
Features
• High Performance, Low Power Atmel® AVR® 8-Bit Microcontroller
• Advanced RISC Architecture

– 130 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 16MIPS Throughput at 16MHz
– On-Chip 2-cycle Multiplier

• High Endurance Non-volatile Memory Segments
– In-System Self-programmable Flash Program Memory

• 32KBytes (ATmega325/ATmega3250)
• 64KBytes (ATmega645/ATmega6450)

– EEPROM
• 1Kbytes (ATmega325/ATmega3250)
• 2Kbytes (ATmega645/ATmega6450)

– Internal SRAM
• 2Kbytes (ATmega325/ATmega3250)
• 4Kbytes (ATmega645/ATmega6450)

– Write/Erase Cycles: 10,000 Flash/ 100,000 EEPROM
– Data retention: 20 years at 85°C/100 years at 25°C(1)

– Optional Boot Code Section with Independent Lock Bits
• In-System Programming by On-chip Boot Program
• True Read-While-Write Operation

– Programming Lock for Software Security
• Atmel® QTouch® library support

– Capacitive touch buttons, sliders and wheels
– QTouch and QMatrix® acquisition
– Up to 64 sense channels

• JTAG (IEEE std. 1149.1 compliant) Interface
– Boundary-scan Capabilities According to the JTAG Standard
– Extensive On-chip Debug Support
– Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface

• Peripheral Features
– Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture 

Mode
– Real Time Counter with Separate Oscillator
– Four PWM Channels
– 8-channel, 10-bit ADC
– Programmable Serial USART
– Master/Slave SPI Serial Interface
– Universal Serial Interface with Start Condition Detector
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator
– Interrupt and Wake-up on Pin Change

• Special Microcontroller Features
– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated Oscillator
– External and Internal Interrupt Sources
– Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and 

Standby
• I/O and Packages

– 53/68 Programmable I/O Lines
– 64-lead TQFP, 64-pad QFN/MLF, and 100-lead TQFP

• Speed Grade:
– ATmega325V/ATmega3250V/ATmega645V/ATmega6450V:

• 0 - 4MHz @ 1.8 - 5.5V; 0 - 8MHz @ 2.7 - 5.5V
– Atmel ATmega325/3250/645/6450: 

• 0 - 8MHz @ 2.7 - 5.5V; 0 - 16MHz @ 4.5 - 5.5V
• Temperature range:

– -40°C to 85°C IndustrSial
• Ultra-Low Power Consumption

– Active Mode: 
1MHz, 1.8V: 350µA
32kHz, 1.8V: 20µA (including Oscillator)

– Power-down Mode: 
100 nA at 1.8V

8-bit Atmel 
Microcontroller 
with In-System 
Programmable 
Flash

ATmega325/V
ATmega3250/V
ATmega645/V
ATmega6450/V

2570N–AVR–05/11
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1. Pin Configurations

Figure 1-1. Pinout ATmega3250/6450
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Figure 1-2. Pinout ATmega325/645

Note: The large center pad underneath the QFN/MLF packages is made of metal and internally con-
nected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If 
the center pad is left unconnected, the package might loosen from the board.
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2. Overview
The Atmel ATmega325/3250/645/6450 is a low-power CMOS 8-bit microcontroller based on the
AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the
Atmel ATmega325/3250/645/6450 achieves throughputs approaching 1 MIPS per MHz allowing
the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram

The Atmel®AVR® core combines a rich instruction set with 32 general purpose working registers.
All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two inde-
pendent registers to be accessed in one single instruction executed in one clock cycle. The
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resulting architecture is more code efficient while achieving throughputs up to ten times faster
than conventional CISC microcontrollers.

The Atmel ATmega325/3250/645/6450 provides the following features: 32/64K bytes of In-Sys-
tem Programmable Flash with Read-While-Write capabilities, 1/2K bytes EEPROM, 2/4K byte
SRAM, 54/69 general purpose I/O lines, 32 general purpose working registers, a JTAG interface
for Boundary-scan, On-chip Debugging support and programming, three flexible Timer/Counters
with compare modes, internal and external interrupts, a serial programmable USART, Universal
Serial Interface with Start Condition Detector, an 8-channel, 10-bit ADC, a programmable
Watchdog Timer with internal Oscillator, an SPI serial port, and five software selectable power
saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI
port, and interrupt system to continue functioning. The Power-down mode saves the register
contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or
hardware reset. In Power-save mode, the asynchronous timer will continue to run, allowing the
user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction
mode stops the CPU and all I/O modules except asynchronous timer and ADC to minimize
switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is
running while the rest of the device is sleeping. This allows very fast start-up combined with low-
power consumption.

Atmel offers the QTouch® library for embedding capacitive touch buttons, sliders and wheels-
functionality into AVR microcontrollers. The patented charge-transfer signal acquisition
offersrobust sensing and includes fully debounced reporting of touch keys and includes Adjacent
KeySuppression® (AKS™) technology for unambiguous detection of key events. The easy-to-use
QTouch Suite toolchain allows you to explore, develop and debug your own touch applications.

The device is manufactured using Atmel’s high density non-volatile memory technology. The
On-chip In-System re-Programmable (ISP) Flash allows the program memory to be repro-
grammed In-System through an SPI serial interface, by a conventional non-volatile memory
programmer, or by an On-chip Boot program running on the AVR core. The Boot program can
use any interface to download the application program in the Application Flash memory. Soft-
ware in the Boot Flash section will continue to run while the Application Flash section is updated,
providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System
Self-Programmable Flash on a monolithic chip, the Atmel Atmel ATmega325/3250/645/6450 is a
powerful microcontroller that provides a highly flexible and cost effective solution to many
embedded control applications.

The Atmel ATmega325/3250/645/6450 is supported with a full suite of program and system
development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators,
In-Circuit Emulators, and Evaluation kits.
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2.2 Comparison between ATmega325, ATmega3250, ATmega645 and ATmega6450
The ATmega325, ATmega3250, ATmega645, and ATmega6450 differ only in memory sizes, pin
count and pinout. Table 2-1 on page 6 summarizes the different configurations for the four
devices.

2.3 Pin Descriptions
The following section describes the I/O-pin special functions.

2.3.1 VCC

Digital supply voltage.

2.3.2 GND
Ground.

2.3.3 Port A (PA7..PA0)
Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

2.3.4 Port B (PB7..PB0)
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port B has better driving capabilities than the other ports.

Por t  B  a lso  serves  the  func t ions  o f  va r ious  spec ia l  fea tu res  o f  the  A tme l
ATmega325/3250/645/6450 as listed on page 68.

2.3.5 Port C (PC7..PC0)
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port C output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Table 2-1. Configuration Summary

Device Flash EEPROM RAM
General Purpose
I/O Pins

ATmega325 32Kbytes 1Kbytes 2Kbytes 54

ATmega3250 32Kbytes 1Kbytes 2Kbytes 69

ATmega645 64Kbytes 2Kbytes 4Kbytes 54

ATmega6450 64Kbytes 2Kbytes 4Kbytes 69
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2.3.6 Port D (PD7..PD0)
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Por t  D  a lso  se rves  the  func t ions  o f  va r ious  spec ia l  f ea tu res  o f  the  A tme l
ATmega325/3250/645/6450 as listed on page 71. 

2.3.7 Port E (PE7..PE0)
Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port E output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port E pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Por t  E  a lso  serves  the  func t ions  o f  va r ious  spec ia l  fea tu res  o f  the  A tme l
ATmega325/3250/645/6450 as listed on page 72.

2.3.8 Port F (PF7..PF0)
Port F serves as the analog inputs to the A/D Converter.

Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins
can provide internal pull-up resistors (selected for each bit). The Port F output buffers have sym-
metrical drive characteristics with both high sink and source capability. As inputs, Port F pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port F
pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the
JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will
be activated even if a reset occurs.

Port F also serves the functions of the JTAG interface.

2.3.9 Port G (PG5..PG0)
Port G is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port G output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port G pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Por t  G  a lso  se rves  the  func t ions  o f  va r ious  spec ia l  fea tu res  o f  the  A tme l
ATmega325/3250/645/6450 as listed on page 72.

2.3.10 Port H (PH7..PH0)
Port H is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port H output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port H pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port H pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port H also serves the functions of various special features of the ATmega3250/6450 as listed
on page 72.
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2.3.11 Port J (PJ6..PJ0)
Port J is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port J output buffers have symmetrical drive characteristics with both high sink and source capa-
bility. As inputs, Port J pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port J pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port J also serves the functions of various special features of the ATmega3250/6450 as listed on
page 72.

2.3.12 RESET
Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in Table 28-4 on page
301. Shorter pulses are not guaranteed to generate a reset.

2.3.13 XTAL1
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

2.3.14 XTAL2
Output from the inverting Oscillator amplifier.

2.3.15 AVCC
AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally con-
nected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC

through a low-pass filter. 

2.3.16 AREF
This is the analog reference pin for the A/D Converter.



9
2570N–AVR–05/11

ATmega325/3250/645/6450

3. Resources
A comprehensive set of development tools, application notes and datasheets are available for
download on http://www.atmel.com/avr.

Note: 1.

4. Data Retention
Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C or 100 years at 25°C.

5. About Code Examples 
This documentation contains simple code examples that briefly show how to use various parts of
the device. These code examples assume that the part specific header file is included before
compilation. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen-
tation for more details.

For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

6. Capacitive touch sensing
The Atmel®QTouch® Library provides a simple to use solution to realize touch sensitive inter-
faces on most Atmel AVR® microcontrollers. The QTouch Library includes support for the
QTouch and QMatrix® acquisition methods.

Touch sensing can be added to any application by linking the appropriate Atmel QTouch Library
for the AVR Microcontroller. This is done by using a simple set of APIs to define the touch chan-
nels and sensors, and then calling the touch sensing API’s to retrieve the channel information
and determine the touch sensor states.

