Atl I IeL ATmegal6M1/ATmega32M1/ATmega64M1/

ATmega32C1/ATmega64C1l Automotive

8-bit AVR Microcontroller with 16K/32K/64Kbytes
In-system

DATASHEET

Features

e High performance, low power AVR® 8-bit microcontroller
e Advanced RISC architecture

131 powerful instructions - most single clock cycle execution
32 x 8 general purpose working registers
Fully static operation
Up to 1MIPS throughput per MHz
e On-chip 2-cycle multiplier
e Data and non-volatile program memory

e 16K/32K/64Kbytes flash of in-system programmable program memory
e Endurance: 10,000 write/erase cycles

e Optional boot code section with independent lock bits

e In-system programming by on-chip boot program
e True read-while-write operation

e 512/1024/2048 Bytes of in-system programmable EEPROM
e Endurance: 100,000 write/erase cycles

e Programming lock for flash program and EEPROM data security

e 1024/2048/4096 bytes internal SRAM

e On chip debug interface (debugWIRE)

e CAN 2.0A/B with 6 message objects - ISO 16845 certified(")

e LIN 2.1 and 1.3 controller or 8-Bit UART

e One 12-bit high-speed PSC (power stage controller) (only Atmel®
ATmega16/32/64M1)

Non overlapping inverted PWM output pins with flexible dead-time
Variable PWM duty cycle and frequency

Synchronous update of all PWM registers

Auto stop function for emergency event

e Peripheral features

e One 8-bit general purpose Timer/Counter with separate prescaler, compare mode
and capture mode

e One 16-bit general purpose Timer/Counter with separate prescaler, compare
mode and capture mode

e One master/slave SPI serial interface
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e 10-bit ADC
e Up to 11 single ended channels and 3 fully differential ADC channel pairs
e Programmable gain (5x, 10x, 20x, 40x) on differential channels
e Internal reference voltage
e Direct power supply voltage measurement
10-bit DAC for variable voltage reference (comparators, ADC)
Four analog comparators with variable threshold detection
100uA £6% current source (LIN node identification)
Interrupt and wake-up on pin change
Programmable watchdog timer with separate on-chip oscillator
e On-chip temperature sensor
e Special microcontroller features

Low power idle, noise reduction, and power down modes
Power on reset and programmable brown out detection
In-system programmable via SPI port
High precision crystal oscillator for CAN operations (16MHz)
e Internal calibrated RC oscillator (8MHz)
e On-chip PLL for fast PWM (32MHz, 64MHz) and CPU (16MHz) (only Atmel® ATmega16/32/64M1)
e Operating voltage:
e 27V-55V
e Extended operating temperature:
e -40°Cto +125°C
e Core speed grade:
e 0-8MHzat2.7-4.5V
e 0-16MHzat4.5-5.5V

Note: 1. See certification on Atmel web site and note on Section 16.4.3 “Baud Rate” on page 148.

Table 1. ATmega32/64/M1/C1 Product Line-up

Part Number ATmega32C1 ATmega64Cl1l ATmegal6éM1 ATmega32M1 ATmega64M1
Flash size 32Kbyte 64Kbyte 16Kbyte 32Kbyte 64Kbyte
RAM size 2048 bytes 4096 bytes 1024 bytes 2048 bytes 4096 bytes

EEPROM size 1024 bytes 2048 bytes 512 bytes 1024 bytes 2048 bytes
8-bit timer Yes

16-bit timer Yes
PSC No Yes
PWM outputs 4 4 10 10 10
Fault inputs (PSC) 0 0 3 3 3
PLL No Yes
10-bit ADC channels 3 L?ﬁse':‘egr:ﬁal
10-bit DAC Yes
analog comparators 4
Current source Yes
CAN Yes
LIN/UART Yes
I
SPl interface Yes
2 ATmega16/32/64/M1/C1 [DATASHEET] Atmel.
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1. Pin Configurations

Figure 1-1. ATmegal6/32/64M1 TQFP32/QFN32 (7*7mm) Package
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Note: On the engineering samples (Parts marked AT90PWM324), the ACMPN3 alternate function is not located on

PC4. It is located on PE2.

Atmel
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Figure 1-2. ATmega32/64C1 TQFP32/QFN32 (7*7 mm) Package
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Note: On the first engineering samples (Parts marked AT90PWM324), the ACMPNS alternate function is not located

on PC4. It is located on PE2.

4 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15

Atmel



1.1 Pin Descriptions

Table 1-1.  Pin Out Description

QFN32 Pin
Number Mnemonic Name, Function and Alternate Function
5 GND Power Ground: 0OV reference
20 AGND Power Analog Ground: 0V reference for analog part
4 VCC Power Power Supply

Analog Power Supply: This is the power supply voltage for analog
19 AvCC Power part
For a normal use this pin must be connected.

Analog Reference: reference for analog converter. This is the
reference voltage of the A/D converter. As output, can be used by
external analog

ISRC (Current Source Output)

MISO (SPI Master In Slave Out)

8 PBO I/O PSCOUT2A (PSC Module 2 Output A)
PCINTO (Pin Change Interrupt 0)
MOSI (SPI Master Out Slave In)

9 PB1 I/0 PSCOUT2B (PSC Module 2 Output B)
PCINT1 (Pin Change Interrupt 1)
ADCS5 (Analog Input Channel 5 )

INT1 (External Interrupt 1 Input)

21 AREF Power

16 PB2 I/0 .

ACMPNO (analog comparator 0 Negative Input)

PCINT2 (Pin Change Interrupt 2)

AMPO- (Analog Differential Amplifier 0 Negative Input)
23 PB3 I/0

PCINT3 (Pin Change Interrupt 3)

AMPO+ (Analog Differential Amplifier 0 Positive Input)
24 PB4 I/0

PCINT4 (Pin Change Interrupt 4)

ADCG6 (Analog Input Channel 6)

INT2 (External Interrupt 2 Input)

26 PB5 /0 ACMPN1 (analog comparator 1 Negative Input)
AMP2- (Analog Differential Amplifier 2 Negative Input)
PCINT5 (Pin Change Interrupt 5)

ADCY7 (Analog Input Channel 7)

27 PB6 /0 PSCOUT1B (PSC Module 1 Output A)

PCINT6 (Pin Change Interrupt 6)

ADC4 (Analog Input Channel 4)

PSCOUTOB (PSC Module 0 Output B)

SCK (SPI Clock)

PCINT7 (Pin Change Interrupt 7)

PSCOUT1A (PSC Module 1 Output A)

30 PCO 1/0 INT3 (External Interrupt 3 Input)

PCINT8 (Pin Change Interrupt 8)

Note: 1. On the first engineering samples (Parts marked AT90PWM324), the ACMPNS3 alternate function is not located
on PCA4. Itis located on PE2.

28 PB7 I/0

ATmega16/32/64/M1/C1 [DATASHEET] 5
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Table 1-1.  Pin Out Description (Continued)

QFN32 Pin

Number Mnemonic Name, Function and Alternate Function
PSCIN1 (PSC Digital Input 1)

OC1B (Timer 1 Output Compare B)

SS_A (Alternate SPI Slave Select)

PCINT9 (Pin Change Interrupt 9)

TO (Timer 0 clock input)

6 PC2 I/0 TXCAN (CAN Transmit Output)

PCINT10 (Pin Change Interrupt 10)

T1 (Timer 1 clock input)

RXCAN (CAN Receive Input)

ICP1B (Timer 1 input capture alternate B input)
PCINT11 (Pin Change Interrupt 11)

ADCS8 (Analog Input Channel 8)

AMP1- (Analog Differential Amplifier 1 Negative Input)

3 PC1 I/0

7 PC3 I/0

17 PC4 I/O .
ACMPN3 (analog comparator 3 Negative Input)

PCINT12 (Pin Change Interrupt 12)

ADC9 (Analog Input Channel 9)

AMP1+ (Analog Differential Amplifier 1 Positive Input)
18 PC5 I/0
ACMP3 (analog comparator 3 Positive Input)
PCINT13 (Pin Change Interrupt 13)

ADC10 (Analog Input Channel 10)

22 PC6 1/0 ACMP1 (analog comparator 1 Positive Input)
PCINT14 (Pin Change Interrupt 14)

D2A (DAC output)

25 PC7 I/0 AMP2+ (Analog Differential Amplifier 2 Positive Input)
PCINT15 (Pin Change Interrupt 15)

PSCOUTOA (PSC Module 0 Output A)

PCINT16 (Pin Change Interrupt 16)

PSCINO (PSC Digital Input 0)

32 PD1 I/0 CLKO (System Clock Output)

PCINT17 (Pin Change Interrupt 17)

OCA1A (Timer 1 Output Compare A)

PSCIN2 (PSC Digital Input 2)

29 PDO I/0

1 PD2 I/0
MISO_A (Programming and alternate SPI Master In Slave Out)
PCINT18 (Pin Change Interrupt 18)
TXD (UART Tx data)
TXLIN (LIN Transmit Output)
OCOA (Timer 0 Output Compare A)
2 PD3 I/0

SS (SPI Slave Select)
MOSI_A (Programming and alternate Master Out SPI Slave In)

PCINT19 (Pin Change Interrupt 19)

Note: 1. On the first engineering samples (Parts marked AT90PWM324), the ACMPNS3 alternate function is not located
on PCA4. Itis located on PE2.

6  ATmega16/32/64/M1/C1 [DATASHEET]
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Table 1-1.  Pin Out Description (Continued)

QFN32 Pin

Number Mnemonic Name, Function and Alternate Function
ADC1 (Analog Input Channel 1)

RXD (UART Rx data)

RXLIN (LIN Receive Input)

ICP1A (Timer 1 input capture alternate A input)
SCK_A (Programming and alternate SPI Clock)
PCINT20 (Pin Change Interrupt 20)

ADC2 (Analog Input Channel 2)

13 PD5 I/0 ACMP2 (analog comparator 2 Positive Input)
PCINT21 (Pin Change Interrupt 21)

ADC3 (Analog Input Channel 3)

ACMPN2 (analog comparator 2 Negative Input)

12 PD4 I/0

14 PD6 I/0

INTO (External Interrupt O Input)

PCINT22 (Pin Change Interrupt 22)

ACMPO (analog comparator 0 Positive Input)
15 PD7 I/0

PCINT23 (Pin Change Interrupt 23)
RESET (Reset Input)

31 PEO /O or | OCD (On Chip Debug I/0O)
PCINT24 (Pin Change Interrupt 24)
XTAL1 (XTAL Input)

10 PE1 1/0 OCOB (Timer 0 Output Compare B)
PCINT25 (Pin Change Interrupt 25)
XTAL2 (XTAL Output)

11 PE2 1/0 ADCO (Analog Input Channel 0)

PCINT26 (Pin Change Interrupt 26)

Note: 1. On the first engineering samples (Parts marked AT90PWM324), the ACMPNS3 alternate function is not located
on PC4. Itis located on PE2.

ATmega16/32/64/M1/C1 [DATASHEET] 7
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2.1

Overview

The Atmel® ATmega16/32/64/M1/C1 is a low-power CMOS 8-bit microcontroller based on the AVR® enhanced RISC
architecture. By executing powerful instructions in a single clock cycle, the Atmel ATmega16/32/64/M1/C1 achieves
throughputs approaching 1MIPS per MHz allowing the system designer to optimize power consumption versus processing
speed.

Block Diagram

Figure 2-1. Block Diagram
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The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly
connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction
executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times
faster than conventional CISC microcontrollers.

The Atmel ATmega16/32/64/M1/C1 provides the following features: 16K/32K/64K bytes of In-System Programmable Flash
with Read-while-write capabilities, 512/1024/2048 bytes EEPROM, 1024/2048/4096 bytes SRAM, 27 general purpose 1/O
lines, 32 general purpose working registers, one Motor Power Stage Controller, two flexible Timer/Counters with compare
modes and PWM, one UART with HW LIN, an 11-channel 10-bit ADC with two differential input stages with programmable
gain, a 10-bit DAC, a programmable Watchdog Timer with Internal Individual Oscillator, an SPI serial port, an On-chip Debug
system and four software selectable power saving modes.

ATmega16/32/64/M1/C1 [DATASHEET]
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Atmel



The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI ports, CAN, LIN/UART and interrupt system to
continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip
functions until the next interrupt or Hardware Reset. The ADC noise reduction mode stops the CPU and all /O modules
except ADC, to minimize switching noise during ADC conversions. In Standby mode, the Crystal/Resonator Oscillator is
running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption.

The device is manufactured using Atmel’s high-density nonvolatile memory technology. The On-chip ISP Flash allows the
program memory to be reprogrammed in-system through an SPI serial interface, by a conventional nonvolatile memory
programmer, or by an On-chip Boot program running on the AVR core. The boot program can use any interface to download
the application program in the application Flash memory. Software in the boot flash section will continue to run while the
application flash section is updated, providing true read-while-write operation. By combining an 8-bit RISC CPU with in-
system self-programmable flash on a monolithic chip, the Atmel ATmega16/32/64/M1/C1 is a powerful microcontroller that
provides a highly flexible and cost effective solution to many embedded control applications.

The ATmega16/32/64/M1/C1 AVR is supported with a full suite of program and system development tools including: C
compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

2.2 Automotive Quality Grade
The Atmel® ATmega16/32/64/M1/C1 have been developed and manufactured according to the most stringent requirements
of the international standard ISO-TS-16949. This data sheet contains limit values extracted from the results of extensive
characterization (Temperature and Voltage). The quality and reliability of the ATmega16/32/64/M1/C1 have been verified
during regular product qualification as per AEC-Q100 grade 1.
As indicated in the ordering information paragraph, the products are available in only one temperature grade.
Table 2-1. Temperature Grade Identification for Automotive Products

Temperature Temperature Identifier Comments
—40, +125 Z Full automotive temperature range

2.3 Pin Descriptions

231 VCC
Digital supply voltage.

2.3.2 GND
Ground.

2.3.3 PortB (PB7..PBO)
Port B is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The Port B output buffers have
symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled
low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes
active, even if the clock is not running.
Port B also serves the functions of various special features of the Atmel ATmega16/32/64/M1/C1 as listed in Section 9.3.2
“Alternate Functions of Port B” on page 58.

2.3.4 Port C (PC7..PCO)
Port C is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The Port C output buffers have
symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled
low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes
active, even if the clock is not running.
Port C also serves the functions of special features of the ATmega16/32/64/M1/C1 as listed in Section 9.3.3 “Alternate
Functions of Port C” on page 61.

/It L ATmega16/32/64/M1/C1 [DATASHEET] 9
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2.35 Port D (PD7..PDO)

Port D is an 8-bit bi-directional 1/O port with internal pull-up resistors (selected for each bit). The port D output buffers have
symmetrical drive characteristics with both high sink and source capability. As inputs, port D pins that are externally pulled
low will source current if the pull-up resistors are activated. The port D pins are tri-stated when a reset condition becomes
active, even if the clock is not running.

Port D also serves the functions of various special features of the Atmel® ATmega16/32/64/M1/C1 as listed on 64.

2.3.6 Port E (PE2..0) RESET/ XTAL1/ XTAL2

Port E is an 3-bit bi-directional 1/0O port with internal pull-up resistors (selected for each bit). The port E output buffers have
symmetrical drive characteristics with both high sink and source capability. As inputs, port E pins that are externally pulled
low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes
active, even if the clock is not running.

If the RSTDISBL fuse is programmed, PEO is used as an I/O pin. Note that the electrical characteristics of PEO differ from
those of the other pins of Port E.

If the RSTDISBL fuse is unprogrammed, PEO is used as a Reset input. A low level on this pin for longer than the minimum
pulse length will generate a Reset, even if the clock is not running. The minimum pulse length is given in Table 7-1 on page
39. Shorter pulses are not guaranteed to generate a reset.

Depending on the clock selection fuse settings, PE1 can be used as input to the inverting oscillator amplifier and input to the
internal clock operating circuit.

Depending on the clock selection fuse settings, PE2 can be used as output from the inverting oscillator amplifier.

The various special features of Port E are elaborated in Section 9.3.5 “Alternate Functions of Port E” on page 67 and Section
5.1 “Clock Systems and their Distribution” on page 25.

2.3.7 AvVCC

AVCC is the supply voltage pin for the A/D converter, D/A converter, current source. It should be externally connected to
Ve, even if the ADC, DAC are not used. If the ADC is used, it should be connected to V¢ through a low-pass filter (see
Section 18.6.2 “Analog Noise Canceling Techniques” on page 204).

2.3.8 AREF

This is the analog reference pin for the A/D converter.

2.4 About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code
examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors
include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C
compiler documentation for more details.

10 ATmega16/32/64/M1/C1 [DATASHEET]
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3.1

3.2

Atmel

AVR CPU Core

Introduction

This section discusses the AVR® core architecture in general. The main function of the CPU core is to ensure correct
program execution. The CPU must therefore be able to access memories, perform calculations, control peripherals, and
handle interrupts.

Architectural Overview

Figure 3-1. Block Diagram of the AVR Architecture
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In order to maximize performance and parallelism, the AVR uses a Harvard architecture — with separate memories and
buses for program and data. Instructions in the program memory are executed with a single level pipelining. While one
instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions
to be executed in every clock cycle. The program memory is in-system reprogrammable Flash memory.

The fast-access register file contains 32 x 8-bit general purpose working registers with a single clock cycle access time. This
allows single-cycle arithmetic logic unit (ALU) operation. In a typical ALU operation, two operands are output from the
register file, the operation is executed, and the result is stored back in the register file — in one clock cycle.

ATmega16/32/64/M1/C1 [DATASHEET] 11
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Six of the 32 registers can be used as three 16-bit indirect address register pointers for data space addressing — enabling
efficient address calculations. One of the these address pointers can also be used as an address pointer for look up tables in
Flash program memory. These added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single register
operations can also be executed in the ALU. After an arithmetic operation, the Status Register is updated to reflect
information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the whole
address space. Most AVR instructions have a single 16-bit word format. Every program memory address contains a 16- or
32-bit instruction.

Program flash memory space is divided in two sections, the boot program section and the application program section. Both
sections have dedicated Lock bits for write and read/write protection. The SPM (store program memory) instruction that
writes into the application flash memory section must reside in the boot program section.

during interrupts and subroutine calls, the return address program counter (PC) is stored on the stack. The stack is
effectively allocated in the general data SRAM, and consequently the stack size is only limited by the total SRAM size and
the usage of the SRAM. All user programs must initialize the SP in the reset routine (before subroutines or interrupts are
executed). The stack pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed through
the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR® architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the 1/0 space with an additional global interrupt enable bit in the status
register. All interrupts have a separate interrupt vector in the interrupt vector table. The interrupts have priority in accordance
with their interrupt vector position. The lower the interrupt vector address, the higher is the priority.

The 1/0 memory space contains 64 addresses for CPU peripheral functions as control registers, SPI, and other 1/O functions.
The I/O memory can be accessed directly, or as the data space locations following those of the register file, 0x20 - Ox5F. In
addition, the Atmel ATmega16/32/64/M1/C1 has extended 1/O space from 0x60 - OxFF in SRAM where only the
ST/STS/STD and LD/LDS/LDD instructions can be used.

3.3 ALU — Arithmetic Logic Unit

The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers. Within a
single clock cycle, arithmetic operations between general purpose registers or between a register and an immediate are
executed. The ALU operations are divided into three main categories — arithmetic, logical, and bit-functions. Some
implementations of the architecture also provide a powerful multiplier supporting both signed/unsigned multiplication and
fractional format. See the “Instruction Set” section for a detailed description.

34 Status Register

The status register contains information about the result of the most recently executed arithmetic instruction. This
information can be used for altering program flow in order to perform conditional operations. Note that the status register is
updated after all ALU operations, as specified in the Instruction Set Reference. This will in many cases remove the need for
using the dedicated compare instructions, resulting in faster and more compact code.

The status register is not automatically stored when entering an interrupt routine and restored when returning from an
interrupt. This must be handled by software.

The AVR Status Register — SREG - is defined as:

Bit 7 6 5 4 3 2 1 0
| v | v | H | s | v N Z C | SREG
Read/Write RIW R/W R/W RIW R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 —1: Global Interrupt Enable

The global interrupt enable bit must be set to enabled the interrupts. The individual interrupt enable control is then performed
in separate control registers. If the global interrupt enable register is cleared, none of the interrupts are enabled independent
of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by the
RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by the application with the SEI and
CLI instructions, as described in the instruction set reference.

12 ATmega16/32/64/M1/C1 [DATASHEET]
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« Bit 6 —T: Bit Copy Storage

The bit copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the operated bit. A bit
from a register in the register file can be copied into T by the BST instruction, and a bit in T can be copied into a bit in a
register in the register file by the BLD instruction.

« Bit5— H: Half Carry Flag

The half carry flag H indicates a half carry in some arithmetic operations. Half carry Is useful in BCD arithmetic. See the
“Instruction Set Description” for detailed information.

+ Bit4-S:SignBit,S=N®V

The S-bit is always an exclusive or between the negative flag N and the two’s complement overflow flag V. See the
“Instruction Set Description” for detailed information.

e Bit3-V: Two's Complement Overflow Flag

The two’s complement overflow flag V supports two’s complement arithmetics. See the “Instruction Set Description” for
detailed information.

e Bit 2 - N: Negative Flag

The negative flag N indicates a negative result in an arithmetic or logic operation. See the “Instruction Set Description” for
detailed information.

e Bit1l-Z: Zero Flag

The zero flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction Set Description” for detailed
information.

* Bit0-C: Carry Flag

The carry flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set Description” for detailed
information.

3.5 General Purpose Register File
The register file is optimized for the AVR enhanced RISC instruction set. In order to achieve the required performance and
flexibility, the following input/output schemes are supported by the register file:
e  One 8-bit output operand and one 8-bit result input
e  Two 8-bit output operands and one 8-bit result input
e  Two 8-bit output operands and one 16-bit result input
e  One 16-bit output operand and one 16-bit result input

ATmega16/32/64/M1/C1 [DATASHEET] 13
Atmel 76470-AVR—01/15



Figure 3-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 3-2. AVR CPU General Purpose Working Registers

7 0 Addr.
RO 0x00
R1 0x01
R2 0x02
R13 0x0D
General R14 0x0E
Purpose R15 OxOF
Working R16 0x10
Registers R17 0x11
R26 Ox1A X-register Low Byte
R27 0x1B X-register High Byte
R28 0x1C Y-register Low Byte
R29 0x1D Y-register High Byte
R30 Ox1E Z-register Low Byte
R31 Ox1F Z-register High Byte

Most of the instructions operating on the register file have direct access to all registers, and most of them are single cycle
instructions.

As shown in Figure 3-2, each register is also assigned a data memory address, mapping them directly into the first 32
locations of the user data space. Although not being physically implemented as SRAM locations, this memory organization
provides great flexibility in access of the registers, as the X-, Y- and Z-pointer registers can be set to index any register in the
file.

3.5.1 The X-register, Y-register, and Z-register

The registers R26..R31 have some added functions to their general purpose usage. These registers are 16-bit address
pointers for indirect addressing of the data space. The three indirect address registers X, Y, and Z are defined as described
in

Figure 3-3.

Figure 3-3. The X-, Y-, and Z-registers

15 XH XL
X-register | 7 0 | 7 0 |
R27 (Ox1B) R26 (Ox1A)
15 YH YL 0
Y-register | 7 0 | 7 0 |
R29 (0x1D) R28 (0x1C)
15 ZH ZL
Z-register | 7 0 | 7 0 |
R31 (Ox1F) R30 (OX1E)

In the different addressing modes these address registers have functions as fixed displacement, automatic increment, and
automatic decrement (see the instruction set reference for details).
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3.6

3.7

Stack Pointer

The stack is mainly used for storing temporary data, for storing local variables and for storing return addresses after
interrupts and subroutine calls. The stack pointer register always points to the top of the stack. Note that the stack is
implemented as growing from higher memory locations to lower memory locations. This implies that a Stack PUSH
command decreases the stack pointer.

The stack pointer points to the data SRAM stack area where the subroutine and interrupt stacks are located. This stack
space in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts are enabled.
The stack pointer must be set to point above 0x100. The stack pointer is decremented by one when data is pushed onto the
stack with the PUSH instruction, and it is decremented by two when the return address is pushed onto the stack with
subroutine call or interrupt. The stack pointer is incremented by one when data is popped from the stack with the POP
instruction, and it is incremented by two when data is popped from the stack with return from subroutine RET or return from
interrupt RETI.

The AVR® stack pointer is implemented as two 8-bit registers in the 1/0 space. The number of bits actually used is
implementation dependent. Note that the data space in some implementations of the AVR architecture is so small that only
SPL is needed. In this case, the SPH Register will not be present.

Bit 15 14 13 12 11 10 9 8

SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO SPL
7 6 5 4 3 2 1 0
Read/Write R/W R/W R/W R/W R/W R/W R/IW R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value Top address of the SRAM (0x04FF/0x08FF/0x10FF)

Instruction Execution Timing

This section describes the general access timing concepts for instruction execution. The AVR CPU is driven by the CPU
clock clkepy, directly generated from the selected clock source for the chip. No internal clock division is used.

Figure 3-4 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture and the fast-
access Register File concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz with the corresponding
unique results for functions per cost, functions per clocks, and functions per power-unit.

Figure 3-4. The Parallel Instruction Fetches and Instruction Executions
T1 T2 T3 T4

ckeey 4 N/ N1 _/ \_
1st Instruction Fetch —'-<: )

1st Instruction Execute —Hh

2nd Instruction Fetch 7

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch
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Figure 3-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using two register
operands is executed, and the result is stored back to the destination register.

Figure 3-5. Single Cycle ALU Operation
T T2 T3 T4

clkepy J_\_/_\_/_\_/_\_
Total Execution Time —'-<: )

Register Operands Fetch :\‘ ) : :
ALU Operation Execute E { ) E E
Result Write Back : { ) : :

1

3.8 Reset and Interrupt Handling

The AVR® provides several different interrupt sources. These interrupts and the separate reset vector each have a separate
program vector in the program memory space. All interrupts are assigned individual enable bits which must be written logic
one together with the global interrupt enable bit in the status register in order to enable the interrupt. Depending on the
program counter value, interrupts may be automatically disabled when boot lock bits BLB02 or BLB12 are programmed. This
feature improves software security. See Section 25. “Memory Programming” on page 255 for details.

The lowest addresses in the program memory space are by default defined as the reset and interrupt vectors. The complete
list of vectors is shown in Section 8. “Interrupts” on page 47. The list also determines the priority levels of the different
interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and next is ANACOMPO —
the analog comparator 0 interrupt. The interrupt vectors can be moved to the start of the boot flash section by setting the
IVSEL bit in the MCU control register (MCUCR). Refer to Section 8. “Interrupts” on page 47 for more information. The reset
vector can also be moved to the start of the boot flash section by programming the BOOTRST fuse, see Section 24. “Boot
Loader Support — Read-while-write Self-Programming ATmega16/32/64/M1/C1” on page 241.

3.8.1 Interrupt Behavior

When an interrupt occurs, the global interrupt enable I-bit is cleared and all interrupts are disabled. The user software can
write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current interrupt routine.
The I-bit is automatically set when a return from interrupt instruction — RETI — is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the interrupt flag. For these
interrupts, the program counter is vectored to the actual interrupt vector in order to execute the interrupt handling routine,
and hardware clears the corresponding interrupt flag. Interrupt flags can also be cleared by writing a logic one to the flag bit
position(s) to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared, the interrupt
flag will be set and remembered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or more
interrupt conditions occur while the global interrupt enable bit is cleared, the corresponding interrupt flag(s) will be set and
remembered until the global interrupt enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not necessarily
have interrupt flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any
pending interrupt is served.

Note that the status register is not automatically stored when entering an interrupt routine, nor restored when returning from
an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be executed
after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example shows how this can
be used to avoid interrupts during the timed EEPROM write sequence.
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Assembly Code Example
in rl6, SREG ; store SREG val ue
cli ; disable interrupts during tined sequence
sbi EECR, EEMNAE ; start EEPROM write
sbi EECR, EEWE
out SREG r 16 ; restore SREG value (I-bit)
C Code Example
char cSREG
cSREG = SREG /* store SREG val ue */
/* disable interrupts during timed sequence */
_CLI();
EECR | = (1<<EEMAE); /* start EEPROMwite */
EECR | = (1<<EEVE);
SREG = cSREG /* restore SREG value (Il-bit) */

When using the SEI instruction to enable interrupts, the instruction following SEI will be executed before any pending
interrupts, as shown in this example.

Assembly Code Example

sei ; set dobal Interrupt Enable

sl eep ; enter sleep, waiting for interrupt
; note: will enter sleep before any pending

; interrupt(s)

C Code Example

_SEI(); /* set @ obal Interrupt Enable */
_SLEEP(); /* enter sleep, waiting for interrupt */
/* note: will enter sleep before any pending interrupt(s) */

3.8.2 Interrupt Response Time

The interrupt execution response for all the enabled AVR® interrupts is four clock cycles minimum. After four clock cycles the
program vector address for the actual interrupt handling routine is executed. during this four clock cycle period, the program
counter is pushed onto the stack. The vector is normally a jump to the interrupt routine, and this jump takes three clock
cycles. If an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed before the interrupt is
served. If an interrupt occurs when the MCU is in sleep mode, the interrupt execution response time is increased by four
clock cycles. This increase comes in addition to the start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. during these four clock cycles, the program counter (two
bytes) is popped back from the stack, the stack pointer is incremented by two, and the I-bit in SREG is set.

ATmega16/32/64/M1/C1 [DATASHEET] 17
/ItmeL 76470-AVR-01/15



4.1

4.2

18

Memories

This section describes the different memories in the Atmel® ATmega16/32/64/M1/C1. The AVR architecture has two main
memory spaces, the data memory and the program memory space. In addition, the Atmel ATmega16/32/64/M1/C1 features
an EEPROM Memory for data storage. All three memory spaces are linear and regular.

In-system Reprogrammable Flash Program Memory

The Atmel ATmega16/32/64/M1/C1 contains 16K/32K/64K bytes on-chip in-system reprogrammable flash memory for
program storage. Since all AVR® instructions are 16 or 32 bits wide, the Flash is organized as 8K x 16, 16K x 16 , 32K x 16.
For software security, the flash program memory space is divided into two sections, boot program section and application
program section.

The flash memory has an endurance of at least 10,000 write/erase cycles. The Atmel ATmega16/32/64/M1/C1 program
counter (PC) is 14/15 bits wide, thus addressing the 8K/16K/32K program memory locations. The operation of boot program
section and associated boot lock bits for software protection are described in detail in Section 24. “Boot Loader Support —
Read-while-write Self-Programming ATmega16/32/64/M1/C1” on page 241. Section 25. “Memory Programming” on page
255 contains a detailed description on flash programming in SPI or parallel programming mode.

Constant tables can be allocated within the entire program memory address space (see the LPM — Load Program Memory.

Timing diagrams for instruction fetch and execution are presented in Section 3.7 “Instruction Execution Timing” on page 15.

Figure 4-1. Program Memory Map

Program Memory

0x0000

Application Flash Section

|

Boot Flash Section
0x1FFF/0x3FFF/0x7F

SRAM Data Memory
Figure 4-2 shows how the Atmel ATmega16/32/64/M1/C1 SRAM memory is organized.

The Atmel ATmega16/32/64/M1/C1 is a complex microcontroller with more peripheral units than can be supported within the
64 locations reserved in the Opcode for the IN and OUT instructions. For the extended 1/0 space from 0x60 - OxFF in SRAM,
only the ST/STS/STD and LD/LDS/LDD instructions can be used.

The lower 2304 data memory locations address both the register File, the I/O memory, extended I/O memory, and the
internal data SRAM. The first 32 locations address the register file, the next 64 location the standard 1/0 memory, then 160
locations of extended /O memory, and the next 1024/2048/4096 locations address the internal data SRAM.

The five different addressing modes for the data memory cover: Direct, Indirect with Displacement, Indirect, Indirect with Pre-
decrement, and Indirect with Post-increment. In the register File, registers R26 to R31 feature the indirect addressing pointer
registers.
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The direct addressing reaches the entire data space.
The Indirect with Displacement mode reaches 63 address locations from the base address given by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-increment, the address registers X,
Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 1/O registers, 160 extended I/O registers, and the 1024/2048/4096 bytes of
internal data SRAM in the Atmel® ATmega16/32/64/M1/C1 are all accessible through all these addressing modes. The
register file is described in Section 3.5 “General Purpose Register File” on page 13.

Figure 4-2. Data Memory Map for 1024/2048/4096 Internal SRAM

Data Memory

32 Registers 0x0000 - 0x001F

64 1/0 Registers 0x0020 - 0x005F

160 Ext I/O Registers | 0x0060 - 0x00FF
Internal SRAM 0x0100

(1024x8)

(2048x8)
(4096x8)

0x04FF/0x08FF/0x10FF

4.2.1 SRAM Data Access Times
This section describes the general access timing concepts for internal memory access. The internal data SRAM access is
performed in two clk¢gpy cycles as described in Figure 4-3 on page 19.
Figure 4-3. On-chip Data SRAM Access Cycles
T T2 T3
oy S N N \___
Address : Compute Address :X Address valid !
Data ; — )
i i : Write
WR : i/ P\
Data : : ( L)
i i i Read
RD : / AN
\ /
V
Memory Access Instruction Next Instruction
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4.3 EEPROM Data Memory

The Atmel® ATmega16/32/64/M1/C1 contains 512/1024/2048 bytes of data EEPROM memory. It is organized as a separate
data space, in which single bytes can be read and written. The EEPROM has an endurance of at least 100,000 write/erase
cycles. The access between the EEPROM and the CPU is described in the following, specifying the EEPROM Address
Registers, the EEPROM Data Register, and the EEPROM Control Register.

For a detailed description of SPI and Parallel data downloading to the EEPROM, see Section 25.9 “Serial Downloading” on
page 270, and Section 25.6 “Parallel Programming Parameters, Pin Mapping, and Commands” on page 259 respectively.

4.3.1 EEPROM Read/Write Access

The EEPROM Access Registers are accessible in the I/O space.

The write access time for the EEPROM is given in Table 4-2. A self-timing function, however, lets the user software detect
when the next byte can be written. If the user code contains instructions that write the EEPROM, some precautions must be
taken. In heavily filtered power supplies, V. is likely to rise or fall slowly on power-up/down. This causes the device for
some period of time to run at a voltage lower than specified as minimum for the clock frequency used. Section 4.3.5
“Preventing EEPROM Corruption” on page 23 for details on how to avoid problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed. Refer to the description of the
EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is executed. When the
EEPROM is written, the CPU is halted for two clock cycles before the next instruction is executed.

4.3.2 The EEPROM Address Registers — EEARH and EEARL

Bit 15 14 13 12 11 10 9 8
- EEAR10 | EEARY | EEARS | EEARH
EEAR7 | EEAR6 | EEARS | EEAR4 | EEAR3 | EEAR2 | EEAR1 | EEARO | EEARL

7 6 5 4 3 2 1 0
Read/Write R R R R R R/IW R/W R/W
R/W R/W R/W R/W R/W R/wW R/W R/W
Initial Value 0 0 0 0 0 X X X
X X X X X X X X

+ Bits 15.11 — Reserved Bits
These bits are reserved bits in the ATmega16/32/64/M1/C1 and will always read as zero.

* Bits 9..0 - EEAR10..0: EEPROM Address

The EEPROM address registers — EEARH and EEARL specify the EEPROM address in the 512/1024/2048 bytes EEPROM
space. The EEPROM data bytes are addressed linearly between 0 and 511/1023/2047. The initial value of EEAR is
undefined. A proper value must be written before the EEPROM may be accessed.

4.3.3 The EEPROM Data Register — EEDR

Bit 7 6 5 4 3 2 1 0
| EEDR7 | EEDR6 | EEDRS5 | EEDR4 | EEDR3 | EEDR2 | EEDRL | EEDRO | EEDR
Read/Write  R/W RIW R/IW R/W R/IW R/W RIW RIW
Initial Value 0 0 0 0 0 0 0 0

* Bits 7..0 - EEDR7.0: EEPROM Data

For the EEPROM write operation, the EEDR register contains the data to be written to the EEPROM in the address given by
the EEAR register. For the EEPROM read operation, the EEDR contains the data read out from the EEPROM at the address
given by EEAR.
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4.3.4 The EEPROM Control Register — EECR

Bit 7 6 5 4 3 2 1 0
| - | - |EEPMI1[EEPMO | EERIE | EEMWE | EEWE | EERE | EECR
Read/Write R R R/W R/W R/W R/W RIW R/W
Initial Value 0 0 X X 0 0 X 0

* Bits 7..6 — Reserved Bits
These bits are reserved bits in the ATmega16/32/64/M1/C1 and will always read as zero.
e Bits 5..4 — EEPM1 and EEPMO: EEPROM Programming Mode Bits

The EEPROM Programming mode bit setting defines which programming action that will be triggered when writing EEWE. It
is possible to program data in one atomic operation (erase the old value and program the new value) or to split the Erase
and Write operations in two different operations. The Programming times for the different modes are shown in Table 4-1.
While EEWE is set, any write to EEPMn will be ignored. during reset, the EEPMn bits will be reset to 0b00 unless the
EEPROM is busy programming.

Table 4-1. EEPROM Mode Bits

EEPM1 EEPMO Programming Time Operation
0 0 3.4ms Erase and write in one operation (atomic operation)
0 1 1.8ms Erase only
1 0 1.8ms Write only
1 1 - Reserved for future use

* Bit 3 - EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM ready Interrupt if the | bit in SREG is set. Writing EERIE to zero disables the
interrupt. The EEPROM ready interrupt generates a constant interrupt when EEWE is cleared. The interrupt will not be
generated during EEPROM write or SPM.

* Bit 2 - EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be written. When EEMWE is set, setting
EEWE within four clock cycles will write data to the EEPROM at the selected address If EEMWE is zero, setting EEWE will
have no effect. When EEMWE has been written to one by software, hardware clears the bit to zero after four clock cycles.
See the description of the EEWE bit for an EEPROM write procedure.

e Bit 1 - EEWE: EEPROM Write Enable

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When address and data are correctly set up,
the EEWE bit must be written to one to write the value into the EEPROM. The EEMWE bit must be written to one before a
logical one is written to EEWE, otherwise no EEPROM write takes place. The following procedure should be followed when
writing the EEPROM (the order of steps 3 and 4 is not essential):

1. Wait until EEWE becomes zero.

2. Wait until SPMEN (Store Program Memory Enable) in SPMCSR (Store Program Memory control and status regis-
ter) becomes zero.

Write new EEPROM address to EEAR (optional).

Write new EEPROM data to EEDR (optional).

Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.
6.  Within four clock cycles after setting EEMWE, write a logical one to EEWE.

o ko

The EEPROM can not be programmed during a CPU write to the Flash memory. The software must check that the Flash
programming is completed before initiating a new EEPROM write. Step 2 is only relevant if the software contains a Boot
Loader allowing the CPU to program the Flash. If the Flash is never being updated by the CPU, step 2 can be omitted. See
Section 24. “Boot Loader Support — Read-while-write Self-Programming ATmega16/32/64/M1/C1” on page 241 for details
about Boot programming.
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Caution: Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the EEPROM master write
enable will time-out. If an interrupt routine accessing the EEPROM is interrupting another EEPROM access,
the EEAR or EEDR register will be modified, causing the interrupted EEPROM access to fail. It is
recommended to have the global interrupt flag cleared during all the steps to avoid these problems.

When the write access time has elapsed, the EEWE bit is cleared by hardware. The user software can poll this
bit and wait for a zero before writing the next byte. When EEWE has been set, the CPU is halted for two cycles
before the next instruction is executed.

* Bit 0 - EERE: EEPROM Read Enable

The EEPROM read enable signal EERE is the read strobe to the EEPROM. When the correct address is set up in the EEAR
register, the EERE bit must be written to a logic one to trigger the EEPROM read. The EEPROM read access takes one
instruction, and the requested data is available immediately. When the EEPROM is read, the CPU is halted for four cycles
before the next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation is in progress, it is neither possible
to read the EEPROM, nor to change the EEAR register.

The calibrated oscillator is used to time the EEPROM accesses. Table 4-2 lists the typical programming time for EEPROM
access from the CPU.

Table 4-2. EEPROM Programming Time.

Number of Calibrated RC Oscillator Cycles Typ Programming Time

EEPROM write (from
CPU) 26368 3.3ms

The following code examples show one assembly and one C function for writing to the EEPROM. The examples assume
that interrupts are controlled (e.g. by disabling interrupts globally) so that no interrupts will occur during execution of these
functions. The examples also assume that no flash boot loader is present in the software. If such code is present, the
EEPROM write function must also wait for any ongoing SPM command to finish.

Assembly Code Example

EEPROM wri t e:
Wait for conpletion of previous wite
shic EECR, EEVEE
rjmp EEPROM write
; Set up address (r18:r17) in address register
out EEARH, r18
out EEARL, r17
Wite data (r16) to data register
out EEDR, r 16
; Wite logical one to EEMAE
shi EECR, EEMAE
; Start eepromwite by setting EEVE
sbi EECR, EEVE
ret

C Code Example
void EEPROM write (unsigned int ui Address, unsigned char ucData)

{

/[* Wait for conpletion of previous wite */
whi | e(EECR & (1<<EEVE))

/* Set up address and data registers */
EEAR = ui Addr ess;

EEDR = ucDat a;

/* Wite | ogical one to EEME */

EECR | = (1<<EEM/E);

[* Start eepromwite by setting EEVE */
EECR | = (1<<EEVE);
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The next code examples show assembly and C functions for reading the EEPROM. The examples assume that interrupts
are controlled so that no interrupts will occur during execution of these functions.

Assembly Code Example

EEPROM r ead:
; Wait for conpletion of previous wite
shi c EECR, EEV\E
rjm EEPROM r ead
Set up address (r18:r17) in address register
out EEARH, r18
out EEARL, r17
; Start eepromread by witing EERE
sbi EECR, EERE
Read data fromdata register
in r 16, EEDR
ret

C Code Example

unsi gned char EEPROM r ead(unsi gned int ui Address)

{
/* Wait for conpletion of previous wite */
whi | e( EECR & (1<<EEVE))
/* Set up address register */
EEAR = ui Addr ess;
/* Start eepromread by witing EERE */
EECR | = (1<<EERE);
/* Return data fromdata register */
return EEDR;
}

4.3.5 Preventing EEPROM Corruption

during periods of low V¢ the EEPROM data can be corrupted because the supply voltage is too low for the CPU and the
EEPROM to operate properly. These issues are the same as for board level systems using EEPROM, and the same design
solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First, a regular write sequence to
the EEPROM requires a minimum voltage to operate correctly. Secondly, the CPU itself can execute instructions incorrectly,
if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR® RESET active (low) during periods of insufficient power supply voltage. This can be done by enabling the
internal Brown-out Detector (BOD). If the detection level of the internal BOD does not match the needed detection level, an
external low V reset Protection circuit can be used. If a reset occurs while a write operation is in progress, the write
operation will be completed provided that the power supply voltage is sufficient.

4.4 I/O Memory

The 1/O space definition of the ATmega16/32/64/M1/C1 is shown in Section 29. “Register Summary” on page 299.

All Atmel® ATmega16/32/64/M1/C1 1/Os and peripherals are placed in the I/O space. All I/O locations may be accessed by
the LD/LDS/LDD and ST/STS/STD instructions, transferring data between the 32 general purpose working registers and the
I/O space. I/O registers within the address range 0x00 - Ox1F are directly bit-accessible using the SBI and CBI instructions.
In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the instruction
set section for more details. When using the I/O specific commands IN and OUT, the I/0O addresses 0x00 - Ox3F must be
used. When addressing I/O registers as data space using LD and ST instructions, 0x20 must be added to these addresses.
The Atmel ATmega16/32/64/M1/C1 is a complex microcontroller with more peripheral units than can be supported within the
64 location reserved in Opcode for the IN and OUT instructions. For the Extended 1/O space from 0x60 - OxFF in SRAM, only
the ST/STS/STD and LD/LDS/LDD instructions can be used.
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For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.

Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVR’s, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags. The
CBI and SBI instructions work with registers 0x00 to Ox1F only.

The 1/0 and peripherals control registers are explained in later sections.

4.5 General Purpose I/O Registers

The Atmel® ATmega16/32/64/M1/C1 contains four general purpose I/O registers. These registers can be used for storing
any information, and they are particularly useful for storing global variables and status flags.

The general purpose /O registers, within the address range 0x00 - 0x1F, are directly bit-accessible using the SBI, CBI,
SBIS, and SBIC instructions.

451 General Purpose I/O Register 0 — GPIORO

Bit 7 6 5 4 3 2 1 0

| GPIOR07 | GPIOR06 | GPIOR05 | GPIOR04 | GPIOR03 | GPIOR02 | GPIORO0L | GPIOR00|  GPIORO
Read/Write R/W R/W RIW R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

452 General Purpose I/O Register 1 — GPIOR1

Bit 7 6 5 4 3 2 1 0

| GPIOR17 | GPIOR16 | GPIOR15 | GPIOR14 | GPIOR13 | GPIOR12 | GPIOR11 | GPIOR10| GPIOR1
Read/Write R/W R/W RIW R/W R/W R/IW RIW R/W
Initial Value 0 0 0 0 0 0 0 0

453 General Purpose I/O Register 2 — GPIOR2

Bit 7 6 5 4 3 2 1 0
| GPIOR27 | GPIOR26 | GPIOR25 | GPIOR24 | GPIOR23 | GPIOR22 | GPIOR21 | GPIOR20|  GPIOR2
Read/Write R/W R/W R/W R/W RIW RIW R/W R/W
Initial Value 0 0 0 0 0 0 0 0
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System Clock

Clock Systems and their Distribution

Figure 5-1 presents the principal clock systems in the AVR® and their distribution. All of the clocks need not be active at a
given time. In order to reduce power consumption, the clocks to unused modules can be halted by using different sleep
modes, as described in Section 6. “Power Management and Sleep Modes” on page 34. The clock systems are detailed
below.

Figure 5-1. Clock Distribution
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The CPU clock is routed to parts of the system concerned with operation of the AVR core. Examples of such modules are
the General Purpose Register File, the Status Register and the data memory holding the Stack Pointer. Halting the CPU
clock inhibits the core from performing general operations and calculations.

I/0 Clock — clk;,o

The 1/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, UART. The I/O clock is also used by the
External Interrupt module, but note that some external interrupts are detected by asynchronous logic, allowing such
interrupts to be detected even if the 1/O clock is halted.

Flash Clock — clkg asn

The Flash clock controls operation of the Flash interface. The flash clock is usually active simultaneously with the CPU clock.
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5.1.4 PLL Clock —clkp |
The PLL clock allows the fast peripherals to be clocked directly from a 64/32MHz clock. A 16MHz clock is also derived for
the CPU.

5.1.5 ADC Clock —clkape

The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks in order to reduce noise
generated by digital circuitry. This gives more accurate ADC conversion results.

5.2 Clock Sources

The device has the following clock source options, selectable by Flash Fuse bits as illustrated in Table 5-1. The clock from
the selected source is input to the AVR clock generator, and routed to the appropriate modules.

Table 5-1. Device Clocking Options Select!"

System
Device Clocking Option Clock PLL Input CKSEL3..0
External crystal/ceramic resonator Ext Osc RC Osc 1111 - 1000
cPrI;/I;tgvgg-; gg;gizg::a?; r‘16MHz / PLL driven by external Ext OSG Ext OsG 0100
srl;lgtg:;zzilggqi;gdreeg:gaﬁ:6MHz / PLL driven by external PLL /4 Ext Osc 0101
Reserved N/A N/A 0110
Reserved N/A N/A 0111
PLL output divided by 4: 16MHz PLL/4 RC Osc 0011
Calibrated internal RC oscillator RC Osc RC Osc 0010
PLL output divided by 4: 16MHz/PLL driven by external clock PLL/4 Ext Clk 0001
External clock Ext Clk RC Osc 0000

Notes: 1. For all fuses “1” means unprogrammed while “0” means programmed.

2. Ext Osc: External oscillator

3. RC Osc: Internal RC oscillator

4. Ext Clk: External clock input
The various choices for each clocking option is given in the following sections. When the CPU wakes up from power-down or
power-save, the selected clock source is used to time the start-up, ensuring stable oscillator operation before instruction
execution starts. When the CPU starts from reset, there is an additional delay allowing the power to reach a stable level
before starting normal operation. The watchdog oscillator is used for timing this real-time part of the start-up time. The

number of WDT oscillator cycles used for each time-out is shown in Table 5-2 on page 26. The frequency of the Watchdog
Oscillator is voltage dependent as shown in Section 27-31 “Watchdog Oscillator Frequency versus V" on page 294.

Table 5-2.  Number of Watchdog Oscillator Cycles

Typ Time-out (Ve = 5.0V) Typ Time-out (V¢ = 3.0V) Number of Cycles
4.1ms 4.3ms 4K (4,096)
65ms 69ms 64K (65,536)
26 ATmega16/32/64/M1/C1 [DATASHEET] Atmel.
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53 Default Clock Source

The device is shipped with CKSEL = “0010”, SUT = “10”, and CKDIV8 programmed. The default clock source setting is the
Internal RC Oscillator with longest start-up time and an initial system clock prescaling of 8. This default setting ensures that
all users can make their desired clock source setting using an in-system or parallel programmer.

54 Low Power Crystal Oscillator

XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip
oscillator, as shown in Figure 5-2. Either a quartz crystal or a ceramic resonator may be used.

This crystal oscillator is a low power oscillator, with reduced voltage swing on the XTAL2 output. It gives the lowest power
consumption, but is not capable of driving other clock inputs.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the capacitors depends on the
crystal or resonator in use, the amount of stray capacitance, and the electromagnetic noise of the environment. Some initial
guidelines for choosing capacitors for use with crystals are given in Table 5-3. For ceramic resonators, the capacitor values
given by the manufacturer should be used. For more information on how to choose capacitors and other details on Oscillator
operation, refer to the multi-purpose oscillator application note.

Figure 5-2. Crystal Oscillator Connections

The Oscillator can operate in three different modes, each optimized for a specific frequency range. The operating mode is
selected by the fuses CKSEL3..1 as shown in Table 5-3.

Table 5-3.  Crystal Oscillator Operating Modes

Recommended Range for Capacitors C1 and C2 for

CKSEL3..1 Frequency Range (MHz) Use with Crystals (pF)
100" 04-09 -
101 09-3.0 12-22
110 3.0-8.0 12 -22
111 8.0-16.0 12-22

Note: 1. This option should not be used with crystals, only with ceramic resonators.
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The CKSELO Fuse together with the SUT1..0 Fuses select the start-up times as shown in Table 5-4.

Table 5-4.  Start-up Times for the Oscillator Clock Selection

Start-up Time from Power- | Additional Delay from

CKSELO SUT1..0 down and Power-save Reset (Ve = 5.0V) Recommended Usage

0 00 258 CK() 14CK + 4.1ms Ceramic resonator, fast rising
power

0 01 258 CK(" 14CK + 65ms Ceramic resonator, slowly rising
power

0 10 1K CK®@ 14CK Ceramic resonator, BOD enabled

0 1 1K CK®) 14CK + 4.1ms Ceramic resonator, fast rising
power

1 00 1K CK®@ 14CK + 65ms Ceramic resonator, slowly rising
power

1 01 16K CK 14CK Crystal Oscillator, BOD enabled

1 10 16K CK 14CK + 4.1ms Crystal Oscillator, fast rising
power

1 1" 16K CK 14CK + 65ms Crystal Oscillator, slowly rising
power

Notes: 1. These options should only be used when not operating close to the maximum frequency of the device, and
only if frequency stability at start-up is not important for the application. These options are not suitable for
crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability at start-up. They
can also be used with crystals when not operating close to the maximum frequency of the device, and if fre-
quency stability at start-up is not important for the application.

5.5 Calibrated Internal RC Oscillator

By default, the Internal RC OScillator provides an approximate 8.0MHz clock. Though voltage and temperature dependent,
this clock can be very accurately calibrated by the user. The device is shipped with the CKDIV8 Fuse programmed. See
Section 5.10 “System Clock Prescaler” on page 32 for more details.

This clock may be selected as the system clock by programming the CKSEL Fuses as shown in Table 5-1 on page 26. If
selected, it will operate with no external components. during reset, hardware loads the pre-programmed calibration value
into the OSCCAL Register and thereby automatically calibrates the RC oscillator. The accuracy of this calibration is shown
as factory calibration in Table 26-1 on page 276.

By changing the OSCCAL register from SW, see Section 5.5.1 “Oscillator Calibration Register — OSCCAL"” on page 29, it is
possible to get a higher calibration accuracy than by using the factory calibration. The accuracy of this calibration is shown
as User calibration in Section 26.3 “Clock Characteristics” on page 276.

When this oscillator is used as the chip clock, the watchdog oscillator will still be used for the watchdog timer and for the
reset time-out. For more information on the pre-programmed calibration value, see the section.

Table 5-5. Internal Calibrated RC Oscillator Operating Modes®®
Frequency Range (MHz) CKSEL3..0
7.3-8.1 0010

Notes: 1. The device is shipped with this option selected.

2. If 8MHz frequency exceeds the specification of the device (depends on V), the CKDIV8 fuse can be pro-
grammed in order to divide the internal frequency by 8.
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When this oscillator is selected, start-up times are determined by the SUT fuses as shown in Table 5-6 on page 29.

Table 5-6.  Start-up times for the internal calibrated RC Oscillator clock selection

Start-up Time from Power-down and | Additional Delay from Reset

Power Conditions Power-save (Vcc =5.0V)

BOD enabled 6 CK 14CK™ 00

Fast rising power 6 CK 14CK + 4.1ms 01

Slowly rising power 6 CK 14CK + 65ms® 10
Reserved 11

Notes: 1. Ifthe RSTDISBL fuse is programmed, this start-up time will be increased to
14CK + 4.1 ms to ensure programming mode can be entered.

2. The device is shipped with this option selected.

5.5.1 Oscillator Calibration Register — OSCCAL

Bit 7 6 5 4 3 2 1 0
| caL7 | CAL6 | CAL5 | CAL4 | CAL3 CAL2 CAL1 CALO | osccAL
Read/Write R/W R/W R/W RIW RIW R/IW RIW RIW
Initial Value Device Specific Calibration Value

e Bits 7..0 — CAL7..0: Oscillator Calibration Value

The oscillator calibration register is used to trim the calibrated internal RC oscillator to remove process variations from the
oscillator frequency. The factory-calibrated value is automatically written to this register during chip reset, giving an oscillator
frequency of 8.0MHz at 25°C. The application software can write this register to change the oscillator frequency. The
oscillator can be calibrated to any frequency in the range 7.3 - 8.1MHz within +1% accuracy. Calibration outside that range is
not guaranteed.

Note that this oscillator is used to time EEPROM and flash write accesses, and these write times will be affected accordingly.
If the EEPROM or flash are written, do not calibrate to more than 8.8MHz. Otherwise, the EEPROM or flash write may fail.

The CAL7 bit determines the range of operation for the oscillator. Setting this bit to 0 gives the lowest frequency range,
setting this bit to 1 gives the highest frequency range. The two frequency ranges are overlapping, in other words a setting of
OSCCAL = 0x7F gives a higher frequency than OSCCAL = 0x80.

The CALS6..0 bits are used to tune the frequency within the selected range. A setting of 0x00 gives the lowest frequency in
that range, and a setting of Ox7F gives the highest frequency in the range. Incrementing CAL6..0 by 1 will give a frequency
increment of less than 2% in the frequency range 7.3 - 8.1MHz.

5.6 PLL

5.6.1 Internal PLL
The internal PLL in the Atmel® ATmega16/32/64/M1/C1 generates a clock frequency that is 64x multiplied from its nominal
1MHz input. The source of the 1MHz PLL input clock can be:
e the output of the internal RC oscillator divided by 8
e the output of the crystal oscillator divided by 8
e the external clock divided by 8

See Figure 5-3 on page 30.

When the PLL is locked on the RC Oscillator, adjusting the RC Oscillator via OSCCAL Register, will also modify the PLL
clock output. However, even if the possibly divided RC Oscillator is taken to a higher frequency than 8MHz, the PLL output
clock frequency saturates at 70MHz (worst case) and remains oscillating at the maximum frequency. It should be noted that
the PLL in this case is not locked any more with its 1MHz source clock.
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Therefore it is recommended not to take the OSCCAL adjustments to a higher frequency than 8MHz in order to keep the PLL
in the correct operating range.

The internal PLL is enabled only when the PLLE bit in the register PLLCSR is set. The bit PLOCK from the register PLLCSR
is set when PLL is locked.

Both internal 8MHz RC Oscillator, Crystal Oscillator and PLL are switched off in Power-down and Standby sleep
modes.01/15

Table 5-7.  Start-up Times when the PLL is selected as system clock

Start-up Time from Power-down and Additional Delay from Reset
CKSEL3..0 SUT1..0 Power-save
00 1K CK 14CK
0011 01 1K CK 14CK + 4ms
RC Osc 10 1K CK 14CK + 64ms
11 16K CK 14CK
00 1K CK 14CK
0101 01 1K CK 14CK + 4ms
Ext Osc 10 16K CK 14CK + 4ms
11 16K CK 14CK + 64ms
00 6 CK(" 14CK
0001 01 6 CK™ 14CK + 4ms
Ext Clk 10 6 CK(" 14CK + 64ms
11 Reserved

Note: 1. This value do not provide a proper restart; do not use PD in this clock scheme.

Figure 5-3. PLL Clocking System
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5.6.2 PLL control and status register - PLLCSR
Bit 7 6 5 4 3 2 1 0
$29(%29) | - | - | - | - | - PLLF PLLE | PLOCK | PLLCSR
Read/Write R R R R R R/W R/W R
Initial Value 0 0 0 0 0 0 0/1 0
* Bit 7..3 — Res: Reserved Bits
These bits are reserved bits in the ATmega16/32/64/M1/C1 and always read as zero.
e Bit2-PLLF: PLL Factor
The PLLF bit is used to select the division factor of the PLL.
If PLLF is set, the PLL output is 64MHz.
If PLLF is clear, the PLL output is 32MHz.
e Bit1-PLLE: PLL Enable
When the PLLE is set, the PLL is started and if not yet started the internal RC oscillator is started as PLL reference clock. If
PLL is selected as a system clock source the value for this bit is always 1.
e Bit 0—-PLOCK: PLL Lock Detector
When the PLOCK bit is set, the PLL is locked to the reference clock, and it is safe to enable CLKp,, for Fast Peripherals.
After the PLL is enabled, it takes about 100us for the PLL to lock.
5.7 128 kHz Internal Oscillator
The 128 kHz internal oscillator is a low power Oscillator providing a clock of 128 kHz. The frequency is nominal at 3V and
25°C. This clock is used by the Watchdog Oscillator.
5.8 External Clock
To drive the device from an external clock source, XTAL1 should be driven as shown in Figure 5-4. To run the device on an
external clock, the CKSEL fuses must be programmed to “0000”.
Figure 5-4. External Clock Drive Configuration
NC — XTAL2
EXTERNAL
CLOCK — 1 XTAL1
SIGNAL
J_f GND
Table 5-8.  External Clock Frequency
CKSEL3..0 Frequency Range
0000 0 - 16MHz
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When this clock source is selected, start-up times are determined by the SUT fzses as shown in Table 5-9.

Table 5-9.  Start-up Times for the External Clock Selection

Start-up Time from Power-down and | Additional Delay from Reset

SUT1..0 Power-save (Vec =5.0V) Recommended Usage
00 6 CK 14CK BOD enabled
01 6 CK 14CK + 4.1ms Fast rising power
10 6 CK 14CK + 65ms Slowly rising power
11 Reserved

When applying an external clock, it is required to avoid sudden changes in the applied clock frequency to ensure stable
operation of the MCU. A variation in frequency of more than 2% from one clock cycle to the next can lead to unpredictable
behavior. It is required to ensure that the MCU is kept in reset during such changes in the clock frequency.

Note that the system clock prescaler can be used to implement run-time changes of the internal clock frequency while still
ensuring stable operation. Refer to Section 5.10 “System Clock Prescaler” on page 32 for details.

5.9 Clock Output Buffer

When the CKOUT fuse is programmed, the system Clock will be output on CLKO. This mode is suitable when chip clock is
used to drive other circuits on the system. The clock will be output also during reset and the normal operation of I/0 pin will
be overridden when the fuse is programmed. Any clock source, including internal RC oscillator, can be selected when CLKO
serves as clock output. If the system clock prescaler is used, it is the divided system clock that is output (CKOUT fuse
programmed).

5.10 System Clock Prescaler

The Atmel® ATmega16/32/64/M1/C1 system clock can be divided by setting the clock prescale register — CLKPR. This
feature can be used to decrease power consumption when the requirement for processing power is low. This can be used
with all clock source options, and it will affect the clock frequency of the CPU and all synchronous peripherals. clkq, clkapc,
clkgpy, and clkg agy are divided by a factor as shown in Table 5-10.

When switching between prescaler settings, the system clock prescaler ensures that no glitches occurs in the clock system.
It also ensures that no intermediate frequency is higher than neither the clock frequency corresponding to the previous
setting, nor the clock frequency corresponding to the new setting. The ripple counter that implements the prescaler runs at
the frequency of the undivided clock, which may be faster than the CPU's clock frequency. Hence, it is not possible to
determine the state of the prescaler - even if it were readable, and the exact time it takes to switch from one clock division to
the other cannot be exactly predicted. From the time the CLKPS values are written, it takes between T1 + T2and T1+2* T2
before the new clock frequency is active. In this interval, 2 active clock edges are produced. Here, T1 is the previous clock
period, and T2 is the period corresponding to the new prescaler setting.

To avoid unintentional changes of clock frequency, a special write procedure must be followed to change the CLKPS bits:
1. Write the clock prescaler change enable (CLKPCE) bit to one and all other bits in CLKPR to zero.
2. Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE.

Interrupts must be disabled when changing prescaler setting to make sure the write procedure is not interrupted.
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5.10.1 Clock Prescaler Register — CLKPR

Bit 7 6 5 4 3 2 1 0
|cikece| - | - [ - CLKPS3 | CLKPS2 | CLKPS1 | CLKPSO| CLKPR
Read/Write R/W R R R R/W R/W RIW R/W
Initial Value 0 0 0 0 See Bit Description

e Bit 7 - CLKPCE: Clock Prescaler Change Enable

The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE bit is only updated when the
other bits in CLKPR are simultaneously written to zero. CLKPCE is cleared by hardware four cycles after it is written or when
CLKPS bits are written. Rewriting the CLKPCE bit within this time-out period does neither extend the time-out period, nor
clear the CLKPCE bit.

* Bits 3..0 - CLKPS3..0: Clock Prescaler Select Bits 3-0

These bits define the division factor between the selected clock source and the internal system clock. These bits can be
written run-time to vary the clock frequency to suit the application requirements. As the divider divides the master clock input
to the MCU, the speed of all synchronous peripherals is reduced when a division factor is used. The division factors are
given in Table 5-10.

The CKDIV8 fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed, the CLKPS bits will be reset to
“0000”. If CKDIV8 is programmed, CLKPS bits are reset to “0011”, giving a division factor of 8 at start up. This feature should
be used if the selected clock source has a higher frequency than the maximum frequency of the device at the present
operating conditions. Note that any value can be written to the CLKPS bits regardless of the CKDIV8 fuse setting. The
application software must ensure that a sufficient division factor is chosen if the selected clock source has a higher
frequency than the maximum frequency of the device at the present operating conditions. The device is shipped with the
CKDIV8 fuse programmed.

Table 5-10. Clock Prescaler Select

CLKPS3 CLKPS2 CLKPS1 CLKPSO Clock Division Factor

0 0 0 0 1

0 0 0 1 2

0 0 1 0 4

0 0 1 1 8

0 1 0 0 16

0 1 0 1 32

0 1 1 0 64

0 1 1 1 128

1 0 0 0 256

1 0 0 1 Reserved

1 0 1 0 Reserved

1 0 1 1 Reserved

1 1 0 0 Reserved

1 1 0 1 Reserved

1 1 1 0 Reserved

1 1 1 1 Reserved
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6. Power Management and Sleep Modes

Sleep modes enable the application to shut down unused modules in the MCU, thereby saving power. The AVR® provides
various sleep modes allowing the user to tailor the power consumption to the application’s requirements.

To enter any of the five sleep modes, the SE bit in SMCR must be written to logic one and a SLEEP instruction must be
executed. The SM2, SM1, and SMO bits in the SMCR Register select which sleep mode (Idle, ADC noise reduction, Power-
down, Power-save, or Standby) will be activated by the SLEEP instruction. See Table 6-1 for a summary. If an enabled
interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU is then halted for four cycles in addition to
the start-up time, executes the interrupt routine, and resumes execution from the instruction following SLEEP. The contents
of the register file and SRAM are unaltered when the device wakes up from sleep. If a reset occurs during sleep mode, the
MCU wakes up and executes from the reset vector.

Figure 5-1 on page 25 presents the different clock systems in the Atmel® ATmega16/32/64/M1/C1, and their distribution. The
figure is helpful in selecting an appropriate sleep mode.

6.1 Sleep Mode Control Register

6.1.1 Sleep Mode Control Register — SMCR

The Sleep Mode Control Register contains control bits for power management.

Bit 7 6 5 4 3 2 1 0
| - | - | - | - | sm2 | sm1 | smM0 | SE | SMCR
Read/Write R R R R R/W R/IW R/W RIW
Initial Value 0 0 0 0 0 0 0 0

e Bits 3..1 — SM2..0: Sleep Mode Select Bits 2, 1, and 0
These bits select between the five available sleep modes as shown in Table 6-1.

Table 6-1. Sleep Mode Select

SM2 SM1 SMO Sleep Mode
0 0 0 Idle
0 0 1 ADC noise reduction
0 1 0 Power-down
0 1 1 Reserved
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Standby™"
1 1 1 Reserved

Note: 1. Standby mode is only recommended for use with external crystals or resonators.

e Bit1- SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP instruction is executed. To
avoid the MCU entering the sleep mode unless it is the programmer’s purpose, it is recommended to write the sleep enable
(SE) bit to one just before the execution of the SLEEP instruction and to clear it immediately after waking up.
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6.2 Idle Mode

When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle mode, stopping the CPU but
allowing SPI, UART, analog comparator, ADC, Timer/Counters, watchdog, and the interrupt system to continue operating.
This sleep mode basically halt clksp and clkg asy, While allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal ones like the timer overflow and
UART transmit complete interrupts. If wake-up from the analog comparator interrupt is not required, the analog comparator
can be powered down by setting the ACD bit in the analog comparator control and status register — ACSR. This will reduce
power consumption in Idle mode. If the ADC is enabled, a conversion starts automatically when this mode is entered.

6.3 ADC noise reduction Mode

When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC noise reduction mode, stopping
the CPU but allowing the ADC, the External Interrupts, Timer/Counter (if their clock source is external - TO or T1) and the
watchdog to continue operating (if enabled). This sleep mode basically halts clk,o, clkcpy, and clkg sy, While allowing the
other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If the ADC is enabled, a
conversion starts automatically when this mode is entered. Apart from the ADC conversion complete interrupt, only an
external reset, a watchdog reset, a brown-out reset, a Timer/Counter interrupt, an SPM/EEPROM ready interrupt, an
external level interrupt on INT3:0 can wake up the MCU from ADC noise reduction mode.

6.4 Power-down Mode

When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter power-down mode. In this mode, the
external oscillator is stopped, while the external interrupts and the watchdog continue operating (if enabled). Only an
external reset, a watchdog reset, a brown-out reset, a PSC interrupt, an external level interrupt on INT3:0 can wake up the
MCU. This sleep mode basically halts all generated clocks, allowing operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from power-down mode, the changed level must be held for some
time to wake up the MCU. Refer to Section 10. “External Interrupts” on page 70 for details.

When waking up from power-down mode, there is a delay from the wake-up condition occurs until the wake-up becomes
effective. This allows the clock to restart and become stable after having been stopped. The wake-up period is defined by the
same CKSEL fuses that define the reset time-out period, as described in Section 5.2 “Clock Sources” on page 26.

6.5 Standby Mode

When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected, the SLEEP instruction makes the
MCU enter Standby mode. This mode is identical to Power-down with the exception that the Oscillator is kept running. From
Standby mode, the device wakes up in six clock cycles.

Table 6-2. Active Clock Domains and Wake-up Sources in the Different Sleep Modes

Active Clock Domains Oscillators Wake-up Sources
LB 2
8 - 9
O W w @
= = £
T =
S5 z °
Sleep Mode 3 n
Idle X X X X X X X X X X
ADC Noise X | X X X® X X X X
Reduction
Power-down X@ X
Standby(" X X@ X
Notes: 1. Only recommended with external crystal or resonator selected as clock source.
2. Only level interrupt.
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6.6 Power Reduction Register

The power reduction register, PRR, provides a method to stop the clock to individual peripherals to reduce power
consumption. The current state of the peripheral is frozen and the 1/O registers can not be read or written. Resources used
by the peripheral when stopping the clock will remain occupied, hence the peripheral should in most cases be disabled
before stopping the clock. Waking up a module, which is done by clearing the bit in PRR, puts the module in the same state
as before shutdown.

A full predictable behavior of a peripheral is not guaranteed during and after a cycle of stopping and starting of its clock. So
its recommended to stop a peripheral before stopping its clock with PRR register.

Module shutdown can be used in Idle mode and Active mode to significantly reduce the overall power consumption. In all
other sleep modes, the clock is already stopped.

6.6.1 Power Reduction Register - PRR

Bit 7 6 5 4 3 2 1 0

| - | PRCAN | PRPSC | PRTIML | PRTIMO | PRSPI PRLIN PRADC | PRR
Read/Write R RIW R/W RIW R/W RIW RIW R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7 - Res: Reserved Bit
This bit is unused bit in the ATmega16/32/64/M1/C1, and will always read as zero.
* Bit 6 - PRCAN: Power Reduction CAN

Writing a logic one to this bit reduces the consumption of the CAN by stopping the clock to this module. When waking up the
CAN again, the CAN should be re initialized to ensure proper operation.

* Bit 5- PRPSC: Power Reduction PSC

Writing a logic one to this bit reduces the consumption of the PSC by stopping the clock to this module. When waking up the
PSC again, the PSC should be re initialized to ensure proper operation.

¢ Bit 4 - PRTIM1: Power Reduction Timer/Counterl

Writing a logic one to this bit reduces the consumption of the Timer/Counter1 module. When the Timer/Counter1 is enabled,
operation will continue like before the setting of this bit.

¢ Bit 3 - PRTIMO: Power Reduction Timer/Counter0

Writing a logic one to this bit reduces the consumption of the Timer/Counter0 module. When the Timer/Counter0 is enabled,
operation will continue like before the setting of this bit.

e Bit 2 - PRSPI: Power Reduction Serial Peripheral Interface

Writing a logic one to this bit reduces the consumption of the serial peripheral interface by stopping the clock to this module.
When waking up the SPI again, the SPI should be re initialized to ensure proper operation.

¢ Bit1- PRLIN: Power Reduction LIN

Writing a logic one to this bit reduces the consumption of the UART controller by stopping the clock to this module. When
waking up the UART controller again, the UART controller should be re initialized to ensure proper operation.
* Bit 0- PRADC: Power Reduction ADC

Writing a logic one to this bit reduces the consumption of the ADC by stopping the clock to this module. The ADC must be
disabled before using this function. The analog comparator cannot use the ADC input MUX when the clock of ADC is
stopped.
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6.7 Minimizing Power Consumption

There are several issues to consider when trying to minimize the power consumption in an AVR® controlled system. In
general, sleep modes should be used as much as possible, and the sleep mode should be selected so that as few as
possible of the device’s functions are operating. All functions not needed should be disabled. In particular, the following
modules may need special consideration when trying to achieve the lowest possible power consumption.

6.7.1 Analog to Digital Converter

If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be disabled before entering any
sleep mode. When the ADC is turned off and on again, the next conversion will be an extended conversion. Refer to Section
18. “Analog to Digital Converter - ADC” on page 197 for details on ADC operation.

6.7.2 Analog Comparator

When entering Idle mode, the analog comparator should be disabled if not used. When entering ADC noise reduction mode,
the analog comparator should be disabled. In other sleep modes, the analog comparator is automatically disabled. However,
if the analog comparator is set up to use the internal voltage reference as input, the analog comparator should be disabled in
all sleep modes. Otherwise, the internal voltage reference will be enabled, independent of sleep mode. Refer to Section 20.
“Analog Comparator” on page 225 for details on how to configure the analog comparator.

6.7.3 Brown-out Detector

If the brown-out detector is not needed by the application, this module should be turned off. If the brown-out detector is
enabled by the BODLEVEL fuses, it will be enabled in all sleep modes, and hence, always consume power. In the deeper
sleep modes, this will contribute significantly to the total current consumption. Refer to Section 7.2.3 “Brown-out Detection”
on page 40 for details on how to configure the brown-out detector.

6.7.4 Internal Voltage Reference

The internal voltage reference will be enabled when needed by the brown-out detection, the analog comparator or the ADC.
If these modules are disabled as described in the sections above, the internal voltage reference will be disabled and it will
not be consuming power. When turned on again, the user must allow the reference to start up before the output is used. If
the reference is kept on in sleep mode, the output can be used immediately. Refer to Section 7.3 “Internal Voltage
Reference” on page 42 for details on the start-up time.

6.7.5 Watchdog Timer

If the watchdog timer is not needed in the application, the module should be turned off. If the watchdog timer is enabled, it
will be enabled in all sleep modes, and hence, always consume power. In the deeper sleep modes, this will contribute
significantly to the total current consumption. Refer to Section 7.4 “Watchdog Timer” on page 43 for details on how to
configure the watchdog timer.

6.7.6 Port Pins

When entering a sleep mode, all port pins should be configured to use minimum power. The most important is then to ensure
that no pins drive resistive loads. In sleep modes where both the 1/O clock (clk,,n) and the ADC clock (clkapc) are stopped,
the input buffers of the device will be disabled. This ensures that no power is consumed by the input logic when not needed.
In some cases, the input logic is needed for detecting wake-up conditions, and it will then be enabled. Refer to the section
Section 9. “I/O-Ports” on page 51 for details on which pins are enabled. If the input buffer is enabled and the input signal is
left floating or have an analog signal level close to V¢/2, the input buffer will use excessive power.

For analog input pins, the digital input buffer should be disabled at all times. An analog signal level close to V./2 on an input
pin can cause significant current even in active mode. Digital input buffers can be disabled by writing to the digital input
disable registers (DIDR1 and DIDRO). Refer to “Digital Input Disable Register 1—- DIDR1” and “Digital Input Disable Register
0 — DIDRO0” on 232 and 214 for details.

6.7.7 On-chip Debug System

If the on-chip debug system is enabled by OCDEN Fuse and the chip enter sleep mode, the main clock source is enabled,
and hence, always consumes power. In the deeper sleep modes, this will contribute significantly to the total current
consumption.
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7. System Control and Reset

7.1 Resetting the AVR

During reset, all I/O registers are set to their initial values, and the program starts execution from the reset Vector. The
instruction placed at the reset vector must be a JMP — Absolute Jump — instruction to the reset handling routine. If the
program never enables an interrupt source, the interrupt vectors are not used, and regular program code can be placed at
these locations. This is also the case if the reset vector is in the application section while the interrupt vectors are in the boot
section or vice versa. The circuit diagram in Figure 7-1 on page 38 shows the reset logic. Table 7-1 on page 39 defines the

electrical parameters of the reset circuitry.

The 1/0O ports of the AVR® are immediately reset to their initial state when a reset source goes active. This does not require
any clock source to be running. After all reset sources have gone inactive, a delay counter is invoked, stretching the internal
reset. This allows the power to reach a stable level before normal operation starts. The time-out period of the delay counter
is defined by the user through the SUT and CKSEL Fuses. The different selections for the delay period are presented in

Section 5.2 “Clock Sources” on page 26.

7.2 Reset Sources

The Atmel ATmega16/32/64/M1/C1 has four sources of reset:
e  Power-on reset. The MCU is reset when the supply voltage is below the power-on reset threshold (Vpor).

e  External reset. The MCU is reset when a low level is present on the RESET pin for longer than the minimum pulse

length.

e Watchdog reset. The MCU is reset when the watchdog timer period expires and the watchdog is enabled.
e  Brown-out reset. The MCU is reset when the supply voltage V. is below the brown-out reset threshold (Vzo7) and the

brown-out detector is enabled.

Figure 7-1. Reset Logic
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Table 7-1. Reset Characteristics

Parameter Symbol
Power-on reset threshold voltage (rising) - 1.1 1.4 1.7 \%
Power-on reset threshold voltage (falling)(") PoT 0.8 0.9 1.6 \Y
VCC max. start voltage to ensure internal power-on reset

i Vpormax 04 \Y
signal
VCC min. start voltage to ensure internal power-on reset

; VeormIN -0.1 \
signal
VCC rise rate to ensure power-on reset Veerr 0.01 Vims
RESET pin threshold voltage VRsT 0.1 Ve 0.9V¢c \
Minimum pulse width on RESET pin trsT 2.5 - - us

Note: 1. Before rising, the supply has to be between Vporyin @Nd Vporuax tO €nsure a reset.

7.2.1 Power-on Reset
A power-on reset (POR) pulse is generated by an on-chip detection circuit. The detection level is defined in Table 7-1. The
POR is activated whenever V is below the detection level. The POR circuit can be used to trigger the start-up Reset, as
well as to detect a failure in supply voltage.
A power-on reset (POR) circuit ensures that the device is reset from power-on. Reaching the power-on reset threshold
voltage invokes the delay counter, which determines how long the device is kept in RESET after V rise. The RESET signal
is activated again, without any delay, when V. decreases below the detection level.
Figure 7-2. MCU Start-up, RESET Tied to V¢
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7.2.2 External Reset

An external reset is generated by a low level on the RESET pin. Reset pulses longer than the minimum pulse width (see
Table 7-1) will generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset. When
the applied signal reaches the Reset Threshold Voltage — Vggr — On its positive edge, the delay counter starts the MCU after
the Time-out period — tyo 7t —has expired.

