“0”) to obtain the additional features listed in Table 28-2. The Lock bits can only
be erased to “1” with the Chip Erase command.The Atmel ATmega48 has no separate Boot
Loader section. The SPM instruction is enabled for the whole Flash if the SELFPRGEN fuse is
programmed (“0”), otherwise it is disabled.

Notes: 1. “1” means unprogrammed, “0” means programmed.

2. Only on ATmega88/168.

Notes: 1. Program the fuse bits and boot lock bits before programming the LB1 and LB2.

2. “1” means unprogrammed, “0” means programmed.

Table 28-1. Lock bit byte(1).

Lock bit byte Bit no. Description Default value

7 – 1 (unprogrammed)

6 – 1 (unprogrammed)

BLB12(2) 5 Boot lock bit 1 (unprogrammed)

BLB11(2) 4 Boot lock bit 1 (unprogrammed)

BLB02(2) 3 Boot lock bit 1 (unprogrammed)

BLB01(2) 2 Boot lock bit 1 (unprogrammed)

LB2 1 Lock bit 1 (unprogrammed)

LB1 0 Lock bit 1 (unprogrammed)

Table 28-2. Lock bit protection modes(1)(2).

Memory lock bits Protection type

LB mode LB2 LB1

1 1 1 No memory lock features enabled.

2 1 0
Further programming of the flash and EEPROM is disabled in
parallel and serial programming mode. The fuse bits are locked
in both serial and parallel programming mode.(1)

3 0 0

Further programming and verification of the flash and EEPROM
is disabled in parallel and serial programming mode. The boot
lock bits and fuse bits are locked in both serial and parallel
programming mode.(1)
292
2545U–AVR–11/2015

ATmega48/88/168
Notes: 1. Program the fuse bits and boot lock bits before programming the LB1 and LB2.

2. “1” means unprogrammed, “0” means programmed.

28.2 Fuse bits

The Atmel ATmega48/88/168 has three fuse bytes. Table 28-4 through Table 28-7 on page 295
describe briefly the functionality of all the fuses and how they are mapped into the fuse bytes.
Note that the fuses are read as logical zero, “0”, if they are programmed.

Table 28-3. Lock bit protection modes(1)(2). Only Atmel ATmega88/168.

BLB0 mode BLB02 BLB01

1 1 1
No restrictions for SPM or LPM accessing the application
section.

2 1 0 SPM is not allowed to write to the application section.

3 0 0

SPM is not allowed to write to the application section, and LPM
executing from the boot loader section is not allowed to read
from the application section. If interrupt vectors are placed in the
boot loader section, interrupts are disabled while executing from
the application section.

4 0 1

LPM executing from the boot loader section is not allowed to
read from the application section. If interrupt vectors are placed
in the boot loader section, interrupts are disabled while
executing from the application section.

BLB1 mode BLB12 BLB11

1 1 1
No restrictions for SPM or LPM accessing the boot loader
section.

2 1 0 SPM is not allowed to write to the boot loader section.

3 0 0

SPM is not allowed to write to the boot loader section, and LPM
executing from the application section is not allowed to read
from the boot loader section. If interrupt vectors are placed in
the application section, interrupts are disabled while executing
from the boot loader section.

4 0 1

LPM executing from the application section is not allowed to
read from the boot loader section. If interrupt vectors are placed
in the application section, interrupts are disabled while
executing from the boot loader section.

Table 28-4. Extended fuse byte for mega48.

Extended fuse byte Bit no. Description Default value

– 7 – 1

– 6 – 1

– 5 – 1

– 4 – 1

– 3 – 1

– 2 – 1

– 1 – 1

SELFPRGEN 0 Self programming enable 1 (unprogrammed)
293
2545U–AVR–11/2015

ATmega48/88/168
Note: 1. The default value of BOOTSZ1..0 results in maximum boot size. See Table 28-11 on page
297 for details.

Notes: 1. See “Alternate functions of port C” on page 86 for description of RSTDISBL fuse.

2. The SPIEN fuse is not accessible in serial programming mode.

3. See “WDTCSR – Watchdog timer control register” on page 53 for details.

4. See Table 29-4 on page 314 for BODLEVEL fuse decoding.

Table 28-5. Extended fuse byte for mega88/168.

Extended fuse byte Bit no. Description Default value

– 7 – 1

– 6 – 1

– 5 – 1

– 4 – 1

– 3 – 1

BOOTSZ1 2

Select boot size
(see Table 27-6 on page 287
and Table 27-9 on page 288
for details)

0 (programmed)(1)

BOOTSZ0 1

Select boot size
(see Table 27-6 on page 287
and Table 27-9 on page 288
for details)

0 (programmed)(1)

BOOTRST 0 Select reset vector 1 (unprogrammed)

Table 28-6. Fuse high byte.

High fuse byte Bit no. Description Default value

RSTDISBL(1) 7 External reset disable 1 (unprogrammed)

DWEN 6 debugWIRE enable 1 (unprogrammed)

SPIEN(2) 5
Enable serial program and
data downloading

0 (programmed, SPI
programming enabled)

WDTON(3) 4 Watchdog timer always on 1 (unprogrammed)

EESAVE 3
EEPROM memory is
preserved through the chip
erase

1 (unprogrammed), EEPROM
not reserved

BODLEVEL2(4) 2
Brown-out detector trigger
level

1 (unprogrammed)

BODLEVEL1(4) 1
Brown-out detector trigger
level

1 (unprogrammed)

BODLEVEL0(4) 0
Brown-out detector trigger
level

1 (unprogrammed)
294
2545U–AVR–11/2015

ATmega48/88/168
Note: 1. The default value of SUT1..0 results in maximum start-up time for the default clock source.
See Table 9-9 on page 34 for details.

2. The default setting of CKSEL3..0 results in internal RC oscillator @ 8MHz. See Table 9-8 on
page 33 for details.

3. The CKOUT fuse allows the system clock to be output on PORTB0. See “Clock output buffer”
on page 35 for details.

4. See “System clock prescaler” on page 36 for details.

The status of the fuse bits is not affected by chip erase. Note that the fuse bits are locked if lock
bit1 (LB1) is programmed. Program the fuse bits before programming the lock bits.

28.2.1 Latching of fuses

The fuse values are latched when the device enters programming mode and changes of the
fuse values will have no effect until the part leaves Programming mode. This does not apply to
the EESAVE Fuse which will take effect once it is programmed. The fuses are also latched on
Power-up in Normal mode.

28.3 Signature bytes

All Atmel microcontrollers have a three-byte signature code which identifies the device. This
code can be read in both serial and parallel mode, also when the device is locked. The three
bytes reside in a separate address space. For the Atmel ATmega48/88/168 the signature bytes
are given in Table 28-8.

28.4 Calibration byte

The ATmega48/88/168 has a byte calibration value for the internal RC Oscillator. This byte
resides in the high byte of address 0x000 in the signature address space. During reset, this byte
is automatically written into the OSCCAL Register to ensure correct frequency of the calibrated
RC Oscillator.

Table 28-7. Fuse low byte.

Low fuse byte Bit no. Description Default value

CKDIV8(4) 7 Divide clock by 8 0 (programmed)

CKOUT(3) 6 Clock output 1 (unprogrammed)

SUT1 5 Select start-up time 1 (unprogrammed)(1)

SUT0 4 Select start-up time 0 (programmed)(1)

CKSEL3 3 Select clock source 0 (programmed)(2)

CKSEL2 2 Select clock source 0 (programmed)(2)

CKSEL1 1 Select clock source 1 (unprogrammed)(2)

CKSEL0 0 Select clock source 0 (programmed)(2)

Table 28-8. Device ID.

Part

Signature bytes address

0x000 0x001 0x002

ATmega48 0x1E 0x92 0x05

ATmega88 0x1E 0x93 0x0A

ATmega168 0x1E 0x94 0x06
295
2545U–AVR–11/2015

ATmega48/88/168
28.5 Page size

28.6 Parallel programming parameters, pin mapping, and commands

This section describes how to parallel program and verify Flash Program memory, EEPROM
Data memory, Memory Lock bits, and Fuse bits in the ATmega48/88/168. Pulses are assumed
to be at least 250ns unless otherwise noted.

28.6.1 Signal names

In this section, some pins of the ATmega48/88/168 are referenced by signal names describing
their functionality during parallel programming, see Figure 28-1 on page 297 and Table 28-11 on
page 297. Pins not described in Table 28-11 on page 297 are referenced by pin names.

The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a positive pulse.
The bit coding is shown in Table 28-13 on page 298.

When pulsing WR or OE, the command loaded determines the action executed. The different
Commands are shown in Table 28-14 on page 298.

Table 28-9. No. of words in a page and no. of pages in the flash.

Device Flash size Page size PCWORD
No. of
pages PCPAGE PCMSB

Atmel
ATmega48

2K words
(4Kbytes)

32 words PC[4:0] 64 PC[10:5] 10

Atmel
ATmega88

4K words
(8Kbytes)

32 words PC[4:0] 128 PC[11:5] 11

Atmel
ATmega168

8K words
(16Kbytes)

64 words PC[5:0] 128 PC[12:6] 12

Table 28-10. No. of words in a page and no. of pages in the EEPROM.

Device
EEPROM

size
Page
size PCWORD

No. of
pages PCPAGE EEAMSB

ATmega48 256 bytes 4 bytes EEA[1:0] 64 EEA[7:2] 7

ATmega88 512 bytes 4 bytes EEA[1:0] 128 EEA[8:2] 8

ATmega168 512 bytes 4 bytes EEA[1:0] 128 EEA[8:2] 8
296
2545U–AVR–11/2015

ATmega48/88/168
Figure 28-1. Parallel programming.

Note: VCC - 0.3V < AVCC < VCC + 0.3V, however, AVCC should always be within 4.5V - 5.5V.

Table 28-11. Pin name mapping.

Signal name in
programming mode Pin name I/O Function

RDY/BSY PD1 O
0: Device is busy programming, 1: Device is
ready for new command

OE PD2 I Output enable (active low)

WR PD3 I Write pulse (active low)

BS1 PD4 I
Byte select 1 (“0” selects low byte, “1” selects
high byte)

XA0 PD5 I XTAL action bit 0

XA1 PD6 I XTAL action bit 1

PAGEL PD7 I
Program memory and EEPROM data page
load

BS2 PC2 I
Byte select 2 (“0” selects Low byte, “1” selects
2’nd high byte)

DATA {PC[1:0]: PB[5:0]} I/O Bi-directional data bus (output when OE is low)

Table 28-12. Pin values used to enter programming mode.

Pin Symbol Value

PAGEL Prog_enable[3] 0

XA1 Prog_enable[2] 0

XA0 Prog_enable[1] 0

BS1 Prog_enable[0] 0

VCC

GND

XTAL1

PD1

PD2

PD3

PD4

PD5

PD6

 PC[1:0]:PB[5:0] DATA

RESET

PD7

+12V

BS1

XA0

XA1

OE

RDY/BSY

PAGEL

PC2

WR

BS2

AVCC

+4.5V - 5.5V

+4.5V - 5.5V
297
2545U–AVR–11/2015

ATmega48/88/168
28.7 Parallel programming

28.7.1 Enter programming mode

The following algorithm puts the device in Parallel (High-voltage) Programming mode:

1. Set Prog_enable pins listed in Table 28-12 on page 297 to “0000”, RESET pin to 0V and
VCC to 0V.

2. Apply 4.5V - 5.5V between VCC and GND.

Ensure that VCC reaches at least 1.8V within the next 20µs.

3. Wait 20µs - 60µs, and apply 11.5V - 12.5V to RESET.

4. Keep the Prog_enable pins unchanged for at least 10µs after the High-voltage has been
applied to ensure the Prog_enable Signature has been latched.

5. Wait at least 300µs before giving any parallel programming commands.

6. Exit Programming mode by power the device down or by bringing RESET pin to 0V.

If the rise time of the VCC is unable to fulfill the requirements listed above, the following
alternative algorithm can be used.

1. Set Prog_enable pins listed in Table 28-12 on page 297 to “0000”, RESET pin to 0V and
VCC to 0V.

2. Apply 4.5V - 5.5V between VCC and GND.

3. Monitor VCC, and as soon as VCC reaches 0.9V - 1.1V, apply 11.5V - 12.5V to RESET.

Table 28-13. XA1 and XA0 coding.

XA1 XA0 Action when XTAL1 is pulsed

0 0 Load flash or EEPROM address (high or low address byte determined by BS1)

0 1 Load data (high or low data byte for flash determined by BS1)

1 0 Load command

1 1 No action, idle

Table 28-14. Command byte bit coding.

Command byte Command executed

1000 0000 Chip erase

0100 0000 Write fuse bits

0010 0000 Write lock bits

0001 0000 Write flash

0001 0001 Write EEPROM

0000 1000 Read signature bytes and calibration byte

0000 0100 Read fuse and lock bits

0000 0010 Read flash

0000 0011 Read EEPROM
298
2545U–AVR–11/2015

ATmega48/88/168
4. Keep the Prog_enable pins unchanged for at least 10µs after the High-voltage has been
applied to ensure the Prog_enable Signature has been latched.

5. Wait until VCC actually reaches 4.5V - 5.5V before giving any parallel programming
commands.

6. Exit Programming mode by power the device down or by bringing RESET pin to 0V.

28.7.2 Considerations for efficient programming

The loaded command and address are retained in the device during programming. For efficient
programming, the following should be considered.

l The command needs only be loaded once when writing or reading multiple memory
locations

l Skip writing the data value 0xFF, that is the contents of the entire EEPROM (unless the
EESAVE Fuse is programmed) and Flash after a Chip Erase

l Address high byte needs only be loaded before programming or reading a new 256 word
window in Flash or 256 byte EEPROM. This consideration also applies to Signature bytes
reading

28.7.3 Chip erase

The Chip Erase will erase the Flash and EEPROM(1) memories plus Lock bits. The Lock bits are
not reset until the program memory has been completely erased. The Fuse bits are not
changed. A Chip Erase must be performed before the Flash and/or EEPROM are
reprogrammed.

Note: 1. The EEPRPOM memory is preserved during Chip Erase if the EESAVE Fuse is programmed.

Load Command “Chip Erase”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “1000 0000”. This is the command for Chip Erase.

4. Give XTAL1 a positive pulse. This loads the command.

5. Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.

6. Wait until RDY/BSY goes high before loading a new command.

28.7.4 Programming the flash

The Flash is organized in pages, see Table 28-9 on page 296. When programming the Flash,
the program data is latched into a page buffer. This allows one page of program data to be
programmed simultaneously. The following procedure describes how to program the entire
Flash memory:

A. Load Command “Write Flash”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “0001 0000”. This is the command for Write Flash.

4. Give XTAL1 a positive pulse. This loads the command.

B. Load Address Low byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “0”. This selects low address.
299
2545U–AVR–11/2015

ATmega48/88/168
3. Set DATA = Address low byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address low byte.

C. Load Data Low Byte

1. Set XA1, XA0 to “01”. This enables data loading.

2. Set DATA = Data low byte (0x00 - 0xFF).

3. Give XTAL1 a positive pulse. This loads the data byte.

D. Load Data High Byte

1. Set BS1 to “1”. This selects high data byte.

2. Set XA1, XA0 to “01”. This enables data loading.

3. Set DATA = Data high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the data byte.

E. Latch Data

1. Set BS1 to “1”. This selects high data byte.

2. Give PAGEL a positive pulse. This latches the data bytes. (See Figure 28-3 on page 301
for signal waveforms)

F. Repeat B through E until the entire buffer is filled or until all data within the page is loaded.

While the lower bits in the address are mapped to words within the page, the higher bits address
the pages within the FLASH. This is illustrated in Figure 28-2 on page 301. Note that if less than
eight bits are required to address words in the page (pagesize < 256), the most significant bit(s)
in the address low byte are used to address the page when performing a Page Write.

G. Load Address High byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “1”. This selects high address.

3. Set DATA = Address high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address high byte.

H. Program Page

1. Give WR a negative pulse. This starts programming of the entire page of data. RDY/BSY
goes low.

2. Wait until RDY/BSY goes high (See Figure 28-3 on page 301 for signal waveforms).

I. Repeat B through H until the entire Flash is programmed or until all data has been
programmed.

J. End Page Programming

1. 1. Set XA1, XA0 to “10”. This enables command loading.

2. Set DATA to “0000 0000”. This is the command for No Operation.

3. Give XTAL1 a positive pulse. This loads the command, and the internal write signals are
reset.
300
2545U–AVR–11/2015

ATmega48/88/168
Figure 28-2. Addressing the flash which is organized in pages(1).

Note: 1. PCPAGE and PCWORD are listed in Table 28-9 on page 296.

Figure 28-3. Programming the flash waveforms(1).

Note: 1. “XX” is don’t care. The letters refer to the programming description above.

28.7.5 Programming the EEPROM

The EEPROM is organized in pages, see Table 28-10 on page 296. When programming the
EEPROM, the program data is latched into a page buffer. This allows one page of data to be
programmed simultaneously. The programming algorithm for the EEPROM data memory is as
follows (refer to “Programming the flash” on page 299 for details on Command, Address and
Data loading):

1. A: Load Command “0001 0001”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. C: Load Data (0x00 - 0xFF).

5. E: Latch data (give PAGEL a positive pulse).

PROGRAM MEMORY

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM
COUNTER

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x10 ADDR. LOW ADDR. HIGHDATA
DATA LOW DATA HIGH ADDR. LOW DATA LOW DATA HIGH

XA1

XA0

BS1

XTAL1

XX XX XX

A B C D E B C D E G H

F

301
2545U–AVR–11/2015

ATmega48/88/168
K: Repeat 3 through 5 until the entire buffer is filled.

L: Program EEPROM page

1. Set BS1 to “0”.

2. Give WR a negative pulse. This starts programming of the EEPROM page. RDY/BSY
goes low.

3. Wait until to RDY/BSY goes high before programming the next page (see Figure 28-4 for
signal waveforms).

Figure 28-4. Programming the EEPROM waveforms.

28.7.6 Reading the flash

The algorithm for reading the Flash memory is as follows (refer to “Programming the flash” on
page 299 for details on Command and Address loading):

1. A: Load Command “0000 0010”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The Flash word low byte can now be read at DATA.

5. Set BS1 to “1”. The Flash word high byte can now be read at DATA.

6. Set OE to “1”.

28.7.7 Reading the EEPROM

The algorithm for reading the EEPROM memory is as follows (refer to “Programming the flash”
on page 299 for details on Command and Address loading):

1. A: Load Command “0000 0011”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at DATA.

5. Set OE to “1”.

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x11 ADDR. HIGH
DATA

ADDR. LOW DATA ADDR. LOW DATA XX

XA1

XA0

BS1

XTAL1

XX

A G B C E B C E L

K

302
2545U–AVR–11/2015

ATmega48/88/168
28.7.8 Programming the fuse low bits

The algorithm for programming the Fuse Low bits is as follows (refer to “Programming the flash”
on page 299 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

28.7.9 Programming the fuse high bits

The algorithm for programming the Fuse High bits is as follows (refer to “Programming the flash”
on page 299 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Set BS1 to “1” and BS2 to “0”. This selects high data byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS1 to “0”. This selects low data byte.

28.7.10 Programming the extended fuse bits

The algorithm for programming the Extended Fuse bits is as follows (refer to “Programming the
flash” on page 299 for details on Command and Data loading):

1. 1. A: Load Command “0100 0000”.

2. 2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. 3. Set BS1 to “0” and BS2 to “1”. This selects extended data byte.

4. 4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. 5. Set BS2 to “0”. This selects low data byte.

Figure 28-5. Programming the FUSES waveforms.

RDY/BSY

WR

OE

RESET +12V

PAGEL

0x40
DATA

DATA XX

XA1

XA0

BS1

XTAL1

A C

0x40 DATA XX

A C

Write fuse low byte Write fuse high byte

0x40 DATA XX

A C

Write extended fuse byte

BS2
303
2545U–AVR–11/2015

ATmega48/88/168
28.7.11 Programming the lock bits

The algorithm for programming the Lock bits is as follows (refer to “Programming the flash” on
page 299 for details on Command and Data loading):

1. A: Load Command “0010 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs the Lock bit. If LB mode 3 is programmed
(LB1 and LB2 is programmed), it is not possible to program the Boot Lock bits by any
External Programming mode.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

The Lock bits can only be cleared by executing Chip Erase.

28.7.12 Reading the fuse and lock bits

The algorithm for reading the Fuse and Lock bits is as follows (refer to “Programming the flash”
on page 299 for details on Command loading):

1. A: Load Command “0000 0100”.

2. Set OE to “0”, BS2 to “0” and BS1 to “0”. The status of the Fuse Low bits can now be read
at DATA (“0” means programmed).

3. Set OE to “0”, BS2 to “1” and BS1 to “1”. The status of the Fuse High bits can now be read
at DATA (“0” means programmed).

4. Set OE to “0”, BS2 to “1”, and BS1 to “0”. The status of the Extended Fuse bits can now be
read at DATA (“0” means programmed).

5. Set OE to “0”, BS2 to “0” and BS1 to “1”. The status of the Lock bits can now be read at
DATA (“0” means programmed).

6. Set OE to “1”.

Figure 28-6. Mapping between BS1, BS2 and the fuse and lock bits during read.