The QTouch Library is FREE and downloadable from the Atmel website at the following location:
www.atmel.com/qtouchlibrary. For implementation details and other information, refer to the
Atmel QTouch Library User Guide - also available for download from the Atmel website.

www.atmel.com/qtouchlibrary
http://www.atmel.com/dyn/resources/prod_documents/doc8207.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc8207.pdf
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7. AVR CPU Core

7.1 Overview
This section discusses the Atmel® AVR® core architecture in general. The main function of the
CPU core is to ensure correct program execution. The CPU must therefore be able to access
memories, perform calculations, control peripherals, and handle interrupts.

7.2 Architectural Overview

Figure 7-1. Block Diagram of the AVR Architecture 

In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with
separate memories and buses for program and data. Instructions in the program memory are
executed with a single level pipelining. While one instruction is being executed, the next instruc-
tion is pre-fetched from the program memory. This concept enables instructions to be executed
in every clock cycle. The program memory is In-System Reprogrammable Flash memory.
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The fast-access Register File contains 32 x 8-bit general purpose working registers with a single
clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typ-
ical ALU operation, two operands are output from the Register File, the operation is executed,
and the result is stored back in the Register File – in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data
Space addressing – enabling efficient address calculations. One of the these address pointers
can also be used as an address pointer for look up tables in Flash program memory. These
added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and
a register. Single register operations can also be executed in the ALU. After an arithmetic opera-
tion, the Status Register is updated to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to
directly address the whole address space. Most AVR instructions have a single 16-bit word for-
mat. Every program memory address contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and the
Application Program section. Both sections have dedicated Lock bits for write and read/write
protection. The SPM instruction that writes into the Application Flash memory section must
reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the
Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack
size is only limited by the total SRAM size and the usage of the SRAM. All user programs must
initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack
Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed
through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional Global
Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the
Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector posi-
tion. The lower the Interrupt Vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Regis-
ters, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as the Data
Space locations following those of the Register File, 0x20 - 0x5F. In addition, the Atmel
ATmega325/3250/645/6450 has Extended I/O space from 0x60 - 0xFF in SRAM where only the
ST/STS/STD and LD/LDS/LDD instructions can be used.

7.3 ALU – Arithmetic Logic Unit
The high-performance AVR ALU operates in direct connection with all the 32 general purpose
working registers. Within a single clock cycle, arithmetic operations between general purpose
registers or between a register and an immediate are executed. The ALU operations are divided
into three main categories – arithmetic, logical, and bit-functions. Some implementations of the
architecture also provide a powerful multiplier supporting both signed/unsigned multiplication
and fractional format. See the “Instruction Set” section for a detailed description.
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7.4 Status Register
The Status Register contains information about the result of the most recently executed arithme-
tic instruction. This information can be used for altering program flow in order to perform
conditional operations. Note that the Status Register is updated after all ALU operations, as
specified in the Instruction Set Reference. This will in many cases remove the need for using the
dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored
when returning from an interrupt. This must be handled by software.

7.4.1 SREG – AVR Status Register
The AVR Status Register – SREG – is defined as:

• Bit 7 – I: Global Interrupt Enable
The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual inter-
rupt enable control is then performed in separate control registers. If the Global Interrupt Enable
Register is cleared, none of the interrupts are enabled independent of the individual interrupt
enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by
the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by
the application with the SEI and CLI instructions, as described in the instruction set reference.

• Bit 6 – T: Bit Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or desti-
nation for the operated bit. A bit from a register in the Register File can be copied into T by the
BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the
BLD instruction.

• Bit 5 – H: Half Carry Flag 
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful
in BCD arithmetic. See the “Instruction Set Description” for detailed information.

• Bit 4 – S: Sign Bit, S = N ⊕ V
The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement
Overflow Flag V. See the “Instruction Set Description” for detailed information.

• Bit 3 – V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the
“Instruction Set Description” for detailed information.

• Bit 2 – N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

• Bit 1 – Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction
Set Description” for detailed information.

Bit 7 6 5 4 3 2 1 0

0x3F (0x5F) I T H S V N Z C SREG

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 0 – C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.

7.5 General Purpose Register File
The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve
the required performance and flexibility, the following input/output schemes are supported by the
Register File:

• One 8-bit output operand and one 8-bit result input

• Two 8-bit output operands and one 8-bit result input

• Two 8-bit output operands and one 16-bit result input

• One 16-bit output operand and one 16-bit result input

Figure 7-2 on page 13 shows the structure of the 32 general purpose working registers in the
CPU.

Figure 7-2. AVR CPU General Purpose Working Registers

Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.

As shown in Figure 7-2 on page 13, each register is also assigned a data memory address,
mapping them directly into the first 32 locations of the user Data Space. Although not being
physically implemented as SRAM locations, this memory organization provides great flexibility in
access of the registers, as the X-, Y- and Z-pointer registers can be set to index any register in
the file.

7.5.1 The X-register, Y-register, and Z-register
The registers R26..R31 have some added functions to their general purpose usage. These reg-
isters are 16-bit address pointers for indirect addressing of the data space. The three indirect
address registers X, Y, and Z are defined as described in Figure 7-3 on page 14.

7 0 Addr.

R0 0x00

R1 0x01

R2 0x02

…

R13 0x0D

General R14 0x0E

Purpose R15 0x0F

Working R16 0x10

Registers R17 0x11

…

R26 0x1A X-register Low Byte

R27 0x1B X-register High Byte

R28 0x1C Y-register Low Byte

R29 0x1D Y-register High Byte

R30 0x1E Z-register Low Byte

R31 0x1F Z-register High Byte
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Figure 7-3. The X-, Y-, and Z-registers

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the instruction set reference for details).

7.6 Stack Pointer
The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. The Stack Pointer Register always points
to the top of the Stack. Note that the Stack is implemented as growing from higher memory loca-
tions to lower memory locations. This implies that a Stack PUSH command decreases the Stack
Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt
Stacks are located. This Stack space in the data SRAM must be defined by the program before
any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to
point above 0x60. The Stack Pointer is decremented by one when data is pushed onto the Stack
with the PUSH instruction, and it is decremented by two when the return address is pushed onto
the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when data is
popped from the Stack with the POP instruction, and it is incremented by two when data is
popped from the Stack with return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of
bits actually used is implementation dependent. Note that the data space in some implementa-
tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register
will not be present.

7.7 Instruction Execution Timing
This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the
chip. No internal clock division is used.

Figure 7-4 on page 15 shows the parallel instruction fetches and instruction executions enabled
by the Harvard architecture and the fast-access Register File concept. This is the basic pipelin-

15 XH XL 0

X-register 7 0 7 0

R27 (0x1B) R26 (0x1A)

15 YH YL 0

Y-register 7 0 7 0

R29 (0x1D) R28 (0x1C)

15 ZH ZL 0

Z-register 7 0 7 0

R31 (0x1F) R30 (0x1E)

Bit 15 14 13 12 11 10 9 8

0x3E (0x5E) SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH

0x3D (0x5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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ing concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions
per cost, functions per clocks, and functions per power-unit.

Figure 7-4. The Parallel Instruction Fetches and Instruction Executions

Figure 7-5 on page 15 shows the internal timing concept for the Register File. In a single clock
cycle an ALU operation using two register operands is executed, and the result is stored back to
the destination register.

Figure 7-5. Single Cycle ALU Operation

7.8 Reset and Interrupt Handling
The AVR provides several different interrupt sources. These interrupts and the separate Reset
Vector each have a separate program vector in the program memory space. All interrupts are
assigned individual enable bits which must be written logic one together with the Global Interrupt
Enable bit in the Status Register in order to enable the interrupt. Depending on the Program
Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12
are programmed. This feature improves software security. See the section “Memory Program-
ming” on page 265 for details.

The lowest addresses in the program memory space are by default defined as the Reset and
Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 49. The list also
determines the priority levels of the different interrupts. The lower the address the higher is the
priority level. RESET has the highest priority, and next is INT0 – the External Interrupt Request
0. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the IVSEL
bit in the MCU Control Register (MCUCR). Refer to “Interrupts” on page 49 for more information.
The Reset Vector can also be moved to the start of the Boot Flash section by programming the
BOOTRST Fuse, see “Boot Loader Support – Read-While-Write Self-Programming” on page
251.

clk

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch

T1 T2 T3 T4

CPU

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

T1 T2 T3 T4

clkCPU
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When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are dis-
abled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled
interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a
Return from Interrupt instruction – RETI – is executed. 

There are basically two types of interrupts. The first type is triggered by an event that sets the
Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vec-
tor in order to execute the interrupt handling routine, and hardware clears the corresponding
Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s)
to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is
cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is
cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt
Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the
Global Interrupt Enable bit is set, and will then be executed by order of priority. 

The second type of interrupts will trigger as long as the interrupt condition is present. These
interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the
interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one
more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor
restored when returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled.
No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the
CLI instruction. The following example shows how this can be used to avoid interrupts during the
timed EEPROM write sequence.

Assembly Code Example

in r16, SREG ; store SREG value

cli ; disable interrupts during timed sequence

sbi EECR, EEMWE ; start EEPROM write

sbi EECR, EEWE

out SREG, r16 ; restore SREG value (I-bit)

C Code Example

char cSREG;

cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */

__disable_interrupt(); 

EECR |= (1<<EEMWE); /* start EEPROM write */

EECR |= (1<<EEWE);

SREG = cSREG; /* restore SREG value (I-bit) */
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When using the SEI instruction to enable interrupts, the instruction following SEI will be exe-
cuted before any pending interrupts, as shown in this example.

7.8.1 Interrupt Response Time
The interrupt execution response for all the enabled AVR interrupts is four clock cycles mini-
mum. After four clock cycles the program vector address for the actual interrupt handling routine
is executed. During this four clock cycle period, the Program Counter is pushed onto the Stack.
The vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If
an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed
before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt
execution response time is increased by four clock cycles. This increase comes in addition to the
start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock 
cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack Pointer is 
incremented by two, and the I-bit in SREG is set.