Figure 7-4. External Reset during Operation
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7.2.3 Brown-out Detection

ATmega16/32/64/M1/C1 has an on-chip brown-out detection (BOD) circuit for monitoring the V. level during operation by
comparing it to a fixed trigger level. The trigger level for the BOD can be selected by the BODLEVEL Fuses. The trigger level
has a hysteresis to ensure spike free brown-out detection. The hysteresis on the detection level should be interpreted as
VBor+ = Veot * Vhyst/2 and Vpor. = Vot — Vigyst/2.

Table 7-2. BODLEVEL Fuse Coding®®

BODLEVEL 2..0 Fuses Typ Veor Unit

1M1 Disabled

110 4.5 \
011 44 \
100 4.3 \
010 4.2 \
001 2.8 \
101 2.7 \
000 2.6 \

Notes: 1. Vot may be below nominal minimum operating voltage for some devices. For devices where this is the case,
the device is tested down to V¢ = Vo1 during the production test. This guarantees that a brown-out reset will
occur before V¢ drops to a voltage where correct operation of the microcontroller is no longer guaranteed.
The test is performed using BODLEVEL = 010 for low operating voltage and BODLEVEL = 101 for high operat-
ing voltage.

2. Values are guidelines only.

Table 7-3.  Brown-out Characteristics®

Parameter
Brown-out Detector Hysteresis ViysT 80 mV
Min Pulse Width on Brown-out Reset tsop 2 us

Note: 1. Values are guidelines only.
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7.2.4

Atmel

When the BOD is enabled, and V¢ decreases to a value below the trigger level (Vgor. in Figure 7-5 on page 41), the brown-
out reset is immediately activated. When V. increases above the trigger level (Vggors in Figure 7-5 on page 41), the delay
counter starts the MCU after the Time-out period t;o1 has expired.

The BOD circuit will only detect a drop in V if the voltage stays below the trigger level for longer than tgp given in
Table 7-3.

Figure 7-5. Brown-out Reset during Operation
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Watchdog Reset

When the watchdog times out, it will generate a short reset pulse of one CK cycle duration. On the falling edge of this pulse,
the delay timer starts counting the time-out period tyoy1. Refer to Section 7.4 “Watchdog Timer” on page 43 for details on
operation of the watchdog timer.

Figure 7-6. Watchdog Reset during Operation
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7.2.5 MCU Status Register —- MCUSR

The MCU Status Register provides information on which reset source caused an MCU reset.

Bit 7 6 5 4 3 2 1 0
| - | = | = | = | WDRF | BORF | EXTRF | PORF | MCUSR
Read/Write R R R R R/W R/IW R/W R/W
Initial Value 0 0 0 0 See Bit Description

* Bit 3— WDRF: Watchdog Reset Flag

This bit is set if a watchdog reset occurs. The bit is reset by a power-on reset, or by writing a logic zero to the flag.
* Bit 2 - BORF: Brown-out Reset Flag

This bit is set if a brown-out reset occurs. The bit is reset by a power-on reset, or by writing a logic zero to the flag.
« Bit 1 - EXTRF: External Reset Flag

This bit is set if an external reset occurs. The bit is reset by a power-on reset, or by writing a logic zero to the flag.
* Bit 0 — PORF: Power-on Reset Flag

This bit is set if a power-on reset occurs. The bit is reset only by writing a logic zero to the flag.

To make use of the reset flags to identify a reset condition, the user should read and then reset the MCUSR as early as
possible in the program. If the register is cleared before another reset occurs, the source of the reset can be found by
examining the reset flags.

7.3 Internal Voltage Reference

ATmega16/32/64/M1/C1 features an internal bandgap reference. This reference is used for brown-out detection, and it can
be used as an input to the analog comparators or the ADC. The Vrgr 2.56V reference to the ADC, DAC or analog
comparators is generated from the internal bandgap reference.

7.3.1 Voltage Reference Enable Signals and Start-up Time
The voltage reference has a start-up time that may influence the way it should be used. The start-up time is given in
Table 7-4. To save power, the reference is not always turned on. The reference is on during the following situations:
1. When the BOD is enabled (by programming the BODLEVEL [2..0] Fuse).
2. When the bandgap reference is connected to the analog comparator (by setting the ACBG bit in ACSR).
3. When the ADC is enabled.
4. When the DAC is enabled.
Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC or the DAC, the user must always allow
the reference to start up before the output from the analog comparator or ADC or DAC is used. To reduce power

consumption in power-down mode, the user can avoid the three conditions above to ensure that the reference is turned off
before entering power-down mode.

7.3.2 \Voltage Reference Characteristics

Table 7-4. Internal Voltage Reference Characteristics!")

Parameter Symbol Condition

Bandgap reference voltage Ve 1.1 \%
Bandgap reference start-up time tag 40 us
Bandgap reference current consumption lgg 15 MA

Note: 1. Values are guidelines only.
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7.4 Watchdog Timer

ATmega16/32/64/M1/C1 has an enhanced watchdog timer (WDT). The main features are:
e  Clocked from separate on-chip oscillator
e 3 operating modes
e Interrupt
e System reset
e Interrupt and system reset
e  Selectable time-out period from 16ms to 8s
e Possible hardware fuse watchdog always on (WDTON) for fail-safe mode

Figure 7-7. Watchdog Timer
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The watchdog timer (WDT) is a timer counting cycles of a separate on-chip 128 kHz oscillator. The WDT gives an interrupt or
a system reset when the counter reaches a given time-out value. In normal operation mode, it is required that the system
uses the WDR - Watchdog Timer Reset - instruction to restart the counter before the time-out value is reached. If the system
doesn't restart the counter, an interrupt or system reset will be issued.

In Interrupt mode, the WDT gives an interrupt when the timer expires. This interrupt can be used to wake the device from
sleep-modes, and also as a general system timer. One example is to limit the maximum time allowed for certain operations,
giving an interrupt when the operation has run longer than expected. In system reset mode, the WDT gives a reset when the
timer expires. This is typically used to prevent system hang-up in case of runaway code. The third mode, interrupt and
system reset mode, combines the other two modes by first giving an interrupt and then switch to system reset mode. This
mode will for instance allow a safe shutdown by saving critical parameters before a system reset.

The “Watchdog Timer Always On” (WDTON) fuse, if programmed, will force the watchdog timer to system reset mode. With
the fuse programmed the system reset mode bit (WDE) and Interrupt mode bit (WDIE) are locked to 1 and O respectively. To
further ensure program security, alterations to the watchdog set-up must follow timed sequences. The sequence for clearing
WDE and changing time-out configuration is as follows:
1. In the same operation, write a logic one to the watchdog change enable bit (WDCE) and WDE. A logic one must
be written to WDE regardless of the previous value of the WDE bit.
2. Within the next four clock cycles, write the WDE and watchdog prescaler bits (WDP) as desired, but with the
WDCE bit cleared. This must be done in one operation.
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The following code example shows one assembly and one C function for turning off the Watchdog Timer. The example
assumes that interrupts are controlled (e.g. by disabling interrupts globally) so that no interrupts will occur during the
execution of these functions.

Assembly Code Example("

WDT_of f:
; Turn of f global interrupt
cli
; Reset Watchdog Ti ner
wdr

; Clear WDRF in MCUSR

in r16, MCUSR

andi r16, (Oxff & (0<<WDRF))

out MCUSR, r16

; Wite logical one to WODCE and WDE
; Keep ol d prescaler setting to prevent unintentional tine-out
| ds r16, WDTCSR

ori r1i6, (1<<WDCE) | (1<<W\DE)

sts WDTCSR, r16

; Turn of f WDT

I di r16, (0<<WDE)

sts WOTCSR, r16

; Turn on global interrupt

sei

ret

C Code Example!"
voi d WDT_of f (voi d)

{
__disable_interrupt();
__wat chdog_reset();
/* Clear WORF in MCUSR */
MCUSR &= ~( 1<<W\DRF);
/* Wite |logical one to WOCE and WDE */
/* Keep old prescaler setting to prevent unintentional time-out */
WDTCSR | = (1<<WDCE) | (1<<WDE);
/* Turn of f WDT */
WDTCSR = 0x00;
__enable_interrupt();
}

Notes: 1. The example code assumes that the part specific header file is included.

2. If the watchdog is accidentally enabled, for example by a runaway pointer or brown-out condition, the device
will be reset and the watchdog timer will stay enabled. If the code is not set up to handle the watchdog, this
might lead to an eternal loop of time-out resets. To avoid this situation, the application software should always
clear the watchdog system reset flag (WDRF) and the WDE control bit in the initialization routine, even if the
watchdog is not in use.
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The following code example shows one assembly and one C function for changing the time-out value of the watchdog timer.

Assembly Code Example("

WDT_Pr escal er _Change:
; Turn of f global interrupt
cli
; Reset Watchdog Ti ner
wdr
; Start tinmed sequence
I ds r16, WDTCSR
ori ri6, (1<<WDCE) | (1<<WDE)
sts WOTCSR, r16
; -- Got four cycles to set the new val ues from here -
; Set new prescaler(tine-out) value = 64K cycles (~0.5 s)
| di ri6, (1<<WDE) | (1<<WDP2) | (1<<WDPO)
sts WDTCSR, r16
; -- Finished setting new val ues, used 2 cycles -
; Turn on global interrupt
sei
ret

C Code Example!"

voi d WDT_Pr escal er _Change(voi d)

{
__disable_interrupt();
__wat chdog_reset();
/* Start tined sequence */
WDTCSR | = (1<<WDCE) | (1<<W\DE);
/* Set new prescal er(tine-out) value = 64K cycles (~0.5 s) */
WDTCSR = (1<<WDE) | (1<<WDP2) | (1<<WDPO);
__enable_interrupt();
}

Notes: 1. The example code assumes that the part specific header file is included.

2. The watchdog timer should be reset before any change of the WDP bits, since a change in the WDP bits can
result in a time-out when switching to a shorter time-out period;

7.4.1 Watchdog Timer Control Register - WDTCSR

Bit 7 6 5 4 3 2 1 0

| woiIF | wWDIE | wDP3 | WDCE | WDE WDP2 | WDP1 | WDPO | WDTCSR
Read/Write R/W R/W R/W R/W RIW R/W RIW R/W
Initial Value 0 0 0 0 X 0 0 0

e Bit 7 - WDIF: Watchdog Interrupt Flag

This bit is set when a time-out occurs in the watchdog timer and the watchdog timer is configured for interrupt. WDIF is
cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, WDIF is cleared by writing a
logic one to the flag. When the I-bit in SREG and WDIE are set, the watchdog time-out interrupt is executed.

« Bit 6 - WDIE: Watchdog Interrupt Enable

When this bit is written to one and the I-bit in the status register is set, the watchdog interrupt is enabled. If WDE is cleared in
combination with this setting, the watchdog timer is in interrupt mode, and the corresponding interrupt is executed if time-out
in the watchdog timer occurs.
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If WDE is set, the watchdog timer is in interrupt and system reset mode. The first time-out in the watchdog timer will set
WDIF. Executing the corresponding interrupt vector will clear WDIE and WDIF automatically by hardware (the watchdog
goes to system reset mode). This is useful for keeping the watchdog timer security while using the interrupt. To stay in
interrupt and system reset mode, WDIE must be set after each interrupt. This should however not be done within the interrupt
service routine itself, as this might compromise the safety-function of the watchdog system reset mode. If the interrupt is not
executed before the next time-out, a system reset will be applied.

Table 7-5. Watchdog Timer Configuration

WDTON® WDE WDIE Mode Action on Time-out
1 0 0 Stopped None
1 0 1 Interrupt mode Interrupt
1 1 0 System reset mode Reset
1 1 1 Interrupt and system reset mode ::zidr;upt, 1500 (9 (O S0 [
0 X X System reset mode Reset

Note: 1. Forthe WDTON fuse “1” means unprogrammed while “0” means programmed.
* Bit 4 - WDCE: Watchdog Change Enable

This bit is used in timed sequences for changing WDE and prescaler bits. To clear the WDE bit, and/or change the prescaler
bits, WDCE must be set.

Once written to one, hardware will clear WDCE after four clock cycles.
* Bit 3 - WDE: Watchdog System Reset Enable

WODE is overridden by WDRF in MCUSR. This means that WDE is always set when WDREF is set. To clear WDE, WDRF
must be cleared first. This feature ensures multiple resets during conditions causing failure, and a safe start-up after the
failure.

e Bit5,2..0- WDP3..0: Watchdog Timer Prescaler 3,2,1and 0

The WDP3..0 bits determine the watchdog timer prescaling when the watchdog timer is running. The different prescaling
values and their corresponding time-out periods are shown in Table 7-6 on page 46.

Table 7-6. Watchdog Timer Prescale Select

Typical Time-out at

WDP3 WDP2 WDP1 WDPO Number of WDT Oscillator Cycles Ve = 5.0V
0 0 0 0 2K (2048) cycles 16ms
0 0 0 1 4K (4096) cycles 32ms
0 0 1 0 8K (8192) cycles 64ms
0 0 1 1 16K (16384) cycles 0.125s
0 1 0 0 32K (32768) cycles 0.25s
0 1 0 1 64K (65536) cycles 0.5s
0 1 1 0 128K (131072) cycles 1.0s
0 1 1 1 256K (262144) cycles 2.0s
1 0 0 0 512K (524288) cycles 4.0s
1 0 0 1 1024K (1048576) cycles 8.0s
1 0 1 0
1 0 1 1
1 1 0 0
7 7 0 7 Reserved
1 1 1 0
1 1 1 1
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8. Interrupts

This section describes the specifics of the interrupt handling as performed in ATmega16/32/64/M1/C1. For a general
explanation of the AVR interrupt handling, refer to Section 3.8 “Reset and Interrupt Handling” on page 16.

8.1 Interrupt Vectors in ATmegal6/32/64/M1/C1

Table 8-1. Reset and Interrupt Vectors

Vector Program
No. Address Source Interrupt Definition
1 0x0000 RESET S:;e;r:::j lpaltr:o Ec;\v\v/eRr-roenS ‘rjset, brown-out reset, watchdog reset,
2 0x0002 ANACOMP 0 Analog comparator 0
3 0x0004 ANACOMP 1 Analog comparator 1
4 0x0006 ANACOMP 2 Analog comparator 2
5 0x0008 ANACOMP 3 Analog comparator 3
6 0x000A PSC FAULT®) PSC fault
7 0x000C PSC EC® PSC end of cycle
8 0x000E INTO External interrupt request 0
9 0x0010 INT1 External interrupt request 1
10 0x0012 INT2 External interrupt request 2
11 0x0014 INT3 External interrupt request 3
12 0x0016 TIMER1 CAPT Timer/Counter1 capture event
13 0x0018 TIMER1 COMPA Timer/Counter1 compare match A
14 0x001A TIMER1 COMPB Timer/Counter1 compare match B
15 0x001C TIMER1 OVF Timer/Counter1 overflow
16 0x001E TIMERO COMPA Timer/Counter0 compare match A
17 0x0020 TIMERO COMPB Timer/Counter0 compare match B
18 0x0022 TIMERO OVF Timer/Counter0 overflow
19 0x0024 CAN INT CAN MOB, burst, general errors
20 0x0026 CAN TOVF CAN timer overflow
21 0x0028 LINTC LIN transfer complete
22 0x002A LIN ERR LIN error
23 0x002C PCINTO Pin change interrupt request 0
24 0x002E PCINT1 Pin change interrupt request 1
25 0x0030 PCINT2 Pin change interrupt request 2
26 0x0032 PCINT3 Pin change interrupt request 3
27 0x0034 SPI, STC SPI serial transfer complete
28 0x0036 ADC ADC conversion complete
29 0x0038 WDT Watchdog time-Out interrupt
30 0x003A EE READY EEPROM ready
31 0x003C SPM READY Store program memory ready
Notes: 1. When the BOOTRST fuse is programmed, the device will jump to the boot loader address at reset, see Sec-
tion 24. “Boot Loader Support — Read-while-write Self-Programming ATmega16/32/64/M1/C1” on page 241.
2. When the IVSEL bit in MCUCR is set, interrupt vectors will be moved to the start of the boot flash section. The
address of each interrupt vector will then be the address in this table added to the start address of the boot
flash section.
3. These vectors are not used by Atmel ATmega32/64C1.
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Table 8-2 shows reset and Interrupt Vectors placement for the various combinations of BOOTRST and IVSEL settings. If the
program never enables an interrupt source, the interrupt vectors are not used, and regular program code can be placed at
these locations. This is also the case if the reset vector is in the application section while the interrupt vectors are in the boot

section or vice versa.

Table 8-2.

Reset and Interrupt Vectors Placement in ATmegal16/32/64/M1/C1(")

BOOTRST IVSEL Reset Address
1 0 0x000
1 1 0x000
0 0 Boot reset address
0 1 Boot reset address
Note: 1.

while “0” means programmed.

Interrupt Vectors Start Address
0x001

Boot reset address + 0x002
0x001

Boot reset address + 0x002

The boot reset address is shown in Table 24-4 on page 244. For the BOOTRST fuse “1” means unprogrammed

The most typical and general program setup for the Reset and Interrupt Vector Addresses in ATmega16/32/64/M1/C1 is:

Address Labels Code
0x000 jmp RESET
0x002 jnmp ANA _COWP_0
0x004 jnmp ANA COWP_1
0x006 jmp ANA_COWP_2
0x008 jmp ANA COWP_3
0x00A jmp PSC FAULT
0x00C jmp PSC EC
0x00E jmp EXT_I NTO
0x010 jmp EXT_I NT1
0x012 jmp EXT_| NT2
0x014 jmp EXT | NT3
0x016 jmp TI ML_CAPT
0x018 jmp TI ML_COVPA
0x01A jnmp TI ML_COWPB
0ox01C jnmp TI ML_OVF
Ox01E jmp TI MD_COVPA
0x020 jmp TI MD_COVPB
0x022 jmp TIM)_OVF
0x024 jmp CAN_| NT
0x026 jnmp CAN_TOVF
0x028 jmp LIN_TC
0x02A jmp LI N_ERR
0x02C jmp PCI NTO
0x02E jmp PCI NT1
0x030 jmp PCl NT2
0x032 jmp PCI NT3
0x034 jmp SPI _STC
0x036 jmp ADC
0x038 jmp WDT
0x03A jmp EE RDY
0x03C jmp SPM_RDY
Ox03E RESET: | di r16, hi gh( RAMEND)
Ox03F out SPH, r 16
0x040 | di ri6, | ow( RAMEND)
0x041 out SPL, r16
0x042 sei
0x043 <instr> Xxxx
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Comments

Reset Handl er
anal og conpar at or
anal og conpar at or
anal og conpar at or
anal og conpar at or
PSC Fault Handl er
PSC End of Cycle Handl er

| RQQ Handl er

| RQL Handl er

| R Handl er

| R@B Handl er

Timer1l Capture Handl er

Timer1 Conpare A Handl er

Tinmer1 Conpare B Handl er

Tinmerl Overfl ow Handl er

Ti mer 0 Conpare A Handl er

Ti mer0 Conpare B Handl er

Timer0 Overfl ow Handl er

CAN MOB, Bur st, General Errors Handl er
CAN Ti mer COverfl ow Handl er

LI N Transfer Conpl ete Handl er

LIN Error Handl er

Pi n Change Int Request
Pi n Change Int Request
Pin Change Int Request 2 Handl er
Pin Change |Int Request 3 Handl er
SPI Transfer Conpl ete Handl er

ADC Conver si on Conpl ete Handl er
WAt chdog Ti ner Handl er

EEPROM Ready Handl er

Store Program Menory Ready Handl er

0 Handl er
1 Handl er
2 Handl er
3 Handl er

0 Handl er
1 Handl er

Mai n program start
Set Stack Pointer to top of RAM

Enabl e interrupts

Atmel



When the BOOTRST fuse is unprogrammed, the Boot section size set to 2K bytes and the IVSEL bit in the MCUCR register
is set before any interrupts are enabled, the most typical and general program setup for the reset and interrupt vector
addresses in ATmega16/32/64/M1/C1 is:

Addr ess

0x000 RESET:

0x001
0x002
0x003
0x004
0x005

.org Ox
0xC02
0xCo04

0xC3C

Co2

Label s Code

| di r 16, hi gh( RAMEND)
out SPH, r 16

| di r16, | ow( RAMEND)
out SPL, r16

sei

<instr> Xxx

jmp
Jp

jm

ANA_COVP_0

ANA_COVP_1

SPM RDY

Comment s

Mai n program start
Set Stack Pointer to top of RAM

Enabl e interrupts

anal og conparator 0 Handl er
anal og conparator 1 Handl er

Store Program Menory Ready Handl er

When the BOOTRST fuse is programmed and the boot section size set to 2Kbytes, the most typical and general program
setup for the reset and interrupt vector addresses in ATmega16/32/64/M1/C1 is:
Comment s

Addr ess
.org Ox
0x002
0x004

0x03C
.org Ox
0xC00
0x001
0x002
0xC03

0xCo04
0xQ05

002

Co0
RESET:

Label s Code

jmp ANA COWP_0

jnmp ANA COWP_1

jmp SPM_RDY

| di r 16, hi gh( RAMEND)
out SPH, r 16

| di r16, | ow( RAMEND)
out SPL, r16

sei

<instr> xxx

anal og conparator 0 Handl er
anal og conparator 1 Handl er

Store Program Menory Ready Handl er

Mai n program start
Set Stack Pointer to top of RAM

Enabl e interrupts

When the BOOTRST fuse is programmed, the boot section size set to 2Kbytes and the IVSEL bit in the MCUCR register is
set before any interrupts are enabled, the most typical and general program setup for the reset and interrupt vector
addresses in ATmega16/32/64/M1/C116/32 is:

Addr ess

.org 0xQ00

0xC00
0x002
0xQ04

0xC3C
0xC3E
OxC3F
0oxC40
oxc41

0xCA2
0xC43

Atmel

RESET:

Label s Code

jmp RESET

jmp ANA _COWP_0

jmp ANA COWP_1

jnmp SPM_RDY

| di r 16, hi gh( RAMEND)
out SPH, r 16

| di r 16, | ow( RAVEND)
out SPL, r16

sei

<instr> Xxxx

Comment s

Reset handl er

anal og conparator 0 Handl er

anal og conparator 1 Handl er

Store Program Menory Ready Handl er
Mai n program start

Set Stack Pointer to top of RAM

Enabl e interrupts
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8.1.1 Moving Interrupts Between Application and Boot Space

The MCU control register controls the placement of the interrupt vector table.

8.1.2 MCU Control Register - MCUCR

Bit 7 6 5 4 3 2 1 0

| spps| - | - | PuD = = IVSEL IVCE | MCUCR
Read/Write RIW R R RIW R R RIW RIW
Initial Value 0 0 0 0 0 0 0 0

e Bit 1 - IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the flash memory. When this bit is set
(one), the interrupt vectors are moved to the beginning of the boot loader section of the flash. The actual address of the start
of the boot flash section is determined by the BOOTSZ fuses. Refer to Section 24. “Boot Loader Support — Read-while-write
Self-Programming ATmega16/32/64/M1/C1” on page 241 for details. To avoid unintentional changes of Interrupt vector
tables, a special write procedure must be followed to change the IVSEL bit:

1. Write the interrupt vector change enable (IVCE) bit to one.
2. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled in the cycle IVCE is set, and
they remain disabled until after the instruction following the write to IVSEL. If IVSEL is not written, interrupts remain disabled
for four cycles. The I-bit in the status register is unaffected by the automatic disabling.

Note: If interrupt vectors are placed in the boot loader section and boot lock bit BLB02 is programmed, interrupts are
disabled while executing from the application section. If interrupt vectors are placed in the application section
and boot lock bit BLB12 is programed, interrupts are disabled while executing from the boot loader section.
Refer to Section 24. “Boot Loader Support — Read-while-write Self-Programming ATmega16/32/64/M1/C1” on
page 241 for details on boot lock bits.

e Bit 0 - IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by hardware four cycles after it
is written or when IVSEL is written. Setting the IVCE bit will disable interrupts, as explained in the IVSEL description above.
See code example below.

Assembly Code Example

Move_i nterrupts:
; Enabl e change of Interrupt Vectors

| di r16, (1<<lVCE)

out MCUCR, r16

; Move interrupts to Boot Flash section
| di r16, (1<<I VSEL)

out MCUCR, r16

ret

C Code Example

voi d Move_interrupts(void)

{
/* Enabl e change of Interrupt Vectors */
MCUCR = (1<<I VCE);
/* Move interrupts to Boot Flash section */
MCUCR = (1<<I VSEL);
}
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9. I/O-Ports

9.1 Introduction

All AVR® ports have true read-modify-write functionality when used as general digital 1/O ports. This means that the direction
of one port pin can be changed without unintentionally changing the direction of any other pin with the SBI and CBI
instructions. The same applies when changing drive value (if configured as output) or enabling/disabling of pull-up resistors
(if configured as input). Each output buffer has symmetrical drive characteristics with both high sink and source capability. All
port pins have individually selectable pull-up resistors with a supply-voltage invariant resistance. All I/O pins have protection
diodes to both V¢ and ground as indicated in Figure 9-1. Refer to Section 26. “Electrical Characteristics” on page 273 for a
complete list of parameters.

Figure 9-1. 1/0O Pin Equivalent Schematic

pu
Pxn

* Logic

See Figure
Cpin "General Digital 1/0”
for Details
(=

All registers and bit references in this section are written in general form. A lower case “X” represents the numbering letter for
the port, and a lower case “n” represents the bit number. However, when using the register or bit defines in a program, the
precise form must be used. For example, PORTB3 for bit no. 3 in Port B, here documented generally as PORTxn. The

physical I/O registers and bit locations are listed in “Register Description for 1/0O-Ports”.

Three 1/0O memory address locations are allocated for each port, one each for the data register — PORTX, data direction
register — DDRX, and the port input pins — PINx. The port input pins I/O location is read only, while the data register and the
data direction register are read/write. However, writing a logic one to a bit in the PINx register, will result in a toggle in the
corresponding bit in the data register. In addition, the pull-up disable — PUD bit in MCUCR disables the pull-up function for all
pins in all ports when set.

Using the 1/O port as general digital I/O is described in “Ports as General Digital 1/0”. Most port pins are multiplexed with
alternate functions for the peripheral features on the device. How each alternate function interferes with the port pin is
described in Section 9.3 “Alternate Port Functions” on page 55. Refer to the individual module sections for a full description
of the alternate functions.

Note that enabling the alternate function of some of the port pins does not affect the use of the other pins in the port as
general digital 1/0.
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9.2 Ports as General Digital I/O

The ports are bi-directional 1/0 ports with optional internal pull-ups. Figure 9-2 shows a functional description of one I/O-port
pin, here generically called Pxn.

Figure 9-2. General Digital I/0®

0=

g 2
Pxn o
\I PORTxn E
<<
_ [m]
QiR WPx
I
RESET
p—— SLEEP WRx
AV RRx
Synchronizer
————————————————————— | RPx
! 1
1
! PINxn | |
b | —_ — 1
1 |— L Q J— Q :
1
1 1
1
:_ __________ S T CLK)o
PUD: PULL-UP DISABLE WDx: WRITE DDRx
SLEEP: SLEEP CONTROL RDx: READ DDRx
CLKo: 1/0 CLOCK WRx: WRITE PORTx v
RRx: READ PORTx REGISTER
RPx: READ PORTx PIN
WPx: WRITE PORTx REGISTER

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clk,5, SLEEP, and PUD
are common to all ports.

9.2.1 Configuring the Pin

Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in Section 9.4 “Register Description for
|/O-Ports” on page 68, the DDxn bits are accessed at the DDRx I/O address, the PORTxn bits at the PORTx I/O address,
and the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRXx register selects the direction of this pin. If DDxn is written logic one, Pxn is configured as an output
pin. If DDxn is written logic zero, Pxn is configured as an input pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is activated. To switch the pull-
up resistor off, PORTxn has to be written logic zero or the pin has to be configured as an output pin.

The port pins are tri-stated when reset condition becomes active, even if no clocks are running.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven high (one). If PORTxn is
written logic zero when the pin is configured as an output pin, the port pin is driven low (zero).
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9.2.2

9.2.3

9.24

Toggling the Pin

Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn. Note that the SBI instruction
can be used to toggle one single bit in a port.

Switching Between Input and Output

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn} = 0b11), an intermediate

state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output low ({DDxn, PORTxn} = 0b10) must occur. Normally, the
pull-up enabled state is fully acceptable, as a high-impedant environment will not notice the difference between a strong high
driver and a pull-up. If this is not the case, the PUD bit in the MCUCR Register can be set to disable all pull-ups in all ports.

Switching between input with pull-up and output low generates the same problem. The user must use either the tri-state
({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn} = 0b11) as an intermediate step.

Table 9-1 summarizes the control signals for the pin value.

Table 9-1.  Port Pin Configurations

DDxn PORTXn (in I&gBCR) 110 Pull-up |Comment
Default configuration after reset.
Tri-state (Hi-Z)
Input Yes Pxn will source current if ext. pulled low.
Input No Tri-state (Hi-Z)
Output No Output low (sink)

0 0 X Input No

= a O O
R e T IS G
X X = o

Output No Output high (source)

Reading the Pin Value

Independent of the setting of data direction bit DDxn, the port pin can be read through the PINxn register bit. As shown in
Figure 9-2, the PINxn register bit and the preceding latch constitute a synchronizer. This is needed to avoid metastability if
the physical pin changes value near the edge of the internal clock, but it also introduces a delay. Figure 9-3 shows a timing
diagram of the synchronization when reading an externally applied pin value. The maximum and minimum propagation
delays are denoted t,g mac @nd tog min respectively.

Figure 9-3. Synchronization when Reading an Externally Applied Pin Value

L

xxx X inr17,PINx X

1

1
SYSTEMCLK __ | | [

1

INSTRUCTIONS X XXX

SYNC LATCH

r17

1
i
1
!
PINxn i
1
1
1
1
1
1
1

|
|
i X oxFF
1
1
1
1
1
1
1
1

Consider the clock period starting shortly after the first falling edge of the system clock. The latch is closed when the clock is
low, and goes transparent when the clock is high, as indicated by the shaded region of the “SYNC LATCH?” signal. The signal
value is latched when the system clock goes low. It is clocked into the PINxn register at the succeeding positive clock edge.
As indicated by the two arrows tog max @nd tog min, @ single signal transition on the pin will be delayed between 2 and 172
system clock period depending upon the time of assertion.
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When reading back a software assigned pin value, a nop instruction must be inserted as indicated in Figure 9-4. The out
instruction sets the “SYNC LATCH" signal at the positive edge of the clock. In this case, the delay t,4 through the
synchronizer is 1 system clock period.

Figure 9-4. Synchronization when Reading a Software Assigned Pin Value

SYSTEMCLK __| [

I R

1 1
1 1
| |
i i
r16 i OXFF !
1 1
1 1
1 1
INSTRUCTIONS X out PORT, r16):( nop )?( inr17, PINx X
1 1
SYNC LATCH [ :
1 1
! :
PINxn !

: i

r17 l 0x00 i X oxFF
| T
: tpd i
————————————— )

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define the port pins from 4 to 7 as
input with pull-ups assigned to port pins 6 and 7. The resulting pin values are read back again, but as previously discussed,
a nop instruction is included to be able to read back the value recently assigned to some of the pins.

Assembly Code Example("

; Define pull-ups and set outputs high
; Define directions for port pins

| di r16, (1<<PB7)| (1<<PB6)| (1<<PBl)| (1<<PB0)

| di r17, (1<<DDB3)| (1<<DDB2)| (1<<DDBL1) | (1<<DDB0)
out PORTB, r16

out DDRB, r17

; Insert nop for synchronization

nop

; Read port pins

in rl6, PINB

C Code Example

unsi gned char i;

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7)| (1<<PB6) | ( 1<<PBL1) | (1<<PBO0);
DDRB = (1<<DDB3) | ( 1<<DDB2) | ( 1<<DDB1) | ( 1<<DDBO0) ;
/* Insert nop for synchronization*/

_NOP() ;

/* Read port pins */

i = PINB;

Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-ups are set on pins
0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3 as low and redefining bits 0 and 1 as
strong high drivers.
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9.2.5 Digital Input Enable and Sleep Modes

As shown in Figure 9-2, the digital input signal can be clamped to ground at the input of the schmitt-trigger. The signal
denoted SLEEP in the figure, is set by the MCU sleep controller in power-down mode, power-save mode, and standby mode
to avoid high power consumption if some input signals are left floating, or have an analog signal level close to V/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt request is not enabled, SLEEP
is active also for these pins. SLEEP is also overridden by various other alternate functions as described in Section 9.3
“Alternate Port Functions” on page 55.

If a logic high level (“one”) is present on an asynchronous external interrupt pin configured as “Interrupt on Rising Edge,
Falling Edge, or Any Logic Change on Pin” while the external interrupt is not enabled, the corresponding external interrupt
flag will be set when resuming from the above mentioned sleep modes, as the clamping in these sleep modes produces the
requested logic change.

9.3 Alternate Port Functions

Most port pins have alternate functions in addition to being general digital 1/0Os. Figure 9-5 shows how the port pin control
signals from the simplified Figure 9-2 can be overridden by alternate functions. The overriding signals may not be present in
all port pins, but the figure serves as a generic description applicable to all port pins in the AVR® microcontroller family.
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Figure 9-5. Alternate Port Functions®

PUOExn i
1 f—— PUOVXN
PUD
0
DDOExn
1 f——— ppovxn
0 Q D[
DDxn
[] Q LR
I WDx
RESET

PVOExn
1p—— PVOVxn
.
0 Q D 2
<C
PORTxn K
_ a
DIEOExn Q o R PTOExn
|
DIEOVxn
°<| RESET WRx
SLEEP RRx
Synchronizer
e I | RPx
1
1
q L SET q — -
I —p Q D Q ‘:—V
' PINxn |
1
) X _ —
| |—'- clr @ 1— cr?| !
1
1
1
'_________: _______ J CLKy0
- DIxn
~— A|Oxn
PUOExn: Pxn PULL-UP OVERRIDE ENABLE PUD: PULL-UP DISABLE v
PUOVxXn: Pxn PULL-UP OVERRIDE VALUE WDx: WRITE DDRx
DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE RDx: READ DDRx
DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE RRx: READ PORTx REGISTER
PVOExn: Pxn PORT VALUE OVERRIDE ENABLE WRx: WRITE PORTx
PVOVxn: Pxn PORT VALUE OVERRIDE VALUE RPx: READ PORTx PIN
DIEOExn: Pxn DIGITAL INPUT ENABLE OVERRIDE ENABLE WPx: WRITE PINx
DIEOVxn: Pxn DIGITAL INPUT ENABLE OVERRIDE VALUE CLK:o  I/0 CLOCK
SLEEP: SLEEP CONTROL Dixn: DIGITAL INPUT PIN n ON PORTx
PTOExn: Pxn, PORT TOGGLE OVERRIDE ENABLE AlOxn:  ANALOG INPUT/OUTPUT PIN n ON PORTX

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clk,, SLEEP, and PUD
are common to all ports. All other signals are unique for each pin.
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Table 9-2 summarizes the function of the overriding signals. The pin and port indexes from Figure 9-5 on page 56 are not
shown in the succeeding tables. The overriding signals are generated internally in the modules having the alternate function.

Table 9-2.  Generic Description of Overriding Signals for Alternate Functions
Signal Name Full Name Description
If this signal is set, the pull-up enable is controlled by the PUOV signal. If
PUOE Pull-up override enable this signal is cleared, the pull-up is enabled when {DDxn, PORTxn, PUD} =
0b010.
PUOV Pull-up override value If PUOE is set, the pull-up is enabled/disabled when PUOV is set/cleared,
P regardless of the setting of the DDxn, PORTxn, and PUD register bits.
Data direction override If this signal is set, the output driver enable is controlled by the DDOV
DDOE enable signal. If this signal is cleared, the output driver is enabled by the DDxn
register bit.
DDOV Data direction override  If DDOE is set, the output driver is enabled/disabled when DDOV is
value set/cleared, regardless of the setting of the DDxn register bit.
Port value override If this signal is set and the output driver is enabled, the port value is
PVOE enable controlled by the PVOV signal. If PVOE is cleared, and the output driver is
enabled, the port value is controlled by the PORTxn register bit.
PVOV Port value override value If PVOE is sgt, the port value is set to PVOV, regardless of the setting of the
PORTXxn register bit.
PTOE epr?:btlzgg'e Ol If PTOE is set, the PORTxn register bit is inverted.
Digital inout enable If this bit is set, the digital input enable is controlled by the DIEOV signal. If
DIEOE gal Inp this signal is cleared, the digital input enable is determined by MCU state
override enable
(normal mode, sleep mode).
DIEOV Digital input enable If DIEOE is set, the digital Input is enabled/disabled when DIEOV is
override value set/cleared, regardless of the MCU state (normal mode, sleep mode).
This is the digital input to alternate functions. In the figure, the signal is
DI Digital Inout connected to the output of the schmitt trigger but before the synchronizer.
9 P Unless the digital input is used as a clock source, the module with the
alternate function will use its own synchronizer.
. This is the analog input/output to/from alternate functions. The signal is
e frElteg ApL e UL connected directly to the pad, and can be used bi-directionally.

The following subsections shortly describe the alternate functions for each port, and relate the overriding signals to the
alternate function. Refer to the alternate function description for further details.

9.3.1 MCU Control Register - MCUCR

Bit 6 5 4 3 2 1 0

| SPIPS | = | = | PUD = = IVSEL IVCE | MCUCR
Read/Write R/W R R R/W R/W
Initial Value 0 0 0 0 0 0 0

e Bit 4 — PUD: Pull-up Disable

When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and PORTxn registers are
configured to enable the pull-ups ({DDxn, PORTxn} = 0b01).

Atmel
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9.3.2 Alternate Functions of Port B

The Port B pins with alternate functions are shown in Table 9-3.

Table 9-3.  Port B Pins Alternate Functions

Port Pin Alternate Functions

PSCOUTOB (PSC output 0B)

ADC4 (Analog Input Channel 4)

SCK (SPI Bus Serial Clock)

PCINT7 (Pin Change Interrupt 7)

ADC7 (Analog Input Channel 7)

PB6 PSCOUT1B (PSC output 1B)

PCINT6 (Pin Change Interrupt 6)

ADCS6 (Analog Input Channel 6)

INT2 (External Interrupt 2)

PB5 ACMPN1 (analog comparator 1 Negative Input)

PB7

AMP2- (Analog Differential Amplicator 2 Negative Input)
PCINT5 (Pin Change Interrupt 5)
AMPO+ (Analog Differential Amplifier O Positive Input)

PB4
PCINT4 (Pin Change Interrupt 4)
563 AMPO- (Analog Differential Amplifier 0 Negative Input)
PCINT3 (Pin Change Interrupt 3)
ADCS5 (Analog Input Channel5 )
INT1 (External Interrupt 1)
PB2

ACMPNO (analog comparator 0 Negative Input)
PCINT2 (Pin Change Interrupt 2)

MOSI (SPI Master Out Slave In)

PB1 PSCOUT2B (PSC output 2B)

PCINT1 (Pin Change Interrupt 1)

MISO (SPI Master In Slave Out)

PBO PSCOUT2A (PSC output 2A)

PCINTO (Pin Change Interrupt 0)

The alternate pin configuration is as follows:

* ADC4/PSCOUTOB/SCK/PCINT7 — Bit 7
PSCOUTOB, output 0B of PSC.

ADC4, analog to digital converter, input channel 4.

SCK, master clock output, slave clock input pin for SPI channel. When the SPI is enabled as a slave, this pin is configured as
an input regardless of the setting of DDB7. When the SPI is enabled as a master, the data direction of this pin is controlled
by DDB7. When the pin is forced to be an input, the pull-up can still be controlled by the PORTB?7 bit.

PCINT7, pin change interrupt 7.

« ADC7/PSCOUTI1B/PCINT6 — Bit 6

ADCY7, analog to digital converter, input channel 7.
PSCOUT1B, output 1B of PSC.

PCINT®, pin change interrupt 6.
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¢ ADCG6/INT2/ACMPN1/AMP2-/PCINT5 — Bit 5
ADCSG, analog to digital converter, input channel 6.
INT2, external interrupt source 2. This pin can serve as an External Interrupt source to the MCU.

ACMPN1, analog comparator 1 negative input. Configure the port pin as input with the internal pull-up switched off to avoid
the digital port function from interfering with the function of the analog comparator.

PCINTS5, pin change interrupt 5.

+ APMO+/PCINT4 - Bit 4

AMPO+, analog differential amplifier O positive input channel.
PCINT4, pin change interrupt 4.

* AMPO-/PCINT3 - Bit 3

AMPO-, analog differential amplifier 0 negative input channel. Configure the port pin as input with the internal pull-up
switched off to avoid the digital port function from interfering with the function of the analog amplifier.

PCINTS, pin change interrupt 3.

« ADCS5/INTL/ACMPNO/PCINT2 — Bit 2

ADCS5, analog to digital converter, input channel 5.

INT1, external interrupt source 1. This pin can serve as an external interrupt source to the MCU.

ACMPNQO, analog comparator 0 negative input. Configure the port pin as input with the internal pull-up switched off to avoid
the digital port function from interfering with the function of the analog comparator.

PCINT2, pin change interrupt 2.
* PCINT1/MOSI/PSCOUT2B - Bit 1

MOSI: SPI master data output, slave data input for SPI channel. When the SPI is enabled as a slave, this pin is configured
as an input regardless of the setting of DDB1 When the SPI is enabled as a master, the data direction of this pin is controlled
by DDB1. When the pin is forced to be an input, the pull-up can still be controlled by the PORTB1 and PUD bits.

PSCOUT2B, output 2B of PSC.
PCINT1, pin change interrupt 1.
e PCINTO/MISO/PSCOUT2A - Bit 0

MISO, master data input, slave data output pin for SPI channel. When the SPI is enabled as a master, this pin is configured
as an input regardless of the setting of DDB0. When the SPI is enabled as a slave, the data direction of this pin is controlled
by DDBO0. When the pin is forced to be an input, the pull-up can still be controlled by the PORTBO and PUD bits.

PSCOUT2A, output 2A of PSC.
PCINTO, pin change interrupt 0.
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Table 9-4 and Table 9-5 relates the alternate functions of Port B to the overriding signals shown in Figure 9-5 on page 56.

Table 9-4. Overriding Signals for Alternate Functions in PB7..PB4

PB7/ADC4/ PB6/ADCT7/ PB5/ADC6/
PSCOUTOB/SCK/ PSCOUT1B/ INT2/ACMPN1/ PB4/AMPO+/
Signal Name PCINT7 PCINT6 AMP2-/PCINT5 PCINT4
PUOE SPE x MSTR x SPIPS 0 0 0
PUOV PB7 x PUD x SPIPS 0 0 0
DDOE SIFE nggg:nxofplps * PSCen11 0 0
DDOV PSCen01 1 0 0
PVOE SPE x MSTR x SPIPS PSCen11 0 0
PSCout01 x SPIPS + PSCout01 x
PVOV PSCen01x SPIPS PSCOUT11 0 0
+ PSCout01 x PSCen01 x SPIPS
DIEOE ADC4D ADC7D ADCBD + In2en AMPOND
DIEOV 0 0 In2en 0
DI SCKin x SPIPS x ireset ICP1B INT2
AIO ADC4 ADC7 ADC6 AMPO+

Table 9-5. Overriding Signals for Alternate Functions in PB3..PBO

PB1/MOSI/ PBO/MISO/
PB3/AMPO-/ PB2/ADC5/INT1/ PSCOUT2B/ PSCOUT2A/
Signal Name PCINT3 ACMPNO/PCINT2 PCINT1 PCINTO
PUOE 0 0 - -
PUOV 0 0 — =
DDOE 0 0 - -
DDOV 0 0 — =
PVOE 0 0 - -
PVOV 0 0 — =
DIEOE AMPOND ADCS5D + Inten 0 0
DIEOV 0 In1en 0 0
5 i MOSI_IN x SPIPS x MISO_IN x SPIPS x
ireset ireset
AIO AMPO- ADC5 — -
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9.3.3 Alternate Functions of Port C

The Port C pins with alternate functions are shown in Table 9-6.

Table 9-6. Port C Pins Alternate Functions

Port Pin Alternate Function

D2A (DAC output)

PC7 AMP2+ (Analog Differential Amplifier 2 Positive Input)
PCINT15 (Pin Change Interrupt 15)

ADC10 (Analog Input Channel 10)

PC6 ACMP1 (analog comparator 1 Positive Input )
PCINT14 (Pin Change Interrupt 14)

ADC9 (Analog Input Channel 9)

AMP1+ (Analog Differential Amplifier 1 Input Channel)
ACMP3 (Analog Comparator 3 Positive Input)
PCINT13 (Pin Change Interrupt 13)

ADCS8 (Analog Input Channel 8)

AMP1- (Analog Differential Amplifier 1 Input Channel )
ACMPN3 (Analog Comparator 3 Negative Input)
PCINT12 (Pin Change Interrupt 12)

T1 (Timer 1 clock input)

RXCAN (CAN Rx Data)

ICP1B (Timer 1 Input Capture Alternate Input)
PCINT11 (Pin Change Interrupt 11)

TO (Timer 0 clock input)

PC2 TXCAN (CAN Tx Data)

PCINT10 (Pin Change Interrupt 10)

PSCIN1 (PSC 1 Digital Input)

OC1B (Timer 1 Output Compare B)

PC5

PC4

PC3

PC1
SS_A (Alternate SPI Slave Select)
PCINT9 (Pin Change Interrupt 9)
PSCOUT1A (PSC output 2A)
PCO INT3 (External Interrupt 3)
PCINTS8 (Pin Change Interrupt 8)
Note: On the engineering samples (Parts marked AT90PWM324), the ACMPNS3 alternate function is not located on

PCA4. It is located on PE2.
The alternate pin configuration is as follows:
* D2A/AMP2+/PCINT15 - Bit 7
D2A, digital to analog output

AMP2+, analog differential amplifier 2 positive input. Configure the port pin as input with the internal pull-up switched off to
avoid the digital port function from interfering with the function of the amplifier.

PCINT15, pin change interrupt 15.
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e ADC10/ACMP1/PCINT14 - Bit 6
ADC10, analog to digital converter, input channel 10.

ACMP1, analog comparator 1 positive input. Configure the port pin as input with the internal pull-up switched off to avoid the
digital port function from interfering with the function of the analog comparator.

PCINT14, pin change interrupt 14.
« ADC9/ACMP3/AMP1+/PCINT13 - Bit 5
ADC9, analog to digital converter, input channel 9.

ACMP3, analog comparator 3 positive input. Configure the port pin as input with the internal pull-up switched off to avoid the
digital port function from interfering with the function of the analog comparator.

AMP1+, analog differential amplifier 1 positive input channel. Configure the port pin as input with the internal pull-up
switched off to avoid the digital port function from interfering with the function of the analog ampilifier.

PCINT13, pin change interrupt 13.
+ ADC8/AMP1-/ACMPN3/PCINT12 - Bit 4
ADCS8, analog to digital converter, input channel 8.

AMP1-, analog differential amplifier 1 negative input channel. Configure the port pin as input with the internal pull-up
switched off to avoid the digital port function from interfering with the function of the analog ampilifier.

ACMPNS3, analog comparator 3 negative input. Configure the port pin as input with the internal pull-up switched off to avoid
the digital port function from interfering with the function of the analog comparator.

PCINT12, pin change interrupt 12.

¢ PCINT11/T1/RXCAN/ICP1B - Bit 3
T1, Timer/Counter1 counter source.
RXCAN, CAN Rx data.

ICP1B, input capture pin: The PC3 pin can act as an input capture pin for Timer/Counter1.
PCINT11, pin change interrupt 11.

e PCINT10/TO/TXCAN - Bit 2

TO, Timer/Counter0 counter source.
TXCAN, CAN Tx data.

PCINT10, pin change interrupt 10.

* PCINT9/PSCIN1/OC1B/SS_A - Bit 1
PCSIN1, PSC 1 digital input.

OC1B, output compare match B output: This pin can serve as an external output for the Timer/Counter1 output compare B.
The pin has to be configured as an output (DDC1 set “one”) to serve this function. This pin is also the output pin for the PWM
mode timer function.

@_A: Slave port select input. When the SPI is enabled as a slave, this pin is configured as an input regardless of the setting
of DDDO. As a slave, the SPI is activated when this pin is driven low. When the SPI is enabled as a master, the data direction
of this pin is controlled by DDDO0. When the pin is forced to be an input, the pull-up can still be controlled by the PORTDO bit.

PCINT?9, pin change interrupt 9.

« PCINT8/PSCOUT1A/INT3 - Bit 0

PSCOUT1A, output 1A of PSC.

INT3, external interrupt source 3: This pin can serve as an external interrupt source to the MCU.
PCINTS, pin change interrupt 8.
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Table 9-7 and Table 9-8 relate the alternate functions of port C to the overriding signals shown in Figure 9-5 on page 56.

Table 9-7. Overriding Signals for Alternate Functions in PC7..PC4

PC6/ADC10/ PC5/ADCY/ PC4/ADCS/
PC7/D2AIAMP2+/ ACMP1/ AMP1+/ACMP3/ AMP1-/ACMPN3/

Signal Name PCINT15 PCINT14 PCINT13 PCINT12

PUOE 0 0 0

PUOV 0 0 0

DDOE DAEN 0 0

DDOV 0 0 0

PVOE 0 0 0 -

PVOV 0 0 0 -

DIEOE DAEN ADC10D ADCOD ADC8D

DIEOV 0 0 0 0

DI
ADC8 Amp1-
AlO - ADC10 Amp1 ADC9 Amp1+
ACMPN3

Table 9-8. Overriding Signals for Alternate Functions in PC3..PC0O

PC1/PSCIN1/ PCO/INT3/
PC3/T1/RXCAN/ PC2/TO/TXCAN/ OC1B/SS_A/ PSCOUT1A/
Signal Name ICP1B/PCINT11 PCINT10 PCINT9 PCINTS8
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 PSCen10
DDOV 1 1 0 1
PVOE OC1Ben PSCen10
PVOV OC1B PSCout10
DIEOE In3en
DIEOV In3en
DI T TO PSSSC_T INT3
AlO
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9.3.4 Alternate Functions of Port D

The Port D pins with alternate functions are shown in Table 9-9.

Table 9-9. Port D Pins Alternate Functions

Port Pin Alternate Function

ACMPO (Analog Comparator 0 Positive Input)

PD7
PCINT23 (Pin Change Interrupt 23)
ADC3 (Analog Input Channel 3)
5 ACMPN2 (Analog Comparator 2 Negative Input)

INTO (External Interrupt 0)
PCINT22 (Pin Change Interrupt 22)
ADC2 (Analog Input Channel 2)
PD5 ACMP2 (Analog Comparator 2 Positive Input)
PCINT21 (Pin Change Interrupt 21)
ADC1 (Analog Input Channel 1)
RXD/RXLIN (LIN/UART Rx Data)
PD4 ICP1A (Timer 1 Input Capture)
SCK_A (Programming and Alternate SPI Clock)
PCINT20 (Pin Change Interrupt 20)
TXD/TXLIN (LIN/UART Tx Data)
OCOA (Timer 0 Output Compare A)
PD3 SS (SPI Slave Select)
MOSI_A (Programming and Alternate SPI Master Out Slave In)
PCINT19 (Pin Change Interrupt 19)
PSCIN2 (PSC Digital Input 2)
OC1A (Timer 1 Output Compare A)
MISO_A (Programming and Alternate Master In SPI Slave Out)
PCINT18 (Pin Change Interrupt 18)
PSCINO (PSC Digital Input 0)
PD1 CLKO (System Clock Output)
PCINT17 (Pin Change Interrupt 17)
PSCOUTOA (PSC Output 0A)
PCINT16 (Pin Change Interrupt 16)

PD2

PDO

The alternate pin configuration is as follows:
* ACMPO/PCINT23 - Bit 7

ACMPO, analog comparator 0 positive input. Configure the port pin as input with the internal pull-up switched off to avoid the
digital port function from interfering with the function of the analog comparator.

PCINT23, pin change interrupt 23.
e ADC3/ACMPN2/INTO/PCINT22 — Bit 6
ADCS3, analog to digital converter, input channel 3.

ACMPNZ2, analog comparator 2 negative input. Configure the port pin as input with the internal pull-up switched off to avoid
the digital port function from interfering with the function of the analog comparator.

INTO, external interrupt source 0. This pin can serve as an external interrupt source to the MCU.
PCINT22, pin change interrupt 23.
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e ADC2/ACMP2/PCINT21 - Bit 5
ADC2, analog to digital converter, input channel 2.

ACMP2, analog comparator 1 positive input. Configure the port pin as input with the internal pull-up switched off to avoid the
digital port function from interfering with the function of the analog comparator.

PCINT21, pin change interrupt 21.
e PCINT20/ADC1/RXD/RXLIN/ICP1/SCK_A - Bit 4
ADC1, analog to digital converter, input channel 1.

RXD/RXLIN, LIN/UART receive pin. Receive data (data input pin for the LIN/UART). When the LIN/UART receiver is
enabled this pin is configured as an input regardless of the value of DDRD4. When the UART forces this pin to be an input,
a logical one in PORTD4 will turn on the internal pull-up.

ICP1, input capture pin1: This pin can act as an input capture pin for Timer/Counter1.

SCK_A: Master clock output, slave clock input pin for SPI channel. When the SPI is enabled as a slave, this pin is configured
as an input regardless of the setting of DDD4. When the SPI is enabled as a master, the data direction of this pin is
controlled by DDD4. When the pin is forced to be an input, the pull-up can still be controlled by the PORTD4 bit.

PCINT20, pin change interrupt 20.
e PCINT19/TXD/TXLIN/OCOA/SS/MOSI_A, Bit 3

TXD/TXLIN, LIN/UART transmit pin. Data output pin for the LIN/UART. When the LIN/UART Transmitter is enabled, this pin
is configured as an output regardless of the value of DDD3.

OCOA, output compare match A output: This pin can serve as an external output for the Timer/CounterQ output compare A.
The pin has to be configured as an output (DDD3 set “one”) to serve this function. The OCOA pin is also the output pin for the
PWM mode

SS: Slave port select input. When the SPI is enabled as a slave, this pin is configured as an input regardless of the setting of
DDD3. As a slave, the SPI is activated when this pin is driven low. When the SPI is enabled as a master, the data direction
of this pin is controlled by DDD3. When the pin is forced to be an input, the pull-up can still be controlled by the PORTD3 bit.

MOSI_A: SPI master data output, slave data input for SPI channel. When the SPI is enabled as a slave, this pin is configured
as an input regardless of the setting of DDD3 When the SPI is enabled as a master, the data direction of this pin is controlled
by DDD3. When the pin is forced to be an input, the pull-up can still be controlled by the PORTD3 bit.

PCINT19, pin change Interrupt 19.
e PCINT18/PSCIN2/OC1A/MISO_A, Bit 2
PCSIN2, PSC digital input 2.

OC1A, output compare match A output: This pin can serve as an external output for the Timer/Counter1 output compare A.
The pin has to be configured as an output (DDD2 set “one”) to serve this function. The OC1A pin is also the output pin for the
PWM mode timer function.

MISO_A: Master data input, slave data output pin for SPI channel. When the SPI is enabled as a master, this pin is
configured as an input regardless of the setting of DDD2. When the SPI is enabled as a slave, the data direction of this pin is
controlled by DDD2. When the pin is forced to be an input, the pull-up can still be controlled by the PORTD2 bit.

PCINT18, pin change interrupt 18.
* PCINT17/PSCINO/CLKO - Bit 1
PCSINO, PSC digital input 0.

CLKO, divided system clock: The divided system clock can be output on this pin. The divided system clock will be output if
the CKOUT fuse is programmed, regardless of the PORTD1 and DDD1 settings. It will also be output during reset.

PCINT17, pin change interrupt 17.
e PCINT16/PSCOUTOA - Bit 0
PSCOUTOA: Output 0 of PSC 0.
PCINT16, pin change interrupt 16.
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Table 9-10 and Table 9-11 relates the alternate functions of Port D to the overriding signals shown in Figure 9-5 on page 56.

Table 9-10. Overriding Signals for Alternate Functions PD7..PD4

PD5/ADC2/

PD4/ADC1/RXD/
RXLIN/ICP1A/

PD7/ PD6/ADC3/
ACMPO/ ACMPN2/INTO/
Signal Name PCINT23 PCINT22
PUOE 0 0
PUOV 0 0
DDOE 0 0
DDOV 0 0
PVOE 0
PVOV 0
DIEOE ACMPOD ADC3D + InOen
DIEQV 0 InOen
DI — INTO
ADC3
AlIO ACOMPO ACMPM

Table 9-11. Overriding Signals for Alternate Functions in PD3..PDO

ACMP2/PCINT21

ADC2
ACOMP2

PD1/PSCINO/
CLKO/

PCINT17

SCK_A/PCINT20
RXEN + SPE -
MSTR x SPIPS

PD4 x PUD

RXEN + SPE x
MSTR x SPIPS

0
SPE x MSTR x SPIPS
ADC1D
0
ICP1A

ADC1

PDO/PSCOUTOA/
XCK/PCINT16

PD3/TXD/TXLIN/ PD2/PSCIN2/
OCOA/SS/IMOSI_A/ OC1A/MISO_A/
Signal Name PCINT19 PCINT18
TXEN + SPE x
FURE MSTR x SPIPS -
TXEN x SPE x MSTR x
FLeR SPIPS x PD3 x PUD B
TXEN + SPE x
ipiels MSTR x SPIPS B
DDOV TXEN 0
TXEN + OCOen + SPE x
Fiiels MSTR x SPIPS B
TXEN x TXD + TXEN x
PVOV (OCOen x OCO + OCOen x -
SPIPS x MOSI)
DIEOE 0
DIEOV 0
Ss
= MOSI_Ain
AIO
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9.3.5 Alternate Functions of Port E

The Port E pins with alternate functions are shown in Table 9-12.

Table 9-12. Port E Pins Alternate Functions

Port Pin Alternate Function

XTAL2 (XTAL Output)

PE2 ADCO (Analog Input Channel 0)
PCINT26 (Pin Change Interrupt 26)
XTAL1 (XTAL Input)

PE1 OCOB (Timer 0 Output Compare B)
PCINT25 (Pin Change Interrupt 25)
RESET# (Reset Input)

PEO OCD (On Chip Debug I/0)
PCINT24 (Pin Change Interrupt 24)

Note: On the engineering samples (Parts marked AT90PWM324), the ACMPN3 alternate function is not located on
PC4. It is located on PE2.

The alternate pin configuration is as follows:
e PCINT26/XTAL2/ADCO — Bit 2

XTAL2: Chip clock oscillator pin 2. Used as clock pin for crystal oscillator or low-frequency crystal oscillator. When used as a
clock pin, the pin can not be used as an /O pin.

ADCO, analog to digital converter, input channel 0.
PCINT26, pin change interrupt 26.
e PCINT25/XTAL1/0OCOB - Bit 1

XTAL1: Chip clock oscillator pin 1. Used for all chip clock sources except internal calibrated RC oscillator. When used as a
clock pin, the pin can not be used as an I/O pin.

OCOB, output compare Match B output: This pin can serve as an external output for the Timer/CounterO output compare B.
The pin has to be configured as an output (DDE1 set “one”) to serve this function. This pin is also the output pin for the PWM
mode timer function.

PCINT25, pin change interrupt 25.
* PCINT24/RESET/OCD —Bit 0

RESET, reset pin: When the RSTDISBL Fuse is programmed, this pin functions as a normal I/O pin, and the part will have to
rely on power-on reset and brown-out reset as its reset sources. When the RSTDISBL Fuse is unprogrammed, the reset
circuitry is connected to the pin, and the pin can not be used as an 1/O pin.

If PEO is used as a reset pin, DDEO, PORTEO and PINEO will all read 0.
PCINT24, pin change interrupt 24.
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Table 9-13 relates the alternate functions of Port E to the overriding signals shown in Figure 9-5 on page 56.

Table 9-13. Overriding Signals for Alternate Functions in PE2..PEO

PE2/ADCO/XTAL2/ PE1/XTAL1/0OCOB/ PEO/RESET/
Signal Name PCINT26 PCINT25 OCD/PCINT24
PUOE 0 0 0
PUOV 0 0 0
DDOE 0 0 0
DDOV 0 0 0
PVOE 0 OCOBen 0
PVOV 0 OCO0B 0
DIEOE ADCOD 0 0
DIEOV 0 0 0
DI
Osc Output .
AlIO Osc / Clock input
ADCO

9.4 Register Description for 1/0-Ports

9.4.1 Port B Data Register - PORTB

Bit 7 6 5 4 3 2 1 0

| PORTB7 | PORTB6 | PORTBS | PORTB4 | PORTB3 | PORTB2 | PORTB1 | PORTBO | PORTB
Read/Write R/IW R/W R/W R/W R/W R/W R/W R/IW
Initial Value 0 0 0 0 0 0 0 0

9.4.2 Port B Data Direction Register - DDRB

Bit 7 6 5 4 3 2 1 0
| poB7 | pbBs | DDB5 | DDB4 | DDB3 DDB2 DDB1 DDBO | DDRB
Read/Write RIW RIW RIW R/IW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

9.4.3 Port B Input Pins Address — PINB

Bit 7 6 5 4 3 2 1 0

| PNB7 | PINBE | PINB5 | PINB4 | PINB3 | PINB2 | PINBL | PINBO | PINB
Read/Write RIW RIW RIW RIW RIW RIW R/W R/W
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

9.4.4 Port C Data Register - PORTC

Bit 7 6 5 4 3 2 1 0
| PORTC7 | PORTC6 | PORTCS | PORTC4 | PORTCS3 | PORTC2 | PORTC1 | PORTCO | PORTC
Read/Write R/W RIW RIW R/W RIW R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
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9.4.5 Port C Data Direction Register — DDRC

Bit 7 6 5 4 3 2 1 0

| ooc7 | pbce | pbcs | Dbc4 | DDC3 DDC2 DDC1 ppco | pbbrc
Read/Write R/IW R/W RIW R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

9.4.6 Port C Input Pins Address — PINC

Bit 7 6 5 4 3 2 1 0

| PINC7 | PINC6 | PINC5 | PINC4 | PINC3 PINC2 PINC1 | PINCO | PINC
Read/Write RIW RIW RIW R/IW RIW RIW RIW RIW
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

9.4.7 Port D Data Register — PORTD

Bit 7 6 5 4 3 2 1 0

| PORTD7 | PORTD6 | PORTDS | PORTD4 | PORTD3 | PORTD2 | PORTDL | PORTDO | PORTD
Read/Write R/W R/W RIW RIW R/W R/W RIW R/W
Initial Value 0 0 0 0 0 0 0 0

9.4.8 Port D Data Direction Register — DDRD

Bit 7 6 5 4 3 2 1 0

| oop7 | ppbe | DbDs | DDD4 | DDD3 DDD2 DDD1 ppbo | DDRD
Read/Write RIW R/W RIW R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

9.4.9 Port D Input Pins Address — PIND

Bit 7 6 5 4 3 2 1 0

| PiND7 | PIND6 | PIND5 | PIND4 | PIND3 PIND2 PIND1 | PINDO | PIND
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

9.4.10 Port E Data Register —- PORTE

Bit 7 6 5 4 3 2 1 0
| - | - | - | - | - | PORTE2 | PORTE1 | PORTEOI PORTE
Read/Write R R R R R R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

9.4.11 Port E Data Direction Register — DDRE

Bit 7 6 5 4 3 2 1 0
- | - | - | - | - | DDEz | DDEL | DDEO ] DDRE
Read/Write R R R R R RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

9.4.12 Port E Input Pins Address — PINE

Bit 7 6 5 4 3 2 1 0
[ - | - | - 1 - | - [ PINE2 | PINEL | PINEO | PINE
Read/Write R R R R R RIW RIW RIW
Initial Value 0 0 0 0 0 N/A N/A N/A
ATmega16/32/64/M1/C1 [DATASHEET 69
Atmel ? [ ]

76470-AVR-01/15



10. External Interrupts

The external interrupts are triggered by the INT3:0 pins or any of the PCINT23..0 pins. Observe that, if enabled, the
interrupts will trigger even if the INT3:0 or PCINT23..0 pins are configured as outputs. This feature provides a way of
generating a software interrupt. The pin change interrupt PCI2 will trigger if any enabled PCINT23..16 pin toggles. The pin
change interrupt PCI1 will trigger if any enabled PCINT14..8 pin toggles. The pin change interrupt PCIO will trigger if any
enabled PCINT?7..0 pin toggles. The PCMSK3, PCMSK2, PCMSK1 and PCMSKO registers control which pins contribute to
the pin change interrupts. Pin change interrupts on PCINT26..0 are detected asynchronously. This implies that these
interrupts can be used for waking the part also from sleep modes other than Idle mode.

The INT3:0 interrupts can be triggered by a falling or rising edge or a low level. This is set up as indicated in the specification
for the external interrupt control register A — EICRA. When the INT3:0 interrupts are enabled and are configured as level
triggered, the interrupts will trigger as long as the pin is held low. Note that recognition of falling or rising edge interrupts on
INT3:0 requires the presence of an 1/O clock, described in Section 5.1 “Clock Systems and their Distribution” on page 25.
Low level interrupt on INT3:0 is detected asynchronously. This implies that this interrupt can be used for waking the part also
from sleep modes other than Idle mode. The 1/O clock is halted in all sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from power-down, the required level must be held long enough for
the MCU to complete the wake-up to trigger the level interrupt. If the level disappears before the end of the Start-up Time,
the MCU will still wake up, but no interrupt will be generated. The start-up time is defined by the SUT and CKSEL Fuses as
described in Section 5.1 “Clock Systems and their Distribution” on page 25.

10.1  Pin Change Interrupt Timing

An example of timing of a pin change interrupt is shown in Figure 10-1

Figure 10-1. Timing of a Pin Change Interrupts
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10.2 External Interrupt Control Register A — EICRA

The External Interrupt Control Register A contains control bits for interrupt sense control.
Bit 7 6 5 4 3 2 1 0

| 'sc31 | 1sc30 | I1sc21 | 1sC20 | ISC1l | ISC10 | ISCOL | ISCO0 | EICRA
Read/Write ~ R/W RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

e Bit7..0-1SC31, ISC30 - ISC01, ISCO00: Interrupt Sense Control 0 Bit 1 and Bit 0

The external interrupts 3 - 0 are activated by the external pins INT3:0 if the SREG I-flag and the corresponding interrupt
mask in the EIMSK is set. The level and edges on the external pins that activate the interrupt are defined in Table 10-1.
Edges on INT3..INTO are registered asynchronously. The value on the INT3:0 pins are sampled before detecting edges. If
edge or toggle interrupt is selected, pulses that last longer than one clock period will generate an interrupt. Shorter pulses
are not guaranteed to generate an interrupt. Observe that CPU clock frequency can be lower than XTAL frequency if the
XTAL divider is enabled. If low level interrupt is selected, the low level must be held until the completion of the currently
executing instruction to generate an interrupt. If enabled, a level triggered interrupt will generate an interrupt request as long
as the pin is held low.

Table 10-1. Interrupt Sense Control®

ISCn1l ISCn0O Description
0 0 The low level of INTn generates an interrupt request.
0 1 Any logical change on INTn generates an interrupt request.
1 0 The falling edge between two samples of INTn generates an interrupt request.
1 1 The rising edge between two samples of INTn generates an interrupt request.

Note: 1. n=3,2,10r0.
When changing the ISCn1/ISCn0 bits, the interrupt must be disabled by clearing its interrupt enable bit in the
EIMSK register. Otherwise an interrupt can occur when the bits are changed.

10.2.1 External Interrupt Mask Register — EIMSK

Bit 7 6 5 4 3 2 1 0

| - | - | - | - | INT3 INT2 INT1 INTO | EIMSK
Read/Write R R R R R R RIW RIW
Initial Value 0 0 0 0 0 0 0 0

* Bit 7..4 — Res: Reserved Bits
These bits are unused bits in the ATmega16/32/64/M1/C1, and will always read as zero.
e Bit 3.0 —INT3 - 0: External Interrupt Request 3:0 Enable

When an INT3 — INTO bit is written to one and the I-bit in the status register (SREG) is set (one), the corresponding external
pin interrupt is enabled. The interrupt sense control bits in the external interrupt control register A - EICRA defines whether
the external interrupt is activated on rising or falling edge or level sensed. Activity on any of these pins will trigger an interrupt
request even if the pin is enabled as an output. This provides a way of generating a software interrupt.
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10.2.2 External Interrupt Flag Register — EIFR

Bit 7 6 5 4 3 2 1 0

| - | - | - | - [ INTF8 INTF2 INTF1 INTFO | EIFR
Read/Write R R R R RIW RIW R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7..4 — Res: Reserved Bits
These bits are unused bits in the ATmega16/32/64/M1/C1, and will always read as zero.
e Bit 3..0 — INTF3 - INTFO: External Interrupt Flag 3 -0

When an edge or logic change on the INT3:0 pin triggers an interrupt request, INTF3:0 becomes set (one). If the I-bit in
SREG and the corresponding interrupt enable bit INT3:0 in EIMSK, are set (one), the MCU will jump to the interrupt vector.
The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.
These flags are always cleared when INT3:0 are configured as a level interrupt.

10.2.3 Pin Change Interrupt Control Register - PCICR

Bit 7 6 5 4 3 2 1 0

|l - | - | - | - [ PpcE3 | PCIE2 | PCIE1 | PCIEO | PCICR
Read/Write R R R R R RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

* Bit 7..4 - Res: Reserved Bits
These bits are unused bits in the ATmega16/32/64/M1/C1, and will always read as zero.
« Bit 3- PCIE3: Pin Change Interrupt Enable 3

When the PCIE3 bit is set (one) and the I-bit in the status register (SREG) is set (one), pin change interrupt 3 is enabled. Any
change on any enabled PCINT26..24 pin will cause an interrupt. The corresponding interrupt of pin change interrupt request
is executed from the PCI3 interrupt vector. PCINT26..24 pins are enabled individually by the PCMSKS3 register.

e Bit 2 - PCIE2: Pin Change Interrupt Enable 2

When the PCIE2 bit is set (one) and the I-bit in the status register (SREG) is set (one), pin change interrupt 2 is enabled. Any
change on any enabled PCINT23..16 pin will cause an interrupt. The corresponding interrupt of pin change interrupt request
is executed from the PCI2 interrupt vector. PCINT23..16 pins are enabled individually by the PCMSK2 register.

e Bit1- PCIE1: Pin Change Interrupt Enable 1

When the PCIE1 bit is set (one) and the I-bit in the status register (SREG) is set (one), pin change interrupt 1 is enabled. Any
change on any enabled PCINT15..8 pin will cause an interrupt. The corresponding interrupt of pin change interrupt request is
executed from the PCI1 interrupt vector. PCINT15..8 pins are enabled individually by the PCMSK1 register.

e Bit 0- PCIEO: Pin Change Interrupt Enable O

When the PCIEO bit is set (one) and the I-bit in the status register (SREG) is set (one), pin change interrupt 0 is enabled. Any
change on any enabled PCINT7..0 pin will cause an interrupt. The corresponding interrupt of pin change interrupt request is
executed from the PCIO interrupt vector. PCINT7..0 pins are enabled individually by the PCMSKO register.
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10.2.4

10.2.5

10.2.6

Pin Change Interrupt Flag Register - PCIFR

Bit 7 6 5 4 3 2 1 0

| - | - | - | - [ Pck | PCIF2 | PCIF1 | PCIFO | PCIFR
Read/Write R R R R R R/W RIW R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7..4 - Res: Reserved Bits
These bits are unused bits in the ATmega16/32/64/M1/C1, and will always read as zero.
e Bit 3 - PCIF3: Pin Change Interrupt Flag 3

When a logic change on any PCINT26..24 pin triggers an interrupt request, PCIF3 becomes set (one). If the I-bit in SREG
and the PCIE3 bit in PCICR are set (one), the MCU will jump to the corresponding interrupt vector. The flag is cleared when
the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.

« Bit 2 - PCIF2: Pin Change Interrupt Flag 2

When a logic change on any PCINT23..16 pin triggers an interrupt request, PCIF2 becomes set (one). If the I-bit in SREG
and the PCIE2 bit in PCICR are set (one), the MCU will jump to the corresponding Interrupt vector. The flag is cleared when
the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.

e Bit 1 - PCIF1: Pin Change Interrupt Flag 1

When a logic change on any PCINT15..8 pin triggers an interrupt request, PCIF1 becomes set (one). If the I-bit in SREG and
the PCIE1 bit in PCICR are set (one), the MCU will jump to the corresponding Interrupt vector. The flag is cleared when the
interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.

« Bit 0 - PCIFO: Pin Change Interrupt Flag O

When a logic change on any PCINT7..0 pin triggers an interrupt request, PCIFO becomes set (one). If the I-bit in SREG and
the PCIEO bit in PCICR are set (one), the MCU will jump to the corresponding Interrupt vector. The flag is cleared when the
interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.

Pin Change Mask Register 3 - PCMSK3

Bit 7 6 5 4 3 2 1 0

| - | - | - | - | - PCINT26 | PCINT25 | PCINT24 | PCMSK3
Read/Write  R/W R/W R/W RIW R/W RIW RIW R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7..3 — Res: Reserved Bit
These bits are unused bits in the ATmega16/32/64/M1/C1, and will always read as zero.
e Bit 2..0 - PCINT26..24: Pin Change Enable Mask 26..24

Each PCINT26..24-bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT26..24 is set
and the PCIE3 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT23..24 is cleared,
pin change interrupt on the corresponding I/O pin is disabled.

Pin Change Mask Register 2 - PCMSK?2

Bit 7 6 5 4 3 2 1 0
| PCINT23 | PCINT22 | PCINT21 | PCINT20 | PCINT19 [ PCINT18 | PCINT17 | PCINT16 | PCMSK2
Read/Write ~ R/W R/IW R/W RIW R/IW R/W R/W RIW
Initial Value 0 0 0 0 0 0 0 0

e Bit 7..0 - PCINT23..16: Pin Change Enable Mask 23..16

Each PCINT23..16-bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT23..16 is set
and the PCIE2 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT23..16 is cleared,
pin change interrupt on the corresponding I/O pin is disabled.
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10.2.7 Pin Change Mask Register 1 — PCMSK1

Bit 7 6 5 4 3 2 1 0

| PCINT15 | PCINT14 | PCINT13 | PCINT12 | PCINT11 | PCINT10 | PCINT9 | PCINT8 | PCMSK1
Read/Write R R/W R/W RIW R/W RIW RIW R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7 - Res: Reserved Bit
This bit is an unused bit in the ATmega16/32/64/M1/C1, and will always read as zero.
e Bit 7..0 - PCINT15..8: Pin Change Enable Mask 15..8

Each PCINT15..8-bit selects whether pin change interrupt is enabled on the corresponding 1/O pin. If PCINT15..8 is set and
the PCIE1 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT15..8 is cleared, pin
change interrupt on the corresponding I/O pin is disabled.

10.2.8 Pin Change Mask Register 0 — PCMSKO0

Bit 7 6 5 4 3 2 1 0
| PCINT7 | PCINT6 | PCINT5 | PCINT4 | PCINT3 | PCINT2 | PCINT1 | PCINTO | PCMSKO
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7..0 — PCINT7..0: Pin Change Enable Mask 7..0

Each PCINT7..0 bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT7..0 is set and the
PCIEO bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT7..0 is cleared, pin change
interrupt on the corresponding 1/O pin is disabled.
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11. Timer/CounterO and Timer/Counterl Prescalers

Timer/Counter1 and Timer/CounterQ share the same prescaler module, but the Timer/Counters can have different prescaler
settings. The description below applies to both Timer/Counter1 and Timer/Counter0.

11.1 Internal Clock Source

The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This provides the fastest
operation, with a maximum Timer/Counter clock frequency equal to system clock frequency (fc k 0)- Alternatively, one of
four taps from the prescaler can be used as a clock source. The prescaled clock has a frequency of either f¢, k 1,0/8,

foLk 110/64, ok 110/256, or foik 10/1024.

11.2 Prescaler Reset

The prescaler is free running, i.e., operates independently of the clock select logic of the Timer/Counter, and it is shared by
Timer/Counter1 and Timer/Counter0. Since the prescaler is not affected by the Timer/Counter’s clock select, the state of the
prescaler will have implications for situations where a prescaled clock is used. One example of prescaling artifacts occurs
when the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1). The number of system clock cycles from when the
timer is enabled to the first count occurs can be from 1 to N+1 system clock cycles, where N equals the prescaler divisor (8,
64, 256, or 1024).

It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execution. However, care must be
taken if the other Timer/Counter that shares the same prescaler also uses prescaling. A prescaler reset will affect the
prescaler period for all Timer/Counters it is connected to.

11.3 External Clock Source

An external clock source applied to the Tn pin can be used as Timer/Counter clock (clky4/clkyg). The Tn pin is sampled once
every system clock cycle by the pin synchronization logic. The synchronized (sampled) signal is then passed through the
edge detector. Figure 11-1 shows a functional equivalent block diagram of the Tn/TO synchronization and edge detector
logic. The registers are clocked at the positive edge of the internal system clock (clk,5). The latch is transparent in the high
period of the internal system clock.

The edge detector generates one clky4/clk pulse for each positive (CSn2:0 = 7) or negative (CSn2:0 = 6) edge it detects.

Figure 11-1. Tn Pin Sampling

Tn D Q D Q D Q Tn_sync
— (to Clock
Select Logic)
[—T |

C|k|/o A L

Synchronization Edge Detector

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles from an edge has been
applied to the Tn/TO pin to the counter is updated.

Enabling and disabling of the clock input must be done when Tn/T0O has been stable for at least one system clock cycle,
otherwise it is a risk that a false Timer/Counter clock pulse is generated.

Each half period of the external clock applied must be longer than one system clock cycle to ensure correct sampling. The
external clock must be guaranteed to have less than half the system clock frequency (feyci < far 110/2) given a 50/50% duty
cycle. Since the edge detector uses sampling, the maximum frequency of an external clock it can detect is half the sampling
frequency (Nyquist sampling theorem). However, due to variation of the system clock frequency and duty cycle caused by
Oscillator source (crystal, resonator, and capacitors) tolerances, it is recommended that maximum frequency of an external
clock source is less than fy, ,0/2.5.