28.7.13 Reading the signature bytes

The algorithm for reading the Signature bytes is as follows (refer to “Programming the flash” on
page 299 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte (0x00 - 0x02).

3. Set OE to “0”, and BS1 to “0”. The selected Signature byte can now be read at DATA.

Lock bits 0

1

BS2

Fuse high byte

0

1

BS1

DATA

Fuse low byte 0

1

BS2

Extended fuse byte
304
2545U–AVR–11/2015

ATmega48/88/168
4. Set OE to “1”.

28.7.14 Reading the calibration byte

The algorithm for reading the Calibration byte is as follows (refer to “Programming the flash” on
page 299 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte, 0x00.

3. Set OE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.

4. Set OE to “1”.

28.7.15 Parallel programming characteristics

For characteristics of the parallel programming, see “Parallel programming characteristics” on
page 319.

28.8 Serial downloading

Both the Flash and EEPROM memory arrays can be programmed using the serial SPI bus while
RESET is pulled to GND. The serial interface consists of pins SCK, MOSI (input) and MISO
(output). After RESET is set low, the Programming Enable instruction needs to be executed first
before program/erase operations can be executed. NOTE, in Table 28-15 on page 306, the pin
mapping for SPI programming is listed. Not all parts use the SPI pins dedicated for the internal
SPI interface.

Figure 28-7. Serial programming and verify(1).

Notes: 1. If the device is clocked by the internal Oscillator, it is no need to connect a clock source to the
XTAL1 pin.

2. VCC - 0.3V < AVCC < VCC + 0.3V, however, AVCC should always be within 1.8V - 5.5V

When programming the EEPROM, an auto-erase cycle is built into the self-timed programming
operation (in the Serial mode ONLY) and there is no need to first execute the Chip Erase
instruction. The Chip Erase operation turns the content of every memory location in both the
Program and EEPROM arrays into 0xFF.

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and high periods
for the serial clock (SCK) input are defined as follows:

Low:> 2 CPU clock cycles for fck < 12MHz, 3 CPU clock cycles for fck >= 12MHz

VCC

GND

XTAL1

SCK

MISO

MOSI

RESET

+1.8V - 5.5V

AVCC

+1.8V - 5.5V(2)
305
2545U–AVR–11/2015

ATmega48/88/168
High:> 2 CPU clock cycles for fck < 12MHz, 3 CPU clock cycles for fck >= 12MHz

28.8.1 Serial programming pin mapping

28.8.2 Serial programming algorithm

When writing serial data to the Atmel ATmega48/88/168, data is clocked on the rising edge of
SCK.

When reading data from the ATmega48/88/168, data is clocked on the falling edge of SCK. See
Figure 28-9 on page 309 for timing details.

To program and verify the ATmega48/88/168 in the serial programming mode, the following
sequence is recommended (See Serial Programming Instruction set in Table 28-17 on page
307):

1. Power-up sequence:
Apply power between VCC and GND while RESET and SCK are set to “0”. In some sys-
tems, the programmer can not guarantee that SCK is held low during power-up. In this
case, RESET must be given a positive pulse of at least two CPU clock cycles duration
after SCK has been set to “0”.

2. Wait for at least 20ms and enable serial programming by sending the Programming
Enable serial instruction to pin MOSI.

3. The serial programming instructions will not work if the communication is out of
synchronization. When in sync. the second byte (0x53), will echo back when issuing the
third byte of the Programming Enable instruction. Whether the echo is correct or not, all
four bytes of the instruction must be transmitted. If the 0x53 did not echo back, give
RESET a positive pulse and issue a new Programming Enable command.

4. The Flash is programmed one page at a time. The memory page is loaded one byte at a
time by supplying the 6 LSB of the address and data together with the Load Program
Memory Page instruction. To ensure correct loading of the page, the data low byte must
be loaded before data high byte is applied for a given address. The Program Memory
Page is stored by loading the Write Program Memory Page instruction with the 7 MSB of
the address. If polling (RDY/BSY) is not used, the user must wait at least tWD_FLASH before
issuing the next page (see Table 28-16 on page 307). Accessing the serial programming
interface before the Flash write operation completes can result in incorrect programming.

5. A: The EEPROM array is programmed one byte at a time by supplying the address and
data together with the appropriate Write instruction. An EEPROM memory location is first
automatically erased before new data is written. If polling (RDY/BSY) is not used, the user
must wait at least tWD_EEPROM before issuing the next byte (see Table 28-16 on page 307).
In a chip erased device, no 0xFFs in the data file(s) need to be programmed.
B: The EEPROM array is programmed one page at a time. The Memory page is loaded
one byte at a time by supplying the 6 LSB of the address and data together with the Load
EEPROM Memory Page instruction. The EEPROM Memory Page is stored by loading the

Table 28-15. Pin mapping serial programming.

Symbol Pins I/O Description

MOSI PB3 I Serial Data in

MISO PB4 O Serial Data out

SCK PB5 I Serial Clock
306
2545U–AVR–11/2015

ATmega48/88/168
Write EEPROM Memory Page Instruction with the 7 MSB of the address. When using
EEPROM page access only byte locations loaded with the Load EEPROM Memory Page
instruction is altered. The remaining locations remain unchanged. If polling (RDY/BSY) is
not used, the used must wait at least tWD_EEPROM before issuing the next byte (See Table
28-16 on page 307). In a chip erased device, no 0xFF in the data file(s) need to be
programmed.

6. Any memory location can be verified by using the Read instruction which returns the
content at the selected address at serial output MISO.

7. At the end of the programming session, RESET can be set high to commence normal
operation.

8. Power-off sequence (if needed):
Set RESET to “1”.
Turn VCC power off.

28.8.3 Serial programming instruction set

Table 28-17 and Figure 28-8 on page 309 describes the instruction set.

Table 28-16. Typical wait delay before writing the next flash or EEPROM location.

Symbol Minimum wait delay

tWD_FLASH 4.5ms

tWD_EEPROM 3.6ms

tWD_ERASE 9.0ms

Table 28-17. Serial programming instruction set (hexadecimal values).

Instruction/operation

Instruction format

Byte 1 Byte 2 Byte 3 Byte 4

Programming enable $AC $53 $00 $00

Chip erase (program memory/EEPROM) $AC $80 $00 $00

Poll RDY/BSY $F0 $00 $00 data byte out

Load instructions

Load extended address byte(1) $4D $00 Extended adr $00

Load program memory page, high byte $48 $00 adr LSB high data byte in

Load program memory page, low byte $40 $00 adr LSB low data byte in

Load EEPROM memory page (page access) $C1 $00 0000 000aa data byte in

Read instructions

Read program memory, high byte $28 adr MSB adr LSB high data byte out

Read program memory, low byte $20 adr MSB adr LSB low data byte out

Read EEPROM memory $A0 0000 00aa aaaa aaaa data byte out

Read lock bits $58 $00 $00 data byte out

Read signature byte $30 $00 0000 000aa data byte out
307
2545U–AVR–11/2015

ATmega48/88/168
Notes: 1. Not all instructions are applicable for all parts.

2. a = address.

3. Bits are programmed ‘0’, unprogrammed ‘1’.

4. To ensure future compatibility, unused fuses and lock bits should be unprogrammed (‘1’).

5. Refer to the correspondig section for fuse and lock bits, calibration and signature bytes and page size.

6. Instructions accessing program memory use a word address. This word may be random within the page range.

7. See htt://www.atmel.com/avr for application notes regarding programming and programmers.

If the LSB in RDY/BSY data byte out is ‘1’, a programming operation is still pending. Wait until
this bit returns ‘0’ before the next instruction is carried out.

Within the same page, the low data byte must be loaded prior to the high data byte.

After data is loaded to the page buffer, program the EEPROM page, see Figure 28-8.

Read fuse bits $50 $00 $00 data byte out

Read fuse high bits $58 $08 $00 data byte out

Read extended fuse bits $50 $08 $00 data byte out

Read calibration byte $38 $00 $00 data byte out

Write instructions(6)

Write program memory page $4C adr MSB adr LSB $00

Write EEPROM memory $C0 0000 00aa aaaa aaaa data byte in

Write EEPROM memory page (page access) $C2 0000 00aa aaaa aa00 $00

Write lock bits $AC $E0 $00 data byte in

Write fuse bits $AC $A0 $00 data byte in

Write fuse high bits $AC $A8 $00 data byte in

Write extended fuse bits $AC $A4 $00 data byte in

Table 28-17. Serial programming instruction set (hexadecimal values). (Continued)

Instruction/operation

Instruction format

Byte 1 Byte 2 Byte 3 Byte 4
308
2545U–AVR–11/2015

ATmega48/88/168
Figure 28-8. Serial programming instruction example.

28.8.4 SPI serial programming characteristics

Figure 28-9. Serial programming waveforms.

For characteristics of the SPI module see “SPI timing characteristics” on page 316.

Byte 1 Byte 2 Byte 3 Byte 4

Adr MSB Adr LSB

Bit 15 B 0

Serial programming instruction

Program memory/
EEPROM memory

Page 0

Page 1

Page 2

Page N-1

Page buffer

Write program memory page/
Write EEPROM memory page

Load program memory page (high/low byte)/
Load EEPROM memory page (page access)

Byte 1 Byte 2 Byte 3 Byte 4

Bit 15 B 0

Adr MSB Adr LSB

Page offset

Page number

Adr MMSSBA AAdrr LLSBB

MSB

MSB

LSB

LSB

SERIAL CLOCK INPUT
(SCK)

SERIAL DATA INPUT
 (MOSI)

(MISO)

SAMPLE

SERIAL DATA OUTPUT
309
2545U–AVR–11/2015

ATmega48/88/168
29. Electrical characteristics

29.1 Absolute maximum ratings*

29.2 DC characteristics

Operating temperature -55°C to +125°C *NOTICE: Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.

Storage temperature. -65°C to +150°C

Voltage on any pin except RESET
with respect to ground -0.5V to VCC+0.5V

Voltage on RESET with respect to ground-0.5V to +13.0V

Maximum operating voltage 6.0V

DC current per I/O pin. 40.0mA

DC current VCC and GND pins 200.0mA

TA = -40°C to 85°C, VCC = 1.8V to 5.5V (unless otherwise noted).

Symbol Parameter Condition Minimum Typical Maximum Units

VIL
Input low voltage, except
XTAL1 and RESET pin

VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V

-0.5
-0.5

0.2VCC
(1)

0.3VCC
(1)

V

VIH

Input high voltage,
except XTAL1 and
RESET pins

VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V

0.7VCC
(2)

0.6VCC
(2)

VCC + 0.5
VCC + 0.5

VIL1
Input low voltage,
XTAL1 pin

VCC = 1.8V - 5.5V -0.5 0.1VCC
(1)

VIH1
Input high voltage,
XTAL1 pin

VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V

0.8VCC
(2)

0.7VCC
(2)

VCC + 0.5
VCC + 0.5

VIL2
Input low voltage,
RESET pin

VCC = 1.8V - 5.5V -0.5 0.2VCC
(1)

VIH2
Input high voltage,
RESET pin

VCC = 1.8V - 5.5V 0.9VCC
(2) VCC + 0.5

VIL3
Input low voltage,
RESET pin as I/O

VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V

-0.5
-0.5

0.2VCC
(1)

0.3VCC
(1)

VIH3
Input high voltage,
RESET pin as I/O

VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V

0.7VCC
(2)

0.6VCC
(2)

VCC + 0.5
VCC + 0.5

VOL
Output low voltage(3),
RESET pin as I/O

IOL = 20mA, VCC = 5V
IOL = 6mA, VCC = 3V

0.7
0.5

VOH
Output high voltage(4),
RESET pin as I/O

IOH = -20mA, VCC = 5V
IOH = -10mA, VCC = 3V

4.2
2.3

IIL
Input leakage
current I/O pin

VCC = 5.5V, pin low
(absolute value)

1

µA

IIH
Input leakage
current I/O pin

VCC = 5.5V, pin high
(absolute value)

1

310
2545U–AVR–11/2015

ATmega48/88/168
Notes: 1. “Max” means the highest value where the pin is guaranteed to be read as low

2. “Min” means the lowest value where the pin is guaranteed to be read as high

3. Although each I/O port can sink more than the test conditions (20mA at VCC = 5V, 10mA at VCC = 3V) under steady state
conditions (non-transient), the following must be observed:
ATmega48/88/168:
1] The sum of all IOL, for ports C0 - C5, ADC7, ADC6 should not exceed 100mA.
2] The sum of all IOL, for ports B0 - B5, D5 - D7, XTAL1, XTAL2 should not exceed 100mA.
3] The sum of all IOL, for ports D0 - D4, RESET should not exceed 100mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

4. Although each I/O port can source more than the test conditions (20mA at VCC = 5V, 10mA at VCC = 3V) under steady state
conditions (non-transient), the following must be observed:
ATmega48/88/168:
1] The sum of all IOH, for ports C0 - C5, D0- D4, ADC7, RESET should not exceed 150mA.
2] The sum of all IOH, for ports B0 - B5, D5 - D7, ADC6, XTAL1, XTAL2 should not exceed 150mA.
If IIOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

5. Values with “Minimizing power consumption” on page 41 enabled (0xFF).

RRST Reset pull-up resistor 30 60
k

RPU I/O pin pull-up resistor 20 50

ICC

Power supply current(5)

Active 1MHz, VCC = 2V

(Atmel ATmega48/88/168V)
0.55

mA

Active 4MHz, VCC = 3V

(Atmel ATmega48/88/168L)
3.5

Active 8MHz, VCC = 5V

(Atmel ATmega48/88/168)
12

Idle 1MHz, VCC = 2V

(ATmega48/88/168V)
0.25 0.5

Idle 4MHz, VCC = 3V

(ATmega48/88/168L)
1.5

Idle 8MHz, VCC = 5V

(ATmega48/88/168)
5.5

Power-down mode
WDT enabled, VCC = 3V 8 15

µA
WDT disabled, VCC = 3V 1 2

VACIO
Analog comparator
input offset voltage

VCC = 5V

Vin = VCC/2
10 40 mV

IACLK
Analog comparator
input leakage current

VCC = 5V
Vin = VCC/2

-50 50 nA

tACID
Analog comparator
propagation delay

VCC = 2.7V
VCC = 4.0V

750
500

ns

TA = -40°C to 85°C, VCC = 1.8V to 5.5V (unless otherwise noted). (Continued)

Symbol Parameter Condition Minimum Typical Maximum Units
311
2545U–AVR–11/2015

ATmega48/88/168
29.3 Speed grades

Maximum frequency is dependent on VCC. As shown in Figure 29-1 and Figure 29-2, the
Maximum Frequency vs. VCC curve is linear between 1.8V < VCC < 2.7V and between 2.7V <
VCC < 4.5V.

Figure 29-1. Maximum frequency vs. VCC, Atmel ATmega48V/88V/168V.

Figure 29-2. Maximum frequency vs. VCC, ATmega48/88/168.

10MHz

4MHz

1.8V 2.7V 5.5V

Safe operating area

20MHz

10MHz

2.7V 4.5V 5.5V

Safe operating area
312
2545U–AVR–11/2015

ATmega48/88/168
29.4 Clock characteristics

29.4.1 Calibrated internal RC oscillator accuracy

Notes: 1. Voltage range for Atmel ATmega48V/88V/168V.

2. Voltage range for Atmel ATmega48/88/168.

29.4.2 External clock drive waveforms

Figure 29-3. External clock drive waveforms.

29.4.3 External clock drive

Table 29-1. Calibration accuracy of internal RC oscillator.

Frequency VCC Temperature Calibration accuracy

Factory calibration 8.0MHz 3V 25°C ±10%

User calibration
7.3MHz - 8.1MHz

1.8V - 5.5V(1)

2.7V - 5.5V(2) -40°C - 85°C ±1%

VIL1

VIH1

Table 29-2. External clock drive.

Symbol Parameter

VCC = 1.8V - 5.5V VCC = 2.7V - 5.5V VCC = 4.5V - 5.5V

UnitsMin. Max. Min. Max. Min. Max.

1/tCLCL
Oscillator
frequency

0 4 0 10 0 20 MHz

tCLCL Clock period 250 100 50

nstCHCX High time 100 40 20

tCLCX Low time 100 40 20

tCLCH Rise time 2.0 1.6 0.5
s

tCHCL Fall time 2.0 1.6 0.5

tCLCL

Change in period
from one clock
cycle to the next

2 2 2 %
313
2545U–AVR–11/2015

ATmega48/88/168
29.5 System and reset characteristics

Note: 1. The power-on reset will not work unless the supply voltage has been below VPOT (falling).

Notes: 1. VBOT may be below nominal minimum operating voltage for some devices. For devices where this is the case, the device is
tested down to VCC = VBOT during the production test. This guarantees that a brown-out reset will occur before VCC drops to
a voltage where correct operation of the microcontroller is no longer guaranteed. The test is performed using
BODLEVEL = 110 and BODLEVEL = 101 for Atmel ATmega48V/88V/168V, and BODLEVEL = 101 and BODLEVEL = 100
for Atmel ATmega48/88/168.

Table 29-3. Reset, brown-out and internal voltage characteristics.

Symbol Parameter Condition Min. Typ. Max. Units

VPOT

Power-on reset threshold voltage (rising) 0.7 1.0 1.4
V

Power-on reset threshold voltage (falling)(1) 0.05 0.9 1.3

VPONSR Power-on slope rate 0.01 4.5 V/ms

VRST RESET pin threshold voltage 0.2VCC 0.9VCC V

tRST Minimum pulse width on RESET pin 2.5 µs

VHYST Brown-out detector hysteresis 50 mV

tBOD Min pulse width on brown-out reset 2 µs

VBG Bandgap reference voltage
VCC = 2.7
TA = 25°C

1.0 1.1 1.2 V

tBG Bandgap reference start-up time
VCC = 2.7
TA = 25°C

40 70 µs

IBG Bandgap reference current consumption
VCC = 2.7
TA = 25°C

10 µA

Table 29-4. BODLEVEL fuse coding(1).

BODLEVEL 2:0 Fuses Min. VBOT Typ. VBOT Max. VBOT Units

111 BOD disabled

110 1.7 1.8 2.0

V101 2.5 2.7 2.9

100 4.1 4.3 4.5

011

Reserved
010

001

000
314
2545U–AVR–11/2015

ATmega48/88/168
29.6 2-wire serial interface characteristics

Table 29-5 describes the requirements for devices connected to the 2-wire Serial Bus. The Atmel ATmega48/88/168 2-wire
Serial Interface meets or exceeds these requirements under the noted conditions.

Timing symbols refer to Figure 29-4 on page 316.

Notes: 1. In ATmega48/88/168, this parameter is characterized and not 100% tested.

Table 29-5. 2-wire serial bus requirements.

Symbol Parameter Condition Min. Max. Units

VIL Input low-voltage -0.5 0.3VCC

V
VIH Input high-voltage 0.7VCC VCC + 0.5

Vhys
(1) Hysteresis of schmitt trigger inputs 0.05VCC

(2) –

VOL
(1) Output low-voltage 3mA sink current 0 0.4

tr
(1) Rise time for both SDA and SCL 20 + 0.1Cb

(3)(2) 300

nstof
(1) Output fall time from VIHmin to VILmax 10pF < Cb < 400pF(3) 20 + 0.1Cb

(3)(2) 250

tSP
(1) Spikes suppressed by input filter 0 50(2)

Ii Input current each I/O pin 0.1VCC < Vi < 0.9VCC -10 10 µA

Ci
(1) Capacitance for each I/O pin – 10 pF

fSCL SCL clock frequency fCK
(4) > max(16fSCL, 250kHz)(5) 0 400 kHz

Rp Value of pull-up resistor

fSCL  100kHz

fSCL > 100kHz

tHD;STA Hold time (repeated) START condition
fSCL  100kHz 4.0 –

µs

fSCL > 100kHz 0.6 –

tLOW Low period of the SCL clock
fSCL  100kHz 4.7 –

fSCL > 100kHz 1.3 –

tHIGH High period of the SCL clock
fSCL  100kHz 4.0 –

fSCL > 100kHz 0.6 –

tSU;STA Setup time for a repeated START condition
fSCL  100kHz 4.7 –

fSCL > 100kHz 0.6 –

tHD;DAT Data hold time
fSCL  100kHz 0 3.45

fSCL > 100kHz 0 0.9

tSU;DAT Data setup time
fSCL  100kHz 250 –

ns
fSCL > 100kHz 100 –

tSU;STO Setup time for STOP condition
fSCL  100kHz 4.0 –

µs
fSCL > 100kHz 0.6 –

tBUF
Bus free time between a STOP and START
condition

fSCL  100kHz 4.7 –

fSCL > 100kHz 1.3 –

VCC 0.4V–

3mA

1000ns
Cb


VCC 0.4V–

3mA

300ns
Cb

315
2545U–AVR–11/2015

ATmega48/88/168
2. Required only for fSCL > 100kHz.

3. Cb = capacitance of one bus line in pF.

4. fCK = CPU clock frequency.

5. This requirement applies to all Atmel ATmega48/88/168 2-wire Serial Interface operation. Other devices connected to the 2-
wire Serial Bus need only obey the general fSCL requirement.

Figure 29-4. 2-wire serial bus timing.

29.7 SPI timing characteristics

See Figure 29-5 on page 317 and Figure 29-6 on page 317 for details.