Assembly Code Example

sei ; set Global Interrupt Enable

sleep; enter sleep, waiting for interrupt

; note: will enter sleep before any pending 

; interrupt(s)

C Code Example

__enable_interrupt(); /* set Global Interrupt Enable */

__sleep(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */
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8. AVR Memories
This section describes the different memories in the Atmel ATmega325/3250/645/6450. The
AVR architecture has two main memory spaces, the Data Memory and the Program Memory
space. In addition, the Atmel ATmega325/3250/645/6450 features an EEPROM Memory for
data storage. All three memory spaces are linear.

8.1 In-System Reprogrammable Flash Program Memory 
The Atmel ATmega325/3250/645/6450 contains 32/64K bytes On-chip In-System Reprogram-
mable Flash memory for program storage. Since all AVR instructions are 16 or 32 bits wide, the
Flash is organized as 16/32K x 16. For software security, the Flash Program memory space is
divided into two sections, Boot Program section and Application Program section. 

The Flash memory has an endurance of at least 10,000 write/erase cycles. The Atmel
ATmega325/3250/645/6450 Program Counter (PC) is 14/15 bits wide, thus addressing the
16/32K program memory locations. The operation of Boot Program section and associated Boot
Lock bits for software protection are described in detail in “Boot Loader Support – Read-While-
Write Self-Programming” on page 251. “Memory Programming” on page 265 contains a detailed
description on Flash data serial downloading using the SPI pins or the JTAG interface.

Constant tables can be allocated within the entire program memory address space (see the LPM
– Load Program Memory instruction description).

Timing diagrams for instruction fetch and execution are presented in “Instruction Execution Tim-
ing” on page 14.

Figure 8-1. Program Memory Map

0x0000

0x3FFF/0x7FFF

Program Memory

Application Flash Section
 

Boot Flash Section
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8.2 SRAM Data Memory
Figure 8-2 on page 19 shows how the Atmel ATmega325/3250/645/6450 SRAM Memory is
organized.

The Atmel ATmega325/3250/645/6450 is a complex microcontroller with more peripheral units
than can be supported within the 64 locations reserved in the Opcode for the IN and OUT
instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and
LD/LDS/LDD instructions can be used. 

The lower 2304/4352 data memory locations address both the Register File, the I/O memory,
Extended I/O memory, and the internal data SRAM. The first 32 locations address the Register
File, the next 64 location the standard I/O memory, then 160 locations of Extended I/O memory,
and the next 2048/4096 locations address the internal data SRAM.

The five different addressing modes for the data memory cover: Direct, Indirect with Displace-
ment, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register
File, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address given
by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-incre-
ment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 I/O Registers, 160 Extended I/O Registers, and
the 2,048 bytes of internal data SRAM in the Atmel ATmega325/3250/645/6450 are all accessi-
ble through all these addressing modes. The Register File is described in “General Purpose
Register File” on page 13.

Figure 8-2. Data Memory Map

8.2.1 Data Memory Access Times
This section describes the general access timing concepts for internal memory access. The
internal data SRAM access is performed in two clkCPU cycles as described in Figure 8-3.

32 Registers
64 I/O Registers

Internal SRAM
(2048 x 8)/
(4096 x 8)

0x0000 - 0x001F
0x0020 - 0x005F

0x08FF/0x10FF

0x0060 - 0x00FF

Data Memory

160 Ext I/O Reg.
0x0100
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Figure 8-3. On-chip Data SRAM Access Cycles

8.3 EEPROM Data Memory
The Atmel ATmega325/3250/645/6450 contains 1/2K bytes of data EEPROM memory. It is
organized as a separate data space, in which single bytes can be read and written. The
EEPROM has an endurance of at least 100,000 write/erase cycles. The access between the
EEPROM and the CPU is described in the following, specifying the EEPROM Address Regis-
ters, the EEPROM Data Register, and the EEPROM Control Register.

For a detailed description of SPI, JTAG and Parallel data downloading to the EEPROM, see
page 280, page 284, and page 268 respectively.

8.3.1 EEPROM Read/Write Access
The EEPROM Access Registers are accessible in the I/O space.

The write access time for the EEPROM is given in Table 8-1. A self-timing function, however,
lets the user software detect when the next byte can be written. If the user code contains instruc-
tions that write the EEPROM, some precautions must be taken. In heavily filtered power
supplies, VCC is likely to rise or fall slowly on power-up/down. This causes the device for some
period of time to run at a voltage lower than specified as minimum for the clock frequency used.
See “Preventing EEPROM Corruption” on page 21. for details on how to avoid problems in these
situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.
Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed.

8.3.2 EEPROM Write During Power-down Sleep Mode
When entering Power-down sleep mode while an EEPROM write operation is active, the
EEPROM write operation will continue, and will complete before the Write Access time has
passed. However, when the write operation is completed, the clock continues running, and as a

clk
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consequence, the device does not enter Power-down entirely. It is therefore recommended to
verify that the EEPROM write operation is completed before entering Power-down.

8.3.3 Preventing EEPROM Corruption
During periods of low VCC, the EEPROM data can be corrupted because the supply voltage is
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can
be done by enabling the internal Brown-out Detector (BOD). If the detection level of the internal
BOD does not match the needed detection level, an external low VCC reset Protection circuit can
be used. If a reset occurs while a write operation is in progress, the write operation will be com-
pleted provided that the power supply voltage is sufficient.

8.4 I/O Memory
The I/O space definition of the Atmel ATmega325/3250/645/6450 is shown in “Register Sum-
mary” on page 336.

All Atmel ATmega325/3250/645/6450 I/Os and peripherals are placed in the I/O space. All I/O
locations may be accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data
between the 32 general purpose working registers and the I/O space. I/O Registers within the
address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In
these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
Refer to the instruction set section for more details. When using the I/O specific commands IN
and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O Registers as data
space using LD and ST instructions, 0x20 must be added to these addresses. The Atmel
ATmega325/3250/645/6450 is a complex microcontroller with more peripheral units than can be
supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the
Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instruc-
tions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most
other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore
be used on registers containing such Status Flags. The CBI and SBI instructions work with reg-
isters 0x00 to 0x1F only.

The I/O and peripherals control registers are explained in later sections.

8.4.1 General Purpose I/O Registers
The Atmel ATmega325/3250/645/6450 contains three General Purpose I/O Registers. These
registers can be used for storing any information, and they are particularly useful for storing
global variables and Status Flags. General Purpose I/O Registers within the address range 0x00
- 0x1F are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.
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8.5 Register Description

8.5.1 EEARH and EEARL – The EEPROM Address Register

• Bits 15:11 – Reserved Bits
These bits are reserved bits in the Atmel ATmega325/3250/645/6450 and will always read as
zero.

• Bits 10:0 – EEAR10:0: EEPROM Address
The EEPROM Address Registers – EEARH and EEARL specify the EEPROM address in the
1/2K bytes EEPROM space. The EEPROM data bytes are addressed linearly between 0 and
1023/2047. The initial value of EEAR is undefined. A proper value must be written before the
EEPROM may be accessed.

Note: EEAR10 is only valid for ATmega645 and ATmega6450.

8.5.2 EEDR – The EEPROM Data Register

• Bits 7:0 – EEDR7..0: EEPROM Data
For the EEPROM write operation, the EEDR Register contains the data to be written to the
EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the
EEDR contains the data read out from the EEPROM at the address given by EEAR.

8.5.3 EECR – The EEPROM Control Register

• Bits 7:4 – Reserved Bits
These bits are reserved bits in the Atmel ATmega325/3250/645/6450 and will always read as
zero.

• Bit 3 – EERIE: EEPROM Ready Interrupt Enable
Writing EERIE to one enables the EEPROM Ready Interrupt if the I bit in SREG is set. Writing
EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a constant inter-
rupt when EEWE is cleared.

Bit 15 14 13 12 11 10 9 8

0x22 (0x42) – – – – – EEAR10 EEAR9 EEAR8 EEARH

0x21 (0x41) EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

7 6 5 4 3 2 1 0

Read/Write R R R R R R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 X X X

X X X X X X X X

Bit 7 6 5 4 3 2 1 0

0x20 (0x40) MSB LSB EEDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1F (0x3F) – – – – EERIE EEMWE EEWE EERE EECR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 X 0



23
2570N–AVR–05/11

ATmega325/3250/645/6450

• Bit 2 – EEMWE: EEPROM Master Write Enable
The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be written.
When EEMWE is set, setting EEWE within four clock cycles will write data to the EEPROM at
the selected address If EEMWE is zero, setting EEWE will have no effect. When EEMWE has
been written to one by software, hardware clears the bit to zero after four clock cycles. See the
description of the EEWE bit for an EEPROM write procedure.

• Bit 1 – EEWE: EEPROM Write Enable
The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When address
and data are correctly set up, the EEWE bit must be written to one to write the value into the
EEPROM. The EEMWE bit must be written to one before a logical one is written to EEWE, oth-
erwise no EEPROM write takes place. The following procedure should be followed when writing
the EEPROM (the order of steps 3 and 4 is not essential):

1. Wait until EEWE becomes zero.

2. Wait until SPMEN in SPMCSR becomes zero.

3. Write new EEPROM address to EEAR (optional).

4. Write new EEPROM data to EEDR (optional).

5. Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.

6. Within four clock cycles after setting EEMWE, write a logical one to EEWE.

The EEPROM can not be programmed during a CPU write to the Flash memory. The software
must check that the Flash programming is completed before initiating a new EEPROM write.
Step 2 is only relevant if the software contains a Boot Loader allowing the CPU to program the
Flash. If the Flash is never being updated by the CPU, step 2 can be omitted. See “Boot Loader
Support – Read-While-Write Self-Programming” on page 251 for details about Boot
programming. 

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is
interrupting another EEPROM access, the EEAR or EEDR Register will be modified, causing the
interrupted EEPROM access to fail. It is recommended to have the Global Interrupt Flag cleared
during all the steps to avoid these problems.

When the write access time has elapsed, the EEWE bit is cleared by hardware. The user soft-
ware can poll this bit and wait for a zero before writing the next byte. When EEWE has been set,
the CPU is halted for two cycles before the next instruction is executed.