An external clock source can not be prescaled.

ATmega16/32/64/M1/C1 [DATASHEET] 75
AtmeL 76470-AVR-01/15



Figure 11-2. Prescaler for Timer/CounterO and Timer/Counter1()
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Note: 1. The synchronization logic on the input pins (Tn) is shown in Figure 11-1.

11.3.1 General Timer/Counter Control Register —- GTCCR

Bit 7 6 5 4 3 2 1 0

| vsm JwcpsEL | - | - | - | - = PSRSYNC | GTCCR
Read/Write ~ R/W R/IW R R R R R R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7—-TSM: Timer/Counter Synchronization Mode

Writing the TSM bit to one activates the Timer/Counter synchronization mode. In this mode, the value that is written to the
PSRSYNC bit is kept, hence keeping the corresponding prescaler reset signals asserted. This ensures that the
corresponding Timer/Counters are halted and can be configured to the same value without the risk of one of them advancing
during configuration. When the TSM bit is written to zero, the PSRSYNC bit is cleared by hardware, and the Timer/Counters
start counting simultaneously.

e Bit6 — ICPSEL1: Timer 1 Input Capture Selection

Timer 1 capture function has two possible inputs ICP1A (PD4) and ICP1B (PC3). The selection is made thanks to ICPSEL1
bit as described in Table 11-1.

Table 11-1. ICPSEL1

ICPSEL1 Description
0 Select ICP1A as trigger for timer 1 input capture
1 Select ICP1B as trigger for timer 1 input capture

* Bit 0— PSRSYNC: Prescaler Reset

When this bit is one, Timer/Counter1 and Timer/Counter0 prescaler will be Reset. This bit is normally cleared immediately by
hardware, except if the TSM bit is set. Note that Timer/Counter1 and Timer/Counter0O share the same prescaler and a reset
of this prescaler will affect both timers.
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12. 8-bit Timer/CounterO with PWM

Timer/Counter0 is a general purpose 8-bit Timer/Counter module, with two independent Output Compare Units, and with
PWM support. It allows accurate program execution timing (event management) and wave generation. The main features
are:

Two independent output compare units

Double buffered output compare registers

Clear timer on compare match (auto reload)

Glitch free, phase correct pulse width modulator (PWM)

Variable PWM period

Frequency generator

Three independent interrupt sources (TOV0O, OCFOA, and OCFOB)

12.1 Overview

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 12-1. For the actual placement of I/O pins, refer to
Section 2.3 “Pin Descriptions” on page 9. CPU accessible I/O registers, including I/O bits and 1/O pins, are shown in bold.
The device-specific I/O Register and bit locations are listed in Section 12.8 “8-bit Timer/Counter Register Description” on
page 86.

The PRTIMO bit in Section 6.6 “Power Reduction Register” on page 36 must be written to zero to enable Timer/Counter0
module.

Figure 12-1. 8-bit Timer/Counter Block Diagram
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12.1.2

12.2

12.3

78

Definitions

Many register and bit references in this section are written in general form. A lower case “n” replaces the Timer/Counter
number, in this case 0. A lower case “x” replaces the output compare unit, in this case compare unit A or compare unit B.
However, when using the register or bit defines in a program, the precise form must be used, i.e., TCNTO for accessing
Timer/Counter0 counter value and so on.

The definitions in Table 12-1 are also used extensively throughout the document.

Table 12-1. Definitions

Definitions
BOTTOM The counter reaches the BOTTOM when it becomes 0x00.
MAX The counter reaches its MAXimum when it becomes OxFF (decimal 255).
The counter reaches the TOP when it becomes equal to the highest value in the count
TOP sequence. The TOP value can be assigned to be the fixed value OxFF (MAX) or the value

stored in the OCROA Register. The assignment is dependent on the mode of operation.

Registers

The Timer/Counter (TCNTO) and output compare registers (OCROA and OCROB) are 8-bit registers. Interrupt request
(abbreviated to int.req. in the figure) signals are all visible in the timer interrupt flag register (TIFRO). All interrupts are
individually masked with the timer interrupt mask register (TIMSKO). TIFRO and TIMSKO are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on the TO pin. The clock select
logic block controls which clock source and edge the Timer/Counter uses to increment (or decrement) its value. The
Timer/Counter is inactive when no clock source is selected. The output from the Clock Select logic is referred to as the timer
clock (clkyg).

The double buffered Output Compare Registers (OCROA and OCROB) are compared with the Timer/Counter value at all
times. The result of the compare can be used by the waveform generator to generate a PWM or variable frequency output on
the output compare pins (OCOA and OCOB). See Section 13.6.3 “Using the Output Compare Unit” on page 101 for details.
The compare match event will also set the Compare Flag (OCFOA or OCF0B) which can be used to generate an output
compare interrupt request.

Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source is selected by the clock
select logic which is controlled by the clock select (CS02:0) bits located in the Timer/Counter control register (TCCROB). For
details on clock sources and prescaler, see Section 11. “Timer/Counter0 and Timer/Counter1 Prescalers” on page 75.

Counter Unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure 12-2 shows a block diagram
of the counter and its surroundings.

Figure 12-2. Counter Unit Block Diagram
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Signal description (internal signals):

e count Increment or decrement TCNTO by 1.

e direction Select between increment and decrement.

e clear Clear TCNTO (set all bits to zero).

e clkTn Timer/Counter clock, referred to as clkTO0 in the following.
e top Signalize that TCNTO has reached maximum value.

e bottom Signalize that TCNTO has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or decremented at each timer clock (clky).

clkry can be generated from an external or internal clock source, selected by the clock select bits (CS02:0). When no clock
source is selected (CS02:0 = 0) the timer is stopped. However, the TCNTO value can be accessed by the CPU, regardless of
whether clkq is present or not. A CPU write overrides (has priority over) all counter clear or count operations.

The counting sequence is determined by the setting of the WGMO01 and WGMOO bits located in the Timer/Counter control
register (TCCROA) and the WGMO2 bit located in the Timer/Counter control register B (TCCROB). There are close
connections between how the counter behaves (counts) and how waveforms are generated on the output compare outputs
OCOA and OCOB. For more details about advanced counting sequences and waveform generation, see Section 12.6
“Modes of Operation” on page 81.

The Timer/Counter overflow flag (TOVO0) is set according to the mode of operation selected by the WGMO02:0 bits. TOVO can
be used for generating a CPU interrupt.

12.4 Output Compare Unit

The 8-bit comparator continuously compares TCNTO with the output compare registers (OCROA and OCROB). Whenever
TCNTO equals OCROA or OCROB, the comparator signals a match. A match will set the output compare flag (OCFOA or
OCFO0B) at the next timer clock cycle. If the corresponding interrupt is enabled, the output compare flag generates an output
compare interrupt. The output compare flag is automatically cleared when the interrupt is executed. Alternatively, the flag
can be cleared by software by writing a logical one to its I/O bit location. The waveform generator uses the match signal to
generate an output according to operating mode set by the WGMO02:0 bits and compare output mode (COMO0x1:0) bits. The
max and bottom signals are used by the waveform generator for handling the special cases of the extreme values in some
modes of operation (Section 12.6 “Modes of Operation” on page 81).

Figure 12-3 shows a block diagram of the output compare unit.

Figure 12-3. Output Compare Unit, Block Diagram
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The OCROXx registers are double buffered when using any of the pulse width modulation (PWM) modes. For the normal and
clear timer on compare (CTC) modes of operation, the double buffering is disabled. The double buffering synchronizes the

update of the OCROx compare registers to either top or bottom of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCROXx register access may seem complex, but this is not case. When the double buffering is enabled, the CPU has
access to the OCROx buffer register, and if double buffering is disabled the CPU will access the OCROx directly.

12.4.1 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to the force
output compare (FOCOXx) bit. Forcing compare match will not set the OCFOx flag or reload/clear the timer, but the OCOx pin
will be updated as if a real compare match had occurred (the COMO0x1:0 bits settings define whether the OCOx pin is set,
cleared or toggled).

12.4.2 Compare Match Blocking by TCNTO Write

All CPU write operations to the TCNTO register will block any compare match that occur in the next timer clock cycle, even
when the timer is stopped. This feature allows OCROx to be initialized to the same value as TCNTO without triggering an
interrupt when the Timer/Counter clock is enabled.

12.4.3 Using the Output Compare Unit

Since writing TCNTO in any mode of operation will block all compare matches for one timer clock cycle, there are risks
involved when changing TCNTO when using the output compare unit, independently of whether the Timer/Counter is running
or not. If the value written to TCNTO equals the OCROXx value, the compare match will be missed, resulting in incorrect
waveform generation. Similarly, do not write the TCNTO value equal to BOTTOM when the counter is downcounting.

The setup of the OCOx should be performed before setting the data direction register for the port pin to output. The easiest
way of setting the OCOx value is to use the force output compare (FOCOx) strobe bits in normal mode. The OCOx registers
keep their values even when changing between waveform generation modes.

Be aware that the COMOx1:0 bits are not double buffered together with the compare value. Changing the COMO0x1:0 bits will
take effect immediately.

12.5 Compare Match Output Unit

The compare output mode (COMOx1:0) bits have two functions. The waveform generator uses the COMO0x1:0 bits for
defining the output compare (OCOx) state at the next compare match. Also, the COMO0x1:0 bits control the OCOx pin output
source. Figure 12-4 shows a simplified schematic of the logic affected by the COMOx1:0 bit setting. The 1/O registers, /0
bits, and I/O pins in the figure are shown in bold. Only the parts of the general I/O port control registers (DDR and PORT)
that are affected by the COMOx1:0 bits are shown. When referring to the OCOx state, the reference is for the internal OCOx
register, not the OCOx pin. If a system reset occur, the OCOx register is reset to “0”.
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Figure 12-4. Compare Match Output Unit, Schematic
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The general I/O port function is overridden by the output compare (OCOx) from the waveform generator if either of the
COMOx1:0 bits are set. However, the OCOx pin direction (input or output) is still controlled by the data direction register
(DDR) for the port pin. The data direction register bit for the OCOx pin (DDR_OCO0x) must be set as output before the OC0x
value is visible on the pin. The port override function is independent of the waveform generation mode.

The design of the output compare pin logic allows initialization of the OCOx state before the output is enabled. Note that
some COMOx1:0 bit settings are reserved for certain modes of operation. See Section 12.8 “8-bit Timer/Counter Register
Description” on page 86.

Compare Output Mode and Waveform Generation

The waveform generator uses the COMOx1:0 bits differently in normal, CTC, and PWM modes. For all modes, setting the
COMOx1:0 = 0 tells the waveform generator that no action on the OCOx register is to be performed on the next compare
match. For compare output actions in the non-PWM modes refer to Table 12-2 on page 87. For fast PWM mode, refer to
Table 12-3 on page 87, and for phase correct PWM refer to Table 12-4 on page 87.

A change of the COMO0x1:0 bits state will have effect at the first compare match after the bits are written. For non-PWM
modes, the action can be forced to have immediate effect by using the FOCOx strobe bits.

12.6 Modes of Operation
The mode of operation, i.e., the behavior of the Timer/Counter and the output compare pins, is defined by the combination of
the waveform generation mode (WGMO02:0) and compare output mode (COMOx1:0) bits. The compare output mode bits do
not affect the counting sequence, while the waveform generation mode bits do. The COMO0x1:0 bits control whether the
PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes the COMO0x1:0 bits
control whether the output should be set, cleared, or toggled at a compare match (see Section 12.5 “Compare Match Output
Unit” on page 80).
For detailed timing information refer to Section 12.7 “Timer/Counter Timing Diagrams” on page 85.
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12.6.1 Normal Mode

The simplest mode of operation is the normal mode (WGMO02:0 = 0). In this mode the counting direction is always up
(incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 8-bit value
(TOP = OxFF) and then restarts from the bottom (0x00). In normal operation the Timer/Counter overflow flag (TOVO0) will be
set in the same timer clock cycle as the TCNTO becomes zero. The TOVO flag in this case behaves like a ninth bit, except
that it is only set, not cleared. However, combined with the timer overflow interrupt that automatically clears the TOVO Flag,
the timer resolution can be increased by software. There are no special cases to consider in the Normal mode, a new
counter value can be written anytime.

The output compare unit can be used to generate interrupts at some given time. Using the output compare to generate
waveforms in normal mode is not recommended, since this will occupy too much of the CPU time.

12.6.2 Clear Timer on Compare Match (CTC) Mode

In clear timer on compare or CTC mode (WGMO02:0 = 2), the OCROA register is used to manipulate the counter resolution. In
CTC mode the counter is cleared to zero when the counter value (TCNTO) matches the OCROA. The OCROA defines the top
value for the counter, hence also its resolution. This mode allows greater control of the compare match output frequency. It
also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 12-5. The counter value (TCNTO) increases until a compare match
occurs between TCNTO and OCROA, and then counter (TCNTO) is cleared.

Figure 12-5. CTC Mode, Timing Diagram
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An interrupt can be generated each time the counter value reaches the TOP value by using the OCFOA flag. If the interrupt
is enabled, the interrupt handler routine can be used for updating the TOP value. However, changing TOP to a value close to
BOTTOM when the counter is running with none or a low prescaler value must be done with care since the CTC mode does
not have the double buffering feature. If the new value written to OCROA is lower than the current value of TCNTO, the
counter will miss the compare match. The counter will then have to count to its maximum value (0xFF) and wrap around
starting at 0x00 before the compare match can occur.

For generating a waveform output in CTC mode, the OCOA output can be set to toggle its logical level on each compare
match by setting the compare output mode bits to toggle mode (COMOA1:0 = 1). The OCOA value will not be visible on the
port pin unless the data direction for the pin is set to output. The waveform generated will have a maximum frequency of fo,
= fu vo/2 when OCROA is set to zero (0x00). The waveform frequency is defined by the following equation:

f _ fclk 1/0
OCnx ™ 2. N (1+ OCRnx)

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOVO Flag is set in the same timer clock cycle that the counter counts from MAX to
0x00.
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12.6.3 Fast PWM Mode

The fast pulse width modulation or fast PWM mode (WGMO02:0 = 3 or 7) provides a high frequency PWM waveform
generation option. The fast PWM differs from the other PWM option by its single-slope operation. The counter counts from
BOTTOM to TOP then restarts from BOTTOM. TOP is defined as OxFF when WGM2:0 = 3, and OCROA when WGM2:0 =7.
In non-inverting compare output mode, the output compare (OCOx) is cleared on the compare match between TCNTO and
OCROx, and set at BOTTOM. In inverting compare output mode, the output is set on compare match and cleared at
BOTTOM. Due to the single-slope operation, the operating frequency of the fast PWM mode can be twice as high as the
phase correct PWM mode that use dual-slope operation. This high frequency makes the fast PWM mode well suited for
power regulation, rectification, and DAC applications. High frequency allows physically small sized external components
(coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the TOP value. The counter is then cleared at
the following timer clock cycle. The timing diagram for the fast PWM mode is shown in Figure 12-6. The TCNTO value is in
the timing diagram shown as a histogram for illustrating the single-slope operation. The diagram includes non-inverted and
inverted PWM outputs. The small horizontal line marks on the TCNTO slopes represent compare matches between OCROx
and TCNTO.

Figure 12-6. Fast PWM Mode, Timing Diagram
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The Timer/Counter overflow flag (TOVO0) is set each time the counter reaches TOP. If the interrupt is enabled, the interrupt
handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OCOx pins. Setting the COMO0x1:0 bits to
two will produce a non-inverted PWM and an inverted PWM output can be generated by setting the COMO0x1:0 to three:
Setting the COMOA1:0 bits to one allows the OCOA pin to toggle on compare matches if the WGMO02 bit is set. This option is
not available for the OCOB pin (see Table 12-6 on page 88). The actual OCOx value will only be visible on the port pin if the
data direction for the port pin is set as output. The PWM waveform is generated by setting (or clearing) the OCOx register at
the compare match between OCROx and TCNTO, and clearing (or setting) the OCOx register at the timer clock cycle the
counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

fclk 1/10

focnxpwm = N - 256

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCROA register represents special cases when generating a PWM waveform output in the fast
PWM mode. If the OCROA is set equal to BOTTOM, the output will be a narrow spike for each MAX+1 timer clock cycle.
Setting the OCROA equal to MAX will result in a constantly high or low output (depending on the polarity of the output set by
the COMOAT1:0 bits.)
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A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OCOx to toggle its logical
level on each compare match (COMOx1:0 = 1). The waveform generated will have a maximum frequency of foqg = fy 110/2
when OCROA is set to zero. This feature is similar to the OCOA toggle in CTC mode, except the double buffer feature of the
output compare unit is enabled in the fast PWM mode.

12.6.4 Phase Correct PWM Mode

The phase correct PWM mode (WGMO02:0 = 1 or 5) provides a high resolution phase correct PWM waveform generation
option. The phase correct PWM mode is based on a dual-slope operation. The counter counts repeatedly from BOTTOM to
TOP and then from TOP to BOTTOM. TOP is defined as OxFF when WGM2:0 = 1, and OCROA when WGM2:0 = 5. In non-
inverting Compare Output mode, the Output Compare (OCO0x) is cleared on the compare match between TCNTO and
OCROx while upcounting, and set on the compare match while downcounting. In inverting output compare mode, the
operation is inverted. The dual-slope operation has lower maximum operation frequency than single slope operation.
However, due to the symmetric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

In phase correct PWM mode the counter is incremented until the counter value matches TOP. When the counter reaches
TOP, it changes the count direction. The TCNTO value will be equal to TOP for one timer clock cycle. The timing diagram for
the phase correct PWM mode is shown on Figure 12-7. The TCNTO value is in the timing diagram shown as a histogram for
illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal line
marks on the TCNTO slopes represent compare matches between OCROx and TCNTO.

Figure 12-7. Phase Correct PWM Mode, Timing Diagram
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The Timer/Counter overflow flag (TOVO0) is set each time the counter reaches BOTTOM. The interrupt flag can be used to
generate an interrupt each time the counter reaches the BOTTOM value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the OCOx pins. Setting the
COMOx1:0 bits to two will produce a non-inverted PWM. An inverted PWM output can be generated by setting the
COMOx1:0 to three: Setting the COMOAO bits to one allows the OCOA pin to toggle on compare matches if the WGMO02 bit is
set. This option is not available for the OCOB pin (see Table 12-7 on page 88). The actual OCOx value will only be visible on
the port pin if the data direction for the port pin is set as output. The PWM waveform is generated by clearing (or setting) the
OCOx register at the compare match between OCROx and TCNTO when the counter increments, and setting (or clearing) the
OCOx register at compare match between OCROx and TCNTO when the counter decrements. The PWM frequency for the
output when using phase correct PWM can be calculated by the following equation:

£ _ fCIk 1/0
OCnxPCPWM N - 510

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).
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The extreme values for the OCROA register represent special cases when generating a PWM waveform output in the phase
correct PWM mode. If the OCROA is set equal to BOTTOM, the output will be continuously low and if set equal to MAX the
output will be continuously high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic
values.

At the very start of period 2 in Figure 12-7 OCnx has a transition from high to low even though there is no compare match.
The point of this transition is to guarantee symmetry around BOTTOM. There are two cases that give a transition without
compare match.
e  OCRnx changes its value from MAX, like in Figure 12-7. When the OCROA value is MAX the OCn pin value is the
same as the result of a down-counting compare match. To ensure symmetry around BOTTOM the OCnx value at
MAX must correspond to the result of an up-counting compare match.

e  The timer starts counting from a value higher than the one in OCRnx, and for that reason misses the compare match
and hence the OCnx change that would have happened on the way up.

12.7 Timer/Counter Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clky) is therefore shown as a clock enable signal in the
following figures. The figures include information on when interrupt flags are set. Figure 12-8 contains timing data for basic
Timer/Counter operation. The figure shows the count sequence close to the MAX value in all modes other than phase
correct PWM mode.

Figure 12-8. Timer/Counter Timing Diagram, no Prescaling
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Figure 12-9 shows the same timing data, but with the prescaler enabled.

Figure 12-9. Timer/Counter Timing Diagram, with Prescaler (f. ,0/8)
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Figure 12-10 shows the setting of OCFOB in all modes and OCFOA in all modes except CTC mode and PWM mode, where
OCROA is TOP.

Figure 12-10.Timer/Counter Timing Diagram, Setting of OCFOx, with Prescaler (fyy ;,0/8)
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Figure 12-11 shows the setting of OCFOA and the clearing of TCNTO in CTC mode and fast PWM mode where OCROA is
TOP.

Figure 12-11.Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Prescaler (f. ,0/8)
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12.8 8-bit Timer/Counter Register Description
12.8.1 Timer/Counter Control Register A — TCCROA
Bit 7 6 5 4 3 2 1 0
|COMOA1|COMOAO|COMOB1|COMOBO| - - WGMO1 WGMOOl TCCROA
Read/Write R/W R/W R/W RIW R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bits 7:6 — COMOA1:0: Compare Match Output A Mode

These bits control the Output Compare pin (OCOA) behavior. If one or both of the COMO0A1:0 bits are set, the OCOA output
overrides the normal port functionality of the 1/0 pin it is connected to. However, note that the data direction register (DDR)
bit corresponding to the OCOA pin must be set in order to enable the output driver.

When OCOA is connected to the pin, the function of the COMOA1:0 bits depends on the WGMO02:0 bit setting. Table 12-2 on
page 87 shows the COMOA1:0 bit functionality when the WGMO02:0 bits are set to a normal or CTC mode (non-PWM).
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Table 12-2. Compare Output Mode, non-PWM Mode

COMOA1 COMOAO Description

0 0 Normal port operation, OCOA disconnected.
Toggle OCOA on compare match
Clear OCOA on compare match

= A O
—_ O =

Set OCOA on compare match

Table 12-3 shows the COMOA1:0 bit functionality when the WGMO01:0 bits are set to fast PWM mode.

Table 12-3. Compare Output Mode, Fast PWM Mode!"

COMOA1 COMOAO Description
0 0 Normal port operation, OCOA disconnected.
0 1 WGMO02 = 0: Normal port operation, OCOA disconnected.
WGMO02 = 1: Toggle OCOA on compare match.
1 0 Clear OCOA on compare match, set OCOA at TOP
1 1 Set OCOA on compare match, clear OCOA at TOP

Note: 1. A special case occurs when OCROA equals TOP and COMOAA1 is set. In this case, the compare match is
ignored, but the set or clear is done at TOP. See Section 12.6.3 “Fast PWM Mode” on page 83 for more details.

Table 12-4 shows the COMOA1:0 bit functionality when the WGMO02:0 bits are set to phase correct PWM mode.

Table 12-4. Compare Output Mode, Phase Correct PWM Mode("

COMOA1 COMOAO Description

0 0 Normal port operation, OCOA disconnected.

0 1 WGMO02 = 0: Normal port operation, OCOA cisconnected.
WGMO02 = 1: Toggle OCOA on compare match.

1 0 Clear OCOA on compare match when up-counting. Set OCOA on compare match
when down-counting.

1 1 Set OCOA on compare match when up-counting. Clear OCOA on compare match
when down-counting.

Note: 1. A special case occurs when OCROA equals TOP and COMOAA1 is set. In this case, the compare match is
ignored, but the set or clear is done at TOP. See Section 13.8.4 “Phase Correct PWM Mode” on page 105 for
more details.

e Bits 5:4 — COMOB1:0: Compare Match Output B Mode

These bits control the output compare pin (OCO0B) behavior. If one or both of the COMOB1:0 bits are set, the OCOB output
overrides the normal port functionality of the 1/O pin it is connected to. However, note that the data direction register (DDR)
bit corresponding to the OCOB pin must be set in order to enable the output driver.

When OCOB is connected to the pin, the function of the COMOB1:0 bits depends on the WGMO02:0 bit setting. Table 12-5
shows the COMOB1:0 bit functionality when the WGMO02:0 bits are set to a normal or CTC mode (non-PWM).

Table 12-5. Compare Output Mode, non-PWM Mode

COMOB1 COMOBO Description
0 0 Normal port operation, OCOB disconnected.
0 1 Toggle OCOB on compare match
1 0 Clear OCOB on compare match
1 1 Set OCOB on compare match
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Table 12-6 shows the COMO0B1:0 bit functionality when the WGMO02:0 bits are set to fast PWM mode.

Table 12-6. Compare Output Mode, Fast PWM Mode!"

COMOB1 COMO0OBO Description
0 0 Normal port operation, OCOB disconnected.
0 1 Reserved
1 0 Clear OCOB on compare match, set OCOB at TOP
1 1 Set OCOB on compare match, clear OCOB at TOP
Note: 1. A special case occurs when OCROB equals TOP and COMOB1 is set. In this case, the compare match is

ignored, but the set or clear is done at TOP. See Section 12.6.3 “Fast PWM Mode” on page 83 for more details.
Table 12-7 shows the COMO0B1:0 bit functionality when the WGMO02:0 bits are set to phase correct PWM mode.

Table 12-7. Compare Output Mode, Phase Correct PWM Mode("

COMO0B1 COMOBO Description
0 0 Normal port operation, OCOB disconnected.
0 1 Reserved
1 0 Clear OCOB on compare match when up-counting. Set OCOB on compare match

when down-counting.

Set OCOB on compare match when up-counting. Clear OCOB on compare match

L ! when down-counting.

Note: 1. A special case occurs when OCROB equals TOP and COMOBA1 is set. In this case, the compare match is
ignored, but the set or clear is done at TOP. See Section 12.6.4 “Phase Correct PWM Mode” on page 84 for
more details.

* Bits 3, 2 — Res: Reserved Bits
These bits are reserved bits in the ATmega16/32/64/M1/C1 and will always read as zero.
* Bits 1:0 — WGMO01:0: Waveform Generation Mode

Combined with the WGMO02 bit found in the TCCROB register, these bits control the counting sequence of the counter, the
source for maximum (TOP) counter value, and what type of waveform generation to be used, see Table 12-8. Modes of
operation supported by the Timer/Counter unit are: Normal mode (counter), clear timer on compare match (CTC) mode, and
two types of pulse width modulation (PWM) modes (see Section 12.6 “Modes of Operation” on page 81).

Table 12-8. Waveform Generation Mode Bit Description

Timer/Counter Update of TOV Flag
Mode WGMO02 WGMO1 WGMOO | Mode of Operation TOP OCRXx at Set on®W®
0 0 0 0 Normal OxFF Immediate MAX
1 0 0 1 PWM, phase correct OxFF TOP BOTTOM
2 0 1 0 CTC OCRA Immediate MAX
3 0 1 1 Fast PWM OxFF TOP MAX
4 1 0 0 Reserved - - -
5 1 0 1 PWM, phase correct OCRA TOP BOTTOM
6 1 1 0 Reserved - - -
7 1 1 1 Fast PWM OCRA TOP TOP
Notes: 1. MAX = OxFF
2. BOTTOM = 0x00
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12.8.2 Timer/Counter Control Register B — TCCROB

Bit 7 6 5 4 3 2 1 0

| Focoa | FOcOB | - | - | wGMm02 [ CS02 CS01 CS00 | TCCRoB
Read/Write W W R R R/W R/IW R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7—- FOCOA: Force Output Compare A
The FOCOA bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when TCCROB is written when operating
in PWM mode. When writing a logical one to the FOCOA bit, an immediate compare match is forced on the waveform
generation unit. The OCOA output is changed according to its COMOA1:0 bits setting. Note that the FOCOA bit is
implemented as a strobe. Therefore it is the value present in the COMOA1:0 bits that determines the effect of the forced
compare.

A FOCOA strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCROA as TOP.
The FOCOA bit is always read as zero.

e Bit 6 - FOCOB: Force Output Compare B

The FOCOB bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when TCCROB is written when operating
in PWM mode. When writing a logical one to the FOCOB bit, an immediate compare match is forced on the waveform
generation unit. The OCOB output is changed according to its COMO0B1:0 bits setting. Note that the FOCOB bit is
implemented as a strobe. Therefore it is the value present in the COMOB1:0 bits that determines the effect of the forced
compare.

A FOCOB strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCROB as TOP.
The FOCOB bit is always read as zero.

* Bits 5:4 — Res: Reserved Bits

These bits are reserved bits in the ATmega16/32/64/M1/C1 and will always read as zero.

e Bit 3-WGMO02: Waveform Generation Mode

See the description in Section 12.8.1 “Timer/Counter Control Register A — TCCROA” on page 86.

e Bits 2:0 — CS02:0: Clock Select

The three clock select bits select the clock source to be used by the Timer/Counter.

Table 12-9. Clock Select Bit Description

CS02 CS01 CS00 |Description
0 0 0 No clock source (Timer/Counter stopped)
0 0 1 clk;;o/(no prescaling)
0 1 0 clk;,o/8 (from prescaler)
0 1 1 clk;,o/64 (from prescaler)
1 0 0 clk;,o/256 (from prescaler)
1 0 1 clk;0/1024 (from prescaler)
1 1 0 External clock source on TO pin. Clock on falling edge.
1 1 1 External clock source on TO pin. Clock on rising edge.

If external pin modes are used for the Timer/CounterQ, transitions on the TO pin will clock the counter even if the pin is
configured as an output. This feature allows software control of the counting.
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12.8.3 Timer/Counter Register — TCNTO

Bit 7 6 5 4 3 2 1 0

| TCNTO[7:0] ] TenTo
Read/Write ~ R/W RW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter register gives direct access, both for read and write operations, to the Timer/Counter unit 8-bit counter.
Writing to the TCNTO register blocks (removes) the compare match on the following timer clock. Modifying the counter
(TCNTO) while the counter is running, introduces a risk of missing a compare match between TCNTO and the OCROx
registers.

12.8.4 Output Compare Register A — OCROA

Bit 7 6 5 4 3 2 1 0

| OCROA[7:0] ] ocroa
Read/Write ~ R/W RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

The output compare register A contains an 8-bit value that is continuously compared with the counter value (TCNTO). A
match can be used to generate an output compare interrupt, or to generate a waveform output on the OCOA pin.

12.8.5 Output Compare Register B — OCR0OB

Bit 7 6 5 4 3 2 1 0

| OCROBJ[7:0] | ocros
Read/Write R/W RIW RIW R/W RIW R/W RIW RIW
Initial Value 0 0 0 0 0 0 0 0

The output compare register B contains an 8-bit value that is continuously compared with the counter value (TCNTO). A
match can be used to generate an output compare interrupt, or to generate a waveform output on the OCOB pin.

12.8.6 Timer/Counter Interrupt Mask Register — TIMSKO

Bit 7 6 5 4 3 2 1 0

| - | - | - | - | - [OCIEOB | OCIEOA | TOIEO | TIMSKO
Read/Write R R R R R R/W RIW R/W
Initial Value 0 0 0 0 0 0 0 0

* Bits 7..3 — Res: Reserved Bits
These bits are reserved bits in the ATmega16/32/64/M1/C1 and will always read as zero.
e Bit 2 - OCIEOB: Timer/Counter Output Compare Match B Interrupt Enable

When the OCIEOB bit is written to one, and the I-bit in the status register is set, the Timer/Counter compare match B interrupt
is enabled. The corresponding interrupt is executed if a compare match in Timer/Counter occurs, i.e., when the OCFOB bit is
set in the Timer/Counter interrupt flag register — TIFRO.

* Bit 1 — OCIEOA: Timer/Counter0O Output Compare Match A Interrupt Enable

When the OCIEOA bit is written to one, and the I-bit in the status register is set, the Timer/Counter0 compare match A
interrupt is enabled. The corresponding interrupt is executed if a compare match in Timer/CounterQ occurs, i.e., when the
OCFOA bit is set in the Timer/Counter 0 interrupt flag register — TIFRO.

* Bit 0 — TOIEO: Timer/Counter0 Overflow Interrupt Enable

When the TOIEO bit is written to one, and the I-bit in the status register is set, the Timer/CounterO Overflow interrupt is
enabled. The corresponding interrupt is executed if an overflow in Timer/Counter0 occurs, i.e., when the TOVO bit is set in
the Timer/Counter 0O interrupt flag register — TIFRO.
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12.8.7 Timer/Counter O Interrupt Flag Register — TIFRO

Bit 7 6 5 4 3 2 1 0

| - | - | - | - | - |ocFoB | OCFOA | TOVO | TIFRO
Read/Write R R R R R R/W R/W RIW
Initial Value 0 0 0 0 0 0 0 0

* Bits 7..3 — Res: Reserved Bits
These bits are reserved bits in the ATmega16/32/64/M1/C1 and will always read as zero.
e Bit 2 - OCFOB: Timer/Counter 0 Output Compare B Match Flag

The OCFOB bit is set when a compare match occurs between the Timer/Counter and the data in OCROB — output compare
Register0 B. OCFOB is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively,
OCFOB is cleared by writing a logic one to the flag. When the I-bit in SREG, OCIEOB (Timer/Counter compare B match
interrupt enable), and OCFOB are set, the Timer/Counter compare match interrupt is executed.

e Bit 1 - OCFOA: Timer/Counter 0 Output Compare A Match Flag

The OCFOA bit is set when a compare match occurs between the Timer/Counter0O and the data in OCROA — output compare
Register0. OCFOA is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, OCFOA
is cleared by writing a logic one to the flag. When the I-bit in SREG, OCIEOA (Timer/Counter0 compare match interrupt
enable), and OCFOA are set, the Timer/CounterO compare match interrupt is executed.

e Bit 0—TOVO: Timer/Counter0 Overflow Flag

The bit TOVO is set when an overflow occurs in Timer/Counter0. TOVO is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, TOVO is cleared by writing a logic one to the flag. When the SREG |-
bit, TOIEO (Timer/Counter0 Overflow Interrupt Enable), and TOVO are set, the Timer/Counter0 Overflow interrupt is
executed.

The setting of this flag is dependent of the WGMO02:0 bit setting. Refer to Table 12-8, “Waveform Generation Mode Bit
Description” on page 88.
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13. 16-bit Timer/Counterl with PWM

The 16-bit Timer/Counter unit allows accurate program execution timing (event management), wave generation, and signal
timing measurement. The main features are:

e  True 16-bit design (i.e., allows 16-bit PWM)

Two independent output compare units

Double buffered output compare registers

One input capture unit

Input capture noise canceler

Retriggering function by external signal (ICP1A or ICP1B)
Clear timer on compare match (auto reload)

Glitch-free, phase correct pulse width modulator (PWM)
Variable PWM period

Frequency generator

External event counter

Four independent interrupt sources (TOV1, OCF1A, OCF1B, and ICF1)

13.1 Overview

Most register and bit references in this section are written in general form. A lower case “n” replaces the Timer/Counter

number, and a lower case “x” replaces the output compare unit channel. However, when using the register or bit defines in a
program, the precise form must be used, i.e., TCNT1 for accessing Timer/Counter1 counter value and so on.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 13-1. For the actual placement of I/O pins, refer to
Section 1.1 “Pin Descriptions” on page 5. CPU accessible I/O registers, including 1/O bits and I/O pins, are shown in bold.
The device-specific 1/O register and bit locations are listed in Section 13.10 “16-bit Timer/Counter Register Description” on

page 110.
The PRTIM1 bit in Section 6.6 “Power Reduction Register” on page 36 must be written to zero to enable Timer/Counter1
module.
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Figure 13-1. 16-bit Timer/Counter Block Diagram®
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Note: 1. Referto Table on page 5 for Timer/Counter 1 pin placement and description.

13.1.1 Registers

The Timer/Counter (TCNTn), output compare registers (OCRnx), and input capture register (ICRn) are all 16-bit registers.
Special procedures must be followed when accessing the 16-bit registers. These procedures are described in Section 13.2
“Accessing 16-bit Registers” on page 94. The Timer/Counter control registers (TCCRnx) are 8-bit registers and have no CPU
access restrictions. Interrupt requests (abbreviated to Int.Req. in the figure) signals are all visible in the timer interrupt flag
register (TIFRn). All interrupts are individually masked with the timer interrupt mask register (TIMSKn). TIFRn and TIMSKn
are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on the Tn pin. The clock select
logic block controls which clock source and edge the Timer/Counter uses to increment (or decrement) its value. The
Timer/Counter is inactive when no clock source is selected. The output from the clock select logic is referred to as the timer
clock (clky,).

The double buffered output compare registers (OCRnx) are compared with the Timer/Counter value at all time. The result of
the compare can be used by the waveform generator to generate a PWM or variable frequency output on the output
compare pin (OCnx). See Section 13.6 “Output Compare Units” on page 99 The compare match event will also set the
compare match flag (OCFnx) which can be used to generate an output compare interrupt request.
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13.1.2

13.2

94

The input capture register can capture the Timer/Counter value at a given external (edge triggered) event on either the input
capture pin (ICPn). The input capture unit includes a digital filtering unit (noise canceler) for reducing the chance of capturing
noise spikes. The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined by either the
OCRDNA register, the ICRn register, or by a set of fixed values. When using OCRnA as TOP value in a PWM mode, the
OCRNA register can not be used for generating a PWM output. However, the TOP value will in this case be double buffered
allowing the TOP value to be changed in run time. If a fixed TOP value is required, the ICRn register can be used as an
alternative, freeing the OCRNA to be used as PWM output.

Definitions

The following definitions are used extensively throughout the section:
BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.
MAX The counter reaches its MAXimum when it becomes OxFFFF (decimal 65535)

TOP The counter reaches the TOP when it becomes equal to the highest value in the count sequence. The TOP
value can be assigned to be one of the fixed values: 0x00FF, 0x01FF, or 0xO3FF, or to the value stored in the
OCRNA or ICRn register. The assignment is dependent of the mode of operation.

Accessing 16-bit Registers

The TCNTn, OCRnx, and ICRn are 16-bit registers that can be accessed by the AVR CPU via the 8-bit data bus. The 16-bit
register must be byte accessed using two read or write operations. Each 16-bit timer has a single 8-bit register for temporary
storing of the high byte of the 16-bit access. The same temporary register is shared between all 16-bit registers within each
16-bit timer. Accessing the low byte triggers the 16-bit read or write operation. When the low byte of a 16-bit register is
written by the CPU, the high byte stored in the temporary register, and the low byte written are both copied into the 16-bit
register in the same clock cycle. When the low byte of a 16-bit register is read by the CPU, the high byte of the 16-bit register
is copied into the temporary register in the same clock cycle as the low byte is read.

Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCRnx 16-bit registers does not involve
using the temporary register. To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low
byte must be read before the high byte.

The following code examples show how to access the 16-bit Timer Registers assuming that no interrupts updates the
temporary register. The same principle can be used directly for accessing the OCRnx and ICRn Registers. Note that when
using “C”, the compiler handles the 16-bit access.

Assembly Code Examples("

; Set TCNTn to OxOl1lFF

| di r17, oxo1

| di r 16, OxFF

out TCNTnH, r 17
out TCNTnL, r16

: Read TCNTn into ri17:r16
in r 16, TCNTnL
in r17, TCNTnH

C Code Examples™

unsigned int i;

/* Set TCNTn to OxO01FF */
TCNTn = Ox1FF;

/* Read TCNTn into i */

i = TCNTn;

Note: 1. The example code assumes that the part specific header file is included.
For I/O registers located in extended 1/0 map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must
be replaced with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with
“SBRS”, “SBRC”, “SBR”, and “CBR”.
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The assembly code example returns the TCNTn value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt occurs between the two
instructions accessing the 16-bit register, and the interrupt code updates the temporary register by accessing the same or
any other of the 16-bit timer registers, then the result of the access outside the interrupt will be corrupted. Therefore, when
both the main code and the interrupt code update the temporary register, the main code must disable the interrupts during
the 16-bit access.

The following code examples show how to do an atomic read of the TCNTn Register contents. Reading any of the OCRnx or
ICRn registers can be done by using the same principle.

Assembly Code Example("

TI ML6_ReadTCNTn:
; Save global interrupt flag

in r 18, SREG

; Disable interrupts

cli

; Read TCNTn into r17:r16

in r16, TCNTnL

in r17, TCNTnH

; Restore global interrupt flag
out SREG r 18

ret

C Code Example!"

unsigned int TIM6_ReadTCNTn( void )
{

unsi gned char sreg;

unsigned int i;

/* Save gl obal interrupt flag */
sreg = SREG

/* Disable interrupts */

_CLI();

/* Read TCNTn into i */

i = TCNTn;

/* Restore global interrupt flag */
SREG = sreg;

return i;

}

Note: 1. The example code assumes that the part specific header file is included.
For I/O registers located in extended 1/0 map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must
be replaced with instructions that allow access to extended 1/O. Typically “LDS” and “STS” combined with
“SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example returns the TCNTn value in the r17:r16 register pair.
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The following code examples show how to do an atomic write of the TCNTn register contents. Writing any of the OCRnx or
ICRnN Registers can be done by using the same principle.

Assembly Code Example("

TIML6_W it eTCNTn:
; Save gl obal interrupt flag

in r 18, SREG

; Disable interrupts

cli

; Set TCNTn to rl17:r16

out TCNTnH, r 17

out TCNTnL, r 16

; Restore global interrupt flag
out SREG, r 18

ret

C Code Example!"

void TIML6_WiteTCNTn( unsigned int i )
{

unsi gned char sreg;

unsigned int i;

/* Save global interrupt flag */
sreg = SREG

/* Disable interrupts */

_CQLI();

/* Set TCNTn to i */

TCNTn = i;

/* Restore global interrupt flag */
SREG = sreg;

Note: 1. The example code assumes that the part specific header file is included.
For 1/0 registers located in extended 1/0 map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must
be replaced with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with
“SBRS”, “SBRC”, “SBR”", and “CBR".

The assembly code example requires that the r17:r16 register pair contains the value to be written to TCNTn.

13.2.1 Reusing the Temporary High Byte Register

If writing to more than one 16-bit register where the high byte is the same for all registers written, then the high byte only
needs to be written once. However, note that the same rule of atomic operation described previously also applies in this
case.

13.3 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source is selected by the clock
select logic which is controlled by the Clock Select (CSn2:0) bits located in the Timer/Counter Control Register B (TCCRnB).
For details on clock sources and prescaler, see Section 11. “Timer/CounterO and Timer/Counter1 Prescalers” on page 75.
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13.4 Counter Unit
The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit. Figure 13-2 shows a block
diagram of the counter and its surroundings.
Figure 13-2. Counter Unit Block Diagram
DATA BUS (8-bit)

-
t TOVn

-t

| TEMP (8-bit) | (Int. Req.)
t Clock Select
Count
- Edge >
| TCNTnH (8-bit) | TCNTnNL (8-bit) | Clear ‘ ek, <] Detector | ™ Tn
-t Control Logic |-

__ Direction

RTGT TTOP TBOTTOM

TCNTnH (16-bit Counter)

(From Prescaler)

Signal description (internal signals):

Count Increment or decrement TCNTn by 1.

Direction Select between increment and decrement.

Clear Clear TCNTn (set all bits to zero).

clkry Timer/Counter clock.

TOP Signalize that TCNTn has reached maximum value.

BOTTOM Signalize that TCNTn has reached minimum value (zero).

RTG An external event (ICP1A or ICP1B) asks for a TOP like action.

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNTnH) containing the upper eight bits of
the counter, and Counter Low (TCNTnL) containing the lower eight bits. The TCNTnH Register can only be indirectly
accessed by the CPU. When the CPU does an access to the TCNTnH I/O location, the CPU accesses the high byte
temporary register (TEMP). The temporary register is updated with the TCNTnH value when the TCNTnL is read, and
TCNTnH is updated with the temporary register value when TCNTnL is written. This allows the CPU to read or write the
entire 16-bit counter value within one clock cycle via the 8-bit data bus. It is important to notice that there are special cases
of writing to the TCNTn register when the counter is counting that will give unpredictable results. The special cases are
described in the sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented at each timer clock (clky,,).
The clky, can be generated from an external or internal clock source, selected by the Clock Select bits (CSn2:0). When no
clock source is selected (CSn2:0 = 0) the timer is stopped. However, the TCNTn value can be accessed by the CPU,
independent of whether clky, is present or not. A CPU write overrides (has priority over) all counter clear or count operations.

The counting sequence is determined by the setting of the Waveform Generation mode bits (WGMn3:0) located in the
Timer/Counter Control Registers A and B (TCCRnA and TCCRnB). There are close connections between how the counter
behaves (counts) and how waveforms are generated on the output compare outputs OCnx. For more details about
advanced counting sequences and waveform generation, see Section 13. “16-bit Timer/Counter1 with PWM” on page 92.

The Timer/Counter overflow flag (TOVn) is set according to the mode of operation selected by the WGMn3:0 bits. TOVn can
be used for generating a CPU interrupt.
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13.5 Input Capture Unit

The Timer/Counter incorporates an input capture unit that can capture external events and give them a time-stamp
indicating time of occurrence. The external signal indicating an event, or multiple events, can be applied via the ICPn pin or
alternatively, via the analog-comparator unit. The time-stamps can then be used to calculate frequency, duty-cycle, and
other features of the signal applied. Alternatively the time-stamps can be used for creating a log of the events.

The input capture unit is illustrated by the block diagram shown in Figure 13-3. The elements of the block diagram that are
not directly a part of the input capture unit are gray shaded. The small “n” in register and bit names indicates the
Timer/Counter number.

Figure 13-3. Input Capture Unit Block Diagram
DATA BUS (8-bit)

| TEMP (8-bit) |
| ICRnH (8-bit) | ICRnL (8-bit) | | TCNTnH (8-bit) | TCNTnL (8-bit)
WRITE ICRn (16-bit Register) TCNTn (16-bit Counter)

f} |

Analog Comparator 1 Interrupt

ICPSEL1 AC1ICE ICNC ICES
ICPnA - l l
Noise . Edge _
Canceler "| Detector > ICFn (Int. Req.)
ICPnB

When a change of the logic level (an event) occurs on the Input Capture pin (ICPn), alternatively on the analog comparator
output (ACO), and this change confirms to the setting of the edge detector, a capture will be triggered. When a capture is
triggered, the 16-bit value of the counter (TCNTNn) is written to the Input Capture Register (ICRn). The Input Capture Flag
(ICFn) is set at the same system clock as the TCNTn value is copied into ICRn register. If enabled (ICIEn = 1), the input
capture flag generates an input capture interrupt. The ICFn flag is automatically cleared when the interrupt is executed.
Alternatively the ICFn Flag can be cleared by software by writing a logical one to its 1/O bit location.

Reading the 16-bit value in the Input Capture Register (ICRn) is done by first reading the low byte (ICRnL) and then the high
byte (ICRnH). When the low byte is read the high byte is copied into the high byte temporary register (TEMP). When the
CPU reads the ICRnH I/O location it will access the TEMP register.

The ICRn register can only be written when using a waveform generation mode that utilizes the ICRn register for defining the
counter’s TOP value. In these cases the Waveform Generation mode (WGMn3:0) bits must be set before the TOP value can
be written to the ICRn register. When writing the ICRn register the high byte must be written to the ICRnH 1/O location before
the low byte is written to ICRnL.

Y

For more information on how to access the 16-bit registers refer to Section 13.2 “Accessing 16-bit Registers” on page 94.

The ICF1 output can be used to retrigger the timer counter. It has the same effect than the TOP signal.
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13.5.1 Input Capture Trigger Source
The trigger sources for the input capture unit are the Input Capture pin (ICP1A and ICP1B).

Be aware that changing trigger source can trigger a capture. The input capture flag must therefore be cleared after the
change.

The Input Capture pin (ICPn) IS sampled using the same technique as for the Tn pin (Figure 11-1 on page 75). The edge
detector is also identical. However, when the noise canceler is enabled, additional logic is inserted before the edge detector,
which increases the delay by four system clock cycles. Note that the input of the noise canceler and edge detector is always
enabled unless the Timer/Counter is set in a Waveform Generation mode that uses ICRn to define TOP.

An input capture can be triggered by software by controlling the port of the ICPn pin.

13.5.2 Noise Canceler

The noise canceler improves noise immunity by using a simple digital filtering scheme. The noise canceler input is monitored
over four samples, and all four must be equal for changing the output that in turn is used by the edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNCn) bit in Timer/Counter Control Register B
(TCCRnB). When enabled the noise canceler introduces additional four system clock cycles of delay from a change applied
to the input, to the update of the ICRn register. The noise canceler uses the system clock and is therefore not affected by the
prescaler.

13.5.3 Using the Input Capture Unit

The main challenge when using the input capture unit is to assign enough processor capacity for handling the incoming
events. The time between two events is critical. If the processor has not read the captured value in the ICRn register before
the next event occurs, the ICRn will be overwritten with a new value. In this case the result of the capture will be incorrect.

When using the input capture interrupt, the ICRn register should be read as early in the interrupt handler routine as possible.
Even though the input capture interrupt has relatively high priority, the maximum interrupt response time is dependent on the
maximum number of clock cycles it takes to handle any of the other interrupt requests.

Using the input capture unit in any mode of operation when the TOP value (resolution) is actively changed during operation,
is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after each capture. Changing the
edge sensing must be done as early as possible after the ICRn register has been read. After a change of the edge, the input
capture flag (ICFn) must be cleared by software (writing a logical one to the 1/O bit location). For measuring frequency only,
the clearing of the ICFn flag is not required (if an interrupt handler is used).

13.5.4 Using the Input Capture Unit as TCNT1 Retrigger Input

TCNT1 counts from BOTTOM to TOP. The TOP value can be a fixed value, ICR1, or OCR1A. When enabled the retrigger
input forces to reach the TOP value. It means that ICF1 output is ored with the TOP signal.

13.6 Output Compare Units

The 16-bit comparator continuously compares TCNTn with the Output Compare Register (OCRnx). If TCNT equals OCRnx
the comparator signals a match. A match will set the Output Compare Flag (OCFnx) at the next timer clock cycle. If enabled
(OCIEnx = 1), the output compare flag generates an output compare interrupt. The OCFnx flag is automatically cleared
when the interrupt is executed. Alternatively the OCFnx flag can be cleared by software by writing a logical one to its 1/O bit
location. The waveform generator uses the match signal to generate an output according to operating mode set by the
Waveform Generation mode (WGMn3:0) bits and Compare Output mode (COMnx1:0) bits. The TOP and BOTTOM signals
are used by the waveform generator for handling the special cases of the extreme values in some modes of operation (see
Section 13. “16-bit Timer/Counter1 with PWM” on page 92)

A special feature of output compare unit A allows it to define the Timer/Counter TOP value (i.e., counter resolution). In
addition to the counter resolution, the TOP value defines the period time for waveforms generated by the waveform
generator.

Figure 13-4 shows a block diagram of the output compare unit. The small “n” in the register and bit names indicates the
device number (n = n for Timer/Counter n), and the “x” indicates output compare unit (x). The elements of the block diagram
that are not directly a part of the output compare unit are gray shaded.
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Figure 13-4. Output Compare Unit, Block Diagram
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The OCRnx register is double buffered when using any of the twelve Pulse Width Modulation (PWM) modes. For the normal
and Clear Timer on Compare (CTC) modes of operation, the double buffering is disabled. The double buffering synchronizes
the update of the OCRnx compare register to either TOP or BOTTOM of the counting sequence. The synchronization
prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCRnNXx register access may seem complex, but this is not case. When the double buffering is enabled, the CPU has
access to the OCRnx buffer register, and if double buffering is disabled the CPU will access the OCRnx directly. The content
of the OCR1x (buffer or compare) register is only changed by a write operation (the Timer/Counter does not update this
register automatically as the TCNT1 and ICR1 register). Therefore OCR1x is not read via the high byte temporary register
(TEMP). However, it is a good practice to read the low byte first as when accessing other 16-bit registers. Writing the OCRnx
registers must be done via the TEMP register since the compare of all 16 bits is done continuously. The high byte (OCRnxH)
has to be written first. When the high byte I/O location is written by the CPU, the TEMP register will be updated by the value
written. Then when the low byte (OCRnxL) is written to the lower eight bits, the high byte will be copied into the upper 8-bits
of either the OCRnx buffer or OCRnx compare register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to Section 13.2 “Accessing 16-bit Registers” on page 94.

13.6.1 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to the Force
Output Compare (FOCnx) bit. Forcing compare match will not set the OCFnx Flag or reload/clear the timer, but the OCnx pin
will be updated as if a real compare match had occurred (the COMn1:0 bits settings define whether the OCnx pin is set,
cleared or toggled).

13.6.2 Compare Match Blocking by TCNTn Write

All CPU writes to the TCNTn register will block any compare match that occurs in the next timer clock cycle, even when the
timer is stopped. This feature allows OCRnx to be initialized to the same value as TCNTn without triggering an interrupt
when the Timer/Counter clock is enabled.
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13.6.3 Using the Output Compare Unit

Since writing TCNTn in any mode of operation will block all compare matches for one timer clock cycle, there are risks
involved when changing TCNTn when using any of the output compare channels, independent of whether the Timer/Counter
is running or not. If the value written to TCNTn equals the OCRnx value, the compare match will be missed, resulting in
incorrect waveform generation. Do not write the TCNTn equal to TOP in PWM modes with variable TOP values. The
compare match for the TOP will be ignored and the counter will continue to OxFFFF. Similarly, do not write the TCNTn value
equal to BOTTOM when the counter is downcounting.

The setup of the OCnx should be performed before setting the data direction register for the port pin to output. The easiest
way of setting the OCnx value is to use the force output compare (FOCnx) strobe bits in normal mode. The OCnx register
keeps its value even when changing between waveform generation modes.

Be aware that the COMnx1:0 bits are not double buffered together with the compare value. Changing the COMnx1:0 bits will
take effect immediately.

13.7 Compare Match Output Unit

The Compare Output mode (COMnx1:0) bits have two functions. The waveform generator uses the COMnx1:0 bits for
defining the output compare (OCnx) state at the next compare match. Secondly the COMnx1:0 bits control the OCnx pin
output source. Figure 13-5 shows a simplified schematic of the logic affected by the COMnx1:0 bit setting. The I/O registers,
I/0 bits, and /O pins in the figure are shown in bold. Only the parts of the general I/O port control registers (DDR and PORT)
that are affected by the COMnx1:0 bits are shown. When referring to the OCnx state, the reference is for the internal OCnx
register, not the OCnx pin. If a system reset occur, the OCnx register is reset to “0”.

Figure 13-5. Compare Match Output Unit, Schematic
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The general I/O port function is overridden by the output compare (OCnx) from the waveform generator if either of the
COMNx1:0 bits are set. However, the OCnx pin direction (input or output) is still controlled by the Data Direction Register
(DDR) for the port pin. The data direction register bit for the OCnx pin (DDR_OCnx) must be set as output before the OCnx
value is visible on the pin. The port override function is generally independent of the waveform generation mode, but there
are some exceptions. Refer to Table 13-1, Table 13-2 and Table 13-3 on page 111 for details.

The design of the Output Compare pin logic allows initialization of the OCnx state before the output is enabled. Note that
some COMnx1:0 bit settings are reserved for certain modes of operation. See Section 13.10 “16-bit Timer/Counter Register
Description” on page 110.

The COMnx1:0 bits have no effect on the input capture unit.
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13.7.1 Compare Output Mode and Waveform Generation

The waveform generator uses the COMnx1:0 bits differently in normal, CTC, and PWM modes. For all modes, setting the
COMnNx1:0 = 0 tells the waveform generator that no action on the OCnx register is to be performed on the next compare
match. For compare output actions in the non-PWM modes refer to Table 13-1 on page 110. For fast PWM mode refer to
Table 13-2 on page 110, and for phase correct and phase and frequency correct PWM refer to Table 13-3 on page 111.

A change of the COMnx1:0 bits state will have effect at the first compare match after the bits are written. For non-PWM
modes, the action can be forced to have immediate effect by using the FOCnx strobe bits.

13.8 Modes of Operation

The mode of operation, i.e., the behavior of the Timer/Counter and the output compare pins, is defined by the combination of
the Waveform Generation mode (WGMn3:0) and Compare Output mode (COMnx1:0) bits. The Compare Output mode bits
do not affect the counting sequence, while the waveform generation mode bits do. The COMnx1:0 bits control whether the
PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes the COMnx1:0 bits
control whether the output should be set, cleared or toggle at a compare match (see Section 13.7 “Compare Match Output
Unit” on page 101). For detailed timing information refer to Section 13.9 “Timer/Counter Timing Diagrams” on page 108.

13.8.1 Normal Mode

The simplest mode of operation is the Normal mode (WGMn3:0 = 0). In this mode the counting direction is always up
(incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 16-bit value
(MAX = OxFFFF) and then restarts from the BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag
(TOVn) will be set in the same timer clock cycle as the TCNTn becomes zero. The TOVn flag in this case behaves like a 17th
bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt that automatically clears the
TOVn flag, the timer resolution can be increased by software. There are no special cases to consider in the normal mode, a
new counter value can be written anytime.

The input capture unit is easy to use in normal mode. However, observe that the maximum interval between the external
events must not exceed the resolution of the counter. If the interval between events are too long, the timer overflow interrupt
or the prescaler must be used to extend the resolution for the capture unit.

The output compare units can be used to generate interrupts at some given time. Using the output compare to generate
waveforms in normal mode is not recommended, since this will occupy too much of the CPU time.

13.8.2 Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGMn3:0 =4 or 12), the OCRNA or ICRn register are used to manipulate the
counter resolution. In CTC mode the counter is cleared to zero when the counter value (TCNTn) matches either the OCRnA
(WGMn3:0 = 4) or the ICRn (WGMn3:0 = 12). The OCRnNA or ICRn define the top value for the counter, hence also its
resolution. This mode allows greater control of the compare match output frequency. It also simplifies the operation of
counting external events.

The timing diagram for the CTC mode is shown in Figure 13-6. The counter value (TCNTn) increases until a compare match
occurs with either OCRNA or ICRn, and then counter (TCNTn) is cleared.

Figure 13-6. CTC Mode, Timing Diagram
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13.8.3

An interrupt can be generated at each time the counter value reaches the TOP value by either using the OCFnA or ICFn flag
according to the register used to define the TOP value. If the interrupt is enabled, the interrupt handler routine can be used
for updating the TOP value. However, changing the TOP to a value close to BOTTOM when the counter is running with none
or a low prescaler value must be done with care since the CTC mode does not have the double buffering feature. If the new
value written to OCRnNA or ICRn is lower than the current value of TCNTn, the counter will miss the compare match. The
counter will then have to count to its maximum value (OxFFFF) and wrap around starting at 0x0000 before the compare
match can occur. In many cases this feature is not desirable. An alternative will then be to use the fast PWM mode using
OCRNA for defining TOP (WGMn3:0 = 15) since the OCRnA then will be double buffered.

For generating a waveform output in CTC mode, the OCnA output can be set to toggle its logical level on each compare
match by setting the compare output mode bits to toggle mode (COMnA1:0 = 1). The OCnA value will not be visible on the
port pin unless the data direction for the pin is set to output (DDR_OCnA = 1). The waveform generated will have a
maximum frequency of foc,a = fux 10/2 when OCRNA is set to zero (0x0000). The waveform frequency is defined by the
following equation: B

f _ fclk 1/10
OCnA ™ 2.N-(1+ OCRnA)

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the normal mode of operation, the TOVn flag is set in the same timer clock cycle that the counter counts from MAX to
0x0000.

Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGMn3:0 = 5, 6, 7, 14, or 15) provides a high frequency PWM
waveform generation option. The fast PWM differs from the other PWM options by its single-slope operation. The counter
counts from BOTTOM to TOP then restarts from BOTTOM. In non-inverting compare output mode, the output compare
(OCnx) is set on the compare match between TCNTn and OCRnx, and cleared at TOP. In inverting compare output mode
output is cleared on compare match and set at TOP. Due to the single-slope operation, the operating frequency of the fast
PWM mode can be twice as high as the phase correct and phase and frequency correct PWM modes that use dual-slope
operation. This high frequency makes the fast PWM mode well suited for power regulation, rectification, and DAC
applications. High frequency allows physically small sized external components (coils, capacitors), hence reduces total
system cost.

The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either ICRn or OCRnA. The minimum
resolution allowed is 2-bit (ICRn or OCRnA set to 0x0003), and the maximum resolution is 16-bit (ICRn or OCRnNA set to
MAX). The PWM resolution in bits can be calculated by using the following equation:

R _ log(TOP +1)
FPWM Iog(2)

In fast PWM mode the counter is incremented until the counter value matches either one of the fixed values 0xO0FF,
0x01FF, or OX03FF (WGMn3:0 = 5, 6, or 7), the value in ICRn (WGMn3:0 = 14), or the value in OCRnA (WGMn3:0 = 15).
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast PWM mode is shown in Figure
13-7. The figure shows fast PWM mode when OCRNA or ICRn is used to define TOP. The TCNTn value is in the timing
diagram shown as a histogram for illustrating the single-slope operation. The diagram includes non-inverted and inverted
PWM outputs. The small horizontal line marks on the TCNTn slopes represent compare matches between OCRnx and
TCNTn. The OCnx interrupt flag will be set when a compare match occurs.
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Figure 13-7. Fast PWM Mode, Timing Diagram
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The Timer/Counter overflow flag (TOVn) is set each time the counter reaches TOP. In addition the OCnA or ICFn Flag is set
at the same timer clock cycle as TOVn is set when either OCRNA or ICRn is used for defining the TOP value. If one of the
interrupts are enabled, the interrupt handler routine can be used for updating the TOP and compare values.

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value of all of the
compare registers. If the TOP value is lower than any of the compare registers, a compare match will never occur between
the TCNTn and the OCRnx. Note that when using fixed TOP values the unused bits are masked to zero when any of the
OCRNXx registers are written.

The procedure for updating ICRn differs from updating OCRnA when used for defining the TOP value. The ICRn register is
not double buffered. This means that if ICRn is changed to a low value when the counter is running with none or a low
prescaler value, there is a risk that the new ICRn value written is lower than the current value of TCNTn. The result will then
be that the counter will miss the compare match at the TOP value. The counter will then have to count to the MAX value
(OxFFFF) and wrap around starting at 0x0000 before the compare match can occur. The OCRnA Register however, is
double buffered.

This feature allows the OCRnA 1/O location to be written anytime. When the OCRNA I/O location is written the value written
will be put into the OCRNA buffer register.

The OCRNA compare register will then be updated with the value in the buffer register at the next timer clock cycle the
TCNTn matches TOP. The update is done at the same timer clock cycle as the TCNTn is cleared and the TOVn flag is set.

Using the ICRn register for defining TOP works well when using fixed TOP values. By using ICRn, the OCRnA register is
free to be used for generating a PWM output on OCnA. However, if the base PWM frequency is actively changed (by
changing the TOP value), using the OCRnNA as TOP is clearly a better choice due to its double buffer feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins. Setting the COMnx1:0 bits to
two will produce a non-inverted PWM and an inverted PWM output can be generated by setting the COMnx1:0 to three (see
Table on page 110). The actual OCnx value will only be visible on the port pin if the data direction for the port pin is set as
output (DDR_OCnx). The PWM waveform is generated by setting (or clearing) the OCnx Register at the compare match
between OCRnx and TCNTn, and clearing (or setting) the OCnx Register at the timer clock cycle the counter is cleared
(changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

£ _ fclk 1/0
OCnxPWM N - (1 + TOP)

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating a PWM waveform output in the fast
PWM mode. If the OCRnx is set equal to BOTTOM (0x0000) the output will be a narrow spike for each TOP+1 timer clock
cycle. Setting the OCRnx equal to TOP will result in a constant high or low output (depending on the polarity of the output set
by the COMnx1:0 bits.)
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13.8.4

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OCnA to toggle its logical
level on each compare match (COMnA1:0 = 1). This applies only if OCR1A is used to define the TOP value (WGM13:0 =
15). The waveform generated will have a maximum frequency of focna = fok 110/2 When OCRNA is set to zero (0x0000). This
feature is similar to the OCnA toggle in CTC mode, except the double buffer feature of the Output Compare unit is enabled in
the fast PWM mode.

Phase Correct PWM Mode

The phase correct Pulse Width Modulation or phase correct PWM mode (WGMn3:0 = 1, 2, 3, 10, or 11) provides a high
resolution phase correct PWM waveform generation option. The phase correct PWM mode is, like the phase and frequency
correct PWM mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and
then from TOP to BOTTOM. In non-inverting compare output mode, the output compare (OCnx) is cleared on the compare
match between TCNTn and OCRnx while upcounting, and set on the compare match while downcounting. In inverting output
compare mode, the operation is inverted. The dual-slope operation has lower maximum operation frequency than single
slope operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes are preferred for motor
control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or defined by either ICRn or OCRnA.
The minimum resolution allowed is 2-bit (ICRn or OCRNA set to 0x0003), and the maximum resolution is 16-bit (ICRn or
OCRNA set to MAX). The PWM resolution in bits can be calculated by using the following equation:

log(TOP +1)

Rocpwm = log(2)

In phase correct PWM mode the counter is incremented until the counter value matches either one of the fixed values
0x00FF, 0x01FF, or 0x03FF (WGMn3:0 =1, 2, or 3), the value in ICRn (WGMn3:0 = 10), or the value in OCRnA
(WGMn3:0 = 11). The counter has then reached the TOP and changes the count direction. The TCNTn value will be equal to
TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 13-8. The figure
shows phase correct PWM mode when OCRNA or ICRn is used to define TOP. The TCNTn value is in the timing diagram
shown as a histogram for illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM
outputs. The small horizontal line marks on the TCNTn slopes represent compare matches between OCRnx and TCNTn.
The OCnx Interrupt flag will be set when a compare match occurs.

Figure 13-8. Phase Correct PWM Mode, Timing Diagram
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The Timer/Counter overflow flag (TOVn) is set each time the counter reaches BOTTOM. When either OCRNnA or ICRn is
used for defining the TOP value, the OCnA or ICFn flag is set accordingly at the same timer clock cycle as the OCRnx
registers are updated with the double buffer value (at TOP). The interrupt flags can be used to generate an interrupt each
time the counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value of all of the
compare registers. If the TOP value is lower than any of the compare registers, a compare match will never occur between
the TCNTn and the OCRnx. Note that when using fixed TOP values, the unused bits are masked to zero when any of the
OCRnNx Registers are written. As the third period shown in Figure 13-8 illustrates, changing the TOP actively while the
Timer/Counter is running in the phase correct mode can result in an unsymmetrical output.

The reason for this can be found in the time of update of the OCRnx Register. Since the OCRnx update occurs at TOP, the
PWM period starts and ends at TOP. This implies that the length of the falling slope is determined by the previous TOP
value, while the length of the rising slope is determined by the new TOP value. When these two values differ the two slopes
of the period will differ in length. The difference in length gives the unsymmetrical result on the output.

It is recommended to use the phase and frequency correct mode instead of the phase correct mode when changing the TOP
value while the Timer/Counter is running. When using a static TOP value there are practically no differences between the
two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins. Setting the
COMnNx1:0 bits to two will produce a non-inverted PWM and an inverted PWM output can be generated by setting the
COMnNx1:0 to three (See Table on page 111). The actual OCnx value will only be visible on the port pin if the data direction
for the port pin is set as output (DDR_OCnx). The PWM waveform is generated by setting (or clearing) the OCnx register at
the compare match between OCRnx and TCNTn when the counter increments, and clearing (or setting) the OCnx register at
compare match between OCRnx and TCNTn when the counter decrements. The PWM frequency for the output when using
phase correct PWM can be calculated by the following equation:

£ _ fclk 1/0
OCnxPCPWM — 2.N-TOP

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx register represent special cases when generating a PWM waveform output in the phase
correct PWM mode. If the OCRnx is set equal to BOTTOM the output will be continuously low and if set equal to TOP the
output will be continuously high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic
values. If OCR1A is used to define the TOP value (WGM13:0 = 11) and COM1A1:0 = 1, the OC1A output will toggle with a
50% duty cycle.

13.8.5 Phase and Frequency Correct PWM Mode

The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM mode (WGMn3:0 = 8 or 9)
provides a high resolution phase and frequency correct PWM waveform generation option. The phase and frequency correct
PWM mode is, like the phase correct PWM mode, based on a dual-slope operation. The counter counts repeatedly from
BOTTOM (0x0000) to TOP and then from TOP to BOTTOM. In non-inverting compare output mode, the output compare
(OCnx) is cleared on the compare match between TCNTn and OCRnx while upcounting, and set on the compare match
while downcounting. In inverting compare output mode, the operation is inverted. The dual-slope operation gives a lower
maximum operation frequency compared to the single-slope operation. However, due to the symmetric feature of the dual-
slope PWM modes, these modes are preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct PWM mode is the time the OCRnx
Register is updated by the OCRnx buffer register, (see Figure 13-8 and Figure 13-9 on page 107).

The PWM resolution for the phase and frequency correct PWM mode can be defined by either ICRn or OCRnA. The
minimum resolution allowed is 2-bit (ICRn or OCRNA set to 0x0003), and the maximum resolution is 16-bit (ICRn or OCRnA
set to MAX). The PWM resolution in bits can be calculated using the following equation:

R _ log(TOP + 1)
PFCPWM — Iog(2)
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In phase and frequency correct PWM mode the counter is incremented until the counter value matches either the value in
ICRn (WGMn3:0 = 8), or the value in OCRnA (WGMn3:0 = 9). The counter has then reached the TOP and changes the
count direction. The TCNTn value will be equal to TOP for one timer clock cycle. The timing diagram for the phase correct
and frequency correct PWM mode is shown on Figure 13-9. The figure shows phase and frequency correct PWM mode
when OCRNA or ICRn is used to define TOP. The TCNTn value is in the timing diagram shown as a histogram for illustrating
the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs.

The small horizontal line marks on the TCNTn slopes represent compare matches between OCRnx and TCNTn. The OCnx
interrupt flag will be set when a compare match occurs.

Figure 13-9. Phase and Frequency Correct PWM Mode, Timing Diagram
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The Timer/Counter overflow flag (TOVn) is set at the same timer clock cycle as the OCRnx registers are updated with the
double buffer value (at BOTTOM). When either OCRnNA or ICRn is used for defining the TOP value, the OCnA or ICFn flag is
set when TCNTn has reached TOP. The interrupt flags can then be used to generate an interrupt each time the counter
reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value of all of the
compare registers. If the TOP value is lower than any of the compare registers, a compare match will never occur between
the TCNTn and the OCRnx.

As Figure 13-9 shows the output generated is, in contrast to the phase correct mode, symmetrical in all periods. Since the
OCRnNx registers are updated at BOTTOM, the length of the rising and the falling slopes will always be equal. This gives
symmetrical output pulses and is therefore frequency correct.

LI
-

Using the ICRn register for defining TOP works well when using fixed TOP values. By using ICRn, the OCRnNA register is
free to be used for generating a PWM output on OCnA. However, if the base PWM frequency is actively changed by
changing the TOP value, using the OCRNA as TOP is clearly a better choice due to its double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins.
Setting the COMnx1:0 bits to two will produce a non-inverted PWM and an inverted PWM output can be generated by setting
the COMnx1:0 to three (See Table on page 111). The actual OCnx value will only be visible on the port pin if the data
direction for the port pin is set as output (DDR_OCnx). The PWM waveform is generated by setting (or clearing) the OCnx
register at the compare match between OCRnx and TCNTn when the counter increments, and clearing (or setting) the OCnx
register at compare match between OCRnx and TCNTn when the counter decrements. The PWM frequency for the output
when using phase and frequency correct PWM can be calculated by the following equation:

f _ fcIk 1/10
OCnxPFCPWM — 2.N-TOP

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).
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The extreme values for the OCRnx register represents special cases when generating a PWM waveform output in the phase
correct PWM mode. If the OCRnx is set equal to BOTTOM the output will be continuously low and if set equal to TOP the
output will be set to high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic values. If
OCR1A is used to define the TOP value (WGM13:0 = 9) and COM1A1:0 = 1, the OC1A output will toggle with a 50% duty
cycle.

13.9 Timer/Counter Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clky,,) is therefore shown as a clock enable signal in the
following figures. The figures include information on when Interrupt Flags are set, and when the OCRnx register is updated
with the OCRnx buffer value (only for modes utilizing double buffering). Figure 13-10 shows a timing diagram for the setting
of OCFnx.

Figure 13-10.Timer/Counter Timing Diagram, Setting of OCFnx, no Prescaling
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Figure 13-11 shows the same timing data, but with the prescaler enabled.

Figure 13-11.Timer/Counter Timing Diagram, Setting of OCFnx, with Prescaler (. ,0/8)
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Figure 13-12 shows the count sequence close to TOP in various modes. When using phase and frequency correct PWM
mode the OCRnXx register is updated at BOTTOM. The timing diagrams will be the same, but TOP should be replaced by
BOTTOM, TOP-1 by BOTTOM+1 and so on. The same renaming applies for modes that set the TOVn Flag at BOTTOM.

Figure 13-12.Timer/Counter Timing Diagram, no Prescaling
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Figure 13-13 shows the same timing data, but with the prescaler enabled.

Figure 13-13.Timer/Counter Timing Diagram, with Prescaler (fy_;0/8)
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13.10 16-bit Timer/Counter Register Description

13.10.1 Timer/Counterl Control Register A — TCCR1A

Bit 7 6 5 4 3 2 1 0
| com1A1 | COM1AO [ COM1BL | COMIBO | — - WGM11 | WGM10 | TCCRIA
Read/Write R/W RIW R/IW R/IW R R R/IW RIW
Initial Value 0 0 0 0 0 0 0 0

e Bit 7:6 — COMnA1:0: Compare Output Mode for Channel A
* Bit5:4 - COMnB1:0: Compare Output Mode for Channel B

The COMnA1:0 and COMnB1:0 control the output compare pins (OCnA and OCnB respectively) behavior. If one or both of
the COMnA1:0 bits are written to one, the OCnA output overrides the normal port functionality of the 1/0 pin it is connected
to. If one or both of the COMnB1:0 bit are written to one, the OCnB output overrides the normal port functionality of the 1/0
pin it is connected to. However, note that the Data Direction Register (DDR) bit corresponding to the OCnA or OCnB pin
must be set in order to enable the output driver.

When the OCnA or OCnB is connected to the pin, the function of the COMnx1:0 bits is dependent of the WGMn3:0 bits
setting. Table 13-1 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to a Normal or a CTC mode (non-
PWM).

Table 13-1. Compare Output Mode, non-PWM

COMnA1l/COMnB1 COMNnAO/COMNBO Description
0 0 Normal port operation, OCnA/OCnB disconnected.
0 1 Toggle OCnA/OCnB on compare match.
1 0 Clear OCnA/OCnB on compare match (set output to low level).
1 1 Set OCnA/OCnB on compare match (set output to high level).

Table 13-2 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to the fast PWM mode.

Table 13-2. Compare Output Mode, Fast PWM(")

COMnA1l/COMnB1 COMNnAO/COMNBO Description
0 0 Normal port operation, OCnA/OCnB disconnected.
WGMn3:0 = 14 or 15: Toggle OC1A on compare match, OC1B
0 1 disconnected (normal port operation). For all other WGM1
settings, normal port operation, OC1A/OC1B disconnected.
1 0 Clear OCnA/OCnB on compare match, set OCnA/OCnB at TOP
1 1 Set OCnA/OCnB on compare match, clear OCnA/OCnB at TOP

Note: 1. A special case occurs when OCRnA/OCRnNB equals TOP and COMnA1/COMnNB1 is set. In this case the com-
pare match is ignored, but the set or clear is done at TOP. See Section 13.8.3 “Fast PWM Mode” on page 103
for more details.
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Table 13-3 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to the phase correct or the phase and
frequency correct, PWM mode.

Table 13-3. Compare Output Mode, Phase Correct and Phase and Frequency Correct PWM(")

COMnA1/COMNnB1 COMNnAO/COMNnBO Description
0 0 Normal port operation, OCnA/OCnB disconnected.
WGMn3:0 =8, 9 10 or 11: Toggle OCnA on compare match,
0 1 OCnB disconnected (normal port operation). For all other WGM1

settings, normal port operation, OC1A/OC1B disconnected.

Clear OCnA/OCnB on compare match when up-counting. Set
OCnA/OCnB on compare match when downcounting.

Set OCnA/OCnB on compare match when up-counting. Clear
OCnA/OCnB on compare match when downcounting.

Note: 1. A special case occurs when OCRnA/OCRnNB equals TOP and COMnA1/COMnNB1 is set. See Section 13.8.4
“Phase Correct PWM Mode” on page 105 for more details.

¢ Bit 1:0 —- WGMn1:0: Waveform Generation Mode

Combined with the WGMn3:2 bits found in the TCCRnB register, these bits control the counting sequence of the counter, the
source for maximum (TOP) counter value, and what type of waveform generation to be used, see Table 13-4. Modes of
operation supported by the Timer/Counter unit are: normal mode (counter), clear timer on compare match (CTC) mode, and
three types of Pulse Width Modulation (PWM) modes (see Section 13. “16-bit Timer/Counter1 with PWM” on page 92).

1 1

Table 13-4. Waveform Generation Mode Bit Description(")

WGMn2 | WGMn1 | WGMnO Update of | TOVn Flag
Mode @ WGMn3 | (CTCn) | (PWMn1) (PWMnO) Timer/Counter Mode of Operation OCRnXx at |Seton

0 0 0 0 0 Normal OxFFFF Immediate  MAX

1 0 0 0 1 PWM, phase correct, 8-bit O0x00FF TOP BOTTOM
2 0 0 1 0 PWM, phase correct, 9-bit O0x01FF TOP BOTTOM
3 0 0 1 1 PWM, phase correct, 10-bit 0x03FF TOP BOTTOM
4 0 1 0 0 CTC OCRNnA Immediate  MAX

5 0 1 0 1 Fast PWM, 8-bit 0x00FF TOP TOP

6 0 1 1 0 Fast PWM, 9-bit 0x01FF TOP TOP

7 0 1 1 1 Fast PWM, 10-bit O0x03FF TOP TOP

8 1 0 0 0 PWM, phase and frequency correct ICRn BOTTOM BOTTOM
9 1 0 0 1 PWM, phase and frequency correct OCRnA BOTTOM BOTTOM
10 1 0 1 0 PWM, phase correct ICRn TOP BOTTOM
11 1 0 1 1 PWM, phase correct OCRNA TOP BOTTOM
12 1 1 0 0 CTC ICRn Immediate  MAX

13 1 1 0 1 (Reserved) - - =

14 1 1 1 0 Fast PWM ICRn TOP TOP

15 1 1 1 1 Fast PWM OCRnA TOP TOP

Note: 1. The CTCn and PWMn1:0 bit definition names are obsolete. Use the WGMn2:0 definitions. However, the functionality
and location of these bits are compatible with previous versions of the timer.
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13.10.2 Timer/Counterl Control Register B — TCCR1B

Bit 7 6 5 4 3 2 1 0

| 'cNC1 | ICES1 | RTGEN | WGM13 | WGM12 | CS12 csi11 Cs10 | TCcRiB
Read/Write R/W RIW R R/W R/W R/W RIW R/IW
Initial Value 0 0 0 0 0 0 0 0

e Bit 7—ICNCn: Input Capture Noise Canceler

Setting this bit (to one) activates the input capture noise canceler. When the noise canceler is activated, the input from the
input capture pin (ICPn) is filtered. The filter function requires four successive equal valued samples of the ICPn pin for
changing its output. The input capture is therefore delayed by four oscillator cycles when the noise canceler is enabled.