Note: 1. In SPI programming mode the minimum SCK high/low period is:
- 2 tCLCL for fCK < 12MHz
- 3 tCLCL for fCK > 12MHz

tSU;STA

tLOW

tHIGH

tLOW

tof

tHD;STA tHD;DAT tSU;DAT
tSU;STO

tBUF

SCL

SDA

tr

Table 29-6. SPI timing parameters.

Description Mode Minimum Typical Maximum

1 SCK period Master
See Table 19-5
on page 173

ns

2 SCK high/low Master 50% duty cycle

3 Rise/fall time Master 3.6

4 Setup Master 10

5 Hold Master 10

6 Out to SCK Master 0.5 • tsck

7 SCK to out Master 10

8 SCK to out high Master 10

9 SS low to out Slave 15

10 SCK period Slave 4 • tck

11 SCK high/low(1) Slave 2 • tck

12 Rise/fall time Slave 1600

13 Setup Slave 10

14 Hold Slave tck

15 SCK to out Slave 15

16 SCK to SS high Slave 20

17 SS high to tri-state Slave 10

18 SS low to SCK Slave 20
316
2545U–AVR–11/2015

ATmega48/88/168
Figure 29-5. SPI interface timing requirements (master mode).

Figure 29-6. SPI interface timing requirements (slave mode).

MOSI
(Data output)

SCK
(CPOL = 1)

MISO
(Data input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

6 1

2 2

34 5

87

MISO
(Data output)

SCK
(CPOL = 1)

MOSI
(Data input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

10

11 11

1213 14

1715

9

X

16
317
2545U–AVR–11/2015

ATmega48/88/168
29.8 ADC characteristics

Note: 1. AVCC absolute min./max.: 1.8V/5.5V

Table 29-7. ADC characteristics.

Symbol Parameter Condition Minimum Typical Maximum Units

Resolution 10 Bits

Absolute accuracy (Including
INL, DNL, quantization error,
gain and offset error)

VREF = 4V, VCC = 4V,
ADC clock = 200kHz

2

LSB

VREF = 4V, VCC = 4V,
ADC clock = 1MHz

4.5

VREF = 4V, VCC = 4V,
ADC clock = 200kHz

Noise reduction mode

2

VREF = 4V, VCC = 4V,
ADC clock = 1MHz
Noise reduction mode

4.5

Integral non-linearity (INL)
VREF = 4V, VCC = 4V,
ADC clock = 200kHz

0.5

Differential non-linearity (DNL)
VREF = 4V, VCC = 4V,
ADC clock = 200kHz

0.25

Gain error
VREF = 4V, VCC = 4V,
ADC clock = 200kHz

2

Offset error
VREF = 4V, VCC = 4V,
ADC clock = 200kHz

2

Conversion time Free running conversion 13 260 µs

Clock frequency 50 1000 kHz

AVCC
(1) Analog supply voltage VCC - 0.3 VCC + 0.3

VVREF Reference voltage 1.0 AVCC

VIN Input voltage GND VREF

Input bandwidth 38.5 kHz

VINT Internal voltage reference 1.0 1.1 1.2 V

RREF Reference input resistance 32 k

RAIN Analog input resistance 100 M
318
2545U–AVR–11/2015

ATmega48/88/168
29.9 Parallel programming characteristics

Figure 29-7. Parallel programming timing, including some general timing requirements.

Figure 29-8. Parallel programming timing, loading sequence with timing requirements(1).

Note: 1. The timing requirements shown in Figure 29-7 (that is, tDVXH, tXHXL, and tXLDX) also apply to
loading operation.

Data & contol
(DATA, XA0/1, BS1, BS2)

XTAL1
tXHXL

tWLWH

tDVXH tXLDX

tPLWL

tWLRH

WR

RDY/BSY

PAGEL tPHPL

tPLBXtBVPH

tXLWL

tWLBX
tBVWL

WLRL

XTAL1

PAGEL

tPLXHXLXHt tXLPH

ADDR0 (low byte) DATA (low byte) DATA (high byte) ADDR1 (low byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

LOAD DATA
(LOW BYTE)

LOAD DATA
(HIGH BYTE)

LOAD DATA LOAD ADDRESS
(LOW BYTE)
319
2545U–AVR–11/2015

ATmega48/88/168
Figure 29-9. Parallel programming timing, reading sequence (within the same page) with timing
requirements(1).

Note: 1. The timing requirements shown in Figure 29-7 on page 319 (that is, tDVXH, tXHXL, and tXLDX)
also apply to reading operation.

Table 29-8. Parallel programming characteristics, VCC = 5V ±10%.

Symbol Parameter Min. Typ. Max. Units

VPP Programming enable voltage 11.5 12.5 V

IPP Programming enable current 250 µA

tDVXH Data and control valid before XTAL1 high 67

ns

tXLXH XTAL1 low to XTAL1 high 200

tXHXL XTAL1 pulse width high 150

tXLDX Data and control hold after XTAL1 low 67

tXLWL XTAL1 low to WR low 0

tXLPH XTAL1 low to PAGEL high 0

tPLXH PAGEL low to XTAL1 high 150

tBVPH BS1 valid before PAGEL high 67

tPHPL PAGEL pulse width high 150

tPLBX BS1 hold after PAGEL low 67

tWLBX BS2/1 hold after WR low 67

tPLWL PAGEL low to WR low 67

tBVWL BS1 valid to WR low 67

tWLWH WR pulse width low 150

tWLRL WR low to RDY/BSY low 0 1 µs

tWLRH WR low to RDY/BSY high(1) 3.7 4.5
ms

tWLRH_CE WR low to RDY/BSY high for chip erase(2) 7.5 9

XTAL1

OE

ADDR0 (low byte) DATA (low byte) DATA (high byte) ADDR1 (low byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

READ DATA
(LOW BYTE)

READ DATA
(HIGH BYTE)

LOAD ADDRESS
(LOW BYTE)

tBVDV

tOLDV

tXLOL

tOHDZ
320
2545U–AVR–11/2015

ATmega48/88/168
Notes: 1. tWLRH is valid for the write flash, write EEPROM, write fuse bits and write lock bits
commands.

2. tWLRH_CE is valid for the chip erase command.

tXLOL XTAL1 low to OE low 0

ns
tBVDV BS1 valid to DATA valid 0 250

tOLDV OE low to DATA valid 250

tOHDZ OE high to DATA tri-stated 250

Table 29-8. Parallel programming characteristics, VCC = 5V ±10%. (Continued)

Symbol Parameter Min. Typ. Max. Units
321
2545U–AVR–11/2015

ATmega48/88/168
30. Typical characteristics

The following charts show typical behavior. These figures are not tested during manufacturing.
All current consumption measurements are performed with all I/O pins configured as inputs and
with internal pull-ups enabled. A square wave generator with rail-to-rail output is used as clock
source.

All Active- and Idle current consumption measurements are done with all bits in the PRR register
set and thus, the corresponding I/O modules are turned off. Also the Analog Comparator is
disabled during these measurements. Table 30-1 on page 328 and Table 30-2 on page 328
show the additional current consumption compared to ICC Active and ICC Idle for every I/O
module controlled by the Power Reduction Register. See “Power reduction register” on page 41
for details.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating
frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient
temperature. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as CL*VCC*f where
CL = load capacitance, VCC = operating voltage and f = average switching frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to
function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timer
enabled and Power-down mode with Watchdog Timer disabled represents the differential
current drawn by the Watchdog Timer.

30.1 Active supply current

Figure 30-1. Active supply current vs. frequency (0.1MHz - 1.0MHz).

5.5V

5.0V

4.5V

4.0V

3.3V

2.7V

1.8V

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C
 (

m
A

)

322
2545U–AVR–11/2015

ATmega48/88/168
Figure 30-2. Active supply current vs. frequency (1MHz - 24MHz).

Figure 30-3. Active supply current vs. VCC (internal RC oscillator, 128kHz).

0

2

4

6

8

10

12

14

16

18

0 4 8 12 16 20 24

Frequency (MHz)

I C
C
 (

m
A

)

2.7V

1.8V

3.3V

4.0V

4.5V

5.0V

5.5V

,

85°C
25°C

-40°C

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

323
2545U–AVR–11/2015

ATmega48/88/168
Figure 30-4. Active supply current vs. VCC (internal RC oscillator, 1MHz).

Figure 30-5. Active supply current vs. VCC (internal RC oscillator, 8MHz).

,

85°C

25°C
-40°C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

,

85°C

25°C
-40°C

0

1

2

3

4

5

6

7

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

324
2545U–AVR–11/2015

ATmega48/88/168
Figure 30-6. Active supply current vs. VCC (32kHz external oscillator).

30.2 Idle supply current

Figure 30-7. Idle supply current vs. frequency (0.1MHz - 1.0MHz).

25°C

0

10

20

30

40

50

60

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

µA
)

5.5V

5.0V

4.5V

4.0V

3.3V

2.7V

1.8V

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C
 (

m
A

)

325
2545U–AVR–11/2015

ATmega48/88/168
Figure 30-8. Idle supply current vs. frequency (1MHz - 24MHz).

Figure 30-9. Idle supply current vs. VCC (internal RC oscillator, 128kHz).

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 4 8 12 16 20 24

Frequency (MHz)

I C
C
 (

m
A

)

2.7V

1.8V

3.3V

4.0V

4.5V

5.0V

5.5V

85°C
25°C

-40°C

0

0.005

0.01

0.015

0.02

0.025

0.03

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

326
2545U–AVR–11/2015

ATmega48/88/168
Figure 30-10. Idle supply current vs. VCC (internal RC oscillator, 1MHz).

Figure 30-11. Idle supply current vs. VCC (internal RC oscillator, 8MHz).

,

85°C
25°C

-40°C

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

,

85°C
25°C

-40°C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

327
2545U–AVR–11/2015

ATmega48/88/168
Figure 30-12. Idle supply current vs. VCC (32kHz external oscillator).

30.3 Supply current of I/O modules

The tables and formulas below can be used to calculate the additional current consumption for
the different I/O modules in Active and Idle mode. The enabling or disabling of the I/O modules
are controlled by the Power Reduction Register. See “Power reduction register” on page 41 for
details.

25°C

0

5

10

15

20

25

30

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

µ
A

)

Table 30-1. Additional current consumption for the different I/O modules (absolute values).

PRR bit Typical numbers

VCC = 2V, F = 1MHz VCC = 3V, F = 4MHz VCC = 5V, F = 8MHz

PRUSART0 8.0µA 51µA 220µA

PRTWI 12µA 75µA 315µA

PRTIM2 11µA 72µA 300µA

PRTIM1 5.0µA 32µA 130µA

PRTIM0 4.0µA 24µA 100µA

PRSPI 15µA 95µA 400µA

PRADC 12µA 75µA 315µA

Table 30-2. Additional current consumption (percentage) in active and idle mode.

PRR bit

Additional current consumption
compared to active with external clock
(see Figure 30-1 on page 322 and
Figure 30-2 on page 323)

Additional current consumption
compared to Idle with external clock
(see Figure 30-7 on page 325 and
Figure 30-8 on page 326)

PRUSART0 3.3% 18%

PRTWI 4.8% 26%

PRTIM2 4.7% 25%
328
2545U–AVR–11/2015

ATmega48/88/168
It is possible to calculate the typical current consumption based on the numbers from Table 30-2
on page 328 for other VCC and frequency settings than listed in Table 30-1 on page 328.

30.3.0.1 Example 1

Calculate the expected current consumption in idle mode with USART0, TIMER1, and TWI
enabled at VCC = 3.0V and F = 1MHz. From Table 30-2 on page 328, third column, we see that
we need to add 18% for the USART0, 26% for the TWI, and 11% for the TIMER1 module.
Reading from Figure 30-7 on page 325, we find that the idle current consumption is ~0.075mA at
VCC = 3.0V and F = 1MHz. The total current consumption in idle mode with USART0, TIMER1,
and TWI enabled, gives:

30.3.0.2 Example 2

Same conditions as in example 1, but in active mode instead. From Table 30-2 on page 328,
second column we see that we need to add 3.3% for the USART0, 4.8% for the TWI, and 2.0%
for the TIMER1 module. Reading from Figure 30-1 on page 322, we find that the active current
consumption is ~0.42mA at VCC = 3.0V and F = 1MHz. The total current consumption in idle
mode with USART0, TIMER1, and TWI enabled, gives:

30.3.0.3 Example 3

All I/O modules should be enabled. Calculate the expected current consumption in active mode
at VCC = 3.6V and F = 10MHz. We find the active current consumption without the I/O modules
to be ~ 4.0mA (from Figure 30-2 on page 323). Then, by using the numbers from Table 30-2 on
page 328 - second column, we find the total current consumption:

PRTIM1 2.0% 11%

PRTIM0 1.6% 8.5%

PRSPI 6.1% 33%

PRADC 4.9% 26%

Table 30-2. Additional current consumption (percentage) in active and idle mode. (Continued)

PRR bit

Additional current consumption
compared to active with external clock
(see Figure 30-1 on page 322 and
Figure 30-2 on page 323)

Additional current consumption
compared to Idle with external clock
(see Figure 30-7 on page 325 and
Figure 30-8 on page 326)

ICCtotal 0.075mA 1 0.18 0.26 0.11+ + +  0.116mA 

ICCtotal 0.42mA 1 0.033 0.048 0.02+ + +  0.46mA 

ICCtotal 4.0mA 1 0.033 0.048 0.047 0.02 0.016 0.061 0.049+ + + + + + +  5.1mA 
329
2545U–AVR–11/2015

ATmega48/88/168
30.4 Power-down supply current

Figure 30-13. Power-down supply current vs. VCC (watchdog timer disabled).

Figure 30-14. Power-down supply current vs. VCC (watchdog timer enabled).

85°C

25°C
-40°C

0

0.5

1

1.5

2

2.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

µ
A

)

85°C

25°C
-40°C

0

2

4

6

8

10

12

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

µ
A

)

330
2545U–AVR–11/2015

ATmega48/88/168
30.5 Power-save supply current

Figure 30-15. Power-save supply current vs. VCC (watchdog timer disabled).

30.6 Standby supply current

Figure 30-16. Standby supply current vs. VCC (low power crystal oscillator).

25°C

0

2

4

6

8

10

12

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

µA
)

 6MHz Xtal
 6MHz Res.

 4MHz Xtal
 4MHz Res.

 455kHz Res.

 32kHz Xtal

 2MHz Xtal
 2MHz Res.

 1MHz Res.

0

20

40

60

80

100

120

140

160

180

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

µA
)

331
2545U–AVR–11/2015

ATmega48/88/168
Figure 30-17. Standby supply current vs. VCC (full swing crystal oscillator).

30.7 Pin pull-up

Figure 30-18. I/O pin pull-up resistor current vs. input voltage (VCC = 5V).

6MHz Xtal
(ckopt)

4MHz Xtal
(ckopt)
2MHz Xtal
(ckopt)

16MHz Xtal

12MHz Xtal

0

50

100

150

200

250

300

350

400

450

500

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

µ
A

)

85°C 25°C

-40°C

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6

VOP (V)

I O
P
 (µ

A
)

332
2545U–AVR–11/2015

ATmega48/88/168
Figure 30-19. I/O pin pull-up resistor current vs. input voltage (VCC = 2.7V).

Figure 30-20. Reset pull-up resistor current vs. reset pin voltage (VCC = 5V).

85°C 25°C

-40°C

0

10

20

30

40

50

60

70

80

90

0 0.5 1 1.5 2 2.5 3

VOP (V)

I O
P
 (µ

A
)

0

20

40

60

80

100

120

0 1 2 3 4 5 6

VRESET (V)

I R
E

S
E

T
 (

µ
A

)

-40°C 25°C

85°C
333
2545U–AVR–11/2015

ATmega48/88/168
Figure 30-21. Reset pull-up resistor current vs. reset pin voltage (VCC = 2.7V).

30.8 Pin driver strength

Figure 30-22. I/O pin source current vs. output voltage (VCC = 5V).

-40°C

0

10

20

30

40

50

60

70

0 0.5 1 1.5 2 2.5 3

VRESET (V)

I R
E

S
E

T
 (

µA
)

25°C

85°C

85°C

25°C

-40°C

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6

VOH (V)

I O
H
 (m

A
)

334
2545U–AVR–11/2015

ATmega48/88/168
Figure 30-23. I/O pin source current vs. output voltage (VCC = 2.7V).

Figure 30-24. I/O pin source current vs. output voltage (VCC = 1.8V).

85°C
25°C

-40°C

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2 2.5 3

VOH (V)

I O
H
 (m

A
)

85°C

25°C -40°C

0

1

2

3

4

5

6

7

8

9

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

VOH (V)

I O
H
 (m

A
)

335
2545U–AVR–11/2015

ATmega48/88/168
Figure 30-25. I/O pin sink current vs. output voltage (VCC = 5V).

Figure 30-26. I/O pin sink current vs. output voltage (VCC = 2.7V).

85°C

25°C

0

10

20

30

40

50

60

70

80

0 0.5 1 1.5 2 2.5

VOL (V)

I O
L

(m
A

)

85°C

25°C

-40°C

0

5

10

15

20

25

30

35

40

0 0.5 1 1.5 2 2.5

VOL (V)

I O
L
 (

m
A

)

336
2545U–AVR–11/2015

ATmega48/88/168
Figure 30-27. I/O pin sink current vs. output voltage (VCC = 1.8V).

30.9 Pin thresholds and hysteresis

Figure 30-28. I/O pin input threshold voltage vs. VCC (VIH, I/O pin read as '1').

85°C

25°C
-40°C

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

VOL (V)

I O
L

(m
A

)

85°C
25°C

-40°C

0

0.5

1

1.5

2

2.5

3

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
hr

es
ho

ld
 (

V
)

337
2545U–AVR–11/2015

ATmega48/88/168
Figure 30-29. I/O pin input threshold voltage vs. VCC (VIL, I/O pin read as '0').

Figure 30-30. I/O pin input hystreresis vs. Vcc.

85°C

25°C

-40°C

0

0.5

1

1.5

2

2.5

3

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h

re
sh

o
ld

 (
V

)

85°C
25°C

-40°C

0

0.1

0.2

0.3

0.4

0.5

0.6

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

In
p

u
t
h

ys
te

re
si

s
(V

)

338
2545U–AVR–11/2015

ATmega48/88/168
Figure 30-31. Reset input threshold voltage vs. VCC (VIH, reset pin read as '1').

Figure 30-32. Reset input threshold voltage vs. VCC (VIL, reset pin read as '0').

85°C
25°C

-40°C

0

0.5

1

1.5

2

2.5

3

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h
re

sh
o
ld

 (
V

)

85°C
25°C

-40°C

0

0.5

1

1.5

2

2.5

3

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h

re
sh

o
ld

 (
V

)

339
2545U–AVR–11/2015

ATmega48/88/168
Figure 30-33. Reset input pin hysteresis vs. VCC.

30.10 BOD thresholds and analog comparator offset

Figure 30-34. BOD thresholds vs. temperature (BODLEVEL is 4.3V).

 VIL

0

100

200

300

400

500

600

2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

In
pu

t h
ys

te
re

si
s

(m
V

)

4.2

4.25

4.3

4.35

4.4

4.45

4.5

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Temperature (°C)

T
h
re

sh
o
ld

 (
V

)

Rising Vcc

Falling Vcc
340
2545U–AVR–11/2015

ATmega48/88/168
Figure 30-35. BOD thresholds vs. temperature (BODLEVEL is 2.7V).

Figure 30-36. BOD thresholds vs. temperature (BODLEVEL is 1.8V).

2.6

2.65

2.7

2.75

2.8

2.85

2.9

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Temperature (°C)

T
h

re
sh

o
ld

 (
V

)

Rising Vcc

Falling Vcc

1.76

1.78

1.8

1.82

1.84

1.86

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Temperature (°C)

T
h
re

sh
o
ld

 (
V

)

Rising Vcc

Falling Vcc
341
2545U–AVR–11/2015

ATmega48/88/168
Figure 30-37. Bandgap voltage vs. VCC.

Figure 30-38. Analog comparator offset voltage vs. common mode voltage (VCC = 5V).

-40°C

85°C

1.08

1.085

1.09

1.095

1.1

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

VCC (V)

B
an

dg
ap

 v
ol

ta
ge

 (
V

)

-40°C

85°C

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Common Mode Voltage (V)

A
n

a
lo

g
 c

o
m

p
a

ra
to

r
o

ff
se

t
vo

lta
g

e
 (

V
)

342
2545U–AVR–11/2015

ATmega48/88/168
Figure 30-39. Analog comparator offset voltage vs. common mode voltage (VCC = 2.7V).

30.11 Internal oscillator speed

Figure 30-40. Watchdog oscillator frequency vs. VCC.

-40°C
85°C

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5

Common Mode Voltage (V)

A
na

lo
g

co
m

pa
ra

to
r

of
fs

et
 v

ol
ta

ge

(m
V

)

85°C

25°C

-40°C

95

100

105

110

115

120

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F
R

C
 (

kH
z)
343
2545U–AVR–11/2015

ATmega48/88/168
Figure 30-41. Calibrated 8MHz RC oscillator frequency vs. temperature.

Figure 30-42. Calibrated 8MHz RC oscillator frequency vs. VCC.