• Bit 0 – EERE: EEPROM Read Enable
The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the correct
address is set up in the EEAR Register, the EERE bit must be written to a logic one to trigger the
EEPROM read. The EEPROM read access takes one instruction, and the requested data is
available immediately. When the EEPROM is read, the CPU is halted for four cycles before the
next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation is in
progress, it is neither possible to read the EEPROM, nor to change the EEAR Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 8-1 lists the typical pro-
gramming time for EEPROM access from the CPU. 
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The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (e.g. by disabling interrupts glob-
ally) so that no interrupts will occur during execution of these functions. The examples also
assume that no Flash Boot Loader is present in the software. If such code is present, the
EEPROM write function must also wait for any ongoing SPM command to finish.  

The next code examples show assembly and C functions for reading the EEPROM. The exam-
ples assume that interrupts are controlled so that no interrupts will occur during execution of
these functions.

Table 8-1. EEPROM Programming Time

Symbol
Number of Calibrated 
RC Oscillator Cycles Typical Programming Time

EEPROM write (from CPU) 27,072 3.4ms

Assembly Code Example

EEPROM_write:

; Wait for completion of previous write

sbic EECR,EEWE

rjmp EEPROM_write    

; Set up address (r18:r17) in address register

out  EEARH, r18

out  EEARL, r17

; Write data (r16) to Data Register

out  EEDR,r16

; Write logical one to EEMWE

sbi  EECR,EEMWE

; Start eeprom write by setting EEWE

sbi  EECR,EEWE

ret

C Code Example

void EEPROM_write(unsigned int uiAddress, unsigned char ucData)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEWE))

;

/* Set up address and Data Registers */

EEAR = uiAddress;

EEDR = ucData;

/* Write logical one to EEMWE */

EECR |= (1<<EEMWE);

/* Start eeprom write by setting EEWE */

EECR |= (1<<EEWE);

}
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8.5.4 GPIOR2 – General Purpose I/O Register 2

8.5.5 GPIOR1 – General Purpose I/O Register 1

8.5.6 GPIOR0 – General Purpose I/O Register 0

Assembly Code Example

EEPROM_read:

; Wait for completion of previous write

sbic EECR,EEWE

rjmp EEPROM_read

; Set up address (r18:r17) in address register

out  EEARH, r18

out  EEARL, r17

; Start eeprom read by writing EERE

sbi  EECR,EERE

; Read data from Data Register

in  r16,EEDR

ret

C Code Example

unsigned char EEPROM_read(unsigned int uiAddress)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEWE))

;

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from Data Register */

return EEDR;

}

Bit 7 6 5 4 3 2 1 0

0x2B (0x4B) MSB LSB GPIOR2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x2A (0x4A) MSB LSB GPIOR1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1E (0x3E) MSB LSB GPIOR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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9. System Clock and Clock Options

9.1 Clock Systems and their Distribution
Figure 9-1 on page 26 presents the principal clock systems in the AVR and their distribution. All
of the clocks need not be active at a given time. In order to reduce power consumption, the
clocks to modules not being used can be halted by using different sleep modes, as described in
“Power Management and Sleep Modes” on page 35. The clock systems are detailed below.

Figure 9-1. Clock Distribution

9.1.1 CPU Clock – clkCPU

The CPU clock is routed to parts of the system concerned with operation of the AVR core.
Examples of such modules are the General Purpose Register File, the Status Register and the
data memory holding the Stack Pointer. Halting the CPU clock inhibits the core from performing
general operations and calculations.

9.1.2 I/O Clock – clkI/O

The I/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, and USART.
The I/O clock is also used by the External Interrupt module, but note that some external inter-
rupts are detected by asynchronous logic, allowing such interrupts to be detected even if the I/O
clock is halted. Also note that start condition detection in the USI module is carried out asynchro-
nously when clkI/O is halted, enabling USI start condition detection in all sleep modes.

9.1.3 Flash Clock – clkFLASH

The Flash clock controls operation of the Flash interface. The Flash clock is usually active simul-
taneously with the CPU clock.
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9.1.4 Asynchronous Timer Clock – clkASY

The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked directly
from an external clock or an external 32kHz clock crystal. The dedicated clock domain allows
using this Timer/Counter as a real-time counter even when the device is in sleep mode.

9.1.5 ADC Clock – clkADC

The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks
in order to reduce noise generated by digital circuitry. This gives more accurate ADC conversion
results.

9.2 Clock Sources
The device has the following clock source options, selectable by Flash Fuse bits as shown
below. The clock from the selected source is input to the AVR clock generator, and routed to the
appropriate modules.

Note: For all fuses “1” means unprogrammed while “0” means programmed.

The various choices for each clocking option is given in the following sections. When the CPU
wakes up from Power-down or Power-save, the selected clock source is used to time the start-
up, ensuring stable Oscillator operation before instruction execution starts. When the CPU starts
from reset, there is an additional delay allowing the power to reach a stable level before com-
mencing normal operation. The Watchdog Oscillator is used for timing this real-time part of the
start-up time. The number of WDT Oscillator cycles used for each time-out is shown in Table 9-2
on page 27. The frequency of the Watchdog Oscillator is voltage dependent as shown in “Typi-
cal Characteristics” on page 306.

9.2.1 Default Clock Source
The device is shipped with CKSEL = “0010”, SUT = “10”, and CKDIV8 programmed. The default
clock source setting is the Internal RC Oscillator with longest start-up time and an initial system
clock prescaling of 8. This default setting ensures that all users can make their desired clock
source setting using an In-System or Parallel programmer.

Table 9-1. Device Clocking Options Select(Note:)

Device Clocking Option  CKSEL3..0

External Crystal/Ceramic Resonator 1111 - 1000

External Low-frequency Crystal 0111 - 0110

Calibrated Internal RC Oscillator 0010

External Clock 0000

Reserved 0011, 0001, 0101, 0100

Table 9-2. Number of Watchdog Oscillator Cycles

Typ Time-out (VCC = 5.0V) Typ Time-out (VCC = 3.0V) Number of Cycles

4.1ms 4.3ms 4K (4,096)

65ms 69ms 64K (65,536)
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9.3 Crystal Oscillator
XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be con-
figured for use as an On-chip Oscillator, as shown in Figure 9-2 on page 28. Either a quartz
crystal or a ceramic resonator may be used.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the
capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the
electromagnetic noise of the environment. Some initial guidelines for choosing capacitors for
use with crystals are given in Table 9-3 on page 28. For ceramic resonators, the capacitor val-
ues given by the manufacturer should be used. 

Figure 9-2. Crystal Oscillator Connections

The Oscillator can operate in three different modes, each optimized for a specific frequency
range. The operating mode is selected by the fuses CKSEL3..1 as shown in Table 9-3 on page
28.

Note: This option should not be used with crystals, only with ceramic resonators.

The CKSEL0 Fuse together with the SUT1..0 Fuses select the start-up times as shown in Table
9-4 on page 28.

Table 9-3. Crystal Oscillator Operating Modes

CKSEL3:1
 Frequency Range 

(MHz)
Recommended Range for Capacitors C1 

and C2 for Use with Crystals (pF)

100(Note:) 0.4 - 0.9 –

101 0.9 - 3.0 12 - 22

110 3.0 - 8.0 12 - 22

111 8.0 - 12 - 22

Table 9-4. Start-up Times for the Crystal Oscillator Clock Selection

CKSEL0 SUT1:0

Start-up Time from 
Power-down and 

Power-save

Additional Delay 
from Reset 
(VCC = 5.0V)

Recommended 
Usage

0 00 258 CK(1) 14CK + 4.1ms Ceramic resonator, 
fast rising power

0 01 258 CK(1) 14CK + 65ms Ceramic resonator, 
slowly rising power

0 10 1K CK(2) 14CK Ceramic resonator, 
BOD enabled

XTAL2

XTAL1

GND

C2

C1
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Note: 1. These options should only be used when not operating close to the maximum frequency of the 
device, and only if frequency stability at start-up is not important for the application. These 
options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability 
at start-up. They can also be used with crystals when not operating close to the maximum fre-
quency of the device, and if frequency stability at start-up is not important for the application.

9.4 Low-frequency Crystal Oscillator
To use a 32.768 kHz watch crystal as the clock source for the device, the low-frequency crystal
Oscillator must be selected by setting the CKSEL Fuses to “0110” or “0111”. The crystal should
be connected as shown in Figure 9-2 on page 28. When this Oscillator is selected, start-up times
are determined by the SUT Fuses as shown in Table 9-5 on page 29 and CKSEL1..0 as shown
in Table 9-6 on page 29.

Note: This option should only be used if frequency stability at start-up is not important for the application

9.5 Calibrated Internal RC Oscillator
The calibrated Internal RC Oscillator by default provides a 8.0MHz clock. The frequency is nom-
inal value at 3V and 25°C. The device is shipped with the CKDIV8 Fuse programmed. See
“System Clock Prescaler” on page 32 for more details.

0 11 1K CK(2) 14CK + 4.1ms Ceramic resonator, 
fast rising power

1 00 1K CK(2) 14CK + 65ms Ceramic resonator, 
slowly rising power

1
01 16K CK 14CK Crystal Oscillator, 

BOD enabled

1
10 16K CK 14CK + 4.1ms Crystal Oscillator, fast 

rising power

1
11 16K CK 14CK + 65ms Crystal Oscillator, 

slowly rising power

Table 9-4. Start-up Times for the Crystal Oscillator Clock Selection (Continued)

CKSEL0 SUT1:0

Start-up Time from 
Power-down and 

Power-save

Additional Delay 
from Reset 
(VCC = 5.0V)

Recommended 
Usage

Table 9-5. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

SUT1..0  Additional Delay from Reset (VCC = 5.0V) Recommended Usage

00 14CK Fast rising power or BOD enabled

01 14CK + 4.1ms Slowly rising power

10 14CK + 65ms Stable frequency at start-up

11 Reserved

Table 9-6. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

CKSEL3..0
Start-up Time from 

Power-down and Power-save Recommended Usage

0110(Note:) 1K CK

0111 32K CK Stable frequency at start-up
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This clock may be selected as the system clock by programming the CKSEL Fuses as shown in
Table 9-7 on page 30. If selected, it will operate with no external components. During reset,
hardware loads the pre-programmed calibration value into the OSCCAL Register and thereby
automatically  calibrates the RC Oscillator. The accuracy of this calibration is shown as Factory
calibration in Table 28-2 on page 300.