« Bit 6 — ICESn: Input Capture Edge Select

This bit selects which edge on the input capture pin (ICPn) that is used to trigger a capture event. When the ICESn bit is
written to zero, a falling (negative) edge is used as trigger, and when the ICESn bit is written to one, a rising (positive) edge
will trigger the capture.

When a capture is triggered according to the ICESn setting, the counter value is copied into the input capture register
(ICRn). The event will also set the input capture flag (ICFn), and this can be used to cause an input capture interrupt, if this
interrupt is enabled.

When the ICRn is used as TOP value (see description of the WGMn3:0 bits located in the TCCRnA and the TCCRnB
register), the ICPn is disconnected and consequently the input capture function is disabled.

* Bit5-RTGEN
Set this bit to enable the ICP1A as a Timer/Counter retrigger input.

(This bit is reserved for future use. For ensuring compatibility with future devices, this bit must be written to zero when
TCCRnNB is written.)

e Bit 4:3-WGMn3:2: Waveform Generation Mode

See TCCRnA register description.

e Bit 2:0 - CSn2:0: Clock Select

The three clock select bits select the clock source to be used by the Timer/Counter, see Figure 13-10 and Figure 13-11.

Table 13-5. Clock Select Bit Description

CSn2 CSnl CSn0 Description
0 0 0 No clock source (Timer/Counter stopped).
clk,o/1 (no prescaling)
clk;o/8 (from prescaler)
clk,o/64 (from prescaler)

clk;,o/1024 (from prescaler)
External clock source on Tn pin. Clock on falling edge.

- A A A O O o

1
0
1
0 clk;,o/256 (from prescaler)
1
0
1

A A OO A A O

External clock source on Tn pin. Clock on rising edge.

If external pin modes are used for the Timer/Countern, transitions on the Tn pin will clock the counter even if the pin is
configured as an output. This feature allows software control of the counting.

112 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-



13.10.3 Timer/Counterl Control Register C — TCCR1C

Bit 7 6 5 4 3 2 1 0

| Focia [ FOCIB | - | - [ - - - - | Tceric
Read/Write R/W R/W R R R R R
Initial Value 0 0 0 0 0 0 0 0

e Bit 7—FOCnA: Force Output Compare for Channel A
e Bit 6 - FOCnB: Force Output Compare for Channel B

The FOCnA/FOCnB bits are only active when the WGMn3:0 bits specifies a non-PWM mode. However, for ensuring
compatibility with future devices, these bits must be set to zero when TCCRnA is written when operating in a PWM mode.
When writing a logical one to the FOCnA/FOCnB bit, an immediate compare match is forced on the waveform generation
unit. The OCnA/OCnB output is changed according to its COMnx1:0 bits setting. Note that the FOCnA/FOCnB bits are
implemented as strobes. Therefore it is the value present in the COMnx1:0 bits that determine the effect of the forced
compare.

A FOCnA/FOCnB strobe will not generate any interrupt nor will it clear the timer in clear timer on Compare match (CTC)
mode using OCRnA as TOP.

The FOCnA/FOCnB bits are always read as zero.

13.10.4 Timer/Counterl — TCNT1H and TCNT1L

Bit 7 6 5 4 3 2 1 0
TCNT1[15:8] | TcnTiH
TCNT1[7:0] | TonTiL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/IW
Initial Value 0 0 0 0 0 0 0 0

The two Timer/Counter 1/O locations (TCNTnH and TCNTnL, combined TCNTn) give direct access, both for read and for
write operations, to the Timer/Counter unit 16-bit counter. To ensure that both the high and low bytes are read and written
simultaneously when the CPU accesses these registers, the access is performed using an 8-bit temporary high byte register
(TEMP). This temporary register is shared by all the other 16-bit registers. See Section 13.2 “Accessing 16-bit Registers” on
page 94. Modifying the counter (TCNTn) while the counter is running introduces a risk of missing a compare match between
TCNTn and one of the OCRnx registers.

Writing to the TCNTn register blocks (removes) the compare match on the following timer clock for all compare units.

13.10.5 Output Compare Register 1 A — OCR1AH and OCR1AL

Bit 7 6 5 4 3 2 1 0
| OCR1A[15:8] OCR1AH
| OCR1A[7:0] OCRI1AL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

13.10.6 Output Compare Register 1 B — OCR1BH and OCR1BL

Bit 7 6 5 4 3 2 1 0
OCRI1B[15:8] ] ocriBH
OCR1B[7:0] | ocriBL
Read/Write RIW RIW R/W RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

The output compare registers contain a 16-bit value that is continuously compared with the counter value (TCNTn). A match
can be used to generate an output compare interrupt, or to generate a waveform output on the OCnx pin.

The output compare registers are 16-bit in size. To ensure that both the high and low bytes are written simultaneously when
the CPU writes to these registers, the access is performed using an 8-bit temporary high byte register (TEMP). This
temporary register is shared by all the other 16-bit registers. See Section 13.2 “Accessing 16-bit Registers” on page 94.
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13.10.7 Input Capture Register 1 — ICR1H and ICR1L

Bit 7 6 5 4 3 2 1 0
| ICR1[15:8] ICR1H
| ICR1[7:0] ICR1L
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The input capture is updated with the counter (TCNTn) value each time an event occurs on the ICPn pin (or optionally on the
analog comparator output for Timer/Counter1). The input capture can be used for defining the counter TOP value.

The input capture register is 16-bit in size. To ensure that both the high and low bytes are read simultaneously when the
CPU accesses these registers, the access is performed using an 8-bit temporary High Byte Register (TEMP). This
temporary register is shared by all the other 16-bit registers. See Section 13.2 “Accessing 16-bit Registers” on page 94.

13.10.8 Timer/Counterl Interrupt Mask Register — TIMSK1

Bit 7 6 5 4 3 2 1 0

| - | - Jmwer | - | - |OCIE1B[OCEIA | TOEL | TIMSK1
Read/Write R R R/W R R R/W RIW R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7, 6 — Res: Reserved Bits
These bits are unused bits in the ATmega16/32/64/M1/C1, and will always read as zero.
« Bit 5—ICIE1: Timer/Counterl, Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the status register is set (interrupts globally enabled), the Timer/Counter1
input capture interrupt is enabled. The corresponding interrupt vector (Table 8-2 on page 48) is executed when the ICF1 flag,
located in TIFR1, is set.

* Bit 4, 3 - Res: Reserved Bits
These bits are unused bits in the ATmega16/32/64/M1/C1, and will always read as zero.
e Bit2- OCIE1B: Timer/Counterl, Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the status register is set (interrupts globally enabled), the Timer/Counter1
output compare B match interrupt is enabled. The corresponding interrupt vector (Table 8-2 on page 48) is executed when
the OCF1B flag, located in TIFR1, is set.

e Bit 1 - OCIE1A: Timer/Counterl, Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the status register is set (interrupts globally enabled), the Timer/Counter1
output compare A match interrupt is enabled. The corresponding interrupt vector (Table 8-2 on page 48) is executed when
the OCF1A flag, located in TIFR1, is set.

e Bit 0 — TOIEL: Timer/Counterl, Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the status register is set (interrupts globally enabled), the Timer/Counter1
overflow interrupt is enabled. The corresponding interrupt vector (Table 8-2 on page 48) is executed when the TOV1 flag,
located in TIFR1, is set.
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13.10.9 Timer/Counterl Interrupt Flag Register — TIFR1

Bit 7 6 5 4 3 2 1 0

| - | - Jwcr | - | - [OCFiB | OCFIA | TOVl | TIFR1
Read/Write R R R/IW R R R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7,6 — Res: Reserved Bits
These bits are unused bits in the ATmega16/32/64/M1/C1, and will always read as zero.
e Bit5—ICF1: Timer/Counterl, Input Capture Flag

This flag is set when a capture event occurs on the ICP1 pin. When the input capture register (ICR1) is set by the WGMn3:0
to be used as the TOP value, the ICF1 Flag is set when the counter reaches the TOP value.

ICF1 is automatically cleared when the input capture interrupt vector is executed. Alternatively, ICF1 can be cleared by
writing a logic one to its bit location.

* Bit 4, 3 - Res: Reserved Bits

These bits are unused bits in the ATmega16/32/64/M1/C1, and will always read as zero.

e Bit 2 - OCF1B: Timer/Counterl, Output Compare B Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the output compare register B (OCR1B).
Note that a forced output compare (FOC1B) strobe will not set the OCF1B flag.

OCF1B is automatically cleared when the output compare match B interrupt vector is executed. Alternatively, OCF1B can be
cleared by writing a logic one to its bit location.

« Bit 1 - OCF1A: Timer/Counterl, Output Compare A Match Flag
This flag is set in the timer clock cycle after the counter (TCNT1) value matches the output compare register A (OCR1A).
Note that a forced output compare (FOC1A) strobe will not set the OCF1A flag.

OCF1A is automatically cleared when the output compare match A interrupt vector is executed. Alternatively, OCF1A can be
cleared by writing a logic one to its bit location.

e Bit 0 — TOV1: Timer/Counterl, Overflow Flag

The setting of this flag is dependent of the WGMn3:0 bits setting. In normal and CTC modes, the TOV1 flag is set when the
timer overflows. Refer to Table 13-4 on page 111 for the TOV1 flag behavior when using another WGMn3:0 bit setting.

TOV1 is automatically cleared when the Timer/Counter1 overflow interrupt vector is executed. Alternatively, TOV1 can be
cleared by writing a logic one to its bit location.
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14. Power Stage Controller — (PSC) (only ATmegal6/32/64M1)

The power stage controller is a high performance waveform controller.

14.1 Features
e PWM waveform generation function with 6 complementary programmable outputs (able to control 3 half-bridges)
Programmable dead time control
PWM up to 12 bit resolution
PWM clock frequency up to 64MHz (via PLL)
Programmable ADC trigger
Automatic overlap protection
Failsafe emergency inputs - 3 (to force all outputs to high impedance or in inactive state - fuse configurable)

Center aligned and edge aligned modes synchronization

14.2 Overview

Many register and bit references in this section are written in general form.
e Alower case “n” replaces the PSC module number, in this case 0, 1 or 2. However, when using the register or bit
defines in a program, the precise form must be used, i.e., POCROSAH for accessing module 0 POCRnSAH register
and so on.

e Alower case “X” replaces the PSC part, in this case A or B. However, when using the register or bit defines in a
program, the precise form must be used, i.e., OCROSAH for accessing part A OCR0OSxH register and so on.

The purpose of the power stage controller (PSC) is to control an external power interface. It has six outputs to drive for
example a 3 half-bridge. This feature allows you to generate three phase waveforms for applications such as Asynchronous
or BLDC motor drives, lighting systems...

The PSC also has 3 inputs, the purpose of which is to provide fast emergency stop capability.

The PSC outputs are programmable as “active high” or “active low”. All the timing diagrams in the following examples are
given in the “active high” polarity.

14.3 Accessing 16-bit Registers

Some PSC registers are 16-bit registers. These registers can be accessed by the AVR CPU via the 8-bit data bus. The 16-
bit registers must be byte accessed using two read or write operations. The PSC has a single 8-bit register for temporary
storing of the high byte of the 16-bit access. The same temporary register is shared between all PSC 16-bit registers.
Accessing the low byte triggers the 16-bit read or write operation. When the low byte of a 16-bit register is written by the
CPU, the high byte stored in the temporary register, and the low byte written are both copied into the 16-bit register in the
same clock cycle. When the low byte of a 16-bit register is read by the CPU, the high byte of the 16-bit register is copied into
the temporary register in the same clock cycle as the low byte is read.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low byte must be read before the
high byte.
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14.4 PSC Description

Figure 14-1. Power Stage Controller Block Diagram
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14.5

1451

145.2

118

The PSC is based on the use of a free-running 12-bit counter (PSC counter). This counter is able to count up to a top value
determined by the contents of POCR_RB register and then according to the selected running mode, count down or reset to
zero for another cycle.

As can be seen from the block diagram Figure 14-1, the PSC is composed of 3 modules.

Each of the 3 PSC modules can be seen as two symetrical entities. One entity named part A which generates the output
PSCOUTNA and the second one named part B which generates the PSCOUTNB output.

Each module has its own PSC Input circuitry which manages the corresponding input.
Functional Description

Generation of Control Waveforms

In general, the drive of a 3 phase motor requires the generation of 6 PWM signals. The duty cycle of these signals must be
independently controlled to adjust the speed or torque of the motor or to produce the wanted waveform on the 3 voltage lines
(trapezoidal, sinusoidal...)

In case of cross conduction or overtemperature, having inputs which can immediately disable the waveform generator’s
outputs is desirable.

These considerations are common for many systems which require PWM signals to drive power systems such as lighting,
DC/DC converters.

Waveform Cycles

Each of the 3 modules has 2 waveform generators which jointly compose the output signal.

The first part of the waveform is relative to part A or PSCOUTNA output. This waveform corresponds to sub-cycle A in the
following figure.

The second part of the waveform is relative to part B or PSCOUTNB output. This waveform corresponds to sub-cycle B in the
following figure.

The complete waveform is terminated at the end of the sub-cycle B, whereupon any changes to the settings of the waveform
generator registers will be implemented, for the next cycle.

The PSC can be configured in one of two modes (1Ramp Mode or Centered Mode). This configuration will affect the
operation of all the waveform generators.

Figure 14-2. Cycle Presentation in One Ramp Mode
One PSC Cycle
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Figure 14-3. Cycle Presentation in Centered Mode
One PSC Cycle

Y
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PSC Counter Value

Figure 14-2 on page 118 and Figure 14-3 graphically illustrate the values held in the PSC counter. Centered Mode is like one
ramp mode which counts down and then up.

Notice that the update of the waveform generator registers is done regardless of ramp mode at the end of the PSC cycle.

14.5.3 Operation Mode Descriptions

Waveforms and duration of output signals are determined by parameters held in the registers (POCRnSA, POCRNRA,
POCRNSB, POCR_RB) and by the running mode. Two modes are possible:

e  One ramp mode: In this mode, all the 3 PSCOUTNB outputs are edge-aligned and the 3 PSCOUTNA can be also
edge-aligned when setting the same values in the dedicated registers.

In this mode, the PWM frequency is twice the center aligned mode PWM frequency.

e Center aligned mode: In this mode, all the 6 PSC outputs are aligned at the center of the period. Except when using
the same duty cycles on the 3 modules, the edges of the outputs are not aligned. So the PSC outputs do not commute
at the same time, thus the system which is driven by these outputs will generate less commutation noise.

In this mode, the PWM frequency is twice slower than in one ramp mode.

14.5.3.1 One Ramp Mode (Edge-Aligned)

The following figure shows the resultant outputs PSCOUTnA and PSCOUTNB operating in one ramp mode over a PSC
cycle.

Figure 14-4. PSCOUTNnA and PSCOUTNB Basic Waveforms in One Ramp Mode
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On-time A = (POCRnRAH/L - POCRnSAH/L) x 1/Fclkpsc
On-time B = (POCRNRBH/L - POCRnSBHI/L) x 1/Fclkpsc
Dead-time A = (POCRNSAH/L + 1) x 1/Fclkpsc

Dead-time B = (POCRnSBH/L — POCRnRAHI/L) x 1/Fclkpsc
Minimal value for dead-time A = 1/Fclkpsc

If the overlap protection is disabled, in one-ramp mode, PSCOUTnA and PSCOUTNB outputs can be configured to overlap
each other, though in normal use this is not desirable.

Figure 14-5. Controlled Start and Stop Mechanism in One-Ramp Mode
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Note: See Section 14.16.8 “PSC Control Register — PCTL” on page 130 (PCCYC =1)
14.5.3.2 Center Aligned Mode
In center aligned mode, the center of PSCOUTnA and PSCOUTNB signals are centered.

Figure 14-6. PSCOUTNA and PSCOUTNB Basic Waveforms in Center Aligned Mode
PSC Counter
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On-time 0 = 2 x POCRNSAH/L x 1/Fclkpsc

On-time 1 =2 x (POCRnNRBH/L — POCRNSBH/L + 1) x 1/Fclkpsc
Dead-time = (POCRnSBH/L — POCRNnSAH/L) x 1/Fclkpsc

PSC cycle = 2 x (POCRnRBHI/L + 1) x 1/Fclkpsc

Minimal value for PSC cycle = 2 x 1/Fclkpsc

Note that in center aligned mode, POCRnNRAHI/L is not required (as it is in one-ramp mode) to control PSC Output waveform
timing. This allows POCRnNRAH/L to be freely used to adjust ADC synchronization (See Section 14.12 “Analog
Synchronization” on page 126).

Figure 14-7. Controlled Start and Stop Mechanism in Centered Mode

POCRNnRB
POCRNSB
POCRnSA

PSC Counter

Run |

PSCOUTNA

PSCOUTNB

Note: See Section 14.16.8 “PSC Control Register — PCTL” on page 130 (PCCYC =1)
14.6 Update of Values
To avoid unasynchronous and incoherent values in a cycle, if an update of one of several values is necessary, all values are
updated at the same time at the end of the cycle by the PSC. The new set of values is calculated by software and the update
is initiated by software.
Figure 14-8. Update at the End of Complete PSC Cycle
Regulation Loop Writting in
Calculati PSC Regi
I I alculation I egisters ¢ ?:]qssz;zr
Cycle Cycle Cycle Cycle
| with Set i | with Set i | with Set i | with Set i |
PSC i i i i
Cycle
| with Set j |
End of Cycle
The software can stop the cycle before the end to update the values and restart a new PSC cycle.
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14.6.1 Value Update Synchronization

14.7

14.8

122

New timing values or PSC output configuration can be written during the PSC cycle. Thanks to LOCK configuration bit, the
new whole set of values can be taken into account after the end of the PSC cycle.

When LOCK configuration bit is set, there is no update. The update of the PSC internal registers will be done at the end of
the PSC cycle if the LOCK bit is released to zero.

The registers which update is synchronized thanks to LOCK are POC, POM2, POCRnSAH/L, POCRnRAH/L, POCRnSBH/L
and POCRnRBH/L.

See these register’'s description starting on in Section 14.16.7 “PSC Configuration Register — PCNF” on page 130

Overlap Protection

Thanks to overlap protection two outputs on a same module cannot be active at the same time. So it cannot generate cross
conduction. This feature can be disactivated thanks to POVEn (PSC overlap enable).

For ATmega16/64M1, and ATmega32M1 since rev C, the overlap protection is activated with only one condition:
1. POVENN=0 (PSC module n overlap enable)

Up to rev B of ATmega32M1, the overlap protection was activated with the 2 following conditions:
2. POVENN=0 (PSC module n overlap enable)
3. The two channels A and B of a pwm pair n must be activated (POENnA = POENNB = 1)

This difference can induce some behavior change between rev B and rev C of ATmega32M1, when only one channel of a
PWM pair output is active.

To avoid such behavior, it is recommended in case of using only one channel of a pwm pair, to disable overlap protection bit
(POVENN = 1).
Signal Description

Figure 14-9. PSC External Block View
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14.8.1 Input Description

Table 14-1. Internal Inputs

Name Description Type Width
POCR_RBJ[11:0] Compare value which reset signal on part B (PSCOUTNB) Register, 12 bits
POCRNSB[11:0] Compare value which set Signal on part B (PSCOUTNB) Register, 12 bits
POCRNRA[11:0] Compare value which reset signal on part A (PSCOUTNA) Register, 12 bits
POCRNSA[11:0] Compare value which set signal on part A (PSCOUTnA) Register, 12 bits
CLK /O Clock input from 1/O clock Signal

CLK PLL Clock input from PLL Signal

AC00 Analog comparator 0 output Signal

AC10 Analog comparator 1 output Signal

AC20 Analog comparator 2 output Signal

Table 14-2. Block Inputs

Description Type Width
PSCINO Input 0 used for fault function Signal
PSCIN1 Input 1 used for fault function Signal
PSCIN2 Input 2 used for fault function Signal

14.8.2 Output Description

Table 14-3. Block Outputs

Name Description Type Width
PSCOUTOA PSC module 0 output A Signal
PSCOUTOB PSC module 0 output B Signal
PSCOUT1A PSC module 1 output A Signal
PSCOUT1B PSC module 1 output B Signal
PSCOUT2A PSC module 2 output A Signal
PSCOUT2B PSC module 2 output B Signal

Table 14-4. Internal Outputs

Description
IRQPSCn PSC interrupt request: two sources, overflow, fault Signal
PSCASY ADC synchronization (+ amplifier syncho.)(") Signal

Note: 1. See Section 14.12 “Analog Synchronization” on page 126.
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149 PSC Input

For detailed information on the PSC, please refer to the Application Note “AVR138: PSC Cookbook”, available on the Atmel®
web site.

Each module 0, 1 and 2 of PSC has its own system to take into account one PSC input. According to PSC module n input
control register (See Section 14.16.9 “PSC Module n Input Control Register — PMICn” on page 131), PSCINn input can act
has a Retrigger or fault input.

Each block A or B is also configured by this PSC module n input control register (PMICn).

Figure 14-10. PSC Input Module
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14.9.1 PSC Input Configuration
The PSC input configuration is done by programming bits in configuration registers.

14.9.1.1 Filter Enable

If the “Filter Enable” bit is set, a digital filter of 4 cycles is inserted before evaluation of the signal. The disable of this function
is mainly needed for prescaled PSC clock sources, where the noise cancellation gives too high latency.

Important: If the digital filter is active, the level sensitivity is true also with a disturbed PSC clock to deactivate the outputs
(emergency protection of external component). Likewise when used as fault input, PSC Module n Input A or Input B have to
go through PSC to act on PSCOUTN0/1/2 outputs. This way needs that CLKg¢ is running. So thanks to PSC asynchronous
output control bit (PAOCNnA/B), PSCINnN input can desactivate directly the PSC outputs. Notice that in this case, input is still
taken into account as usually by input module system as soon as CLKpg is running.

Figure 14-11. PSC Input Filtering
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14.9.1.2 Signal Polarity

One can select the active edge (edge modes) or the active level (level modes). See PELEVnx bit description in Section
14.16.9 “PSC Module n Input Control Register — PMICn” on page 131.

If PELEVnx bit set, the significant edge of PSCn Input A or B is rising (edge modes) or the active level is high (level modes)
and vice versa for unset/falling/low
® In2-or4-ramp mode, PSCn Input A is taken into account only during Dead-Time0 and On-Time0 period (respectively
Dead-Time1 and On-Time1 for PSCn input B).

® In 1-ramp-mode PSC Input A or PSC Input B act on the whole ramp.

14.9.1.3 Input Mode Operation
Thanks to 4 configuration bits (PRFM3:0), it's possible to define the mode of the PSC inputs.

Table 14-5. PSC Input Mode Operation

PRFMn2:0 Description

000b No action, PSC input is ignored

001b Disactivate module n outputs A

010b Disactivate module n output B

011b Disactivate module n output A and B

10x Disactivate all PSC output

11xb Halt PSC and wait for software action

Note: All following examples are given with rising edge or high level active inputs.

14.10 PSC Input Modes 001b to 10xb: Deactivate Outputs without Changing Timing

Figure 14-12. PSC Behavior versus PSCn Input in Mode 001b to 10xb
DTO OTO DT1 OT1 DTOOT0O DT1 OT1 DT0O OT0O DT1 OT1

PscoutnA __| | [T [ |
__ 4 __
PSCOUTNB [MT-"T1 ¢ r [ |
70X | x
1 \ I \
[} I \ 1
\ ! \ !
PSC Input N | V 1/

Figure 14-13. PSC Behavior versus PSCn Input A or Input B in Fault Mode 4
DTO OTO DT1 OT1 DTO OT0O DT1 OT1 DT0O OTO DT1 OT1

pscoutna __ [ | FTT T 1

A 4 4

PSCOUTNB | | |

|
1
|
|
\
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|
|

[ \
PSC Input I I l I:

PSCn Input acts indifferently on On-Time0/Dead-Time0 or on On-Time1/Dead-Time1.
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14.11 PSC Input Mode 11xb: Halt PSC and Wait for Software Action

Figure 14-14. PSC Behavior versus PSCn Input A in Fault Mode 11xb
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Note: Software action is the setting of the PRUNnN bit in PCTLn register.
Used in fault mode 7, PSCn input A or PSCn input B act indifferently on On-TimeO/Dead-Time0 or on On-Time1/Dead-

Time1.

14.12 Analog Synchronization

Each PSC module generates a signal to synchronize the ADC sample and hold; synchronisation is mandatory for
measurements.

This signal can be selected between all falling or rising edge of PSCOUTNA or PSCOUTNB outputs.

In center aligned mode, OCRnRAHI/L is not used, so it can be used to specified the synchronization of the ADC. It this case,
it's minimum value is 1.

14.13 Interrupt Handling

As each PSC module can be dedicated for one function, each PSC has its own interrupt system (vector .. )
List of interrupt sources:

e  Counter reload (end of on time 1)

e PSC input event (active edge or at the beginning of level configured event)

e  PSC mutual synchronization error

14.14 PSC Clock Sources

Each PSC has two clock inputs:
e CLKPLL from the PLL
e CLKI/O

Figure 14-15. Clock Selection
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— CLKpscn

PCLKSELn bit in PSC control register (PCTL) is used to select the clock source.
PPREN1/0 bits in PSC control register (PCTL) are used to select the divide factor of the clock.
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Table 14-6. Output Clock versus Selection and Prescaler

PCLKSELN PPREN1 PPRENO CLKPSCn output

0 0 0 CLK /O

0 0 1 CLK /O /4

0 1 0 CLK /O /32

0 1 1 CLK I/O / 256

1 0 0 CLK PLL

1 0 1 CLKPLL/4

1 1 0 CLKPLL /32

1 1 1 CLK PLL /256

14.15 Interrupts
This section describes the specifics of the interrupt handling as performed in ATmega16/32/64/M1/C1.

14.15.1 Interrupt Vector

PSC provides 2 interrupt vectors:
e PSC_End (end of cycle): When enabled and when a match with POCR_RB occurs
e PSC_Fault (fault event): When enabled and when a PSC input detects a fault event.

14.15.2 PSC Interrupt Vectors in ATmegal6/32/64/M1/C1

Table 14-7. PSC Interrupt Vectors

Vector Program
No. Address Source Interrupt Definition
5 0x0004 PSC_Fault PSC fault event
6 0x0005 PSC_End PSC end of cycle

14.16 PSC Register Definition

Registers are explained for PSC module 0. They are identical for module 1 and module 2.

14.16.1 PSC Output Configuration — POC

Bit 7 6 5 4 3 2 1 0

| - | - | POEN2B | POEN2A | POEN1B | POEN1A | POENOB [ POENOA|  POC
Read/Write R/W RIW RIW R/W RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

* Bit7-notuse

not use

* Bit 6 -notuse

not use

e Bit5—- POEN2B: PSC Output 2B Enable

When this bit is clear, 1/0 pin affected to PSCOUT2B acts as a standard port.When this bit is set, 1/0 pin affected to
PSCOUT2B is connected to the PSC module 2 waveform generator B output and is set and clear according to the PSC
operation.
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e Bit 4 - POEN2A: PSC Output 2A Enable
When this bit is clear, 1/0O pin affected to PSCOUT2A acts as a standard port.

When this bit is set, 1/0 pin affected to PSCOUT2A is connected to the PSC module 2 waveform generator A output and is
set and clear according to the PSC operation.

e Bit 3— POEN1B: PSC Output 1B Enable
When this bit is clear, I/0O pin affected to PSCOUT1B acts as a standard port.

When this bit is set, 1/0 pin affected to PSCOUT1B is connected to the PSC module 1 waveform generator B output and is
set and clear according to the PSC operation.

e Bit 2 - POEN1A: PSC Output 1A Enable
When this bit is clear, I/O pin affected to PSCOUT1A acts as a standard port.

When this bit is set, 1/0 pin affected to PSCOUT1A is connected to the PSC module 1 waveform generator A output and is
set and clear according to the PSC operation.

e Bit 1 - POENOB: PSC Output 0B Enable
When this bit is clear, 1/0 pin affected to PSCOUTOB acts as a standard port.

When this bit is set, 1/0 pin affected to PSCOUTOB is connected to the PSC module 0 waveform generator B output and is
set and clear according to the PSC operation.

« Bit 0 — POENOA: PSC Output OA Enable
When this bit is clear, 1/0O pin affected to PSCOUTOA acts as a standard port.

When this bit is set, 1/0 pin affected to PSCOUTOA is connected to the PSC module 0 waveform generator A output and is
set and clear according to the PSC operation.

14.16.2 PSC Synchro Configuration — PSYNC

Bit 7 6 5 4 3 2 1 0
| - | - |[PSYNC21|PSYNC20|PSYNC11|[PSYNC10|PSYNCO1|PSYNCOO] PSYNC
Read/Write RIW RIW R/W R/W RIW R/W RIW R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit7-notuse

not use

* Bit 6 —notuse

not use

e Bit5:4 - PSYNC21:0: Synchronization Out for ADC Selection

Select the polarity and signal source for generating a signal which will be sent from module 2 to the ADC for synchronization
e Bit 3:2 - PSYNC11:0: Synchronization Out for ADC Selection

Select the polarity and signal source for generating a signal which will be sent from module 1 to the ADC for synchronization
e Bit 1:0 - PSYNCO01:0: Synchronization Out for ADC Selection

Select the polarity and signal source for generating a signal which will be sent from module 0 to the ADC for synchronization.

Table 14-8. Synchronization Source Description in One Ramp Mode

PSYNCn1 PSYNCnO Description

0 0 Send signal on leading edge of PSCOUTnA(match with OCRnSA)

0 1 Send signal on trailing edge of PSCOUTnA(match with OCRNRA or fault/retrigger on
part A)

1 0 Send signal on leading edge of PSCOUTNB (match with OCRnSB)

1 1 Send signal on trailing edge of PSCOUTNB (match with OCRnRB or fault/retrigger on
part B)
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Table 14-9. Synchronization Source Description in Centered Mode

PSYNCn1 PSYNCNnO Description

0 0 Send signal on match with OCRnRA (during counting down of PSC). The min value of
OCRNRA must be 1.

0 1 Send signal on match with OCRnRA (during counting up of PSC). The min value of
OCRNRA must be 1.

1 0 no synchronization signal

1 1 no synchronization signal

14.16.3 PSC Output Compare SA Register —- POCRNnSAH and POCRNSAL

Bit 7 6 5 4 3 2 1 0
- | -1 - 1 -1 POCRNSA[11:8] POCRNSAH
POCRNSA[7:0] POCRNSAL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

14.16.4 PSC Output Compare RA Register —- POCRnRAH and POCRnRAL

Bit 7 6 5 4 3 2 1 0
- | -1 - 1 -1 POCRNRA[11:8] POCRNRAH
POCRNRA[7:0] POCRNRAL
Read/Write R/W R/W R/W R/W RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

14.16.5 PSCOutput Compare SB Register - POCRnSBH and POCRnSBL

Bit 7 6 5 4 3 2 1 0
- -7 -1 -1 POCRNSB[11:8] JpocrnsBH
POCRNSBJ[7:0] ] ocrnsBL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

14.16.6 PSC Output Compare RB Register - POCR_RBH and POCR_RBL

Bit 7 6 5 4 3 2 1 0
- | -1 - 1 -1 POCRNRB[11:8] POCR_RBH
POCRNRB[7:0] POCR_RBL
Read/Write R/W R/W R/W R/W R/W R/W RIW RIW
Initial Value 0 0 0 0 0 0 0 0
Note: n = 0 to 2 according to module number.

The output compare registers RA, RB, SA and SB contain a 12-bit value that is continuously compared with the PSC counter
value. A match can be used to generate an output compare interrupt, or to generate a waveform output on the associated
pin.

The output compare registers are 16bit and 12-bit in size. To ensure that both the high and low bytes are written
simultaneously when the CPU writes to these registers, the access is performed using an 8-bit temporary high byte register
(TEMP). This temporary register is shared by all the other 16-bit registers.
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14.16.7 PSC Configuration Register — PCNF

Bit 7 6 5 4 3 2 1 0
| - | - |PULOCK | PMODE | POPB POPA - - | PcNF
Read/Write R R R/W RIW R/IW R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7:6 - not use
not use
e Bit5-PULOCK: PSC Update Lock

When this bit is set, the output compare registers POCRnRA, POCRnSA, POCRnSB, POCR_RB and the PSC output
configuration registers POC can be written without disturbing the PSC cycles. The update of the PSC internal registers will
be done if the PULOCK bit is released to zero.

* Bit 4 - PMODE PSC Mode
Select the mode of PSC.

Table 14-10. PSC Mode Selection

Description
0 One ramp mode (edge aligned)
1 Center aligned mode

e Bit 3— POPB: PSC B Output Polarity

If this bit is cleared, the PSC outputs B are active low.
If this bit is set, the PSC outputs B are active high.

e Bit 2 - POPA: PSC A Output Polarity

If this bit is cleared, the PSC outputs A are active low.
If this bit is set, the PSC outputs A are active high.

e Bit 1:0 - not use

not use

14.16.8 PSC Control Register — PCTL

Bit 7 6 5 4 3 2 1 0

| PPREL | PPREO [PCLKSEL | SWAP2 | SWAP1 | SWAPO | PCCYC | PRUN [ PCTL
Read/Write R/IW R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7:6 — PPRE1:0 : PSC Prescaler Select
This two bits select the PSC input clock division factor. All generated waveform will be modified by this factor.

Table 14-11. PSC Prescaler Selection

Description
0 0 No divider on PSC input clock
0 1 Divide the PSC input clock by 4
1 0 Divide the PSC input clock by 32
1 1 Divide the PSC clock by 256

e Bit5—-PCLKSEL: PSC Input Clock Select
This bit is used to select between CLKp | or CLK|q clocks.

Set this bit to select the fast clock input (CLKp, ). Clear this bit to select the slow clock input (CLK|g).
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e Bit 4:3:2 - SWAPNn: SWAP Funtion Select (not implemented in ATmega32M1 up to revision C)

When this bit is set; the channels PSCOUTNA and PSCOUTNB are exchanged. This allows to invert the waveforms of both
channels at one time.

e Bit1-PCCYC: PSC Complete Cycle

When this bit is set, the PSC completes the entire waveform cycle before halt operation requested by clearing PRUN.
e Bit 0— PRUN: PSC Run

Writing this bit to one starts the PSC.

14.16.9 PSC Module n Input Control Register — PMICn

Bit 7 6 5 4 3 2 1 0
| POVENN | PISELn | PELEVn | PFLTEn | PAOCn | PRFMn2 | PRFMn1 | PRFMnO} PMICn
Read/Write RIW RIW RIW RW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

The input control registers are used to configure the 2 PSC’s Retrigger/Fault block A and B. The 2 blocks are identical, so
they are configured on the same way.

e Bit 7—-POVENN: PSC Module n Overlap Enable

Set this bit to disactivate the overlap protection. See Section 14.7 “Overlap Protection” on page 122.

e Bit 6 — PISELn: PSC Module n Input Select

Clear this bit to select PSCINn as module n input.

Set this bit to select comparator n output as module n input.

e Bit 5-PELEVn: PSC Module n Input Level Selector

When this bit is clear, the low level of selected input generates the significative event for fault function.
When this bit is set, the high level of selected input generates the significative event for fault function.
* Bit4 - PFLTEn: PSC Module n Input Filter Enable

Setting this bit (to one) activates the input noise canceler. When the noise canceler is activated, the input from the input pin
is filtered. The filter function requires four successive equal valued samples of the input pin for changing its output. The input
is therefore delayed by four oscillator cycles when the noise canceler is enabled.

e Bit 3— PAOCnh: PSC Module n 0 Asynchronous Output Control

When this bit is clear, fault input can act directly to PSC module n outputs A and B. See Section 14.9.1 “PSC Input
Configuration” on page 124.

e Bit 2:0 - PRFMn2:0: PSC Module n Input Mode

These three bits define the mode of operation of the PSC inputs.

Table 14-12. Input Mode Operation

PRFMn2:0 Description

000b No action, PSC input is ignored
001b Disactivate module n outputs A
010b Disactivate module n output B
011b Disactivate module n output A and B
10x Disactivate all PSC output
11xb Halt PSC and wait for software action
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14.16.10 PSC Interrupt Mask Register — PIM

Bit 7 6 5 4 3 2 1 0
| - | - | - | - PEVE2 | PEVEL | PEVEO | PEOPE | PIM
Read/Write R R R R R/W R/W R/W RIW
Initial Value 0 0 0 0 0 0 0 0

e Bit 7:4 —not use

not use.

e Bit 3-PEVE2: PSC External Event 2 Interrupt Enable

When this bit is set, an external event which can generates a a fault on module 2 generates also an interrupt.
e Bit 2 - PEVEL: PSC External Event 1 Interrupt Enable

When this bit is set, an external event which can generates a fault on module 1 generates also an interrupt.

e Bit 1 - PEVEQ: PSC External Event O Interrupt Enable

When this bit is set, an external event which can generates a fault on module 0 generates also an interrupt.

e Bit 0 — PEOPE: PSC End Of Cycle Interrupt Enable

When this bit is set, an interrupt is generated when PSC reaches the end of the whole cycle.

14.16.11 PSC Interrupt Flag Register — PIFR

Bit 7 6 5 4 3 2 1 0
| - | - | - | - PEV2 PEV1 PEVO PEOP | PIFR
Read/Write R R R R R/IW R/W RIW R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7:4 —not use

not use.

e Bit 3— PEV2: PSC External Event 2 Interrupt

This bit is set by hardware when an external event which can generates a fault on module 2 occurs.
Must be cleared by software by writing a one to its location.

This bit can be read even if the corresponding interrupt is not enabled (PEVE2 bit = 0).

e Bit 2 - PEV1: PSC External Event 1 Interrupt

This bit is set by hardware when an external event which can generates a fault on module 1 occurs.
Must be cleared by software by writing a one to its location.

This bit can be read even if the corresponding interrupt is not enabled (PEVE1 bit = 0).

e Bit 1 - PEVO0: PSC External Event O Interrupt

This bit is set by hardware when an external event which can generates a fault on module 0 occurs.
Must be cleared by software by writing a one to its location.

This bit can be read even if the corresponding interrupt is not enabled (PEVEO bit = 0).

* Bit 0— PEOP: PSC End Of Cycle Interrupt

This bit is set by hardware when an “end of PSC cycle” occurs.

Must be cleared by software by writing a one to its location.

This bit can be read even if the corresponding interrupt is not enabled (PEOPE bit = 0).
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15. Serial Peripheral Interface — SPI

The serial peripheral interface (SPI) allows high-speed synchronous data transfer between the ATmega16/32/64/M1/C1 and
peripheral devices or between several AVR devices.

The ATmega16/32/64/M1/C1 SPI includes the following features:

15.1 Features
e  Full-duplex, three-wire synchronous data transfer
Master or slave operation
LSB first or MSB first data transfer
Seven programmable bit rates
End of transmission interrupt flag
Write collision flag protection
Wake-up from idle mode
Double speed (CK/2) master SPI mode

Figure 15-1. SPI Block Diagram®
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Note: 1. Referto Figure 1-1 on page 3, and Table 9-3 on page 58 for SPI pin placement.
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The interconnection between master and slave CPUs with SPI is shown in Figure 15-2. The system consists of two shift
registers, and a master clock generator. The SPI master initiates the communication cycle when pulling low the slave select
SS pin of the desired slave. Master and slave prepare the data to be sent in their respective shift registers, and the master
generates the required clock pulses on the SCK line to interchange data. Data is always shifted from master to slave on the
master out — slave in, MOSI, line, and from slave to master on the master in — slave out, MISO, line. After each data packet,
the master will synchronize the slave by pulling high the slave select, SS, line.

When configured as a master, the SPI interface has no automatic control of the SS line. This must be handled by user
software before communication can start. When this is done, writing a byte to the SPI data register starts the SPI clock
generator, and the hardware shifts the eight bits into the slave. After shifting one byte, the SPI clock generator stops, setting
the end of transmission flag (SPIF). If the SPI interrupt enable bit (SPIE) in the SPCR register is set, an interrupt is
requested. The master may continue to shift the next byte by writing it into SPDR, or signal the end of packet by pulling high
the slave select, SS line. The last incoming byte will be kept in the buffer register for later use.

When configured as a slave, the SPI interface will remain sleeping with MISO tri-stated as long as the SS pin is driven high.
In this state, software may update the contents of the SPI data register, SPDR, but the data will not be shifted out by
incoming clock pulses on the SCK pin until the SS pin is driven low. As one byte has been completely shifted, the end of
transmission flag, SPIF is set. If the SPI interrupt enable bit, SPIE, in the SPCR register is set, an interrupt is requested. The
slave may continue to place new data to be sent into SPDR before reading the incoming data. The last incoming byte will be
kept in the buffer register for later use.

Figure 15-2. SPI Master-slave Interconnection
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The system is single buffered in the transmit direction and double buffered in the receive direction. This means that bytes to
be transmitted cannot be written to the SPI data register before the entire shift cycle is completed. When receiving data,
however, a received character must be read from the SPI data register before the next character has been completely
shifted in. Otherwise, the first byte is lost.

In SPI slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure correct sampling of the clock
signal, the frequency of the SPI clock should never exceed f;,/4.

When the SP! is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden according to Table 15-1. For
more details on automatic port overrides, refer to Section 9.3 “Alternate Port Functions” on page 55.

Table 15-1. SPI Pin Overrides®

Direction, Master SPI Direction, Slave SPI
MOSI User defined Input
MISO Input User defined
SCK User defined Input
SS User defined Input

Note: 1. See Section 9.3.2 “Alternate Functions of Port B” on page 58 for a detailed description of how to define the
direction of the user defined SPI pins.
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The following code examples show how to initialize the SPI as a master and how to perform a simple transmission.

DDR_SPI in the examples must be replaced by the actual data direction register controlling the SPI pins. DD_MOSI,
DD_MISO and DD_SCK must be replaced by the actual data direction bits for these pins. E.g. if MOSI is placed on pin PB2,
replace DD_MOSI with DDB2 and DDR_SPI with DDRB.

Assembly Code Example("

SPI _Masterlnit:
; Set MOSI and SCK output, all others input

| di r17, (1<<DD_MOSI) | ( 1<<DD_SCK)

out DDR _SPI, r17

: Enable SPI, Master, set clock rate fck/16

| di ri7, (1<<SPE) | ( 1<<MBTR) | ( 1<<SPRO)
out SPCR, r 17

ret

SPI _MasterTransmit:
; Start transm ssion of data (r16)
out SPDR, r 16
Wait_Transmit:
; Wait for transm ssion conplete

shi s SPSR, SPI F
rjnmp Wit _Transmit
ret

C Code Example!"

voi d SPI _Masterlnit(void)

{
/* Set MOSI and SCK output, all others input */
DDR_SPI = (1<<DD_MOSI) | (1<<DD_SCK);
/* Enable SPlI, Master, set clock rate fck/ 16 */
SPCR = (1<<SPE) | (1<<MSTR) | ( 1<<SPR0) ;
}
voi d SPlI _Master Transm t (char cDat a)
{
/* Start transmission */
SPDR = cDat a;
/* Wait for transm ssion conplete */
whi |l e(! (SPSR & (1<<SPIF)))
}

Note: 1. The example code assumes that the part specific header file is included.
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The following code examples show how to initialize the SPI as a Slave and how to perform a simple reception.

Assembly Code Example("

SPI _Slavelnit:
; Set M SO output, all others input

| di ri7, (1<<DD_M SO
out DDR_SPI, r17

; Enabl e SPI

| di r17, (1<<SPE)

out SPCR, r17

ret

SPI _Sl aveRecei ve:
; Wait for reception conplete

shi s SPSR, SPI F

rjnm SPI _Sl aveRecei ve
: Read received data and return

in r 16, SPDR

ret

C Code Example!"
void SPI _Sl avel nit(void)

{
/* Set M SO output, all others input */
DDR_SPI = (1<<DD M SO);
/* Enable SPI */
SPCR = (1<<SPE);
}
char SPI _Sl aveRecei ve(voi d)
{
/* Wait for reception conplete */
while(!(SPSR & (1<<SPIF)))
/* Return data register */
return SPDR
}

Note: 1. The example code assumes that the part specific header file is included.
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15.2  SSPin Functionality

15.2.1 Slave Mode

When the SPI is configured as a slave, the slave select (S_S) pin is always input. When g@eld low, the SPI is activated,
and MISO becomes an output if configured so by the user. All other pins are inputs. When SS is driven high, all pins are
inputs, and the SPI is passive, which means that it will not receive incoming data. Note that the SPI logic will be reset once
the SS pin is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous with the master clock
generator. When the SS pin is driven high, the SPI slave will immediately reset the send and receive logic, and drop any
partially received data in the shift register.

15.2.2 Master Mode

When the SPI is configured as a master (MSTR in SPCR is set), the user can determine the direction of the SS pin.

IfSSis configured as an output, the pin is a general output pin which does not affect the SPI system. Typically, the pin will be
driving the SS pin of the SPI slave.
If SS is configured as an input, it must be held high to ensure master SPI operation. If the Ss pin is driven low by peripheral
circuitry when the SPI is configured as a master with the sSs pin defined as an input, the SPI system interprets this as
another master selecting the SPI as a slave and starting to send data to it. To avoid bus contention, the SPI system takes the
following actions:
1. The MSTR bit in SPCR is cleared and the SPI system becomes a slave. As a result of the SPI becoming a slave,
the MOSI and SCK pins become inputs.
2. The SPIF flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG is set, the interrupt routine
will be executed.

Thus, when interrupt-driven SPI transmission is used in master mode, and there exists a possibility that SS is driven low, the
interrupt should always check that the MSTR bit is still set. If the MSTR bit has been cleared by a slave select, it must be set
by the user to re-enable SPI master mode.

15.2.3 MCU Control Register - MCUCR

Bit 7 6 5 4 3 2 1 0

| spps | - | - | PuD = = IVSEL IVCE | MCUCR
Read/Write R/W R R R/W R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7- SPIPS: SPI Pin Redirection
Thanks to SPIPS (SPI pin select) in MCUCR Sfr, SPI pins can be redirected.
When the SPIPS bit is written to zero, the SPI signals are directed on pins MISO,MOSI, SCK and SS.
e  When the SPIPS bit is written to one, the SPI signals are directed on alternate SPI pins, MISO_A, MOSI_A, SCK_A
and SS_A.

Note that programming port are always located on alternate SPI port.
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15.2.4 SPI Control Register — SPCR

Bit 7 6 5 4 3 2 1 0

| SPE | SPE | DORD | MSTR | CPOL | CPHA SPR1 SPRO | SPCR
Read/Write R/W R/W R/IW R/W R/W R/W RIW R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - SPIE: SPI Interrupt Enable

This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR register is set and the if the global interrupt enable bit
in SREG is set.

* Bit 6 — SPE: SPI Enable

When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI operations.
e Bit 5 - DORD: Data Order

When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

« Bit 4 - MSTR: Master/Slave Select

This bit selects master SPI mode when written to one, and slave SPI mode when written logic zero. If SS is configured as an
input and is driven low while MSTR is set, MSTR will be cleared, and SPIF in SPSR will become set. The user will then have
to set MSTR to re-enable SPI master mode.

e Bit 3— CPOL: Clock Polarity

When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low when idle. Refer to
Figure 15-3 and Figure 15-4 for an example. The CPOL functionality is summarized below:

Table 15-2. CPOL Functionality

Leading Edge Trailing Edge
0 Rising Falling
1 Falling Rising

* Bit 2 - CPHA: Clock Phase

The settings of the clock phase bit (CPHA) determine if data is sampled on the leading (first) or trailing (last) edge of SCK.
Refer to Figure 15-3 and Figure 15-4 for an example. The CPOL functionality is summarized below:

Table 15-3. CPHA Functionality

Leading Edge Trailing Edge
0 Sample Setup
1 Setup Sample
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15.2.5

15.2.6

Atmel

* Bits 1, 0 — SPR1, SPRO: SPI Clock Rate Select 1 and 0
These two bits control the SCK rate of the device configured as a Master. SPR1 and SPRO have no effect on the slave. The

relationship between SCK and the clk,q frequency f, is shown in the following table:
Table 15-4. Relationship Between SCK and the Oscillator Frequency

SPI2X
0

SPR1 SPRO SCK Frequency
foiol4

fclkio/ 16

fonio/64
fokio/128

fclkio/ 2

foio/8

foiiof 32

fclkio/ 64

- O = O =~ O = O

0
0
0
1
1
1
1

SPI Status Register — SPSR

Bit 7 6 5 4 3 2 1 0

| spF | wcoL | SPI2X | SPSR
Read/Write R R R R R R R RIW
0 0 0 0 0 0 0

Initial Value 0

e Bit 7 - SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF flag is set. An interrupt is generated if SPIE in SPCR is set and global interrupts
are enabled. If SS is an input and is driven low when the SPI is in master mode, this will also set the SPIF flag. SPIF is
cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, the SPIF bit is cleared by
first reading the SPI status register with SPIF set, then accessing the SPI data register (SPDR).

e Bit 6 —WCOL: Write COLIlision Flag

The WCOL bit is set if the SPI data register (SPDR) is written during a data transfer. The WCOL bit (and the SPIF bit) are
cleared by first reading the SPI status register with WCOL set, and then accessing the SPI data register.

* Bit5..1 — Res: Reserved Bits
These bits are reserved bits in the ATmega16/32/64/M1/C1 and will always read as zero.
e Bit 0 — SPI2X: Double SPI Speed Bit

When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI is in master mode (see
Table 15-4). This means that the minimum SCK period will be two CPU clock periods. When the SPI is configured as slave,
the SPI is only guaranteed to work at f,;,/4 or lower.

The SPI interface on the ATmega16/32/64/M1/C1 is also used for program memory and EEPROM downloading or
uploading. See Section 25.9.1 “Serial Programming Algorithm” on page 270 for serial programming and verification.

SPI Data Register — SPDR

Bit 7 6 5 4 3 2 1 0
| sPp7 | sPD6 | sPDs SPD4 SPD3 SPD2 SPD1 SPDO | SPDR
Read/Write RIW R/W R/W R/IW R/W RIW R/W R/IW
Initial Value X X X X X X X X Undefined

* Bits 7:0 - SPD7:0: SPI Data

The SPI data register is a read/write register used for data transfer between the register file and the SPI shift register. Writing
to the register initiates data transmission. Reading the register causes the shift register receive buffer to be read.
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Data Modes

There are four combinations of SCK phase and polarity with respect to serial data, which are determined by control bits
CPHA and CPOL. The SPI data transfer formats are shown in Figure 15-3 and Figure 15-4. Data bits are shifted out and
latched in on opposite edges of the SCK signal, ensuring sufficient time for data signals to stabilize. This is clearly seen by
summarizing Table 15-2 and Table 15-3, as done below:

Table 15-5. CPOL Functionality

Leading Edge Trailing eDge SPI| Mode
CPOL=0, CPHA=0 Sample (rising) Setup (falling) 0
CPOL=0, CPHA=1 Setup (rising) Sample (falling) 1
CPOL=1, CPHA=0 Sample (falling) Setup (rising) 2
CPOL=1, CPHA=1 Setup (falling) Sample (rising) 3

Figure 15-3. SPI Transfer Format with CPHA =0
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Figure 15-4. SPI Transfer Format with CPHA =1
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16. Controller Area Network - CAN

The controller area network (CAN) protocol is a real-time, serial, broadcast protocol with a very high level of security. The
ATmega16/32/64/M1/C1 CAN controller is fully compatible with the CAN Specification 2.0 Part A and Part B. It delivers the
features required to implement the kernel of the CAN bus protocol according to the ISO/OSI reference model:

e The data link layer
e thelogical link control (LLC) sublayer
e the medium access control (MAC) sublayer
e The physical layer
e the physical signalling (PLS) sublayer
e not supported - the physical medium attach (PMA)
e not supported - the medium dependent interface (MDI)

The CAN controller is able to handle all types of frames (data, remote, error and overload) and achieves a bitrate of 1Mbit/s.

16.1 Features
e  Full can controller
e  Fully compliant with CAN standard rev 2.0 Aand rev 2.0 B
e 6 MOb (message object) with their own:
e 11 bits of identifier tag (rev 2.0 A), 29 bits of identifier tag (rev 2.0 B)
e 11 bits of identifier mask (rev 2.0 A), 29 bits of identifier mask (rev 2.0 B)
e 8 bytes data buffer (static allocation)
e Tx, Rx, frame buffer or automatic reply configuration
e Time stamping
e  1Mbit/s maximum transfer rate at 8MHz
TTC timer
Listening mode (for spying or autobaud)

16.2 CAN Protocol
The CAN protocol is an international standard defined in the ISO 11898 for high speed and ISO 11519-2 for low speed.

16.2.1 Principles

CAN is based on a broadcast communication mechanism. This broadcast communication is achieved by using a message
oriented transmission protocol. These messages are identified by using a message identifier. Such a message identifier has
to be unique within the whole network and it defines not only the content but also the priority of the message.

The priority at which a message is transmitted compared to another less urgent message is specified by the identifier of each
message. The priorities are laid down during system design in the form of corresponding binary values and cannot be
changed dynamically. The identifier with the lowest binary number has the highest priority.

Bus access conflicts are resolved by bit-wise arbitration on the identifiers involved by each node observing the bus level bit
for bit. This happens in accordance with the “wired and” mechanism, by which the dominant state overwrites the recessive
state. The competition for bus allocation is lost by all nodes with recessive transmission and dominant observation. All the
“losers” automatically become receivers of the message with the highest priority and do not re-attempt transmission until the
bus is available again.

16.2.2 Message Formats

The CAN protocol supports two message frame formats, the only essential difference being in the length of the identifier.
The CAN standard frame, also known as CAN 2.0 A, supports a length of 11 bits for the identifier, and the CAN extended
frame, also known as CAN 2.0 B, supports a length of 29 bits for the identifier.
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16.2.2.1 Can Standard Frame

Figure 16-1. CAN Standard Frames
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A message in the CAN standard frame format begins with the “Start Of Frame (SOF)”, this is followed by the “Arbitration
field” which consist of the identifier and the “Remote Transmission Request (RTR)” bit used to distinguish between the data
frame and the data request frame called remote frame. The following “Control field” contains the “IDentifier Extension (IDE)”
bit and the “Data Length Code (DLC)” used to indicate the number of following data bytes in the “Data field”. In a remote
frame, the DLC contains the number of requested data bytes. The “Data field” that follows can hold up to 8 data bytes. The
frame integrity is guaranteed by the following “Cyclic Redundant Check (CRC)” sum. The “ACKnowledge (ACK) field”
compromises the ACK slot and the ACK delimiter. The bit in the ACK slot is sent as a recessive bit and is overwritten as a
dominant bit by the receivers which have at this time received the data correctly. Correct messages are acknowledged by
the receivers regardless of the result of the acceptance test. The end of the message is indicated by “End Of Frame (EOF)".
The “Intermission Frame Space (IFS)” is the minimum number of bits separating consecutive messages. If there is no
following bus access by any node, the bus remains idle.

16.2.2.2 CAN Extended Frame

Figure 16-2. CAN Extended Frames
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A message in the CAN extended frame format is likely the same as a message in CAN standard frame format. The
difference is the length of the identifier used. The identifier is made up of the existing 11-bit identifier (base identifier) and an
18-bit extension (identifier extension). The distinction between CAN standard frame format and CAN extended frame format
is made by using the IDE bit which is transmitted as dominant in case of a frame in CAN standard frame format, and
transmitted as recessive in the other case.

16.2.2.3 Format Co-existence

As the two formats have to co-exist on one bus, it is laid down which message has higher priority on the bus in the case of
bus access collision with different formats and the same identifier / base identifier: The message in CAN standard frame
format always has priority over the message in extended format.

There are three different types of CAN modules available:
e 2.0A - considers 29 bit ID as an error
e 2.0B passive - ignores 29 bit ID messages
e 2.0B active - handles both 11 and 29 bit ID messages
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16.2.3 CAN Bit Timing

To ensure correct sampling up to the last bit, a CAN node needs to re-synchronize throughout the entire frame. This is done
at the beginning of each message with the falling edge SOF and on each recessive to dominant edge.

16.2.3.1 Bit Construction
One CAN bit time is specified as four non-overlapping time segments. Each segment is constructed from an integer multiple

of the time quantum. The time quantum or TQ is the smallest discrete timing resolution used by a CAN node.

Figure 16-3. CAN Bit Construction
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16.2.3.2 Synchronization Segment

The first segment is used to synchronize the various bus nodes.

On transmission, at the start of this segment, the current bit level is output. If there is a bit state change between the previous
bit and the current bit, then the bus state change is expected to occur within this segment by the receiving nodes.

16.2.3.3 Propagation Time Segment

This segment is used to compensate for signal delays across the network.

This is necessary to compensate for signal propagation delays on the bus line and through the transceivers of the bus
nodes.

16.2.3.4 Phase Segment 1
Phase Segment 1 is used to compensate for edge phase errors.
This segment may be lengthened during re-synchronization.
16.2.3.5 Sample Point

The sample point is the point of time at which the bus level is read and interpreted as the value of the respective bit. Its
location is at the end of phase segment 1 (between the two phase segments).

16.2.3.6 Phase Segment 2

This segment is also used to compensate for edge phase errors.

This segment may be shortened during re-synchronization, but the length has to be at least as long as the information
processing time (IPT) and may not be more than the length of phase segment 1.

16.2.3.7 Information Processing Time

It is the time required for the logic to determine the bit level of a sampled bit.

The IPT begins at the sample point, is measured in TQ and is fixed at 2TQ for the Atmel CAN. Since phase segment 2 also
begins at the sample point and is the last segment in the bit time, PS2 minimum shall not be less than the IPT.
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16.2.3.8 Bit Lengthening

As a result of resynchronization, phase segment 1 may be lengthened or phase segment 2 may be shortened to
compensate for oscillator tolerances. If, for example, the transmitter oscillator is slower than the receiver oscillator, the next
falling edge used for resynchronization may be delayed. So phase segment 1 is lengthened in order to adjust the sample
point and the end of the bit time.

16.2.3.9 Bit Shortening

If, on the other hand, the transmitter oscillator is faster than the receiver one, the next falling edge used for resynchronization
may be too early. So phase segment 2 in bit N is shortened in order to adjust the sample point for bit N+1 and the end of the
bit time

16.2.3.10 Synchronization Jump Width

The limit to the amount of lengthening or shortening of the phase segments is set by the Resynchronization jump width.
This segment may not be longer than phase segment 2.

16.2.3.11 Programming the Sample Point

Programming of the sample point allows “tuning” of the characteristics to suit the bus.

Early sampling allows more time quanta in the phase segment 2 so the synchronization jump width can be programmed to
its maximum. This maximum capacity to shorten or lengthen the bit time decreases the sensitivity to node oscillator
tolerances, so that lower cost oscillators such as ceramic resonators may be used.

Late sampling allows more time quanta in the propagation time segment which allows a poorer bus topology and maximum
bus length.
16.2.3.12 Synchronization

Hard synchronization occurs on the recessive-to-dominant transition of the start bit. The bit time is restarted from that edge.

Re-synchronization occurs when a recessive-to-dominant edge doesn't occur within the synchronization segment in a
message.

16.2.4 Arbitration
The CAN protocol handles bus accesses according to the concept called “Carrier Sense Multiple Access with Arbitration on
Message Priority”.

during transmission, arbitration on the CAN bus can be lost to a competing device with a higher priority CAN Identifier. This
arbitration concept avoids collisions of messages whose transmission was started by more than one node simultaneously
and makes sure the most important message is sent first without time loss.

The bus access conflict is resolved during the arbitration field mostly over the identifier value. If a data frame and a remote
frame with the same identifier are initiated at the same time, the data frame prevails over the remote frame (c.f. RTR bit).

Figure 16-4. Bus Arbitration

Arbitration lost

NodeA —m = p———— pP————————————-

TXCAN I_ | u Node A loses the bus
| I [ 1 I | | | | [ NodeBuwinstnebus

Node B
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16.2.5 Errors

The CAN protocol signals any errors immediately as they occur. Three error detection mechanisms are implemented at the
message level and two at the bit level:

16.2.5.1 Error at Message Level

e  Cyclic redundancy check (CRC)
The CRC safeguards the information in the frame by adding redundant check bits at the transmission end. At the
receiver these bits are re-computed and tested against the received bits. If they do not agree there has been a CRC
error.

e  Frame check
This mechanism verifies the structure of the transmitted frame by checking the bit fields against the fixed format and
the frame size. Errors detected by frame checks are designated “format errors”.

e ACKerrors
As already mentioned frames received are acknowledged by all receivers through positive acknowledgement. If no
acknowledgement is received by the transmitter of the message an ACK error is indicated.

16.2.5.2 Error at Bit Level

e  Monitoring
The ability of the transmitter to detect errors is based on the monitoring of bus signals. Each node which transmits
also observes the bus level and thus detects differences between the bit sent and the bit received. This permits
reliable detection of global errors and errors local to the transmitter.

e  Bit stuffing
The coding of the individual bits is tested at bit level. The bit representation used by CAN is “Non Return to Zero
(NRZ)” coding, which guarantees maximum efficiency in bit coding. The synchronization edges are generated by
means of bit stuffing.

16.2.5.3 Error Signalling

If one or more errors are discovered by at least one node using the above mechanisms, the current transmission is aborted
by sending an “error flag”. This prevents other nodes accepting the message and thus ensures the consistency of data
throughout the network. After transmission of an erroneous message that has been aborted, the sender automatically re-
attempts transmission.

16.3 CAN Controller

The CAN controller implemented into ATmega16/32/64/M1/C1 offers V2.0B active.

This full-CAN controller provides the whole hardware for convenient acceptance filtering and message management. For
each message to be transmitted or received this module contains one so called message object in which all information
regarding the message (e.g. identifier, data bytes etc.) are stored.

During the initialization of the peripheral, the application defines which messages are to be sent and which are to be
received. Only if the CAN controller receives a message whose identifier matches with one of the identifiers of the
programmed (receive) message objects the message is stored and the application is informed by interrupt. Another
advantage is that incoming remote frames can be answered automatically by the full-CAN controller with the corresponding
data frame. In this way, the CPU load is strongly reduced compared to a basic-CAN solution.

Using full-CAN controller, high baudrates and high bus loads with many messages can be handled.
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Figure 16-5. CAN Controller Structure
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16.4 CAN Channel

16.4.1 Configuration

The CAN channel can be in:
e Enabled mode
In this mode:
e the CAN channel (internal TXCAN and RxCAN) is enabled,
e the input clock is enabled.
e  Standby mode
In standby mode:
e the transmitter constantly provides a recessive level (on internal TXCAN) and the receiver is disabled,
e input clock is enabled,
e the registers and pages remain accessible.
e Listening mode
This mode is transparent for the CAN channel:
e enables a hardware loop back, internal TXCAN on internal RxCAN
e provides a recessive level on TXCAN output pin
e does not disable RXCAN input pin
e freezes TEC and REC error counters

Figure 16-6. Listening Mode

Internal

TxCAN

-

pps| TXCAN

Listen »—9

=
Internal ! RXCAN
RxCAN 0

16.4.2 Bit Timing
FSM’s (finite state machine) of the CAN channel need to be synchronous to the time quantum. So, the input clock for bit
timing is the clock used into CAN channel FSM’s.
Field and segment abbreviations:
e BRP: Baud rate prescaler.
TQ: Time quantum (output of baud rate prescaler).
SYNS: Synchronization segment is 1 TQ long.
PRS: Propagation time segment is programmabile to be 1, 2, ..., 8 TQ long.
PHS1: Phase segment 1 is programmable to be 1, 2, ..., 8 TQ long.
PHS2: Phase segment 2 is programmable to be < PHS1 and = INFORMATION PROCESSING TIME.
INFORMATION PROCESSING TIME is 2 TQ.
e  SJW: (Re) Synchronization jump width is programmable between 1 and min(4, PHS1).

The total number of TQ in a bit time has to be programmed at least from 8 to 25.
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16.4.3

16.4.4

148

Figure 16-7. Sample and Transmission Point
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Figure 16-8. General Structure of a Bit Period
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With no baud rate prescaler (BRP[5..0]=0) the sampling point comes one time quantum too early. This leads to a fail
according the 1ISO16845 Test plan. It is necessary to lengthen the phase segment 1 by one time quantum and to shorten the

phase segment 2 by one time quantum to compensate.
The baud rate selection is made by T,;; calculation:
Tbit" = Tsyns + Tprs + Tphs1 + Tphs2
1. Tsyns =1 x Tscl = (BRP[5..0]+ 1)/clko (= 1TQ)
2. Tprs=(1to 8)x Tscl = (PRS[2..0]+ 1) x Tscl
3. Tphs1=(1to 8)x Tscl = (PHS1[2..0]+ 1) x Tscl
4. Tphs2 = (1to 8) x Tscl = (PHS2[2..0]?+ 1) x Tscl
5. Tsjw=(1to4)x Tscl = (SJW[1..0]+ 1) x Tscl

Notes: 1. The total number of Tscl (Time Quanta) in a bit time must be from 8 to 25.

2. PHS2[2..0] 2 is programmable to be < PHS1[2..0] and > 1.

Fault Confinement

(c.f. Section 16.7 “Error Management” on page 153).
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16.4.5

16.5

16.5.1

16.5.2

Overload Frame

An overload frame is sent by setting an overload request (OVRQ). After the next reception, the CAN channel sends an
overload frame in accordance with the CAN specification. A status or flag is set (OVRF) as long as the overload frame is
sent.

Figure 16-9. Overload Frame
Instructions ------------- Setting OVRQ bit - ----- Resetting OVRQ bit - - -----------

' ¢

OVRAQ bit | |

OVFG bit
RXCDAN | I Ident “A” ICde Messagé)Data ‘A ICRCI AIInteﬁrameIOverIoadI Frame | | Ident Bl
<4

TXCDAN |Over|oad| Frame

Message Objects

The MOb is a CAN frame descriptor. It contains all information to handle a CAN frame. This means that a MOb has been
outlined to allow to describe a CAN message like an object. The set of MObs is the front end part of the “mailbox” where the
messages to send and/or to receive are pre-defined as well as possible to decrease the work load of the software.

The MObs are independent but priority is given to the lower one in case of multi matching. The operating modes are:
e Disabled mode

Transmit mode

Receive mode

Automatic reply

Frame buffer receive mode

Number of MObs
This device has 6 MObs, they are numbered from 0 up to 5 (i=5).

Operating Modes

There is no default mode after RESET.

Every MOb has its own fields to control the operating mode. Before enabling the CAN peripheral, each MOb must be
configured (ex: disabled mode - CONMOB=00).

Table 16-1. MOb Configuration

MOb Configuration Reply Valid RTR Tag Operating Mode
0 0 X X Disabled
X 0 Tx Data Frame
0 ! X 1 Tx Remote Frame
X 0 Rx Data Frame
1 0 0 Rx Remote Frame
1 ! Rx Remote Frame then, Tx Data Frame (reply)
1 1 X X Frame Buffer Receive Mode
16.5.2.1 Disabled
In this mode, the MOb is “free”.
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16.5.2.2 Tx Data and Remote Frame

16.5.2.3

1.

4.
5.

Several fields must be initialized before sending:
e I|dentifier tag (IDT)
e Identifier extension (IDE)
e Remote transmission request (RTRTAG)
e Data length code (DLC)
e Reserved bit(s) tag (RBNnTAG)
e Data bytes of message (MSG)
The MOb is ready to send a data or a remote frame when the MOb configuration is set (CONMOB).

Then, the CAN channel scans all the MObs in Tx configuration, finds the MOb having the highest priority and tries
to send it.

When the transmission is completed the TXOK flag is set (interrupt).
All the parameters and data are available in the MOb until a new initialization.

Rx Data and Remote Frame

1.

6.

Several fields must be initialized before receiving:
e I|dentifier tag (IDT)
e Identifier mask (IDMSK)
e Identifier extension (IDE)
e |dentifier extension mask (IDEMSK)
e Remote transmission request (RTRTAG)
e Remote transmission request mask (RTRMSK)
e Data length code (DLC)
e Reserved bit(s) tag (RBNnTAG)
The MOb is ready to receive a data or a remote frame when the MOb configuration is set (CONMOB).

When a frame identifier is received on CAN network, the CAN channel scans all the MObs in receive mode, tries
to find the MOb having the highest priority which is matching.

On a hit, the IDT, the IDE and the DLC of the matched MOb are updated from the incoming (frame) values.

Once the reception is completed, the data bytes of the received message are stored (not for remote frame) in the
data buffer of the matched MOb and the RXOK flag is set (interrupt).

All the parameters and data are available in the MOb until a new initialization.

16.5.2.4 Automatic Reply

150

A reply (data frame) to a remote frame can be automatically sent after reception of the expected remote frame.

1.

Several fields must be initialized before receiving the remote frame:

e Reply valid (RPLV) in a identical flow to the one described in Section 16.5.2.3 “Rx Data and Remote Frame” on
page 150.

2. When a remote frame matches, automatically the RTRTAG and the reply valid bit (RPLV) are reset. No flag (or
interrupt) is set at this time. Since the CAN data buffer has not been used by the incoming remote frame, the MOb
is then ready to be in transmit mode without any more setting. The IDT, the IDE, the other tags and the DLC of the
received remote frame are used for the reply.
3. When the transmission of the reply is completed the TXOK flag is set (interrupt).
4. All the parameters and data are available in the MOb until a new initialization.
ATmega16/32/64/M1/C1 [DATASHEET] Atmel.
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16.5.2.5 Frame Buffer Receive Mode

This mode is useful to receive multi frames. The priority between MObs offers a management for these incoming frames.
One set MObs (including non-consecutive MObs) is created when the MObs are set in this mode. Due to the mode setting,
only one set is possible. A frame buffer completed flag (or interrupt) - BXOK - will rise only when all the MObs of the set will
have received their dedicated CAN frame.

1.
2.

7.

MObs in frame buffer receive mode need to be initialized as MObs in standard receive mode.

The MObs are ready to receive data (or a remote) frames when their respective configurations are set
(CONMOB).

When a frame identifier is received on CAN network, the CAN channel scans all the MObs in receive mode, tries
to find the MOb having the highest priority which is matching.

On a hit, the IDT, the IDE and the DLC of the matched MOb are updated from the incoming (frame) values.

Once the reception is completed, the data bytes of the received message are stored (not for remote frame) in the
data buffer of the matched MOb and the RXOK flag is set (interrupt).

When the reception in the last MOb of the set is completed, the frame buffer completed BXOK flag is set (inter-
rupt). BXOK flag can be cleared only if all CONMOB fields of the set have been re-written before.

All the parameters and data are available in the MObs until a new initialization.

16.5.3 Acceptance Filter

Upon a reception hit (i.e., a good comparison between the ID + RTR + RBn + IDE received and an IDT+ RTRTAG + RBnTAG +
IDE specified while taking the comparison mask into account) the IDT + RTRTAG + RBnTAG + IDE received are updated in the
MOb (written over the registers).

Figure 16-10. Acceptance Filter Block Diagram

Note:

Atmel

Internal RxDcan »—] Rx Shift Register (internal)
ID and RB RTR | IDE
14(33)
RB excluded
Y
) B 13
31 = Hi i
/ Hit MObi]
Write ,
Enable 1
14(33) 1-113(31) - RB excluded 13(31) L1
ID and RB RTRTAG | IDE IDMSK RTRMSKI | IDEMSK
CANIDT Registers and CANCDMOB (MODbli]) CANIDM Registers (MODbIi])
Examples:

Full filtering: to accept only ID = 0x317 in part A.
-ID MSK = 111 1111 1111
- ID TAG =011 0001 0111 ,

Partiel filtering: to accept ID from 0x310 up to 0x317 in part A.
- ID MSK =111 1111 1000 ,
- ID TAG =011 0001 Oxxx y,

No filtering: to accept all ID’s from 0x000 up to Ox7FF in part A.
- ID MSK = 000 0000 0000 |,
- ID TAG = XXX XXXX XXXX |,
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16.5.4

16.5.5

16.6

16.6.1

16.6.2

16.6.3

152

MOb Page

Every MOb is mapped into a page to save place. The page number is the MOb number. This page number is set in
CANPAGE register. The other numbers are reserved for factory tests.

CANHPMORB register gives the MOb having the highest priority in CANSIT registers. It is formatted to provide a direct entry
for CANPAGE register. Because CANHPMOB codes CANSIT registers, it will be only updated if the corresponding enable
bits (ENRX, ENTX, ENERR) are enabled (c.f. Figure 16-14 on page 155).

CAN Data Buffers

To preserve register allocation, the CAN data buffer is seen such as a FIFO (with address pointer accessible) into a MOb
selection.This also allows to reduce the risks of un-controlled accesses.

There is one FIFO per MOb. This FIFO is accessed into a MOb page thanks to the CAN message register.

The data index (INDX) is the address pointer to the required data byte. The data byte can be read or write. The data index is
automatically incremented after every access if the AINC* bit is reset. A roll-over is implemented, after data index=7 it is data
index=0.

The first byte of a CAN frame is stored at the data index=0, the second one at the data index=1, ...

CAN Timer

A programmable 16-bit timer is used for message stamping and time trigger communication (TTC).

Figure 16-11. CAN Timer Block Diagram

clkio —p =8 —1> CANTCON — [ ENFG
clkcantim TTC SYNCTTC
OVRTIM 2N CANTIM
gl
TXOKI] "EOF"
RXOK(i] "SOF"
m; CANTTC

,,,,,,,,,,,,,,,,,,,,,,,,

Prescaler

An 8-bit prescaler is initialized by CANTCON register. It receives the clk g frequency divided by 8. It provides clkcanTim
frequency to the CAN timer if the CAN controller is enabled.

Telkeanmm = T clko X 8 x (CANTCON [7:0] + 1)

16-bit Timer

This timer starts counting from 0x0000 when the CAN controller is enabled (ENFG bit). When the timer rolls over from
OxFFFF to 0x0000, an interrupt is generated (OVRTIM).

Time Triggering

Two synchronization modes are implemented for TTC (TTC bit):
e  synchronization on start of frame (SYNCTTC=0),
e  synchronization on end of frame (SYNCTTC=1).

In TTC mode, a frame is sent once, even if an error occurs.
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16.6.4 Stamping Message

The capture of the timer value is done in the MOb which receives or sends the frame. All managed MOb are stamped, the
stamping of a received (sent) frame occurs on RxOk (TXOK).

16.7 Error Management

16.7.1 Fault Confinement

The CAN channel may be in one of the three following states:

Error active (default):

The CAN channel takes part in bus communication and can send an active error frame when the CAN macro detects
an error.

Error passive:

The CAN channel cannot send an active error frame. It takes part in bus communication, but when an error is
detected, a passive error frame is sent. Also, after a transmission, an error passive unit will wait before initiating
further transmission.

Bus off:

The CAN channel is not allowed to have any influence on the bus.

For fault confinement, a transmit error counter (TEC) and a receive error counter (REC) are implemented. BOFF and ERRP
bits give the information of the state of the CAN channel. Setting BOFF to one may generate an interrupt.

Figure 16-12. Line Error Mode

Note:

Atmel

| Reset |

ERRP =0
BOFF =0

TEC > 127
or
Rec 127

128 occurrences
of 11 consecutive
recessive bit

TEC <127
ERRP = 1 and ERRP = 1
BOFF = 0 Rec <127 BOFF =0
Error
Passive
TEC > 255

Interrupt BOFFIT

More than one REC/TEC change may apply during a given message transfer.

ATmega16/32/64/M1/C1 [DATASHEET] 153
76470-AVR-01/15



16.7.2 Error Types
e BERR: Bit error. The bit value which is monitored is different from the bit value sent.

Note: Exceptions:
- Recessive bit sent monitored as dominant bit during the arbitration field and the acknowledge slot.
- Detecting a dominant bit during the sending of an error frame.

e  SERR: Stuff error. Detection of more than five consecutive bit with the same polarity.

e CERR: CRC error (Rx only). The receiver performs a CRC check on every destuffed received message from the start
of frame up to the data field. If this checking does not match with the destuffed CRC field, an CRC error is set.

e FERR: Form error. The form error results from one (or more) violations of the fixed form of the following bit fields:
e CRC delimiter
e acknowledgement delimiter
e end-of-frame
e error delimiter
e overload delimiter

AERR: Acknowledgment error (Tx only). No detection of the dominant bit in the acknowledge slot.

Figure 16-13. Error Detection Procedures in a Data Frame

Arbitration |
Bit error 0'4 -------------
Stuff error
Form error [
Tx
ACK error |
f 2 2
—_— |30F| Identifier |RTR| Control | Message Data | CRC (;I;C ACK ngKI EOF inter.
(<4 (<4
Tx Bit error |
Stuff error
Form error [
CRC error

16.7.3 Error Setting

The CAN channel can detect some errors on the CAN network.
e Intransmission:
The error is set at MOb level.

e |n reception:
e The identified has matched:
e The error is set at MOD level.
e The identified has not or not yet matched:
e The error is set at general level.

After detecting an error, the CAN channel sends an error frame on network. If the CAN channel detects an error frame on
network, it sends its own error frame.
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16.8 Interrupts

16.8.1 Interrupt organization

The different interrupts are:
e Interrupt on receive completed OK,
Interrupt on transmit completed OK,
Interrupt on error (bit error, stuff error, CRC error, form error, acknowledge error),
Interrupt on frame buffer full,
Interrupt on “Bus Off” setting,
e Interrupt on overrun of CAN timer.