5.0V
2.7V
1.8V

7.4

7.5

7.6

7.7

7.8

7.9

8

8.1

8.2

8.3

8.4

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Temperature (°C)

F
R

C
 (

M
H

z)

85°C

25°C

-40°C

7.4

7.6

7.8

8

8.2

8.4

8.6

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F
R

C
 (

M
H

z)
344
2545U–AVR–11/2015

ATmega48/88/168
Figure 30-43. Calibrated 8MHz RC oscillator frequency vs. osccal value.

30.12 Current consumption of peripheral units

Figure 30-44. Brownout detector current vs. VCC.

85°C
25°C

-40°C

3.5

5.5

7.5

9.5

11.5

13.5

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

OSCCAL VALUE

F
R

C
 (

M
H

z)

85°C

25°C

-40°C

18

20

22

24

26

28

30

32

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

µA
)

345
2545U–AVR–11/2015

ATmega48/88/168
Figure 30-45. ADC current vs. VCC (AREF = AVCC).

Figure 30-46. AREF external reference current vs. VCC.

85°C

25°C

-40°C

150

200

250

300

350

400

450

500

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

µA
)

85°C
25°C

-40°C

0

20

40

60

80

100

120

140

160

180

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

µA
)

346
2545U–AVR–11/2015

ATmega48/88/168
Figure 30-47. Analog comparator current vs. VCC.

Figure 30-48. Programming current vs. VCC.

85°C

25°C

-40°C

0

20

40

60

80

100

120

140

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

µ
A

)

85°C

25°C

-40°C

0

2

4

6

8

10

12

14

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85°C

25°C

-40°C

0

2

4

6

8

10

12

14

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

347
2545U–AVR–11/2015

ATmega48/88/168
30.13 Current consumption in reset and reset pulse width

Figure 30-49. Reset supply current vs. VCC (0.1MHz - 1.0MHz, excluding current through the reset
pull-up).

Figure 30-50. Reset supply current vs. VCC (1MHz - 24MHz, excluding current through the reset
pull-up).

5.5V

5.0V

4.5V

4.0V

3.3V

2.7V

1.8V

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C
 (

m
A

)

,

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 4 8 12 16 20 24

Frequency (MHz)

I C
C
 (

m
A

)

2.7V

1.8V

3.3V

4.0V

4.5V

5.0V

5.5V
348
2545U–AVR–11/2015

ATmega48/88/168
Figure 30-51. Reset pulse width vs. VCC.

85°C

25°C
-40°C

0

500

1000

1500

2000

2500

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

P
ul

se
w

id
th

 (
ns

)

349
2545U–AVR–11/2015

ATmega48/88/168
31. Register summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

(0xFF) Reserved – – – – – – – –

(0xFE) Reserved – – – – – – – –

(0xFD) Reserved – – – – – – – –

(0xFC) Reserved – – – – – – – –

(0xFB) Reserved – – – – – – – –

(0xFA) Reserved – – – – – – – –

(0xF9) Reserved – – – – – – – –

(0xF8) Reserved – – – – – – – –

(0xF7) Reserved – – – – – – – –

(0xF6) Reserved – – – – – – – –

(0xF5) Reserved – – – – – – – –

(0xF4) Reserved – – – – – – – –

(0xF3) Reserved – – – – – – – –

(0xF2) Reserved – – – – – – – –

(0xF1) Reserved – – – – – – – –

(0xF0) Reserved – – – – – – – –

(0xEF) Reserved – – – – – – – –

(0xEE) Reserved – – – – – – – –

(0xED) Reserved – – – – – – – –

(0xEC) Reserved – – – – – – – –

(0xEB) Reserved – – – – – – – –

(0xEA) Reserved – – – – – – – –

(0xE9) Reserved – – – – – – – –

(0xE8) Reserved – – – – – – – –

(0xE7) Reserved – – – – – – – –

(0xE6) Reserved – – – – – – – –

(0xE5) Reserved – – – – – – – –

(0xE4) Reserved – – – – – – – –

(0xE3) Reserved – – – – – – – –

(0xE2) Reserved – – – – – – – –

(0xE1) Reserved – – – – – – – –

(0xE0) Reserved – – – – – – – –

(0xDF) Reserved – – – – – – – –

(0xDE) Reserved – – – – – – – –

(0xDD) Reserved – – – – – – – –

(0xDC) Reserved – – – – – – – –

(0xDB) Reserved – – – – – – – –

(0xDA) Reserved – – – – – – – –

(0xD9) Reserved – – – – – – – –

(0xD8) Reserved – – – – – – – –

(0xD7) Reserved – – – – – – – –

(0xD6) Reserved – – – – – – – –

(0xD5) Reserved – – – – – – – –

(0xD4) Reserved – – – – – – – –

(0xD3) Reserved – – – – – – – –

(0xD2) Reserved – – – – – – – –

(0xD1) Reserved – – – – – – – –

(0xD0) Reserved – – – – – – – –

(0xCF) Reserved – – – – – – – –

(0xCE) Reserved – – – – – – – –

(0xCD) Reserved – – – – – – – –

(0xCC) Reserved – – – – – – – –

(0xCB) Reserved – – – – – – – –

(0xCA) Reserved – – – – – – – –

(0xC9) Reserved – – – – – – – –

(0xC8) Reserved – – – – – – – –

(0xC7) Reserved – – – – – – – –

(0xC6) UDR0 USART I/O data register 194

(0xC5) UBRR0H USART baud rate register high 198

(0xC4) UBRR0L USART baud rate register low 198

(0xC3) Reserved – – – – – – – –

(0xC2) UCSR0C UMSEL01 UMSEL00 UPM01 UPM00 USBS0 UCSZ01 /UDORD0 UCSZ00 / UCPHA0 UCPOL0 196/211

(0xC1) UCSR0B RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 195

(0xC0) UCSR0A RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 194
350
2545U–AVR–11/2015

ATmega48/88/168
(0xBF) Reserved – – – – – – – –

(0xBE) Reserved – – – – – – – –

(0xBD) TWAMR TWAM6 TWAM5 TWAM4 TWAM3 TWAM2 TWAM1 TWAM0 – 244

(0xBC) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE 241

(0xBB) TWDR 2-wire serial interface data register 243

(0xBA) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 244

(0xB9) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0 243

(0xB8) TWBR 2-wire serial interface bit rate register 241

(0xB7) Reserved – – – – – – –

(0xB6) ASSR – EXCLK AS2 TCN2UB OCR2AUB OCR2BUB TCR2AUB TCR2BUB 163

(0xB5) Reserved – – – – – – – –

(0xB4) OCR2B Timer/Counter2 output compare register B 162

(0xB3) OCR2A Timer/Counter2 output compare register A 161

(0xB2) TCNT2 Timer/Counter2 (8-bit) 161

(0xB1) TCCR2B FOC2A FOC2B – – WGM22 CS22 CS21 CS20 160

(0xB0) TCCR2A COM2A1 COM2A0 COM2B1 COM2B0 – – WGM21 WGM20 157

(0xAF) Reserved – – – – – – – –

(0xAE) Reserved – – – – – – – –

(0xAD) Reserved – – – – – – – –

(0xAC) Reserved – – – – – – – –

(0xAB) Reserved – – – – – – – –

(0xAA) Reserved – – – – – – – –

(0xA9) Reserved – – – – – – – –

(0xA8) Reserved – – – – – – – –

(0xA7) Reserved – – – – – – – –

(0xA6) Reserved – – – – – – – –

(0xA5) Reserved – – – – – – – –

(0xA4) Reserved – – – – – – – –

(0xA3) Reserved – – – – – – – –

(0xA2) Reserved – – – – – – – –

(0xA1) Reserved – – – – – – – –

(0xA0) Reserved – – – – – – – –

(0x9F) Reserved – – – – – – – –

(0x9E) Reserved – – – – – – – –

(0x9D) Reserved – – – – – – – –

(0x9C) Reserved – – – – – – – –

(0x9B) Reserved – – – – – – – –

(0x9A) Reserved – – – – – – – –

(0x99) Reserved – – – – – – – –

(0x98) Reserved – – – – – – – –

(0x97) Reserved – – – – – – – –

(0x96) Reserved – – – – – – – –

(0x95) Reserved – – – – – – – –

(0x94) Reserved – – – – – – – –

(0x93) Reserved – – – – – – – –

(0x92) Reserved – – – – – – – –

(0x91) Reserved – – – – – – – –

(0x90) Reserved – – – – – – – –

(0x8F) Reserved – – – – – – – –

(0x8E) Reserved – – – – – – – –

(0x8D) Reserved – – – – – – – –

(0x8C) Reserved – – – – – – – –

(0x8B) OCR1BH Timer/Counter1 - output compare register B high byte 138

 (0x8A) OCR1BL Timer/Counter1 - output compare register B low byte 138

(0x89) OCR1AH Timer/Counter1 - output compare register A high byte 138

(0x88) OCR1AL Timer/Counter1 - output compare register A low byte 138

(0x87) ICR1H Timer/Counter1 - input capture register high byte 139

(0x86) ICR1L Timer/Counter1 - input capture register low byte 139

(0x85) TCNT1H Timer/Counter1 - counter register high byte 138

(0x84) TCNT1L Timer/Counter1 - counter register low byte 138

(0x83) Reserved – – – – – – – –

(0x82) TCCR1C FOC1A FOC1B – – – – – – 137

(0x81) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 136

(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 134

(0x7F) DIDR1 – – – – – – AIN1D AIN0D 248

(0x7E) DIDR0 – – ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D 265

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
351
2545U–AVR–11/2015

ATmega48/88/168
(0x7D) Reserved – – – – – – – –

(0x7C) ADMUX REFS1 REFS0 ADLAR – MUX3 MUX2 MUX1 MUX0 261

(0x7B) ADCSRB – ACME – – – ADTS2 ADTS1 ADTS0 264

(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 262

(0x79) ADCH ADC data register high byte 264

(0x78) ADCL ADC data register low byte 264

(0x77) Reserved – – – – – – – –

(0x76) Reserved – – – – – – – –

(0x75) Reserved – – – – – – – –

(0x74) Reserved – – – – – – – –

(0x73) Reserved – – – – – – – –

(0x72) Reserved – – – – – – – –

(0x71) Reserved – – – – – – – –

(0x70) TIMSK2 – – – – – OCIE2B OCIE2A TOIE2 162

(0x6F) TIMSK1 – – ICIE1 – – OCIE1B OCIE1A TOIE1 139

(0x6E) TIMSK0 – – – – – OCIE0B OCIE0A TOIE0 111

(0x6D) PCMSK2 PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 75

(0x6C) PCMSK1 – PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 75

(0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 75

(0x6A) Reserved – – – – – – – –

(0x69) EICRA – – – – ISC11 ISC10 ISC01 ISC00 71

(0x68) PCICR – – – – – PCIE2 PCIE1 PCIE0

(0x67) Reserved – – – – – – – –

(0x66) OSCCAL Oscillator calibration register 37

(0x65) Reserved – – – – – – – –

(0x64) PRR PRTWI PRTIM2 PRTIM0 – PRTIM1 PRSPI PRUSART0 PRADC 41

(0x63) Reserved – – – – – – – –

(0x62) Reserved – – – – – – – –

(0x61) CLKPR CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 37

(0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 53

0x3F (0x5F) SREG I T H S V N Z C 11

0x3E (0x5E) SPH – – – – – (SP10) 5. SP9 SP8 13

0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 13

0x3C (0x5C) Reserved – – – – – – – –

0x3B (0x5B) Reserved – – – – – – – –

0x3A (0x5A) Reserved – – – – – – – –

0x39 (0x59) Reserved – – – – – – – –

0x38 (0x58) Reserved – – – – – – – –

0x37 (0x57) SPMCSR SPMIE (RWWSB)5. – (RWWSRE)5. BLBSET PGWRT PGERS SELFPRGEN 290

0x36 (0x56) Reserved – – – – – – – –

0x35 (0x55) MCUCR – – – PUD – – IVSEL IVCE

0x34 (0x54) MCUSR – – – – WDRF BORF EXTRF PORF

0x33 (0x53) SMCR – – – – SM2 SM1 SM0 SE 39

0x32 (0x52) Reserved – – – – – – – –

0x31 (0x51) Reserved – – – – – – – –

0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 247

0x2F (0x4F) Reserved – – – – – – – –

0x2E (0x4E) SPDR SPI data register 174

0x2D (0x4D) SPSR SPIF WCOL – – – – – SPI2X 173

0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 172

0x2B (0x4B) GPIOR2 General purpose I/O register 2 26

0x2A (0x4A) GPIOR1 General purpose I/O register 1 26

0x29 (0x49) Reserved – – – – – – – –

0x28 (0x48) OCR0B Timer/Counter0 output compare register B

0x27 (0x47) OCR0A Timer/Counter0 output compare register A

0x26 (0x46) TCNT0 Timer/Counter0 (8-bit)

0x25 (0x45) TCCR0B FOC0A FOC0B – – WGM02 CS02 CS01 CS00

0x24 (0x44) TCCR0A COM0A1 COM0A0 COM0B1 COM0B0 – – WGM01 WGM00

0x23 (0x43) GTCCR TSM – – – – – PSRASY PSRSYNC 143/164

0x22 (0x42) EEARH (EEPROM address register high byte) 5. 22

0x21 (0x41) EEARL EEPROM address register low byte 22

0x20 (0x40) EEDR EEPROM data register 22

0x1F (0x3F) EECR – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE 22

0x1E (0x3E) GPIOR0 General purpose I/O register 0 26

0x1D (0x3D) EIMSK – – – – – – INT1 INT0 73

0x1C (0x3C) EIFR – – – – – – INTF1 INTF0 73

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
352
2545U–AVR–11/2015

ATmega48/88/168
Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.

2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The
CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The Atmel
ATmega48/88/168 is a complex microcontroller with more peripheral units than can be supported within the 64 location
reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the
ST/STS/STD and LD/LDS/LDD instructions can be used.

5. Only valid for ATmega88/168

0x1B (0x3B) PCIFR – – – – – PCIF2 PCIF1 PCIF0

0x1A (0x3A) Reserved – – – – – – – –

0x19 (0x39) Reserved – – – – – – – –

0x18 (0x38) Reserved – – – – – – – –

0x17 (0x37) TIFR2 – – – – – OCF2B OCF2A TOV2 162

0x16 (0x36) TIFR1 – – ICF1 – – OCF1B OCF1A TOV1 140

0x15 (0x35) TIFR0 – – – – – OCF0B OCF0A TOV0

0x14 (0x34) Reserved – – – – – – – –

0x13 (0x33) Reserved – – – – – – – –

0x12 (0x32) Reserved – – – – – – – –

0x11 (0x31) Reserved – – – – – – – –

0x10 (0x30) Reserved – – – – – – – –

0x0F (0x2F) Reserved – – – – – – – –

0x0E (0x2E) Reserved – – – – – – – –

0x0D (0x2D) Reserved – – – – – – – –

0x0C (0x2C) Reserved – – – – – – – –

0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 93

0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 93

0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 93

0x08 (0x28) PORTC – PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 92

0x07 (0x27) DDRC – DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 92

0x06 (0x26) PINC – PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 92

0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 92

0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 92

0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 92

0x02 (0x22) Reserved – – – – – – – –

0x01 (0x21) Reserved – – – – – – – –

0x0 (0x20) Reserved – – – – – – – –

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
353
2545U–AVR–11/2015

ATmega48/88/168
32. Instruction set summary

Mnemonics Operands Description Operation Flags #Clocks

ARITHMETIC AND LOGIC INSTRUCTIONS

ADD Rd, Rr Add two registers Rd  Rd + Rr Z, C, N, V, H 1

ADC Rd, Rr Add with carry two registers Rd  Rd + Rr + C Z, C, N, V, H 1

ADIW Rdl,K Add immediate to word Rdh:Rdl  Rdh:Rdl + K Z, C, N, V, S 2

SUB Rd, Rr Subtract two registers Rd  Rd - Rr Z, C, N, V, H 1

SUBI Rd, K Subtract constant from register Rd  Rd - K Z, C, N, V, H 1

SBC Rd, Rr Subtract with carry two registers Rd  Rd - Rr - C Z, C, N, V, H 1

SBCI Rd, K Subtract with carry constant from reg. Rd  Rd - K - C Z, C, N, V, H 1

SBIW Rdl,K Subtract immediate from Word Rdh:Rdl  Rdh:Rdl - K Z, C, N, V, S 2

AND Rd, Rr Logical AND registers Rd Rd  Rr Z, N, V 1

ANDI Rd, K Logical AND register and constant Rd  Rd K Z, N, V 1

OR Rd, Rr Logical OR registers Rd  Rd v Rr Z, N, V 1

ORI Rd, K Logical OR register and constant Rd Rd v K Z, N, V 1

EOR Rd, Rr Exclusive OR registers Rd  Rd  Rr Z, N, V 1

COM Rd One’s complement Rd  0xFF  Rd Z, C, N, V 1

NEG Rd Two’s complement Rd  0x00  Rd Z, C, N, V, H 1

SBR Rd,K Set bit(s) in register Rd  Rd v K Z, N, V 1

CBR Rd,K Clear bit(s) in register Rd  Rd  (0xFF - K) Z, N, V 1

INC Rd Increment Rd  Rd + 1 Z, N, V 1

DEC Rd Decrement Rd  Rd  1 Z, N, V 1

TST Rd Test for zero or minus Rd  Rd  Rd Z, N, V 1

CLR Rd Clear register Rd  Rd  Rd Z, N, V 1

SER Rd Set register Rd  0xFF None 1

MUL Rd, Rr Multiply unsigned R1:R0  Rd x Rr Z, C 2

MULS Rd, Rr Multiply signed R1:R0  Rd x Rr Z, C 2

MULSU Rd, Rr Multiply signed with unsigned R1:R0  Rd x Rr Z, C 2

FMUL Rd, Rr Fractional multiply unsigned R1:R0  (Rd x Rr) << 1 Z, C 2

FMULS Rd, Rr Fractional multiply signed R1:R0  (Rd x Rr) << 1 Z, C 2

FMULSU Rd, Rr Fractional multiply signed with unsigned R1:R0  (Rd x Rr) << 1 Z, C 2

BRANCH INSTRUCTIONS

RJMP k Relative jump PC PC + k + 1 None 2

IJMP Indirect jump to (Z) PC  Z None 2

JMP(1) k Direct jump PC k None 3

RCALL k Relative subroutine call PC  PC + k + 1 None 3

ICALL Indirect call to (Z) PC  Z None 3

CALL(1) k Direct subroutine call PC  k None 4

RET Subroutine return PC  STACK None 4

RETI Interrupt return PC  STACK I 4

CPSE Rd,Rr Compare, skip if equal if (Rd = Rr) PC PC + 2 or 3 None 1/2/3

CP Rd,Rr Compare Rd  Rr Z, N, V, C, H 1

CPC Rd,Rr Compare with carry Rd  Rr  C Z, N, V, C, H 1

CPI Rd,K Compare register with immediate Rd  K Z, N, V, C, H 1

SBRC Rr, b Skip if bit in register cleared if (Rr(b)=0) PC  PC + 2 or 3 None 1/2/3

SBRS Rr, b Skip if bit in register is set if (Rr(b)=1) PC  PC + 2 or 3 None 1/2/3

SBIC P, b Skip if bit in I/O register cleared if (P(b)=0) PC  PC + 2 or 3 None 1/2/3

SBIS P, b Skip if bit in I/O register is set if (P(b)=1) PC  PC + 2 or 3 None 1/2/3

BRBS s, k Branch if status flag set if (SREG(s) = 1) then PCPC+k + 1 None 1/2

BRBC s, k Branch if status flag cleared if (SREG(s) = 0) then PCPC+k + 1 None 1/2

BREQ k Branch if equal if (Z = 1) then PC  PC + k + 1 None 1/2

BRNE k Branch if not equal if (Z = 0) then PC  PC + k + 1 None 1/2

BRCS k Branch if carry set if (C = 1) then PC  PC + k + 1 None 1/2

BRCC k Branch if carry cleared if (C = 0) then PC  PC + k + 1 None 1/2

BRSH k Branch if same or higher if (C = 0) then PC  PC + k + 1 None 1/2

BRLO k Branch if lower if (C = 1) then PC  PC + k + 1 None 1/2

BRMI k Branch if minus if (N = 1) then PC  PC + k + 1 None 1/2

BRPL k Branch if plus if (N = 0) then PC  PC + k + 1 None 1/2

BRGE k Branch if greater or equal, signed if (N  V= 0) then PC  PC + k + 1 None 1/2

BRLT k Branch if less than zero, signed if (N  V= 1) then PC  PC + k + 1 None 1/2

BRHS k Branch if half carry flag set if (H = 1) then PC  PC + k + 1 None 1/2

BRHC k Branch if half carry flag cleared if (H = 0) then PC  PC + k + 1 None 1/2

BRTS k Branch if T flag set if (T = 1) then PC  PC + k + 1 None 1/2

BRTC k Branch if T flag cleared if (T = 0) then PC  PC + k + 1 None 1/2

BRVS k Branch if overflow flag is set if (V = 1) then PC  PC + k + 1 None 1/2

BRVC k Branch if overflow flag is cleared if (V = 0) then PC  PC + k + 1 None 1/2
354
2545U–AVR–11/2015

ATmega48/88/168
BRIE k Branch if interrupt enabled if (I = 1) then PC  PC + k + 1 None 1/2