By changing the OSCCAL register from SW, see “OSCCAL – Oscillator Calibration Register” on
page 32, it is possible to get a higher calibration accuracy than by using the factory calibration.
The accuracy of this calibration is shown as User calibration in Table 28-2 on page 300.

When this Oscillator is used as the chip clock, the Watchdog Oscillator will still be used for the
Watchdog Timer and for the Reset Time-out. For more information on the pre-programmed cali-
bration value, see the section “Calibration Byte” on page 268.

Note: 1. The device is shipped with this option selected.

2. The frequency ranges are preliminary values. Actual values are TBD.

3. If 8MHz frequency exceeds the specification of the device (depends on VCC), the CKDIV8 
Fuse can be programmed in order to divide the internal frequency by 8.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in
Table 9-8 on page 30.

Note: The device is shipped with this option selected.

9.6 External Clock
To drive the device from an external clock source, XTAL1 should be driven as shown in Figure
9-3 on page 31. To run the device on an external clock, the CKSEL Fuses must be programmed
to “0000” (see Table 9-9 on page 30).

Table 9-7. Internal Calibrated RC Oscillator Operating Modes(1)(3)

Frequency Range(2) (MHz)  CKSEL3..0

7.3 - 8.1 0010

Table 9-8. Start-up times for the internal calibrated RC Oscillator clock selection

Power Conditions
Start-up Time from Power-

down and Power-save
Additional Delay from 

Reset (VCC = 5.0V) SUT1..0

BOD enabled 6 CK 14CK 00

Fast rising power 6 CK 14CK + 4.1ms 01

Slowly rising power 6 CK 14CK + 65ms(Note:) 10

Reserved 11

Table 9-9. Crystal Oscillator Clock Frequency

Frequency Range CKSEL3..0

0 - 16MHz 0000
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Figure 9-3. External Clock Drive Configuration

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in
Table 9-10 on page 31.

When applying an external clock, it is required to avoid sudden changes in the applied clock fre-
quency to ensure stable operation of the MCU. A variation in frequency of more than 2% from
one clock cycle to the next can lead to unpredictable behavior. It is required to ensure that the
MCU is kept in Reset during such changes in the clock frequency.

Note that the System Clock Prescaler can be used to implement run-time changes of the internal
clock frequency while still ensuring stable operation. Refer to “System Clock Prescaler” on page
32 for details.

9.7 Clock Output Buffer
When the CKOUT Fuse is programmed, the system Clock will be output on CLKO. This mode is
suitable when the chip clock is used to drive other circuits on the system. The clock will be out-
put also during reset and the normal operation of I/O pin will be overridden when the fuse is
programmed. Any clock source, including internal RC Oscillator, can be selected when CLKO
serves as clock output. If the System Clock Prescaler is used, it is the divided system clock that
is output when the CKOUT Fuse is programmed. 

9.8 Timer/Counter Oscillator
Atmel ATmega325/3250/645/6450 share the Timer/Counter Oscillator Pins (TOSC1 and
TOSC2) with XTAL1 and XTAL2. This means that the Timer/Counter Oscillator can only be used
when the calibrated internal RC Oscillator is selected as system clock source. The Oscillator is
optimized for use with a 32.768kHz watch crystal. See Figure 9-2 on page 28 for crystal
connection.

Table 9-10. Start-up Times for the External Clock Selection

SUT1..0
Start-up Time from Power-

down and Power-save
Additional Delay from 

Reset (VCC = 5.0V) Recommended Usage

00 6 CK 14CK BOD enabled

01 6 CK 14CK + 4.1ms Fast rising power

10 6 CK 14CK + 65ms Slowly rising power

11 Reserved

NC

EXTERNAL
CLOCK
SIGNAL

XTAL2

XTAL1

GND
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Applying an external clock source to TOSC1 can be done if EXTCLK in the ASSR Register is
written to logic one. See “Asynchronous Operation of Timer/Counter2” on page 141 for further
description on selecting external clock as input instead of a 32kHz crystal.

9.9 System Clock Prescaler
The Atmel ATmega325/3250/645/6450 system clock can be divided by setting the “CLKPR –
Clock Prescale Register” on page 33. This feature can be used to decrease power consumption
when the requirement for processing power is low. This can be used with all clock source
options, and it will affect the clock frequency of the CPU and all synchronous peripherals. clkI/O,
clkADC, clkCPU, and clkFLASH are divided by a factor as shown in Table 9-11 on page 33.

9.9.1 Switching Time
When switching between prescaler settings, the System Clock Prescaler ensures that no
glitches occur in the clock system and that no intermediate frequency is higher than neither the
clock frequency corresponding to the previous setting, nor the clock frequency corresponding to
the new setting.

The ripple counter that implements the prescaler runs at the frequency of the undivided clock,
which may be faster than the CPU’s clock frequency. Hence, it is not possible to determine the
state of the prescaler – even if it were readable, and the exact time it takes to switch from one
clock division to another cannot be exactly predicted.

From the time the CLKPS values are written, it takes between T1 + T2 and T1 + 2*T2 before the
new clock frequency is active. In this interval, 2 active clock edges are produced. Here, T1 is the
previous clock period, and T2 is the period corresponding to the new prescaler setting.

9.10 Register Description

9.10.1 OSCCAL – Oscillator Calibration Register

• Bits 7:0 – CAL7:0: Oscillator Calibration Value
The Oscillator Calibration Register is used to trim the Calibrated Internal RC Oscillator to
remove process variations from the oscillator frequency. A pre-programmed calibration value is
automatically written to this register during chip reset, giving the Factory calibrated frequency as
specified in Table 28-2 on page 300. The application software can write this register to change
the oscillator frequency. The oscillator can be calibrated to frequencies as specified in Table 28-
2 on page 300. Calibration outside that range is not guaranteed.

Note that this oscillator is used to time EEPROM and Flash write accesses, and these write
times will be affected accordingly. If the EEPROM or Flash are written, do not calibrate to more
than 8.8MHz. Otherwise, the EEPROM or Flash write may fail.

The CAL7 bit determines the range of operation for the oscillator. Setting this bit to 0 gives the
lowest frequency range, setting this bit to 1 gives the highest frequency range. The two fre-
quency ranges are overlapping, in other words a setting of OSCCAL = 0x7F gives a higher
frequency than OSCCAL = 0x80.

Bit 7 6 5 4 3 2 1 0

(0x66) CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value
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The CAL6..0 bits are used to tune the frequency within the selected range. A setting of 0x00
gives the lowest frequency in that range, and a setting of 0x7F gives the highest frequency in the
range.

9.10.2 CLKPR – Clock Prescale Register

• Bit 7 – CLKPCE: Clock Prescaler Change Enable
The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE
bit is only updated when the other bits in CLKPR are simultaneously written to zero. CLKPCE is
cleared by hardware four cycles after it is written or when CLKPS bits are written. Rewriting the
CLKPCE bit within this time-out period does neither extend the time-out period, nor clear the
CLKPCE bit.

• Bits 3:0 – CLKPS3:0: Clock Prescaler Select Bits 3 - 0
These bits define the division factor between the selected clock source and the internal system
clock. These bits can be written run-time to vary the clock frequency to suit the application
requirements. As the divider divides the master clock input to the MCU, the speed of all synchro-
nous peripherals is reduced when a division factor is used. The division factors are given in
Table 9-11 on page 33.

To avoid unintentional changes of clock frequency, a special write procedure must be followed
to change the CLKPS bits:

1. Write the Clock Prescaler Change Enable (CLKPCE) bit to one and all other bits in
CLKPR to zero.

2. Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE. 

Interrupts must be disabled when changing prescaler setting to make sure the write procedure is
not interrupted.

The CKDIV8 Fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed,
the CLKPS bits will be reset to “0000”. If CKDIV8 is programmed, CLKPS bits are reset to
“0011”, giving a division factor of 8 at start up. This feature should be used if the selected clock
source has a higher frequency than the maximum frequency of the device at the present operat-
ing conditions. Note that any value can be written to the CLKPS bits regardless of the CKDIV8
Fuse setting. The Application software must ensure that a sufficient division factor is chosen if
the selected clock source has a higher frequency than the maximum frequency of the device at
the present operating conditions. The device is shipped with the CKDIV8 Fuse programmed.

Bit 7 6 5 4 3 2 1 0

(0x61) CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 CLKPR

Read/Write R/W R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description

Table 9-11. Clock Prescaler Select

CLKPS3 CLKPS2 CLKPS1 CLKPS0 Clock Division Factor

0 0 0 0 1

0 0 0 1 2

0 0 1 0 4

0 0 1 1 8

0 1 0 0 16
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0 1 0 1 32

0 1 1 0 64

0 1 1 1 128

1 0 0 0 256

1 0 0 1 Reserved

1 0 1 0 Reserved

1 0 1 1 Reserved

1 1 0 0 Reserved

1 1 0 1 Reserved

1 1 1 0 Reserved

1 1 1 1 Reserved

Table 9-11. Clock Prescaler Select

CLKPS3 CLKPS2 CLKPS1 CLKPS0 Clock Division Factor
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10. Power Management and Sleep Modes
Sleep modes enable the application to shut down unused modules in the MCU, thereby saving
power. The AVR provides various sleep modes allowing the user to tailor the power consump-
tion to the application’s requirements.

10.1 Sleep Modes
F igure  9 -1  on  page  26  p resen ts  the  d i f fe ren t  c lock  sys tems in  the  A tme l
ATmega325/3250/645/6450, and their distribution. The figure is helpful in selecting an appropri-
ate sleep mode. Table 10-1 on page 35 shows the different sleep modes and their wake up
sources.