The general interrupt enable is provided by ENIT bit and the specific interrupt enable for CAN timer overrun is provided by
ENORVT bit.

Figure 16-14. CAN Controller Interrupt Structure
CANGIE.4 CANGIE.5 CANGIE.3
| ENTX || ENRX || ENERR|

CANSIT 1/2

SIT[i]
CANSTMOB.6 | TXOKIi]

-

CANIE 1/2
IEMOBi]

0

CANSTMOB.5 | RXOK(i]

1

<t —-—-—-——-—-————=

CANSTMOB.4 | BERR]i]

CANSTMOB.3 | SERRJi] CANGIT.7

>

CANSTMOB.2 | CERR]i]

i

CANSTMOB.1 | FERR]i] CANGIE.7

CANGIE.2 CANGIE.1 CANGIE.6
| ENBX | | ENERG | |ENBOFF|

CANSTMOB.O | AERR]i] ENIT

CANGIT.4 BXOK l/ CAN IT

CANGIT.3 | SERG

ey

~

CANGIT.2 | CERG

i
o

CANGIT.1 | FERG

CANGIT.0 | AERG

CANGIE.O

ENOVRT

CANGIT.6 | BOFFI

CANGIT.5 | OVRTIM OVRIT

At

ATmega16/32/64/M1/C1 [DATASHEET] 155
/ItmeL 76470-AVR-01/15



16.8.2

156

Interrupt Behavior

When an interrupt occurs, an interrupt flag bit is set in the corresponding MOb-CANSTMOB register or in the general
CANGIT register. If in the CANIE register, ENRX / ENTX / ENERR bit are set, then the corresponding MOb bit is set in the
CANSITn register.

To acknowledge a MOb interrupt, the corresponding bits of CANSTMOB register (RXOK, TXOK,...) must be cleared by the
software application. This operation needs a read-modify-write software routine.

To acknowledge a general interrupt, the corresponding bits of CANGIT register (BXOK, BOFFIT,...) must be cleared by the
software application. This operation is made writing a logical one in these interrupt flags (writing a logical zero doesn’t
change the interrupt flag value).

OVRTIM interrupt flag is reset as the other interrupt sources of CANGIT register and is also reset entering in its dedicated
interrupt handler.

When the CAN node is in transmission and detects a Form Error in its frame, a bit Error will also be raised. Consequently,
two consecutive interrupts can occur, both due to the same error. When a MOb error occurs and is set in its own
CANSTMOB register, no general error is set in CANGIT register.
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16.9 CAN Register Description

Figure 16-15. Registers Organization
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16.10 General CAN Registers

16.10.1 CAN General Control Register - CANGCON

158

Bit 7 6 5 4 3 2 1 0

| ABRQ | OVRQ | TTC |SYNTTC| LISTEN | TEST |ENA/STB | SWRES ICANGCON
Read/Write R/W RIW RIW R/W R/W RIW R/W RIW
Initial Value 0 0 0 0 0 0 0 0

e Bit 7—-ABRQ: Abort Request
This is not an auto resettable bit.
e 0-norequest.

e 1 -abortrequest: a reset of CANEN1 and CANEN?2 registers is done. The pending communications are immediately
disabled and the on-going one will be normally terminated, setting the appropriate status flags.
Note that CANCDMOB register remain unchanged.

« Bit 6 - OVRQ: Overload Frame Request
This is not an auto resettable bit.
e 0-norequest.
e 1 -overload frame request: send an overload frame after the next received frame.

The overload frame can be traced observing OVFG in CANGSTA register (c.f. Figure 16-9 on page 149).

e Bit5-TTC: Time Trigger Communication
e O0-noTTC.

e 1-TTC mode.

e Bit4 - SYNTTC: Synchronization of TTC
This bit is only used in TTC mode.
e 0-the TTC timer is caught on SOF.
e 1 -the TTC timer is caught on the last bit of the EOF.

e Bit 3— LISTEN: Listening Mode
e 0 -no listening mode.
e 1 -listening mode.

* Bit 2 - TEST: Test Mode
e 0-notest mode
e 1 -test mode: intend for factory testing and not for customer use.

Note: CAN may malfunction if this bit is set.

e Bit 1 - ENA/STB: Enable / Standby Mode

Because this bit is a command and is not immediately effective, the ENFG bit in CANGSTA register gives the true state of
the chosen mode.

e 0 - standby mode: The on-going transmission (if exists) is normally terminated and the CAN channel is frozen (the
CONMOB bits of every MOb do not change). The transmitter constantly provides a recessive level. In this mode, the
receiver is not enabled but all the registers and mailbox remain accessible from CPU. In this mode, the receiver is not
enabled but all the registers and mailbox remain accessible from CPU.

Note: A standby mode applied during a reception may corrupt the on-going reception or set the controller in a wrong
state. The controller will restart correctly from this state if a software reset (SWRES) is applied. If no reset is
considered, a possible solution is to wait for a lake of a receiver busy (RXBSY) before to enter in stand-by
mode. The best solution is first to apply an abort request command (ABRQ) and then wait for the lake of the
receiver busy (RXBSY) before to enter in stand-by mode. In any cases, this standby mode behavior has no
effect on the CAN bus integrity.
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e 1 -enable mode: The CAN channel enters in enable mode once 11 recessive bits has been read.

e Bit 0 — SWRES: Software Reset Request

This auto resettable bit only resets the CAN controller.
e 0-noreset
e 1 -reset: this reset is “ORed” with the hardware reset.

16.10.2 CAN General Status Register - CANGSTA

Bit 7 6 5 4 3 2 1 0

| - | OVRG | - | TXBSY | RXBSY | ENFG BOFF ERRP | CANGSTA
Read/Write - R - R R R R R
Initial Value - 0 - 0 0 0 0 0

* Bit 7 - Reserved Bit

This bit is reserved for future use.

* Bit 6 - OVRG: Overload Frame Flag
This flag does not generate an interrupt.
e 0-nooverload frame.
e 1 -overload frame: set by hardware as long as the produced overload frame is sent.

* Bit 5 - Reserved Bit

This bit is reserved for future use.

e Bit 4 - TXBSY: Transmitter Busy
This flag does not generate an interrupt.
e 0 - transmitter not busy.

e 1 -transmitter busy: set by hardware as long as a frame (data, remote, overload or error frame) or an ACK field is
sent. Also set when an inter frame space is sent.

e Bit 3— RXBSY: Receiver Busy
This flag does not generate an interrupt.
e 0 -receiver not busy
e 1 -receiver busy: set by hardware as long as a frame is received or monitored.

* Bit 2 - ENFG: Enable Flag

This flag does not generate an interrupt.
e 0 - CAN controller disable: because an enable/standby command is not immediately effective, this status gives the
true state of the chosen mode.

e 1-CAN controller enable.

* Bit 1 - BOFF: Bus Off Mode

BOFF gives the information of the state of the CAN channel. Only entering in bus off mode generates the BOFFIT interrupt.
e 0-no bus off mode.
e 1 -bus off mode.

* Bit 0 — ERRP: Error Passive Mode

ERRRP gives the information of the state of the CAN channel. This flag does not generate an interrupt.
e 0-no error passive mode.
e 1 -error passive mode.

ATmega16/32/64/M1/C1 [DATASHEET] 159
/ItmeL 76470-AVR-01/15



16.10.3 CAN General Interrupt Register - CANGIT

Bit 7 6 5 4 3 2 1 0

| cANIT [ BOFFIT | OVRTIM | BXOK | SERG | CERG | FERG | AERG | CANGIT
Read/Write R R/W R/W R/W RIW R/W R/W RIW
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - CANIT: General Interrupt Flag
This is a read only bit.
e  0-nointerrupt.

e 1-CAN interrupt: image of all the CAN controller interrupts except for OVRTIM interrupt. This bit can be used for
polling method.

e Bit 6 — BOFFIT: Bus Off Interrupt Flag

Writing a logical one resets this interrupt flag. BOFFIT flag is only set when the CAN enters in bus off mode (coming from
error passive mode).

e 0-nointerrupt.
e 1 -bus off interrupt when the CAN enters in bus off mode.

* Bit 5— OVRTIM: Overrun CAN Timer

Writing a logical one resets this interrupt flag. Entering in CAN timer overrun interrupt handler also reset this interrupt flag
e  0-nointerrupt.
e 1 -CAN timer overrun interrupt: set when the CAN timer switches from OxFFFF to O.

* Bit 4 — BXOK: Frame Buffer Receive Interrupt

Writing a logical one resets this interrupt flag. BXOK flag can be cleared only if all CONMOB fields of the MOb’s of the buffer
have been re-written before.

e 0 -nointerrupt.
e 1 -burstreceive interrupt: set when the frame buffer receive is completed.

* Bit 3 - SERG: Stuff Error General
Writing a logical one resets this interrupt flag.
e 0-nointerrupt.
e 1 - stuff error interrupt: detection of more than 5 consecutive bits with the same polarity.

e Bit 2 - CERG: CRC Error General
Writing a logical one resets this interrupt flag.
e  0-nointerrupt.
e 1-CRC error interrupt: the CRC check on destuffed message does not fit with the CRC field.

e Bit 1 - FERG: Form Error General
Writing a logical one resets this interrupt flag.
e 0 -nointerrupt.

e 1 -form error interrupt: one or more violations of the fixed form in the CRC delimiter, acknowledgment delimiter or
EOF.

* Bit 0 — AERG: Acknowledgment Error General
Writing a logical one resets this interrupt flag.
e 0 -nointerrupt.
e 1 -acknowledgment error interrupt: no detection of the dominant bit in acknowledge slot.
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16.10.4 CAN General Interrupt Enable Register - CANGIE

Bit 7 6 5 4 3 2 1 0

| ENIT [ENBOFF| ENRX | ENTX | ENERR | ENBX | ENERG |ENOVRT| CANGIE
Read/Write R/W R/W R/IW R/W R/W R/W RIW R/W
Initial Value 0 0 0 0 0 0 0 0

» Bit 7 - ENIT: Enable all Interrupts (Except for CAN Timer Overrun Interrupt)
e 0 -interrupt disabled.
e 1- CANIT interrupt enabled.

« Bit 6 - ENBOFF: Enable Bus Off Interrupt
e 0 -interrupt disabled.
e 1- bus off interrupt enabled.

e Bit 5 - ENRX: Enable Receive Interrupt
e O -interrupt disabled.
e 1-receive interrupt enabled.

* Bit 4 — ENTX: Enable Transmit Interrupt
e 0 -interrupt disabled.
e 1-transmit interrupt enabled.

Bit 3 — ENERR: Enable MOb Errors Interrupt
e 0 -interrupt disabled.
e 1- MOb errors interrupt enabled.

e Bit 2 - ENBX: Enable Frame Buffer Interrupt
e 0 -interrupt disabled.
e 1-frame buffer interrupt enabled.

* Bit 1 - ENERG: Enable General Errors Interrupt
e 0 -interrupt disabled.
e 1-general errors interrupt enabled.

« Bit 0— ENOVRT: Enable CAN Timer Overrun Interrupt
e 0 -interrupt disabled.
e 1- CAN timer interrupt overrun enabled.

ATmega16/32/64/M1/C1 [DATASHEET] 161
/ItmeL 76470-AVR-01/15



16.10.5 CAN Enable MOb Registers - CANEN2 and CANEN1

Bit 7 6 5 4 3 2 1 0
ENMOBS5 | ENMOB4 | ENMOB3 | ENMOB2 | ENMOB1 | ENMOBO | CANEN2
CANEN1
Bit 15 14 13 12 1 10 9 8
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0

* Bits 5:0 - ENMOB5:0: Enable MOb

This bit provides the availability of the MOb.

It is set to one when the MOb is enabled (i.e. CONMOB1:0 of CANCDMOB register).

Once TXOK or RXOK is set to one (TXOK for automatic reply), the corresponding ENMOB is reset. ENMOB is also set to
zero configuring the MOb in disabled mode, applying abortion or standby mode.

e 0 - message object disabled: MOb available for a new transmission or reception.
e 1-message object enabled: MOb in use.

* Bit 15:6 — Reserved Bits
These bits are reserved for future use.

16.10.6 CAN Enable Interrupt MOb Registers - CANIE2 and CANIE1

Bit 7 6 5 4 3 2 1 0
IEMOB5 | IEMOB4 | IEMOB3 | IEMOB2 | IEMOB1 | IEMOBO | CANIE2
CANIE1
Bit 15 14 13 12 11 10 9 8
Read/Write RW R/W RW R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Read/Write R R/wW R/wW R/wW R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bits 5:0 - IEMOB5:0: Interrupt Enable by MOb
e 0 -interrupt disabled.
e 1-MOb interrupt enabled
Note: Example: CANIE2 = 0000 1100,: enable of interrupts on MOb 2 and 3.

* Bit 15:6 — Reserved Bits

These bits are reserved for future use. For compatibility with future devices, it must be written to zero when CANIE1 and
CANIE2 are written.
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16.10.7 CAN Status Interrupt MOb Registers - CANSIT2 and CANSIT1

Bit 7 6 5 4 3 2 1 0
SIT5 SIT4 SIT3 SIT2 SIT1 SITO | CANSIT2
- - - - CANSIT1
Bit 15 14 13 12 11 10 9 8
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
e Bits 5:0 - SIT5:0: Status of Interrupt by MOb
e 0-nointerrupt.
e 1- MOb interrupt.
Note: Example: CANSIT2 = 0010 0001,: MOb 0 and 5 interrupts.
« Bit 15:6 — Reserved Bits
These bits are reserved for future use.
16.10.8 CAN Bit Timing Register 1 - CANBT1
Bit 7 6 5 4 3 2 1 0
| - | BRP5 | BRP4 | BRP3 BRP2 BRP1 BRPO - | canBT1
Read/Write - R/W R/W R/W R/W R/W R/W -
Initial Value - 0 0 0 0 0 0 -

e Bit 7- Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero when CANBT1 is written.

» Bit 6:1 - BRP5:0: Baud Rate Prescaler
The period of the CAN controller system clock Tscl is programmable and determines the individual bit timing.

BRP[5:0] + 1
Tscl =
clk, ofrequency

If ‘BRP[5..0]=0’, see Section 16.4.3 “Baud Rate” on page 148 and Section « “Bit 0 — SMP: Sample Point(s)” on page 164.

* Bit 0 — Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero when CANBT1 is written.

16.10.9 CAN Bit Timing Register 2 - CANBT2

Bit 7 6 5 4 3 2 1 0
| - [ swi | swo [ - PRS2 | PRS1 | PRSO - | canBT2

Read/Write - R/W R/W - R/W R/W R/W -

Initial Value - 0 0 - 0 0 0 -

e Bit 7- Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero when CANBT2 is written.
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e Bit 6:5 - SJW1:0: Re-Synchronization Jump Width

To compensate for phase shifts between clock oscillators of different bus controllers, the controller must re-synchronize on
any relevant signal edge of the current transmission. The synchronization jump width defines the maximum number of clock
cycles. A bit period may be shortened or lengthened by a re-synchronization.

Tgw = Tscl x (SIW[1:0] + 1)

e Bit 4 — Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero when CANBT2 is written.

e Bit 3:1 - PRS2:0: Propagation Time Segment

This part of the bit time is used to compensate for the physical delay times within the network. It is twice the sum of the signal
propagation time on the bus line, the input comparator delay and the output driver delay.

Tprs = Tscl x (PRS[2:0] + 1)

* Bit 0 — Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero when CANBT2 is written.

16.10.10 CAN Bit Timing Register 3 - CANBT3

Bit 7 6 5 4 3 2 1 0

| - | PHS22 | PHS21 | PHS20 | PHS12 | PHS11 | PHS10 SMP | CANBT3
Read/Write - R/W R/W R/W RIW R/W RIW RIW
Initial Value - 0 0 0 0 0 0 0

e Bit 7- Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero when CANBT3 is written.

e Bit 6:4 — PHS22:0: Phase Segment 2

This phase is used to compensate for phase edge errors. This segment may be shortened by the re-synchronization jump
width. PHS2[2..0] shall be 21 and <PHS1[2..0] (c.f. Section 16.2.3 “CAN Bit Timing” on page 143 and Section 16.4.3 “Baud
Rate” on page 148).

Tphs2 = Tscl x (PHS2[2:0] + 1)

e Bit 3:1 - PHS12:0: Phase Segment 1

This phase is used to compensate for phase edge errors. This segment may be lengthened by the re-synchronization jump
width.

Tphs1 = Tscl x (PHS1[2:0] + 1)

« Bit 0 — SMP: Sample Point(s)
This option allows to filter possible noise on TxCAN input pin.
e 0 - the sampling will occur once at the user configured sampling point - SP.
e 1 -with three-point sampling configuration the first sampling will occur two Tclk,o clocks before the user configured
sampling point - SP, again at one Tclk,o clock before SP and finally at SP. Then the bit level will be determined by a
majority vote of the three samples.

‘SMP=1’ configuration is not compatible with ‘BRP[5:0]=0" because TQ = Tclk|o.
If BRP = 0, SMP must be cleared.
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16.10.11 CAN Timer Control Register - CANTCON

Bit 7 6 5 4 3 2 1 0

| TPRSC7 | TPRSC6 | TPRSC5 | TPRSC4 | TPRSC3 | TPRSC2 | TRPSC1 | TPRSCO | CANTCON
Read/Write R/W R/W R/W R/IW R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7:0 — TPRSC7:0: CAN Timer Prescaler

Prescaler for the CAN timer upper counter range 0 to 255. It provides the clock to the CAN timer if the CAN controller is
enabled.

Telkoanmm = T clko X 8 x (CANTCON [7:0] + 1)

16.10.12 CAN Timer Registers - CANTIML and CANTIMH

Bit 7 6 5 4 3 2 1 0
CANTIM7 | CANTIM6 | CANTIMS5 | CANTIM4 | CANTIM3 | CANTIM2 CA'\iT'M CA'\(;TIM CAII\'_TIM
CANTIM1 | CANTIM1 | CANTIM1 | CANTIM1 | CANTIM1 | CANTIM1 | CANTIM | CANTIM | CANTIM
5 4 3 2 1 0 9 8 H
Bit 15 14 13 12 1 10 9 8
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
¢ Bits 15:0 - CANTIM15:0: CAN Timer Count
CAN timer counter range 0 to 65,535.
16.10.13 CAN TTC Timer Registers - CANTTCL and CANTTCH
Bit 7 6 5 4 3 2 1 0
TIMTTC7 | TIMTTC6 | TIMTTC5 | TIMTTC4 | TIMTTC3 | TIMTTC2 TIMlT TC TIMOT TC CA'\:_TTC
TIMTTC1 | TIMTTC1 | TIMTTC1 | TIMTTC1 | TIMTTC1 | TIMTTC1 | TIMTTC | TIMTTC | CANTTC
5 4 3 2 1 0 9 8 H
Bit 15 14 13 12 1" 10 9 8
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
¢ Bits 15:0 - TIMTTC15:0: TTC Timer Count
CAN TTC timer counter range 0 to 65,535.
16.10.14 CAN Transmit Error Counter Register - CANTEC
Bit 7 6 5 4 3 2 1 0
| TEC7 | TECeé | TECs5 | TEC4 | TEC3 | TEC2 TEC1 TECO | CANTEC
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
e Bit 7:0 — TEC7:0: Transmit Error Count
CAN transmit error counter range 0 to 255.
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16.10.15 CAN Receive Error Counter Register - CANREC

Bit 7 6 5 4 3 2 1 0

| REC7 | REC6 | REC5 | REC4 | REC3 | REC2 REC1 RECO | CANREC
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0

e Bit 7:0 - REC7:0: Receive Error Count
CAN receive error counter range 0 to 255.

16.10.16 CAN Highest Priority MOb Register - CANHPMOB

Bit 7 6 5 4 3 2 1 0
|HPMOB3|HPMOB2[HPMOB1|HPMOBO| CGP3 | CGP2 | CGP1 | CGPO | CANHPMOB

Read/Write R R R R RW — RW  RW  RW

Initial Value 1 1 1 1 0 0 0 0

* Bit 7:4 - HPMOB3:0: Highest Priority MOb Number

MODb having the highest priority in CANSIT registers.
If CANSIT = 0 (no MOb), the return value is OxF.

Note: Do not confuse “MODb priority” and “Message ID priority”- <Helv>See “Message Objects” on page 149.

e Bit 3:0 - CGP3:0: CAN General Purpose Bits

These bits can be pre-programmed to match with the wanted configuration of the CANPAGE register (i.e., AINC and
INDX2:0 setting).

16.10.17 CAN Page MOb Register - CANPAGE

Bit 7 6 5 4 3 2 1 0
IMOBNB3|MOBNBZ|MOBNBI|MOBNBO AINC | INDX2 | INDXL | INDXO ICANPAGE

Read/Write R/W R/W R/W R/W RIW R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7:4 — MOBNB3:0: MOb Number
Selection of the MOb number, the available numbers are from 0 to 5.
Note: MOBNB3 always must be written to zero for compatibility with all AVR CAN devices.

e Bit 3— AINC: Auto Increment of the FIFO CAN Data Buffer Index (Active Low)
e 0 - auto increment of the index (default value).
e 1-no auto increment of the index.

* Bit 2:0 — INDX2:0: FIFO CAN Data Buffer Index
Byte location of the CAN data byte into the FIFO for the defined MOb.
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16.11 MODb Registers
The MOD registers has no initial (default) value after RESET.

16.11.1 CAN MOb Status Register - CANSTMOB

Bit 7 6 5 4 3 2 1 0

| bLcw | TXOK | RXOK | BERR | SERR | CERR | FERR | AERR |CANSTMOB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value - - - - - - - -

e Bit 7—- DLCW: Data Length Code Warning

The incoming message does not have the DLC expected. Whatever the frame type, the DLC field of the CANCDMOB
register is updated by the received DLC.

¢ Bit 6 — TXOK: Transmit OK

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The communication enabled by transmission is completed. TxOK rises at the end of EOF field. When the controller is ready
to send a frame, if two or more message objects are enabled as producers, the lower MOb index (0 to 14) is supplied first.

¢ Bit 5 - RXOK: Receive OK

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The communication enabled by reception is completed. RxOK rises at the end of the 6™ bit of EOF field. In case of two or
more message object reception hits, the lower MOb index (0 to 14) is updated first.

« Bit 4 — BERR: Bit Error (Only in Transmission)

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The bit value monitored is different from the bit value sent.

Exceptions: the monitored recessive bit sent as a dominant bit during the arbitration field and the acknowledge slot detecting
a dominant bit during the sending of an error frame.

¢ Bit 3— SERR: Stuff Error

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

Detection of more than five consecutive bits with the same polarity. This flag can generate an interrupt.

* Bit 2 - CERR: CRC Error

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The receiver performs a CRC check on every de-stuffed received message from the start of frame up to the data field. If this
checking does not match with the de-stuffed CRC field, a CRC error is set.

* Bit1-FERR: Form Error

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The form error results from one or more violations of the fixed form in the following bit fields:
e CRC delimiter.
e  Acknowledgment delimiter.
e EOF
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* Bit 0 — AERR: Acknowledgment Error

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

No detection of the dominant bit in the acknowledge slot.

16.11.2 CAN MOb Control and DLC Register - CANCDMOB

Bit 7 6 5 4 3 2 1 0
CON1MOB CON(')VIOB RPLV IDE DLC3 DLC2 DLC1 DLCO CANEDMO
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value - - - - - - - -

* Bit 7:6 - CONMOB1:0: Configuration of Message Object
These bits set the communication to be performed (no initial value after RESET).
e (0 - disable.
e 01 - enable transmission.
e 10 - enable reception.
e 11 - enable frame buffer reception

These bits are not cleared once the communication is performed. The user must re-write the configuration to enable a new
communication.

e This operation is necessary to be able to reset the BXOK flag.
e  This operation also set the corresponding bit in the CANEN registers.

e Bit5—- RPLV: Reply Valid

Used in the automatic reply mode after receiving a remote frame.
e 0 -reply not ready.
e 1 -reply ready and valid.

* Bit 4 — IDE: Identifier Extension

IDE bit of the remote or data frame to send.
This bit is updated with the corresponding value of the remote or data frame received.

e 0-CAN standard rev 2.0 A (identifiers length = 11 bits).
e 1-CAN standard rev 2.0 B (identifiers length = 29 bits).

e Bit 3:0 - DLC3:0: Data Length Code
Number of Bytes in the data field of the message.
DLC field of the remote or data frame to send. The range of DLC is from O up to 8. If DLC field >8 then effective DLC=8.

This field is updated with the corresponding value of the remote or data frame received. If the expected DLC differs from the
incoming DLC, a DLC warning appears in the CANSTMOB register.
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16.11.3 CAN Identifier Tag Registers -
CANIDT1, CANIDT2, CANIDT3, and CANIDT4

V2.0 part A
Bit 15/7 14/6 13/5 12/4 11/3 10/2 91 8/0
- . . . - RTRTAG - RBOTAG | CANIDT4
- . . . - - - - CANIDT3
IDT2 IDT1 IDTO - - - - - CANIDT2
IDT10 IDT9 IDT8 IDT7 IDT6 IDT5 IDT4 IDT3 CANIDT1
Bit 31/23 30/22 29/21 28/20 2719 26/18 25117 24/16
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value - - - - - - - -
V2.0 part B
Bit 15/7 14/6 13/5 12/4 11/3 10/2 9N 8/0
IDT4 IDT3 IDT2 IDT1 IDTO RTRTAG | RB1TAG | RBOTAG | CANIDT4
IDT12 IDT11 IDT10 IDT9 IDT8 IDT7 IDT6 IDT5 CANIDT3

IDT20 IDT19 IDT18 IDT17 IDT16 IDT15 IDT14 IDT13 CANIDT2
IDT28 IDT27 IDT26 IDT25 IDT24 IDT23 IDT22 IDT21 CANIDT1

Bit 31/23 30/22 29/21 28/20 27/19 26/18 25/17 24/16
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value - - - - - - - -

16.11.3.1 V2.0 part A

e Bit 31:21 — IDT10:0: Identifier Tag
Identifier field of the remote or data frame to send.
This field is updated with the corresponding value of the remote or data frame received.

* Bit 20:3 — Reserved Bits

These bits are reserved for future use. For compatibility with future devices, they must be written to zero when CANIDTn are
written.

When a remote or data frame is received, these bits do not operate in the comparison but they are updated with un-predicted
values.

* Bit 2 - RTRTAG: Remote Transmission Request Tag

RTR bit of the remote or data frame to send.

This tag is updated with the corresponding value of the remote or data frame received. In case of Automatic Reply mode,
this bit is automatically reset before sending the response.

e Bit 1 — Reserved Bit

This bit is reserved for future use. For compatibility with future devices, it must be written to zero when CANIDTn are written.
When a remote or data frame is received, this bit does not operate in the comparison but it is updated with un-predicted
values.

* Bit 0 — RBOTAG: Reserved Bit 0 Tag

RBO bit of the remote or data frame to send.

This tag is updated with the corresponding value of the remote or data frame received.
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16.11.3.2 V2.0 part B

e Bit 31:3 - 1DT28:0: Identifier Tag
Identifier field of the remote or data frame to send.

This field is updated with the corresponding value of the remote or data frame received.

e Bit 2 - RTRTAG: Remote Transmission Request Tag
RTR bit of the remote or data frame to send.

This tag is updated with the corresponding value of the remote or data frame received. In case of Automatic Reply mode,
this bit is automatically reset before sending the response.

e Bit1- RB1TAG: Reserved Bit 1 Tag

RB1 bit of the remote or data frame to send.

This tag is updated with the corresponding value of the remote or data frame received.

« Bit 0 - RBOTAG: Reserved Bit 0 Tag
RBO bit of the remote or data frame to send.
This tag is updated with the corresponding value of the remote or data frame received.

16.11.4 CAN Identifier Mask Registers -
CANIDM1, CANIDM2, CANIDM3, and CANIDM4

16.11.4.1 V2.0 part A

170

V2.0 part A
Bit 15/7 14/6 13/5 12/4 11/3 10/2 91 8/0
- - - - - RTRMSK - IDEMSK | CANIDM4
- - - - - - - - CANIDM3
IDMSK2 | IDMSK1 | IDMSKO - - - - - CANIDM2
IDMSK10 | IDMSK9 | IDMSK8 | IDMSK7 | IDMSK6 | IDMSK5 | IDMSK4 | IDMSK3 | CANIDM1
Bit 31/23 30/22 29/21 28/20 27/19 26/18 25/17 24/16
Read/Write R/W R/W R/W R/W R/W R/W R/W R/IW
Initial Value - - - - - - - -
V2.0 part B
Bit 15/7 14/6 13/5 12/4 11/3 10/2 9/1 8/0
IDMSK4 | IDMSK3 | IDMSK2 | IDMSK1 | IDMSKO |RTRMSK - IDEMSK | CANIDM4
IDMSK12 | IDMSK11 | IDMSK10 | IDMSK9 | IDMSK8 | IDMSK7 | IDMSK6 | IDMSK5 | CANIDM3
IDMSK20 | IDMSK19 | IDMSK18 | IDMSK17 | IDMSK16 | IDMSK15 | IDMSK14 | IDMSK13 | CANIDM2
IDMSK28 | IDMSK27 | IDMSK26 | IDMSK25 | IDMSK24 | IDMSK23 | IDMSK22 | IDMSK21 | CANIDM1
Bit 31/23 30/22 29/21 28/20 27/19 26/18 25117 24/16
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value - - - - - - - -

e Bit 31:21 — IDMSK10:0: Identifier Mask
e (- comparison true forced - see Section 16.5.3 “Acceptance Filter” on page 151
e 1 - bit comparison enabled - see Section 16.5.3 “Acceptance Filter” on page 151

* Bit 20:3 — Reserved Bits

These bits are reserved for future use. For compatibility with future devices, they must be written to zero when CANIDMn are
written.
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e Bit 2 - RTRMSK: Remote Transmission Request Mask
e 0 - comparison true forced
e 1 - bit comparison enabled.

e Bit 1 — Reserved Bit
This bit is reserved for future use. For compatibility with future devices, it must be written to zero when CANIDTn are written.

e Bit 0 — IDEMSK: Identifier Extension Mask
e 0 - comparison true forced
e 1 - bit comparison enabled.

16.11.4.2 V2.0 part B

e Bit 31:3 — IDMSK28:0: Identifier Mask
e 0 -comparison true forced - see Section 16.5.3 “Acceptance Filter” on page 151

e 1 - bit comparison enabled. - see Section 16.5.3 “Acceptance Filter” on page 151

e Bit 2 - RTRMSK: Remote Transmission Request Mask
e 0 - comparison true forced
e 1 - bit comparison enabled.

* Bit 1 - Reserved Bit
Writing zero in this bit is recommended.

e Bit 0 — IDEMSK: Identifier Extension Mask
e 0 - comparison true forced
e 1 - bit comparison enabled.

16.11.5 CAN Time Stamp Registers - CANSTML and CANSTMH

Bit 7 6 5 4 3 2 1 0
TIMSTM7 | TIMSTM6 | TIMSTM5 | TIMSTM4 | TIMSTM3 | TIMSTMZ2 | TIMSTM1 | TIMSTMOJ CANSTML
TIMS5TM1 TIMSTM14 TIML::;TMl TIMSTM12 TIMSlTMl TIM%TMl TIMSTM9 | TIMSTM8] CANSTMH
Bit 15 14 13 12 1 10 9 8
Read/Write R R R R R R R R
Initial Value - - - - - - - -

e Bits 15:0 - TIMSTM15:0: Time Stamp Count
CAN time stamp counter range 0 to 65,535.

16.11.6 CAN Data Message Register - CANMSG
Bit 7 6 5 4 3 2 1 0
| MSG 7 | MSG 6 | MSG 5 | MSG 4 | MSG3 | MSG2 | MSG1 | MSGO |CANMSG
Read/Write R/IW R/W R/W R/W R/IW R/W RIW R/W

Initial Value - - -

e Bit 7:0 - MSG7:0: Message Data
This register contains the CAN data byte pointed at the page MOb register.

After writing in the page MOD register, this byte is equal to the specified message location of the pre-defined identifier +
index. If auto-incrementation is used, at the end of the data register writing or reading cycle, the index is auto-incremented.

The range of the counting is 8 with no end of loop (0, 1,..., 7, 0,...).
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16.12 Examples of CAN Baud Rate Setting

The CAN bus requires very accurate timing especially for high baud rates. It is recommended to use only an external crystal
for CAN operations.

(Refer to Section 16.4.2 “Bit Timing” on page 147 and Section 16.4.3 “Baud Rate” on page 148 for timing description and
Section 16.10.8 “CAN Bit Timing Register 1 - CANBT1” on page 163 to Section 16.10.10 “CAN Bit Timing Register 3 -
CANBT3” on page 164 for “CAN Bit Timing Registers”).

Table 16-2. Examples of CAN Baud Rate Settings for Commonly Frequencies

CAN Description Segments Registers
fCLK g Rate Sampling TQ Thit Tprs Tphl Tph2 Tsjw
(MHz) (Kbps) Point (us) (TQ) (TQ) (TQ) (TQ) (TQ) | CANBT1 CANBT2  CANBT3
1000 69%" 0.0625 16 7 4 4 1 0x00 0x0C 0x36()
75% 0.125 8 3 2 2 1 0x02 0x04 0x13
0.125 16 7 4 4 1 0x02 0x0C 0x37
500 75%
0.250 8 3 2 2 1 0x06 0x04 0x13
0.250 16 7 4 4 1 0x06 0x0C 0x37
250 75%
I 0.500 8 3 2 2 1 O0x0E 0x04 0x13
' 0.3125 16 7 4 4 1 0x08 0x0C 0x37
200 75%
0.625 8 3 2 2 1 0x12 0x04 0x13
0.500 16 7 4 4 1 O0xO0E 0x0C 0x37
125 75%
1.000 8 3 2 2 1 Ox1E 0x04 0x13
0.625 16 7 4 4 1 0x12 0x0C 0x37
100 75%
1.250 8 3 2 2 1 0x26 0x04 0x13
’ 0.083333 12 5 3 3 1 0x00 0x08 0x24)
1000 67%"
X ---no data- - -
0.166666 12 5 3 3 1 0x02 0x08 0x25
500 75%
0.250 8 3 2 2 1 0x04 0x04 0x13
0.250 16 7 4 4 1 0x04 0x0C 0x37
250 75%
0.500 8 3 2 2 1 0x0A 0x04 0x13
12.000
0.250 20 8 6 ) 1 0x04 OxO0E 0x4B
200 75%
0.416666 12 5 3 3 1 0x08 0x08 0x25
0.500 16 7 4 4 1 O0x0A 0x0C 0x37
125 75%
1.000 8 3 2 2 1 0x16 0x04 0x13
0.500 20 8 6 ) 1 O0x0A OxO0E 0x4B
100 75%
0.833333 12 5 3 3 1 0x12 0x08 0x25
Notes: 1. See Section 16.4.3 “Baud Rate” on page 148.
2. See Section « “Bit 0 — SMP: Sample Point(s)” on page 164
172 ATmega16/32/64/M1/C1 [DATASHEET
g [ ] Atmel

76470-AVR-01/15



Table 16-2. Examples of CAN Baud Rate Settings for Commonly Frequencies (Continued)

CAN Description Segments Registers
fCLK o Rate Sampling TQ Thit Tprs Tphl Tph2 Tsjw
(MHz) (Kbps) Point (us) (TQ) (TQ) (TQ) (TQ) (TQ) A CANBT1 CANBT2 CANBT3
X ---no data- - -
1000 663%™
0.125 8 3 2 2 1 0x00 0x04 0x12
500 69%(") 0.125 16 7 4 4 1 0x00 0x0C 0x36?
75% 0.250 8 3 2 2 1 0x02 0x04 0x13
0.250 16 7 4 4 1 0x02 0x0C 0x37
250 75%
8.000 0.500 8 3 2 2 1 0x06 0x04 0x13
' 0.250 20 8 6 5 1 0x02 Ox0E 0x4B
200 75%
0.625 8 3 2 2 1 0x08 0x04 0x13
0.500 16 7 4 4 1 0x06 0x0C 0x37
125 75%
1.000 8 3 2 2 1 Ox0E 0x04 0x13
0.625 16 7 4 4 1 0x08 0x0C 0x37
100 75%
1.250 8 3 2 2 1 0x12 0x04 0x13
1000 ---not applicable- - -
0.166666 12 5 3 3 1 0x00 0x08 0x242)
500 67%M
X ---no data- - -
0.333333 12 5 3 3 1 0x02 0x08 0x25
250 75%
0.500 8 3 2 2 1 0x04 0x04 0x13
6.000 0.333333 15 7 4 3 1 0x02 0x0C 0x35
200 80%
0.500 10 4 3 2 1 0x04 0x06 0x23
0.500 16 7 4 4 1 0x04 0x0C 0x37
125 75%
1.000 8 3 2 2 1 0x0A 0x04 0x13
0.500 20 8 6 5 1 0x04 Ox0E 0x4B
100 75%
0.833333 12 5 3 3 1 0x08 0x08 0x25
1000 ---not applicable- - -
X ---no data- - -
500 63%™"
0.250 3 2 2 1 0x00 0x04 0x12
250 669%™ 0.250 16 7 4 4 1 0x00 0x0C 0x36
75% 0.500 8 3 2 2 1 0x02 0x04 0x13
4.000 0.250 20 8 6 5 1 0x00 OxO0E 0x4AP
200 70%™
X ---no data- - -
0.500 16 7 4 4 1 0x02 0x0C 0x37
125 75%
1.000 8 3 2 2 1 0x06 0x04 0x13
0.500 20 8 6 5 1 0x02 O0x0E 0x4B
100 75%
1.250 8 3 2 2 1 0x08 0x04 0x13
Notes: 1. See Section 16.4.3 “Baud Rate” on page 148.
2. See Section « “Bit 0 — SMP: Sample Point(s)” on page 164
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17. LIN/UART - Local Interconnect Network Controller or UART

The LIN (Local Interconnect Network) is a serial communications protocol which efficiently supports the control of
mechatronics nodes in distributed automotive applications. The main properties of the LIN bus are:

e Single master with multiple slaves concept

Low cost silicon implementation based on common UART/SCI interface

Self synchronization in slave node

Deterministic signal transmission with signal propagation time computable in advance

Low cost single-wire implementation

e  Speed up to 20Kbit/s.
LIN provides a cost efficient bus communication where the bandwidth and versatility of CAN are not required. The
specification of the line driver/receiver needs to match the ISO9141 NRZ-standard.

If LIN is not required, the controller alternatively can be programmed as universal asynchronous serial receiver and
transmitter (UART).

17.1 LIN Features

Hardware implementation of LIN 2.1 (LIN 1.3 compatibility)

Small, CPU efficient and independent master/slave routines based on “LIN Work Flow Concept” of LIN 2.1
specification

e  Automatic LIN header handling and filtering of irrelevant LIN frames

e  Automatic LIN response handling

e Extended LIN error detection and signaling

e  Hardware frame time-out detection
[ ]
[ ]
[

“Break-in-data” support capability
Automatic re-synchronization to ensure proper frame integrity
Fully flexible extended frames support capabilities

17.2 UART Features
e  Full duplex operation (independent serial receive and transmit processes)

®  Asynchronous operation
e  High resolution baud rate generator
e Hardware support of 8 data bits, odd/even/no parity bit, 1 stop bit frames
e Data over-run and framing error detection
174 ATmega16/32/64/M1/C1 [DATASHEET] Atmel.

76470-AVR-01/15



17.3 LIN Protocol

17.3.1 Master and Slave

A LIN cluster consists of one master task and several slave tasks. A master node contains the master task as well as a slave
task. All other nodes contain a slave task only.

Figure 17-1. LIN Cluster with One Master Node and “n” Slave Nodes

master node slave node slave node
1 n
| slave task | | slave task |
LIN bus

The master task decides when and which frame shall be transferred on the bus. The slave tasks provide the data
transported by each frame. Both the master task and the slave task are parts of the Frame handler

17.3.2 Frames

A frame consists of a header (provided by the master task) and a response (provided by a slave task).

The header consists of a BREAK and SYNC pattern followed by a PROTECTED IDENTIFIER. The identifier uniquely
defines the purpose of the frame. The slave task appointed for providing the response associated with the identifier transmits
it. The response consists of a DATA field and a CHECKSUM field.

Figure 17-2. Master and Slave Tasks Behavior in LIN Frame

HEADER

HEADER

Master Task _ | HeADER Y} (— ———_ _ _
SlaveTask1 _ _ _ _ _ _ _ _ RESPONSE
Slave Task2 _ _ _ _ _ _ _ _ _ _ _ _ _ RESPONSE

The slave tasks waiting for the data associated with the identifier receives the response and uses the data transported after
verifying the checksum.

Figure 17-3. Structure of a LIN Frame

FRAME SLOT

- -

HEADER RESPONSE

[ -

-

|
PROTECTED | |

IDENTIFIER -
1 BREAK JII SYNGC Field] I ] I [ DATA-0

Field Field

/L
L4
] | DATA-n FieIdJII CHECKSUl\gieldJ I |

Break Delimiter Response Space Inter-byte Space Inter-frame Space

Each byte field is transmitted as a serial byte, LSB first
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17.3.3

17.3.4

17.3.5

17.4

176

Data Transport

Two types of data may be transported in a frame; signals or diagnostic messages.

e Signals
Signals are scalar values or byte arrays that are packed into the data field of a frame. A signal is always present at the
same position in the data field for all frames with the same identifier.

e Diagnostic messages
Diagnostic messages are transported in frames with two reserved identifiers. The interpretation of the data field
depends on the data field itself as well as the state of the communicating nodes.

Schedule Table

The master task (in the master node) transmits frame headers based on a schedule table. The schedule table specifies the
identifiers for each header and the interval between the start of a frame and the start of the following frame. The master
application may use different schedule tables and select among them.

Compatibility with LIN 1.3

LIN 2.1 is a super-set of LIN 1.3.

A LIN 2.1 master node can handle clusters consisting of both LIN 1.3 slaves and/or LIN 2.1 slaves. The master will then
avoid requesting the new LIN 2.1 features from a LIN 1.3 slave:

e Enhanced checksum,

e  Re-configuration and diagnostics,

e  Automatic baud rate detection,

e “Response error” status monitoring.
LIN 2.1 slave nodes can not operate with a LIN 1.3 master node (e.g. the LIN1.3 master does not support the enhanced
checksum).

The LIN 2.1 physical layer is backwards compatible with the LIN1.3 physical layer. But not the other way around. The LIN 2.1
physical layer sets greater requirements, i.e. a master node using the LIN 2.1 physical layer can operate in a LIN 1.3 cluster.

LIN / UART Controller

The LIN/UART controller is divided in three main functions:
e  Tx LIN header function,
e  RxLIN header function,
e LIN response function.
These functions mainly use two services:
e Rxservice,
e Txservice.

Because these two services are basically UART services, the controller is also able to switch into an UART function.
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17.4.2

17.4.3

LIN Overview

The LIN/JUART controller is designed to match as closely as possible to the LIN software application structure. The LIN
software application is developed as independent tasks, several slave tasks and one master task (c.f. Section 17.3.4
“Schedule Table” on page 176). The ATmega16/32/64/M1/C1 conforms to this perspective. The only link between the master
task and the slave task will be at the cross-over point where the interrupt routine is called once a new identifier is available.
Thus, in a master node, housing both master and slave task, the Tx LIN Header function will alert the slave task of an
identifier presence. In the same way, in a slave node, the Rx LIN Header function will alert the slave task of an identifier
presence.

When the slave task is warned of an identifier presence, it has first to analyze it to know what to do with the response.
Hardware flags identify the presence of one of the specific identifiers from 60 (0x3C) up to 63 (Ox3F).

For LIN communication, only four interrupts need to be managed:
LIDOK: New LIN identifier available,

LRXOK: LIN response received,

LTXOK: LIN response transmitted,

e LERR: LIN Error(s).

The wake-up management can be automated using the UART wake-up capability and a node sending a minimum of 5 low
bits (0xFO0) for LIN 2.1 and 8 low bits (0x80) for LIN 1.3. Pin change interrupt on LIN wake-up signal can be also used to exit
the device of one of its sleep modes.

Extended frame identifiers 62 (0x3E) and 63 (0x3F) are reserved to allow the embedding of user-defined message formats
and future LIN formats. The byte transfer mode offered by the UART will ensure the upwards compatibility of LIN slaves with
accommodation of the LIN protocol.

UART Overview

The LIN/UART controller can also function as a conventional UART. By default, the UART operates as a full duplex
controller. It has local loop back circuitry for test purposes. The UART has the ability to buffer one character for transmit and
two for receive. The receive buffer is made of one 8-bit serial register followed by one 8-bit independent buffer register.
Automatic flag management is implemented when the application puts or gets characters, thus reducing the software
overhead. Because transmit and receive services are independent, the user can save one device pin when one of the two
services is not used. The UART has an enhanced baud rate generator providing a maximum error of 2% whatever the clock
frequency and the targeted baud rate.

LIN/JUART Controller Structure

Figure 17-4. LIN/JUART Controller Block Diagram

olk B Prescaler ® Finite State Machine
Vo = Sample /bit BAUD RATE FSM
* A * f
_| ™ GetByte = Put Byte o
RxD o RX [ ® Frame Time out > X o
f A
1 B Synchronization
&1 ® Monitoring -t
Y
® Data FIFO BUFFER
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17.4.4 LINJUART Command Overview

Figure 17-5. LIN/UART Command Dependencies

Tx
Response

Rx
Response

Rx Header
or
LIN Abort

DISABLE

Byte
Transfer

RXOK

Automatic

Return

Recommended
Way

Possible
Way

Table 17-1. LIN/JUART Command List

LENA LCMD|2] LCMDI1] LCMDI0] Command Comment
0 X X X Disable peripheral
0 0 Rx Header - LIN abort LIN withdrawal
. 1 Tx Header LCMDJ[2..0]=000 after Tx
: 0 Rx response LCMDI2..0]=000 after Rx
’ 1 Tx response LCMDJ[2..0]=000 after Tx
0 0 Byte transfer
1 0 Rx Byte no CRC, no time out
1 LTXDL=LRXDL=0
0 1 Tx Byte (LINDLR: read only register)
1 1 Full duplex
178 ATmega16/32/64/M1/C1 [DATASHEET] Atmel.

76470-AVR-01/15



17.4.5 Enable/ Disable

Setting the LENA bit in LINCR register enables the LIN/UART controller. To disable the LIN/UART controller, LENA bit must
be written to 0. No wait states are implemented, so, the disable command is taken into account immediately.

17.4.6 LIN Commands

Clearing the LCMD|2] bit in LINCR register enables LIN commands.
As shown in Table 17-1 on page 178, four functions controlled by the LCMDI1..0] bits of LINCR register are available (c.f.
Figure 17-5 on page 178).

17.4.6.1 Rx Header / LIN Abort Function

This function (or state) is mainly the withdrawal mode of the controller.
When the controller has to execute a master task, this state is the start point before enabling a Tx header command.

When the controller has only to execute slave tasks, LIN header detection/acquisition is enabled as background function. At
the end of such an acquisition (Rx header function), automatically the appropriate flags are set, and in LIN 1.3, the LINDLR
register is set with the uncoded length value.

This state is also the start point before enabling the Tx or the Rx response command.

A running function (i.e. Tx header, Tx or Rx response) can be aborted by clearing LCMDI[1..0] bits in LINCR register. In this
case, an abort flag - LABORT - in LINERR register will be set to inform the other software tasks. No wait states are
implemented, so, the abort command is taken into account immediately.

Rx Header function is responsible for:
e The BREAK field detection,
e  The hardware re-synchronization analyzing the SYNCH field,

e  The reception of the PROTECTED IDENTIFIER field, the parity control and the update of the LINDLR register in case
of LIN 1.3,

The starting of the Frame_Time_Out,
The checking of the LIN communication integrity.

17.4.6.2 Tx Header Function
In accordance with the LIN protocol, only the master task must enable this function. The header is sent in the appropriate
timed slots at the programmed baud rate (c.f. LINBRR and LINBTR registers).
The controller is responsible for:
e The transmission of the BREAK field - 13 dominant bits,
e The transmission of the SYNCH field - character 0x55,
e  The transmission of the PROTECTED IDENTIFIER field. It is the full content of the LINIDR register (automatic check
bits included).

At the end of this transmission, the controller automatically returns to Rx Header / LIN Abort state (i.e. LCMD[1..0] = 00) after
setting the appropriate flags. This function leaves the controller in the same setting as after the Rx Header function. This
means that, in LIN 1.3, the LINDLR register is set with the uncoded length value at the end of the Tx Header function.
During this function, the controller is also responsible for:

e  The starting of the Frame_Time_Out,

e  The checking of the LIN communication integrity.
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17.4.6.3 Rx and TX Response Functions

These functions are initiated by the slave task of a LIN node. They must be used after sending an header (master task) or
after receiving an header (considered as belonging to the slave task). When the TX response order is sent, the transmission
begins. A Rx response order can be sent up to the reception of the last serial bit of the first byte (before the stop-bit).

In LIN 1.3, the header slot configures the LINDLR register. In LIN 2.1, the user must configure the LINDLR register, either
LRXDL[3..0] for Rx Response either LTXDL[3..0] for Tx Response.

When the command starts, the controller checks the LIN13 bit of the LINCR register to apply the right rule for computing the
checksum. Checksum calculation over the DATA bytes and the PROTECTED IDENTIFIER byte is called enhanced
checksum and it is used for communication with LIN 2.1 slaves. Checksum calculation over the DATA bytes only is called
classic checksum and it is used for communication with LIN 1.3 slaves. Note that identifiers 60 (0x3C) to 63 (0x3F) shall
always use classic checksum.

At the end of this reception or transmission, the controller automatically returns to Rx Header / LIN Abort state
(i.e. LCMD[1..0] = 00) after setting the appropriate flags.

If an LIN error occurs, the reception or the transmission is stopped, the appropriate flags are set and the LIN bus is left to
recessive state.

During these functions, the controller is responsible for:
e  The initialization of the checksum operator,
e The transmission or the reception of ‘n’ data with the update of the checksum calculation,
e  The transmission or the checking of the CHECKSUM field,
e  The checking of the Frame_Time_Out,
e  The checking of the LIN communication integrity.

While the controller is sending or receiving a response, BREAK and SYNCH fields can be detected and the identifier of this
new header will be recorded. Of course, specific errors on the previous response will be maintained with this identifier
reception.

17.4.6.4 Handling Data of LIN response

A FIFO data buffer is used for data of the LIN response. After setting all parameters in the LINSEL register, repeated
accesses to the LINDAT register perform data read or data write (c.f. Section 17.5.15 “Data Management” on page 189).

Note that LRXDL[3..0] and LTXDL][3..0] are not linked to the data access.

17.4.7 UART Commands

Setting the LCMD[2] bit in LINENR register enables UART commands.

Tx Byte and Rx Byte services are independent as shown in Table 17-1 on page 178.
Byte transfer: the UART is selected but both Rx and Tx services are disabled,
Rx Byte: only the Rx service is enable but Tx service is disabled,

Tx Byte: only the Tx service is enable but Rx service is disabled,
e  Full duplex: the UART is selected and both Rx and Tx services are enabled.

This combination of services is controlled by the LCMD[1..0] bits of LINENR register (c.f. Figure 17-5 on page 178).
17.4.7.1 Data Handling

The FIFO used for LIN communication is disabled during UART accesses. LRXDL[3..0] and LTXDL][3..0] values of LINDLR
register are then irrelevant. LINDAT register is then used as data register and LINSEL register is not relevant.

17.4.7.2 RXx Service

Once this service is enabled, the user is warned of an in-coming character by the LRXOK flag of LINSIR register. Reading
LINDAT register automatically clears the flag and makes free the second stage of the buffer. If the user considers that the in-
coming character is irrelevant without reading it, he directly can clear the flag (see specific flag management described in
Section 17.6.2 “LIN Status and Interrupt Register - LINSIR” on page 192). The intrinsic structure of the Rx service offers a 2-
byte buffer. The fist one is used for serial to parallel conversion, the second one receives the result of the conversion. This
second buffer byte is reached reading LINDAT register. If the 2-byte buffer is full, a new in-coming character will overwrite
the second one already recorded. An OVRERR errorin LINERR register will then accompany this character when read. A
FERR error in LINERR register will be set in case of framing error.
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17.4.7.3 Tx Service

If this service is enabled, the user sends a character by writing in LINDAT register. Automatically the LTXOK flag of
LINSIR register is cleared. It will rise at the end of the serial transmission. If no new character has to be sent, LTXOK flag
can be cleared separately (see specific flag management described in Section 17.6.2 “LIN Status and Interrupt Register -

LINSIR” on page 192).

There is no transmit buffering. No error is detected by this service.

17.5 LIN/UART Description

17.5.1 Reset

The AVR® core reset logic signal also resets the LIN/UART controller. Another form of reset exists, a software reset
controlled by LSWRES bit in LINCR register. This self-reset bit performs a partial reset as shown in Table 17-2.

Table 17-2. Reset of LIN/UART Registers

Register NET )

LIN control register LINCR

LIN status and interrupt register LINSIR
LIN enable interrupt register LINENIR
LIN error register LINERR

LIN bit timing register LINBTR
LIN baud rate register low LINBRRL
LIN baud rate register high LINBRRH
LIN data length register LINDLR
LIN identifier register LINIDR
LIN data buffer selection LINSEL
LIN data LINDAT

17.5.2 Clock

The 1/O clock signal (clk;,) also clocks the LINJUART controller. It is its unique clock.

17.5.3 LIN Protocol Selection

LIN13 bit in LINCR register is used to select the LIN protocol:

e LIN13 = 0 (default): LIN 2.1 protocol,
e LIN13 =1:LIN 1.3 protocol.

Reset Value

0000 0000 |,
0000 0000 |,
0000 0000 |,
0000 0000 |,
0010 0000 ,
0000 0000 |,
0000 0000 |,
0000 0000 |,
1000 0000 |,
0000 0000 |,
0000 0000 |,

LSWRES Value

0000 0000 |,
0000 0000 |,
xxxx 0000 ,
0000 0000 |,
0010 0000 |,
uuuu uuuu
XXXX UUUU 4,
0000 0000 |,
1000 0000 ,
xxxx 0000 ,
0000 0000 |,

Comment

x=unknown

u=unchanged

The controller checks the LIN13 bit in computing the checksum (enhanced checksum in LIN2.1 / classic checksum in LIN
1.3). See Section 17.4.6.3 “Rx and TX Response Functions” on page 180.

This bit is irrelevant for UART commands.

Atmel
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17.5.4 Configuration

Depending on the mode (LIN or UART), LCONF[1..0] bits of the LINCR register set the controller in the following

configuration (Table 17-3):

Table 17-3. Configuration Table versus Mode

Mode LCONF[1..0] Configuration

00, LIN standard configuration (default)
i 01, No CRC field detection or transmission

10, Frame_Time_Out disable
1, Listening mode
00, 8-bit data, no parity and 1 stop-bit

UART 01, 8-bit data, even parity and 1 stop-bit
10, 8-bit data, odd parity and 1 stop-bit
11 Listening mode, 8-bit data, no parity and 1 stop-bit

The LIN configuration is independent of the programmed LIN protocol.
The listening mode connects the internal Tx LIN and the internal Rx LIN together.

In this mode, the TXLIN output pin is

disabled and the RXLIN input pin is always enabled. The same scheme is available in UART mode.

Figure 17-6. Listening Mode

internal

. |
Tx LIN :>T><

LISTEN »—e \

: 1
internal
Rx LIN 0 X

17.5.5 Busy Signal

TXLIN

RXLIN

LBUSY bit flag in LINSIR register is the image of the BUSY signal. It is set and cleared by hardware. It signals that the

controller is busy with LIN or UART communication.

17.5.5.1 Busy Signal in LIN Mode

Figure 17-7. Busy Signal in LIN Mode

B FRAME SLOT _
HEADER L RESPONSE _
PROTECTED || ¥
LINBus | BREAK 11 SYNC J_toentiFer | ] DATA0 | | paTAn || __cHecksum |
Field Field Field Field Field Field

1) LBUSY Node providing the master task *
2) LBUSY /
/

”
"
Node providing a slave task
3) LBUSY \ Node providing neither the master task, neither a slave task

\ / \

v/
7 /

LCMD = Tx Header LIDOK LCMD = Tx or Rx Response LTXOK or LRXOK
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When the busy signal is set, some registers are locked, user writing is not allowed:
e  “LIN Control Register” - LINCR - except LCMDJ[2..0], LENA and LSWRES,
e “LIN Baud Rate Registers” - LINBRRL and LINBRRH,
e “LIN Data Length Register” - LINDLR,
e  “LIN Identifier Register” - LINIDR,
e  “LIN Data Register” - LINDAT.
If the busy signal is set, the only available commands are:
e LCMDI1..0] = 00 ,, the abort command is taken into account at the end of the byte,
e LENA =0 and/or LCMD[2] = 0, the kill command is taken into account immediately,
e LSWRES =1, the reset command is taken into account immediately.

Note that, if another command is entered during busy signal, the new command is not validated and the LOVRERR bit flag of
the LINERR register is set. The on-going transfer is not interrupted.

17.5.5.2 Busy Signal in UART Mode
During the byte transmission, the busy signal is set. This locks some registers from being written:

e  “LIN Control Register” - LINCR - except LCMDJ[2..0], LENA and LSWRES,
e  “LIN Data Register” - LINDAT.

The busy signal is not generated during a byte reception.

17.5.6 Bit Timing
17.5.6.1 Baud rate Generator

The baud rate is defined to be the transfer rate in bits per second (bps):
e BAUD: Baud rate (in bps),
o fclk,,: System I/O clock frequency,
e LDIV[11..0]: Contents of LINBRRH & LINBRRL registers - (0-4095), the pre-scaler receives clk;,, as input clock.
e LBT[5..0]: Least significant bits of - LINBTR register- (0-63) is the number of samplings in a LIN or UART bit (default
value 32).
Equation for calculating baud rate:
BAUD = fclk;,, / LBT[5..0] x (LDIV[11..0] + 1)

Equation for setting LINDIV value:
LDIV[11..0] = (fclk;,, / LBT[5..0] x BAUD) - 1

Note that in reception a majority vote on three samplings is made.
17.5.6.2 Re-synchronization in LIN Mode

When waiting for Rx Header, LBT[5..0] = 32 in LINBTR register. The re-synchronization begins when the BREAK is
detected. If the BREAK size is not in the range (11 bits min., 28 bits max. — 13 bits nominal), the BREAK is refused. The re-
synchronization is done by adjusting LBT[5..0] value to the SYNCH field of the received header (0x55). Then the
PROTECTED IDENTIFIER is sampled using the new value of LBT[5..0]. The re-synchronization implemented in the
controller tolerates a clock deviation of +20% and adjusts the baud rate in a £2% range.

The new LBTI[5..0] value will be used up to the end of the response. Then, the LBT[5..0] will be reset to 32 for the next
header.

The LINBTR register can be used to re-calibrate the clock oscillator.
The re-synchronization is not performed if the LIN node is enabled as a master.
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17.5.6.3 Handling LBT[5..0]

LDISR bit of LINBTR register is used to:
e To enable the setting of LBT[5..0] (to manually adjust the baud rate especially in the case of UART mode). A minimum
of 8 is required for LBTI[5..0] due to the sampling operation.

e Disable the re-synchronization in LIN Slave Mode for test purposes.

Note that the LENA bit of LINCR register is important for this handling (see Figure 17-8).

Figure 17-8. Handling LBT[5..0]

i

| Write in LINBTR register |

LENA ?
(LINCR bitd)

LDISR

to write

A
LBT[5..0] = LBT[5..0] to write
(LBT[5..0] min = 8)

LDISR forced to 1
Disable re-synch. in LIN mode

LBT[5..0] forced to 0x20
LDISR forced to 0
Enable re-synch. in LIN mode

17.5.7 Data Length
Section 17.4.6 “LIN Commands” on page 179 describes how to set or how are automatically set the LRXDL[3..0] or
LTXDL[3..0] fields of LINDLR register before receiving or transmitting a response.

In the case of Tx Response the LRXDL[3..0] will be used by the hardware to count the number of bytes already successfully
sent.

In the case of Rx Response the LTXDL[3..0] will be used by the hardware to count the number of bytes already successfully
received.

If an error occurs, this information is useful to the programmer to recover the LIN messages.

17.5.7.1 Data Length in LIN 2.1
e |f LTXDL[3..0]=0 only the CHECKSUM will be sent,
e |f LRXDL[3..0]=0 the first byte received will be interpreted as the CHECKSUM,
e IfLTXDL[3..0] or LRXDLJ[3..0] >8, values will be forced to 8 after the command setting and before sending or receiving
of the first byte.

17.5.7.2 Data Length in LIN 1.3

e LRXDL and LTXDL fields are both hardware updated before setting LIDOK by decoding the data length code
contained in the received PROTECTED IDENTIFIER (LRXDL = LTXDL).

e Via the above mechanism, a length of 0 or >8 is not possible.
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17.5.7.3 Data Length in Rx Response

Figure 17-9. LIN2.1 - Rx Response - No Error

LIDOK LRXOK
/f 1st Byte 2nd Byte 3rd Byte 4th Byte /f

LIN bus :' [ oamo [[ oaa1 || opaa2 || paas || cHEcksum |

LRXDL (*) X 4
{
LTXDL (*) NEEE X o X 1 X 2 X 3 X 4
\ .
LBUSY \ \ /\‘ /\
\ LCMD = Rx Response LCMD2..0 = 000y,
LINDLR = 0x?4

(*): LRXDL and LTXDL updated by user

The user initializes LRXDL field before setting the Rx response command,

After setting the Rx response command, LTXDL is reset by hardware,

LRXDL field will remain unchanged during Rx (during busy signal),

LTXDL field will count the number of received bytes (during busy signal),

If an error occurs, Rx stops, the corresponding error flag is set and LTXDL will give the number of received bytes
without error,

e If no error occurs, LRXOK is set after the reception of the CHECKSUM, LRXDL will be unchanged (and

LTXDL = LRXDL).

17.5.7.4 Data Length in Tx Response

Figure 17-10. LIN1.3 - Tx Response - No Error

LIDOK LTXOK
/*/ 1st Byte 2nd Byte 3rd Byte 4th Byte /f

UNbus __| [ opatao [ pata1 || pata2 || paas || cHECKsum |

LRxoL() X 4 {( 0 X 1 X 2 X 3 X 4

LTXDL (*) X 4 \
LCMD2..0 = ooob'

\
LBUSY \ / \

LCMD = Tx Response
(*): LRXDL and LTXDL updated by Rx Response or Tx Response task

The user initializes LTXDL field before setting the Tx response command,
After setting the Tx response command, LRXDL is reset by hardware,
LTXDL will remain unchanged during Tx (during busy signal),

LRXDL will count the number of transmitted bytes (during busy signal),

If an error occurs, Tx stops, the corresponding error flag is set and LRXDL will give the number of transmitted bytes
without error,

e If no error occurs, LTXOK is set after the transmission of the CHECKSUM, LTXDL will be unchanged (and

LRXDL = LTXDL).
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17.5.7.5 Data Length after Error
Figure 17-11. Tx Response - Error

LERR
1st Byte 2nd Byte 3rd Byte /f
LIN bus [ opatao [ pataq | TA-2

0 X 1

LRXDL 4

!
LsusY 4\

LTXDL 4

N

LCMD2..0 = 000,
LCMD = Tx Response

Note: Information on response (ex: error on byte) is only available at the end of the serialization/de-serialization of
the byte.

17.5.7.6 Data Length in UART Mode

e The UART mode forces LRXDL and LTXDL to 0 and disables the writing in LINDLR register,
e Note that after reset, LRXDL and LTXDL are also forced to 0.

17.5.8 xxOK Flags

There are three xxOK flags in LINSIR register:

e LIDOK: LIN IDentifier OK
It is set at the end of the header, either by the Tx header function or by the Rx header. In LIN 1.3, before generating
LIDOK, the controller updates the LRXDL and LTXDL fields in LINDLR register.
It is not driven in UART mode.

e LRXOK: LIN RX response complete
Itis set at the end of the response by the Rx response function in LIN mode and once a character is received in UART
mode.

e LTXOK: LIN TX response complete
It is set at the end of the response by the Tx Response function in LIN mode and once a character has been sent in
UART mode.

These flags can generate interrupts if the corresponding enable interrupt bit is set in the LINENIR register (see Section
17.5.13 “Interrupts” on page 188).

17.5.9 xxERR Flags

LERR bit of the LINSIR register is an logical ‘OR’ of all the bits of LINERR register (see Section 17.5.13 “Interrupts” on page
188). There are eight flags:
e LBERR =LIN Bit ERRor.
A unit that is sending a bit on the bus also monitors the bus. A LIN bit error will be flagged when the bit value that is
monitored is different from the bit value that is sent. After detection of a LIN bit error the transmission is aborted.
e LCERR = LIN Checksum ERRor.
A LIN checksum error will be flagged if the inverted modulo-256 sum of all received data bytes (and the protected
identifier in LIN 2.1) added to the checksum does not result in OxFF.
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LPERR = LIN Parity ERRor (identifier).
A LIN parity error in the IDENTIFIER field will be flagged if the value of the parity bits does not match with the identifier
value. (See LP[1:0] bits in Section 17.6.8 “LIN Identifier Register - LINIDR” on page 195). A LIN slave application does
not distinguish between corrupted parity bits and a corrupted identifier. The hardware does not undertake any
correction.
However, the LIN slave application has to solve this as:

e  known identifier (parity bits corrupted),

e or corrupted identifier to be ignored,

e or new identifier.
LSERR = LIN Synchronization ERRor.
A LIN synchronization error will be flagged if a slave detects the edges of the SYNCH field outside the given
tolerance.
LFERR = LIN Framing ERRor.
A framing error will be flagged if dominant STOP bit is sampled.
Same function in UART mode.
LTOERR = LIN Time Out ERRor.
A time-out error will be flagged if the MESSAGE frame is not fully completed within the maximum length Tr.me Maximum
by any slave task upon transmission of the SYNCH and IDENTIFIER fields (see Section 17.5.10 “Frame Time Out” on
page 187).
LOVERR = LIN OVerrun ERRor.
Overrun error will be flagged if a new command (other than LIN Abort) is entered while ‘Busy signal’ is present.
In UART mode, an overrun error will be flagged if a received byte overwrites the byte stored in the serial input buffer.
LABORT
LIN abort transfer reflects a previous LIN Abort command (LCMD[2..0] = 000) while ‘Busy signal’ is present.

After each LIN error, the LIN controller stops its previous activity and returns to its withdrawal mode (LCMDI[2..0] = 000 ,) as
illustrated in Figure 17-11 on page 186.

Writing 1 in LERR of LINSIR register resets LERR bit and all the bits of the LINERR register.

17.5.10 Frame Time Out

According to the LIN protocol, a frame time-out error is flagged if: Teame > Trrame_maximum- T is feature is implemented in the
LIN/UART controller.

Figure 17-12. LIN Timing and Frame Time-out

TFrame
THeader | | TResponse .
_l I r PROTECTED | | v I I
BREAK SYNC IDENTIFIER | DATA-0 DATA-n CHECKSUM
Field J FieldJ Field—'| Field J FieldJ FieldJ
Nominal Maximum before Time-out

THeader Nominal = 34xTgy THeader Maximum = 1.4 X Theader Nominal
TResponse_Nominal = 10 (Number_of_Data + 1) x Tgjt TResponse_Maximum = 1.4 X Tresponse_Nominal
TFramefNominaI = THeadeL Nominal * TResponseﬁNominaI TFramefMaximum = THeadeL Maximum * TResponseﬁMaximum
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17.5.11 Break-in-data

According to the LIN protocol, the LIN/UART controller can detect the BREAK/SYNC field sequence even if the break is
partially superimposed with a byte of the response. When a BREAK/SYNC field sequence happens, the transfer in progress
is aborted and the processing of the new frame starts.
e On slave node(s), an error is generated (i.e. LBERR in case of Tx Response or LFERR in case of Rx Response).
Information on data error is also available, refer to the Section 17.5.7.5.

e  On master node, the user (code) is responsible for this aborting of frame. To do this, the master task has first to abort
the on-going communication (clearing LCMD bits - LIN Abort command) and then to apply the Tx Header command.
In this case, the abort error flag - LABORT - is set.

On the slave node, the BREAK detection is processed with the synchronization setting available when the LIN/UART
controller processed the (aborted) response. But the re-synchronization restarts as usual. Due to a possible difference of
timing reference between the BREAK field and the rest of the frame, the time-out values can be slightly inaccurate.

17.5.12 Checksum

The last field of a frame is the checksum.

In LIN 2.1, the checksum contains the inverted eight bit sum with carry over all data bytes and the protected identifier. This
calculation is called enhanced checksum.

n n
CHECKSUM = 255 — Lunsigned charHZ DATA nJ + PROTECTED ID.} + unsigned charH{Z DATA nJ + PROTECTED ID.} » SD
0 0

In LIN 1.3, the checksum contains the inverted eight bit sum with carry over all data bytes. This calculation is called classic
checksum.

n n
CHECKSUM = 255 — [unsigned char{z DATA n} + unsigned char[[z DATA n] » SJJ

0 0
Frame identifiers 60 (0x3C) to 61 (0x3D) shall always use classic checksum

17.5.13 Interrupts

188

As shown in Figure 17-13 on page 188, the four communication flags of the LINSIR register are combined to drive two
interrupts. Each of these flags have their respective enable interrupt bit in LINENIR register.

(see Section 17.5.8 “xxOK Flags” on page 186 and Section 17.5.9 “xxERR Flags” on page 186).

Figure 17-13. LIN Interrupt Mapping
1

LINERR.7
LABORT

LTOERR
LOVERR
LINERR .4
| LFERR Ii

LINERR.3

LINERR.6

LINERR.5

LINSIR.3

» LIN ERR

LINENIR.3 LINENIR.2 LINENIR.1 LINENIR.O
1

1
1
: —-I LENERR H LENIDOK H LENTXOK H LENRXOK |— -

LIDOK
|
LINSIR.1
| LTXOK I II\/ LINIT

LINSIR.0
! | LRXOK I I\
1
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17.5.14 Message Filtering

Message filtering based upon the whole identifier is not implemented. Only a status for frame headers having 0x3C, 0x3D,
0x3E and 0x3F as identifier is available in the LINSIR register.

Table 17-4. Frame Status

LIDST[2..0] Frame Status
0xx p, No specific identifier
100 ,, 60 (0x3C) identifier
101, 61 (0x3D) identifier
110, 62 (Ox3E) identifier
1M1, 63 (0x3F) identifier

The LIN protocol says that a message with an identifier from 60 (0x3C) up to 63 (0x3F) uses a classic checksum (sum over
the data bytes only). Software will be responsible for switching correctly the LIN13 bit to provide/check this expected
checksum (the insertion of the ID field in the computation of the CRC is set - or not - just after entering the Rx or Tx response
command).

17.5.15 Data Management
17.5.15.1 LIN FIFO Data Buffer

To preserve register allocation, the LIN data buffer is seen as a FIFO (with address pointer accessible). This FIFO is
accessed via the LINDX][2..0] field of LINSEL register through the LINDAT register.

LINDX[2..0], the data index, is the address pointer to the required data byte. The data byte can be read or written. The data
index is automatically incremented after each LINDAT access if the LAINC (active low) bit is cleared. A roll-over is
implemented, after data index=7 it is data index=0. Otherwise, if LAINC bit is set, the data index needs to be written
(updated) before each LINDAT access.

The first byte of a LIN frame is stored at the data index=0, the second one at the data index=1, and so on. Nevertheless,
LINSEL must be initialized by the user before use.

17.5.15.2 UART Data Register

The LINDAT register is the data register (no buffering - no FIFO). In write access, LINDAT will be for data out and in read
access, LINDAT will be for data in.

In UART mode the LINSEL register is unused.

17.5.16 OCD Support

This section describes the behavior of the LIN/UART controller stopped by the OCD (i.e. I/O view behavior in AVR Studio®)
1. LINCR:
- LINCR][6..0] are R/W accessible,
- LSWRES always is a self-reset bit (needs 1 micro-controller cycle to execute)
2. LINSIR:
- LIDST[2..0] and LBUSY are always Read accessible,
- LERR and LxxOK bit are directly accessible (unlike in execution, set or cleared directly by writing 1 or 0).
- Note that clearing LERR resets all LINERR bits and setting LERR sets all LINERR bits.

3. LINENR:
- All bits are R/W accessible.
4. LINERR:

- All bits are R/W accessible,

- Note that LINERR bits are ORed to provide the LERR interrupt flag of LINSIR.
5. LINBTR:

- LBTI[5..0] are R/W access only if LDISR is set,

- If LDISR is reset, LBT[5..0] are unchangeable.
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6. LINBRRH and LINBRRL:
- All bits are R/W accessible.

7. LINDLR:
- All bits are R/W accessible.
8. LINIDR:

- LID[5..0] are R/W accessible,
- LP[1..0] are Read accessible and are always updated on the fly.

9. LINSEL:
- All bits are R/W accessible.
10. LINDAT:

- All bits are in R/W accessible,
- Note that LAINC has no more effect on the auto-incrementation and the access to the full FIFO is done setting
LINDX[2..0] of LINSEL.

When a debugger break occurs, the state machine of the LIN/UART controller is stopped (included frame time-
out) and further communication may be corrupted.

Note:

17.6 LIN/UART Register Description

Table 17-5. LIN/UART Register Bits Summary

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
LINCR LSWRES LIN13 LCONF1 LCONFO LENA LCMD2 LCMD1 LCMDO
O RW 0 RW 0O RW 0 RW 0O RW 0 RW 0 RW 0 RW
LINSIR LIDST2 LIDSTA LIDSTO LBUSY LERR LIDOK LTXOK LRXOK
©o R 0 R 0 R 0 R 0 RWg 0 RWy 0 RWg 0 RMW,
LINENIR — — — — LENERR  LENIDOK = LENTXOK LENRXOK
0 R 0 R o R o R 0 RW 0 RW 0 RW 0 RW
_Nerg | WABORT  LTOERR  LOVERR LFERR LSERR LPERR LCERR LBERR
o R O R O R O R 0O R O R 0O R 0 R
INBTR LDISR LBT5 LBT4 LBT3 LBT2 LBT1 LBTO
0 RW 0 R 1 \ RI(W) 0 \ RIW) 0 RAW) 0O RAW) 0 RAW) 0 RIW)
L INBRRL LDIV7 LDIV6 LDIV5 LDIV4 LDIV3 LDIV2 LDIV1 LDIVO
O RW 0 RW 0O RW 0 RW 0O RW 0 RW 0 RW 0 RW
— — — — LDIV11 LDIV10 LDIVO LDIVS
LINBRRH
0 R 0 R o R o R 0 RW 0 RW 0 RW 0 RW
INDLR LTXDL3 LTXDL2 LTXDL1 LTXDLO LRXDL3 LRXDL2 LRXDL1 LRXDLO
O RW 0 RW 0O RW 0 RW 0O RW 0 RW 0 RW 0 RW
LINDR LP1 LPO LID5/LDL1  LID4/LDLO LID3 LID2 LID1 LIDO
1 R 0 R 0 RW 0 RW 0 RW 0 RW 0 RW 0 RW
— — — — LAINC LINDX2 LINDX1 LINDXO
LINSEL
0 R 0 R o R o R 0 RW 0 RW 0 RW 0 RW
L INDAT LDATA7 LDATA6 LDATA5 LDATA4 LDATA3 LDATA2 LDATA1 LDATAOQ
O RW 0 RW 0O RW 0 RW 0O RW 0 RW 0 RW 0 RW
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17.6.1 LIN Control Register - LINCR

Bit 7 6 5 4 3 2 1 0
ILSWRESl LIN13 | LCONF1 | LCONFO | LENA LCMD2 | LCMD1 | LCMDO I LINCR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - LSWRES: Software Reset
e 0= No action,
e 1 = Software reset (this bit is self-reset at the end of the reset procedure).

+ Bit6-LIN13: LIN 1.3 mode
e 0=LIN 2.1 (default),
e 1=LIN13.

e Bit 5:4 - LCONF[1:0]: Configuration
a. LIN mode (default = 00):
e 00 = LIN standard configuration (listen mode “off’, CRC “on” and Frame_Time_Out “on”,
e 01 =No CRC, no time out (listen mode “off”),
e 10 = No Frame_Time_Out (listen mode “off’ and CRC “on”),
e 11 = Listening mode (CRC “on” and Frame_Time_Out “on”).
b. UART mode (default = 00):
e (00 = 8-bit, no parity (listen mode “off”),
e 01 = 8-bit, even parity (listen mode “off”),
e 10 = 8-bit, odd parity (listen mode “off”),
e 11 = Listening mode, 8-bit, no parity.

* Bit 3-LENA: Enable
e 0= Disable (both LIN and UART modes),
e 1 =Enable (both LIN and UART modes).

e Bit 2:0- LCMDJ[2..0]: Command and mode
The command is only available if LENA is set.

e 000 =LIN Rx Header - LIN abort,

e 001 =LIN Tx Header,

e 010 = LIN Rx Response,

e 011 =LIN Tx Response,

e 100 = UART Rx and Tx Byte disable,
e 11x = UART Rx Byte enable,

e 1x1 = UART Tx Byte enable.
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17.6.2 LIN Status and Interrupt Register - LINSIR

Bit 7 6 5 4 3 2 1 0
| LIDST2 | LIDST1 | LIDSTO | LBUSY | LERR | LIDOK | LTXOK | LRXOK | LINSIR
Read/Write R R R R RW,,, RW,, RW.,, RW,,
Initial Value 0 0 0 0 0 0 0 0

e Bits 7:5- LIDST[2:0]: Identifier Status
0xx = no specific identifier,
100 = Identifier 60 (0x3C),
101 = Identifier 61 (0x3D),
110 = Identifier 62 (Ox3E),
111 = Identifier 63 (0x3F).

* Bit4-LBUSY: Busy Signal
e 0= Not busy,
e 1 =Busy (receiving or transmitting).

e Bit 3-LERR: Error Interrupt
It is a logical OR of LINERR register bits. This bit generates an interrupt if its respective enable bit - LENERR - is set

in LINENIR.
e 0= No error,
e 1 =An error has occurred.