BRID k Branch if interrupt disabled if (I = 0) then PC  PC + k + 1 None 1/2

BIT AND BIT-TEST INSTRUCTIONS

SBI P,b Set bit in I/O register I/O(P,b)  1 None 2

CBI P,b Clear bit in I/O register I/O(P,b)  0 None 2

LSL Rd Logical shift left Rd(n+1)  Rd(n), Rd(0)  0 Z, C, N, V 1

LSR Rd Logical shift right Rd(n)  Rd(n+1), Rd(7)  0 Z, C, N, V 1

ROL Rd Rotate left through carry Rd(0)C,Rd(n+1) Rd(n),CRd(7) Z, C, N, V 1

ROR Rd Rotate right through carry Rd(7)C,Rd(n) Rd(n+1),CRd(0) Z, C, N, V 1

ASR Rd Arithmetic shift right Rd(n)  Rd(n+1), n=0..6 Z, C, N, V 1

SWAP Rd Swap nibbles Rd(3..0)Rd(7..4),Rd(7..4)Rd(3..0) None 1

BSET s Flag set SREG(s)  1 SREG(s) 1

BCLR s Flag clear SREG(s)  0 SREG(s) 1

BST Rr, b Bit store from register to T T  Rr(b) T 1

BLD Rd, b Bit load from T to register Rd(b)  T None 1

SEC Set carry C  1 C 1

CLC Clear carry C  0 C 1

SEN Set negative flag N  1 N 1

CLN Clear negative flag N  0 N 1

SEZ Set zero flag Z  1 Z 1

CLZ Clear zero flag Z  0 Z 1

SEI Global interrupt enable I  1 I 1

CLI Global interrupt disable I 0 I 1

SES Set signed test flag S  1 S 1

CLS Clear signed test flag S  0 S 1

SEV Set Twos complement overflow V  1 V 1

CLV Clear Twos complement overflow V  0 V 1

SET Set T in SREG T  1 T 1

CLT Clear T in SREG T  0 T 1

SEH Set half carry flag in SREG H  1 H 1

CLH Clear half carry flag in SREG H  0 H 1

DATA TRANSFER INSTRUCTIONS

MOV Rd, Rr Move between registers Rd  Rr None 1

MOVW Rd, Rr Copy register Word Rd+1:Rd  Rr+1:Rr None 1

LDI Rd, K Load immediate Rd  K None 1

LD Rd, X Load indirect Rd  (X) None 2

LD Rd, X+ Load indirect and post-inc. Rd  (X), X  X + 1 None 2

LD Rd, - X Load indirect and pre-dec. X  X - 1, Rd  (X) None 2

LD Rd, Y Load indirect Rd  (Y) None 2

LD Rd, Y+ Load indirect and post-inc. Rd  (Y), Y  Y + 1 None 2

LD Rd, - Y Load indirect and pre-dec. Y  Y - 1, Rd  (Y) None 2

LDD Rd,Y+q Load indirect with displacement Rd  (Y + q) None 2

LD Rd, Z Load indirect Rd  (Z) None 2

LD Rd, Z+ Load indirect and post-inc. Rd  (Z), Z  Z+1 None 2

LD Rd, -Z Load indirect and pre-dec. Z  Z - 1, Rd  (Z) None 2

LDD Rd, Z+q Load indirect with displacement Rd  (Z + q) None 2

LDS Rd, k Load direct from SRAM Rd  (k) None 2

ST X, Rr Store indirect (X) Rr None 2

ST X+, Rr Store indirect and post-inc. (X) Rr, X  X + 1 None 2

ST - X, Rr Store indirect and pre-dec. X  X - 1, (X)  Rr None 2

ST Y, Rr Store indirect (Y)  Rr None 2

ST Y+, Rr Store indirect and post-inc. (Y)  Rr, Y  Y + 1 None 2

ST - Y, Rr Store indirect and pre-dec. Y  Y - 1, (Y)  Rr None 2

STD Y+q,Rr Store indirect with displacement (Y + q)  Rr None 2

ST Z, Rr Store indirect (Z)  Rr None 2

ST Z+, Rr Store indirect and post-inc. (Z)  Rr, Z  Z + 1 None 2

ST -Z, Rr Store indirect and pre-dec. Z  Z - 1, (Z)  Rr None 2

STD Z+q,Rr Store indirect with displacement (Z + q)  Rr None 2

STS k, Rr Store direct to SRAM (k)  Rr None 2

LPM Load program memory R0  (Z) None 3

LPM Rd, Z Load program memory Rd  (Z) None 3

LPM Rd, Z+ Load program memory and post-inc Rd  (Z), Z  Z+1 None 3

SPM Store program memory (Z)  R1:R0 None -

IN Rd, P In port Rd  P None 1

OUT P, Rr Out port P  Rr None 1

PUSH Rr Push register on stack STACK  Rr None 2

Mnemonics Operands Description Operation Flags #Clocks
355
2545U–AVR–11/2015

ATmega48/88/168
Note: 1. These instructions are only available in Atmel ATmega168.

POP Rd Pop register from stack Rd  STACK None 2

MCU CONTROL INSTRUCTIONS

NOP No operation None 1

SLEEP Sleep (See specific descr. for sleep function) None 1

WDR Watchdog reset (See specific descr. for WDR/timer) None 1

BREAK Break For on-chip debug only None N/A

Mnemonics Operands Description Operation Flags #Clocks
356
2545U–AVR–11/2015

ATmega48/88/168
33. Ordering information

33.1 Atmel ATmega48

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.

2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS
directive). Also Halide free and fully Green.

3. See Figure 29-1 on page 312 and Figure 29-2 on page 312.

4. NiPdAu lead finish.

5. Tape & Reel.

Speed (MHz) Power supply Ordering code(2) Package(1) Operational range

10(3) 1.8V - 5.5V

ATmega48V-10AUR(5)

ATmega48V-10MUR(5)

ATmega48V-10AU
ATmega48V-10MMU
ATmega48V-10MMUR(5)

ATmega48V-10MMH(4)

ATmega48V-10MMHR(4)(5)

ATmega48V-10MU
ATmega48V-10PU

32A
32M1-A
32A
28M1
28M1
28M1
28M1
32M1-A
28P3

Industrial
(-40C to 85C)

20(3) 2.7V - 5.5V

ATmega48-20AUR(5)

ATmega48-20MUR(5)

ATmega48-20AU
ATmega48-20MMU
ATmega48-20MMUR(5)

ATmega48-20MMH(4)

ATmega48-20MMHR(4)(5)

ATmega48-20MU
ATmega48-20PU

32A
32M1-A
32A
28M1
28M1

28M1

28M1
32M1-A
28P3

Industrial
(-40C to 85C)

Package type

32A 32-lead, thin (1.0mm) plastic quad flat package (TQFP)

28M1 28-pad, 4 × 4 × 1.0 body, lead pitch 0.45mm quad flat no-lead/micro lead frame package (QFN/MLF)

32M1-A 32-pad, 5 × 5 × 1.0 body, lead pitch 0.50mm quad flat no-lead/micro lead frame package (QFN/MLF)

28P3 28-lead, 0.300” wide, plastic dual inline package (PDIP)
357
2545U–AVR–11/2015

ATmega48/88/168
33.2 Atmel ATmega88

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.

2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS
directive). Also Halide free and fully Green.

3. See Figure 29-1 on page 312 and Figure 29-2 on page 312.

4. Tape & reel

Speed (MHz) Power supply Ordering code(2) Package(1) Operational range

10(3) 1.8V - 5.5V

ATmega88V-10AUR(4)

ATmega88V-10MUR(4)

ATmega88V-10AU
ATmega88V-10MU
ATmega88V-10PU

32A
32M1-A
32A
32M1-A
28P3

Industrial
(-40C to 85C)

20(3) 2.7V - 5.5V

ATmega88-20AUR(4)

ATmega88-20MUR(4)

ATmega88-20AU
ATmega88-20MU
ATmega88-20PU

32A
32M1-A
32A
32M1-A
28P3

Industrial
(-40C to 85C)

Package type

32A 32-lead, thin (1.0mm) plastic quad flat package (TQFP)

32M1-A 32-pad, 5 × 5 × 1.0 body, lead pitch 0.50mm quad flat no-lead/micro lead frame package (QFN/MLF)

28P3 28-lead, 0.300” wide, plastic dual inline package (PDIP)
358
2545U–AVR–11/2015

ATmega48/88/168
33.3 Atmel ATmega168

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.

2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS
directive). Also Halide free and fully Green.

3. See Figure 29-1 on page 312 and Figure 29-2 on page 312.

4. Tape & reel

Speed (MHz)(3) Power supply Ordering code(2) Package(1) Operational range

10 1.8V - 5.5V

ATmega168V-10AUR(4)

ATmega168V-10MUR(4)

ATmega168V-10AU
ATmega168V-10MU
ATmega168V-10PU

32A
32M1-A
32A
32M1-A
28P3

Industrial
(-40C to 85C)

20 2.7V - 5.5V

ATmega168-20AUR(4)

ATmega168-20MUR(4)

ATmega168-20AU
ATmega168-20MU
ATmega168-20PU

32A
32M1-A
32A
32M1-A
28P3

Industrial
(-40C to 85C)

Package type

32A 32-lead, thin (1.0mm) plastic quad flat package (TQFP)

32M1-A 32-pad, 5 × 5 × 1.0 body, lead pitch 0.50mm quad flat no-lead/micro lead frame package (QFN/MLF)

28P3 28-lead, 0.300” wide, plastic dual inline package (PDIP)
359
2545U–AVR–11/2015

ATmega48/88/168
34. Packaging information

34.1 32A

TITLE DRAWING NO. REV.

32A, 32-lead, 7 x 7mm body size, 1.0mm body thickness,
0.8mm lead pitch, thin profile plastic quad flat package (TQFP)

C32A

2010-10-20

PIN 1 IDENTIFIER

0°~7°

PIN 1

L

C

A1 A2 A

D1

D

e
E1 E

B

Notes:
 1. This package conforms to JEDEC reference MS-026, Variation ABA.
 2. Dimensions D1 and E1 do not include mold protrusion. Allowable
 protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum
 plastic body size dimensions including mold mismatch.
 3. Lead coplanarity is 0.10mm maximum.

 A – – 1.20

 A1 0.05 – 0.15

 A2 0.95 1.00 1.05

 D 8.75 9.00 9.25

 D1 6.90 7.00 7.10 Note 2

 E 8.75 9.00 9.25

 E1 6.90 7.00 7.10 Note 2

 B 0.30 – 0.45

 C 0.09 – 0.20

 L 0.45 – 0.75

 e 0.80 TYP

COMMON DIMENSIONS
(Unit of measure = mm)

SYMBOL MIN NOM MAX NOTE
360
2545U–AVR–11/2015

ATmega48/88/168
34.2 28M1

TITLE DRAWING NO.GPC REV.
 Package Drawing Contact:
 packagedrawings@atmel.com 28M1ZBV B

28M1, 28-pad, 4 x 4 x 1.0mm Body, Lead Pitch 0.45mm,
2.4 x 2.4mm Exposed Pad, Thermally Enhanced
Plastic Very Thin Quad Flat No Lead Package (VQFN)

10/24/08

SIDE VIEW

Pin 1 ID

BOTTOM VIEW

TOP VIEW

Note: The terminal #1 ID is a Laser-marked Feature.

D

E

e

K

A1

C

 A

D2

E2

y

L

1

2

3

b

1

2

3

0.45 COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOT E

 A 0.80 0.90 1.00

 A1 0.00 0.02 0.05

 b 0.17 0.22 0.27

 C 0.20 REF

 D 3.95 4.00 4.05

 D2 2.35 2.40 2.45

 E 3.95 4.00 4.05

 E2 2.35 2.40 2.45

 e 0.45

 L 0.35 0.40 0.45

 y 0.00 – 0.08

 K 0.20 – –

R 0.20

0.4 Ref
(4x)
361
2545U–AVR–11/2015

ATmega48/88/168
34.3 32M1-A

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

D1

D

E1 E

eb

A3
A2

A1
 A

D2

E2

0.08 C

L

1

2

3

P

P

0
1

2

3

 A 0.80 0.90 1.00

 A1 – 0.02 0.05

 A2 – 0.65 1.00

 A3 0.20 REF

 b 0.18 0.23 0.30

 D

 D1

 D2 2.95 3.10 3.25

4.90 5.00 5.10

4.70 4.75 4.80

4.70 4.75 4.80

4.90 5.00 5.10

E

 E1

 E2 2.95 3.10 3.25

 e 0.50 BSC

 L 0.30 0.40 0.50

 P – – 0.60

 – – 12o

Note: JEDEC Standard MO-220, Fig. 2 (Anvil Singulation), VHHD-2.

TOP VIEW

SIDE VIEW

BOTTOM VIEW

0

Pin 1 ID

Pin #1 Notch
(0.20 R)

K 0.20 – –

K

K

32M1-A , 32-pad, 5 x 5 x 1.0mm Body, Lead Pitch 0.50mm,
 3.10mm Exposed Pad, Micro Lead Frame Package (MLF) 32M1-A

03/14/2014

F

362
2545U–AVR–11/2015

ATmega48/88/168
34.4 28P3

 2325 Orchard Parkway
 San Jose, CA 95131

TITLE DRAWING NO. REV.
28P3, 28-lead (0.300"/7.62mm Wide) Plastic Dual
Inline Package (PDIP) B28P3

09/28/01

PIN
1

E1

A1

B

REF

E

B1

C

L

SEATING PLANE

A

0º ~ 15º

D

e

eB

B2
(4 PLACES)

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

 A – – 4.5724

 A1 0.508 – –

 D 34.544 – 34.798 Note 1

 E 7.620 – 8.255

 E1 7.112 – 7.493 Note 1

 B 0.381 – 0.533

 B1 1.143 – 1.397

 B2 0.762 – 1.143

 L 3.175 – 3.429

 C 0.203 – 0.356

 eB – – 10.160

 e 2.540 TYP

 Note: 1. Dimensions D and E1 do not include mold Flash or Protrusion.
 Mold Flash or Protrusion shall not exceed 0.25mm (0.010").
363
2545U–AVR–11/2015

ATmega48/88/168
35. Errata

35.1 Errata Atmel ATmega48

The revision letter in this section refers to the revision of the ATmega48 device.

35.1.1 Rev K

• Full swing crystal oscillator not supported

• Parallel programming timing modified

• Write wait delay for NVM is increased

• Changed device ID

1. Full swing crystal oscillator not supported

The full swing crystal oscillator functionality is not available in revision K.

Problem fix/workaround

Use alternative clock sources available in the device.

2. Parallel programming timing modified

3 Write wait delay for NVM is increased

The write delay for non-volatile memory (NVM) is increased as follows:

4. Changed device ID

The device ID has been modified according to the to the following:

Previous die revision Revision K

Symbol Parameter Min Typ. Max Units Min Typ. Max Units

tWLRH_CE

/WR Low to
RDY/BSY

High for Chip
Erase

7.5 9 ms 9.8 10.5 ms

tBVDV
/BS1 Valid to
DATA valid

0 250 ns 0 335 ns

tOLDV
/OE Low to
DATA Valid

250 ns 335 ns

Other revisions Revision K

Symbol Minimum Wait Delay Minimum Wait Delay

tWD_ERASE 9ms 10.5ms

Any die revision Previous die revision Revision K

Signature byte address ID
(Unchanged)

Device ID read via
debugWIRE

Device ID read via
debugWIREPart 0x000 0x001 0x002

ATmega48 0x1E 0x92 0x05 0x9205 0x920A

ATmega48V 0x1E 0x92 0x05 0x9205 0x920A
364
2545U–AVR–11/2015

ATmega48/88/168
35.1.2 Rev E to J

Not sampled.

35.1.3 Rev. D

• Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when
the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem fix/workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF
nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx),
asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare
Register (OCRx).

35.1.4 Rev. C

• Reading EEPROM when system clock frequency is below 900kHz may not work

• Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Reading EEPROM when system clock frequency is below 900kHz may not work

Reading Data from the EEPROM at system clock frequency below 900kHz may result in
wrong data read.

Problem fix/workaround

Avoid using the EEPROM at clock frequency below 900kHz.

2. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when
the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem fix/workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF
nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx),
asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare
Register (OCRx).

35.1.5 Rev. B

• Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when
the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem fix/workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF
nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx),
asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare
Register (OCRx).
365
2545U–AVR–11/2015

ATmega48/88/168
35.1.6 Rev A

• Part may hang in reset

• Wrong values read after erase only operation

• Watchdog timer interrupt disabled

• Start-up time with crystal oscillator is higher than expected

• High power consumption in power-down with external clock

• Asynchronous oscillator does not stop in power-down

• Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Part may hang in reset

Some parts may get stuck in a reset state when a reset signal is applied when the internal
reset state-machine is in a specific state. The internal reset state-machine is in this state
for approximately 10ns immediately before the part wakes up after a reset, and in a 10ns
window when altering the system clock prescaler. The problem is most often seen during
In-System Programming of the device. There are theoretical possibilities of this happening
also in run-mode. The following three cases can trigger the device to get stuck in a reset-
state:

- Two succeeding resets are applied where the second reset occurs in the 10ns window
before the device is out of the reset-state caused by the first reset.

- A reset is applied in a 10ns window while the system clock prescaler value is updated by
software.

- Leaving SPI-programming mode generates an internal reset signal that can trigger this
case.

The two first cases can occur during normal operating mode, while the last case occurs
only during programming of the device.

Problem fix/workaround

The first case can be avoided during run-mode by ensuring that only one reset source is
active. If an external reset push button is used, the reset start-up time should be selected
such that the reset line is fully debounced during the start-up time.

The second case can be avoided by not using the system clock prescaler.

The third case occurs during In-System programming only. It is most frequently seen
when using the internal RC at maximum frequency.

If the device gets stuck in the reset-state, turn power off, then on again to get the device
out of this state.

2. Wrong values read after erase only operation

At supply voltages below 2.7V, an EEPROM location that is erased by the Erase Only
operation may read as programmed (0x00).

Problem fix/workaround

If it is necessary to read an EEPROM location after Erase Only, use an Atomic Write
operation with 0xFF as data in order to erase a location. In any case, the Write Only
operation can be used as intended. Thus no special considerations are needed as long as
the erased location is not read before it is programmed.
366
2545U–AVR–11/2015

ATmega48/88/168
3. Watchdog timer interrupt disabled

If the watchdog timer interrupt flag is not cleared before a new timeout occurs, the
watchdog will be disabled, and the interrupt flag will automatically be cleared. This is only
applicable in interrupt only mode. If the Watchdog is configured to reset the device in the
watchdog time-out following an interrupt, the device works correctly.

Problem fix/workaround

Make sure there is enough time to always service the first timeout event before a new
watchdog timeout occurs. This is done by selecting a long enough time-out period.

4. Start-up time with crystal oscillator is higher than expected

The clock counting part of the start-up time is about two times higher than expected for all
start-up periods when running on an external Crystal. This applies only when waking up
by reset. Wake-up from power down is not affected. For most settings, the clock counting
parts is a small fraction of the overall start-up time, and thus, the problem can be ignored.
The exception is when using a very low frequency crystal like for instance a 32kHz clock
crystal.

Problem fix/workaround

No known workaround.

5. High power consumption in power-down with external clock

The power consumption in power down with an active external clock is about 10 times
higher than when using internal RC or external oscillators.

Problem fix/workaround

Stop the external clock when the device is in power down.

6. Asynchronous oscillator does not stop in power-down

The Asynchronous oscillator does not stop when entering power down mode. This leads
to higher power consumption than expected.

Problem fix/workaround

Manually disable the asynchronous timer before entering power down.

7. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when
the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem fix/workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF
nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx),
asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare
Register (OCRx).
367
2545U–AVR–11/2015

ATmega48/88/168
35.2 Errata Atmel ATmega88

The revision letter in this section refers to the revision of the ATmega88 device.

35.2.1 Rev K

• Full swing crystal oscillator not supported

• Parallel programming timing modified

• Write wait delay for NVM is increased

• Changed device ID

• Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Full swing crystal oscillator not supported

The full swing crystal oscillator functionality is not available in revision K.

Problem fix/workaround

Use alternative clock sources available in the device.

2. Parallel programming timing modified

3 Write wait delay for NVM is increased

The write delay for non-volatile memory (NVM) is increased as follows:

4. Changed device ID

The device ID has been modified according to the to the following:

Previous die revision Revision K

Symbol Parameter Min Typ. Max Units Min Typ. Max Units

tWLRH_CE

/WR Low to
RDY/BSY

High for Chip
Erase

7.5 9 ms 9.8 10.5 ms

tBVDV
/BS1 Valid to
DATA valid

0 250 ns 0 335 ns

tOLDV
/OE Low to
DATA Valid

250 ns 335 ns

Other revisions Revision K

Symbol Minimum Wait Delay Minimum Wait Delay

tWD_ERASE 9ms 10.5ms

Any die revision Previous die revision Revision K

Signature byte address ID
(Unchanged)

Device ID read via
debugWIRE

Device ID read via
debugWIREPart 0x000 0x001 0x002

ATmega88 0x1E 0x93 0x0A 0x930A 0x930F

ATmega88V 0x1E 0x93 0x0A 0x930A 0x930F
368
2545U–AVR–11/2015

ATmega48/88/168
5. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when
the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem fix/workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF
nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx),
asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare
Register (OCRx).