Note: 1. Only recommended with external crystal or resonator selected as clock source.

2. If Timer/Counter2 is running in asynchronous mode.

3. For INT0, only level interrupt.

To enter any of the five sleep modes, the SE bit in SMCR must be written to logic one and a
SLEEP instruction must be executed. The SM2, SM1, and SM0 bits in the SMCR Register select
which sleep mode (Idle, ADC Noise Reduction, Power-down, Power-save, or Standby) will be
activated by the SLEEP instruction. See Table 10-2 on page 39 for a summary.

If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU
is then halted for four cycles in addition to the start-up time, executes the interrupt routine, and
resumes execution from the instruction following SLEEP. The contents of the Register File and
SRAM are unaltered when the device wakes up from sleep. If a reset occurs during sleep mode,
the MCU wakes up and executes from the Reset Vector. 

10.2 Idle Mode
When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle
mode, stopping the CPU but allowing the SPI, USART, Analog Comparator, ADC, USI,
Timer/Counters, Watchdog, and the interrupt system to continue operating. This sleep mode
basically halts clkCPU and clkFLASH, while allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal
ones like the Timer Overflow and USART Transmit Complete interrupts. If wake-up from the

Table 10-1. Active Clock Domains and Wake-up Sources in the Different Sleep Modes.

Active Clock Domains Oscillators Wake-up Sources

Sleep Mode cl
k C

P
U

cl
k F

L
A

S
H

cl
k I

O

cl
k A

D
C

cl
k A

S
Y

M
ai

n
 C

lo
ck

S
o

u
rc

e
E

n
ab

le
d

T
im

er
 O

sc
E

n
ab

le
d

IN
T

0 
an

d
 P

in
C

h
an

g
e

U
S

I S
ta

rt
C

o
n

d
it

io
n

T
im

er
2

S
P

M
/E

E
P

R
O

M
R

ea
d

y

A
D

C

O
th

er
 I/

O

Idle X X X X X(2) X X X X X X

ADC Noise
Reduction X X X X(2) X(3) X X(2) X X

Power-down X(3) X

Power-save X X(2) X(3) X X

Standby(1) X X(3) X
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Analog Comparator interrupt is not required, the Analog Comparator can be powered down by
setting the ACD bit in the Analog Comparator Control and Status Register – ACSR. This will
reduce power consumption in Idle mode. If the ADC is enabled, a conversion starts automati-
cally when this mode is entered. 

10.3 ADC Noise Reduction Mode
When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC
Noise Reduction mode, stopping the CPU but allowing the ADC, the external interrupts, the USI
start condition detection, Timer/Counter2, and the Watchdog to continue operating (if enabled).
This sleep mode basically halts clkI/O, clkCPU, and clkFLASH, while allowing the other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If
the ADC is enabled, a conversion starts automatically when this mode is entered. Apart form the
ADC Conversion Complete interrupt, only an External Reset, a Watchdog Reset, a Brown-out
Reset, a USI start condition interrupt, a Timer/Counter2 interrupt, an SPM/EEPROM ready inter-
rupt, an external level interrupt on INT0 or a pin change interrupt can wake up the MCU from
ADC Noise Reduction mode.

10.4 Power-down Mode
When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-
down mode. In this mode, the external Oscillator is stopped, while the external interrupts, the
USI start condition detection, and the Watchdog continue operating (if enabled). Only an Exter-
nal Reset, a Watchdog Reset, a Brown-out Reset, USI start condition interrupt, an external level
interrupt on INT0, or a pin change interrupt can wake up the MCU. This sleep mode basically
halts all generated clocks, allowing operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. Refer to “External Interrupts” on page 55
for details.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs
until the wake-up becomes effective. This allows the clock to restart and become stable after
having been stopped. The wake-up period is defined by the same CKSEL Fuses that define the
Reset Time-out period, as described in “Clock Sources” on page 27.

10.5 Power-save Mode
When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter Power-
save mode. This mode is identical to Power-down, with one exception:

If Timer/Counter2 controller is enabled, it will keep running during sleep. The device can wake
up from either Timer Overflow or Output Compare event from Timer/Counter2 if the correspond-
ing Timer/Counter2 interrupt enable bits are set in TIMSK2, and the Global Interrupt Enable bit
in SREG is set.

If the Timer/Counter2 is not running, Power-down mode is recommended instead of Power-save
mode.

The Timer/Counter2 can be clocked both synchronously and asynchronously in Power-save
mode. If Timer/Counter2 is not using the asynchronous clock, the Timer/Counter Oscillator is
stopped during sleep. If Timer/Counter2 is not using the synchronous clock, the clock source is
stopped during sleep. Note that even if the synchronous clock is running in Power-save, this
clock is only available for Timer/Counter2.
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10.6 Standby Mode
When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected, the
SLEEP instruction makes the MCU enter Standby mode. This mode is identical to Power-down
with the exception that the Oscillator is kept running. From Standby mode, the device wakes up
in six clock cycles. 

10.7 Power Reduction Register
The Power Reduction Register (PRR), see “PRR – Power Reduction Register” on page 40, pro-
vides a method to stop the clock to individual peripherals to reduce power consumption. The
current state of the peripheral is frozen and the I/O registers inaccessible. Resources used by
the peripheral when stopping the clock will remain occupied so the peripheral should be disabled
before stopping the clock. Waking up a peripheral, which is done by clearing the bit in PRR, puts
the peripheral in the same state as before shutdown. 

Peripheral shutdown can be used in Idle mode and Active mode to reduce the overall power
consumption. In all other sleep modes, the clock is already stopped.

10.8 Minimizing Power Consumption
There are several possibilities to consider when trying to minimize the power consumption in an
AVR controlled system. In general, sleep modes should be used as much as possible, and the
sleep mode should be selected so that as few as possible of the device’s functions are operat-
ing. All functions not needed should be disabled. In particular, the following modules may need
special consideration when trying to achieve the lowest possible power consumption.

10.8.1 Analog to Digital Converter
If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be dis-
abled before entering any sleep mode. When the ADC is turned off and on again, the next
conversion will be an extended conversion. Refer to “Analog to Digital Converter” on page 201
for details on ADC operation.

10.8.2 Analog Comparator
When entering Idle mode, the Analog Comparator should be disabled if not used. When entering
ADC Noise Reduction mode, the Analog Comparator should be disabled. In other sleep modes,
the Analog Comparator is automatically disabled. However, if the Analog Comparator is set up
to use the Internal Voltage Reference as input, the Analog Comparator should be disabled in all
sleep modes. Otherwise, the Internal Voltage Reference will be enabled, independent of sleep
mode. Refer to “Analog Comparator” on page 197 for details on how to configure the Analog
Comparator.

10.8.3 Brown-out Detector
If the Brown-out Detector is not needed by the application, this module should be turned off. If
the Brown-out Detector is enabled by the BODLEVEL Fuses, it will be enabled in all sleep
modes, and hence, always consume power. In the deeper sleep modes, this will contribute sig-
nificantly to the total current consumption. Refer to “Brown-out Detection” on page 43 for details
on how to configure the Brown-out Detector.

10.8.4 Internal Voltage Reference
The Internal Voltage Reference will be enabled when needed by the Brown-out Detection, the
Analog Comparator or the ADC. If these modules are disabled as described in the sections
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above, the internal voltage reference will be disabled and it will not be consuming power. When
turned on again, the user must allow the reference to start up before the output is used. If the
reference is kept on in sleep mode, the output can be used immediately. Refer to “Internal Volt-
age Reference” on page 44 for details on the start-up time.

10.8.5 Watchdog Timer
If the Watchdog Timer is not needed in the application, the module should be turned off. If the
Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence, always consume
power. In the deeper sleep modes, this will contribute significantly to the total current consump-
tion. Refer to “Watchdog Timer” on page 45 for details on how to configure the Watchdog Timer.

10.8.6 Port Pins
When entering a sleep mode, all port pins should be configured to use minimum power. The
most important is then to ensure that no pins drive resistive loads. In sleep modes where both
the I/O clock (clkI/O) and the ADC clock (clkADC) are stopped, the input buffers of the device will
be disabled. This ensures that no power is consumed by the input logic when not needed. In
some cases, the input logic is needed for detecting wake-up conditions, and it will then be
enabled. Refer to the section “Digital Input Enable and Sleep Modes” on page 65 for details on
which pins are enabled. If the input buffer is enabled and the input signal is left floating or have
an analog signal level close to VCC/2, the input buffer will use excessive power. 

For analog input pins, the digital input buffer should be disabled at all times. An analog signal
level close to VCC/2 on an input pin can cause significant current even in active mode. Digital
input buffers can be disabled by writing to the Digital Input Disable Registers (DIDR1 and
DIDR0). Refer to “DIDR1 – Digital Input Disable Register 1” on page 200 and “DIDR0 – Digital
Input Disable Register 0” on page 217 for details. 

10.8.7 JTAG Interface and On-chip Debug System
If the On-chip debug system is enabled by the OCDEN Fuse and the chip enter Power down or
Power save sleep mode, the main clock source remains enabled. In these sleep modes, this will
contribute significantly to the total current consumption. There are three alternative ways to
avoid this:

• Disable OCDEN Fuse.

• Disable JTAGEN Fuse.

• Write one to the JTD bit in MCUCSR.

The TDO pin is left floating when the JTAG interface is enabled while the JTAG TAP controller is
not shifting data. If the hardware connected to the TDO pin does not pull up the logic level,
power consumption will increase. Note that the TDI pin for the next device in the scan chain con-
tains a pull-up that avoids this problem. Writing the JTD bit in the MCUCSR register to one or
leaving the JTAG fuse unprogrammed disables the JTAG interface.
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10.9 Register Description

10.9.1 SMCR – Sleep Mode Control Register
The Sleep Mode Control Register contains control bits for power management.

• Bits 3, 2, 1 – SM2:0: Sleep Mode Select Bits 2, 1, and 0
These bits select between the five available sleep modes as shown in Table 10-2.