The user clears this bit by writing 1 in order to reset this interrupt. Resetting LERR also resets all LINERR bits. In
UART mode, this bit is also cleared by reading LINDAT.

e Bit 2 - LIDOK: Identifier Interrupt
This bit generates an interrupt if its respective enable bit - LENIDOK - is set in LINENIR.

e 0= No identifier,
e 1 =Slave task: Identifier present, master task: Tx header complete.
The user clears this bit by writing 1, in order to reset this interrupt.

e Bit1-LTXOK: Transmit Performed Interrupt
This bit generates an interrupt if its respective enable bit - LENTXOK - is set in LINENIR.

e 0=NoTx,

e 1 =Tx Response complete.
The user clears this bit by writing 1, in order to reset this interrupt.
In UART mode, this bit is also cleared by writing LINDAT.

e Bit 0 - LRXOK: Receive Performed Interrupt
This bit generates an interrupt if its respective enable bit - LENRXOK - is set in LINENIR.

e 0=NoRx

e 1 =RxResponse complete.
The user clears this bit by writing 1, in order to reset this interrupt.
In UART mode, this bit is also cleared by reading LINDAT.
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17.6.3

17.6.4

LIN Enable Interrupt Register - LINENIR

Bit 7 6 5 4 3 2 1 0

| - | - | - - LENERR |LENIDOK |LENTXOK | LENRXOK | LINENIR
Read/Write R R R R RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

» Bits 7:4 - Reserved Bits
These bits are reserved for future use. For compatibility with future devices, they must be written to zero when LINE-
NIR is written.

Bit 3 - LENERR: Enable Error Interrupt
e 0= Error interrupt masked,
e 1 = Errorinterrupt enabled.

Bit 2 - LENIDOK: Enable Identifier Interrupt
e 0 = Identifier interrupt masked,
e 1 = |dentifier interrupt enabled.

Bit 1 - LENTXOK: Enable Transmit Performed Interrupt
e 0 = Transmit performed interrupt masked,
e 1= Transmit performed interrupt enabled.

Bit 0 - LENRXOK: Enable Receive Performed Interrupt
e 0 = Receive performed interrupt masked,
e 1 =Receive performed interrupt enabled.

LIN Error Register - LINERR

Bit 7 6 5 4 3 2 1 0
ILABORT| LTOERR [LOVERR | LFERR | LSERR | LPERR | LCERR | LBERR I LINERR

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

e Bit7-LABORT: Abort Flag
e 0= No warning,
e 1 =LIN abort command occurred. This bit is cleared when LERR bit in LINSIR is cleared.

Bit 6 - LTOERR: Frame_Time_Out Error Flag
e 0 =No error,
e 1 =Frame_Time_Out error. This bit is cleared when LERR bit in LINSIR is cleared.

Bit 5 - LOVERR: Overrun Error Flag
e 0 =Noerror,

° 1 = Overrun error. This bit is cleared when LERR bit in LINSIR is cleared.

Bit 4 - LFERR: Framing Error Flag
e 0=Noerror,
e 1 =Framing error. This bit is cleared when LERR bit in LINSIR is cleared.
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Bit 3 - LSERR: Synchronization Error Flag
e 0=No error,

e 1 = Synchronization error. This bit is cleared when LERR bit in LINSIR is cleared.

Bit 2 - LPERR: Parity Error Flag
e 0=Noerror,
e 1 =Parity error. This bit is cleared when LERR bit in LINSIR is cleared.

Bit 1 - LCERR: Checksum Error Flag
e 0=Noerror,

° 1 = Checksum error. This bit is cleared when LERR bit in LINSIR is cleared.

Bit O - LBERR: Bit Error Flag
e 0=noerror,
e 1 =Biterror. This bit is cleared when LERR bit in LINSIR is cleared.

17.6.5 LIN Bit Timing Register - LINBTR

Bit 7 6 5 4 3 2 1 0
| LDISR | - | LBT5 | LBT4 | LBT3 | LBT2 | LBTL | LBTO | LINBTR
Read/Write R/W R R/(W) RI(W)  R/(W)  RAW) R/(W) R/(W)
Initial Value 0 0 1 0 0 0 0 0

* Bit 7 - LDISR: Disable Bit Timing Re synchronization
e 0 = Bit timing re-synchronization enabled (default),
e 1 =Bit timing re-synchronization disabled.
e Bits 5:0 - LBT[5:0]: LIN Bit Timing
Gives the number of samples of a bit.
sample-time = (1 /fc:lki,0 ) x (LDIV[11..0] + 1)
Default value: LBT[6:0]=32 — Min. value: LBT[6:0]=8 — Max. value: LBT[6:0]=63

17.6.6 LIN Baud Rate Register - LINBRR

Bit 7 6 5 4 3 2 1 0
LDIV7 LDIV6 LDIV5 LDIV4 LDIV3 LDIV2 LDIV1 LDIVO | LINBRRL
- - - - LDIV1l1 | LDIV10 LDIV9 LDIV8 | LINBRRH

Bit 15 14 13 12 1" 10 9 8
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

» Bits 15:12 - Reserved Bits
These bits are reserved for future use. For compatibility with future devices, they must be written to zero when LIN-
BRR is written.

* Bits 11:0 - LDIV[11:0]: Scaling of clk;, Frequency
The LDIV value is used to scale the entering clk;, frequency to achieve appropriate LIN or UART baud rate.
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17.6.7 LIN Data Length Register - LINDLR

Bit 7 6 5 4 3 2 1 0
I LTXDL3 | LTXDL2 | LTXDL1 | LTXDLO | LRXDL3 | LRXDL2 | LRXDL1 LRXDLOI LINDLR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bits 7:4 - LTXDL[3:0]: LIN Transmit Data Length
In LIN mode, this field gives the number of bytes to be transmitted (clamped to 8 Max).

In UART mode this field is unused.

e Bits 3:0 - LRXDL[3:0]: LIN Receive Data Length
In LIN mode, this field gives the number of bytes to be received (clamped to 8 Max).

In UART mode this field is unused.

17.6.8 LIN Identifier Register - LINIDR

Bit 7 6 5 4 3 2 1 0
I LP1 | LPO |[LID5/LDL1|LID4/LDLO| LID3 LID2 LID1 LIDO I LINIDR
Read/Write R R R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bits 7:6 - LP[1:0]: Parity

In LIN mode:
LPO = LID4 ~ LID2 ~ LIDL ~ LIDO
LP1 =! ( LIDL ~ LID3 N~ LID4 ~ LID5 )

In UART mode this field is unused.

e Bits 5:4 - LDL[1:0]: LIN 1.3 Data Length
In LIN 1.3 mode:

e 00 = 2-byte response,
e 01 = 2-byte response,
e 10 = 4-byte response,
e 11 = 8-byte response.
In UART mode this field is unused.

e Bits 3:0- LID[3:0]: LIN 1.3 Identifier
In LIN 1.3 mode: 4-bit identifier.

In UART mode this field is unused.

e Bits 5:0 - LID[5:0]: LIN 2.1 Identifier
In LIN 2.1 mode: 6-bit identifier (no length transported).

In UART mode this field is unused.
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17.6.9 LIN Data Buffer Selection Register - LINSEL

Bit 7 6 5 4 3 2 1 0
I - | - [ - | - LAINC | LINDX2 | LINDX1 | LINDXO | LINSEL
Read/Write - - - - R/W R/W R/W R/W
Initial Value - - - - 0 0 0 0

* Bits 7:4 - Reserved Bits
These bits are reserved for future use. For compatibility with future devices, they must be written to zero when LIN-

SEL is written.

¢ Bit 3 - LAINC: Auto Increment of Data Buffer Index
In LIN mode:

e 0= Auto incrementation of FIFO data buffer index (default),
e 1 =No auto incrementation.
In UART mode this field is unused.

* Bits 2:0 - LINDX 2:0: FIFO LIN Data Buffer Index
In LIN mode: location (index) of the LIN response data byte into the FIFO data buffer. The FIFO data buffer is

accessed through LINDAT.
In UART mode this field is unused.

17.6.10 LIN Data Register - LINDAT

Bit 7 6 5 4 3 2 1 0
I LDATA7 | LDATAG6 | LDATAS | LDATA4 | LDATA3 | LDATA2 | LDATA1 | LDATAO I LINDAT
Read/Write R/wW R/W R/W R/wW RW R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bits 7:0 - LDATA[7:0]: LIN Data In / Data out
In LIN mode: FIFO data buffer port.

In UART mode: data register (no data buffer - no FIFO).
e |n Write access, data out.
e In Read access, data in.
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18. Analog to Digital Converter - ADC

18.1 Features
e  10-bit resolution
0.8 LSB integral non-linearity (at 2Mhz)
+3.2 LSB absolute accuracy
8 to 250us conversion time
Up to 125kSPS at maximum resolution
11 multiplexed single ended input channels
3 differential input channels with programmable gain 5, 10, 20 and 40
Optional left adjustment for ADC result readout
0 to V¢ ADC input voltage range
Selectable 2.56 V ADC reference voltage
Free running or single conversion mode
ADC start conversion by auto triggering on interrupt sources
Interrupt on ADC conversion complete
Sleep mode noise canceler
Temperature sensor
LIN address sense (ISRC voltage measurement)
V¢ voltage measurement

The ATmega16/32/64/M1/C1 features a 10-bit successive approximation ADC. The ADC is connected to an 15-channel
analog multiplexer which allows eleven single-ended input. The single-ended voltage inputs refer to OV (GND).

The device also supports 3 differential voltage input amplifiers which are equipped with a programmable gain stage,
providing amplification steps of 14dB (5x), 20dB (10x), 26dB (20x), or 32dB (40x) on the differential input voltage before the
A/D conversion. On the amplified channels, 8-bit resolution can be expected.

The ADC contains a sample and hold circuit which ensures that the input voltage to the ADC is held at a constant level
during conversion. A block diagram of the ADC is shown in Figure 18-1 on page 198.

The ADC has a separate analog supply voltage pin, AVc. AV must not differ more than 0.3V from V. See Section 18.6
“ADC Noise Canceler” on page 203 on how to connect this pin.

Internal reference voltages of nominally 2.56V or AV are provided on-chip. The voltage reference may be externally
decoupled at the AREF pin by a capacitor (e.g., 10nF) for better noise performance. In any case this capacitor shout not be
greater than 10% of the AVCC smoothing capacitor.
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Figure 18-1. Analog to Digital Converter Block Schematic
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18.2 Operation

The ADC converts an analog input voltage to a 10-bit digital value through successive approximation. The minimum value
represents GND and the maximum value represents the voltage on the AREF pin minus 1 LSB. Optionally, AV or an
internal 2.56V reference voltage may be connected to the AREF pin by writing to the REFSn bits in the ADMUX Register.
The internal voltage reference may thus be decoupled by an external capacitor at the AREF pin to improve noise immunity.

The analog input channel are selected by writing to the MUX bits in ADMUX. Any of the ADC input pins, as well as GND and
a fixed bandgap voltage reference, can be selected as single ended inputs to the ADC.

The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA. Voltage reference is set by the REFS1 and REFS0
bits in ADMUX register, whatever the ADC is enabled or not. The ADC does not consume power when ADEN is cleared, so
it is recommended to switch off the ADC before entering power saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and ADCL. By default, the result is
presented right adjusted, but can optionally be presented left adjusted by setting the ADLAR bit in ADMUX.

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read ADCH. Otherwise, ADCL must
be read first, then ADCH, to ensure that the content of the Data Registers belongs to the same conversion. Once ADCL is
read, ADC access to Data Registers is blocked. This means that if ADCL has been read, and a conversion completed before
ADCH is read, neither register is updated and the result from the conversion is lost. When ADCH is read, ADC access to the
ADCH and ADCL Registers is re-enabled.

The ADC has its own interrupt which can be triggered when a conversion completes. The ADC access to the Data Registers
is prohibited between reading of ADCH and ADCL, the interrupt will trigger even if the result is lost.

18.3 Starting a Conversion

A single conversion is started by writing a logical one to the ADC start conversion bit, ADSC. This bit stays high as long as
the conversion is in progress and will be cleared by hardware when the conversion is completed. If a different data channel
is selected while a conversion is in progress, the ADC will finish the current conversion before performing the channel
change.

Alternatively, a conversion can be triggered automatically by various sources. Auto triggering is enabled by setting the ADC
Auto trigger enable bit, ADATE in ADCSRA. The trigger source is selected by setting the ADC trigger select bits, ADTS in
ADCSRB (See description of the ADTS bits for a list of the trigger sources). When a positive edge occurs on the selected
trigger signal, the ADC prescaler is reset and a conversion is started. This provides a method of starting conversions at fixed
intervals. If the trigger signal is still set when the conversion completes, a new conversion will not be started. If another
positive edge occurs on the trigger signal during conversion, the edge will be ignored. Note that an interrupt flag will be set
even if the specific interrupt is disabled or the Global Interrupt Enable bit in SREG is cleared. A conversion can thus be
triggered without causing an interrupt. However, the interrupt flag must be cleared in order to trigger a new conversion at the
next interrupt event.

Figure 18-2. ADC Auto Trigger Logic
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18.4
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Using the ADC interrupt flag as a trigger source makes the ADC start a new conversion as soon as the ongoing conversion
has finished. The ADC then operates in free running mode, constantly sampling and updating the ADC data register. The
first conversion must be started by writing a logical one to the ADSC bit in ADCSRA. In this mode the ADC will perform
successive conversions independently of whether the ADC Interrupt Flag, ADIF is cleared or not. The free running mode is
not allowed on the amplified channels.

If auto triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to one. ADSC can also be used
to determine if a conversion is in progress. The ADSC bit will be read as one during a conversion, independently of how the
conversion was started.

Prescaling and Conversion Timing

ADEN D—» Reset
START 7-Bit ADC Prescaler

CK—™

Figure 18-3. ADC Prescaler
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By default, the successive approximation circuitry requires an input clock frequency between 50kHz and 2MHz to get
maximum resolution. If a lower resolution than 10 bits is needed, the input clock frequency to the ADC can be higher than
2MHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency from any CPU frequency above
100kHz. The prescaling is set by the ADPS bits in ADCSRA. The prescaler starts counting from the moment the ADC is
switched on by setting the ADEN bit in ADCSRA. The prescaler keeps running for as long as the ADEN bit is set, and is
continuously reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion starts at the following rising
edge of the ADC clock cycle. See Section 18.5 “Changing Channel or Reference Selection” on page 202 for details on
differential conversion timing.

A normal conversion takes 15.5 ADC clock cycles. The first conversion after the ADC is switched on (ADEN in ADCSRA is
set) takes 25 ADC clock cycles in order to initialize the analog circuitry.

The actual sample-and-hold takes place 3.5 ADC clock cycles after the start of a normal conversion and 13.5 ADC clock
cycles after the start of an first conversion. When a conversion is complete, the result is written to the ADC data registers,
and ADIF is set. In single conversion mode, ADSC is cleared simultaneously. The software may then set ADSC again, and a
new conversion will be initiated on the first rising ADC clock edge.

When auto triggering is used, the prescaler is reset when the trigger event occurs. This assures a fixed delay from the trigger
event to the start of conversion. In this mode, the sample-and-hold takes place two ADC clock cycles after the rising edge on
the trigger source signal. Three additional CPU clock cycles are used for synchronization logic.

In free running mode, a new conversion will be started immediately after the conversion completes, while ADSC remains
high. For a summary of conversion times, see Table 18-1 on page 202.
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Figure 18-4. ADC Timing Diagram, First Conversion (Single Conversion Mode)

Next

First Conversion Conversion

<

I o T

I o [
Cycle Number |12|13|1I4|15|16|| I | 22|23 2a |25 | 26|27 ]28] |1 ]|2]3s
I o o

-
N

|
1
Conversion f \

Complete MUX and REFS
Update

\ Sample and Hold

ADC Clock ¥|||||||||1||||||l|||||‘||_||_||_||_|r|r||—||—|

. i . —t —

ADEN | | | | | | | | !
] J L ] | | 1 ]

ADSC | | | | | | m
| | | | | | |

ADIF | | | | | | | |
| 1 [ | I I 1 |

ADCH v I 7 N /) 7 i Sign and MSB of Result
I ! I 1 T T
} ] } | I |

ADCL X/ A // 1 /)K LSB of Result

|

!
b

MUX and REFS
Update

Figure 18-5. ADC Timing Diagram, Single Conversion
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Figure 18-7. ADC Timing Diagram, Free Running Conversion
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Table 18-1. ADC Conversion Time

Normal Conversion, Auto Triggered
Condition First Conversion Single Ended Conversion
Sample and Hold
(Cycles from Start of Conversion) ek 89 2
Conversion Time o5 155 16
(Cycles)

Changing Channel or Reference Selection

The MUXn and REFS1:0 bits in the ADMUX Register are single buffered through a temporary register to which the CPU has
random access. This ensures that the channels and reference selection only takes place at a safe point during the
conversion. The channel and reference selection is continuously updated until a conversion is started. Once the conversion
starts, the channel and reference selection is locked to ensure a sufficient sampling time for the ADC. Continuous updating
resumes in the last eight ADC clock cycle before the conversion completes (ADIF in ADCSRA is set). Note that the
conversion starts on the second following rising CPU clock edge after ADSC is written. The user is thus advised not to write
new channel or reference selection values to ADMUX until two ADC clock cycle after ADSC is written.

If auto triggering is used, the exact time of the triggering event can be indeterministic. Special care must be taken when
updating the ADMUX register, in order to control which conversion will be affected by the new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the ADMUX register is changed in this
period, the user cannot tell if the next conversion is based on the old or the new settings. ADMUX can be safely updated in
the following ways:

1. When ADATE or ADEN is cleared.

2. during conversion, with taking care of the trigger source event, when it is possible.

3.  After a conversion, before the interrupt flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next ADC conversion.
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18.5.1

18.5.2

ADC Input Channels

When changing channel selections, the user should observe the following guidelines to ensure that the correct channel is
selected:
e In single conversion mode, always select the channel before starting the conversion. The channel selection may be
changed one ADC clock cycle after writing one to ADSC. However, the simplest method is to wait for the conversion
to complete before changing the channel selection.

e In free running mode, always select the channel before starting the first conversion. The channel selection may be
changed one ADC clock cycle after writing one to ADSC. However, the simplest method is to wait for the first
conversion to complete, and then change the channel selection. Since the next conversion has already started
automatically, the next result will reflect the previous channel selection. Subsequent conversions will reflect the new
channel selection.

e In free running mode, because the amplifier clear the ADSC bit at the end of an amplified conversion, it is not possible
to use the free running mode, unless ADSC bit is set again by soft at the end of each conversion.

Note: When The ADC and COMPARATOR share the same channel (possible configuration for AMP 1+, AMP1- and
AMP2-), up to revision B of ATmega32M1 the comparator is disconnected during the sampling of the ADC. For
ATmega16/64 and ATmega32 revision C, the COMPARATOR is always connected.

ADC Voltage Reference

The reference voltage for the ADC (Vrge) indicates the conversion range for the ADC. Single ended channels that exceed
Vger Will result in codes close to Ox3FF. Vger can be selected as either AV, internal 2.56V reference, or external AREF
pin.

AV is connected to the ADC through a passive switch. The internal 2.56V reference is generated from the internal
bandgap reference (Vgg) through an internal amplifier. In either case, the external AREF pin is directly connected to the
ADC, and the reference voltage can be made more immune to noise by connecting a capacitor between the AREF pin and
ground. Vgee can also be measured at the AREF pin with a high impedant voltmeter. Note that Vrgr is a high impedant
source, and only a capacitive load should be connected in a system.

If the user has a fixed voltage source connected to the AREF pin, the user may not use the other reference voltage options
in the application, as they will be shorted to the external voltage. If no external voltage is applied to the AREF pin, the user
may switch between AV and 2.56V as reference selection. The first ADC conversion result after switching reference
voltage source may be inaccurate, and the user is advised to discard this result.

AREF pin is alternate function with ISRC current source output. When current source is selected, the AREF pin is not
connected to the internal reference voltage network. See AREFEN and ISRCEN bits in Section 18.9.3 “ADC control and
status register B- ADCSRB” on page 212.

If differential channels are used, the selected reference should not be closer to AV than indicated in Table 26-6 on page
280.

18.6 ADC Noise Canceler
The ADC features a noise canceler that enables conversion during sleep mode to reduce noise induced from the CPU core
and other I/O peripherals. The noise canceler can be used with ADC noise reduction and Idle mode. To make use of this
feature, the following procedure should be used:

e  Make sure the ADATE bit is reset.

e Make sure that the ADC is enabled and is not busy converting. Single conversion mode must be selected and the
ADC conversion complete interrupt must be enabled.

e Enter ADC noise reduction mode (or Idle mode). The ADC will start a conversion once the CPU has been halted.

e [f no other interrupts occur before the ADC conversion completes, the ADC interrupt will wake up the CPU and
execute the ADC conversion complete interrupt routine. If another interrupt wakes up the CPU before the ADC
conversion is complete, that interrupt will be executed, and an ADC Conversion Complete interrupt request will be
generated when the ADC conversion completes. The CPU will remain in active mode until a new sleep command is
executed.
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18.6.1

Note that the ADC will not be automatically turned off when entering other sleep modes than Idle mode and ADC noise
reduction mode. The user is advised to write zero to ADEN before entering such sleep modes to avoid excessive power
consumption. If the ADC is enabled in such sleep modes and the user wants to perform differential conversions, the user is
advised to switch the ADC off and on after waking up from sleep to prompt an extended conversion to get a valid result.

Analog Input Circuitry

The analog input circuitry for single ended channels is illustrated in Figure 18-8 An analog source applied to ADCn is
subjected to the pin capacitance and input leakage of that pin, regardless of whether that channel is selected as input for the
ADC. When the channel is selected, the source must drive the S/H capacitor through the series resistance (combined
resistance in the input path).

The ADC is optimized for analog signals with an output impedance of approximately 10k or less. If such a source is used,
the sampling time will be negligible. If a source with higher impedance is used, the sampling time will depend on how long
time the source needs to charge the S/H capacitor, with can vary widely. The user is recommended to only use low impedant
sources with slowly varying signals, since this minimizes the required charge transfer to the S/H capacitor.

If differential gain channels are used, the input circuitry looks somewhat different, although source impedances of a few
hundred kQ or less is recommended.

Signal components higher than the Nyquist frequency (fapc/2) should not be present for either kind of channels, to avoid
distortion from unpredictable signal convolution. The user is advised to remove high frequency components with a low-pass
filter before applying the signals as inputs to the ADC.

Figure 18-8. Analog Input Circuitry
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18.6.2 Analog Noise Canceling Techniques

Digital circuitry inside and outside the device generates EMI which might affect the accuracy of analog measurements. If
conversion accuracy is critical, the noise level can be reduced by applying the following techniques:

1. Keep analog signal paths as short as possible. Make sure analog tracks run over the analog ground plane, and
keep them well away from high-speed switching digital tracks.

2. The AVCC pin on the device should be connected to the digital VCC supply voltage via an RC network (R = 10Q
max, C = 100nF).

3. Use the ADC noise canceler function to reduce induced noise from the CPU.

4. If any ADC port pins (PB[7:2], PC[7:4], PD[6:4], PE[2]) are used as digital outputs, it is essential that these do not
switch while a conversion is in progress.

18.6.3 Offset Compensation Schemes

204

The gain stage has a built-in offset cancellation circuitry that nulls the offset of differential measurements as much as
possible. The remaining offset in the analog path can be measured directly by shortening both differential inputs using the
AMPXxIS bit with both inputs unconnected (see Section 18.11.1 “Amplifier O control and status register —- AMPOCSR” on page
218, see Section 18.11.2 “Amplifier 1 Control and Status Register - AMP1CSR” on page 219 and see Section 18.11.2
“Amplifier 1 Control and Status Register — AMP1CSR” on page 219). This offset residue can be then subtracted in software
from the measurement results. Using this kind of software based offset correction, offset on any channel can be reduced
below one LSB.
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18.6.4

ADC Accuracy Definitions

An n-bit single-ended ADC converts a voltage linearly between GND and Vger in 2" steps (LSBs). The lowest code is read
as 0, and the highest code is read as 2"-1.

Several parameters describe the deviation from the ideal behavior:
e  Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal transition (at 0.5 LSB). Ideal value:
0 LSB.
Figure 18-9. Offset Error
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e  Gain error: After adjusting for offset, the gain error is found as the deviation of the last transition (Ox3FE to Ox3FF)
compared to the ideal transition (at 1.5 LSB below maximum). Ideal value: 0 LSB

Figure 18-10. Gain Error
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e Integral non-linearity (INL): After adjusting for offset and gain error, the INL is the maximum deviation of an actual
transition compared to an ideal transition for any code. Ideal value: 0 LSB.

Figure 18-11. Integral Non-linearity (INL)
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e Differential non-linearity (DNL): The maximum deviation of the actual code width (the interval between two adjacent
transitions) from the ideal code width (1 LSB). Ideal value: 0 LSB.

Figure 18-12. Differential Non-linearity (DNL)
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e Quantization error: Due to the quantization of the input voltage into a finite number of codes, a range of input voltages
(1 LSB wide) will code to the same value. Always +0.5 LSB.

e  Absolute accuracy: The maximum deviation of an actual (unadjusted) transition compared to an ideal transition for
any code. This is the compound effect of offset, gain error, differential error, non-linearity, and quantization error. Ideal
value: £0.5 LSB.
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18.7 ADC Conversion Result

After the conversion is complete (ADIF is high), the conversion result can be found in the ADC Result Registers (ADCL,
ADCH).

For single ended conversion, the result is:
_ VN 1023

ADC =
VRer

where V) is the voltage on the selected input pin and Vrgr the selected voltage reference (see Table 18-4 on page 210 and
Table 18-5 on page 211). 0x000 represents analog ground, and 0x3FF represents the selected reference voltage.
If differential channels are used, the result is:

V -V - GAIN- 512
ADC - (Vpos— Vnes)

VRer

where Vpg is the voltage on the positive input pin, Vygg the voltage on the negative input pin, GAIN the selected gain factor
and Vggr the selected voltage reference. The result is presented in two’s complement form, from 0x200 (-512d) through
Ox1FF (+511d). Note that if the user wants to perform a quick polarity check of the result, it is sufficient to read the MSB of
the result (ADC9 in ADCH). If the bit is one, the result is negative, and if this bit is zero, the result is positive. Figure 18-13
shows the decoding of the differential input range.

Table 18-2 on page 208 shows the resulting output codes if the differential input channel pair (ADCn - ADCm) is selected
with a reference voltage of Vgge.

Figure 18-13. Differential Measurement Range
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Table 18-2. Correlation Between Input Voltage and Output Codes

Vaoen Read code Corresponding decimal value
Vaocm + Vrer /GAIN Ox1FF 511
Vapcm + 0.999 Ve /GAIN Ox1FF 511
Vapocm + 0.998 Ve /GAIN Ox1FE 510
Vapcm + 0.001 Vgee /GAIN 0x001
Vapcm 0x000 0
Vapcm - 0.001 Vgee /GAIN Ox3FF -1
Vapcm - 0.999 Vier /GAIN 0x201 -511
Vapem - Vrer /GAIN 0x200 —512

Example 1:

ADMUX = OxED (ADC3 — ADC2, 10x gain, 2.56V reference, left adjusted result)
e \oltage on ADC3 is 300mV, voltage on ADC2 is 500mV.
e ADCR =512 x 10 x (300 — 500) / 2560 = —400 = 0x270

e  ADCL will thus read 0x00, and ADCH will read 0x9C.
Writing zero to ADLAR right adjusts the result: ADCL = 0x70, ADCH = 0x02.

Example 2:
e ADMUX = 0xFB (ADC3 — ADC2, 1x gain, 2.56V reference, left adjusted result)
e Voltage on ADC3 is 300mV, voltage on ADC2 is 500mV.
e ADCR=512x1 x (300 —500) / 2560 = —41 = 0x029.
[

ADCL will thus read 0x40, and ADCH will read 0x0A.
Writing zero to ADLAR right adjusts the result: ADCL = 0x00, ADCH = 0x29.

18.8 Temperature Measurement

The temperature measurement is based on an on-chip temperature sensor that is coupled to a single ended ADC input.
MUX[4..0] bits in ADMUX register enables the temperature sensor. The internal 2.56V voltage reference must also be
selected for the ADC voltage reference source in the temperature sensor measurement. When the temperature sensor is
enabled, the ADC converter can be used in single conversion mode to measure the voltage over the temperature sensor.

As shown Figure 18-14 on page 209, the temperature sensor is followed by a driver. This driver is enabled when ADMUX
value selects the temperature sensor as ADC input Section 18-5 “ADC Input Channel Selection” on page 211 The
propagation delay of this driver is approximately 2uS. Therefore two successive conversions are required. The correct
temperature measurement will be the second one.

One can also reduce this timing to one conversion by setting the ADMUX during the previous conversion. Indeed the
ADMUX can be programmed to select the temperature sensor just after the beginning of the previous conversion start event
and then the driver will be enabled 2uS before sampling and hold phase of temperature sensor measurement. See Section
18.5 “Changing Channel or Reference Selection” on page 202.
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18.8.1

18.8.2

Figure 18-14. Temperature Sensor Block Diagram
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The measured voltage has a linear relationship to the temperature as described in Table 18-3. The voltage sensitivity is
approximately 2.5mV/°C and the accuracy of the temperature measurement is +10°C after bandgap calibration.

Table 18-3. Temperature versus Sensor Output Voltage (Typical Case)

Temperature/°C -40°C +25°C +125°C
Voltage/mV 600mV 762mv 1012mV

The values described in Table 18-3 on page 209 are typical values. However, due to the process variation the temperature
sensor output voltage varies from one chip to another. To be capable of achieving more accurate results, the temperature
measurement can be calibrated in the application software.

User Calibration

The software calibration requires that a calibration value is measured and stored in a register or EEPROM for each chip. The
software calibration can be done utilizing the formula:

T = {[(ADCH << 8) | ADC] — Tog} / k

where ADCH and ADCL are the ADC data registers, k is a fixed coefficient and Tqg is the temperature sensor offset value
determined and stored into EEPROM.

Manufacturing Calibration

One can also use the calibration values available in the signature row (see Section 24.7.10 “Reading the Signature Row
from Software” on page 249).

The calibration values are determined from values measured during test at room temperature which is approximately +25°C
and during test at hot temperature which is approximately +125°C. Calibration measures are done at V¢ = 3V and with ADC
in internal Vref (2.56V) mode.

There are two algorithms for determining the Centigrade Temperature
formula 1 for ATmega32 up torev B
formula 2 for ATmega16/64 and ATmega32 rev C.

formula 1: Temp_C = (((ADC_ts — 273) x TS_Gain) / 128) + TS_Offset [Applicable to devices with OxFF or 0x42 ('B') in the
signature memory at address 0x003F]

formula 2: Temp_C = ((((ADC_ts — (298 — TS_Offset)) x TS_Gain) / 128) + 25 [Applicable to devices with 0x43 ('C') in the
signature memory at address 0x003F]

Where:
Temp_C is the result temperature in degrees centigrade.
ADC_ts is the 10 bit result the ADC returns from reading the temperature sensor.

TS_Gain is the unsigned fixed point 8-bit temperature sensor gain factor in 1/128th units stored as previously in the
signature row at address 0x0007.
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18.9

18.9.1

210

TS_Offset is the signed twos complement 7-bit temperature sensor offset reading stored as previously in the signature row
at address 0x0005.

See section 24.7.10 in the ATmega32M1 Automotive datasheet for details of reading the signature row.

ADC Register Description

The ADC of the ATmega16/32/64/M1/C1 is controlled through 3 different registers. The ADCSRA and The ADCSRB
registers which are the ADC control and status registers, and the ADMUX which allows to select the Vref source and the
channel to be converted.

The conversion result is stored on ADCH and ADCL register which contain respectively the most significant bits and the less
significant bits.

ADC Multiplexer Register — ADMUX

Bit 7 6 5 4 3 2 1 0

| REFS1 | REFSO |ADLAR | MUX4 MUX3 MUX2 MUX1 MUX0 | ADMUX
Read/Write R/W R/W R/W - R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7, 6 — REFS1, 0: ADC Vref Selection Bits

These 2 bits determine the voltage reference for the ADC.
The different setting are shown in Table 18-4.

Table 18-4. ADC Voltage Reference Selection

AREFEN ISRCEN REFS1 REFSO |Description
1 0 0 0 External Vref on AREF pin, Internal Vref is switched off
1 0 0 1 AVcc with external capacitor connected on the AREF pin
0 0 0 1 AVcc (no external capacitor connected on the AREF pin)
1 0 1 0 Reserved
1 0 1 1 Internal 2.56V reference voltage with external capacitor connected
on the AREF pin
0 X 1 1 Internal 2.56V reference voltage

If bits REFS1 and REFSO are changed during a conversion, the change will not take effect until this conversion is complete
(it means while the ADIF bit in ADCSRA register is set).
In case the internal Vref is selected, it is turned ON as soon as an analog feature needed it is set.

» Bit 5— ADLAR: ADC Left Adjust Result

Set this bit to left adjust the ADC result.

Clear it to right adjust the ADC result.

The ADLAR bit affects the configuration of the ADC result data registers. Changing this bit affects the ADC data registers
immediately regardless of any on going conversion. For a complete description of this bit, see Section “ADC Result Data
Registers — ADCH and ADCL”, page 213.

* Bit 4, 2,1, 0 - MUX4, MUX3, MUX2, MUX1, MUXO: ADC Channel Selection Bits

These 4 bits determine which analog inputs are connected to the ADC input. The different setting are shown in Table 18-5 on
page 211.
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Table 18-5. ADC Input Channel Selection

18.9.2

MUX3 MUX2 MUX1 Description
0 0 0 0 0 ADCO
0 0 0 0 1 ADC1
0 0 0 1 0 ADC2
0 0 0 1 1 ADC3
0 0 1 0 0 ADC4
0 0 1 0 1 ADC5
0 0 1 1 0 ADCG6
0 0 1 1 1 ADC7
0 1 0 0 0 ADC8
0 1 0 0 1 ADC9
0 1 0 1 0 ADC10
0 1 0 1 1 Temp sensor
0 1 1 0 0 VCC/4
0 1 1 0 1 ISRC
0 1 1 1 0 AMPO
0 1 1 1 1 AMP1 (- is ADC8, + is ADC9)
1 0 0 0 0 AMP2 (- is ADC6)
1 0 0 0 1 Bandgap
1 0 0 1 0 GND
1 0 0 1 1 Reserved
1 0 1 X X Reserved
1 1 X X X Reserved

If these bits are changed during a conversion, the change will not take effect until this conversion is complete (it means while
the ADIF bit in ADCSRA register is set).

ADC control and status register A— ADCSRA

Bit 7 6 5 4 3 2 1 0

| ADEN | ADSC | ADATE | ADIF | ADIE | ADPS2 | ADPS1 | ADPSO | ADCSRA
Read/Write R/W RIW RIW R/W RIW R/W R/W RIW
Initial Value 0 0 0 0 0 0 0 0

* Bit 7—- ADEN: ADC Enable Bit

Set this bit to enable the ADC.
Clear this bit to disable the ADC.
Clearing this bit while a conversion is running will take effect at the end of the conversion.

* Bit 6- ADSC: ADC Start Conversion Bit

Set this bit to start a conversion in single conversion mode or to start the first conversion in free running mode.
Cleared by hardware when the conversion is complete. Writing this bit to zero has no effect.
The first conversion performs the initialization of the ADC.

» Bit5—- ADATE: ADC Auto trigger Enable Bit

Set this bit to enable the auto triggering mode of the ADC.
Clear it to return in single conversion mode.
In auto trigger mode the trigger source is selected by the ADTS bits in the ADCSRB register. See Table 18-7 on page 213.
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18.9.3

212

e Bit 4— ADIF: ADC Interrupt Flag

Set by hardware as soon as a conversion is complete and the data register are updated with the conversion result.
Cleared by hardware when executing the corresponding interrupt handling vector.
Alternatively, ADIF can be cleared by writing it to logical one.

« Bit 3— ADIE: ADC Interrupt Enable Bit

Set this bit to activate the ADC end of conversion interrupt.
Clear it to disable the ADC end of conversion interrupt.

« Bit 2,1, 0- ADPS2, ADPS1, ADPSO0: ADC Prescaler Selection Bits

These 3 bits determine the division factor between the system clock frequency and input clock of the ADC.
The different setting are shown in Table 18-6.

Table 18-6. ADC Prescaler Selection

ADPS2 ADPS1 ADPSO Division Factor

0 0 0 2

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

ADC control and status register B— ADCSRB

Bit 7 6 5 4 3 2 1 0
| ADHSM | ISRCEN [AREFEN| - | ADTS3 | ADTS2 | ADTS1 | ADTSO | ADCSRB
Read/Write ~ R/W RIW R/W R RIW RIW RIW R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7—- ADHSM: ADC High-speed Mode

Writing this bit to one enables the ADC high-speed mode. Set this bit if you wish to convert with an ADC clock frequency
higher than 200KHz.

Clear this bit to reduce the power consumption of the ADC when the ADC clock frequency is lower than 200KHz.
e Bit 6 — ISRCEN: Current Source Enable

Set this bit to source a 100uA current to the AREF pin.
Clear this bit to use AREF pin as analog reference pin.

* Bit 5—- AREFEN: Analog Reference pin Enable

Set this bit to connect the internal AREF circuit to the AREF pin.
Clear this bit to disconnect the internal AREF circuit from the AREF pin.

* Bit 4 — Res: Reserved Bit

This bit is unused bit in the ATmega16/32/64/M1/C1, and will always read as zero.

e Bit3,2,1,0- ADTS3:ADTSO0: ADC Auto Trigger Source Selection Bits

These bits are only necessary in case the ADC works in auto trigger mode. It means if ADATE bit in ADCSRA register is set.

In accordance with Table 18-6 on page 212, these 3 bits select the interrupt event which will generate the trigger of the start
of conversion. The start of conversion will be generated by the rising edge of the selected interrupt flag whether the interrupt
is enabled or not. In case of trig on PSCnASY event, there is no flag. So in this case a conversion will start each time the trig
event appears and the previous conversion is completed.
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Table 18-7. ADC Auto Trigger Source Selection

Description

0 0 0 Free running mode

0

0 0 0 1 External interrupt request 0

0 0 1 0 Timer/Counter0 compare match

0 0 1 1 Timer/Counter0 overflow

0 1 0 0 Timer/Counter1 compare match B

0 1 0 1 Timer/Counter1 overflow

0 1 1 0 Timer/Counter1 capture event

0 1 1 1 PSC Module 0 synchronization signal
1 0 0 0 PSC Module 1 synchronization signal
1 0 0 1 PSC Module 2 synchronization signal
1 0 1 0 Analog comparator 0

1 0 1 1 Analog comparator 1

1 1 0 0 Analog comparator 2

1 1 0 1 Analog comparator 3

1 1 1 0 Reserved

1 1 1 1 Reserved

18.9.4 ADC Result Data Registers — ADCH and ADCL

When an ADC conversion is complete, the conversion results are stored in these two result data registers.

When the ADCL register is read, the two ADC result data registers can’t be updated until the ADCH register has also been
read.

Consequently, in 10-bit configuration, the ADCL register must be read first before the ADCH.

Nevertheless, to work easily with only 8-bit precision, there is the possibility to left adjust the result thanks to the ADLAR bit
in the ADCSRA register. Like this, it is sufficient to only read ADCH to have the conversion result.

18.9.41 ADLAR=0

Bit 7 6 5 4 3 2 1 0
- - - ADC9 ADC8 ADCH
ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADCO ADCL

Read/Write R R R R R R R R
R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

18.9.4.2 ADLAR=1

Bit 7 6 5 4 3 2 1 0

ADC9 | ADC8 | ADC7 | ADC6 | ADC5 | ADC4 | ADC3 | ADC2 | ADCH

ADC1 | ADCO - - - - - - ADCL
Read/Write R R R R R R R R
R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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18.9.5 Digital Input Disable Register 0 — DIDRO

Bit 7 6 5 4 3 2 1 0
ADC6D
ADCSD ADC3D | ADC2D ADCOD
ADCTD | ACMPNID| ) oypnop | APC4P | acmpnzp |acmp2p| APCIP | acmprap| PIPRO
AMP2ND
Read/Write  RIW RIW RIW RIW RIW RW __RW RIW
Initial Value 0 0 0 0 0 0 0 0

e Bit 7:0 - ADC7D..ADCOD, ACMPNOD, ACMPN1D, ACMPN2D, ACMPN3D, ACMP2D, AMP2ND:
ADC7:0, ACMPNO, ACMPN1, ACMPN2, ACMPN3, ACMP2, AMP2N Digital Input Disable

When this bit is written logic one, the digital input buffer on the corresponding ADC pin is disabled. The corresponding PIN
register bit will always read as zero when this bit is set. When an analog signal is applied to the ADC7..0 pin and the digital
input from this pin is not needed, this bit should be written logic one to reduce power consumption in the digital input buffer.

18.9.6 Digital Input Disable Register 1- DIDR1

Bit 7 6 5 4 3 2 1 0
ADC9D
- AMP2PD | ACMPOD | AMPOPD | AMPOND ADC10D AMP1PD ADC8D DIDR1
ACMP1D AMP1ND
ACMP3D
Read/Write - - R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit6:0 - ADC10D..8D, ACMPOD, ACMP1D, ACMP3D, AMPOPD, AMPOND, AMP1PD, AMP1ND, AMP2PD:
ADC10..8, ACMPO, ACMP1, ACMP3, AMPOP, AMPON, AMP1P, AMP1N, AMP2P Digital Input Disable

When this bit is written logic one, the digital input buffer on the corresponding ADC pin is disabled. The corresponding PIN
register bit will always read as zero when this bit is set. When an analog signal is applied to an analog pin and the digital
input from this pin is not needed, this bit should be written logic one to reduce power consumption in the digital input buffer.

18.10 Amplifier

The ATmega16/32/64/M1/C1 features three differential amplified channels with programmable 5, 10, 20, and 40 gain stage.

Because the amplifiers are switching capacitor amplifiers, they need to be clocked by a synchronization signal called in this
document the amplifier synchronization clock. To ensure an accurate result, the amplifier input needs to have a quite stable
input value during at least 4 Amplifier synchronization clock periods. The amplifiers can run with a clock frequency of up to
250kHz (typical value).

To ensure an accurate result, the amplifier input needs to have a quite stable input value at the sampling point during at least
4 amplifier synchronization clock periods.

Amplified conversions can be synchronized to PSC events (See Section 14-8 “Synchronization Source Description in One
Ramp Mode” on page 128 and Section 14-9 “Synchronization Source Description in Centered Mode” on page 129) or to the
internal clock CK,p equal to eighth the ADC clock frequency. In case the synchronization is done the ADC clock divided by
8, this synchronization is done automatically by the ADC interface in such a way that the sample-and-hold occurs at a
specific phase of CKpco. A conversion initiated by the user (i.e., all single conversions, and the first free running conversion)
when CKypc, is low will take the same amount of time as a single ended conversion (13 ADC clock cycles from the next
prescaled clock cycle). A conversion initiated by the user when CK,p, is high will take 14 ADC clock cycles due to the
synchronization mechanism.

The normal way to use the amplifier is to select a synchronization clock via the AMPxTS1:0 bits in the AMPxCSR register.
Then the amplifier can be switched on, and the amplification is done on each synchronization event.

In order to start an amplified analog to digital conversion on the amplified channel, the ADMUX must be configured as
specified on Table 18-5 on page 211.

The ADC starting requirement is done by setting the ADSC bit of the ADCSRA register.
Until the conversion is not achieved, it is not possible to start a conversion on another channel.

In order to have a better understanding of the functioning of the amplifier synchronization, two timing diagram examples are
shown in Figure 18-15 on page 215 and Figure 18-16 on page 216.
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As soon as a conversion is requested thanks to the ADSC bit, the analog to digital conversion is started. In case the amplifier
output is modified during the sample phase of the ADC, the on-going conversion is aborted and restarted as soon as the

output of the amplifier is stable. This ensure a fast response time. The only precaution to take is to be sure that the trig signal
(PSC) frequency is lower than ADCclk/4.

Figure 18-15. Amplifier Synchronization Timing Diagram with Change on Analog Input Signal
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Figure 18-16. Amplifier Synchronization Timing Diagram
ADSC is Set when the Amplifier Output is Changing due to the Amplifier Clock Switch
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In order to have a better understanding of the functioning of the amplifier synchronization, a timing diagram example is
shown Figure 18-15 on page 215.

It is also possible to auto trigger conversion on the amplified channel. In this case, the conversion is started at the next
amplifier clock event following the last auto trigger event selected thanks to the ADTS bits in the ADCSRB register. In auto
trigger conversion, the free running mode is not possible unless the ADSC bit in ADCSRA is set by soft after each
conversion.
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The block diagram of the two ampilifiers is shown on Figure 18-17.

Figure 18-17. Amplifiers Block Diagram
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18.11 Amplifier Control Registers

The configuration of the amplifiers are controlled via two dedicated registers AMPOCSR and AMP1CSR. Then the start of
conversion is done via the ADC control and status registers.

The conversion result is stored on ADCH and ADCL register which contain respectively the most significant bits and the less
significant bits.

18.11.1 Amplifier 0 control and status register - AMPOCSR

Bit 7 6 5 4 3 2 1 0
| AMPOEN | AMPOIS | AMPOG1 | AMPOGO | AMPCMPO | AMPOTS2 | AMPOTS1|AMPOTS0 | AMPOCSR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7—- AMPOEN: Amplifier 0 Enable Bit

Set this bit to enable the amplifier 0.
Clear this bit to disable the amplifier 0.
Clearing this bit while a conversion is running will take effect at the end of the conversion.

Warning: Always clear AMPOTSO0:1 when clearing AMPOEN.
* Bit 6 — AMPOIS: Amplifier O Input Shunt

Set this bit to short-circuit the amplifier 0 input.
Clear this bit to normally use the amplifier 0.

e Bit5,4 - AMPOGL1, 0: Amplifier 0 Gain Selection Bits

These 2 bits determine the gain of the amplifier 0.
The different setting are shown in Table 18-8.

Table 18-8. Amplifier 0 Gain Selection

AMPOG1 AMPOGO Description
0 0 Gain 5
0 1 Gain 10
1 0 Gain 20
1 1 Gain 40

To ensure an accurate result, after the gain value has been changed, the amplifier input needs to have a quite stable input
value during at least 4 Amplifier synchronization clock periods.

e Bit 3—- AMPCMPO: Amplifier 0 - Comparator 0 Connection

Set this bit to connect the amplifier 0 to the comparator 0 positive input. In this configuration the comparator clock is twice the
amplifier clock. Clear this bit to normally use the Ampilifier 0.

e Bit2:0 - AMPOTS2,AMPOTS1,AMPOTSO0: Amplifier 0 Clock Source Selection Bits

In accordance with Table 18-9 on page 219, these 3 bits select the event which will generate the clock for the amplifier O.
This clock source is necessary to start the conversion on the amplified channel.
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Table 18-9. AMPO Clock Source Selection

AMPOTS2 AMPOTS1 AMPOTSO Clock Source

0 0 0 ADC clock/8

Timer/Counter0 compare match
Timer/Counter0 overflow
Timer/Counter1 compare match B

PSC module 0 synchronization signal (PSSO0)
PSC module 1 synchronization signal (PSS1)

. A A A O o o
_ a0 O A A O

1
0
1
0 Timer/Counter1 overflow
1
0
1

PSC module 2 synchronization signal (PSS2)

18.11.2 Amplifier 1 Control and Status Register - AMP1CSR

Bit 7 6 5 4 3 2 1 0
| AMPLEN | AMP1IS [ AMP1G1|AMP1GO0 |[AMPCMP1|AMP1TS2|AMP1TS1| AMP1TS0 | AMP1CSR
Read/Write R/W R/W R/W RIW R/W R/W R/W RIW
Initial Value 0 0 0 0 0 0 0 0

e Bit 7—- AMP1EN: Amplifier 1 Enable Bit

Set this bit to enable the Amplifier 1.
Clear this bit to disable the Amplifier 1.
Clearing this bit while a conversion is running will take effect at the end of the conversion.

Warning: Always clear AMP1TS0:1 when clearing AMP1EN.
* Bit 6 — AMP1IS: Amplifier 1 Input Shunt

Set this bit to short-circuit the Amplifier 1 input.
Clear this bit to normally use the Amplifier 1.

e Bit5,4 - AMP1G1, 0: Amplifier 1 Gain Selection Bits

These 2 bits determine the gain of the amplifier 1.
The different setting are shown in Table 18-10.

Table 18-10. Amplifier 1 Gain Selection

AMP1G1 AMP1GO Description
0 0 Gain 5
0 1 Gain 10
1 0 Gain 20
1 1 Gain 40

To ensure an accurate result, after the gain value has been changed, the amplifier input needs to have a quite stable input
value during at least 4 Amplifier synchronization clock periods.

e Bit 3—- AMPCMP1: Amplifier 1 - Comparator 1 connection

Set this bit to connect the amplifier 1 to the comparator 1 positive input. In this configuration the comparator clock is twice
amplifier clock. Clear this bit to normally use the Amplifier 1.

e Bit2:0 - AMP1TS2,AMP1TS1, AMP1TSO0: Amplifier 1 Clock Source Selection Bits

In accordance with the Table 18-11, these 3 bits select the event which will generate the clock for the ampilifier 1. This clock
source is necessary to start the conversion on the amplified channel.
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Table 18-11. AMP1 Clock Source Selection

AMP1TS2 AMP1TS1 AMP1TSO | Clock Source

0 0 0 ADC clock/8

Timer/Counter0 compare match
Timer/Counter0 overflow
Timer/Counter1 compare match B

PSC module 0 synchronization signal (PSS0)
PSC module 1 synchronization signal (PSS1)

_ A A a0 o o
A A 0O O A Ao

1
0
1
0 Timer/Counter1 overflow
1
0
1

PSC module 2 synchronization signal (PSS2)

18.11.3 Amplifier 2 Control and Status Register - AMP2CSR

Bit 7 6 5 4 3 2 1 0
| AMP2EN | AMP2IS | AMP2G1 | AMP2G0 | AMPCMP2 | AMP2TS2|AMP2TS1|AMP2TS0| AMP2CSR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7—- AMP2EN: Amplifier 2 Enable Bit

Set this bit to enable the Amplifier 2.
Clear this bit to disable the Amplifier 2.
Clearing this bit while a conversion is running will take effect at the end of the conversion.

Warning: Always clear AMP2TSO0:1 when clearing AMP2EN.
* Bit 6 — AMP2IS: Amplifier 2 Input Shunt

Set this bit to short-circuit the Amplifier 2 input.
Clear this bit to normally use the Amplifier 2.

e Bit5,4 - AMP2G1, 0: Amplifier 2 Gain Selection Bits

These 2 bits determine the gain of the amplifier 2.
The different setting are shown in Table 18-12.

Table 18-12. Amplifier 2 Gain Selection

AMP2G1 AMP2GO Description
0 0 Gain 5
0 1 Gain 10
1 0 Gain 20
1 1 Gain 40

To ensure an accurate result, after the gain value has been changed, the amplifier input needs to have a quite stable input
value during at least 4 Amplifier synchronization clock periods.

e Bit 3—- AMPCMP2: Amplifier 2 - Comparator 2 connection

Set this bit to connect the amplifier 2 to the comparator 2 positive input. In this configuration the comparator clock is twice the
amplifier clock. Clear this bit to normally use the Amplifier 2.

e Bit 2:0 - AMP2TS2,AMP2TS1, AMP2TSO0: Amplifier 2 Clock Source Selection Bits

In accordance with Table 18-13 on page 221, these 3 bits select the event which will generate the clock for the amplifier 1.
This clock source is necessary to start the conversion on the amplified channel.
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Table 18-13. AMP1 Clock Source Selection

AMP2TS2 AMP2TS1 AMP2TS0O Clock Source

0 0 0 ADC clock/8

0 ‘ 0 ‘ 1 Timer/Counter0 compare match

0 1 0 Timer/Counter0 overflow

0 ‘ 1 ‘ 1 Timer/Counter1 compare match B

1 0 0 Timer/Counter1 overflow

1 \ 0 \ 1 PSC module 0 synchronization signal (PSS0)
1 1 0 PSC module 1 synchronization signal (PSS1)
1 \ 1 \ 1 PSC module 2 synchronization signal (PSS2)
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19. ISRC - Current Source

19.1 Features
e  100pA constant current source
e  +6% absolute accuracy
The ATmega16/32/64/M1/C1 features a 100pA £5% current source. After RESET or up on request, the current is flowing
through an external resistor. The voltage can be measured on the dedicated pin shared with the ADC. Using a resistor in
series with a £< 0.5% tolerance is recommended. To protect the device against big values, the ADC must be configured with

AVcc as internal reference to perform the first measurement. Afterwards, another internal reference can be chosen
according to the previous measured value to refine the result.

When ISRCEN bit is set, the ISRC pin sources 100pA. Otherwise this pin keeps its initial function.

Figure 19-1. Current Source Block Diagram

AvVCC

100pA !

|

|

ISRCEN AREF/ISRC
1
AREF Internal Circuit |——o0

AREFEN External
Resistor

ADC Input

19.2 Typical Applications

19.2.1 LIN Current Source
During the configuration of a LIN node in a cluster, it may be necessary to attribute dynamically an unique physical address
to every cluster node. The way to do it is not described in the LIN protocol.

The Current Source offers an excellent solution to associate a physical address to the application supported by the LIN
node. A full dynamic node configuration can be used to set-up the LIN nodes in a cluster.

ATmega16/32/64/M1/C1 proposes to have an external resistor used in conjunction with the current source. The device
measures the voltage to the boundaries of the resistance via the analog to digital converter. The resulting voltage defines the
physical address that the communication handler will use when the node will participate in LIN communication.

In automotive applications, distributed voltages are very disturbed. The internal Current Source solution of
ATmega16/32/64/M1/C1 immunizes the address detection against any kind of voltage variations.
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Table 19-1. Example of Resistor Values (+5%) for a 8-address System (AV . = 5VV)

Physical Resistor Value Typical Measured | Minimum Reading @ Typical Reading Maximum Reading
Address Rioag (Ohm) Voltage (V) with a 2.56V ref with a 2.56V ref = with a 2.56V ref

0 1000 0.1 40

1 2200 0.22 88

2 3300 0.33 132

3 4700 0.47 188

4 6 800 0.68 272

5 10 000 1 400

6 15 000 1.5 600

7 22 000 2.2 880

Table 19-2. Example of Resistor Values (x1%) for a 16-address System (AVc = 5vY)

Physical Resistor Value Typical Measured 'Minimum Reading | Typical Reading | Miximum Reading
Address Rioag (Ohm) Voltage (V) with a 2.56V ref with a 2.56V ref with a 2.56V ref

0 1000 0.1 38 40 45

1 1200 0.12 46 48 54

2 1500 0.15 57 60 68

3 1800 0.18 69 72 81

4 2200 0.22 84 88 99

5 2700 0.27 104 108 122

6 3300 0.33 127 132 149

7 4700 0.47 181 188 212

8 6 800 0.68 262 272 306

9 8 200 0.82 316 328 369

10 10 000 1.0 386 400 450

11 12 000 1.2 463 480 540

12 15 000 1.5 579 600 675

13 18 000 1.8 694 720 810

14 22 000 22 849 880 989

15 27 000 2.7 1023 1023 1023

Note: 1. 5V range: Max Rj,,q 30KQ
3V range: Max R4 15KQ

19.2.2 Current Source for Low Cost Traducer
An external transducer based on variable resistor can be connected to the current source. This ca be for instance:
e A thermistor, or temperature-sensitive resistor, used as a temperature sensor
e A CdS photoconductive cell, or luminosity-sensitivity resistor, used as a luminosity sensor.

Using the current source with this type of transducer eliminates the need for additional parts otherwise required in resistor
network or Wheatstone bridge.

19.2.3 Voltage Reference for External Devices

An external resistor used in conjunction with the current source can be used as voltage reference for external devices. Using
a resistor in serie with a lower tolerance than the current source accuracy (< 2%) is recommended. Table 19-2 gives an
example of voltage references using standard values of resistors.
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19.2.4

19.3

19.3.1

224

Threshold Reference for Internal analog comparator

An external resistor used in conjunction with the Current Source can be used as threshold reference for internal analog
comparator (see Section 20. “Analog Comparator” on page 225). This can be connected to AINO (negative analog compare
input pin) as well as AIN1 (positive analog compare input pin). Using a resistor in series with a lower tolerance than the
current source accuracy (< 2%) is recommended. Table 19-2 gives an example of threshold references using standard
values of resistors.

Control Register

ADC control and status register B- ADCSRB

Bit 7 6 5 4 3 2 1 0
| ADHSM | ISRCEN [ AREFEN | - | ADTS3 | ADTS2 | ADTS1 | ADTSO | ADCSRB
Read/Write R/W R/W R/W R R/W R/W R/W RIW
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 6 — ISRCEN: Current Source Enable

Set this bit to source a 100uA current to the AREF pin.
Clear this bit to disconnect.

* Bit 5 - AREFEN: Analog Reference pin Enable

Set this bit to connect the internal AREF circuit to the AREF pin.
Clear this bit to disconnect the internal AREF circuit from the AREF pin.
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20. Analog Comparator

The analog comparator compares the input values on the positive pin ACMPx and negative pin ACMPM or ACMPMx.

20.1 Features
e 4 analog comparators
e High-speed clocked comparators
e 4 reference levels
e  Generation of configurable interrupts

20.2 Overview

The ATmega16/32/64/M1/C1 features 4 fast analog comparators.

Each comparator has a dedicated input on the positive input, and the negative input of each comparator can be configured
as:

e a steady value among the 4 internal reference levels defined by the Vref selected thanks to the REFS1:0 bits in
ADMUX register.

e avalue generated from the internal DAC
e an external analog input ACMPMx.

When the voltage on the positive ACMPn pin is higher than the voltage selected by the ACnM multiplexer on the negative
input, the analog comparator output, ACnO, is set.

The comparator is a clocked comparator. The comparators can run with a clock frequency of up to 16MHz (typical value)
when the supply voltage is in the 4.5V-5.5V range and with a clock frequency of up to 8MHz (typical value) otherwise.

Each comparator can trigger a separate interrupt, exclusive to the analog comparator. In addition, the user can select
Interrupt triggering on comparator output rise, fall or toggle.

The interrupt flags can also be used to synchronize ADC or DAC conversions.
Moreover, the comparator’s output of the comparator 1 can be set to trigger the Timer/Counter1 Input Capture function.
A block diagram of the four comparators and their surrounding logic is shown in Figure 20-1 on page 226.
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Figure 20-1. Analog Comparator Block Diagram®®
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2. Refer to Figure 1-1 on page 3 and for analog comparator pin placement.

ADC multiplexer output: see Table 18-5 on page 211.
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3. The voltage on Vref is defined in 18-4 “ADC Voltage Reference Selection” on page 210
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20.3 Use of ADC Amplifiers

Thanks to AMPCMPO configuration bit, comparator 0 positive input can be connected to amplifier O output. In that case, the
clock of comparator 0 is twice the amplifier O clock. See Section 18.11.1 “Amplifier O control and status register - AMPOCSR”
on page 218.

Thanks to AMPCMP1 configuration bit, comparator 1 positive input can be connected to amplifier 1 output. In that case, the
clock of comparator 1 is twice the amplifier 1 clock. See Section 18.11.2 “Amplifier 1 Control and Status Register —
AMP1CSR” on page 219.

Thanks to AMPCMP2 configuration bit, comparator 2 positive input can be connected to amplifier 2 output. In that case, the
clock of comparator 2 is twice the amplifier 2 clock. See Section 18.11.2 “Amplifier 1 Control and Status Register —
AMP1CSR” on page 219.

20.4 Analog Comparator Register Description

Each analog comparator has its own control register.

A dedicated register has been designed to consign the outputs and the flags of the 4 analog comparators.

20.4.1 Analog Comparator 0 Control Register — ACOCON

Bit 7 6 5 4 3 2 1 0

| ACOEN | ACOIE | ACOIS1 | ACOISO |ACCKSEL | ACOM2 | ACOM1 | ACOMO | ACOCON
Read/Write R/W R/W RIW R/W RIW R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7- ACOEN: analog comparator 0 Enable Bit

Set this bit to enable the analog comparator 0.
Clear this bit to disable the analog comparator 0.

« Bit 6~ ACOIE: analog comparator O Interrupt Enable bit

Set this bit to enable the analog comparator 0 interrupt.
Clear this bit to disable the analog comparator 0 interrupt.

e Bit 5, 4- ACO0IS1, ACOISO: analog comparator 0 Interrupt Select bit

These 2 bits determine the sensitivity of the interrupt trigger.
The different setting are shown in Table 18-7.

Table 20-1. Interrupt Sensitivity Selection

ACOIS1 ACOISO Description
0 0 Comparator interrupt on output toggle
0 1 Reserved
1 0 Comparator interrupt on output falling edge
1 1 Comparator interrupt on output rising edge

e Bit 3— ACCKSEL: Analog Comparator Clock Select
Set this bit to use the 16MHz PLL output as comparator clock. Clear this bit to use the CLK,q as comparator clock.
« Bit2, 1, 0- ACOM2, ACOM1, ACOMO: Analog Comparator O Multiplexer Register

These 3 bits determine the input of the negative input of the analog comparator.
The different setting are shown in Table 20-2 on page 228.
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Table 20-2. Analog Comparator 0 Negative Input Selection

ACOM2 ACOM1 ACOMO Description
0 0 0 “Vref’/6.40
0 0 1 “Vref’/3.20
0 1 0 “Vref’/2.13
0 1 1 “Vref’/1.60
1 0 0 Bandgap (1.1V)
1 0 1 DAC result
1 1 0 Analog comparator negative input (ACMPM pin)
1 1 1 Reserved

20.4.2 Analog Comparator 1 Control Register - AC1CON

Bit 7 6 5 4 3 2 1 0
| ACIEN | ACLIE [ ACLIS1 | ACLISO | ACLICE | ACIM2 | ACIM1 | ACIMO | ACICON
Read/Write R/IW R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7- AC1EN: Analog Comparator 1 Enable Bit

Set this bit to enable the analog comparator 1.
Clear this bit to disable the analog comparator 1.

* Bit 6- AC1IE: Analog Comparator 1 Interrupt Enable bit

Set this bit to enable the analog comparator 1 interrupt.
Clear this bit to disable the analog comparator 1 interrupt.

e Bit 5, 4- AC1IS1, AC1IS0: Analog Comparator 1 Interrupt Select bit

These 2 bits determine the sensitivity of the interrupt trigger.
The different setting are shown in Table 18-7.

Table 20-3. Interrupt Sensitivity Selection

AC1IS1 AC1ISO Description
0 0 Comparator Interrupt on output toggle
0 1 Reserved
1 0 Comparator interrupt on output falling edge
1 1 Comparator interrupt on output rising edge

* Bit 3—- AC1ICE: analog comparator 1 Interrupt Capture Enable bit

Set this bit to enable the input capture of the Timer/Counter1 on the analog comparator event. The comparator output is in
this case directly connected to the input capture front-end logic, making the comparator utilize the noise canceler and edge
select features of the Timer/Counter1 input capture interrupt. To make the comparator trigger the Timer/Counter1 input
capture interrupt, the ICIE1 bit in the timer interrupt mask register (TIMSK1) must be set.

In case ICES1 bit (Section 13.10.2 “Timer/Counter1 Control Register B — TCCR1B” on page 112) is set high, the rising edge
of AC10 is the capture/trigger event of the Timer/Counter1, in case ICES1 is set to zero, it is the falling edge which is taken
into account.

Clear this bit to disable this function. In this case, no connection between the analog comparator and the input capture
function exists.

* Bit2,1, 0- AC1M2, AC1M1, AC1MO: analog comparator 1 Multiplexer register

These 3 bits determine the input of the negative input of the analog comparator.
The different setting are shown in Table 20-4 on page 229.
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Table 20-4. Analog Comparator 1 Negative Input Selection

AC1MO Description
0 0 0 “Vref’/6.40
0 0 1 “Vref’/3.20
0 1 0 “Vref’/2.13
0 1 1 “Vref’/1.60
1 0 0 Bandgap (1.1V)
1 0 1 DAC result
1 1 0 Analog comparator Negative Input (ACMPM pin)
1 1 1 Reserved

20.4.3 Analog Comparator 2 Control Register - AC2CON

Bit 7 6 5 4 3 2 1 0

| AC2EN | AC2IE | AC2IS1 | AC2ISO | - | AC2M2 | AC2M1 | AC2MO | AC2CON
Read/Write R/IW R/W R/W R/W - R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7- AC2EN: Analog Comparator 2 Enable Bit

Set this bit to enable the analog comparator 2.
Clear this bit to disable the analog comparator 2.

« Bit 6- AC2IE: Analog Comparator 2 Interrupt Enable Bit

Set this bit to enable the analog comparator 2 interrupt.
Clear this bit to disable the analog comparator 2 interrupt.

e Bit 5, 4- AC2IS1, AC2IS0: Analog Comparator 2 Interrupt Select Bit

These 2 bits determine the sensitivity of the interrupt trigger.
The different setting are shown in Table 18-7.

Table 20-5. Interrupt Sensitivity Selection

AC2IS1 AC2IS0 Description
0 0 Comparator Interrupt on output toggle
0 1 Reserved
1 0 Comparator interrupt on output falling edge
1 1 Comparator interrupt on output rising edge

Bit 3 — Res: Reserved Bit
This bit is an unused bit in the ATmega16/32/64/M1/C1, and will always read as zero.
« Bit2,1, 0- AC2M2, AC2M1, AC2MO0: analog comparator 2 Multiplexer register

These 3 bits determine the input of the negative input of the analog comparator.
The different setting are shown in Table 20-6 on page 230.
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Table 20-6. Analog Comparator 2 Negative Input Selection

AC2M2 AC2M1 AC2MO Description
0 0 0 “Vref’/6.40
0 0 1 “Vref’/3.20
0 1 0 “Vref’/2.13
0 1 1 “Vref’/1.60
1 0 0 Bandgap (1.1V)
1 0 1 DAC result
1 1 0 Analog comparator negative input (ACMPM pin)
1 1 1 Reserved

20.4.4 Analog Comparator 3 Control Register - AC3CON

Bit 7 6 5 4 3 2 1 0

| AC3EN | AC3IE [AC3IS1|AC3ISO| - [AC3M2 | AC3M1|[AC3MO | AC3CON
Read/Write ~ R/W R/W R/W R/W - R/IW R/IW R/IW
Initial Value 0 0 0 0 0 0 0 0

e Bit 7- AC3EN: Analog Comparator 3 Enable Bit

Set this bit to enable the analog comparator 3.
Clear this bit to disable the analog comparator 3.

* Bit 6- AC3IE: Analog Comparator 3 Interrupt Enable bit

Set this bit to enable the analog comparator 3 interrupt.
Clear this bit to disable the analog comparator 3 interrupt.

e Bit5, 4- AC3IS1, AC3IS0: Analog Comparator 3 Interrupt Select bit

These 2 bits determine the sensitivity of the interrupt trigger.
The different setting are shown in Table 18-7.

Table 20-7. Interrupt Sensitivity Selection

AC3IS1 AC3ISO Description
0 0 Comparator interrupt on output toggle
0 1 Reserved
1 0 Comparator interrupt on output falling edge
1 1 Comparator interrupt on output rising edge

e Bit 3 - Res: Reserved Bit
This bit is an unused bit in the ATmega16/32/64/M1/C1, and will always read as zero.
e Bit2,1, 0- AC3M2, AC3M1, AC3MO: Analog Comparator 3 Multiplexer Register

These 3 bits determine the input of the negative input of the analog comparator.
The different setting are shown in Table 20-6.
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Table 20-8. Analog Comparator 3 Negative Input Selection

20.4.5

AC3M2 AC3M1 AC3MO Description
0 0 0 “Vref’/6.40
0 0 1 “Vref’/3.20
0 1 0 “Vref’/2.13
0 1 1 “Vref’/1.60
1 0 0 Bandgap (1.1V)
1 0 1 DAC result
1 1 0 Analog comparator Negative Input (ACMPM pin)
1 1 1 Reserved
Analog Comparator Status Register — ACSR
Bit 7 6 5 4 3 2 1 0
| AC3IF | AC2IF | ACLIF | ACOIF | AC30 [ AC20 [ ACIO | ACO0O ACSR
Read/Write R/W R/W R/W R/W R R R R
Initial Value 0 0 0 0 0 0 0 0

e Bit 7- AC3IF: Analog Comparator 3 Interrupt Flag Bit

This bit is set by hardware when comparator 3 output event triggers off the interrupt mode defined by AC31S1 and AC3IS0
bits in AC2CON register.

This bit is cleared by hardware when the corresponding interrupt vector is executed in case the AC3IE in AC3CON register
is set. Anyway, this bit is cleared by writing a logical one on it.

This bit can also be used to synchronize ADC or DAC conversions.

e Bit 6- AC2IF: Analog Comparator 2 Interrupt Flag Bit

This bit is set by hardware when comparator 2 output event triggers off the interrupt mode defined by AC21S1 and AC21S0
bits in AC2CON register.

This bit is cleared by hardware when the corresponding interrupt vector is executed in case the AC2IE in AC2CON register
is set. Anyway, this bit is cleared by writing a logical one on it.

This bit can also be used to synchronize ADC or DAC conversions.

* Bit 5- AC1IF: Analog Comparator 1 Interrupt Flag Bit

This bit is set by hardware when comparator 1 output event triggers off the interrupt mode defined by AC11S1 and AC11S0
bits in AC1CON register.

This bit is cleared by hardware when the corresponding interrupt vector is executed in case the AC1IE in AC1CON register
is set. Anyway, this bit is cleared by writing a logical one on it.

This bit can also be used to synchronize ADC or DAC conversions.

e Bit 4- ACOIF: Analog Comparator O Interrupt Flag Bit

This bit is set by hardware when comparator 0 output event triggers off the interrupt mode defined by AC0IS1 and AC0ISO
bits in ACOCON register.

This bit is cleared by hardware when the corresponding interrupt vector is executed in case the ACOIE in ACOCON register
is set. Anyway, this bit is cleared by writing a logical one on it.

This bit can also be used to synchronize ADC or DAC conversions.

« Bit 3—- AC30: Analog Comparator 3 Output Bit

AC30 bit is directly the output of the analog comparator 2.
Set when the output of the comparator is high.
Cleared when the output comparator is low.

« Bit 2- AC20: Analog Comparator 2 Output Bit

AC20 bit is directly the output of the analog comparator 2.
Set when the output of the comparator is high.
Cleared when the output comparator is low.
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e Bit 1- AC10: Analog Comparator 1 Output Bit

AC10 bit is directly the output of the analog comparator 1.
Set when the output of the comparator is high.
Cleared when the output comparator is low.

« Bit 0— AC0O: Analog Comparator 0 Output Bit

ACOO bit is directly the output of the analog comparator 0.
Set when the output of the comparator is high.
Cleared when the output comparator is low.

20.4.6 Digital Input Disable Register 0 — DIDRO

Bit 7 6 5 4 3 2 1 0
ADC6D
ADCS5D ADC3D ADC2D ADCOD
ADC7D | ACMPNID ACMPNOD ADC4D ACMPN2D | ACMP2D ADCID ACMPN3D DIDRO
AMP2ND
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

+ Bit6,5,3,2,0-ACMPN1D, ACMPNOD, ACMPN2D, ACMP2D and ACMPN3D:
ACMPN1, ACMPNO, ACMPN2, ACMP2 and ACMPN3 Digital Input Disable

When this bit is written logic one, the digital input buffer on the corresponding Analog pin is disabled. The corresponding PIN
Register bit will always read as zero when this bit is set. When an analog signal is applied to one of these pins and the digital
input from this pin is not needed, this bit should be written logic one to reduce power consumption in the digital input buffer.

20.4.7 Digital Input Disable Register 1- DIDR1

Bit 7 6 5 4 3 2 1 0
ADCOD
AMP2PD | ACMPOD | AMPOPD | AMPOND | A2C100 | Appgpp | ADCED | pnpy
ACMP1D AMPIND
ACMP3D
Read/Write - . RW _RW ___RW __RW ___RW  RW
Initial Value 0 0 0 0 0 0 0 0

* Bit5,2,1. ACMPOD, ACMP1PD, ACMP3PD:
ACMPO, ACMP1P, ACMP3P Digital Input Disable

When this bit is written logic one, the digital input buffer on the corresponding analog pin is disabled. The corresponding PIN
Register bit will always read as zero when this bit is set. When an analog signal is applied to one of these pins and the digital
input from this pin is not needed, this bit should be written logic one to reduce power consumption in the digital input buffer.
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21. Digital to Analog Converter - DAC

21.1 Features

10 bits resolution

8 bits linearity

+0.5 LSB accuracy between 150mV and AVcc — 150mV

Vout = DAC x Vref/1023

The DAC could be connected to the negative inputs of the analog comparators and/or to a dedicated output driver.

The output impedance of the driver is around 100Q. So the driver is able to load a 1nF capacitance in parallel with a
resistor higher than 33kQ with a time constant around 1ps.

The ATmega16/32/64/M1/C1 features a 10-bit Digital to Analog Converter. This DAC can be used for the analog
comparators and/or can be output on the D2A pin of the microcontroller via a dedicated driver.

The DAC has a separate analog supply voltage pin, AVc. AV must not differ more than 0.3V from V.. See Section 18.6
“ADC Noise Canceler” on page 203 on how to connect this pin.

The reference voltage is the same as the one used for the ADC, see Section 5.10.1 “Clock Prescaler Register — CLKPR” on
page 33. These nominally 2.56V Vref or AV are provided On-chip. The voltage reference may be externally decoupled at
the AREF pin by a capacitor for better noise performance.

Figure 21-1. Digital to Analog Converter Block Schematic
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21.2

21.3

21.3.1

21.4

214.1

234

Operation

The digital to analog converter generates an analog signal proportional to the value of the DAC registers value.

In order to have an accurate sampling frequency control, there is the possibility to update the DAC input values through
different trigger events.

Starting a Conversion

The DAC is configured thanks to the DACON register. As soon as the DAEN bit in DACON register is set, the DAC converts
the value present on the DACH and DACL registers in accordance with the register DACON setting.

Alternatively, a conversion can be triggered automatically by various sources. Auto triggering is enabled by setting the DAC
auto trigger enable bit, DAATE in DACON. The trigger source is selected by setting the DAC Trigger Select bits, DATS in
DACON (See description of the DATS bits for a list of the trigger sources). When a positive edge occurs on the selected
trigger signal, the DAC converts the value present on the DACH and DACL registers in accordance with the register DACON
setting. This provides a method of starting conversions at fixed intervals.

If the trigger signal is still set when the conversion completes, a new conversion will not be started. If another positive edge
occurs on the trigger signal during conversion, the edge will be ignored.

Note that an interrupt flag will be set even if the specific interrupt is disabled or the global interrupt enable bit in SREG is
cleared. A conversion can thus be triggered without causing an interrupt. However, the interrupt flag must be cleared in order
to trigger a new conversion at the next interrupt event.

DAC Voltage Reference

The reference voltage for the ADC (Vggf) indicates the conversion range for the DAC. Vggr can be selected as either AV,
internal 2.56V reference, or external AREF pin.

AV is connected to the DAC through a passive switch. The internal 2.56V reference is generated from the internal
bandgap reference (Vgg) through an internal amplifier. In either case, the external AREF pin is directly connected to the
DAC, and the reference voltage can be made more immune to noise by connecting a capacitor between the AREF pin and
ground. Vger can also be measured at the AREF pin with a high impedant voltmeter. Note that Vggr is a high impedant
source, and only a capacitive load should be connected in a system.

If the user has a fixed voltage source connected to the AREF pin, the user may not use the other reference voltage options
in the application, as they will be shorted to the external voltage. If no external voltage is applied to the AREF pin, the user
may switch between AV and 2.56V as reference selection. The first DAC conversion result after switching reference
voltage source may be inaccurate, and the user is advised to discard this result.

DAC Register Description

The DAC is controlled via three dedicated registers:
e The DACON register which is used for DAC configuration
e DACH and DACL which are used to set the value to be converted.

Digital to Analog Conversion Control Register - DACON

Bit 7 6 5 4 3 2 1 0

| DAATE | DATS2 | DATS1 | DATSO | - DALA DAOE | DAEN | DACON
Read/Write R/W R/W R/W R/W - R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - DAATE: DAC Auto Trigger Enable bit

Set this bit to update the DAC input value on the positive edge of the trigger signal selected with the DACTS2-0 bit in
DACON register. Clear it to automatically update the DAC input when a value is written on DACH register.

* Bit 6:4 — DATS2, DATS1, DATSO0: DAC Trigger Selection bits
These bits are only necessary in case the DAC works in auto trigger mode. It means if DAATE bit is set.
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In accordance with the Table 18-7 on page 213, these 3 bits select the interrupt event which will generate the update of the
DAC input values. The update will be generated by the rising edge of the selected interrupt flag whether the interrupt is
enabled or not.

Table 21-1. DAC Auto Trigger Source Selection

DATS2 DATS1 DATSO Description
0 0 0 Analog comparator 0
Analog comparator 1
External interrupt request 0
Timer/Counter0 compare match

Timer/Counter1 compare match B

Timer/Counter1 overflow

- A A A O O o
- A 0O O =2 2~ O

1
0
1
0 Timer/Counter0 overflow
1
0
1

Timer/Counter1 capture event

e Bit 2 - DALA: Digital to Analog Left Adjust

Set this bit to left adjust the DAC input data.

Clear it to right adjust the DAC input data.

The DALA bit affects the configuration of the DAC data registers. Changing this bit affects the DAC output on the next DACH
writing.

* Bit 1 - DAOE: Digital to Analog Output Enable bit

Set this bit to output the conversion result on D2A,

Clear it to use the DAC internally.

* Bit 0 — DAEN: Digital to Analog Enable bit

Set this bit to enable the DAC,
Clear it to disable the DAC.