35.2.2 Rev E to J

Not sampled.

35.2.3 Rev. D

• Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when
the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem fix/workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF
nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx),
asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare
Register (OCRx).

35.2.4 Rev. B/C

Not sampled.

35.2.5 Rev. A

• Writing to EEPROM does not work at low operating voltages

• Part may hang in reset

• Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Writing to EEPROM does not work at low operating voltages

Writing to the EEPROM does not work at low voltages.

Problem fix/workaround

Do not write the EEPROM at voltages below 4.5 Volts.
This will be corrected in rev. B.

2. Part may hang in reset

Some parts may get stuck in a reset state when a reset signal is applied when the internal
reset state-machine is in a specific state. The internal reset state-machine is in this state
for approximately 10ns immediately before the part wakes up after a reset, and in a 10ns
window when altering the system clock prescaler. The problem is most often seen during
In-System Programming of the device. There are theoretical possibilities of this happening
369
2545U–AVR–11/2015

ATmega48/88/168
also in run-mode. The following three cases can trigger the device to get stuck in a reset-
state:

- Two succeeding resets are applied where the second reset occurs in the 10ns window
before the device is out of the reset-state caused by the first reset.

- A reset is applied in a 10ns window while the system clock prescaler value is updated by
software.

- Leaving SPI-programming mode generates an internal reset signal that can trigger this
case.

The two first cases can occur during normal operating mode, while the last case occurs
only during programming of the device.b.

Problem fix/workaround

The first case can be avoided during run-mode by ensuring that only one reset source is
active. If an external reset push button is used, the reset start-up time should be selected
such that the reset line is fully debounced during the start-up time.

The second case can be avoided by not using the system clock prescaler.

The third case occurs during In-System programming only. It is most frequently seen
when using the internal RC at maximum frequency.

If the device gets stuck in the reset-state, turn power off, then on again to get the device
out of this state.

3. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when
the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem fix/workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF
nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx),
asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare
Register (OCRx).
370
2545U–AVR–11/2015

ATmega48/88/168
35.3 Errata Atmel ATmega168

The revision letter in this section refers to the revision of the ATmega168 device.

35.3.1 Rev K

• Full swing crystal oscillator not supported

• Parallel programming timing modified

• Write wait delay for NVM is increased

• Changed device ID

• Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Full swing crystal oscillator not supported

The full swing crystal oscillator functionality is not available in revision K.

Problem fix/workaround

Use alternative clock sources available in the device.

2. Parallel programming timing modified

3 Write wait delay for NVM is increased

The write delay for non-volatile memory (NVM) is increased as follows:

4. Changed device ID

The device ID has been modified according to the to the following:

Previous die revision Revision K

Symbol Parameter Min Typ. Max Units Min Typ. Max Units

tWLRH_CE

/WR Low to
RDY/BSY

High for Chip
Erase

7.5 9 ms 9.8 10.5 ms

tBVDV
/BS1 Valid to
DATA valid

0 250 ns 0 335 ns

tOLDV
/OE Low to
DATA Valid

250 ns 335 ns

Other revisions Revision K

Symbol Minimum Wait Delay Minimum Wait Delay

tWD_ERASE 9ms 10.5ms

Any die revision Previous die revision Revision K

Signature byte address ID
(Unchanged)

Device ID read via
debugWIRE

Device ID read via
debugWIREPart 0x000 0x001 0x002

ATmega168 0x1E 0x94 0x06 0x9406 0x940B

ATmega168V 0x1E 0x94 0x06 0x9406 0x940B
371
2545U–AVR–11/2015

ATmega48/88/168
5. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when
the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem fix/workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF
nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx),
asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare
Register (OCRx).

35.3.2 Rev D to J

Not sampled.

35.3.3 Rev C

• Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when
the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem fix/workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF
nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx),
asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare
Register (OCRx).

35.3.4 Rev B

• Part may hang in reset

• Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Part may hang in reset

Some parts may get stuck in a reset state when a reset signal is applied when the internal
reset state-machine is in a specific state. The internal reset state-machine is in this state
for approximately 10ns immediately before the part wakes up after a reset, and in a 10ns
window when altering the system clock prescaler. The problem is most often seen during
In-System Programming of the device. There are theoretical possibilities of this happening
also in run-mode. The following three cases can trigger the device to get stuck in a reset-
state:

- Two succeeding resets are applied where the second reset occurs in the 10ns window
before the device is out of the reset-state caused by the first reset.

- A reset is applied in a 10ns window while the system clock prescaler value is updated by
software.

- Leaving SPI-programming mode generates an internal reset signal that can trigger this
case.

The two first cases can occur during normal operating mode, while the last case occurs
only during programming of the device.

Problem fix/workaround
372
2545U–AVR–11/2015

ATmega48/88/168
The first case can be avoided during run-mode by ensuring that only one reset source is
active. If an external reset push button is used, the reset start-up time should be selected
such that the reset line is fully debounced during the start-up time.

The second case can be avoided by not using the system clock prescaler.

The third case occurs during In-System programming only. It is most frequently seen
when using the internal RC at maximum frequency.

If the device gets stuck in the reset-state, turn power off, then on again to get the device
out of this state.

2. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when
the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem fix/workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF
nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx),
asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare
Register (OCRx).

35.3.5 Rev A

• Wrong values read after erase only operation

• Part may hang in reset

• Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Wrong values read after erase only operation

At supply voltages below 2.7V, an EEPROM location that is erased by the Erase Only
operation may read as programmed (0x00).

Problem fix/workaround

If it is necessary to read an EEPROM location after Erase Only, use an Atomic Write
operation with 0xFF as data in order to erase a location. In any case, the Write Only
operation can be used as intended. Thus no special considerations are needed as long as
the erased location is not read before it is programmed.

2. Part may hang in reset

Some parts may get stuck in a reset state when a reset signal is applied when the internal
reset state-machine is in a specific state. The internal reset state-machine is in this state
for approximately 10ns immediately before the part wakes up after a reset, and in a 10ns
window when altering the system clock prescaler. The problem is most often seen during
In-System Programming of the device. There are theoretical possibilities of this happening
also in run-mode. The following three cases can trigger the device to get stuck in a reset-
state:

- Two succeeding resets are applied where the second reset occurs in the 10ns window
before the device is out of the reset-state caused by the first reset.

- A reset is applied in a 10ns window while the system clock prescaler value is updated by
software.

- Leaving SPI-programming mode generates an internal reset signal that can trigger this
case.
373
2545U–AVR–11/2015

ATmega48/88/168
The two first cases can occur during normal operating mode, while the last case occurs
only during programming of the device.

Problem fix/workaround

The first case can be avoided during run-mode by ensuring that only one reset source is
active. If an external reset push button is used, the reset start-up time should be selected
such that the reset line is fully debounced during the start-up time.

The second case can be avoided by not using the system clock prescaler.

The third case occurs during In-System programming only. It is most frequently seen
when using the internal RC at maximum frequency.

If the device gets stuck in the reset-state, turn power off, then on again to get the device
out of this state.

2. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when
the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem fix/workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF
nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx),
asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare
Register (OCRx).
374
2545U–AVR–11/2015

ATmega48/88/168
36. Datasheet revision history

Please note that the referring page numbers in this section are referred to this document. The
referring revision in this section are referring to the document revision.

36.1 Rev. 2545U-11/15

36.2 Rev. 2545T-04/11

36.3 Rev. 2545S-07/10

36.4 Rev. 2545R-07/09

36.5 Rev. 2545Q-06/09

1.

Updated errata sections:

l “Errata Atmel ATmega48” on page 364: Added errata for rev E to K.

l “Errata Atmel ATmega88” on page 368: Added errata for rev E to K.

l “Errata Atmel ATmega168” on page 371: Added errata for rev D to K.

1.
Ordering information has been updated by removing AI and MI and added AUR and
MUR (tape & reel).

2. Added and corrected cross references and short-cuts.

3. Document updated according to new Atmel standard.

4. QTouch Library Support Features

1.
Note 6 and Note 7 in Table 29-5, “2-wire serial bus requirements.,” on page 315 have
been removed.

2. Document updated according to Atmel standard.

1. Updated “Errata” on page 364.

2. Updated the last page with the Atmel new addresses.

1.
Removed the heading “About”. The subsections of this sectionis now separate
sections, “Resources”, “Data Retention” and “About Code Examples”

2. Updated “Ordering information” on page 357.
375
2545U–AVR–11/2015

ATmega48/88/168
36.6 Rev. 2545P-02/09

36.7 Rev. 2545O-02/09

36.8 Rev. 2545N-01/09

36.9 Rev. 2545M-09/07

36.10 Rev. 2545L-08/07

1. Removed Power-off slope rate from Table 29-3 on page 314.

1.
Changed minimum Power-on Reset Threshold Voltage (falling) to 0.05V in Table 29-
3 on page 314.

2.
Removed section “Power-on slope rate” from “System and reset characteristics” on
page 314.

1.
Updated “Features” on page 1 and added the note “Not recommended for new
designs”.

2.
Merged the sections Resources, Data Retention and About Code Examples under
one common section, “Resources” on page 8.

3. Updated Figure 9-4 on page 35.

4. Updated “System clock prescaler” on page 36.

5. Updated “Alternate functions of port B” on page 83.

6. Added section “” on page 314.

7. Updated “Pin thresholds and hysteresis” on page 337.

1. Added “Data retention” on page 8.

2. Updated “ADC characteristics” on page 318.

3. “Preliminary“ removed through the datasheet.

1. Updated “Features” on page 1.

2. Updated code example in “MCUCR – MCU control register” on page 67.

3. Updated “System and reset characteristics” on page 314.

4.
Updated Note in Table 9-3 on page 30, Table 9-5 on page 31, Table 9-8 on page 33,
Table 9-10 on page 34.
376
2545U–AVR–11/2015

ATmega48/88/168
36.11 Rev. 2545K-04/07

36.12 Rev. 2545J-12/06

36.13 Rev. 2545I-11/06

36.14 Rev. 2545H-10/06

1. Updated “Interrupts” on page 56.

2. Updated“Errata Atmel ATmega48” on page 364 .

3. Changed description in “Analog-to-digital converter” on page 250.

1. Updated “Features” on page 1.

2. Updated Table 1-1 on page 2.

3. Updated “Ordering information” on page 357.

4. Updated “Packaging information” on page 360.

1. Updated “Features” on page 1.

2. Updated Features in “2-wire serial interface” on page 213.

3. Fixed typos in Table 29-3 on page 314.

1. Updated typos.

2. Updated “Features” on page 1.

3. Updated “Calibrated internal RC oscillator” on page 33.

4. Updated “System control and reset” on page 45.

5. Updated “Brown-out detection” on page 47.

6. Updated “Fast PWM mode” on page 126.

7.
Updated bit description in “TCCR1C – Timer/Counter1 control register C” on page
137.

8. Updated code example in “SPI – Serial peripheral interface” on page 165.

9.

Updated Table 15-3 on page 106, Table 15-6 on page 107, Table 15-8 on page 108,
Table 16-2 on page 134, Table 16-3 on page 135, Table 16-4 on page 136, Table 18-
3 on page 158, Table 18-6 on page 159, Table 18-8 on page 160, and Table 28-5 on
page 294.

10.
Added Note to Table 26-1 on page 271, Table 27-5 on page 285, and Table 28-17 on
page 307.

11. Updated “Setting the boot loader lock bits by SPM” on page 283.

12. Updated “Signature bytes” on page 295

13. Updated “Electrical characteristics” on page 310.

14. Updated “Errata” on page 364.
377
2545U–AVR–11/2015

ATmega48/88/168
36.15 Rev. 2545G-06/06

36.16 Rev. 2545F-05/05

36.17 Rev. 2545E-02/05

1. Added Addresses in Registers.

2. Updated “Calibrated internal RC oscillator” on page 33.

3.
Updated Table 9-12 on page 35, Table 10-1 on page 39, Table 11-1 on page 54,
Table 14-3 on page 83.

4. Updated “ADC noise reduction mode” on page 40.

5. Updated note for Table 10-2 on page 43.

6. Updatad “Bit 2 - PRSPI: Power reduction serial peripheral interface” on page 44.

7. Updated “TCCR0B – Timer/counter control register B” on page 109.

8. Updated “Fast PWM mode” on page 126.

9. Updated “Asynchronous operation of Timer/Counter2” on page 155.

10. Updated “SPI – Serial peripheral interface” on page 165.

11. Updated “UCSRnA – USART MSPIM control and status register n A” on page 210.

12. Updated note in “Bit rate generator unit” on page 220.

13. Updated “Bit 6 – ACBG: Analog comparator bandgap select” on page 247.

14. Updated Features in “Analog-to-digital converter” on page 250.

15. Updated “Prescaling and conversion timing” on page 253.

16. Updated “Limitations of debugWIRE” on page 267.

17 Added Table 29-1 on page 313.

18. Updated Figure 16-7 on page 127, Figure 30-45 on page 346.

19. Updated rev. A in “Errata Atmel ATmega48” on page 364.

20. Added rev. C and D in “Errata Atmel ATmega48” on page 364.

1. Added Section 3. “Resources” on page 8

2. Update Section 9.6 “Calibrated internal RC oscillator” on page 33.

3. Updated Section 28.8.3 “Serial programming instruction set” on page 307.

4. Table notes in Section 29.2 “DC characteristics” on page 310 updated.

5. Updated Section 35. “Errata” on page 364.

1.
MLF-package alternative changed to “Quad Flat No-Lead/Micro Lead Frame
Package QFN/MLF”.

2. Updated “EECR – The EEPROM control register” on page 22.

3. Updated “Calibrated internal RC oscillator” on page 33.

4. Updated “External clock” on page 35.

5.
Updated Table 29-3 on page 314, Table 29-6 on page 316, Table 29-2 on page 313
and Table 28-16 on page 307

6. Added “Pin change interrupt timing” on page 70

7. Updated “8-bit timer/counter block diagram.” on page 95.

8.
Updated “SPMCSR – Store program memory control and status register” on page
273.
378
2545U–AVR–11/2015

ATmega48/88/168
36.18 Rev. 2545D-07/04

36.19 Rev. 2545C-04/04

36.20 Rev. 2545B-01/04

9. Updated “Enter programming mode” on page 298.

10. Updated “DC characteristics” on page 310.

11. Updated “Ordering information” on page 357.

12.
Updated “Errata Atmel ATmega88” on page 368 and “Errata Atmel ATmega168” on
page 371.

1. Updated instructions used with WDTCSR in relevant code examples.

2.
Updated Table 9-5 on page 31, Table 29-4 on page 314, Table 27-9 on page 288,
and Table 27-11 on page 290.

3. Updated “System clock prescaler” on page 36.

4.
Moved “TIMSK2 – Timer/Counter2 interrupt mask register” on page 162 and
“TIFR2 – Timer/Counter2 interrupt flag register” on page 162 to
“Register description” on page 157.

5. Updated cross-reference in “Electrical interconnection” on page 214.

6. Updated equation in “Bit rate generator unit” on page 220.

7. Added “Page size” on page 296.

8. Updated “Serial programming algorithm” on page 306.

9. Updated Ordering Information for “Atmel ATmega168” on page 359.

10.
Updated “Errata Atmel ATmega88” on page 368 and “Errata Atmel ATmega168” on
page 371.

11. Updated equation in “Bit rate generator unit” on page 220.

1. Speed Grades changed: 12MHz to 10MHz and 24MHz to 20MHz

2. Updated “Speed grades” on page 312.

3. Updated “Ordering information” on page 357.

4. Updated “Errata Atmel ATmega88” on page 368.

1.
Added PDIP to “I/O and Packages”, updated “Speed Grade” and Power Consumption
Estimates in 36.“Features” on page 1.

2.
Updated “Stack pointer” on page 13 with RAMEND as recommended Stack Pointer
value.

3.
Added section “Power reduction register” on page 41 and a note regarding the use of
the PRR bits to 2-wire, Timer/Counters, USART, Analog Comparator and ADC
sections.

4. Updated “Watchdog timer” on page 49.

5. Updated Figure 16-2 on page 134 and Table 16-3 on page 135.

6.
Extra Compare Match Interrupt OCF2B added to features in section “8-bit
Timer/Counter2 with PWM and asynchronous operation” on page 144
379
2545U–AVR–11/2015

ATmega48/88/168
7.
Updated Table 10-1 on page 39, Table 24-5 on page 265, Table 28-4 to Table 28-7
on page 293 to 295 and Table 24-1 on page 255. Added note 2 to Table 28-1 on page
292. Fixed typo in Table 13-1 on page 71.

8. Updated whole “Typical characteristics” on page 322.

9. Added item 2 to 5 in “Errata Atmel ATmega48” on page 364.

10.

Renamed the following bits:
- SPMEN to SELFPRGEN
- PSR2 to PSRASY
- PSR10 to PSRSYNC
- Watchdog Reset to Watchdog System Reset

11. Updated C code examples containing old IAR syntax.

12.
Updated BLBSET description in “SPMCSR – Store program memory control and
status register” on page 290.
380
2545U–AVR–11/2015