Note: 1. Standby mode is only recommended for use with external crystals or resonators.

• Bit 1 – SE: Sleep Enable
The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP
instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s
purpose, it is recommended to write the Sleep Enable (SE) bit to one just before the execution of
the SLEEP instruction and to clear it immediately after waking up.

Bit 7 6 5 4 3 2 1 0

0x33 (0x53) – – – – SM2 SM1 SM0 SE SMCR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 10-2. Sleep Mode Select

SM2 SM1 SM0 Sleep Mode

0 0 0 Idle

0 0 1 ADC Noise Reduction

0 1 0 Power-down

0 1 1 Power-save

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Standby(1)

1 1 1 Reserved
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10.9.2 PRR – Power Reduction Register

• Bits 7:4 - Reserved bits
These bits are reserved bits in Atmel ATmega325/3250/645/6450 and will always read as zero.

• Bit 3 - PRTIM1: Power Reduction Timer/Counter1
Writing logic one to this bit shuts down the Timer/Counter1 module. When Timer/Counter1 is
enabled, operation will continue like before the shutdown.

• Bit 2 - PRSPI: Power Reduction Serial Peripheral Interface
Writing logic one to this bit shuts down the Serial Peripheral Interface by stopping the clock to
the module. When waking up the SPI again, the SPI should be re-initialized to ensure proper
operation.

• Bit 1 - PRUSART: Power Reduction USART
Writing logic one to this bit shuts down the USART by stopping the clock to the module. When
waking up the USART again, the USART should be re-initialized to ensure proper operation.

• Bit 0 - PRADC: Power Reduction ADC
Writing logic one to this bit shuts down the ADC. The ADC must be disabled before shut down.
The analog comparator cannot use the ADC input MUX when the ADC is shut down.

The Analog Comparator is disabled using the ACD-bit in the “ACSR – Analog Comparator Control and Sta-
tus Register” on page 198.

Bit 7 6 5 4 3 2 1 0

(0x64) – – – – PRTIM1 PRSPI PRUSART0 PRADC PRR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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11. System Control and Reset

11.1 Resetting the AVR
During reset, all I/O Registers are set to their initial values, and the program starts execution
from the Reset Vector. The instruction placed at the Reset Vector must be a JMP – Absolute
Jump – instruction to the reset handling routine. If the program never enables an interrupt
source, the Interrupt Vectors are not used, and regular program code can be placed at these
locations. This is also the case if the Reset Vector is in the Application section while the Interrupt
Vectors are in the Boot section or vice versa. The circuit diagram in Figure 11-1 on page 42
shows the reset logic. Table 28-4 on page 301 defines the electrical parameters of the reset
circuitry.

The I/O ports of the AVR are immediately reset to their initial state when a reset source goes
active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal
reset. This allows the power to reach a stable level before normal operation starts. The time-out
period of the delay counter is defined by the user through the SUT and CKSEL Fuses. The dif-
ferent selections for the delay period are presented in “Clock Sources” on page 27. 

11.2 Reset Sources
The Atmel ATmega325/3250/645/6450 has five sources of reset:

• Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset 
threshold (VPOT).

• External Reset. The MCU is reset when a low level is present on the RESET pin for longer 
than the minimum pulse length.

• Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the 
Watchdog is enabled.

• Brown-out Reset. The MCU is reset when the supply voltage VCC is below the Brown-out 
Reset threshold (VBOT) and the Brown-out Detector is enabled.

• JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset Register, 
one of the scan chains of the JTAG system. Refer to the section “IEEE 1149.1 (JTAG) 
Boundary-scan” on page 224 for details.



42
2570N–AVR–05/11

ATmega325/3250/645/6450

Figure 11-1. Reset Logic

11.3 Power-on Reset
A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detection level
is defined in “System and Reset Characteristics” on page 301. The POR is activated whenever
VCC is below the detection level. The POR circuit can be used to trigger the start-up Reset, as
well as to detect a failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the
Power-on Reset threshold voltage invokes the delay counter, which determines how long the
device is kept in RESET after VCC rise. The RESET signal is activated again, without any delay,
when VCC decreases below the detection level.

Figure 11-2. MCU Start-up, RESET Tied to VCC
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Figure 11-3. MCU Start-up, RESET Extended Externally

11.4 External Reset
An External Reset is generated by a low level on the RESET pin. Reset pulses longer than the
minimum pulse width (see “System and Reset Characteristics” on page 301) will generate a
reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.
When the applied signal reaches the Reset Threshold Voltage – VRST – on its positive edge, the
delay counter starts the MCU after the Time-out period – tTOUT – has expired.

Figure 11-4. External Reset During Operation

11.5 Brown-out Detection
Atmel ATmega325/3250/645/6450 has an On-chip Brown-out Detection (BOD) circuit for moni-
toring the VCC level during operation by comparing it to a fixed trigger level. The trigger level for
the BOD can be selected by the BODLEVEL Fuses. The trigger level has a hysteresis to ensure
spike free Brown-out Detection. The hysteresis on the detection level should be interpreted as
VBOT+ = VBOT + VHYST/2 and VBOT- = VBOT - VHYST/2. When the BOD is enabled, and VCC

decreases to a value below the trigger level (VBOT- in Figure 11-5 on page 44), the Brown-out
Reset is immediately activated. When VCC increases above the trigger level (VBOT+ in Figure 11-
5 on page 44), the delay counter starts the MCU after the Time-out period tTOUT has expired.

The BOD circuit will only detect a drop in VCC if the voltage stays below the trigger level for lon-
ger than tBOD given in “System and Reset Characteristics” on page 301.

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST

VCC

CC



44
2570N–AVR–05/11

ATmega325/3250/645/6450

Figure 11-5. Brown-out Reset During Operation

11.6 Watchdog Reset
When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On
the falling edge of this pulse, the delay timer starts counting the Time-out period tTOUT. Refer to
page 45 for details on operation of the Watchdog Timer.

Figure 11-6. Watchdog Reset During Operation
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Atmel ATmega325/3250/645/6450 features an internal bandgap reference. This reference is
used for Brown-out Detection, and it can be used as an input to the Analog Comparator or the
ADC.
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Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user
must always allow the reference to start up before the output from the Analog Comparator or
ADC is used. To reduce power consumption in Power-down mode, the user can avoid the three
conditions above to ensure that the reference is turned off before entering Power-down mode.

11.8 Watchdog Timer
The Watchdog Timer is clocked from a separate On-chip Oscillator which runs at 1 MHz. This is
the typical value at VCC = 5V. See characterization data for typical values at other VCC levels. By
controlling the Watchdog Timer prescaler, the Watchdog Reset interval can be adjusted as
shown in Table 11-2 on page 46. The WDR – Watchdog Reset – instruction resets the Watch-
dog Timer. The Watchdog Timer is also reset when it is disabled and when a Chip Reset occurs.
Eight different clock cycle periods can be selected to determine the reset period. If the reset
period expires without another Watchdog Reset, the Atmel ATmega325/3250/645/6450 resets
and executes from the Reset Vector. For timing details on the Watchdog Reset, refer to Table
11-2 on page 46.

To prevent unintentional disabling of the Watchdog or unintentional change of time-out period,
two different safety levels are selected by the fuse WDTON as shown in Table 11-1. Refer to
“Timed Sequences for Changing the Configuration of the Watchdog Timer” on page 46 for
details.

Figure 11-7. Watchdog Timer

Table 11-1. WDT Configuration as a Function of the Fuse Settings of WDTON

WDTON
Safety 
Level

WDT Initial 
State

How to Disable the 
WDT

How to Change 
Time-out

Unprogrammed 1 Disabled Timed sequence Timed sequence

Programmed 2 Enabled Always enabled Timed sequence

WATCHDOG
OSCILLATOR
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The following code example shows one assembly and one C function for turning off the WDT.
The example assumes that interrupts are controlled (e.g. by disabling interrupts globally) so that
no interrupts will occur during execution of these functions.

Note: 1. See “About Code Examples” on page 9.

11.9 Timed Sequences for Changing the Configuration of the Watchdog Timer
The sequence for changing configuration differs slightly between the two safety levels. Separate
procedures are described for each level.

Table 11-2. Watchdog Timer Prescale Select

WDP2 WDP1 WDP0
Number of WDT 
Oscillator Cycles

Typical Time-out 
at VCC = 3.0V

Typical Time-out 
at VCC = 5.0V

0 0 0 16K cycles 17.1ms 16.3ms

0 0 1 32K cycles 34.3ms 32.5ms

0 1 0 64K cycles 68.5ms 65ms

0 1 1 128K cycles 0.14s 0.13s

1 0 0 256K cycles 0.27s 0.26s

1 0 1 512K cycles 0.55s 0.52s

1 1 0 1,024K cycles 1.1s 1.0s

1 1 1 2,048K cycles 2.2s 2.1s

Assembly Code Example(1)

WDT_off:

; Reset WDT

wdr

; Write logical one to WDCE and WDE

in  r16, WDTCR

ori  r16, (1<<WDCE)|(1<<WDE)

out  WDTCR, r16

; Turn off WDT

ldi  r16, (0<<WDE)

out  WDTCR, r16

ret

C Code Example(1)

void WDT_off(void)

{

/* Reset WDT */

__watchdog_reset();

/* Write logical one to WDCE and WDE */

WDTCR |= (1<<WDCE) | (1<<WDE);

/* Turn off WDT */

WDTCR = 0x00;

}
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11.9.1 Safety Level 1
In this mode, the Watchdog Timer is initially disabled, but can be enabled by writing the WDE bit
to 1 without any restriction. A timed sequence is needed when changing the Watchdog Time-out
period or disabling an enabled Watchdog Timer. To disable an enabled Watchdog Timer, and/or
changing the Watchdog Time-out, the following procedure must be followed:

1. In the same operation, write a logic one to WDCE and WDE. A logic one must be written
to WDE regardless of the previous value of the WDE bit.

2. Within the next four clock cycles, in the same operation, write the WDE and WDP bits as
desired, but with the WDCE bit cleared.