21.4.2 Digital to Analog Converter input Register — DACH and DACL

When the DAC is used with a 10-bit output value, the value is written into the 16-bit register pair DACH:DACL as two
separate 8-bit writes. As such the DAC value should be written first the low byte to DACL followed by the high byte value to
DACH. Only when the DACH register is written is the DAC value updated.

If you choose to use the DAC in left-adjust 8-bit mode then a single write to the DACH register with the 8-bit value will suffice
to update the DAC.

21421 DALA=0
Bit 7 6 5 4 3 2 1 0

- - - - - - DAC9 DACS8 DACH
DAC7 DACG6 DAC5 DAC4 DAC3 DAC2 DAC1 DACO DACL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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21422 DALA=1
Bit 7 6 5 4 3 2 1 0
DAC9 | DAC8 | DAC7 | DAC6 | DAC5 | DAC4 | DAC3 | DAC2 DACH
DAC1 | DACO - DACL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

To work with the 10-bit DAC, two registers have to be updated. In order to avoid intermediate value, the DAC input values
which are really converted into analog signal are buffered into unreachable registers. In normal mode, the update of the
shadow register is done when the register DACH is written.

In case DAATE bit is set, the DAC input values will be updated on the trigger event selected through DATS bits.
In order to avoid wrong DAC input values, the update can only be done after having written respectively DACL and DACH

registers. It is possible to work on 8-bit configuration by only writing the DACH value. In this case, update is done each
trigger event.

In case DAATE bit is cleared, the DAC is in an automatic update mode. Writing the DACH register automatically update the
DAC input values with the DACH and DACL register values.

It means that whatever is the configuration of the DAATE bit, changing the DACL register has no effect on the DAC output
until the DACH register has also been updated. So, to work with 10 bits, DACL must be written first before DACH. To work
with 8-bit configuration, writing DACH allows the update of the DAC.

236  ATmega16/32/64/M1/C1 [DATASHEET]
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22. Analog Feature Considerations

22.1 Purpose

The ATmega16/32/64/M1/C1 features several analog features such as ADC, DAC, Amplifiers, Comparators...

The purpose of this section is to describe the interaction between these features. This section explains how to set the
specific registers to get the system running.

Particularly the different peripheral clocks can interfere together, so special care has to be considered.

22.2 Use of an Amplifier as Comparator Input

The internal amplifiers provide differential amplification for ADC converter. To allow signed result with the ADC, the output
level of the amplifiers is shifted up with a Vref/2 voltage.

For this reason, when used with a comparator, a Vref/2 voltage is added to the voltage of the amplifier outputs.

Comparator
Clock

Figure 22-1. Amplifier and Comparator

Acmpx [}

Amplifier
Clock Analog Comparator

Output
Analog Comparator

Negative Input

avpxr [
awpx. [

AMPCMPx

The amplifier clock comes from the ADC and is equal to the ADC Clock divided by 8.

ACXEN

22.3 Use of an Amplifier as Comparator Input and ADC Input

The amplifier can be used as ADC input while it is used as comparator input. In that case, each time the amplifier is selected
as ADC input, the sampling and hold circuit of the ADC loads the amplifier output. It results a decrease of the amplifier output
voltage which can toggle the comparator output.
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22.4

2241

22.4.2

2243

238

Figure 22-2. Amplifier, Comparator and ADC
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Analog Peripheral Clock Sources

ADC Clock

The ADC clock comes from the clock system (CLKio) and it is divided by the ADC Prescaler. See Section 18-6 “ADC
Prescaler Selection” on page 212 The bits described in the ADC Prescaler Selection determine the division factor between
the system clock frequency and input clock of the ADC.

See Section 18.4 “Prescaling and Conversion Timing” on page 200 for a complete description of the ADC clock system.

Comparator Clock

While it is not connected to an amplifier, a comparator is clocked by the comparator clock which is configured thanks to the
ACCKSEL bit in ACOCON register, see Section 20.4.1 “Analog Comparator 0 Control Register — ACOCON” on page 227.
One can select between the 16MHz PLL output and the CLKio.

When it is connected to an amplifier, a comparator is clock by twice the amplifier clock.

Amplifier Clock

When the amplifier uses the ADC clock, this clock is divided by 8. This insures a maximum frequency of 250kHz for the
amplifier when the ADC clock is 2MHz. When the ADC is clocked with a frequency higher than 2MHz the amplifier cannot be
clocked by the ADC clock.

See Section 18.10 “Amplifier” on page 214 for a complete description of the Amplifier clock system.
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23. debugWIRE On-chip Debug System

23.1 Features

Complete program flow control

Emulates all on-chip functions, both digital and analog, except RESET pin

Real-time operation

Symbolic debugging support (both at C and assembler source level, or for other HLLs)
Unlimited number of program break points (using software break points)

Non-intrusive operation

Electrical characteristics identical to real device

Automatic configuration system

High-speed operation

Programming of non-volatile memories

23.2 Overview

The debugWIRE on-chip debug system uses a one-wire, bi-directional interface to control the program flow, execute AVR®
instructions in the CPU and to program the different non-volatile memories.

23.3 Physical Interface

When the debugWIRE Enable (DWEN) Fuse is programmed and Lock bits are unprogrammed, the debugWIRE system
within the target device is activated. The RESET port pin is configured as a wire-AND (open-drain) bi-directional 1/0 pin with
pull-up enabled and becomes the communication gateway between target and emulator.

Figure 23-1. The debugWIRE Setup

1.8-5.5V

VCC J

dw ~+——»] dw(RESET)

I

Figure 23-1 shows the schematic of a target MCU, with debugWIRE enabled, and the emulator connector. The system clock
is not affected by debugWIRE and will always be the clock source selected by the CKSEL Fuses.

When designing a system where debugWIRE will be used, the following observations must be made for correct operation:

Atmel

Pull-up resistors on the dW/(RESET) line must not be smaller than 10kQ. The pull-up resistor is not required for
debugWIRE functionality.

Connecting the RESET pin directly to V¢ will not work.
Capacitors connected to the RESET pin must be disconnected when using debugWire.
All external reset sources must be disconnected.
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23.4

23.5

23.6

23.6.1

240

Software Break Points

debugWIRE supports program memory break points by the AVR® break instruction. Setting a break point in AVR Studio® will
insert a BREAK instruction in the program memory. The instruction replaced by the BREAK instruction will be stored. When
program execution is continued, the stored instruction will be executed before continuing from the program memory. A break
can be inserted manually by putting the BREAK instruction in the program.

The flash must be re-programmed each time a break point is changed. This is automatically handled by AVR Studio through
the debugWIRE interface. The use of break points will therefore reduce the flash data retention. Devices used for debugging
purposes should not be shipped to end customers.

Limitations of debugWIRE

The debugWIRE communication pin (dW) is physically located on the same pin as external reset (RESET). An external reset
source is therefore not supported when the debugWIRE is enabled.

The debugWIRE system accurately emulates all I/O functions when running at full speed, i.e., when the program in the CPU
is running. When the CPU is stopped, care must be taken while accessing some of the 1/O registers via the debugger (AVR
Studio).

A programmed DWEN fuse enables some parts of the clock system to be running in all sleep modes. This will increase the
power consumption while in sleep. Thus, the DWEN Fuse should be disabled when debugWire is not used.

debugWIRE Related Register in I/O Memory

The following section describes the registers used with the debugWire.

debugWire Data Register —- DWDR

Bit 7 6 5 4 3 2 1 0
| DWDR[7:0] | pwor
Read/Write R/W R/W R/W R/W R/W R/W R/W RIW
Initial Value 0 0 0 0 0 0 0 0

The DWDR register provides a communication channel from the running program in the MCU to the debugger. This register
is only accessible by the debugWIRE and can therefore not be used as a general purpose register in the normal operations.
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24. Boot Loader Support — Read-while-write Self-Programming
ATmegal6/32/64/M1/C1

In ATmega16/32/64/M1/C1, the boot loader support provides a real read-while-write self-programming mechanism for
downloading and uploading program code by the MCU itself. This feature allows flexible application software updates
controlled by the MCU using a flash-resident boot loader program. The boot loader program can use any available data
interface and associated protocol to read code and write (program) that code into the Flash memory, or read the code from
the program memory. The program code within the boot loader section has the capability to write into the entire flash,
including the boot loader memory. The boot loader can thus even modify itself, and it can also erase itself from the code if
the feature is not needed anymore. The size of the boot loader memory is configurable with fuses and the boot loader has
two separate sets of boot lock bits which can be set independently. This gives the user a unique flexibility to select different
levels of protection.

24.1 Boot Loader Features
e  Read-while-write self-programming
Flexible boot memory size
High security (separate boot lock bits for a flexible protection)
Separate fuse to select reset vector
Optimized page'" size
Code efficient algorithm

Efficient read-modify-write support

Note: 1. A page is a section in the flash consisting of several bytes (see Table 25-12 on page 260) used during pro-
gramming. The page organization does not affect normal operation.

24.2 Application and Boot Loader Flash Sections

The flash memory is organized in two main sections, the application section and the boot loader section (see Figure 24-2 on
page 243). The size of the different sections is configured by the BOOTSZ fuses as shown in Table 24-7 on page 251 and
Figure 24-2 on page 243. These two sections can have different level of protection since they have different sets of lock bits.

24.2.1 Application Section

The application section is the section of the Flash that is used for storing the application code. The protection level for the
application section can be selected by the application boot lock bits (boot lock bits 0), see Table 24-2 on page 244. The
application section can never store any boot loader code since the SPM instruction is disabled when executed from the
application section.

24.2.2 BLS - Boot Loader Section

While the application section is used for storing the application code, the The boot loader software must be located in the
BLS since the SPM instruction can initiate a programming when executing from the BLS only. The SPM instruction can
access the entire flash, including the BLS itself. The protection level for the boot loader section can be selected by the boot
loader lock bits (boot lock bits 1), see Table 24-3 on page 244.

24.3 Read-while-write and no Read-while-write Flash Sections

Whether the CPU supports read-while-write or if the CPU is halted during a Boot Loader software update is dependent on
which address that is being programmed. In addition to the two sections that are configurable by the BOOTSZ Fuses as
described above, the flash is also divided into two fixed sections, the read-while-write (RWW) section and the no read-while-
write (NRWW) section. The limit between the RWW- and NRWW sections is given in Table 24-8 on page 252 and Figure 24-
2 on page 243. The main difference between the two sections is:
e When erasing or writing a page located inside the RWW section, the NRWW section can be read during the
operation.

e  When erasing or writing a page located inside the NRWW section, the CPU is halted during the entire operation.
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24.3.1

24.3.2

242

Note that the user software can never read any code that is located inside the RWW section during a boot loader software
operation. The syntax “Read-while-write section” refers to which section that is being programmed (erased or written), not
which section that actually is being read during a boot loader software update.

RWW — Read-while-write Section

If a boot loader software update is programming a page inside the RWW section, it is possible to read code from the flash,
but only code that is located in the NRWW section. during an on-going programming, the software must ensure that the
RWW section never is being read. If the user software is trying to read code that is located inside the RWW section (i.e., by
a call/jimp/lpm or an interrupt) during programming, the software might end up in an unknown state. To avoid this, the
interrupts should either be disabled or moved to the boot loader section. The boot loader section is always located in the
NRWW section. The RWW section busy bit (RWWSB) in the store program memory control and status register (SPMCSR)
will be read as logical one as long as the RWW section is blocked for reading. After a programming is completed, the
RWWSB must be cleared by software before reading code located in the RWW section. See Section 24.5.1 “Store Program
Memory Control and Status Register - SPMCSR” on page 244 for details on how to clear RWWSB.

NRWW — No Read-while-write Section

The code located in the NRWW section can be read when the boot loader software is updating a page in the RWW section.
When the boot loader code updates the NRWW section, the CPU is halted during the entire page erase or page write
operation.

Table 24-1. Read-while-write Features

Which Section does the Z-pointer Address Which Section Can be Read Is the CPU Read-while-write
during the Programming? during Programming? Halted? Supported?
RWW section NRWW section No Yes
NRWW section None Yes No

Figure 24-1. Read-while-write versus No Read-while-write
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Figure 24-2. Memory Sections

24.4

Atmel

Note:

Program Memory

Program Memory

The parameters in the figure above are given in Table 24-7 on page 251.
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Boot Loader Lock Bits

If no boot loader capability is needed, the entire flash is available for application code. The boot loader has two separate sets
of Boot Lock bits which can be set independently. This gives the user a unique flexibility to select different levels of
protection.
The user can select:

e  To protect the entire flash from a software update by the MCU.

e To protect only the boot loader flash section from a software update by the MCU.

e To protect only the application flash section from a software update by the MCU.

e  Allow software update in the entire flash.
See Table 24-2 and Table 24-3 on page 244 for further details. The boot lock bits can be set in software and in serial or
parallel programming mode, but they can be cleared by a chip erase command only. The general write lock (lock bit mode 2)

does not control the programming of the flash memory by SPM instruction. Similarly, the general Read/Write lock (lock bit
mode 1) does not control reading nor writing by LPM/SPM, if it is attempted.
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Table 24-2. Boot Lock Bit0 Protection Modes (Application Section)!)

BLBO Mode | BLB02 @ BLBO1 Protection

1 1 No restrictions for SPM or LPM accessing the application section.
2 1 0 SPM is not allowed to write to the application section.

SPM is not allowed to write to the application section, and LPM executing from the
boot loader section is not allowed to read from the application section. If interrupt
vectors are placed in the boot loader section, interrupts are disabled while executing
from the application section.

LPM executing from the boot loader section is not allowed to read from the application
4 0 1 section. If interrupt vectors are placed in the boot loader section, interrupts are
disabled while executing from the application section.

Note: 1. “1” means unprogrammed, “0” means programmed.

Table 24-3. Boot Lock Bitl Protection Modes (Boot Loader Section)®

1

1 1 No restrictions for SPM or LPM accessing the boot loader section.
2 1 0 SPM is not allowed to write to the boot loader section.

SPM is not allowed to write to the boot loader section, and LPM executing from the
application section is not allowed to read from the boot loader section. If Interrupt
vectors are placed in the application section, interrupts are disabled while executing
from the boot loader section.

LPM executing from the application section is not allowed to read from the boot
4 0 1 loader section. If interrupt vectors are placed in the application section, interrupts are
disabled while executing from the boot loader section.

Note: “1” means unprogrammed, “0” means programmed

245 Entering the Boot Loader Program

Entering the boot loader takes place by a jump or call from the application program. This may be initiated by a trigger such
as a command received via UART, or SPI interface. Alternatively, the boot reset fuse can be programmed so that the reset
vector is pointing to the boot flash start address after a reset. In this case, the boot loader is started after a reset. After the
application code is loaded, the program can start executing the application code. Note that the fuses cannot be changed by
the MCU itself. This means that once the boot reset fuse is programmed, the reset vector will always point to the boot loader
reset and the fuse can only be changed through the serial or parallel programming interface.

Table 24-4. Boot Reset Fuse®

BOOTRST Reset Address
1 Reset vector = Application reset (address 0x0000)
0 Reset vector = Boot loader Reset (see Table 24-7 on page 251)

Note: 1. “1” means unprogrammed, “0” means programmed

24.5.1 Store Program Memory Control and Status Register —- SPMCSR

The store program memory control and status register contains the control bits needed to control the boot loader operations.

Bit 7 6 5 4 3 2 1 0
| SPMIE | RWWSB | SIGRD | RWWSRE | BLBSET | PGWRT | PGERS | SPMEN |SPMCSR
Read/Write RIW R R R/W R/W R/W R/W RIW
Initial Value 0 0 0 0 0 0 0 0
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e Bit 7 - SPMIE: SPM Interrupt Enable

When the SPMIE bit is written to one, and the I-bit in the status register is set (one), the SPM ready interrupt will be enabled.
The SPM ready interrupt will be executed as long as the SPMEN bit in the SPMCSR register is cleared.

e Bit 6 - RWWSB: Read-while-write Section Busy

When a self-programming (page erase or page write) operation to the RWW section is initiated, the RWWSB will be set
(one) by hardware. When the RWWSB bit is set, the RWW section cannot be accessed. The RWWSB bit will be cleared if
the RWWSRE bit is written to one after a self-programming operation is completed. Alternatively the RWWSB bit will
automatically be cleared if a page load operation is initiated.

« Bit 5 - SIGRD: Signature Row Read

If this bit is written to one at the same time as SPMEN, the next LPM instruction within three clock cycles will read a byte from
the signature row into the destination register. see Section 24.7.10 “Reading the Signature Row from Software” on page 249
for details. An SPM instruction within four cycles after SIGRD and SPMEN are set will have no effect. This operation is
reserved for future use and should not be used.

* Bit 4 —- RWWSRE: Read-while-write Section Read Enable

When programming (page erase or page write) to the RWW section, the RWW section is blocked for reading (the RWWSB
will be set by hardware). To re-enable the RWW section, the user software must wait until the programming is completed
(SPMEN will be cleared). Then, if the RWWSRE bit is written to one at the same time as SPMEN, the next SPM instruction
within four clock cycles re-enables the RWW section. The RWW section cannot be re-enabled while the flash is busy with a
page erase or a page write (SPMEN is set). If the RWWSRE bit is written while the flash is being loaded, the flash load
operation will abort and the data loaded will be lost.

* Bit 3—BLBSET: Boot Lock Bit Set

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock cycles sets boot lock bits
and memory lock bits, according to the data in RO. The data in R1 and the address in the Z-pointer are ignored. The BLBSET
bit will automatically be cleared upon completion of the lock bit set, or if no SPM instruction is executed within four clock
cycles.

An LPM instruction within three cycles after BLBSET and SPMEN are set in the SPMCSR register, will read either the Lock
bits or the fuse bits (depending on Z0 in the Z-pointer) into the destination register. See Section 24.7.9 “Reading the Fuse
and Lock Bits from Software” on page 248 for details.

e Bit 2 - PGWRT: Page Write

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock cycles executes page write,
with the data stored in the temporary buffer. The page address is taken from the high part of the Z-pointer. The data in R1
and RO are ignored. The PGWRT bit will auto-clear upon completion of a page write, or if no SPM instruction is executed
within four clock cycles. The CPU is halted during the entire page write operation if the NRWW section is addressed.

e Bit 1 - PGERS: Page Erase

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock cycles executes page
erase. The page address is taken from the high part of the Z-pointer. The data in R1 and RO are ignored. The PGERS bit will
auto-clear upon completion of a page erase, or if no SPM instruction is executed within four clock cycles. The CPU is halted
during the entire Page Write operation if the NRWW section is addressed.

« Bit 0 — SPMEN: Self Programming Enable

This bit enables the SPM instruction for the next four clock cycles. If written to one together with either RWWSRE, BLBSET,
PGWRT or PGERS, the following SPM instruction will have a special meaning, see description above. If only SPMEN is
written, the following SPM instruction will store the value in R1:R0 in the temporary page buffer addressed by the Z-pointer.
The LSB of the Z-pointer is ignored. The SPMEN bit will auto-clear upon completion of an SPM instruction, or if no SPM
instruction is executed within four clock cycles. during page erase and page write, the SPMEN bit remains high until the
operation is completed.

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower five bits will have no effect.
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24.6 Addressing the Flash during Self-Programming

The Z-pointer is used to address the SPM commands.

Bit 15 14 13 12 1" 10 9 8

ZH (R31) Z15 714 713 712 Z11 Z10 Z9 Z8

ZL (R30) z7 Z6 Z5 Z4 Z3 z2 Z1 Z0
7 6 5 4 3

2 1 0

Since the flash is organized in pages (see Table 25-12 on page 260), the program counter can be treated as having two

different sections. One section, consisting of the least significant bits, is addressing the words within a page, while the most
significant bits are addressing the pages. This is1 shown in Figure 24-3. Note that the page erase and page write operations
are addressed independently. Therefore it is of major importance that the boot loader software addresses the same page in

both the page erase and page write operation. Once a programming operation is initiated, the address is latched and the
Z-pointer can be used for other operations.

The only SPM operation that does not use the Z-pointer is setting the boot loader lock bits. The content of the Z-pointer is

ignored and will have no effect on the operation. The LPM instruction does also use the Z-pointer to store the address. Since
this instruction addresses the flash byte-by-byte, also the LSB (bit Z0) of the Z-pointer is used.

Figure 24-3. Addressing the Flash during SPM®

BIT 15 ZPCMSB ZPAGEMSB 1 0
Z-register | 0 |
PCMSB PAGEMSB
Program
counter PCPAGE PCWORD
Page address Word address
within the flash within page
Program Memory Page PCWORD[PAGEMSB : 0]
Page Instructions Word 00
01
02
-t L |

B —— |

\ PAGEEND

Note: 1. The different variables used in Figure 24-3 are listed in Table 24-9 on page 252.

24.7  Self-programming the Flash

The program memory is updated in a page by page fashion. Before programming a page with the data stored in the

temporary page buffer, the page must be erased. The temporary page buffer is filled one word at a time using SPM and the
buffer can be filled either before the page erase command or between a page erase and a page write operation:
Alternative 1, fill the buffer before a page erase

e  Fill temporary page buffer
Perform a page erase
Perform a page write
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Alternative 2, fill the buffer after page erase
e  Perform a page erase
e  Fill temporary page buffer
e  Perform a page write

If only a part of the page needs to be changed, the rest of the page must be stored (for example in the temporary page
buffer) before the erase, and then be rewritten. When using alternative 1, the boot loader provides an effective read-modify-
write feature which allows the user software to first read the page, do the necessary changes, and then write back the
modified data. If alternative 2 is used, it is not possible to read the old data while loading since the page is already erased.
The temporary page buffer can be accessed in a random sequence. It is essential that the page address used in both the
page erase and page write operation is addressing the same page. See Section 24.7.13 “Simple Assembly Code Example
for a Boot Loader” on page 250 for an assembly code example.

24.7.1 Performing Page Erase by SPM

To execute page erase, set up the address in the Z-pointer, write “X0000011” to SPMCSR and execute SPM within four
clock cycles after writing SPMCSR. The data in R1 and RO is ignored. The page address must be written to PCPAGE in the
Z-register. Other bits in the Z-pointer will be ignored during this operation.

e Page erase to the RWW section: The NRWW section can be read during the page erase.

e Page erase to the NRWW section: The CPU is halted during the operation.

24.7.2 Filling the Temporary Buffer (Page Loading)

To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write “00000001” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The content of PCWORD in the Z-register is used to address
the data in the temporary buffer. The temporary buffer will auto-erase after a page write operation or by writing the
RWWSRE bit in SPMCSR. It is also erased after a system reset. Note that it is not possible to write more than one time to
each address without erasing the temporary buffer.

If the EEPROM is written in the middle of an SPM page load operation, all data loaded will be lost.

24.7.3 Performing a Page Write

To execute page write, set up the address in the Z-pointer, write “X0000101” to SPMCSR and execute SPM within four clock
cycles after writing SPMCSR. The data in R1 and RO is ignored. The page address must be written to PCPAGE. Other bits
in the Z-pointer must be written to zero during this operation.

e Page write to the RWW section: The NRWW section can be read during the page write.

e Page write to the NRWW section: The CPU is halted during the operation.

24.7.4 Using the SPM Interrupt

If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the SPMEN bit in SPMCSR is
cleared. This means that the interrupt can be used instead of polling the SPMCSR register in software. When using the SPM
interrupt, the interrupt vectors should be moved to the BLS section to avoid that an interrupt is accessing the RWW section
when it is blocked for reading.

24.7.5 Consideration While Updating BLS

Special care must be taken if the user allows the boot loader section to be updated by leaving boot lock bit11
unprogrammed. An accidental write to the boot loader itself can corrupt the entire boot loader, and further software updates
might be impossible. If it is not necessary to change the boot loader software itself, it is recommended to program the boot
lock bit11 to protect the boot loader software from any internal software changes.

24.7.6 Prevent Reading the RWW Section during Self-programming

During self-programming (either page erase or page write), the RWW section is always blocked for reading. The user
software itself must prevent that this section is addressed during the self programming operation. The RWWSB in the
SPMCSR will be set as long as the RWW section is busy. During self-programming the Interrupt vector table should be
moved to the BLS or the interrupts must be disabled. Before addressing the RWW section after the programming is
completed, the user software must clear the RWWSB by writing the RWWSRE. See Section 24.7.13 “Simple Assembly
Code Example for a Boot Loader” on page 250 for an example.
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24.7.7 Setting the Boot Loader Lock Bits by SPM

To set the boot loader lock bits, write the desired data to RO, write “X0001001” to SPMCSR and execute SPM within four
clock cycles after writing SPMCSR. The only accessible lock bits are the boot lock bits that may prevent the application and
boot loader section from any software update by the MCU.

Bit 7 6 5 4 3 2 1 0

RO | + | 1 |BLB12 [ BLB1l | BLBO2 [BLBOL | 1 | 1 |

See Table 24-2 and Table 24-3 for how the different settings of the boot loader bits affect the flash access.

If bits 5..2 in RO are cleared (zero), the corresponding boot lock bit will be programmed if an SPM instruction is executed
within four cycles after BLBSET and SPMEN are set in SPMCSR. The Z-pointer is don’t care during this operation, but for
future compatibility it is recommended to load the Z-pointer with 0x0001 (same as used for reading the 10 bits). For future
compatibility it is also recommended to set bits 7, 6, 1, and 0 in RO to “1” when writing the Lock bits. When programming the
lock bits the entire flash can be read during the operation.

24.7.8 EEPROM Write Prevents Writing to SPMCSR

Note that an EEPROM write operation will block all software programming to flash. Reading the fuses and lock bits from
software will also be prevented during the EEPROM write operation. It is recommended that the user checks the status bit
(EEWE) in the EECR Register and verifies that the bit is cleared before writing to the SPMCSR register.

24.7.9 Reading the Fuse and Lock Bits from Software

It is possible to read both the fuse and lock bits from software. To read the lock bits, load the Z-pointer with 0x0001 and set
the BLBSET and SPMEN bits in SPMCSR. When an LPM instruction is executed within three CPU cycles after the BLBSET
and SPMEN bits are set in SPMCSR, the value of the Lock bits will be loaded in the destination register. The BLBSET and
SPMEN bits will auto-clear upon completion of reading the Lock bits or if no LPM instruction is executed within three CPU
cycles or no SPM instruction is executed within four CPU cycles. When BLBSET and SPMEN are cleared, LPM will work as
described in the instruction set manual.

Bit 7 6 5 4 3 2 1 0
Rd | - | - |BLBlZ | BLB11 | BLBO02 | BLBOl| LB2 | LB1 |

The algorithm for reading the fuse low byte is similar to the one described above for reading the lock bits. To read the fuse
low byte, load the Z-pointer with 0x0000 and set the BLBSET and SPMEN bits in SPMCSR.

When an LPM instruction is executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR, the
value of the fuse low byte (FLB) will be loaded in the destination register as shown below. Refer to Table 25-4 on page 256
for a detailed description and mapping of the fuse low byte.

Bit 7 6 5 4 3 2 1 0

Rd | FLB7 | FLB6 | FLBS | FLB4 | FLB3 | FLB2 | FLB1 | FLBO |

Similarly, when reading the fuse high byte, load 0x0003 in the Z-pointer. When an LPM instruction is executed within three
cycles after the BLBSET and SPMEN bits are set in the SPMCSR, the value of the fuse high byte (FHB) will be loaded in the
destination register as shown below. Refer to Table 25-6 on page 257 for detailed description and mapping of the fuse high
byte.

Bit 7 6 5 4 3 2 1 0

Rd | FHB7 | FHB6 | FHB5 | FHB4 | FHB3 | FHB2 | FHBL1 | FHBO |

When reading the extended fuse byte, load 0x0002 in the Z-pointer. When an LPM instruction is executed within three cycles
after the BLBSET and SPMEN bits are set in the SPMCSR, the value of the extended fuse byte (EFB) will be loaded in the
destination register as shown below. Refer to Table 25-4 on page 256 for detailed description and mapping of the extended

fuse byte.
Bit 7 6 5 4 3 2 1 0
Rd | - | - | - | - | EFB3 | EFB2 | EFBL | EFBO |
Fuse and lock bits that are programmed, will be read as zero. Fuse and lock bits that are unprogrammed, will be read as
one.
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24.7.10 Reading the Signature Row from Software

To read the signature row from software, load the Z-pointer with the signature byte address given in Table 24-5 on page 249
and set the SIGRD and SPMEN bits in SPMCSR. When an LPM instruction is executed within three CPU cycles after the
SIGRD and SPMEN bits are set in SPMCSR, the signature byte value will be loaded in the destination register. The SIGRD
and SPMEN bits will auto-clear upon completion of reading the signature row lock bits or if no LPM instruction is executed
within three CPU cycles. When SIGRD and SPMEN are cleared, LPM will work as described in the instruction set manual.

Note: Before attempting to set SPMEN it is important to test this bit is cleared showing that the hardware is ready for
a new operation.

Table 24-5. Signature Row Addressing

Signature Byte Z-Pointer Address

Device signature byte 1 0x0000
Device signature byte 2 0x0002
Device signature byte 3 0x0004
RC oscillator calibration byte 0x0001
TSOFFSET temp sensor offset 0x0005
TSGAIN temp sensor gain 0x0007
Note: All other addresses are reserved for future use.

24.7.11 Preventing Flash Corruption

During periods of low V, the flash program can be corrupted because the supply voltage is too low for the CPU and the
flash to operate properly. These issues are the same as for board level systems using the flash, and the same design
solutions should be applied.

A flash program corruption can be caused by two situations when the voltage is too low. First, a regular write sequence to
the flash requires a minimum voltage to operate correctly. Secondly, the CPU itself can execute instructions incorrectly, if the
supply voltage for executing instructions is too low.

Flash corruption can easily be avoided by following these design recommendations (one is sufficient):

1. If there is no need for a boot loader update in the system, program the boot loader lock bits to prevent any boot
loader software updates.

2. Keep the AVR® RESET active (low) during periods of insufficient power supply voltage. This can be done by
enabling the internal brown-out detector (BOD) if the operating voltage matches the detection level. If not, an
external low V reset protection circuit can be used. If a reset occurs while a write operation is in progress, the
write operation will be completed provided that the power supply voltage is sufficient.

3. Keep the AVR core in power-down sleep mode during periods of low V. This will prevent the CPU from attempt-
ing to decode and execute instructions, effectively protecting the SPMCSR register and thus the flash from
unintentional writes.

24.7.12 Programming Time for Flash when Using SPM

The calibrated RC oscillator is used to time flash accesses. Table 24-6 shows the typical programming time for flash
accesses from the CPU.

Table 24-6. SPM Programming Time

Min Programming Time Max Programming Time

Flash write (page erase, page write, and write lock

bits by SPM) 3.7ms 4.5ms
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24.7.13 Simple Assembly Code Example for a Boot Loader

;-the routine wites one page of data from RAMto Fl ash

; the first data location in RAMis pointed to by the Y pointer

; the first data location in Flash is pointed to by the Z-pointer
;-error handling is not included

;-the routine must be placed inside the Boot space

; (at least the Do_spmsub routine). Only code inside NRWVsection can
; be read during Self-Progranm ng (Page Erase and Page Wite).
;-registers used: r0, rl, tenpl (rl16), tenp2 (rl17), looplo (r24),

; loophi (r25), spntrval (r20)

; storing and restoring of registers is not included in the routine
; register usage can be optinized at the expense of code size

;-1t is assunmed that either the interrupt table is noved to the Boot
; loader section or that the interrupts are disabl ed.

.equ PAGESI ZEB = PAGESI ZE*2 PAGESI ZEB i s page size in BYTES, not words
.org SMALLBOOTSTART
Wite_page:
; Page Erase
| di spntrval , (1<<PGERS) | (1<<SPMEN)
call Do_spm
; re-enable the RWNV section
| di spntrval , (1<<RWABRE) | (1<<SPMEN)
cal | Do_spm
; transfer data from RAMto Fl ash page buffer
| di | oopl 0, | ow PAGESI ZEB) ;init loop variable
| di | oophi, hi gh( PAGESI ZEB) ;not required for PACESI ZEB<=256
W | oop:
Id ro, Y+
| d rl, Y+
| di spntrval, (1<<SPMEN)
cal | Do_spm
adiw ZH ZL, 2
sbiw | oophi:looplo, 2 ;use subi for PAGESI ZEB<=256
brne W]l oop
; execute Page Wite
subi ZL, | owm PAGESI ZEB) ;restore pointer
sbci ZH, hi gh( PACESI ZEB) ;not required for PACESI ZEB<=256
| di spntrval , (1<<PGART) | (1<<SPMEN)
cal | Do_spm
; re-enabl e the RWN section
| di spntrval, (1<<RWABRE) | (1<<SPMEN)
call Do_spm
; read back and check, optional
| di | oopl o, | ow( PAGESI ZEB) ;init loop variable
| di | oophi, hi gh( PAGESI ZEB) ;not required for PACESI ZEB<=256
subi YL, | ow PAGESI ZEB) ;restore pointer
sbci YH, hi gh( PAGESI ZEB)
Rdl oop:
| pm ro, Z+
| d rl, Y+
cpse ro, rl
jmp Error
sbiw | oophi:looplo, 1 ;use subi for PAGESI ZEB<=256
brne Rdl oop
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; return to RWN section
verify that RWVsection is safe to read

Ret ur n:
in tenpl, SPMCSR
sbrs tenpl, RWASB If RWABB is set, the RWNsection is not
ready yet
ret
; re-enabl e the RWVN section
| di spnctrval, (1<<RWABRE) | (1<<SPMEN)
cal | Do_spm
rimp Return
Do_spm
; check for previous SPM conpl ete
Wai t _spm

in templ, SPMCSR
sbrc tenpl, SPMEN
rimp Wait_spm
; i nput: spncrval deternines SPM action
; disable interrupts if enabled, store status
in temp2, SREG
cli
; check that no EEPROM write access is present
Wai t _ee:
sbic EECR, EEPE
rinp VWait_ee
; SPM ti ned sequence
out SPMCSR, spnctrval
spm
; restore SREG (to enable interrupts if originally enabled)
out SREG tenp2
ret

24.7.14 ATmegal6/32/64/M1/C1 - 16K - Flash Boot Loader Parameters

In Table 24-7 through Table 24-9 on page 252, the parameters used in the description of the self programming are given.

Table 24-7. Boot Size Configuration, ATmegal6/32/64/M1/C1 (16K Product)

Boot Boot Reset
Application Loader End Address (Start
Boot Flash Flash Application Boot Loader
sl BOOTSZ0 Size® Pages Section Section Section Section)
256 0x0000 - 0x1FO00 -
1 ! words 4 OX1EFF Ox1FFF OXIERE 0x1F00
512 0x0000 - 0x1EOQ0 -
! 0 —-— 8 e OIFEF Ox1DFF Ox1E00
1024 0x0000 - 0x1CO00 -
0 ! words 16 Ox1BFF OX1FFF LA 0x1C00
2048 0x1800 -
0 0 words 32 0x0000-Ox17FF " ro 0x17FF 0x1800

Notes: 1. The different BOOTSZ fuse configurations are shown in Figure 24-2 on page 243.
2. 1 word equals 2 bytes.
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Table 24-8. Read-while-write Limit

Pages Address

Read-while-write section (RWW) 96 0x0000 - Ox17FF
No Read-while-write section (NRWW) 32 0x1800 - Ox1FFF

For details about these two section, see Section 24.3.2 “NRWW — No Read-while-write Section” on page 242 and Section
24 3.1 “RWW — Read-while-write Section” on page 242.

Table 24-9. Explanation of Different Variables used in Figure 24-3 and the Mapping to the Z-pointer

Corresponding

Variable Z-value® Description
Most significant bit in the program counter (the program counter
HENEE 12 is 13 bits PC[2:0]).
Most significant bit which is used to address the words within
ISR 2 one page (64 words in a page requires 6 bits PC [5:0]).
Bit in Z-register that is mapped to PCMSB. Because Z0 is not
e Zil used, the ZPCMSB equals PCMSB + 1.
Bit in Z-register that is mapped to PAGEMSB. Because Z0 is
ARAEHYEE A not used, the ZPAGEMSB equals PAGEMSB + 1.
PCPAGE PC[12:6] 713:27 Program counter page address: Page select, for page erase
) ’ and page write
. . Program counter word address: Word select, for filling
FEROIRD Fek AL, temporary buffer (must be zero during page write operation)

Note: 1. Z15:Z13: always ignored
Z0: should be zero for all SPM commands, byte select for the LPM instruction.
See Section 24.6 “Addressing the Flash during Self-Programming” on page 246 for details about the use of
Z-pointer during self-programming.

24.7.15 ATmegal6/32/64/M1/C1 - 32K -Flash Boot Loader Parameters

In Table 24-10 through Table 24-12 on page 253, the parameters used in the description of the self programming are given.

Table 24-10. Boot Size Configuration, ATmegal6/32/64/M1/C1 (32K product)

Boot Boot Reset
Application Loader End Address (Start
Flash Flash Application Boot Loader
BOOTSZ1 BOOTSZ0 Section Section Section Section)
256 0x0000 - 0x3FO00 -
1 1 words 4 OX3EFF OX3FFF Ox3EFF 0x3F00
512 0x0000 - 0x3EQ0 -
1 0 words 8 Ox3DFF OX3FFF Bl 0x3E00
1024 0x0000 - 0x3C00 -
0 ! words 10 OX3BFF OX3FFF Ox3BFF 0x3C00
2048 0x3800 -
0 0 g 32 0x0000-O0x37FF (= CC OX37FF 0x3800

Notes: 1. The different BOOTSZ Fuse configurations are shown in Figure 24-2 on page 243.
2. 1 word equals 2 bytes.
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Table 24-11. Read-while-write Limit

Pages Address
Read-while-write section (RWW) 224 0x0000 - Ox37FF
No Read-while-write section (NRWW) 32 0x3800 - Ox3FFF

For details about these two section, see Section 24.3.2 “NRWW — No Read-while-write Section” on page 242 and Section
24 3.1 “RWW — Read-while-write Section” on page 242.

Table 24-12. Explanation of Different Variables used in Figure 24-3 and the Mapping to the Z-pointer

Corresponding

Variable Z-value® Description
Most significant bit in the program counter (the program counter
Feies 13 is 14 bits PC[13:0])
Most significant bit which is used to address the words within one
FACEEE 2 page (64 words in a page requires 6 bits PC [5:0]).
Bit in Z-register that is mapped to PCMSB. Because Z0 is not
ZPCMSB Zi- used, the ZPCMSB equals PCMSB + 1.
Bit in Z-register that is mapped to PAGEMSB. Because Z0 is not
LR A9 used, the ZPAGEMSB equals PAGEMSB + 1.
PCPAGE PC[13:6] 714-77 Program counter page address: Page select, for page erase and
’ ’ page write
PCWORD PC[5:0] 76:71 Program counter word address: Word select, for filling temporary
’ ’ buffer (must be zero during page write operation)

Note: 1. Z15:Z13: always ignored
Z0: should be zero for all SPM commands, byte select for the LPM instruction.
See Section 24.6 “Addressing the Flash during Self-Programming” on page 246 for details about the use of
Z-pointer during self-programming.

24.7.16 ATmegal6/32/64/M1/C1 - 64K - Flash Boot Loader Parameters

In Table 24-13 through Table 24-15 on page 254, the parameters used in the description of the self programming are given.

Table 24-13. Boot Size Configuration, ATmegal6/32/64/M1/C1 (64K Product)

Boot Boot Reset
Application Loader End Address (Start
Boot Flash Flash Application Boot Loader
BOOTSZ1 BOOTSZ0 Size® Pages Section Section Section Section)
512 0x0000 - 0x7EQ0 -
! ! . 4 e OTEFE OX7DFF OX7EQ0
1024 0x0000 - 0x7C00 -
! 0 words g Ox7BFF OX7FFF DA 0x7C00
2048 0x7800 -
0 1 words 16 0x0000 - Ox77FF OX7EFE Ox77FF 0x7800
4096 0x0000 - 0x7000 -
° ° words O OX6FFF OXTFFF Ox6FFF 0x7000

Note: 1. The different BOOTSZ Fuse configurations are shown in Figure 24-2 on page 243.
2. 1 word equals 2 bytes.
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Table 24-14. Read-while-write Limit

254

Pages Address
Read-while-write section (RWW) 224 0x0000 - Ox6FFF
No read-while-write section (NRWW) 32 0x7000 - Ox7FFF

For details about these two section, see Section 24.3.2 “NRWW — No Read-while-write Section” on page 242 and Section
24 3.1 “RWW — Read-while-write Section” on page 242.

Table 24-15. Explanation of Different Variables used in Figure 24-3 and the Mapping to the Z-pointer

Corresponding

Variable Z-value® Description
Most significant bit in the program counter (the program counter
HeiiEs 14 is 15 bits PC[14:0]).
Most significant bit which is used to address the words within
ISR U one page (128 words in a page requires seven bits PC [6:0]).
Bit in Z-register that is mapped to PCMSB. Because Z0 is not
AFE Bl Zi9 used, the ZPCMSB equals PCMSB + 1.
Bit in Z-register that is mapped to PAGEMSB. Because Z0 is not
LR 2 used, the ZPAGEMSB equals PAGEMSB + 1.
PCPAGE PC[14:7] 715:78 Program counter page address: Page select, for page erase and
’ ’ page write
PCWORD PCI6:0] 7771 Program counter word address: Word select, for filling temporary
’ ’ buffer (must be zero during page write operation)

Note: 1. Z15:Z13: always ignored
Z0: should be zero for all SPM commands, byte select for the LPM instruction.
See Section 24.6 “Addressing the Flash during Self-Programming” on page 246 for details about the use of
Z-pointer during self-programming.
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25. Memory Programming

25.1 Program and Data Memory Lock Bits

The ATmega16/32/64/M1/C1 provides six Lock bits which can be left unprogrammed (“1”) or can be programmed (“0”) to
obtain the additional features listed in Table 25-2. The Lock bits can only be erased to “1” with the chip erase command.

Table 25-1. Lock Bit Byte®

Lock Bit Byte Bit No Description Default Value

7 - 1 (unprogrammed)

6 - 1 (unprogrammed)

BLB12 5 Boot lock bit 1 (unprogrammed)
BLB11 4 Boot lock bit 1 (unprogrammed)
BLB02 3 Boot lock bit 1 (unprogrammed)
BLBO1 2 Boot lock bit 1 (unprogrammed)
LB2 1 Lock bit 1 (unprogrammed)
LB1 0 Lock bit 1 (unprogrammed)

Notes: 1. “1” means unprogrammed, “0” means programmed.

Table 25-2. Lock Bit Protection Modes®®

Memory Lock Bits
LB Mode LB2 LB1 Protection Type
1 1 1 No memory lock features enabled.

Further programming of the flash and EEPROM is disabled in parallel and
2 1 0 serial programming mode. The fuse bits are locked in both serial and parallel
programming mode").

Further programming and verification of the flash and EEPROM is disabled in
3 0 0 parallel and serial programming mode. The boot lock bits and fuse bits are
locked in both serial and parallel programming mode(").

Notes: 1. Program the fuse bits and boot lock bits before programming the LB1 and LB2.
2. *“1” means unprogrammed, “0” means programmed.

Table 25-3. Lock Bit Protection Modes®®,

BLBO Mode BLB02 BLBO1
1

1 1 No restrictions for SPM or LPM accessing the Application section.
2 1 0 SPM is not allowed to write to the Application section.

SPM is not allowed to write to the Application section, and LPM executing from
the Boot Loader section is not allowed to read from the Application section. If
Interrupt Vectors are placed in the Boot Loader section, interrupts are disabled
while executing from the Application section.

LPM executing from the Boot Loader section is not allowed to read from the
4 0 1 Application section. If Interrupt Vectors are placed in the Boot Loader section,
interrupts are disabled while executing from the Application section.

Notes: 1. Program the Fuse bits and Boot Lock bits before programming the LB1 and LB2.
2. “1” means unprogrammed, “0” means programmed
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25.2

25.3

256

Fuse Bits

The ATmega16/32/64/M1/C1 has three Fuse bytes. Table 25-4 to Table 25-7 on page 257 describe briefly the functionality of
all the fuses and how they are mapped into the Fuse bytes. Note that the fuses are read as logical zero, “0”, if they are
programmed.

Table 25-4. Extended Fuse Byte

Extended Fuse Byte Bit No Description Default Value

- 7 - 1 (unprogrammed)

- 6 - 1 (unprogrammed)

PSCRB 5 PSC reset behavior 1 (unprogrammed)
PSCRVA 4 PSCOUTNA reset value 1 (unprogrammed)
PSCRVB 3 PSCOUTNB reset value 1 (unprogrammed)
BODLEVEL2(" 2 Brown-out detector trigger level 1 (unprogrammed)
BODLEVEL1(" 1 Brown-out detector trigger level 1 (unprogrammed)
BODLEVELO™ 0 Brown-out detector trigger level 1 (unprogrammed)

Note: 1. See Table 7-2 on page 40 for BODLEVEL fuse decoding.

PSC Output Behavior during Reset

For external component safety reason, the state of PSC outputs during reset can be programmed by fuses PSCRB,
PSCARYV and PSCBRYV. These fuses are located in the extended fuse byte (see Table 25-4 on page 256).

If PSCRB fuse equals 1 (unprogrammed), all PSC outputs keep a standard port behavior. If PSCORB fuse equals 0
(programmed), all PSC outputs are forced at reset to low level or high level according to PSCARV and PSCBRY fuse bits. In
this second case, the PSC outputs keep the forced state until POC register is written. Section 5.10.1 “Clock Prescaler
Register — CLKPR” on page 33

PSCARYV (PSCOUTNA reset value) gives the state low or high which will be forced on PSCOUTOA, PSCOUT1A and
PSCOUT2A outputs when PSCRB is programmed. If PSCARYV fuse equals 0 (programmed), the PSCOUTOA, PSCOUT1A
and PSCOUT2A outputs will be forced to high state. If PSCRYV fuse equals 1 (unprogrammed), the PSCOUTOA, PSCOUT1A
and PSCOUT2A outputs will be forced to low state.

PSCBRYV (PSCOUTNB Reset Value) gives the state low or high which will be forced on PSCOUT0B, PSCOUT1B and
PSCOUT2B outputs when PSCRB is programmed. If PSCBRYV fuse equals 0 (programmed), the PSCOUTO0B, PSCOUT1B
and PSCOUT2B outputs will be forced to high state. If PSCRYV fuse equals 1 (unprogrammed), the PSCOUTO0B, PSCOUT1B
and PSCOUT2B outputs will be forced to low state.

Table 25-5. PSC Output Behavior during and after Reset until POC Register is Written

PSCRB PSCARV PSCBRV PSCOUTnA PSCOUTNB
Unprogrammed X X Normal port Normal port
Programmed Unprogrammed Unprogrammed Forced low Forced low
Programmed Unprogrammed Programmed Forced low Forced high
Programmed Programmed Unprogrammed Forced high Forced low
Programmed Programmed Programmed Forced high Forced high
BODLEVEL2(" 2 i (unprogrammed)
trigger level
BODLEVEL1(™ 1 Brown-outdetector| 4 1o rammed)
trigger level
) Brown-out detector
BODLEVELO 0 . 1 (unprogrammed)
trigger level
ATmega16/32/64/M1/C1 [DATASHEET
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Table 25-6. Fuse High Byte

High Fuse Byte Description Default Value
RSTDISBL(" 7 External reset disable 1 (unprogrammed)
DWEN 6 debugWIRE enable 1 (unprogrammed)
@ Enable serial program and data 0 (programmed, SPI programming
SPIEN 5 )
downloading enabled)
WDTON®) 4 Watchdog timer always on 1 (unprogrammed)
EEPROM memory is preserved 1 (unprogrammed), EEPROM not
EESAVE 3| .
through the chip erase reserved
BOOTSZ1 2 Select boot size 0 (programmed)®
BOOTSZ0 1 Select boot size 0 (programmed)®
BOOTRST 0 Select reset vector 1 (unprogrammed)

Note: 1. See Section 9.3.3 “Alternate Functions of Port C” on page 61 for description of RSTDISBL fuse.
2. The SPIEN fuse is not accessible in serial programming mode.

3. See Section 7-5 “Watchdog Timer Configuration” on page 46 for details.

4.

The default value of BOOTSZ1..0 results in maximum boot size. See Table 25-8 on page 259 for details.

Table 25-7. Fuse Low Byte

Low Fuse Byte Bit No Description Default Value
CKDIV8®“ 7 Divide clock by 8 0 (programmed)
CKOUT® 6 Clock output 1 (unprogrammed)

SUT1 5 Select start-up time 1 (unprogrammed)"

SUTO 4 Select start-up time 0 (programmed)"
CKSEL3 3 Select Clock source 0 (programmed)®
CKSEL2 2 Select Clock source 0 (programmed)®
CKSEL1 1 Select Clock source 1 (unprogrammed)®
CKSELO 0 Select Clock source 0 (programmed)®

Notes: 1. The default value of SUT1..0 results in maximum start-up time for the default clock source. See Table 5-9 on
page 32 for details.

2. The default setting of CKSEL3..0 results in internal RC oscillator at 8MHz. See Table 5-9 on page 32 for
details.

3. The CKOUT fuse allows the system clock to be output on PORTBO. See Section 5.9 “Clock Output Buffer” on
page 32 for details.

4. See Section 5.10 “System Clock Prescaler” on page 32 for details.

The status of the fuse bits is not affected by chip erase. Note that the Fuse bits are locked if Lock bit1 (LB1) is programmed.
Program the fuse bits before programming the lock bits.

25.3.1 Latching of Fuses

The fuse values are latched when the device enters programming mode and changes of the fuse values will have no effect
until the part leaves programming mode. This does not apply to the EESAVE fuse which will take effect once it is
programmed. The fuses are also latched on power-up in normal mode.
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25.4

2541

25.5

258

Signature Bytes

All Atmel® microcontrollers have a three-byte signature code which identifies the device. This code can be read in both serial
and parallel mode, also when the device is locked. The three bytes reside in a separate address space.

Sighature Bytes

For the ATmegal6ML1 the signature bytes are:

1. 0x000: Ox1E (indicates manufactured by Atmel).

2. 0x001: 0x94 (indicates 16kB flash memory).

3. 0x002: 0x84 (indicates ATmega16M1 device when 0x001 is 0x94).
For the ATmega32ML1 the signature bytes are:

1. 0x000: Ox1E (indicates manufactured by Atmel).

2. 0x001: 0x95 (indicates 32kB flash memory).

3. 0x002: 0x84 (indicates ATmega32M1 device when 0x001 is 0x95).
For the ATmega64ML1 the signature bytes are:

1. 0x000: Ox1E (indicates manufactured by Atmel).

2. 0x001: 0x96 (indicates 64kB flash memory).

3. 0x002: 0x84 (indicates ATmega64M1 device when 0x001 is 0x96).
For the ATmega32C1 the signature bytes are:

1. 0x000: Ox1E (indicates manufactured by Atmel).

2. 0x001: 0x95 (indicates 32kB flash memory).

3. 0x002: 0x86 (indicates ATmega32C1 device when 0x001 is 0x95).
For the ATmega64CL1 the signature bytes are:

1. 0x000: 0x1E (indicates manufactured by Atmel).

2. 0x001: 0x96 (indicates 32kB flash memory).

3. 0x002: 0x86 (indicates ATmega64C1 device when 0x001 is 0x96).

Calibration Byte

The ATmega16/32/64/M1/C1 has a byte calibration value for the internal RC oscillator. This byte resides in the high byte of
address 0x000 in the signature address space. during reset, this byte is automatically written into the OSCCAL register to
ensure correct frequency of the calibrated RC oscillator.

ATmega16/32/64/M1/C1 [DATASHEET]
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25.6 Parallel Programming Parameters, Pin Mapping, and Commands

This section describes how to parallel program and verify flash program memory, EEPROM data memory, memory lock bits,
and fuse bits in the ATmega16/32/64/M1/C1. Pulses are assumed to be at least 250ns unless otherwise noted.

25.6.1 Signal Names

In this section, some pins of the ATmega16/32/64/M1/C1 are referenced by signal names describing their functionality
during parallel programming, see Figure 25-1 and Table 25-8. Pins not described in the following table are referenced by pin
names.

The XA1/XAQ pins determine the action executed when the XTAL1 pin is given a positive pulse. The bit coding is shown in
Table 25-10 on page 260. When pulsing WR or OE, the command loaded determines the action executed. The different
Commands are shown in Table 25-11 on page 260.

Figure 25-1. Parallel Programming

+5V
RDY/BSY -«— PD1 VCC j
OE —»| PD2 +5V

WR —| PD3
AVCC

BS1 ——»| PD4
XA0 ——»| PD5
A1 PG PB[7:0] [«— DATA

PAGEL —— PD7

+12V ———» RESET

BS2 ——» PAO

—| XTAL1

f GND

Table 25-8. Pin Name Mapping

Signal Name in

Programming Mode Pin Name I/0 |Function

RDY/BSY PD1 o 0: Device is busy programming, 1: Device is ready for
new command

OE PD2 I Output enable (active low)
WR PD3 | Write pulse (active low)
BS1 PD4 | Byte select 1 (“0” selects low byte, “1” selects high byte)
XAO0 PD5 I XTAL action bit 0

XA1 PD6 I XTAL action bit 1

PAGEL PD7 | Program memory and EEPROM data page load
BS2 PE2 | E;/tt:)select 2 (“0” selects low byte, “1” selects 2’'nd high
DATA PB[7:0] I/0  Bi-directional data bus (output when OE is low)
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Table 25-9. Pin Values Used to Enter Programming Mode

PAGEL Prog_enable[3] 0
XA1 Prog_enable[2] 0
XAO0 Prog_enable[1] 0
BS1 Prog_enable[0] 0

Table 25-10. XAl and XAO Coding

Action when XTAL1 is Pulsed

Load flash or EEPROM address (High or low address byte determined by BS1).
Load data (high or low data byte for Flash determined by BS1).
Load command

- a O O
- O = O

No action, Idle

Table 25-11. Command Byte Bit Coding

Command Byte Command Executed

1000 0000 Chip erase

0100 0000 Write fuse bits

0010 0000 Write lock bits

0001 0000 Write flash

0001 0001 Write EEPROM

0000 1000 Read signature bytes and calibration byte
0000 0100 Read fuse and lock bits

0000 0010 Read flash

0000 0011 Read EEPROM

Table 25-12. No. of Words in a Page and No. of Pages in the Flash

Device Flash Size Page Size PCWORD sgég; PCPAGE PCMSB
ATmega16M1 (fg%‘;iz) (fgsvgtiz \ PC[5:0] 128 PC[12:6] 12
ATmega32M1/C1 (;g'f("t‘)’;’t"gss) (fgs"‘g;rt‘fs ) PC[5:0] 256 PC[13:6] 13
ATmega64M1/C1 (?éif(vgs{g:) (12%86‘&’3{::) PC[6:0] 256 PC[14:7] 14

Table 25-13. No. of Words in a Page and No. of Pages in the EEPROM

Device EEPROM Size  Page Size PCWORD No. of Pages PCPAGE EEAMSB
ATmega16M1 512 bytes 4 bytes EEA[1:0] 128 EEA[8:2] 9
ATmega32M1/C1 1024 bytes 4 bytes EEA[1:0] 256 EEA[9:2] 9
ATmega64M1/C1 2048 bytes 8 bytes EEA[2:0] 256 EEA[9:2] 9
260 ATmega16/32/64/M1/C1 [DATASHEET
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25.7 Serial Programming Pin Mapping
Table 25-14. Pin Mapping Serial Programming
Description
MOSI_A PD3 I Serial data in
MISO_A PD2 (0] Serial data out
SCK_A PD4 I Serial clock
25.8 Parallel Programming
25.8.1 Enter Programming Mode
The following algorithm puts the device in Parallel (High-voltage) > Programming mode:
1. Set Prog_enable pins listed in Table 25-9 on page 260 to “0000”, RESET pin to “0” and V¢ to OV.
2. Apply 4.5 to 5.5V between VCC and GND. Ensure that V. reaches at least 1.8V within the next 20ps.
3.  Wait 20 to 60ps, and apply 11.5 to 12.5V to RESET.
4. Keep the Prog_enable pins unchanged for at least 10us after the high-voltage has been applied to ensure the
Prog_enable signature has been latched.
5.  Wait at least 300us before giving any parallel programming commands.
6. Exit programming mode by power the device down or by bringing RESET pin to OV.
If the rise time of the V is unable to fulfill the requirements listed above, the following alternative algorithm can be used.
1. Set Prog_enable pins listed in Table 25-9 on page 260 to “0000”, RESET pin to “0” and V to OV.
2. Apply 4.5 to 5.5V between VCC and GND.
3. Monitor V¢, and as soon as V reaches 0.9 to 1.1V, apply 11.5 to 12.5V to RESET.
4. Keep the Prog_enable pins unchanged for at least 10us after the high-voltage has been applied to ensure the
Prog_enable signature has been latched.
5. Wait until V¢ actually reaches 4.5 to 5.5V before giving any parallel programming commands.
6. Exit programming mode by power the device down or by bringing RESET pin to OV.
25.8.2 Considerations for Efficient Programming
The loaded command and address are retained in the device during programming. For efficient programming, the following
should be considered.
e The command needs only be loaded once when writing or reading multiple memory locations.
e  Skip writing the data value OxFF, that is the contents of the entire EEPROM (unless the EESAVE Fuse is
programmed) and Flash after a Chip Erase.
e Address high byte needs only be loaded before programming or reading a new 256 word window in Flash or 256 byte
EEPROM. This consideration also applies to signature bytes reading.
ATmega16/32/64/M1/C1 [DATASHEET 261
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25.8.3 Chip Erase

The chip erase will erase the flash and EEPROM(") memories plus lock bits. The lock bits are not reset until the program
memory has been completely erased. The fuse bits are not changed. A chip erase must be performed before the flash
and/or EEPROM are reprogrammed.

Note: 1. The EEPRPOM memory is preserved during chip erase if the EESAVE fuse is programmed.
Load command “Chip Erase”
1. Set XA1, XAO to “10”. This enables command loading.
Set BS1 to “0”.
Set DATA to “1000 0000”. This is the command for chip erase.
Give XTAL1 a positive pulse. This loads the command.
Give WR a negative pulse. This starts the chip erase. RDY/BSY goes low.
Wait until RDY/BSY goes high before loading a new command.

o0k 0N

25.8.4 Programming the Flash

The flash is organized in pages, see Table 25-12 on page 260. When programming the flash, the program data is latched
into a page buffer. This allows one page of program data to be programmed simultaneously. The following procedure
describes how to program the entire flash memory:

A. Load command “Write Flash”
1. Set XA1, XAO to “10”. This enables command loading.
2. SetBS1to“0".
3. Set DATA to “0001 0000”. This is the command for write flash.
4. Give XTAL1 a positive pulse. This loads the command.
B. Load address low byte
Set XA1, XAO0 to “00”. This enables address loading.
Set BS1 to “0”. This selects low address.
Set DATA = Address low byte (0x00 - OxFF).
Give XTAL1 a positive pulse. This loads the address low byte.

Ll

C. Load data low byte
5. Set XA1, XAO0 to “01”. This enables data loading.
6. Set DATA = Data low byte (0x00 - OxFF).
7. Give XTAL1 a positive pulse. This loads the data byte.
D. Load data high byte
Set BS1 to “1”. This selects high data byte.
Set XA1, XAO to “01”. This enables data loading.
Set DATA = Data high byte (0x00 - OxFF).
Give XTAL1 a positive pulse. This loads the data byte.
E. Latch data
1. SetBS1 to “1”. This selects high data byte.
2. Give PAGEL a positive pulse. This latches the data bytes. (See Figure 25-3 on page 264 for signal waveforms)

Ll .

F. Repeat B through E until the entire buffer is filled or until all data within the page is loaded.

While the lower bits in the address are mapped to words within the page, the higher bits address the pages within the
FLASH. This is illustrated in Figure 25-2. Note that if less than eight bits are required to address words in the page (pagesize
< 256), the most significant bit(s) in the address low byte are used to address the page when performing a page write.
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G. Load address high byte

Set XA1, XAO to “00”. This enables address loading.
Set BS1 to “1”. This selects high address.
Set DATA = Address high byte (0x00 - OxFF).

il .

Give XTAL1 a positive pulse. This loads the address high byte.
H. Program page

1. Give WR a negative pulse. This starts programming of the entire page of data. RDY/BSY goes low.
2. Wait until RDY/BSY goes high (See Figure 25-3 for signal waveforms).

I. Repeat B through H until the entire flash is programmed or until all data has been programmed.
J. End page programming

1. 1. Set XA1, XAO0 to “10”. This enables command loading.
2. Set DATA to “0000 0000”. This is the command for no operation.
3.

Give XTAL1 a positive pulse. This loads the command, and the internal write signals are reset.

Figure 25-2. Addressing the Flash which is Organized in Pages”

PCMSB PAGEMSB
PROGRAM
COUNTER PCPAGE | Pcworp |
Page address Word address
within the flash within page
Program Memory Page PCWORD [PAGEMSB:0]
Page Instructions Word 00
B \
\ 01
|
\ 02
! I
! I
! I
! I
! I
! |
! |
—— ! |
/4 | |
\
\ PAGEEND

Note: 1. PCPAGE and PCWORD are listed in Table 25-12 on page 260.

Atmel
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Figure 25-3. Programming the Flash Waveforms®

F

N
A B C D E B Cc D E G H
DATA X ox10  XADDR. LOWX DATA LOW X DATAHIGHX XX XADDR. LOWX DATA LOW X DATAHIGHX XX XADDR. HIGHY XX
XA1 / \
x40 / \___/ \
BSt /- [ \
XTAL1 / N/ N/ \/ \ /N / \ / \ /\ /\
WR \ /
RDY/BSY ——/
RESET +12V
OE
PAGEL /\ / \

BS2

Note: 1. “XX”is don’t care. The letters refer to the programming description above.

25.8.5 Programming the EEPROM

The EEPROM is organized in pages, see Table 25-13 on page 260. When programming the EEPROM, the program data is
latched into a page buffer. This allows one page of data to be programmed simultaneously. The programming algorithm for
the EEPROM data memory is as follows (refer to Section 25.8.4 “Programming the Flash” on page 262 for details on
command, address and data loading):

A: Load command “0001 0001”.

G: Load address high byte (0x00 - OxFF).

B: Load address low byte (0x00 - OxFF).

C: Load data (0x00 - OxFF).

E: Latch data (give PAGEL a positive pulse).

o bk b=

K: Repeat 3 through 5 until the entire buffer is filled.
L: Program EEPROM page
1. SetBS1to“0".
2. Give WR a negative pulse. This starts programming of the EEPROM page. RDY/BSY goes low.

3. Wait until to RDY/BSY goes high before programming the next page (See Figure 25-4 on page 265 for signal
waveforms).
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Figure 25-4. Programming the EEPROM Waveforms

K
N

A G B C E B (o3 E L

DATA x 0x11  XADDR. HIGH{ADDR. LOWX DATA X' XX XADDR.LOWX DATA X XX

WR \ /
RDY/BSY \ —_

RESET +12V

OE
PAGEL /\ / \

BS2

25.8.6 Reading the Flash
The algorithm for reading the flash memory is as follows (refer to Section 25.8.4 “Programming the Flash” on page 262 for
details on command and address loading):
1. A: Load command “0000 0010”.
G: Load address High Byte (0x00 - OxFF).
B: Load address Low Byte (0x00 - OxFF).
Set OE to “0”, and BS1 to “0”. The flash word low byte can now be read at DATA.
Set BS1 to “1”. The flash word high byte can now be read at DATA.
Set OE to “1”.

2B

25.8.7 Reading the EEPROM
The algorithm for reading the EEPROM memory is as follows (refer to Section 25.8.4 “Programming the Flash” on page 262
for details on command and address loading):
1. A: Load command “0000 0011”.
G: Load address high byte (0x00 - OxFF).
B: Load address low byte (0x00 - OxFF).
Set OE to “0”, and BS1 to “0”. The EEPROM data byte can now be read at DATA.
Set OE to “1”.

o~ wN

25.8.8 Programming the Fuse Low Bits
The algorithm for programming the fuse low bits is as follows (refer to Section 25.8.4 “Programming the Flash” on page 262
for details on command and data loading):
1. A: Load command “0100 0000”".
2. C:Load data low byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. Give WRa negative pulse and wait for RDY/BSY to go high.
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25.8.9 Programming the Fuse High Bits
The algorithm for programming the fuse high bits is as follows (refer to Section 25.8.4 “Programming the Flash” on page 262
for details on command and data loading):
1. A:Load command “0100 0000
C: Load data low byte. Bit n = “0” programs and bit n = “1” erases the fuse bit.
Set BS1 to “1” and BS2 to “0”. This selects high data byte.
Give WR a negative pulse and wait for RDY/BSY to go high.
Set BS1 to “0”. This selects low data byte.

o N

25.8.10 Programming the Extended Fuse Bits
The algorithm for programming the extended fuse bits is as follows (refer to Section 25.8.4 “Programming the Flash” on page
262 for details on command and data loading):
1. A:Load command “0100 0000".
C: Load data low byte. Bit n = “0” programs and bit n = “1” erases the fuse bit.
Set BS1 to “0” and BS2 to “1”. This selects extended data byte.
Give WR a negative pulse and wait for RDY/BSY to go high.
Set BS2 to “0”. This selects low data byte.

o bk wn

Figure 25-5. Programming the FUSES Waveforms

Write Fuse Low byte Write Fuse High byte Write Extended Fuse byte
A (o3 A [ A Cc
DATA :X oxa0 X DATA X Xxx X oxa0 X patAa X xx X oxa0 X patAa X xx
XA1 _/_\ / \ / \
XA0
BSt / \
BS2 / \
XTAL1 _/_\_/_\ /_\_/_\ /_\_/_\
WR / / \/

RESET +12V

OE

PAGEL

25.8.11 Programming the Lock Bits
The algorithm for programming the lock bits is as follows (refer to Section 25.8.4 “Programming the Flash” on page 262 for

details on command and data loading):
1. A:Load command “0010 0000”.

2. C:Load data low byte. Bit n = “0” programs the Lock bit. If LB mode 3 is programmed (LB1 and LB2 is pro-
grammed), it is not possible to program the boot lock bits by any external programming mode.

3. Give WRa negative pulse and wait for RDY/BSY to go high.

The lock bits can only be cleared by executing chip erase.
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25.8.12 Reading the Fuse and Lock Bits

The algorithm for reading the fuse and lock bits is as follows (refer to Section 25.8.4 “Programming the Flash” on page 262
for details on command loading):

1.
2.

6.

A: Load command “0000 0100”.

Set OE to “0”, BS2 to “0” and BS1 to “0”. The status of the fuse low bits can now be read at DATA (“0” means
programmed).

Set OE to “0”, BS2 to “1” and BS1 to “1”. The status of the fuse high bits can now be read at DATA (“0” means
programmed).

Set OE to “0”, BS2 to “1”, and BS1 to “0”. The status of the extended fuse bits can now be read at DATA (“0”
means programmed).

Set OE to “0”, BS2 to “0” and BS1 to “1”. The status of the Lock bits can now be read at DATA (“0” means
programmed).

Set OE to “1”.

Figure 25-6. Mapping Between BS1, BS2 and the Fuse and Lock Bits during Read

| Fuse Low Byte

[ |

| Extended Fuse Byte

BS2 | DATA

| Lock Bits

[ ]
<

| Fuse High Byte

BS2

25.8.13 Reading the Signature Bytes

The algorithm for reading the signature bytes is as follows (refer to Section 25.8.4 “Programming the Flash” on page 262 for
details on command and address loading):

1.

2.
3.
4.

A: Load command “0000 1000”.

B: Load address low byte (0x00 - 0x02).

Set OE to “0”, and BS1 to “0”. The selected signature byte can now be read at DATA.
Set OE to “1”.

25.8.14 Reading the Calibration Byte

The algorithm for reading the calibration byte is as follows (refer to Section 25.8.4 “Programming the Flash” on page 262 for
details on command and address loading):

1.

2.
3.
4

Atmel

A: Load command “0000 1000”.

B: Load address low byte, 0x00.

Set OE to “0”, and BS1 to “1”. The calibration byte can now be read at DATA.
Set OE to “1.
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25.8.15 Parallel Programming Characteristics

Figure 25-7. Parallel Programming Timing, Including some General Timing Requirements

B tyowe .
XTALA1 A taxt N __
~fovxH ~fxiox
Data and Control P — = o __
(DATA, XA0/1, BS1, BS2) >< < -
fgven Cteex | fevwe . twiex
PAGEL N A ol N " __
~bwiwn
WR N ’ -
N
tpLwe ¢
- > WLRL
RDY/BSY )4
B twirH _
Figure 25-8. Parallel Programming Timing, Loading Sequence with Timing Requirements("
Load Address Load Data Load Data Load Address
(Low Byte) (Low Byte) (High Byte) Load Data (Low Byte)
7~ 7~ /" 7~/
by xm txpH tpLxH
XTAL1 yd AN yd ‘l: :I’ ‘|:
BS1 yd
PAGEL /| N
DATA X ADDRO (Low Byte) X DATA (Low Byte) X DATA (High Byte) X ADDR1 (Low Byte)
XA0 N\
XA1

Note: 1. The timing requirements shown in Figure 25-7 (i.e., thyxn, txnxL, @nd ty px) also apply to loading operation.
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Figure 25-9. Parallel Programming Timing, Reading Sequence (within the Same Page) with Timing Requirements(!

Load Address Read Data Read Data Load Address
(Low Byte) (Low Byte) (High Byte) (Low Byte)
txLoL

XTALA ﬂ )

tsvpv
BST N\ ,F N\
torov
OE NGO
tonpz
DATA —< ADDRO (Low Byte) >—< DATA (Low Byte) >< DATA (High Byte) ADDR1 (Low Byte)
XAO . AN
XA1 N\ N

Note: 1. The timing requirements shown in Figure 25-7 (i.e., thyxn, txnxe, @nd tx px) also apply to reading operation.

Table 25-15. Parallel Programming Characteristics, Ve = 5V £10%

Parameter Symbol Min Typ Max Unit
Programming enable voltage Vpp 115 12.5 \%
Programming enable current Ipp 250 A
Data and control valid before XTAL1 high tovxH 67 ns
XTAL1 low to XTAL1 high txixH 200 ns
XTAL1 pulse width high txrxe 150 ns
Data and control hold after XTAL1 low txLDx 67 ns
XTAL1 low to WR low e 0 ns
XTAL1 low to PAGEL high txLpH 0 ns
PAGEL low to XTAL1 high tpLxH 150 ns
BS1 valid before PAGEL high tevpH 67 ns
PAGEL pulse width high teHpL 150 ns
BS1 hold after PAGEL low tpLBX 67 ns
BS2/1 hold after WR low foLes 67 ns
PAGEL low to WR low o 67 ns
BS1 valid to WR low e 67 ns
WR pulse width low tLwH 150 ns
WR low to RDY/BSY low twiRL 0 1 us
WR low to RDY/BSY high(") G 3.7 45 ms
WR low to RDY/BSY high for chip erase® twiRH_GE 7.5 9 ms
XTAL1 low to OE low e 0 ns
BS1 valid to DATA valid tsvpv 0 250 ns
OE low to DATA valid toLov 250 ns
OE high to DATA tri-stated R 250 ns

Notes: 1. ty gy is valid for the write flash, write EEPROM, write fuse bits and write lock bits commands.
2. twirH_ce Is valid for the chip erase command.
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25.9

2591

270

Serial Downloading

Both the flash and EEPROM memory arrays can be programmed using the serial SPI bus while RESET is pulled to GND.
The serial interface consists of pins SCK, MOSI (input) and MISO (output). After RESET is set low, the programming enable
instruction needs to be executed first before program/erase operations can be executed. Note, in Table 25-14 on page 261,
the pin mapping for SPI programming is listed. Not all parts use the SPI pins dedicated for the internal SPI interface.

Figure 25-10. Serial Programming and Verify®
+1.8V to 5.5V

\{ele:

+1.8V to 5.5V

MOSI_ A ———»
MISO_A ~—— Avee

SCK_ A ——»

—» XTAL1

—— RESET

f GND

Notes: 1. If the device is clocked by the internal Oscillator, it is no need to connect a clock source to the XTAL1 pin.
2. V- 0.3V <AVCC < V¢ + 0.3V, however, AVCC should always be within 1.8 to 5.5V

When programming the EEPROM, an auto-erase cycle is built into the self-timed programming operation (in the serial mode
ONLY) and there is no need to first execute the chip erase instruction. The chip erase operation turns the content of every
memory location in both the program and EEPROM arrays into OxFF.

Depending on CKSEL fuses, a valid clock must be present. The minimum low and high periods for the serial clock (SCK)
input are defined as follows:

Low: > 2 CPU clock cycles for f, < 12MHz, 3 CPU clock cycles for f, = 12MHz
High: > 2 CPU clock cycles for f, < 12MHz, 3 CPU clock cycles for f, = 12MHz

Serial Programming Algorithm

When writing serial data to the ATmega16/32/64/M1/C1, data is clocked on the rising edge of SCK.

When reading data from the ATmega16/32/64/M1/C1, data is clocked on the falling edge of SCK. See Figure 25-11 for
timing details.

To program and verify the ATmega16/32/64/M1/C1 in the serial programming mode, the following sequence is
recommended (see four byte instruction formats in Table 25-17):

1. Power-up sequence:

Apply power between V- and GND while RESET and SCK are set to “0”. In some systems, the programmer can
not guarantee that SCK is held low during power-up. In this case, RESET must be given a positive pulse of at
least two CPU clock cycles duration after SCK has been set to “0”.

2. Wait for at least 20ms and enable serial programming by sending the programming enable serial instruction to pin
MOSI.

3. The serial programming instructions will not work if the communication is out of synchronization. When in sync.
the second byte (0x53), will echo back when issuing the third byte of the programming enable instruction.
Whether the echo is correct or not, all four bytes of the instruction must be transmitted. If the 0x53 did not echo
back, give RESET a positive pulse and issue a new programming enable command.

ATmega16/32/64/M1/C1 [DATASHEET]
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4. The flash is programmed one page at a time. The memory page is loaded one byte at a time by supplying the 6
LSB of the address and data together with the load program memory page instruction. To ensure correct loading
of the page, the data low byte must be loaded before data high byte is applied for a given address. The program
memory page is stored by loading the write program memory page instruction with the 8 MSB of the address. If
polling is not used, the user must wait at least t,,5 g agy before issuing the next page. (See Table 25-16.) Access-
ing the serial programming interface before the flash write operation completes can result in incorrect
programming.

5. The EEPROM array is programmed one byte at a time by supplying the address and data together with the appro-
priate write instruction. An EEPROM memory location is first automatically erased before new data is written. If
polling is not used, the user must wait at least ty,5 geprom before issuing the next byte. (See Table 25-16.) In a chip
erased device, no OxFFs in the data file(s) need to be programmed.

6. Any memory location can be verified by using the Read instruction which returns the content at the selected
address at serial output MISO.

7. Atthe end of the programming session, RESET can be set high to commence normal operation.

8. Power-off sequence (if needed): Set RESET to “1”. Turn V¢ power off.

25.9.2 Data Polling Flash

When a page is being programmed into the flash, reading an address location within the page being programmed will give
the value OxFF. At the time the device is ready for a new page, the programmed value will read correctly. This is used to
determine when the next page can be written. Note that the entire page is written simultaneously and any address within the
page can be used for polling. Data polling of the flash will not work for the value OxFF, so when programming this value, the
user will have to wait for at least t,,p F asy before programming the next page. As a chip-erased device contains OxFF in all
locations, programming of addresses that are meant to contain OxFF, can be skipped. See Table 25-16 for typ g asy value.

25.9.3 Data Polling EEPROM

When a new byte has been written and is being programmed into EEPROM, reading the address location being
programmed will give the value OxFF. At the time the device is ready for a new byte, the programmed value will read
correctly. This is used to determine when the next byte can be written. This will not work for the value OxFF, but the user
should have the following in mind: As a chip-erased device contains OxFF in all locations, programming of addresses that
are meant to contain OxFF, can be skipped. This does not apply if the EEPROM is re-programmed without chip erasing the
device. In this case, data polling cannot be used for the value OxFF, and the user will have to wait at least ty,p geprom Pefore
programming the next byte. See h

Table 25-16 for typ geprom Value.

Table 25-16. Minimum Wait Delay Before Writing the Next Flash or EEPROM Location

Minimum Wait Delay

twp_FLASH 4.5ms
two_eeprROM 3.6ms
two_erasE 9.0ms

Figure 25-11. Serial Programming Waveforms

Serial data input
(MOSI) MSB
|
Serial data output !

s LTI T LTI T T
S S S SR SR SR S S
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Table 25-17. Serial Programming Instruction Set

Instruction Format

Instruction Byte 2 Byte 3 Byte4  Operation
Programming enable 1010 1100 | 0101 0011 xxxx xxxx = xxxx xxxx | Enable serial programming after RESET goes low.
Chip erase 1010 1100 100X XXXX = XXXX XXXX  XXXX Xxxx Chip erase EEPROM and flash.

Read H (high or low) data o from program memory

Read program memory 0010 HOOO ' 000a aaaa bbbb bbbb 0000 0000 at word address ab.

Write H (high or low) data i to program memory
page at word address b. Data low byte must be
loaded before Data high byte is applied within the
same address.

Load program memory page 0100 HO00 000x xxxx bbbb bbbb iiii iiii

Write program memory page 0100 1100 aaaa aaaa bbxx xxxx = xxxx xxxx Write program memory page at address a:b.

Read data o from EEPROM memory at address
ab.
Write EEPROM memory 1100 0000 = 000x xxaa bbbb bbbb iiii iiii | Write data i to EEPROM memory at address a:b.

Load EEPROM memory Load data i to EEPROM memory page buffer. After
page (page access) data is loaded, program EEPROM page.

Write EEPROM memory
page (page access)

Read EEPROM memory 1010 0000 000x xxaa bbbb bbbb oooo oooo

1100 0001 0000 0000 0000 00bb iiii iiii

1100 0010 = 00xx xxaa bbbb bb00 xxxx xxxx Write EEPROM page at address a:b.

Read lock bits. “0” = programmed,
Read lock bits 0101 1000 0000 0000 xxxx XXXX XX00 0000 “1”=unprogrammed. See Table 25-1 on page 255
for details.