ATmega48/88/168
Table of Content

Features .1

1. Pin configurations .2
1.1 Pin descriptions . 3

1.1.1 VCC . 3

1.1.2 GND . 3

1.1.3 Port B (PB7:0) XTAL1/XTAL2/TOSC1/TOSC2 . 3

1.1.4 Port C (PC5:0) . 3

1.1.5 PC6/RESET . 3

1.1.6 Port D (PD7:0) . 3

1.1.7 AVCC . 4

1.1.8 AREF . 4

1.1.9 ADC7:6 (TQFP and QFN/MLF package only) . 4

2. Overview .5
2.1 Block diagram. 5

2.2 Comparison between Atmel ATmega48, Atmel ATmega88, and Atmel ATmega168 6

3. Resources .8

4. Data retention .8

5. About code examples .8

6. Capacitive touch sensing .8

7. AVR CPU core .9
7.1 Overview. 9

7.2 Architectural overview . 9

7.3 ALU – Arithmetic Logic Unit . 10

7.4 Status register . 11

7.4.1 SREG – AVR Status Register . 11

7.5 General purpose register file . 12

7.5.1 The X-register, Y-register, and Z-register . 13

7.6 Stack pointer. 13

7.6.1 SPH and SPL – Stack pointer high and stack pointer low register 14

7.7 Instruction execution timing . 14

7.8 Reset and interrupt handling . 15

7.8.1 Interrupt response time . 16

8. AVR memories .17
8.1 Overview. 17

8.2 In-system reprogrammable flash program memory . 17

8.3 SRAM data memory . 19

8.3.1 Data memory access times . 19

8.4 EEPROM data memory . 20

8.4.1 EEPROM read/write access . 20

8.4.2 Preventing EEPROM corruption . 20

8.5 I/O memory. 21

8.5.1 General purpose I/O registers . 21
i
2545U–AVR–11/2015

ATmega48/88/168
8.6 Register description . 22

8.6.1 EEARH and EEARL – The EEPROM address register . 22

8.6.2 EEDR – The EEPROM data register . 22

8.6.3 EECR – The EEPROM control register . 22

8.6.4 GPIOR2 – General purpose I/O register 2 . 26

8.6.5 GPIOR1 – General purpose I/O register 1 . 26

8.6.6 GPIOR0 – General purpose I/O register 0 . 26

9. System clock and clock options .27
9.1 Clock systems and their distribution . 27

9.1.1 CPU clock – clkCPU . 27

9.1.2 I/O clock – clkI/O . 27

9.1.3 Flash clock – clkFLASH . 28

9.1.4 Asynchronous timer clock – clkASY . 28

9.1.5 ADC clock – clkADC . 28

9.2 Clock sources . 28

9.2.1 Default clock source . 28

9.2.2 Clock startup sequence . 28

9.3 Low power crystal oscillator . 29

9.4 Full swing crystal oscillator . 31

9.5 Low frequency crystal oscillator . 33

9.6 Calibrated internal RC oscillator . 33

9.7 128kHz internal oscillator . 34

9.8 External clock . 35

9.9 Clock output buffer . 35

9.10 Timer/counter oscillator . 36

9.11 System clock prescaler. 36

9.12 Register description . 37

9.12.1 OSCCAL – Oscillator calibration register . 37

9.12.2 CLKPR – Clock prescale register . 37

10. Power management and sleep modes .39
10.1 Sleep modes. 39

10.2 Idle mode . 39

10.3 ADC noise reduction mode. 40

10.4 Power-down mode . 40

10.5 Power-save mode. 40

10.6 Standby mode . 41

10.7 Power reduction register. 41

10.8 Minimizing power consumption . 41

10.8.1 Analog to digital converter . 41

10.8.2 Analog comparator . 41

10.8.3 Brown-out detector . 42

10.8.4 Internal voltage reference . 42

10.8.5 Watchdog timer . 42

10.8.6 Port pins . 42

10.8.7 On-chip debug system . 42

10.9 Register description . 43

10.9.1 SMCR – Sleep mode control register . 43

10.9.2 PRR – Power reduction register . 44
ii
2545U–AVR–11/2015

ATmega48/88/168
11. System control and reset .45
11.1 Resetting the AVR . 45

11.2 Reset sources. 45

11.3 Power-on reset . 46

11.4 External reset . 47

11.5 Brown-out detection . 47

11.6 Watchdog system reset . 48

11.7 Internal voltage reference. 48

11.7.1 Voltage reference enable signals and start-up time . 48

11.8 Watchdog timer . 49

11.8.1 Features . 49

11.9 Register description . 53

11.9.1 MCUSR – MCU status register . 53

11.9.2 WDTCSR – Watchdog timer control register . 53

12. Interrupts .56
12.1 Overview. 56

12.2 Interrupt vectors in ATmega48 . 56

12.3 Interrupt vectors in Atmel ATmega88 . 58

12.4 Interrupt vectors in Atmel ATmega168 . 62

12.4.1 Moving interrupts between application and boot space, Atmel ATmega88 and Atmel ATmega168 67

12.5 Register description . 67

12.5.1 MCUCR – MCU control register . 67

13. External interrupts .70
13.1 Pin change interrupt timing. 70

13.2 Register description . 71

13.2.1 EICRA – External interrupt control register A . 71

13.2.2 EIMSK – External interrupt mask register . 73

13.2.3 EIFR – External interrupt flag register . 73

13.2.4 PCICR – Pin change interrupt control register . 74

13.2.5 PCIFR – Pin change interrupt flag register . 74

13.2.6 PCMSK2 – Pin change mask register 2 . 75

13.2.7 PCMSK1 – Pin change mask register 1 . 75

13.2.8 PCMSK0 – Pin change mask register 0 . 75

14. I/O-ports .76
14.1 Overview. 76

14.2 Ports as general digital I/O . 77

14.2.1 Configuring the pin . 77

14.2.2 Toggling the pin . 78

14.2.3 Switching between input and output . 78

14.2.4 Reading the pin value . 78

14.2.5 Digital input enable and sleep modes . 80

14.2.6 Unconnected pins . 80

14.3 Alternate port functions. 81

14.3.1 Alternate functions of port B . 83

14.3.2 Alternate functions of port C . 86

14.3.3 Alternate functions of port D . 89

14.4 Register description . 92
iii
2545U–AVR–11/2015

ATmega48/88/168
14.4.1 MCUCR – MCU control register . 92

14.4.2 PORTB – The port B data register . 92

14.4.3 DDRB – The port B data direction register . 92

14.4.4 PINB – The port B input pins address . 92

14.4.5 PORTC – The port C data register . 92

14.4.6 DDRC – The port C data direction register . 92

14.4.7 PINC – The port C input pins address . 92

14.4.8 PORTD – The port D data register . 93

14.4.9 DDRD – The port D data direction register . 93

14.4.10 PIND – The port D input pins address . 93

15. 8-bit Timer/Counter0 with PWM .94
15.1 Features . 94

15.2 Overview. 94

15.2.1 Definitions . 95

15.2.2 Registers . 95

15.3 Timer/counter clock sources. 96

15.4 Counter unit . 96

15.5 Output compare unit . 97

15.5.1 Force output compare . 98

15.5.2 Compare match blocking by TCNT0 write . 98

15.5.3 Using the output compare unit . 98

15.6 Compare match output unit . 98

15.6.1 Compare output mode and waveform generation . 99

15.7 Modes of operation. 99

15.7.1 Normal mode . 100

15.7.2 Clear timer on compare match (CTC) mode . 100

15.7.3 Fast PWM mode . 101

15.7.4 Phase correct PWM mode . 102

15.8 Timer/counter timing diagrams . 104

15.9 Register description . 106

15.9.1 TCCR0A – Timer/counter control register A . 106

15.9.2 TCCR0B – Timer/counter control register B . 109

15.9.3 TCNT0 – Timer/counter register . 110

15.9.4 OCR0A – Output compare register A . 110

15.9.5 OCR0B – Output compare register B . 110

15.9.6 TIMSK0 – Timer/counter interrupt mask register . 111

15.9.7 TIFR0 – Timer/Counter0 interrupt flag register . 111

16. 16-bit Timer/Counter1 with PWM .113
16.1 Features . 113

16.2 Overview. 113

16.2.1 Registers . 114

16.2.2 Definitions . 115

16.3 Accessing 16-bit registers . 115

16.3.1 Reusing the temporary high byte register . 118

16.4 Timer/counter clock sources. 118

16.5 Counter unit . 119

16.6 Input capture unit . 120

16.6.1 Input capture trigger source . 121
iv
2545U–AVR–11/2015

ATmega48/88/168
16.6.2 Noise canceler . 121

16.6.3 Using the input capture unit . 121

16.7 Output compare units . 121

16.7.1 Force output compare . 123

16.7.2 Compare match blocking by TCNT1 write . 123

16.7.3 Using the output compare unit . 123

16.8 Compare match output unit . 123

16.8.1 Compare output mode and waveform generation . 124

16.9 Modes of operation. 124

16.9.1 Normal mode . 125

16.9.2 Clear timer on compare match (CTC) mode . 125

16.9.3 Fast PWM mode . 126

16.9.4 Phase correct PWM mode . 128

16.9.5 Phase and frequency correct PWM mode . 130

16.10 Timer/counter timing diagrams . 132

16.11 Register description . 134

16.11.1 TCCR1A – Timer/Counter1 control register A . 134

16.11.2 TCCR1B – Timer/Counter1 control register B . 136

16.11.3 TCCR1C – Timer/Counter1 control register C . 137

16.11.4 TCNT1H and TCNT1L – Timer/Counter1 . 138

16.11.5 OCR1AH and OCR1AL – Output compare register 1 A . 138

16.11.6 OCR1BH and OCR1BL – Output compare register 1 B . 138

16.11.7 ICR1H and ICR1L – Input capture register 1 . 139

16.11.8 TIMSK1 – Timer/Counter1 interrupt mask register . 139

16.11.9 TIFR1 – Timer/Counter1 interrupt flag register . 140

17. Timer/Counter0 and Timer/Counter1 prescalers .141
17.0.1 Internal clock source . 141

17.0.2 Prescaler reset . 141

17.0.3 External clock source . 141

17.1 Register description . 143

17.1.1 GTCCR – General timer/counter control register . 143

18. 8-bit Timer/Counter2 with PWM and asynchronous operation144
18.1 Features . 144

18.2 Overview. 144

18.2.1 Registers . 145

18.2.2 Definitions . 145

18.3 Timer/counter clock sources. 145

18.4 Counter unit . 145

18.5 Output compare unit . 146

18.5.1 Force output compare . 147

18.5.2 Compare match blocking by TCNT2 write . 147

18.5.3 Using the output compare unit . 147

18.6 Compare match output unit . 148

18.6.1 Compare output mode and waveform generation . 149

18.7 Modes of operation. 149

18.7.1 Normal mode . 149

18.7.2 Clear timer on compare match (CTC) mode . 149

18.7.3 Fast PWM mode . 150
v
2545U–AVR–11/2015

ATmega48/88/168
18.7.4 Phase correct PWM mode . 152

18.8 Timer/counter timing diagrams . 153

18.9 Asynchronous operation of Timer/Counter2. 155

18.10 Timer/counter prescaler . 156

18.11 Register description . 157

18.11.1 TCCR2A – Timer/counter control register A . 157

18.11.2 TCCR2B – Timer/counter control register B . 160

18.11.3 TCNT2 – Timer/counter register . 161

18.11.4 OCR2A – Output compare register A . 161

18.11.5 OCR2B – Output compare register B . 162

18.11.6 TIMSK2 – Timer/Counter2 interrupt mask register . 162

18.11.7 TIFR2 – Timer/Counter2 interrupt flag register . 162

18.11.8 ASSR – Asynchronous status register . 163

18.11.9 GTCCR – General timer/counter control register . 164

19. SPI – Serial peripheral interface .165
19.1 Features . 165

19.2 Overview. 165

19.3 SS pin functionality . 170

19.3.1 Slave mode . 170

19.3.2 Master mode . 170

19.4 Data modes . 170

19.5 Register description . 172

19.5.1 SPCR – SPI control register . 172

19.5.2 SPSR – SPI status register . 173

19.5.3 SPDR – SPI data register . 174

20. USART0 .175
20.1 Features . 175

20.2 Overview. 175

20.3 Clock generation. 176

20.3.1 Internal clock generation – The baud rate generator . 177

20.3.2 Double speed operation (U2Xn) . 178

20.3.3 External clock . 179

20.3.4 Synchronous clock operation . 179

20.4 Frame formats . 179

20.4.1 Parity bit calculation . 180

20.5 USART initialization . 180

20.6 Data transmission – The USART transmitter . 183

20.6.1 Sending frames with 5 to 8 data bits . 183

20.6.2 Sending frames with 9 data bits . 184

20.6.3 Transmitter flags and interrupts . 184

20.6.4 Parity generator . 185

20.6.5 Disabling the transmitter . 185

20.7 Data reception – The USART receiver . 185

20.7.1 Receiving frames with 5 to 8 data bits . 185

20.7.2 Receiving frames with 9 data bits . 186

20.7.3 Receive complete flag and interrupt . 187

20.7.4 Receiver error flags . 188

20.7.5 Parity checker . 188
vi
2545U–AVR–11/2015

ATmega48/88/168
20.7.6 Disabling the receiver . 189

20.7.7 Flushing the receive buffer . 189

20.8 Asynchronous data reception . 189

20.8.1 Asynchronous clock recovery . 189

20.8.2 Asynchronous data recovery . 190

20.8.3 Asynchronous operational range . 191

20.9 Multi-processor communication mode . 192

20.9.1 Using MPCMn . 193

20.10 Register description . 194

20.10.1 UDRn – USART I/O data register n . 194

20.10.2 UCSRnA – USART control and status register n A . 194

20.10.3 UCSRnB – USART control and status register n B . 195

20.10.4 UCSRnC – USART control and status register n C . 196

20.10.5 UBRRnL and UBRRnH – USART baud rate registers . 198

20.11 Examples of baud rate setting . 198

21. USART in SPI mode .203
21.1 Features . 203

21.2 Overview. 203

21.3 Clock generation. 203

21.4 SPI data modes and timing . 204

21.5 Frame formats . 205

21.5.1 USART MSPIM initialization . 205

21.6 Data transfer . 207

21.6.1 Transmitter and receiver flags and interrupts . 208

21.6.2 Disabling the transmitter or receiver . 208

21.7 AVR USART MSPIM vs. AVR SPI . 209

21.8 Register description . 210

21.8.1 UDRn – USART MSPIM I/O data register . 210

21.8.2 UCSRnA – USART MSPIM control and status register n A . 210

21.8.3 UCSRnB – USART MSPIM control and status register n B . 210

21.8.4 UCSRnC – USART MSPIM control and status register n C . 211

21.8.5 USART MSPIM baud rate registers - UBRRnL and UBRRnH . 212

22. 2-wire serial interface .213
22.1 Features . 213

22.2 2-wire serial interface bus definition . 213

22.2.1 TWI terminology . 214

22.2.2 Electrical interconnection . 214

22.3 Data transfer and frame format . 214

22.3.1 Transferring bits . 214

22.3.2 START and STOP conditions . 215

22.3.3 Address packet format . 215

22.3.4 Data packet format . 216

22.3.5 Combining address and data packets into a transmission . 217

22.4 Multi-master bus systems, arbitration and synchronization . 217

22.5 Overview of the TWI module . 220

22.5.1 SCL and SDA pins . 220

22.5.2 Bit rate generator unit . 220

22.5.3 Bus interface unit . 221
vii
2545U–AVR–11/2015

ATmega48/88/168
22.5.4 Address match unit . 221

22.5.5 Control unit . 221

22.6 Using the TWI. 222

22.7 Transmission modes . 226

22.7.1 Master transmitter mode . 227

22.7.2 Master receiver mode . 230

22.7.3 Slave receiver mode . 233

22.7.4 Slave transmitter mode . 236

22.7.5 Miscellaneous states . 239

22.7.6 Combining Several TWI Modes . 239

22.8 Multi-master systems and arbitration . 240

22.9 Register description . 241

22.9.1 TWBR – TWI bit rate register . 241

22.9.2 TWCR – TWI control register . 241

22.9.3 TWSR – TWI status register . 243

22.9.4 TWDR – TWI data register . 243

22.9.5 TWAR – TWI (slave) address register . 244

22.9.6 TWAMR – TWI (slave) address mask register . 244

23. Analog comparator .246
23.1 Overview. 246

23.2 Analog comparator multiplexed input . 246

23.3 Register description . 247

23.3.1 ADCSRB – ADC control and status register B . 247

23.3.2 ACSR – Analog comparator control and status register . 247

23.3.3 DIDR1 – Digital input disable register 1 . 248

24. Analog-to-digital converter .250
24.1 Features . 250

24.2 Overview. 250

24.3 Starting a conversion . 252

24.4 Prescaling and conversion timing. 253

24.5 Changing channel or reference selection . 255

24.5.1 ADC input channels . 256

24.5.2 ADC voltage reference . 256

24.6 ADC noise canceler . 256

24.6.1 Analog input circuitry . 257

24.6.2 Analog noise canceling techniques . 257

24.6.3 ADC accuracy definitions . 258

24.7 ADC conversion result . 261

24.8 Register description . 261

24.8.1 ADMUX – ADC multiplexer selection register . 261

24.8.2 ADCSRA – ADC control and status register A . 262

24.8.3 ADCL and ADCH – The ADC data register . 264

24.8.4 ADCSRB – ADC control and status register B . 264

24.8.5 DIDR0 – Digital Input Disable Register 0 . 265

25. debugWIRE on-chip debug system .266
25.1 Features . 266

25.2 Overview. 266
viii
2545U–AVR–11/2015

ATmega48/88/168
25.3 Physical interface . 266

25.4 Software break points. 267

25.5 Limitations of debugWIRE . 267

25.6 Register description . 267

25.6.1 DWDR – debugWire data register . 267

26. Self-programming the flash, Atmel ATmega48 .268
26.1 Overview. 268

26.1.1 Performing page erase by SPM . 268

26.1.2 Filling the temporary buffer (page loading) . 268

26.1.3 Performing a page write . 269

26.2 Addressing the flash during self-programming . 269

26.2.1 EEPROM write prevents writing to SPMCSR . 270

26.2.2 Reading the fuse and lock bits from software . 270

26.2.3 Preventing flash corruption . 270

26.2.4 Programming time for flash when using SPM . 271

26.2.5 Simple assembly code example for a boot loader . 271

26.3 Register description . 273

26.3.1 SPMCSR – Store program memory control and status register 273

27. Boot loader support – Read-while-write self-programming, Atmel ATmega88 and Atmel ATmega168
275
27.1 Features . 275

27.2 Overview. 275

27.3 Application and boot loader flash sections . 275

27.3.1 Application section . 275

27.3.2 BLS – Boot loader section . 275

27.4 Read-while-write and no read-while-write flash sections . 276

27.4.1 RWW – Read-while-write section . 276

27.4.2 NRWW – No read-while-write section . 276

27.5 Boot loader lock bits . 278

27.6 Entering the boot loader program. 279

27.7 Addressing the flash during self-programming . 280

27.8 Self-programming the flash . 281

27.8.1 Performing page erase by SPM . 282

27.8.2 Filling the temporary buffer (page loading) . 282

27.8.3 Performing a page write . 282

27.8.4 Using the SPM interrupt . 282

27.8.5 Consideration while updating BLS . 282

27.8.6 Prevent reading the RWW section during self-programming . 282

27.8.7 Setting the boot loader lock bits by SPM . 283

27.8.8 EEPROM write prevents writing to SPMCSR . 283

27.8.9 Reading the fuse and lock bits from software . 283

27.8.10 Preventing flash corruption . 284

27.8.11 Programming time for flash when using SPM . 285

27.8.12 Simple assembly code example for a boot loader . 285

27.8.13 Atmel ATmega88 boot loader parameters . 287

27.8.14 Atmel ATmega168 boot loader parameters . 288

27.9 Register description . 290

27.9.1 SPMCSR – Store program memory control and status register 290
ix
2545U–AVR–11/2015

ATmega48/88/168
28. Memory programming .292
28.1 Program and data memory lock bits . 292

28.2 Fuse bits . 293

28.2.1 Latching of fuses . 295

28.3 Signature bytes. 295

28.4 Calibration byte. 295

28.5 Page size . 296

28.6 Parallel programming parameters, pin mapping, and commands . 296

28.6.1 Signal names . 296

28.7 Parallel programming . 298

28.7.1 Enter programming mode . 298

28.7.2 Considerations for efficient programming . 299

28.7.3 Chip erase . 299

28.7.4 Programming the flash . 299

28.7.5 Programming the EEPROM . 301

28.7.6 Reading the flash . 302

28.7.7 Reading the EEPROM . 302

28.7.8 Programming the fuse low bits . 303

28.7.9 Programming the fuse high bits . 303

28.7.10 Programming the extended fuse bits . 303

28.7.11 Programming the lock bits . 304

28.7.12 Reading the fuse and lock bits . 304

28.7.13 Reading the signature bytes . 304

28.7.14 Reading the calibration byte . 305

28.7.15 Parallel programming characteristics . 305

28.8 Serial downloading . 305

28.8.1 Serial programming pin mapping . 306

28.8.2 Serial programming algorithm . 306

28.8.3 Serial programming instruction set . 307

28.8.4 SPI serial programming characteristics . 309

29. Electrical characteristics .310
29.1 Absolute maximum ratings* . 310

29.2 DC characteristics . 310

29.3 Speed grades . 312

29.4 Clock characteristics. 313

29.4.1 Calibrated internal RC oscillator accuracy . 313

29.4.2 External clock drive waveforms . 313

29.4.3 External clock drive . 313

29.5 System and reset characteristics . 314

29.6 2-wire serial interface characteristics . 315

29.7 SPI timing characteristics . 316

29.8 ADC characteristics . 318

29.9 Parallel programming characteristics . 319

30. Typical characteristics .322
30.1 Active supply current . 322

30.2 Idle supply current . 325

30.3 Supply current of I/O modules . 328

30.4 Power-down supply current . 330
x
2545U–AVR–11/2015

ATmega48/88/168
30.5 Power-save supply current . 331

30.6 Standby supply current . 331

30.7 Pin pull-up. 332

30.8 Pin driver strength . 334

30.9 Pin thresholds and hysteresis. 337

30.10 BOD thresholds and analog comparator offset . 340

30.11 Internal oscillator speed . 343

30.12 Current consumption of peripheral units. 345

30.13 Current consumption in reset and reset pulse width . 348

31. Register summary .350

32. Instruction set summary .354

33. Ordering information .357
33.1 Atmel ATmega48 . 357

33.2 Atmel ATmega88 . 358

33.3 Atmel ATmega168 . 359

34. Packaging information .360
34.1 32A . 360

34.2 28M1. 361

34.3 32M1-A . 362

34.4 28P3 . 363

35. Errata .364
35.1 Errata Atmel ATmega48 . 364

35.1.1 Rev K . 364

35.1.2 Rev E to J . 365

35.1.3 Rev. D . 365

35.1.4 Rev. C . 365

35.1.5 Rev. B . 365

35.1.6 Rev A . 366

35.2 Errata Atmel ATmega88 . 368

35.2.1 Rev K . 368

35.2.2 Rev E to J . 369

35.2.3 Rev. D . 369

35.2.4 Rev. B/C . 369

35.2.5 Rev. A . 369

35.3 Errata Atmel ATmega168 . 371

35.3.1 Rev K . 371

35.3.2 Rev D to J . 372

35.3.3 Rev C . 372

35.3.4 Rev B . 372

35.3.5 Rev A . 373

36. Datasheet revision history .375
36.1 Rev. 2545U-11/15 . 375

36.2 Rev. 2545T-04/11. 375

36.3 Rev. 2545S-07/10. 375

36.4 Rev. 2545R-07/09 . 375
xi
2545U–AVR–11/2015

ATmega48/88/168
36.5 Rev. 2545Q-06/09 . 375

36.6 Rev. 2545P-02/09. 376

36.7 Rev. 2545O-02/09 . 376

36.8 Rev. 2545N-01/09 . 376

36.9 Rev. 2545M-09/07 . 376

36.10 Rev. 2545L-08/07 . 376

36.11 Rev. 2545K-04/07. 377

36.12 Rev. 2545J-12/06 . 377

36.13 Rev. 2545I-11/06 . 377

36.14 Rev. 2545H-10/06 . 377

36.15 Rev. 2545G-06/06 . 378

36.16 Rev. 2545F-05/05. 378

36.17 Rev. 2545E-02/05. 378

36.18 Rev. 2545D-07/04 . 379

36.19 Rev. 2545C-04/04 . 379

36.20 Rev. 2545B-01/04. 379
xii
2545U–AVR–11/2015

© 2015 Atmel Corporation. All rights reserved. /
Rev. 2545U-AVR-11/2015

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR® and others are registered trademarks or trade-
marks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY
EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT,
INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROF-
ITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or com-
pleteness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice.
Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suit-
able for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applica-
tions intended to support or sustain life.
2545U–AVR–11/2015

	Features
	1. Pin configurations
	1.1 Pin descriptions
	1.1.1 VCC
	1.1.2 GND
	1.1.3 Port B (PB7:0) XTAL1/XTAL2/TOSC1/TOSC2
	1.1.4 Port C (PC5:0)
	1.1.5 PC6/RESET
	1.1.6 Port D (PD7:0)
	1.1.7 AVCC
	1.1.8 AREF
	1.1.9 ADC7:6 (TQFP and QFN/MLF package only)