Write lock bits. Set bits = “0” to program lock bits.

Write lock bits 1010 1100 | 111X XXXX = XXXX XXXX 11ii iiii See Table 25-1 on page 255 for details.
Read signature byte 0011 0000 000x xxxx xxxx xxbb 0000 0000 Read signature byte o at address b.
Write fuse bits 1010 1100 | 1010 0000 = XXXX XXXX iiii iiii Set bits = “0” to program, “1” to unprogram.
. . S I B T R Set bits = “0” to program, “1” to unprogram. See
Write fuse high bits 1010 1100 1010 1000  XXXX XXXX i iiii Table 25-6 on page 257 for details,
. S A A R R Set bits = “0” to program, “1” to unprogram. See
Write extended fuse bits 1010 1100 | 1010 0100 = XXXX XXXX XXii iiii Table 25-4 on page 256 for details.
Read fuse bits 01010000 00000000 xxxx Xxxx 0000 0000 |1oad Fuse bits. 0" =programmed,
1” = unprogrammed.
Read fuse high bits. “0” = programmed,
Read fuse high bits 0101 1000 0000 1000 = xxxx xxxXX 0000 0000 “1”=unprogrammed. See Table 25-6 on page 257
for details.
Read extended fuse bits. “0” = programmed,
Read extended fuse bits 0101 0000 0000 1000 xxxx XXxX 0000 0000 “1” = unprogrammed. See Table 25-4 on page
256 for details.
Read calibration byte 0011 1000 000x xxxx 0000 0000 oooo oooo Read calibration byte
If o = “1”, a programming operation is still busy.
Poll RDY/BSY 1111 0000 0000 0000 xxxx xxxx = Xxxx xxxo Wait until this bit returns to “0” before applying
another command.
Note: a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don'’t care

25.9.4 SPI Serial Programming Characteristics

For characteristics of the SPI module see Section 25.9.4 “SPI Serial Programming Characteristics” on page 272.
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26. Electrical Characteristics

All DC/AC characteristics contained in this datasheet are based on simulations and characterization of similar devices in the
same process and design methods. These values are preliminary representing design targets, and will be updated after
characterization of actual automotive silicon data.

26.1 Absolute Maximum Ratings

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameters Min. Typ. Max. Unit
Operating temperature -40 +125 °C
Storage temperature —65 +150 °C
Voltage on any pin except RESET with respect to ground -0.5 Ve +0.5 V
Voltage on RESET with respect to ground -0.5 +13 \Y%
Maximum operating voltage 6 V
DC current per I/O pin 40 mA
DC current V¢ and GND pins 200 mA
Injection current at Vg = 0V to 5V +5(1 mA

Note: 1. Maximum current per port = +30mA

26.2 DC Characteristics
Tp =—-40°C to +125°C, Vc = 2.7V to 5.5V (unless otherwise noted)

Parameter Condition

Input low voltage ;%';tfz' g:’s”gs[i /g”d XTAL, Vi -05 0.2V v
Input high voltage )P(%’:fz' ;:S”gSDI /g”d XTAL1, Vi 0.6Vc? Vee+05 Vv
Input low voltage )S(Z;Aet:ezin, external clock ViLq -0.5 0.1V v
Input high voltage ;(;/;'C‘tlgi“' external clock Vir  0.8Vec® Vee+ 0.5 Vv

Notes: 1. “Max” means the highest value where the pin is guaranteed to be read as low
2. “Min” means the lowest value where the pin is guaranteed to be read as high

3. Although each I/O port can sink more than the test conditions (10mA at V¢ = 5V, 6mA at V¢ = 3V) under steady state
conditions (non-transient), the following must be observed:
1] The sum of all IOL, for ports BO - B1, C2 - C3, D4, E1 - E2 should not exceed 70mA.
2] The sum of all IOL, for ports B6 - B7, CO - C1, DO -D3, EO should not exceed 70mA.
3] The sum of all IOL, for ports B2 - B5, C4 - C7, D5 - D7 should not exceed 70mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current
greater than the listed test condition.

4. Although each I/O port can source more than the test conditions (10mA at V¢ = 5V, 8mA at V¢ = 3V) under steady
state conditions (non-transient), the following must be observed:
1] The sum of all IOH, for ports BO - B1, C2 - C3, D4, E1 - E2 should not exceed 100mA.
2] The sum of all IOH, for ports B6 - B7, CO - C1, DO -D3, EO should not exceed 100mA.
3] The sum of all IOH, for ports B2 - B5, C4 - C7, D5 - D7 should not exceed 100mA.
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

5. Minimum V¢ for power-down is 2.5V.

6. The analog comparator Propogation Delay equals 1 comparator clock plus 30nS. See Section 20. “Analog Compara-
tor” on page 225 for comparator clock definition.
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26.2 DC Characteristics (Continued)
Ty =—-40°C to +125°C, V¢ = 2.7V to 5.5V (unless otherwise noted) (Continued)

Parameter Condition
Input low voltage RESET pin ViLo -0.5 0.2V \Y
Input high voltage RESET pin Wi 0.9Vc? Ve + 0.5 v
Input low voltage RESET pin as I/O Vis -0.5 0.2V \Y
Input high voltage RESET pin as I/0 Wi 0.8Vc? Ve + 0.5 v
Output low voltage® _ _
(Port B, C and D and lop =10mA, Ve = SV Vv 0.7 Vv

’ loL = 6MA, Ve = 3V @l 0.5
XTAL1, XTAL2 pins as I/0)  ©OL SY :
Output high voltage® _ _
(Port B, C and D and lon = ~10mA, Ve = SV Vv 4.2 M

’ loy = —8MA, V¢ = 3V e 22 v
XTAL1, XTAL2 pins as I/0) ©OH » “cC '
Output low voltage® lo =2.1MA, Ve = 5V v 0.9 v
(RESET pin as 1/0) loL = 0.8mA, V¢ = 3V oLy 0.7 %
Output high voltage® loy = —0.6mA, V¢ = 5V v 3.8 %
(RESET pin as 1/0) lon = —0.2mA, Ve = 3V Ol 1.8 \Y

Vee = 5.5V, pin low
Iri\rp:ut FELEED Cuehl D) (absolute value), except I 50 nA
P Port E
Ve = 5.5V, pin high

It Ieakagg (absolute value), except IH 50 nA
current /0 Pin Port E
Reset pull-up resistor Rrst 30 200 kQ
I/O pin pull-up resistor Rou 20 50 kQ

Notes: 1. “Max” means the highest value where the pin is guaranteed to be read as low
2. “Min” means the lowest value where the pin is guaranteed to be read as high

3. Although each I/O port can sink more than the test conditions (10mA at V¢ = 5V, 6mA at V¢ = 3V) under steady state
conditions (non-transient), the following must be observed:
1] The sum of all IOL, for ports BO - B1, C2 - C3, D4, E1 - E2 should not exceed 70mA.
2] The sum of all IOL, for ports B6 - B7, CO - C1, DO -D3, EO should not exceed 70mA.
3] The sum of all IOL, for ports B2 - B5, C4 - C7, D5 - D7 should not exceed 70mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current
greater than the listed test condition.

4. Although each I/O port can source more than the test conditions (10mA at V¢ = 5V, 8mA at V¢ = 3V) under steady
state conditions (non-transient), the following must be observed:
1] The sum of all IOH, for ports BO - B1, C2 - C3, D4, E1 - E2 should not exceed 100mA.
2] The sum of all IOH, for ports B6 - B7, CO - C1, DO -D3, EO should not exceed 100mA.
3] The sum of all IOH, for ports B2 - B5, C4 - C7, D5 - D7 should not exceed 100mA.
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

5. Minimum V¢ for power-down is 2.5V.

6. The analog comparator Propogation Delay equals 1 comparator clock plus 30nS. See Section 20. “Analog Compara-
tor” on page 225 for comparator clock definition.
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26.2 DC Characteristics (Continued)
Ty =—-40°C to +125°C, V¢ = 2.7V to 5.5V (unless otherwise noted) (Continued)

Parameter Condition

Active 8MHz, Vo = 3V, RC
osc, PRR = OxFF 38 8 mA
Active 16MHz, V¢ = 5V, Ext
Clock, PRR = OxFF 14 30 mA
Power supply current Idle (16K and 32K devices)
Ve = 3V, F = 8MHz 1.1 8 mA
Vee = 5V, F = 16MHz 4.0 15 mA
Idle (64K devices only)
Ve = 3V, F = 8MHz 15 8 mA
Ve = 5V, F = 16MHz lec 58 15 mA
WDT enabled, Vo = 5V
{0 < 85°C 8 30 bA
WDT enabled, V¢ = 5V
85°C <10 < 125°C 21 120 HA
Power-down mode® WDT disablod. V sy
Isabled, cc=
{0 < 85°C ~ e WA
WDT disabled, Vg = 5V
85°C <10 < 125°C 16 100 HA
VCC = 5\/, Vin =3V
ﬁ”:{g?eg%m\foﬁtr:“g Rising edge Viger 25 70 mvV
y 9 Falling edge ~100 -35 mV
Analog comparator Vee =5V B
Input leakage current Vi, = Vee/2 lacLk S0 +50 nA
Analog comparator Vee =2.7V ¢ (6) ns
propagation delay Vee = 5.0V ACID (6)
Vg = 5V: Max Rigeq = 30KQ
Current source value Vo = 3V: Max Ryog = 15KQ Isre 95 100 105 MA

Notes: 1. “Max” means the highest value where the pin is guaranteed to be read as low
2. “Min” means the lowest value where the pin is guaranteed to be read as high

3. Although each I/O port can sink more than the test conditions (10mA at V¢ = 5V, 6mA at V¢ = 3V) under steady state
conditions (non-transient), the following must be observed:
1] The sum of all IOL, for ports BO - B1, C2 - C3, D4, E1 - E2 should not exceed 70mA.
2] The sum of all IOL, for ports B6 - B7, CO - C1, DO -D3, EO should not exceed 70mA.
3] The sum of all IOL, for ports B2 - B5, C4 - C7, D5 - D7 should not exceed 70mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current
greater than the listed test condition.

4. Although each I/O port can source more than the test conditions (10mA at V¢ = 5V, 8mA at V¢ = 3V) under steady
state conditions (non-transient), the following must be observed:
1] The sum of all IOH, for ports BO - B1, C2 - C3, D4, E1 - E2 should not exceed 100mA.
2] The sum of all IOH, for ports B6 - B7, CO - C1, DO -D3, EO should not exceed 100mA.
3] The sum of all IOH, for ports B2 - B5, C4 - C7, D5 - D7 should not exceed 100mA.
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

5. Minimum V¢ for power-down is 2.5V.

6. The analog comparator Propogation Delay equals 1 comparator clock plus 30nS. See Section 20. “Analog Compara-
tor” on page 225 for comparator clock definition.
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26.3 Clock Characteristics
26.3.1 Calibrated Internal RC Oscillator Accuracy

Table 26-1. Calibration Accuracy of Internal RC Oscillator

Frequency Temperature Calibration Accuracy
8.0MHz 3V 25°C 2%

26.4 External Clock Drive Characteristics

Figure 26-1. External Clock Drive Waveforms

CHCX

CHCX CLCH

A A
Yy

__CHCL

|

CLCX

\

Table 26-2. External Clock Drive

Ve =2.710 5.5V Vce = 4.510 5.5V
Parameter Min. Max. Min. Max.
Oscillator frequency Mool 0 8 0 16 MHz
Clock period tolcL 125 62.5 ns
High time tohex 50 25 ns
Low time toLex 50 25 ns
Rise time teLcH 1.6 0.5 us
Fall time toHeL 1.6 0.5 us
S:Xatnge in period from one clock cycle to the Atyor 2 2 %
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26.5 Maximum Speed versus V¢
Maximum frequency is depending on V¢ As shown in Figure 26-2, the maximum frequency equals 8MHz when V¢ is
between 2.7V and 4.5V and equals 16MHz when V. is between 4.5V and 5.5V.

Figure 26-2. Maximum Frequency versus V., ATmegal6/32/64/M1/C1
A

16MHz

8MHz

Safe Operating Area

\j

2.7V 4.5V 5.5V

26.6 PLL Characteristics

Table 26-3. PLL Characteristics - Voc = 2.7V to 5.5V (unless otherwise noted)

Parameter Symbol Min. Typ. Max. Unit
Input Frequency PLL e 0.5 1 2 MHz
PLL Factor PLL 64

Lock-in Time PLL 1 80 uS
Note: While connected to external clock or external oscillator, PLL input frequency must be selected to provide outputs with

frequency in accordance with driven parts of the circuit (CPU core, PSC...)
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26.7 SPI Timing Characteristics
See Figure 26-3 and Figure 26-4 on page 279 for details.

Table 26-4. SPI Timing Parameters

Description

1 SCK period Master See Table 15-4 on page 139
2 SCK high/low Master 50% duty cycle
3 Rise/Fall time Master 3.6
4 Setup Master 10
5 Hold Master 10
6 Out to SCK Master 0.5 x tgey
7 SCK to out Master 10
8 SCK to out high Master 10
9 SS low to out Slave 15
10 SCK period Slave 4 %ty e
11 SCK high/low ") Slave 2 Xty
12 Rise/Fall time Slave 1600
13 Setup Slave 10
14 Hold Slave tek
15 SCK to out Slave 15
16 SCK to SS high Slave 20
17 SS high to tri-state Slave 10
18 SS low to SCK Slave 20

Note: In SPI Programming mode the minimum SCK high/low period is:

=2 tg o for fox < 12MHz
=3 to o for fok >12MHz
Figure 26-3. SPI Interface Timing Requirements (Master Mode)
ss
<. - 1 o
(CPOLS=C0K) __-Z I X / \
(CPOLS=C1K) _\; / \ /
4|5
—»7 =8~
7f 7
(Data omgj; \; MSB I >< LS8 /
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Figure 26-4. SPI Interface Timing Requirements (Slave Mode)
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26.8 CAN Physical Layer Characteristics

/L
7/

Only pads dedicated to the CAN communication belong to the physical layer.

Table 26-5. CAN Physical Layer Characteristics®

Parameter

Condition

1 TxCAN output delay

Voo = 2.7V
Load = 20pF
VouNon = Vecl2

12

3 RxCAN input delay

Notes: 1. From design simulations.
2. Metastable immunity flip-flop.

Atmel

Ve = 4.5V
Load = 20pF
Vou/Von = Vec/2
Voo =2.7V
VitV = Vecl2

Vee = 4.5V
ViV = Vcl2

ns

9 + 1fgo®

7.2 + 1ffg 0@
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26.9 ADC Characteristics

Table 26-6. ADC Characteristics in Single Ended Mode - T, = —40°C to +125°C, V¢ = 2.7V to 5.5V (unless otherwise noted)

Parameter Condition Symbol Min Typ Max Unit
Resolution Single Ended Conversion 10 Bits
Vee =5V, VReg = 2.56V
ee REF TUE 3.2 5.0 LSB
ADC clock = 1MHz
Absolute accuracy Vo =B\ Yo = 215EY
cc = =% TREF & TUE 3.2 5.0 LSB
ADC clock = 2MHz
Vee =5V, Vreg = 2.56V
e REF INL 0.7 15 LSB
ADC clock = 1MHz
Integral Non-linearity Ve = BY. Vierr = 256V
cc = =% TREF = INL 0.8 2.0 LSB
ADC clock = 2MHz
Vee =5V, Vreg = 2.56V
ce REF DNL 0.5 0.8 LSB
ADC clock = 1MHz
Differential Non-linearity Ve = BY. Vierr = 256V
cc = =% TREF = DNL 0.6 1.4 LSB
ADC clock = 2MHz
Vee =5V, Vreg = 2.56V
e REF -9.0 5.0 0.0 LSB
. ADC clock = 1MHz
Gain error Vo =BV = 256y
cc = =% TREF = -9.0 5.0 0.0 LSB
ADC clock = 2MHz
Vee =5V, Vreg = 2.56V
e REF 2.0 +2.5 +5.0 LSB
ADC clock = 1MHz
Offset error Vo =B\ o = DBEY
cc = =% TREF = -2.0 +2.5 +5.0 LSB
ADC clock = 2MHz
Ref voltage VRer 2.56 AVCC \Y
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Table 26-7. ADC Characteristics in Differential Mode - T, = —40°C to +125°C, V¢ = 2.7V to 5.5V (unless otherwise noted)

Parameter Condition

Differential conversion, gain = 5x 8
Differential conversion, gain = 10x 8
Resolution Bits
Differential conversion, gain = 20x 8
Differential conversion, gain = 40x 8

Gain = 5x, 10x, Ve = 5V,

Vger = 2.56V, ADC clock = 2MHz 19 b
Gain = 20x, V¢ = 5V,
Absolute accuracy Vier = 2.56V, ADC clock = 2MHz TUE 15 4.0 LSB

Gain = 40x, Ve = 5V, 15 45

VRer = 2.56V, ADC clock = 2MHz ’ )

Gain = 5x, 10x, Vo =5V, 0.1 15

Vgeg = 2.56V, ADC clock = 2MHz ’ ’

Gain = 20x, V¢ =5V, 02 25

. ) VRger = 2.56V, ADC clock = 2MHz
Integral non-linearity : INL LSB
Gain = 40x, Ve = 5V,

Vg = 2.56V, ADC clock = 1MHz 03 3.5
Gain = 40x, Vo =5V, 07 45
VRer = 2.56V, ADC clock = 2MHz ' '
Gain = 5x, 10x, Ve =5V, 0.1 10
VRer = 2.56V, ADC clock = 2MHz ’ :
. . . . Gain = 20x, Ve = 5V,

Differential non-linearity Vier = 2.56V, ADC clock = 2MHz DNL 0.2 1.5 LSB
Gain i40x, Ve =9Y, _ 03 25
Vgeg = 2.56V, ADC clock = 2MHz
Gain = 5x, 10x, V¢ =5V,

. VRer = 2.56V, ADC clock = 2MHz —3.0 30

Gain error ; LSB
Gain = 20x, 40x, Ve = 5V, _30 +3.0
VRer = 2.56V, ADC clock = 2MHz ' '
Gain = 5x, 10x, Ve = 5V,
VRer = 2.56V, ADC clock = 2MHz —3.0 +3.0

Offset error Gan = 20 400 =0 LSB

ain = 20x, 40x, Ve =5V,

VRger = 2.56V, ADC clock = 2MHz —4.0 +4.0

Ref voltage Vrer 2.56 AVCC - 0.5 \Y
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Parallel Programming Characteristics
Figure 26-5. Parallel Programming Timing, Including some General Timing Requirements
towe
XTALA1 A baxe N -
v B - taox
Data and Control P — — ~ - -
(DATA, XA0/1, BS1, BS2) >< < i
tavpH feex | tevwi . twiex
PAGEL D A el N " _
b
WR NV ~"
u
teLwL t
-t - WLRL
RDY/BSY Y
B twirn _
Figure 26-6. Parallel Programming Timing, Loading Sequence with Timing Requirements®
Load Address Load Data Load Data Load Address
(Low Byte) (Low Byte) (High Byte) Load Data (Low Byte)
7/ 7/ NN 7/
' baux . txLpH teLx
XTALA1 e \ e \I\ ,|/ \F :l/ \
BS1 )y N
PAGEL AN
DATA X ADDRO (Low Byte) X DATA (Low Byte) X DATA (High Byte) X ADDR1 (Low Byte)
XA0 N\ yd N
XA1
Note: 1. The timing requirements shown in Figure 25-7 on page 268 (i.e., tpyxn, txnxL, @and ty px) also apply to loading
operation.
ATmega16/32/64/M1/C1 [DATASHEET]
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Figure 26-7. Parallel Programming Timing, Reading Sequence (within the Same Page) with Timing Requirements(!

Load Address Read Data Read Data Load Address
(Low Byte) (Low Byte) (High Byte) (Low Byte)
txioL

XTAL1 ﬂ )

tavpv

BST — \U ,F N

o torov

OE NGO

tonpz
DATA —< ADDRO (Low Byte) >—< DATA (Low Byte) >< DATA (High Byte) ADDR1 (Low Byte)

XAO AN AN
XA1 N N

Note: 1. The timing requirements shown in Figure 25-7 on page 268 (i.e., thyxn, txnxL, and tx px) also apply to reading
operation.

Table 26-8. Parallel Programming Characteristics, V¢ = 5V #10%

Parameter Symbol Min. Typ. Max. Unit
Programming enable voltage Vpp 11.5 12.5 \%
Programming enable current Ipp 250 pA
Data and control valid before XTAL1 high tovxH 67 ns
XTAL1 low to XTAL1 high tyixH 200 ns
XTAL1 pulse width high tymxL 150 ns
Data and control hold after XTAL1 low ty DX 67 ns
XTAL1 low to WR low tyiwlL 0 ns
XTAL1 low to PAGEL high tyLpPH 0 ns
PAGEL low to XTAL1 high tpLxH 150 ns
BS1 valid before PAGEL high tavpPH 67 ns
PAGEL pulse width high teupL 150 ns
BS1 hold after PAGEL low tpLBX 67 ns
BS2/1 hold after WR low twiex 67 ns
PAGEL low to WR low {hor il 67 ns
BS1 valid to WR low tavwL 67 ns
WR pulse width low tyLWH 150 ns
WR low to RDY/BSY low tWLRL 0 1 us
WR low to RDY/BSY high(" e 3.7 5 ms
WR low to RDY/BSY high for chip erase(®) twirH_cE 7.5 10 ms
XTAL1 low to OE low e 0 ns
BS1 valid to DATA valid tavoy 0 250 ns
OE low to DATA valid e 250 ns
OE high to DATA tri-stated e 250 ns

Notes: 1. ty, ryis valid for the write flash, write EEPROM, write fuse bits and write lock bits commands.
2. twirH_ce is valid for the chip erase command.
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27.

27.1

284

ATmegal6/32/64/M1/C1 Typical Characteristics

All DC characteristics contained in this datasheet are based on simulations and characterization of similar devices in the
same process and design methods. These values are preliminary representing design targets, and will be updated after
characterization of actual automotive silicon data.

The following charts show typical behavior. These figures are not tested during manufacturing. All current consumption
measurements are performed with all I/O pins configured as inputs and with internal pull-ups enabled. A sine wave generator
with rail-to-rail output is used as clock source.

All active- and idle current consumption measurements are done with all bits in the PRR register set and thus, the
corresponding I/0 modules are turned off. Also the analog comparator is disabled during these measurements. Table 27-1
on page 287 shows the additional current consumption compared to I active and I idle for every I/O module controlled by
the power reduction register. See Section 6.6 “Power Reduction Register” on page 36 for details.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating frequency, loading of I/O pins,
switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating voltage and
frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as C x V¢ x f where C, = load capacitance,
V¢ = operating voltage and f = average switching frequency of 1/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to function properly at
frequencies higher than the ordering code indicates.

The difference between current consumption in power-down mode with watchdog timer enabled and power-down mode with
watchdog timer disabled represents the differential current drawn by the watchdog timer.

Active Supply Current

Figure 27-1. Active Supply Current versus Frequency (0.1 to 1.0MHz)
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Figure 27-2. Active Supply Current versus Frequency (1 to 24MHz)
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Figure 27-3. Active Supply Current versus V¢ (Internal RC Oscillator, 8MHz)
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Figure 27-4. Active Supply Current versus V¢ (Internal PLL Oscillator, 16MHz)
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27.2 Idle Supply Current

Figure 27-5. Idle Supply Current versus Frequency (0.1 to 1.0MHz)
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Figure 27-6. Idle Supply Current versus Frequency (1 to 24MHz)
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Figure 27-7. lldle Supply Current versus V¢ (Internal RC Oscillator, 8MHz)
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Figure 27-8. Idle Supply Current versus V¢ (Internal PLL Oscillator, 16MHz)
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27.2.1 Using the Power Reduction Register

The tables and formulas below can be used to calculate the additional current consumption for the different I/O modules in
Idle mode. The enabling or disabling of the I/O modules are controlled by the power reduction register. See Section 6.6
“Power Reduction Register” on page 36 for details.

Table 27-1. Additional Current Consumption (Percentage) in Active and Idle Mode

Typical I (A)
Percent of Added Consumption
Ve = 5.0V, 16Mhz

Vee = 3.0V, 8Mhz

PRCAN 13 12
PRPSC 8 7.5
PRTIM1 2 2
PRTIMO 1 1
PRSPI 2 2
PRLIN 55 5
PRADC 5 4.5

27.3 Power-down Supply Current
Figure 27-9. Power-down Supply Current versus V¢ (Watchdog Timer Disabled)
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Figure 27-10. Power-down Supply Current versus V.. (Watchdog Timer Enabled)
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27.4  Pin Pull-up

Figure 27-11. 1/O Pin Pull-up Resistor Current versus Input Voltage (V¢ = 5V)
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Figure 27-12. 1/0O Pin Pull-up Resistor Current versus Input Voltage (V¢ = 2.7V)
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Figure 27-13. Reset Pull-up Resistor Current versus Reset Pin Voltage (V¢ = 5V)
120
100 \
- 8 \H‘
E = — 150
R \\\«% _ — 15
g w0 N s
- 25
i) ‘%%:r.\‘- Al
" P
L L
-0
VRESET (V)
Figure 27-14. Reset Pull-up Resistor Current versus Reset Pin Voltage (V¢ = 2.7V)
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27.5 Pin Driver Strength

Figure 27-15. 1/O Pin Output Voltage versus Source Current (V¢ = 5V)
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Figure 27-16. 1/0O Pin Output Voltage versus Source Current (V¢ = 3V)
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Figure 27-17. 1/0 Pin Low Output Voltage versus Source Current (Ve = 5V)
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Figure 27-18. 1/0 Pin Low Output Voltage versus Source Current (Ve = 3V)
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27.6 Pin Thresholds and Hysteresis

Figure 27-19. 1/0O Pin Input Threshold Voltage versus V¢ (VIH, I/O Pin Read As '1")
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Figure 27-20. 1/0O Pin Input Threshold Voltage versus V¢ (VIL, I/O Pin Read As '0')
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Figure 27-21. 1/O Pin Input Hysteresis Voltage versus V¢
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Figure 27-22. Reset Input Threshold Voltage versus V¢ (VIH, Reset Pin Read As '1')
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Figure 27-23. Reset Input Threshold Voltage versus V¢ (VIL, Reset Pin Read As '0")
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Figure 27-24. XTAL1 Input Threshold Voltage versus V¢ (XTAL1 Pin Read As '1")
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Figure 27-25. XTAL1 Input Threshold Voltage versus V¢ (XTAL1 Pin Read As '0')
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27.7 BOD Thresholds and Analog Comparator Hysteresis
Figure 27-26. BOD Thresholds versus Temperature (BODLEVEL Is 4.3V)
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Figure 27-27. BOD Thresholds versus Temperature (BODLEVEL Is 2.7V)
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Figure 27-28. Typical Analog Comparator Hysteresis Average Thresholds versus Common Mode Voltage
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27.8 Analog Reference

Figure 27-29. VREF Voltage versus V¢
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Figure 27-30. VREF Voltage versus Temperature
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27.9 Internal Oscillator Speed
Figure 27-31. Watchdog Oscillator Frequency versus Ve
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Figure 27-32. Calibrated 8MHz RC Oscillator Frequency versus Temperature
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Figure 27-33. Calibrated 8MHz RC Oscillator Frequency versus V¢
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Figure 27-34. Calibrated 8MHz RC Oscillator Frequency versus OSCCAL Value
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28. Instruction Set Summary

Mnemonics

#Clocks

MULS
MULSU
FMUL
FMULS
FMULSU
Branch Instructi
RJMP
IJMP
JMP(*)
RCALL
ICALL
CALL(*)
RET
RETI
CPSE
CP

Operands

ons

Arithmetic and Logic Instructions

Rd, Rr
Rd, Rr
Rdl,K
Rd, Rr
Rd, K
Rd, Rr
Rd, K
Rdl,K
Rd, Rr
Rd, K
Rd, Rr
Rd, K
Rd, Rr
Rd
Rd
Rd,K
Rd,K
Rd
Rd
Rd
Rd
Rd
Rd, Rr
Rd, Rr
Rd, Rr
Rd, Rr
Rd, Rr
Rd, Rr

Rd,Rr
Rd,Rr
Rd,Rr
Rd,K
Rr, b
Rr, b
P, b

Description

Add two registers
Add with carry two registers
Add immediate to word
Subtract two registers
Subtract constant from register
Subtract with carry two registers
Subtract with carry constant from register
Subtract immediate from word
Logical AND registers
Logical AND register and constant
Logical OR registers
Logical OR register and constant
Exclusive OR registers
One’s complement
Two’s complement
Set bit(s) in register
Clear bit(s) in register
Increment
Decrement
Test for zero or minus
Clear register
Set register
Multiply unsigned
Multiply signed
Multiply signed with unsigned
Fractional multiply unsigned
Fractional multiply signed
Fractional multiply signed with unsigned

Relative jump
Indirect jump to (Z)
Direct jump
Relative subroutine call
Indirect call to (Z)

Direct subroutine call
Subroutine return
Interrupt return
Compare, skip if equal
Compare
Compare with carry
Compare register with immediate
Skip if bit in register cleared
Skip if bit in register is set
Skip if bit in 1/0 register cleared

These Instructions are only available in “16K and 32K parts”

296  ATmega16/32/64/M1/C1 [DATASHEET]
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Operation

Rd < Rd + Rr
Rd«+ Rd+Rr+C
Rdh:Rdl « Rdh:Rdl + K
Rd «~ Rd - Rr
Rd «+ Rd - K
Rd« Rd-Rr-C
Rd« Rd-K-C
Rdh:Rdl « Rdh:Rdl — K
Rd <« Rd x Rr
Rd « Rd x K
Rd <~ Rd v Rr
Rd «~ Rdv K
Rd < Rd ® Rr
Rd « OxFF —Rd
Rd « 0x00 — Rd
Rd «~ Rdv K
Rd « Rd x (OxFF — K)
Rd « Rd + 1
Rd <« Rd -1
Rd <« Rd x Rd
Rd <« Rd @ Rd
Rd « OxFF
R1:R0 « Rd x Rr
R1:R0 «- Rd x Rr
R1:R0 « Rd x Rr
R1:R0 « (Rd x Rr) << 1
R1:R0 « (Rd x Rr) << 1
R1:R0 « (Rd x Rr) << 1

PC« PC+k+1
PC«2Z
PC « k
PC« PC+k+1
PC«Z
PC « k
PC « STACK
PC « STACK
if (Rd=Rr)PC« PC+2o0r3
Rd — Rr
Rd-Rr-C
Rd - K
if (Rr(b)=0) PC «~ PC+20r3
if (Rr(b)=1) PC < PC +2o0r3
if (P(b)=0) PC < PC + 2 or 3

Flags

Z,C,N,V,H
Z,C,N,V,H
Z,CN,V,S
Z,C,N,V,H
Z,C,N,V,H
Z,C,N,V,H
Z,C,N,V,H
Z,CN,\V,S
ZN\V
ZN\V
ZN\V
ZN,V
ZN\V
Z,CN\V
Z,C,N,V,H
ZN,V
ZN\V
ZN\V
ZN\V
ZN,V
ZN\V
None
ZC
zZC
Z.C
zZC
ZC
zZC

None
None
None
None
None
None
None
|
None
Z,N,V,C,H
Z,N\V,CH
Z,N,V,C,H
None
None
None

NN N N NN 2 A a @ @ @@ D 2 Q@ @ a2 -

ABA WOWWDNDN

1/2/3

1/2/3
1/2/3
1/2/3
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28. Instruction Set Summary (Continued)

Mnemonics

#Clocks

SBIS
BRBS
BRBC
BREQ
BRNE
BRCS
BRCC
BRSH
BRLO
BRMI
BRPL
BRGE
BRLT
BRHS
BRHC
BRTS
BRTC
BRVS
BRVC
BRIE
BRID

SBI
CBI
LSL
LSR

Note: 1.

Atmel

Operands
P, b
s, k

w
=

~ X X X X X X XXX~~~ X = =

k

Bit and Bit-test Instructions

P.b
P,b
Rd
Rd
Rd
Rd
Rd
Rd
s
s
Rr, b
Rd, b

Description
Skip if bit in 1/O register is set
Branch if status flag Set
Branch if status flag cleared
Branch if equal
Branch if not equal
Branch if carry set
Branch if carry cleared
Branch if same or higher
Branch if lower
Branch if minus

Branch if plus

Branch if greater or equal, signed

Branch if less than zero, signed
Branch if half carry flag set
Branch if half carry flag cleared
Branch if T flag set
Branch if T flag cleared
Branch if overflow flag is set

Branch if overflow flag is cleared

Branch if interrupt enabled
Branch if interrupt disabled

Set bit in 1/O register
Clear bit in 1/O register
Logical shift left
Logical shift right
Rotate left through carry
Rotate right through carry
Arithmetic shift right
Swap nibbles
Flag set
Flag clear
Bit store from register to T
Bit load from T to register
Set carry
Clear carry
Set negative flag
Clear negative flag
Set zero flag
Clear zero flag
Global interrupt enable
Global interrupt disable
Set signed test flag
Clear signed test flag
Set twos complement overflow.

Clear twos complement overflow
These Instructions are only available in “16K and 32K parts”

Operation
if (P(b)=1) PC« PC +2or 3

if (SREG(s) = 1) then PC < PC + k + 1
if (SREG(s) = 0) then PC <~ PC +k + 1

if (Z = 1) then PC « PC + k + 1
if (Z = 0) then PC « PC + k + 1
if (C = 1) then PC <~ PC + k + 1
if (C = 0) then PC « PC +k + 1
if (C = 0) then PC «~ PC +k + 1
if (C = 1) then PC « PC + k + 1
if (N = 1) then PC < PC + k + 1
if (N = 0) then PC « PC +k + 1

if (N®V=0)then PC« PC+k+1
if (N®V=1)then PC« PC+k+1

if (H = 1) then PC < PC + k + 1
if (H = 0) then PC « PC +k + 1
if (T = 1) then PC < PC + k + 1
if (T = 0) then PC « PC + k + 1
if (V = 1) then PC <~ PC + k + 1
if (V = 0) then PC «— PC +k + 1
if (I = 1) then PC <~ PC + k + 1
if (I = 0) then PC <~ PC + k + 1

I/O(P,b) <« 1
I/O(P,b) < 0
Rd(n+1) « Rd(n), Rd(0) « 0
Rd(n) < Rd(n+1), Rd(7) < 0

Rd(0) < C,Rd(n+1) « Rd(n), C « Rd(7)
Rd(7) < C,Rd(n) < Rd(n+1), C « Rd(0)

Rd(n) < Rd(n+1), n=0..6

Rd(3..0) < Rd(7..4), Rd(7..4) < Rd(3..0)

SREG(s) « 1
SREG(s) «- 0
T « Rr(b)
Rd(b) « T
C«1
C«0
N« 1
N« O
Z <1
Z«<0
I« 1
I« 0
S« 1
S« 0
V1
V«0
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Flags
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None

None
None
Z,C,N,V
Z,CNV
Z,C,N,V
Z,CN,V
Z,C,N,V
None
SREG(s)
SREG(s)
T
None
C

N N Z2 Z2 O

< < n n

1/2/3
12
1/2
12
1/2
12
1/2
12
1/2
12
1/2
12
1/2
12
1/2
12
1/2
12
1/2
12
1/2

Al A A A alAa aAalAa a A A Aa A aAaaAa aaAaaaa NN
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28. Instruction Set Summary (Continued)

Description

Operation

Flags

#Clocks

Mnemonics Operands
SET
CLT
SEH
CLH
Data Transfer Instructions
MOV Rd, Rr
MOVW Rd, Rr
LDI Rd, K
LD Rd, X
LD Rd, X+
LD Rd, - X
LD Rd, Y
LD Rd, Y+
LD Rd, -Y
LDD Rd,Y+q
LD Rd, Z
LD Rd, Z+
LD Rd, -Z
LDD Rd, Z+q
LDS Rd, k
ST X, Rr
ST X+, Rr
ST - X, Rr
ST Y, Rr
ST Y+, Rr
ST -Y,Rr
STD Y+q,Rr
ST Z,Rr
ST Z+, Rr
ST -Z, Rr
STD Z+q,Rr
STS k, Rr
LPM
LPM Rd, Z
LPM Rd, Z+
SPM
IN Rd, P
ouT P, Rr
PUSH Rr
POP Rd
MCU Control Instructions
NOP
SLEEP
WDR
BREAK
Note: 1.

These Instructions are only available in “16K and 32K parts”

Set T in SREG
Clear T in SREG
Set half carry flag in SREG
Clear half carry flag in SREG

Move between registers
Copy register word
Load immediate
Load indirect
Load indirect and post-inc.
Load indirect and pre-dec.
Load indirect
Load indirect and post-inc.
Load indirect and pre-dec.
Load indirect with displacement
Load indirect
Load indirect and post-inc.
Load indirect and pre-dec.
Load indirect with displacement
Load direct from SRAM
Store indirect
Store indirect and post-inc.
Store indirect and pre-dec.
Store indirect
Store indirect and post-inc.
Store indirect and pre-dec.
Store indirect with displacement
Store indirect
Store indirect and post-inc.
Store indirect and pre-dec.
Store indirect with displacement
Store direct to SRAM
Load program memory
Load program memory
Load program memory and post-inc
Store program memory
In port
Out port
Push register on stack

Pop register from stack

No operation
Sleep
Watchdog reset
Break
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T« 1
T« 0
He1
H« 0

Rd « Rr
Rd+1:Rd « Rr+1:Rr
Rd «+ K
Rd « (X)

Rd « (X), X « X +1
X« X-1,Rd « (X)
Rd « (Y)

Rd « (Y), Y« Y +1
Y« Y—1,Rd « (Y)
Rd « (Y +q)
Rd « (Z)

Rd « (2), Z « Z+1
Z+Z-1,Rd« (2)
Rd « (Z +q)
Rd « (k)
(X) « Rr
X)« R, X« X+1
X« X=-1,(X)«<Rr
(Y)« Rr
(Y)<RrY«<Y+1
Y<Y-1,(Y)«Rr
(Y+q)«Rr
(Z) « Rr
(Z)«Rr,Z«2Z+1
Z+Z-1,(Z)« Rr
(Z+qg) <« Rr
(k) « Rr
RO « (2)
Rd « (2)

Rd « (2), Z « Z+1
(Z) «+ R1:RO
Rd « P
P« Rr
STACK « Rr
Rd « STACK

(see specific descr. for sleep function)
(see specific descr. for WDR/timer)
For On-chip Debug Only

T
T
H
H

None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None

None
None
None
None

A A

W W W N DN DNDNDDNDDNDDNDDNDDNDDNDDNDDNDDNDNDDNDDNDDNDDNDNDDNDDNDDNDDNDDNDDNDDN-_ a2 -

NN =

N

N/A
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29. Register Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
(OxFF) Reserved - - - - - - - -

(OXFE) Reserved - - - - - - - -

(0OxFD) Reserved - - - - - - - -

(OxFC) Reserved - - - - - - - -

(OxFB) Reserved - - - - - - - -

(OxFA) CANMSG MSG 7 MSG 6 MSG 5 MSG 4 MSG 3 MSG 2 MSG 1 MSG 0 171
(0xF9) CANSTMPH | TIMSTM15 | TIMSTM14 | TIMSTM13 | TIMSTM12 | TIMSTM11 | TIMSTM10 | TIMSTM9 | TIMSTM8 171
(OxF8) CANSTMPL | TIMSTM7 | TIMSTM6 | TIMSTM5 | TIMSTM4 | TIMSTM3 TIMSTM2 | TIMSTM1 | TIMSTMO 171
(OxF7) CANIDM1 IDMSK28 IDMSK27 | IDMSK26 IDMSK25 IDMSK24 IDMSK23 IDMSK22 IDMSK21 170
(OxF6) CANIDM2 IDMSK20 IDMSK19 | IDMSK18 IDMSK17 IDMSK16 IDMSK15 IDMSK14 IDMSK13 170
(OxF5) CANIDM3 IDMSK12 IDMSK11 IDMSK10 IDMSK9 IDMSK8 IDMSK7 IDMSK6 IDMSK5 170
(OxF4) CANIDM4 IDMSK4 IDMSK3 IDMSK2 IDMSK1 IDMSKO RTRMSK - IDEMSK 170
(OxF3) CANIDT1 IDT28 IDT27 IDT26 IDT25 IDT24 IDT23 IDT22 IDT21 169
(0xF2) CANIDT2 IDT20 IDT19 IDT18 IDT17 IDT16 IDT15 IDT14 IDT13 169
(OxF1) CANIDT3 IDT12 IDT11 IDT10 IDT9 IDT8 IDT7 IDT6 IDT5 169
(OxFO0) CANIDT4 IDT4 IDT3 IDT2 IDT1 IDTO RTRTAG RB1TAG RBOTAG 169
(OXEF) CANCDMOB | CONMOB1 | CONMOBO RPLV IDE DLC3 DLC2 DLCA DLCO 168
(OXEE) CANSTMOB| DLCW TXOK RXOK BERR SERR CERR FERR AERR 167
(OXED) CANPAGE | MOBNB3 | MOBNB2 | MOBNB1 | MOBNBO AINC INDX2 INDX1 INDXO 166
(OXEC) CANHPMOB| HPMOB3 | HPMOB2 | HPMOB1 | HPMOBO CGP3 CGP2 CGP1 CGPO 166
(OxEB) CANREC REC7 REC6 REC5 REC4 REC3 REC2 REC1 RECO 166
(OXEA) CANTEC TEC7 TEC6 TECS TEC4 TEC3 TEC2 TEC1 TECO 165
(OxE9) CANTTCH | TIMTTC15 | TIMTTC14 | TIMTTC13 | TIMTTC12 | TIMTTC11 | TIMTTC10 | TIMTTC9 | TIMTTCS8 165
(OxE8) CANTTCL | TIMTTC?7 | TIMTTC6 | TIMTTCS | TIMTTC4 | TIMTTC3 TIMTTC2 | TIMTTC1 | TIMTTCO 165
(OXE7) CANTIMH | CANTIM15 | CANTIM14 | CANTIM13 | CANTIM12 | CANTIM11 | CANTIM10 | CANTIM9 | CANTIM8 165
(OxEB) CANTIML | CANTIM7 | CANTIM6 | CANTIM5 | CANTIM4 | CANTIM3 CANTIM2 | CANTIM1 | CANTIMO 165
(OxE5) CANTCON | TPRSC7 | TPRSC6 | TPRSC5 | TPRSC4 TPRSC3 TPRSC2 TRPSC1 TPRSCO 165
(OxE4) CANBT3 - PHS22 PHS21 PHS20 PHS12 PHS11 PHS10 SMP 164
(OxE3) CANBT2 - SJWA1 SJWO0 - PRS2 PRS1 PRS0 - 163
(0xE2) CANBT1 - BRP5 BRP4 BRP3 BRP2 BRP1 BRPO - 163
(OXE1) CANSIT1 = = = = = = = = 163
(OxEOQ) CANSIT2 — — SITS SIT4 SIT3 SIT2 SIT1 SITO 163
(OXDF) CANIE1 = = = = = = = = 162
(0OxDE) CANIE2 - - IEMOBS5 IEMOB4 IEMOB3 IEMOB2 IEMOBA1 IEMOBO 162
(0xDD) CANEN1 - - - - - - - - 162

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory

addresses should never be written.

2. 1/O registers within the address range 0x00 - Ox1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags.
The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the 1/O specific commands IN and OUT, the 1/0 addresses 0x00 - 0x3F must be used. When addressing 1/0
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The
ATmega16/32/64/M1/C1 is a complex microcontroller with more peripheral units than can be supported within the 64
location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - OxFF in SRAM,
only the ST/STS/STD and LD/LDS/LDD instructions can be used.

5. These registers are only available on ATmega32/64M1. For other products described in this datasheet, these locations
are reserved.
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29. Register Summary (Continued)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0 Page
(0xDC) CANEN2 - - ENMOB5 | ENMOB4 ENMOB3 ENMOB2 ENMOB1 ENMOBO 162
(0xDB) CANGIE ENIT ENBOFF ENRX ENTX ENERR ENBX ENERG ENOVRT 161
(OxDA) CANGIT CANIT BOFFIT | OVRTIM BXOK SERG CERG FERG AERG 160
(0xD9) CANGSTA - OVRG - TXBSY RXBSY ENFG BOFF ERRP 159
(0xD8) CANGCON ABRQ OVRQ TTC SYNTTC LISTEN TEST ENA/STB SWRES 158
(0xD7) Reserved - - - - - - - -

(0xD6) Reserved - - - - - - - -
(0OxD5) Reserved - - - - - - - -
(0xD4) Reserved - - - - - - - -
(0xD3) Reserved - - - - - - - -
(0xD2) LINDAT LDATA7 LDATAG LDATAS LDATA4 LDATA3 LDATA2 LDATA1 LDATAO 196
(0xD1) LINSEL - - - - /LAINC LINDX2 LINDX1 LINDXO 196
(0xDO0) LINIDR LP1 LPO LID5/LDL1|LID4 /LDLO LID3 LID2 LID1 LIDO 195
(OxCF) LINDLR LTXDL3 LTXDL2 LTXDLA1 LTXDLO LRXDL3 LRXDL2 LRXDL1 LRXDLO 195
(OXCE) LINBRRH - - - - LDIV11 LDIV10 LDIV9 LDIV8 194
(0xCD) LINBRRL LDIV7 LDIV6 LDIV5 LDIV4 LDIV3 LDIV2 LDIV1 LDIVO 194
(0xCC) LINBTR LDISR - LBT5 LBT4 LBT3 LBT2 LBT1 LBTO 194
(0xCB) LINERR LABORT LTOERR | LOVERR LFERR LSERR LPERR LCERR LBERR 193
(OxCA) LINENIR - - - - LENERR LENIDOK | LENTXOK | LENRXOK 193
(0xC9) LINSIR LIDST2 LIDST1 LIDSTO LBUSY LERR LIDOK LTXOK LRXOK 192
(0xC8) LINCR LSWRES LIN13 LCONF1 | LCONFO LENA LCMD2 LCMD1 LCMDO 191
(0xC7) Reserved - - - - - - - -
(0xC6) Reserved - - - - - - - -
(0xC5) Reserved - - - - - - - -
(0xC4) Reserved - - - - - - - -
(0xC3) Reserved - - - - - - - -
(0xC2) Reserved - - - - - - - -
(0xC1) Reserved - - - - - - - -
(0xCO0) Reserved - - - - - - - -
(OxBF) Reserved - - - - - - - -
(OxBE) Reserved - - - - - - - -
(0xBD) Reserved - - - - - - - -

(0xBC)® PIFR - - - - PEV2 PEV1 PEVO PEOP 132

(0xBB)® PIM - — = = PEVE2 PEVE1 PEVEO PEOPE 132

(OXBA)(5) PMIC2 POVEN2 PISEL2 PELEV2 PFLTE2 PAOC2 PRFM22 PRFM21 PRFM20 131

Notes: 1. For compatibility with future devices, reserved bits should be written to zero it accessed. Reserved /O memory
addresses should never be written.

2. /O registers within the address range 0x00 - Ox1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags.
The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the 1/0O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing /0
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The
ATmega16/32/64/M1/C1 is a complex microcontroller with more peripheral units than can be supported within the 64
location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - OxFF in SRAM,
only the ST/STS/STD and LD/LDS/LDD instructions can be used.

5. These registers are only available on ATmega32/64M1. For other products described in this datasheet, these locations
are reserved.
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29. Register Summary (Continued)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0 Page
(0xB9)® PMIC1 POVEN1 PISEL1 PELEVA1 PFLTE1 PAOC1 PRFM12 PRFM11 | PRFM10 131
(0xB8)® PMICO POVENO | PISELO | PELEVO | PFLTEO PAOCO PRFM02 | PRFM01 | PRFMO00 131
(0xB7)® PCTL PPRE1 PPREO | PCLKSEL — — - PCCYC PRUN 130
(0xB6)® POC - — POEN2B | POEN2A | POEN1B POEN1A | POENOB | POENOA 33
(0xB5)® PCNF = — PULOCK | PMODE POPB POPA = = 130
(0xB4)® PSYNC - - PSYNC21 | PSYNC20 | PSYNC11 | PSYNC10 | PSYNCO1 | PSYNCO0 128
(0xB3)® | POCR_RBH - - - - POCR_RB11|POCR_RB10|POCR_RB9|POCR_RBS8 129
(0xB2)® | POCR_RBL |[POCR_RB7|POCR_RB6|POCR_RB5|POCR_RB4| POCR_RB3 | POCR_RB2 |POCR_RB1|POCR_RB0 129
(0xB1)® | POCR2SBH - — - — POCR2SB11|POCR2SB10|POCR2SB9| POCR2SB8 129
(0xB0)® | POCR2SBL |[POCR2SB7 |POCR2SB6|POCR2SB5|POCR2SB4 | POCR2SB3 | POCR2SB2 |POCR2SB1| POCR2SB0 129
(OxAF)® | POCR2RAH - - - - POCR2RA11|POCR2RA10|POCR2RA9| POCR2RA8 129
(OXAE)® | POCR2RAL |POCR2RA7 [POCR2RAB|POCR2RA5|POCR2RA4 | POCR2RA3 | POCR2RA2 [POCR2RA1|POCR2RA0 129
(0xAD)® | POCR2SAH - - - - POCR2SA11|POCR2SA10|POCR2SA9| POCR2SA8 129
(0xAC)® | POCR2SAL |POCR2SA7|POCR2SA6|POCR2SA5|POCR2SA4| POCR2SA3 | POCR2SA2 [POCR2SA1| POCR2SAQ 129
(0xAB)® | POCR1SBH - — - — POCR1SB11|POCR1SB10|POCR1SB9| POCR1SB8 129
(0xAA)® | POCR1SBL |POCR1SB7|POCR1SB6|POCR1SB5|POCR1SB4| POCR1SB3 | POCR1SB2 [POCR1SB1| POCR1SB0 129
(0xA9)® | POCR1RAH - - - - POCR1RA11|POCR1RA10|POCR1RA9| POCR1RA8 129
(0xA8)® | POCR1RAL [POCR1RA7|POCR1RA6|POCR1RA5|POCR1RA4 | POCR1RA3 | POCR1RA2 [POCR1RA1|POCR1RAQ 129
(0xA7)® | POCR1SAH - - - - POCR1SA11|POCR1SA10|POCR1SA9| POCR1SA8 129
(0xA6)® | POCR1SAL [POCR1SA7|POCR1SA6|POCR1SA5POCR1SA4| POCR1SA3 | POCR1SA2 |POCR1SA1| POCR1SA0 129
(0xA5)® | POCROSBH - - - - POCRO0SB11|POCR0SB10|POCR0SB9| POCR0OSB8 129
(0xA4)® POCROSBL |POCR0SB7|POCR0SB6|POCR0OSB5|POCR0OSB4 | POCR0OSB3 | POCR0SB2 [POCROSB1|POCROSBO 129
(0xA3)® | POCRORAH - - - - POCRORA11|POCRORA10|POCRORA9| POCRORAS 129
(0xA2)® | POCRORAL |[POCRORA7 |POCRORAG|POCRORA5|POCRORA4 | POCRORA3 | POCRORA2 |POCRORA1| POCRORAO 129
(0xA1)® | POCROSAH - - - - POCRO0SA11|POCR0SA10|POCROSA9| POCROSA8 129
(0xA0)® POCROSAL |POCROSA7|POCROSA6|POCROSA5|POCROSA4| POCROSA3 | POCROSA2 [POCROSA1|POCROSAO 129
(0x9F) Reserved - - - - - - - -

(0x9E) Reserved - - - - - - - -

(0x9D) Reserved - - - - - - - -

(0x9C) Reserved - - - - - - - -

(0x9B) Reserved - - - - - - - -

(0x9A) Reserved - - - - - - - -

(0x99) Reserved - - - - - - - -

(0x98) Reserved - - - - - - - -

(0x97) AC3CON AC3EN AC3IE AC3IS1 AC3IS0 - AC3M2 AC3M1 AC3MO 229

Notes: 1. For compatibility with future devices, reserved bits should be written to zero it accessed. Reserved /O memory

addresses should never be written.

I/0 registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBl instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags.
The CBI and SBI instructions work with registers 0x00 to 0x1F only.

When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing 1/0
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The
ATmega16/32/64/M1/C1 is a complex microcontroller with more peripheral units than can be supported within the 64
location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - OxFF in SRAM,
only the ST/STS/STD and LD/LDS/LDD instructions can be used.

5. These registers are only available on ATmega32/64M1. For other products described in this datasheet, these locations
are reserved.
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29. Register Summary (Continued)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0 Page
(0x96) AC2CON AC2EN AC2IE AC21S1 AC2I1S0 - AC2M2 AC2M1 AC2MO0 229
(0x95) AC1CON AC1EN AC1IE AC11S1 AC11S0 AC1ICE AC1M2 AC1M1 AC1MO 228
(0x94) ACOCON ACOEN ACOIE ACO0IS1 ACO0ISO ACCKSEL ACOM2 ACOM1 ACOMO 227
(0x93) Reserved - - - - - - - -

(0x92) DACH -/ DAC9 -/ DAC8 -/ DAC7 -/ DAC6 -/ DAC5 -/ DAC4 %:%93/ %’:%82/ 235
(0x91) pacL | CT/ | DPCO | bacs/- | pAc4/- | DAC3/- | DAG2/- | DACH/- | DACO/ 235
(0x90) DACON DAATE DATS2 DATS1 DATSO - DALA DAOE DAEN 234
(0x8F) Reserved - - - - - - - -

(0x8E) Reserved - - - - - - - -

(0Ox8D) Reserved - - - - - - - -

(0x8C) Reserved - - - - - - - -

(0x8B) OCR1BH | OCR1B15 | OCR1B14 | OCR1B13 | OCR1B12 | OCR1B11 OCR1B10 | OCR1B9 OCR1B8 113
(Ox8A) OCR1BL OCR1B7 | OCR1B6 | OCR1B5 | OCR1B4 OCR1B3 OCR1B2 OCR1B1 OCR1B0O 113
(0x89) OCR1AH | OCR1A15 | OCR1A14 | OCR1A13 | OCR1A12 | OCR1AM1 OCR1A10 | OCR1A9 OCR1A8 113
(0x88) OCR1AL OCR1A7 | OCR1A6 | OCR1A5 | OCR1A4 OCR1A3 OCR1A2 OCR1A1 OCR1A0 113
(0x87) ICR1H ICR115 ICR114 ICR113 ICR112 ICR111 ICR110 ICR19 ICR18 114
(0x86) ICR1L ICR17 ICR16 ICR15 ICR14 ICR13 ICR12 ICRM ICR10 114
(0x85) TCNT1H TCNT115 | TCNT114 | TCNT113 | TCNT112 | TCNT111 TCNT110 TCNT19 TCNT18 113
(0x84) TCNTIL TCNT17 | TCNT16 | TCNT15 | TCNT14 TCNT13 TCNT12 TCNT11 TCNT10 113
(0x83) Reserved - - - - - - - -

(0x82) TCCR1C FOC1A FOC1B = = = = = = 113
(0x81) TCCR1B ICNCA1 ICES1 - WGM13 WGM12 CS12 CS11 CS10 112
(0x80) TCCR1A COM1A1 | COM1AO0 | COM1B1 | COM1BO - - WGM11 WGM10 110
(0x7F) DIDR1 - AMP2PD | ACMPOD | AMPOPD AMPOND ADC10D ADC9D ADC8D 214
(OX7E) DIDRO ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADCOD 214
(0x7D) Reserved - - - - - - - -

(0x7C) ADMUX REFS1 REFSO0 ADLAR — MUX3 MUX2 MUX1 MUXO0 33
(0x7B) ADCSRB ADHSM ISRCEN | AREFEN - ADTS3 ADTS2 ADTS1 ADTSO 212
(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPSO0 21
(0x79) ADCH | -/ADCO | -/ADC8 | -/ADC7 | -/ADCS | -/ADC5 | -/ADc4 | ADCS1 | ADC8/ 213
(0x78) ADCL A;AIID:)CC71/ ':IIDDCCGO/ ADC5 / - ADC4 / - ADC3 /- ADC2 /- ADC1/- ADCO / 213
(0x77) AMP2CSR | AMP2EN AMP2IS | AMP2G1 AMP2GO | AMPCMP2 | AMP2TS2 | AMP2TS1 | AMP2TS0 219

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory
addresses should never be written.

2. /0O registers within the address range 0x00 - Ox1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags.
The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the 1/0 addresses 0x00 - 0x3F must be used. When addressing 1/0
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The
ATmega16/32/64/M1/C1 is a complex microcontroller with more peripheral units than can be supported within the 64
location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - OxFF in SRAM,
only the ST/STS/STD and LD/LDS/LDD instructions can be used.

5. These registers are only available on ATmega32/64M1. For other products described in this datasheet, these locations
are reserved.
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29. Register Summary (Continued)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0 Page
(0x76) AMP1CSR | AMP1EN AMP1IS AMP1G1 AMP1G0O | AMPCMP1 | AMP1TS2 | AMP1TS1 | AMP1TSO 219
(0x75) AMPOCSR | AMPOEN AMPOIS AMPOG1 AMPOGO | AMPCMPO | AMPOTS2 | AMPOTS1 | AMPOTSO 218
(0x74) Reserved - - - - - - - -

(0x73) Reserved - - - - - - - -
(0x72) Reserved - - - - - - - -
(0x71) Reserved - - - - - - - -
(0x70) Reserved - - - - - - - -
(Ox6F) TIMSK1 — - ICIE1 - - OCIE1B OCIE1A TOIE1 114
(Ox6E) TIMSKO — - - - - OCIEOB OCIEOA TOIEO 90
(0x6D) PCMSK3 - - - - - PCINT26 | PCINT25 | PCINT24 73
(0x6C) PCMSK2 PCINT23 | PCINT22 | PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 73
(0x6B) PCMSK1 PCINT15 | PCINT14 | PCINT13 | PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 74
(0Ox6A) PCMSKO PCINT7 PCINT6 PCINTS PCINT4 PCINT3 PCINT2 PCINT1 PCINTO 74
(0x69) EICRA 1ISC31 1ISC30 1ISC21 1ISC20 ISC11 ISC10 1ISCO1 1ISC00 71
(0x68) PCICR - - - - PCIE3 PCIE2 PCIE1 PCIEO 72
(0x67) Reserved - - - - - - - -
(0x66) OSCCAL — CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CALO 29
(0x65) Reserved - - - - - - - -
(0x64) PRR - PRCAN PRPSC PRTIM1 PRTIMO PRSPI PRLIN PRADC 36
(0x63) Reserved - - - - - - - -
(0x62) Reserved - - - - - - - -
(0x61) CLKPR CLKPCE - - - CLKPS3 CLKPS2 CLKPS1 CLKPSO 33
(0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDPO 45
0x3F (0Ox5F) SREG | T H S \% N z C 12
0x3E (0x5E) SPH SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 15
0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO 15
0x3C (0x5C) | Reserved - - - - - - - -
0x3B (0x5B) | Reserved - - - - - - - -
0x3A (0x5A) | Reserved - - - - - - - -
0x39 (0x59) | Reserved - - - - - - - -
0x38 (0x58) | Reserved - - - - - - - -
0x37 (0x57) | SPMCSR SPMIE RWWSB SIGRD RWWSRE BLBSET PGWRT PGERS SPMEN 244
0x36 (0x56) | Reserved - - - - - - - -
0x35 (0x55) MCUCR SPIPS - - PUD - - IVSEL IVCE 50, 57
0x34 (0x54) MCUSR - - - - WDRF BORF EXTRF PORF 42
Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory
addresses should never be written.

2. /O registers within the address range 0x00 - Ox1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags.
The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the 1/0O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing /0
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The
ATmega16/32/64/M1/C1 is a complex microcontroller with more peripheral units than can be supported within the 64
location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - OxFF in SRAM,
only the ST/STS/STD and LD/LDS/LDD instructions can be used.

5. These registers are only available on ATmega32/64M1. For other products described in this datasheet, these locations

Atmel
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29. Register Summary (Continued)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0 Page
0x33 (0x53) SMCR - - - - SM2 SM1 SMO0 SE 34
0x32 (0x52) MSMCR Monitor Stop Mode Control Register Reserved
0x31 (0x51) MONDR Monitor Data Register Reserved
0x30 (0x50) ACSR AC3IF AC2IF AC1IF ACOIF AC30 AC20 AC10 ACO00 231
0x2F (0x4F) | Reserved - - - - - - - -

Ox2E (0x4E) SPDR SPD7 SPD6 SPD5 SPD4 SPD3 SPD2 SPD1 SPDO 139
0x2D (0x4D) SPSR SPIF WCOL - - - - - SPI2X 139
0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPRO 138

0x2B (0x4B) | Reserved - - - - = = - _
0x2A (0x4A) | Reserved - - - - = = - _

0x29 (0x49) | PLLCSR - — — — — PLLF PLLE PLOCK 31
0x28 (0x48) OCROB OCROB7 | OCROB6 | OCROB5 | OCROB4 OCRO0B3 OCROB2 OCROB1 OCRO0BO 90
0x27 (0x47) OCROA OCROA7 | OCROA6 | OCROA5 | OCROA4 OCROA3 OCROA2 OCROA1 OCROA0O 90
0x26 (0x46) TCNTO TCNTO7 TCNTO06 | TCNTOS TCNTO04 TCNTO3 TCNTO02 TCNTO1 TCNTO0 90
0x25 (0x45) | TCCROB FOCOA FOCO0B = = WGMO02 CS02 CS01 CS00 89
0x24 (0x44) | TCCROA COMOA1 | COMOAO | COMOB1 | COMOBO = = WGMO01 WGMO00 86
0x23 (0x43) GTCCR TSM ICPSEL1 — — — — — PSRSYNC 76
0x22 (0x42) EEARH - - - - - - EEAR9 EEARS8 20
0x21 (0x41) EEARL EEAR7 EEARG EEARS EEAR4 EEAR3 EEAR2 EEAR1 EEARO 20
0x20 (0x40) EEDR EEDR?7 EEDRG6 EEDR5 EEDR4 EEDRS3 EEDR2 EEDR1 EEDRO 20
0x1F (Ox3F) EECR - - - - EERIE EEMWE EEWE EERE 21
Ox1E (0x3E) | GPIORO GPIORO07 | GPIOR06 | GPIOR05 | GPIOR04 | GPIORO03 GPIOR02 | GPIOR01 | GPIOR00 24
0x1D (0x3D) EIMSK - — — — INT3 INT2 INT1 INTO 71
0x1C (0x3C) EIFR - - - - INTF3 INTF2 INTF1 INTFO 72
0x1B (0x3B) PCIFR - - - - PCIF3 PCIF2 PCIF1 PCIFO 73
0x1A (0x3A) | GPIOR2 GPIOR27 | GPIOR26 | GPIOR25 | GPIOR24 | GPIOR23 GPIOR22 | GPIOR21 | GPIOR20 24
0x19 (0x39) GPIOR1 GPIOR17 | GPIOR16 | GPIOR15 | GPIOR14 | GPIOR13 GPIOR12 | GPIOR11 | GPIOR10 24

0x18 (0x38) | Reserved - - — = = - - _
0x17 (0x37) | Reserved - - — = = - - _
0x16 (0x36) TIFR1 - - ICF1 - - OCF1B OCF1A TOV1 115
0x15 (0x35) TIFRO = - - - - OCFO0B OCFOA TOVO 91

0x14 (0x34) | Reserved - - - = = = - _
0x13 (0x33) | Reserved - - - — = = - _
0x12 (0x32) | Reserved - - — = = - - _

0x11 (0x31) | Reserved - - - - - — — —
Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory
addresses should never be written.

2. /O registers within the address range 0x00 - Ox1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags.
The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the 1/0O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing /0
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The
ATmega16/32/64/M1/C1 is a complex microcontroller with more peripheral units than can be supported within the 64
location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - OxFF in SRAM,
only the ST/STS/STD and LD/LDS/LDD instructions can be used.

5. These registers are only available on ATmega32/64M1. For other products described in this datasheet, these locations
are reserved.
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29. Register Summary (Continued)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0 Page
0x10 (0x30) | Reserved - - - - - - - -
O0xOF (0x2F) | Reserved - - - - - - - -
OxOE (0x2E) | PORTE - - - - - PORTE2 | PORTE1 | PORTEO 69
0x0D (0x2D) DDRE - - - - - DDE2 DDE1 DDEO 69
0x0C (0x2C) PINE - - - - - PINE2 PINE1 PINEO 69
0x0B (0x2B) PORTD PORTD7 | PORTD6 | PORTD5 | PORTD4 PORTD3 PORTD2 PORTD1 PORTDO 69
0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDDO 69
0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PINDO 69
0x08 (0x28) | PORTC PORTC7 | PORTC6 | PORTC5 | PORTC4 | PORTC3 PORTC2 | PORTC1 | PORTCO 68
0x07 (0x27) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDCA1 DDCO 69
0x06 (0x26) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINCO 69
0x05 (0x25) PORTB PORTB7 | PORTB6 | PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTBO 68
0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDBO 68
0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINBO 68
0x02 (0x22) | Reserved - - - - - - - -
0x01 (0x21) | Reserved - - - - - - - -
0x00 (0x20) | Reserved - - - - - - - -
Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory

addresses should never be written.

2. /O registers within the address range 0x00 - Ox1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags.
The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the 1/0O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing 1/0
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The
ATmega16/32/64/M1/C1 is a complex microcontroller with more peripheral units than can be supported within the 64
location reserved in Opcode for the IN and OUT instructions. For the Extended 1/O space from 0x60 - OxFF in SRAM,
only the ST/STS/STD and LD/LDS/LDD instructions can be used.

5. These registers are only available on ATmega32/64M1. For other products described in this datasheet, these locations
are reserved.
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30. Errata

30.1 Errata Summary

30.1.1 ATmegal6M1/16C1/32M1/32C1 Rev. C (Mask Revision)

LIN break delimiter
ADC with PSC2-synchronized
ADC amplifier measurement is unstable

30.1.2 ATmegal6M1/16C1/32M1/32C1 Rev. B (Mask Revision)

The AMPCMPx bits return 0

No comparison when amplifier is used as comparator input and ADC input
CRC calculation of diagnostic frames in LIN 2.x.

Wrong TSOFFSET manufacturing calibration value

PDO0-PD3 set to outputs and PD4 pulled down following power-on with external reset active.

LIN break delimiter

ADC with PSC2-synchronized

ADC amplifier measurement is unstable

PSC emulation

PSC OCRxx register update according to PLOCK2 usage
Read/Write instructions of MUXn and REFS1:0

30.1.3 ATmegal6M1/16C1/32M1/32C1 Rev. A (Mask Revision)

Inopportune reset of the CANIDM registers

The AMPCMPXx bits return 0

No comparison when amplifier is used as comparator input and ADC input

CRC calculation of diagnostic frames in LIN 2.x

PDO0-PD3 set to outputs and PD4 pulled down following power-on with external reset active
LIN break delimiter

ADC with PSC2-synchronized

ADC amplifier measurement is unstable

PSC emulation

Read/Write instructions of MUXn and REFS1:0

30.1.4 Errata Description

1.

Inopportune reset of the CANIDM registers

After the reception of a CAN frame in a MOb, the ID mask registers are reset.
Problem fix / workaround

Before enabling a MOb in reception, re-initialize the ID mask registers - CANIDM[4..1].

The AMPCMPX bits return 0
When they are read the AMPCMPx bits in AMPxCSR registers return 0.
Problem fix / workaround

If the reading of the AMPCMPXx bits is required, store the AMPCMPx value in a variable in memory before writing

in the AMPxCSR register and read the variable when necessary.
No comparison when amplifier is used as comparator input and ADC input

When it is selected as ADC input, an amplifier receives no clock signal when the ADC is stopped. In that case, if
the amplifier is also used as comparator input, no analog signal is propagated and no comparison is done.

Problem fix / workaround
Select another ADC channel rather than the working amplified channel.
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4. CRC calculation of diagnostic frames in LIN 2.x.
Diagnostic frames of LIN 2.x use “classic checksum” calculation. Unfortunately, the setting of the checksum model
is enabled when the HEADER s transmitted/received. Usually, in LIN 2.x the LIN/UART controller is initialized to
process “enhanced checksums” and a slave task does not know what kind of frame it will work on before checking
the ID.
Problem fix / workaround
This workaround is to be implemented only in case of transmission/reception of diagnostics frames.
a. Slave task of master node:
Before enabling the HEADER, the master must set the appropriate LIN13 bitvalue in LINCR register.
b. For slaves nodes, the workaround is in 2 parts:
e Before enabling the RESPONSE, use the following function:
void lin_wa_head(void) {
unsi gned char tenp;
tenp = LINBTR
LI NCR = 0x00; /1 1t is not a RESET !
LI NBTR = (1<<LDI SR) | t enp;
LI NCR = (1<<LIN13)| (1<<LENA)| (0O<<LCMD2) | (O<<LCMD1)| ( 0<<LCNMDO);

LI NDLR = 0x88; /1 1f it isn't already done
}
e Once the RESPONSE is received or sent (having RxOK or TxOK as well as LERR), use the following
function:

void lin_wa_tail(void) ({
LI NCR = 0x00; // 1t is not a RESET !
LI NBTR = 0x00;
LI NCR = (0<<LI N13) | ( 1<<LENA) | ( 0<<LCMD2) | (0<<LCMD1) | ( 0<<LCMDO) ;

The time-out counter is disabled during the RESPONSE when the workaround is set.

5.  Wrong TSOFFSET manufacturing calibration value.
Erroneous value of TSOFFSET programmed in signature byte.
(TSOFFSET was introduced from REVB silicon).
Problem fix / workaround
To identify RevB with wrong TSOFFSET value, check device signature byte at address 0X3F if value is not 0X42
(Ascii code ‘B’) then use the following formula.
TS_OFFSET(True) = (150*(1-TS_GAIN))+TS_OFFSET.

6. PDO0-PD3 set to outputs and PD4 pulled down following power-on with external reset active.
At power-on with the external reset signal active the four I/O lines PD0-PD3 may be forced into an output state.
Normally these lines should be in an input state. PD4 may be pulled down with internal 220kQ resistor. Following
release of the reset line (whatever is the startup time) with the clock running the I/Os PD0-PD4 will adopt their
intended input state.
Problem fix / workaround
None
7. LIN Break Delimitter
In SLAVE MODE, a BREAK field detection error can occur under following conditions. The problem occurs if 2
conditions occur simultaneously:
a. The DOMINANT part of the BREAK is (N+0.5)*Tbit long with N=13, 14,15, ...
b. The RECESSIVE part of the BREAK (BREAK DELIMITER) is equal to 1*Tbit. (see note below)
The BREAK_high is not detected, and the 2nd bit of the SYNC field is interpreted as the BREAK DELIMITER. The
error is detected as a framing error on the first bits of the PID or on subsequent Data or a Checksum error.
There is no error if BREAK_high is greater than 1*Tbit + 18%. There is no problem in Master mode.
Note: LIN2.1 Protocol Specification paragraph 2.3.1.1 Break field says: “A break field is always generated by the
master task(in the master node) and it shall be at least 13 nominal bit times of dominant value, followed by a

break delimiter, as shown in Figure 30-1 on page 308. The break delimiter shall be at least one nominal bit
time long.”
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Figure 30-1. The Break Field
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8. ADC measurement reports abnormal values with PSC2-synchronized conversions
When using ADC in synchronized mode, an unexpected extra Single ended conversion can spuriously re-start.
This can occur when the End of conversion and the Trigger event occur at the same time.
Workaround
No workaround

9. ADC amplifier measurement is unstable
When switching from a single-ended ADC channel to an amplified channel, noise can appear on the next ADC
conversion.
Workaround
After switching from a single ended to an amplified channel, discard the first ADC conversion.
10. PSC emulation
In emulation mode, TCNTn, OCRnx and ICRn 16-bit registers are accessed via the TEMP register. This can
induce an execution error, in step by step mode due to TEMP register corruption.
Workaround
No workaround

11. PSC OCRxx Register Update according to PLOCK2 Usage
If the PSC is clocked from PLL, and if PLOCK2 bit is changed at the same time as PSC end of cycle occurs, and if
OCRXxx registers contents have been changed, then the updated OCRxx registers contents are not predictable.
The cause is a synchronization issue between two registers in two different clock domains (PLL clock which
clocks PSC and CPU clock).

Workaround

Enable the PSC end of cycle interrupt.

At the beginning of PSC EOC interrupt vector, change PLOCK value (OCRxx registers can be updated outside the
interrupt vector).

This process guarantees that UPDATE and PLOCK actions will not occur at the same moment.

12. Read / Write instructions of MUXn and REFS1.:0 bits in the ADMUX Register during Analog conversion
during Analog conversion, the set or clear instructions of ADMUX channel and reference selection bits will fail. The
bits of the temporary buffer will be written in place of the final bits.

Workaround
Wait for the end of ADC conversion before any write of new channel or reference selection values in ADMUX.

Workaround
None

308 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 Atmel



31. Ordering Information

Table 31-1. ATmegal6/32/64/M1/C1 Ordering Codes

Memory Size PSC Power Supply
16K Yes 2.7 to 5.5V
16K Yes 2.7t0 5.5V
32K No 2.7 to 5.5V
32K No 2.7t0 5.5V
32K Yes 2.7 to 5.5V
32K Yes 2.7t0 5.5V
64K No 2.7 to 5.5V
64K No 2.7 to 5.5V
64K Yes 2.7 to 5.5V
64K Yes 2.7 t0 5.5V

Note: All packages are Pb free, fully LHF.

32. Package Information

Ordering Code
MEGA16M1-15AZ
MEGA16M1-15MZ
MEGA32C1-15AZ
MEGA32C1-15MZ
MEGA32M1-15AZ
MEGA32M1-15MZ
MEGAG4C1-15AZ
MEGA64C1-15MZ
MEGAG4M1-15AZ
MEGA64M1-15MZ

Table 32-1. ATmegal6/32/64/M1/C1 Package Information

Package Type

Package
MA
PV
MA
PV
MA
PV
MA
PV
MA
PV

Operation Range
—40°C to +125°C
—40°C to +125°C
—40°C to +125°C
—40°C to +125°C
—40°C to +125°C
—40°C to +125°C
—40°C to +125°C
—40°C to +125°C
—40°C to +125°C
—40°C to +125°C

MA
PV

Atmel

32-lead, 7x7mm body size, 1.0mm body thickness, 0.8mm lead pitch, thin profile plastic quad flat package (TQFP)

32-lead, 7x7mm body, 0.65mm pitch, quad flat no lead package (QFN)
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Figure 32-1. MA

Drawings not scaled - A
D1 —— A2
32 —— | —— A1
. |
o o
O
o o
o o
o o
+ E1
o o o
o s o s s
’ o o
o o
\ #
R !
errd A
Top View el
Side View
‘ D
H H H H H H H H COMMON DIMENSIONS
(Unit of Measure = mm)
1 ! Symbol| MIN NOM MAX | NOTE
o s o s s A I 120
o o
A1 0.05 - 0.15
o o
E A2 0.95 1.00 1.05
o o
D/E 8.75 9.00 9.25
] — D1/E1 | 6.90 | 7.00 7.10 2
b———c T C 0.09 -——= 0.20
L 0.45 —_ 0.75
THERRRAE 0 T
) e 0.80 TYP.
Bottom View n 32
Notes: 1. This drawing is for general information only. Refer to JEDEC Drawing MS-026, Variation ABA.
2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25mm per side.
Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.
3. Lead coplanarity is 0.10mm maximum.
02/29/12
TITLE GPC DRAWING NO. | REV.
- Package Drawing Contact: MA, 32 Lds - 0.80mm Pitch, 7x7x1.00mm Body size
AtmeL packagedrawings@atmel.com | Thin Profile Plastic Quad Fiat Package (TQFP) AUT MA C
310 ATmega16/32/64/M1/C1 [DATASHEET] /It
mel

76470-AVR-01/15



Figure 32-2. PV
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33.

312

Revision History

Please note that the following page numbers referred to in this section refer to the specific revision mentioned, not to this
document.

Revision No. History

e Section 30.1.2 “ATmega16M1/16C1/32M1/32C1 Rev. B (Mask Revision)” on page 306
76470-AVR-01/15 updated
e Number 11. in Section 30.1.4 “Errata Description” on page 308 added

7647N-AVR-11/14 ¢ Table 7-1 “Reset Characteristics” on page 39 updated

7647M-AVR-08/14 e Section 31 “Ordering Information” on page 309 updated

7647L-AVR-07/14 ¢ Put datasheet in the latest template

7647K-AVR-12/13 e Table 25-17 “Serial Programming Instruction Set” on page 272 updated

7647J-AVR-04/13 e Section 26.8 “CAN Physical Layer Characteristics” on page 322 added
e Section “Features” on page 2 updated

76471-AVR-07/12 e Table 0-1 “ATmega32/64/M1/C1 Product Line-up” on page 2 updated

e Table 7-5 “Watchdog Timer Configuration” on page 55 updated
e Package drawing updated
7647H-AVR-03/12 o
e ADC description updated
e Errata list updated
7647G-AVR-09/11
¢ DAC description updated
¢ Package Information updated
7647F-AVR-04/09 .
e Stack pointer updated
¢ Flash Boot Loader Parameters updated
e DC Characteristics updated
¢ ISRC - Current Source updated
¢ Analog comparator updated
¢ Clock Characteristics updated
7647E-AVR-03/09 )
¢ ADC noise canceller updated
¢ Brown-out Detection updated
¢ Ordering Information updated
¢ ADC Characteristics updated
e Typical Characteristics updated
e Manufacturing Calibration update
7647D-AVR-08/08
¢ Errata update
e Added ATmega16M1 product offering
¢ Modified Clock Distribution diagram, Figure 5-1 on page 25
¢ Modified PLL Clocking Sytem diagram, Figure 5-3 on page 30
¢ Modified Section 5.6.1 “Internal PLL” on page 29

o

e Updated Current Source Value, see Section 26.2 “DC Characteristics” on page 273
¢ Updated Table 25-12 on page 260

e Updated Table 25-13 on page 260

¢ Added PCICR definition in Section 29. “Register Summary” on page 299
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