	2. Overview
	2.1 Block diagram
	2.2 Comparison between Atmel ATmega48, Atmel ATmega88, and Atmel ATmega168

	3. Resources
	4. Data retention
	5. About code examples
	6. Capacitive touch sensing
	7. AVR CPU core
	7.1 Overview
	7.2 Architectural overview
	7.3 ALU – Arithmetic Logic Unit
	7.4 Status register
	7.4.1 SREG – AVR Status Register

	7.5 General purpose register file
	7.5.1 The X-register, Y-register, and Z-register

	7.6 Stack pointer
	7.6.1 SPH and SPL – Stack pointer high and stack pointer low register

	7.7 Instruction execution timing
	7.8 Reset and interrupt handling
	7.8.1 Interrupt response time

	8. AVR memories
	8.1 Overview
	8.2 In-system reprogrammable flash program memory
	8.3 SRAM data memory
	8.3.1 Data memory access times

	8.4 EEPROM data memory
	8.4.1 EEPROM read/write access
	8.4.2 Preventing EEPROM corruption

	8.5 I/O memory
	8.5.1 General purpose I/O registers

	8.6 Register description
	8.6.1 EEARH and EEARL – The EEPROM address register
	8.6.2 EEDR – The EEPROM data register
	8.6.3 EECR – The EEPROM control register
	8.6.4 GPIOR2 – General purpose I/O register 2
	8.6.5 GPIOR1 – General purpose I/O register 1
	8.6.6 GPIOR0 – General purpose I/O register 0

	9. System clock and clock options
	9.1 Clock systems and their distribution
	9.1.1 CPU clock – clkCPU
	9.1.2 I/O clock – clkI/O
	9.1.3 Flash clock – clkFLASH
	9.1.4 Asynchronous timer clock – clkASY
	9.1.5 ADC clock – clkADC

	9.2 Clock sources
	9.2.1 Default clock source
	9.2.2 Clock startup sequence

	9.3 Low power crystal oscillator
	9.4 Full swing crystal oscillator
	9.5 Low frequency crystal oscillator
	9.6 Calibrated internal RC oscillator
	9.7 128kHz internal oscillator
	9.8 External clock
	9.9 Clock output buffer
	9.10 Timer/counter oscillator
	9.11 System clock prescaler
	9.12 Register description
	9.12.1 OSCCAL – Oscillator calibration register
	9.12.2 CLKPR – Clock prescale register

	10. Power management and sleep modes
	10.1 Sleep modes
	10.2 Idle mode
	10.3 ADC noise reduction mode
	10.4 Power-down mode
	10.5 Power-save mode
	10.6 Standby mode
	10.7 Power reduction register
	10.8 Minimizing power consumption
	10.8.1 Analog to digital converter
	10.8.2 Analog comparator
	10.8.3 Brown-out detector
	10.8.4 Internal voltage reference
	10.8.5 Watchdog timer
	10.8.6 Port pins
	10.8.7 On-chip debug system

	10.9 Register description
	10.9.1 SMCR – Sleep mode control register
	10.9.2 PRR – Power reduction register

	11. System control and reset
	11.1 Resetting the AVR
	11.2 Reset sources
	11.3 Power-on reset
	11.4 External reset
	11.5 Brown-out detection
	11.6 Watchdog system reset
	11.7 Internal voltage reference
	11.7.1 Voltage reference enable signals and start-up time

	11.8 Watchdog timer
	11.8.1 Features

	11.9 Register description
	11.9.1 MCUSR – MCU status register
	11.9.2 WDTCSR – Watchdog timer control register

	12. Interrupts
	12.1 Overview
	12.2 Interrupt vectors in ATmega48
	12.3 Interrupt vectors in Atmel ATmega88
	12.4 Interrupt vectors in Atmel ATmega168
	12.4.1 Moving interrupts between application and boot space, Atmel ATmega88 and Atmel ATmega168

	12.5 Register description
	12.5.1 MCUCR – MCU control register

	13. External interrupts
	13.1 Pin change interrupt timing
	13.2 Register description
	13.2.1 EICRA – External interrupt control register A
	13.2.2 EIMSK – External interrupt mask register
	13.2.3 EIFR – External interrupt flag register
	13.2.4 PCICR – Pin change interrupt control register
	13.2.5 PCIFR – Pin change interrupt flag register
	13.2.6 PCMSK2 – Pin change mask register 2
	13.2.7 PCMSK1 – Pin change mask register 1
	13.2.8 PCMSK0 – Pin change mask register 0

	14. I/O-ports
	14.1 Overview
	14.2 Ports as general digital I/O
	14.2.1 Configuring the pin
	14.2.2 Toggling the pin
	14.2.3 Switching between input and output
	14.2.4 Reading the pin value
	14.2.5 Digital input enable and sleep modes
	14.2.6 Unconnected pins

	14.3 Alternate port functions
	14.3.1 Alternate functions of port B
	14.3.2 Alternate functions of port C
	14.3.3 Alternate functions of port D

	14.4 Register description
	14.4.1 MCUCR – MCU control register
	14.4.2 PORTB – The port B data register
	14.4.3 DDRB – The port B data direction register
	14.4.4 PINB – The port B input pins address
	14.4.5 PORTC – The port C data register
	14.4.6 DDRC – The port C data direction register
	14.4.7 PINC – The port C input pins address
	14.4.8 PORTD – The port D data register
	14.4.9 DDRD – The port D data direction register
	14.4.10 PIND – The port D input pins address

	15. 8-bit Timer/Counter0 with PWM
	15.1 Features
	15.2 Overview
	15.2.1 Definitions
	15.2.2 Registers

	15.3 Timer/counter clock sources
	15.4 Counter unit
	15.5 Output compare unit
	15.5.1 Force output compare
	15.5.2 Compare match blocking by TCNT0 write
	15.5.3 Using the output compare unit

	15.6 Compare match output unit
	15.6.1 Compare output mode and waveform generation

	15.7 Modes of operation
	15.7.1 Normal mode
	15.7.2 Clear timer on compare match (CTC) mode
	15.7.3 Fast PWM mode
	15.7.4 Phase correct PWM mode

	15.8 Timer/counter timing diagrams
	15.9 Register description
	15.9.1 TCCR0A – Timer/counter control register A
	15.9.2 TCCR0B – Timer/counter control register B
	15.9.3 TCNT0 – Timer/counter register
	15.9.4 OCR0A – Output compare register A
	15.9.5 OCR0B – Output compare register B
	15.9.6 TIMSK0 – Timer/counter interrupt mask register
	15.9.7 TIFR0 – Timer/Counter0 interrupt flag register

	16. 16-bit Timer/Counter1 with PWM
	16.1 Features
	16.2 Overview
	16.2.1 Registers
	16.2.2 Definitions

	16.3 Accessing 16-bit registers
	16.3.1 Reusing the temporary high byte register

	16.4 Timer/counter clock sources
	16.5 Counter unit
	16.6 Input capture unit
	16.6.1 Input capture trigger source
	16.6.2 Noise canceler
	16.6.3 Using the input capture unit

	16.7 Output compare units
	16.7.1 Force output compare
	16.7.2 Compare match blocking by TCNT1 write
	16.7.3 Using the output compare unit

	16.8 Compare match output unit
	16.8.1 Compare output mode and waveform generation

	16.9 Modes of operation
	16.9.1 Normal mode
	16.9.2 Clear timer on compare match (CTC) mode
	16.9.3 Fast PWM mode
	16.9.4 Phase correct PWM mode
	16.9.5 Phase and frequency correct PWM mode

	16.10 Timer/counter timing diagrams
	16.11 Register description
	16.11.1 TCCR1A – Timer/Counter1 control register A
	16.11.2 TCCR1B – Timer/Counter1 control register B
	16.11.3 TCCR1C – Timer/Counter1 control register C
	16.11.4 TCNT1H and TCNT1L – Timer/Counter1
	16.11.5 OCR1AH and OCR1AL – Output compare register 1 A
	16.11.6 OCR1BH and OCR1BL – Output compare register 1 B
	16.11.7 ICR1H and ICR1L – Input capture register 1
	16.11.8 TIMSK1 – Timer/Counter1 interrupt mask register
	16.11.9 TIFR1 – Timer/Counter1 interrupt flag register

	17. Timer/Counter0 and Timer/Counter1 prescalers
	17.0.1 Internal clock source
	17.0.2 Prescaler reset
	17.0.3 External clock source
	17.1 Register description
	17.1.1 GTCCR – General timer/counter control register

	18. 8-bit Timer/Counter2 with PWM and asynchronous operation
	18.1 Features
	18.2 Overview
	18.2.1 Registers
	18.2.2 Definitions

	18.3 Timer/counter clock sources
	18.4 Counter unit
	18.5 Output compare unit
	18.5.1 Force output compare
	18.5.2 Compare match blocking by TCNT2 write
	18.5.3 Using the output compare unit

	18.6 Compare match output unit
	18.6.1 Compare output mode and waveform generation

	18.7 Modes of operation
	18.7.1 Normal mode
	18.7.2 Clear timer on compare match (CTC) mode
	18.7.3 Fast PWM mode
	18.7.4 Phase correct PWM mode

	18.8 Timer/counter timing diagrams
	18.9 Asynchronous operation of Timer/Counter2
	18.10 Timer/counter prescaler
	18.11 Register description
	18.11.1 TCCR2A – Timer/counter control register A
	18.11.2 TCCR2B – Timer/counter control register B
	18.11.3 TCNT2 – Timer/counter register
	18.11.4 OCR2A – Output compare register A
	18.11.5 OCR2B – Output compare register B
	18.11.6 TIMSK2 – Timer/Counter2 interrupt mask register
	18.11.7 TIFR2 – Timer/Counter2 interrupt flag register
	18.11.8 ASSR – Asynchronous status register
	18.11.9 GTCCR – General timer/counter control register

	19. SPI – Serial peripheral interface
	19.1 Features
	19.2 Overview
	19.3 SS pin functionality
	19.3.1 Slave mode
	19.3.2 Master mode

	19.4 Data modes
	19.5 Register description
	19.5.1 SPCR – SPI control register
	19.5.2 SPSR – SPI status register
	19.5.3 SPDR – SPI data register

	20. USART0
	20.1 Features
	20.2 Overview
	20.3 Clock generation
	20.3.1 Internal clock generation – The baud rate generator
	20.3.2 Double speed operation (U2Xn)
	20.3.3 External clock
	20.3.4 Synchronous clock operation

	20.4 Frame formats
	20.4.1 Parity bit calculation

	20.5 USART initialization
	20.6 Data transmission – The USART transmitter
	20.6.1 Sending frames with 5 to 8 data bits
	20.6.2 Sending frames with 9 data bits
	20.6.3 Transmitter flags and interrupts
	20.6.4 Parity generator
	20.6.5 Disabling the transmitter

	20.7 Data reception – The USART receiver
	20.7.1 Receiving frames with 5 to 8 data bits
	20.7.2 Receiving frames with 9 data bits
	20.7.3 Receive complete flag and interrupt
	20.7.4 Receiver error flags
	20.7.5 Parity checker
	20.7.6 Disabling the receiver
	20.7.7 Flushing the receive buffer

	20.8 Asynchronous data reception
	20.8.1 Asynchronous clock recovery
	20.8.2 Asynchronous data recovery
	20.8.3 Asynchronous operational range

	20.9 Multi-processor communication mode
	20.9.1 Using MPCMn

	20.10 Register description
	20.10.1 UDRn – USART I/O data register n
	20.10.2 UCSRnA – USART control and status register n A
	20.10.3 UCSRnB – USART control and status register n B
	20.10.4 UCSRnC – USART control and status register n C
	20.10.5 UBRRnL and UBRRnH – USART baud rate registers

	20.11 Examples of baud rate setting

	21. USART in SPI mode
	21.1 Features
	21.2 Overview
	21.3 Clock generation
	21.4 SPI data modes and timing
	21.5 Frame formats
	21.5.1 USART MSPIM initialization

	21.6 Data transfer
	21.6.1 Transmitter and receiver flags and interrupts
	21.6.2 Disabling the transmitter or receiver

	21.7 AVR USART MSPIM vs. AVR SPI
	21.8 Register description
	21.8.1 UDRn – USART MSPIM I/O data register
	21.8.2 UCSRnA – USART MSPIM control and status register n A
	21.8.3 UCSRnB – USART MSPIM control and status register n B
	21.8.4 UCSRnC – USART MSPIM control and status register n C
	21.8.5 USART MSPIM baud rate registers - UBRRnL and UBRRnH

	22. 2-wire serial interface
	22.1 Features
	22.2 2-wire serial interface bus definition
	22.2.1 TWI terminology
	22.2.2 Electrical interconnection

	22.3 Data transfer and frame format
	22.3.1 Transferring bits
	22.3.2 START and STOP conditions
	22.3.3 Address packet format
	22.3.4 Data packet format
	22.3.5 Combining address and data packets into a transmission

	22.4 Multi-master bus systems, arbitration and synchronization
	22.5 Overview of the TWI module
	22.5.1 SCL and SDA pins
	22.5.2 Bit rate generator unit
	22.5.3 Bus interface unit
	22.5.4 Address match unit
	22.5.5 Control unit

	22.6 Using the TWI
	22.7 Transmission modes
	22.7.1 Master transmitter mode
	22.7.2 Master receiver mode
	22.7.3 Slave receiver mode
	22.7.4 Slave transmitter mode
	22.7.5 Miscellaneous states
	22.7.6 Combining Several TWI Modes

	22.8 Multi-master systems and arbitration
	22.9 Register description
	22.9.1 TWBR – TWI bit rate register
	22.9.2 TWCR – TWI control register
	22.9.3 TWSR – TWI status register
	22.9.4 TWDR – TWI data register
	22.9.5 TWAR – TWI (slave) address register
	22.9.6 TWAMR – TWI (slave) address mask register

	23. Analog comparator
	23.1 Overview
	23.2 Analog comparator multiplexed input
	23.3 Register description
	23.3.1 ADCSRB – ADC control and status register B
	23.3.2 ACSR – Analog comparator control and status register
	23.3.3 DIDR1 – Digital input disable register 1

	24. Analog-to-digital converter
	24.1 Features
	24.2 Overview
	24.3 Starting a conversion
	24.4 Prescaling and conversion timing
	24.5 Changing channel or reference selection
	24.5.1 ADC input channels
	24.5.2 ADC voltage reference

	24.6 ADC noise canceler
	24.6.1 Analog input circuitry
	24.6.2 Analog noise canceling techniques
	24.6.3 ADC accuracy definitions

	24.7 ADC conversion result
	24.8 Register description
	24.8.1 ADMUX – ADC multiplexer selection register
	24.8.2 ADCSRA – ADC control and status register A
	24.8.3 ADCL and ADCH – The ADC data register
	24.8.3.1 ADLAR = 0
	24.8.3.2 ADLAR = 1

	24.8.4 ADCSRB – ADC control and status register B
	24.8.5 DIDR0 – Digital Input Disable Register 0

	25. debugWIRE on-chip debug system
	25.1 Features
	25.2 Overview
	25.3 Physical interface
	25.4 Software break points
	25.5 Limitations of debugWIRE
	25.6 Register description
	25.6.1 DWDR – debugWire data register

	26. Self-programming the flash, Atmel ATmega48
	26.1 Overview
	26.1.1 Performing page erase by SPM
	26.1.2 Filling the temporary buffer (page loading)
	26.1.3 Performing a page write

	26.2 Addressing the flash during self-programming
	26.2.1 EEPROM write prevents writing to SPMCSR
	26.2.2 Reading the fuse and lock bits from software
	26.2.3 Preventing flash corruption
	26.2.4 Programming time for flash when using SPM
	26.2.5 Simple assembly code example for a boot loader

	26.3 Register description
	26.3.1 SPMCSR – Store program memory control and status register

	27. Boot loader support – Read-while-write self-programming, Atmel ATmega88 and Atmel ATmega168
	27.1 Features
	27.2 Overview
	27.3 Application and boot loader flash sections
	27.3.1 Application section
	27.3.2 BLS – Boot loader section

	27.4 Read-while-write and no read-while-write flash sections
	27.4.1 RWW – Read-while-write section
	27.4.2 NRWW – No read-while-write section

	27.5 Boot loader lock bits
	27.6 Entering the boot loader program
	27.7 Addressing the flash during self-programming
	27.8 Self-programming the flash
	27.8.1 Performing page erase by SPM
	27.8.2 Filling the temporary buffer (page loading)
	27.8.3 Performing a page write
	27.8.4 Using the SPM interrupt
	27.8.5 Consideration while updating BLS
	27.8.6 Prevent reading the RWW section during self-programming
	27.8.7 Setting the boot loader lock bits by SPM
	27.8.8 EEPROM write prevents writing to SPMCSR
	27.8.9 Reading the fuse and lock bits from software
	27.8.10 Preventing flash corruption
	27.8.11 Programming time for flash when using SPM
	27.8.12 Simple assembly code example for a boot loader
	27.8.13 Atmel ATmega88 boot loader parameters
	27.8.14 Atmel ATmega168 boot loader parameters

	27.9 Register description
	27.9.1 SPMCSR – Store program memory control and status register

	28. Memory programming
	28.1 Program and data memory lock bits
	28.2 Fuse bits
	28.2.1 Latching of fuses

	28.3 Signature bytes
	28.4 Calibration byte
	28.5 Page size
	28.6 Parallel programming parameters, pin mapping, and commands
	28.6.1 Signal names

	28.7 Parallel programming
	28.7.1 Enter programming mode
	28.7.2 Considerations for efficient programming
	28.7.3 Chip erase
	28.7.4 Programming the flash
	28.7.5 Programming the EEPROM
	28.7.6 Reading the flash
	28.7.7 Reading the EEPROM
	28.7.8 Programming the fuse low bits
	28.7.9 Programming the fuse high bits
	28.7.10 Programming the extended fuse bits
	28.7.11 Programming the lock bits
	28.7.12 Reading the fuse and lock bits
	28.7.13 Reading the signature bytes
	28.7.14 Reading the calibration byte
	28.7.15 Parallel programming characteristics

	28.8 Serial downloading
	28.8.1 Serial programming pin mapping
	28.8.2 Serial programming algorithm
	28.8.3 Serial programming instruction set
	28.8.4 SPI serial programming characteristics

	29. Electrical characteristics
	29.1 Absolute maximum ratings*
	29.2 DC characteristics
	29.3 Speed grades
	29.4 Clock characteristics
	29.4.1 Calibrated internal RC oscillator accuracy
	29.4.2 External clock drive waveforms
	29.4.3 External clock drive

	29.5 System and reset characteristics
	29.6 2-wire serial interface characteristics
	29.7 SPI timing characteristics
	29.8 ADC characteristics
	29.9 Parallel programming characteristics

	30. Typical characteristics
	30.1 Active supply current
	30.2 Idle supply current
	30.3 Supply current of I/O modules
	30.3.0.1 Example 1
	30.3.0.2 Example 2
	30.3.0.3 Example 3

	30.4 Power-down supply current
	30.5 Power-save supply current
	30.6 Standby supply current
	30.7 Pin pull-up
	30.8 Pin driver strength
	30.9 Pin thresholds and hysteresis
	30.10 BOD thresholds and analog comparator offset
	30.11 Internal oscillator speed
	30.12 Current consumption of peripheral units
	30.13 Current consumption in reset and reset pulse width

	31. Register summary
	32. Instruction set summary
	33. Ordering information
	33.1 Atmel ATmega48
	33.2 Atmel ATmega88
	33.3 Atmel ATmega168

	34. Packaging information
	34.1 32A
	34.2 28M1
	34.3 32M1-A
	34.4 28P3

	35. Errata
	35.1 Errata Atmel ATmega48
	35.1.1 Rev K
	35.1.2 Rev E to J
	35.1.3 Rev. D
	35.1.4 Rev. C
	35.1.5 Rev. B
	35.1.6 Rev A

	35.2 Errata Atmel ATmega88
	35.2.1 Rev K
	35.2.2 Rev E to J
	35.2.3 Rev. D
	35.2.4 Rev. B/C
	35.2.5 Rev. A

	35.3 Errata Atmel ATmega168
	35.3.1 Rev K
	35.3.2 Rev D to J
	35.3.3 Rev C
	35.3.4 Rev B
	35.3.5 Rev A

	36. Datasheet revision history
	36.1 Rev. 2545U-11/15
	36.2 Rev. 2545T-04/11
	36.3 Rev. 2545S-07/10
	36.4 Rev. 2545R-07/09
	36.5 Rev. 2545Q-06/09
	36.6 Rev. 2545P-02/09
	36.7 Rev. 2545O-02/09
	36.8 Rev. 2545N-01/09
	36.9 Rev. 2545M-09/07
	36.10 Rev. 2545L-08/07
	36.11 Rev. 2545K-04/07
	36.12 Rev. 2545J-12/06
	36.13 Rev. 2545I-11/06
	36.14 Rev. 2545H-10/06
	36.15 Rev. 2545G-06/06
	36.16 Rev. 2545F-05/05
	36.17 Rev. 2545E-02/05
	36.18 Rev. 2545D-07/04
	36.19 Rev. 2545C-04/04
	36.20 Rev. 2545B-01/04

	Table of Content