11.9.2 Safety Level 2
In this mode, the Watchdog Timer is always enabled, and the WDE bit will always read as one. A
timed sequence is needed when changing the Watchdog Time-out period. To change the
Watchdog Time-out, the following procedure must be followed:

1. In the same operation, write a logical one to WDCE and WDE. Even though the WDE
always is set, the WDE must be written to one to start the timed sequence.

Within the next four clock cycles, in the same operation, write the WDP bits as desired, but with 
the WDCE bit cleared. The value written to the WDE bit is irrelevant.

11.10 Register Description

11.10.1 MCUSR – MCU Status Register
The MCU Status Register provides information on which reset source caused an MCU reset.

• Bit 4 – JTRF: JTAG Reset Flag
This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by
the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic
zero to the flag.

• Bit 3 – WDRF: Watchdog Reset Flag
This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

• Bit 2 – BORF: Brown-out Reset Flag
This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

• Bit 1 – EXTRF: External Reset Flag
This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

• Bit 0 – PORF: Power-on Reset Flag
This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) – – – JTRF WDRF BORF EXTRF PORF MCUSR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description
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To make use of the Reset Flags to identify a reset condition, the user should read and then
Reset the MCUSR as early as possible in the program. If the register is cleared before another
reset occurs, the source of the reset can be found by examining the Reset Flags.

11.10.2 WDTCR – Watchdog Timer Control Register

• Bits 7:5 – Reserved Bits
These bits are reserved bits in the Atmel ATmega325/3250/645/6450 and will always read as
zero.

• Bit 4 – WDCE: Watchdog Change Enable
This bit must be set when the WDE bit is written to logic zero. Otherwise, the Watchdog will not
be disabled. Once written to one, hardware will clear this bit after four clock cycles. Refer to the
description of the WDE bit for a Watchdog disable procedure. This bit must also be set when
changing the prescaler bits. See “Timed Sequences for Changing the Configuration of the
Watchdog Timer” on page 46.

• Bit 3 – WDE: Watchdog Enable
When the WDE is written to logic one, the Watchdog Timer is enabled, and if the WDE is written
to logic zero, the Watchdog Timer function is disabled. WDE can only be cleared if the WDCE bit
has logic level one. To disable an enabled Watchdog Timer, the following procedure must be
followed:

1. In the same operation, write a logic one to WDCE and WDE. A logic one must be written
to WDE even though it is set to one before the disable operation starts.

2. Within the next four clock cycles, write a logic 0 to WDE. This disables the Watchdog.

In safety level 2, it is not possible to disable the Watchdog Timer, even with the algorithm
described above. See “Timed Sequences for Changing the Configuration of the Watchdog
Timer” on page 46.

• Bits 2:0 – WDP2, WDP1, WDP0: Watchdog Timer Prescaler 2, 1, and 0
The WDP2, WDP1, and WDP0 bits determine the Watchdog Timer prescaling when the Watch-
dog Timer is enabled. The different prescaling values and their corresponding Time-out Periods 
are shown in Table 11-2 on page 46.

Bit 7 6 5 4 3 2 1 0

(0x60) – – – WDCE WDE WDP2 WDP1 WDP0 WDTCR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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12. Interrupts
This section describes the specifics of the interrupt handling as performed in Atmel
ATmega325/3250/645/6450. For a general explanation of the AVR interrupt handling, refer to
“Reset and Interrupt Handling” on page 15.

12.1 Interrupt Vectors in Atmel ATmega325/3250/645/6450

Note: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at reset, see “Boot Loader Sup-
port – Read-While-Write Self-Programming” on page 251.

2. When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of the Boot Flash Section. The address of 
each Interrupt Vector will then be the address in this table added to the start address of the Boot Flash Section.

3. PCINT2 and PCINT3 are only present in ATmega3250 and ATmega6450.

Table 12-1. Reset and Interrupt Vectors

Vector
No.

Program
Address(2) Source Interrupt Definition

1 0x0000(1) RESET External Pin, Power-on Reset, Brown-out Reset, 
Watchdog Reset, and JTAG AVR Reset

2 0x0002 INT0 External Interrupt Request 0

3 0x0004 PCINT0 Pin Change Interrupt Request 0

4 0x0006 PCINT1 Pin Change Interrupt Request 1

5 0x0008 TIMER2 COMP Timer/Counter2 Compare Match

6 0x000A TIMER2 OVF Timer/Counter2 Overflow

7 0x000C TIMER1 CAPT Timer/Counter1 Capture Event

8 0x000E TIMER1 COMPA Timer/Counter1 Compare Match A

9 0x0010 TIMER1 COMPB Timer/Counter1 Compare Match B

10 0x0012 TIMER1 OVF Timer/Counter1 Overflow

11 0x0014 TIMER0 COMP Timer/Counter0 Compare Match

12 0x0016 TIMER0 OVF Timer/Counter0 Overflow

13 0x0018 SPI, STC SPI Serial Transfer Complete

14 0x001A USART, RX USART, Rx Complete

15 0x001C USART, UDRE USART Data Register Empty

16 0x001E USART, TX USART, Tx Complete

17 0x0020 USI START USI Start Condition

18 0x0022 USI OVERFLOW USI Overflow

19 0x0024 ANALOG COMP Analog Comparator

20 0x0026 ADC ADC Conversion Complete

21 0x0028 EE READY EEPROM Ready

22 0x002A SPM READY Store Program Memory Ready

23 0x002C NOT_USED RESERVED

24(3) 0x002E PCINT2 Pin Change Interrupt Request 2

25(3) 0x0030 PCINT3 Pin Change Interrupt Request 3
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Table 12-2 on page 50 shows reset and Interrupt Vectors placement for the various combina-
tions of BOOTRST and IVSEL settings. If the program never enables an interrupt source, the
Interrupt Vectors are not used, and regular program code can be placed at these locations. This
is also the case if the Reset Vector is in the Application section while the Interrupt Vectors are in
the Boot section or vice versa. 

Note: The Boot Reset Address is shown in Table 26-6 on page 262. For the BOOTRST Fuse “1” means 
unprogrammed while “0” means programmed.

The most typical and general program setup for the Reset and Interrupt Vector Addresses in
Atmel ATmega325/3250/645/6450 is:

Table 12-2. Reset and Interrupt Vectors Placement(Note:)

BOOTRST IVSEL Reset Address Interrupt Vectors Start Address

1 0 0x0000 0x0002

1 1 0x0000 Boot Reset Address + 0x0002

0 0 Boot Reset Address 0x0002

0 1 Boot Reset Address Boot Reset Address + 0x0002

Addre

ss

Label

s

Code Comments

0x000

0

jmp RESET ; Reset Handler

0x000

2

jmp EXT_INT0 ; IRQ0 Handler

0x000

4

jmp PCINT0 ; PCINT0 Handler

0x000

6

jmp PCINT1 ; PCINT1 Handler

0x000

8

jmp TIM2_COMP ; Timer2 Compare Handler

0x000

A

jmp TIM2_OVF ; Timer2 Overflow Handler

0x000

C

jmp TIM1_CAPT ; Timer1 Capture Handler

0x000

E

jmp TIM1_COMPA ; Timer1 CompareA Handler

0x001

0

jmp TIM1_COMPB ; Timer1 CompareB Handler

0x001

2

jmp TIM1_OVF ; Timer1 Overflow Handler

0x001

4

jmp TIM0_COMP ; Timer0 Compare Handler

0x001

6

jmp TIM0_OVF ; Timer0 Overflow Handler

0X001

8

jmp SPI_STC ; SPI Transfer Complete Handler

0x001

A

jmp USART_RXC ; USART RX Complete Handler

0x001

C

jmp USART_UDRE ; USART,UDR Empty Handler

0x001

E

jmp USART_TXC ; USART TX Complete Handler

0x002

0

jmp USI_STRT ; USI Start Condition Handler
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0x002

2

jmp USI_OVF ; USI Overflow Handler

0x002

4

jmp ANA_COMP ; Analog Comparator Handler

0x002

6

jmp ADC ; ADC Conversion Complete 

Handler

0x002

8

jmp EE_RDY ; EEPROM Ready Handler

0x002

A

jmp SPM_RDY ; SPM Ready Handler

0x002

C

;NOT_USED ; RESERVED

0x002

E

jmp PCINT2 ; PCINT2 Handler

0x003

0

jmp PCINT3 ; PCINT3 Handler

;

0x003

2

RESET

:

ldi r16, 

high(RAMEND)

; Main program start

0x003

3

out SPH,r16 ; Set Stack Pointer to top of 

RAM

0x003

4

ldi r16, low(RAMEND)

0x003

5

out SPL,r16

0x003

6

sei ; Enable interrupts

0x003

7

<ins

tr>

xxx

... ... ...
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When the BOOTRST Fuse is unprogrammed, the Boot section size set to 4K bytes and the
IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typical and
general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

0x0000 RESET: ldi r16,high(RAMEND); Main program start

0x0001 out SPH,r16 ; Set Stack Pointer to top of RAM

0x0002 ldi r16,low(RAMEND)

0x0003 out SPL,r16
0x0004 sei ; Enable interrupts

0x0005 <instr> xxx

;

.org 0x3802/0x7802

0x3804/0x7804 jmp EXT_INT0 ; IRQ0 Handler

0x3806/0x7806 jmp PCINT0 ; PCINT0 Handler

... ... ... ; 

0x1C2C jmp SPM_RDY ; Store Program Memory Ready Handler

When the BOOTRST Fuse is programmed and the Boot section size set to 4K bytes, the most
typical and general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

.org 0x0002

0x0002 jmp EXT_INT0 ; IRQ0 Handler

0x0004 jmp PCINT0 ; PCINT0 Handler

... ... ... ; 

0x002C jmp SPM_RDY ; Store Program Memory Ready Handler

;

.org 0x3800/0x7800
0x3800/0x7801RESET:ldir16,high(RAMEND); Main program start

0x3801/0x7801 out SPH,r16 ; Set Stack Pointer to top of RAM

0x3802/0x7802 ldi r16,low(RAMEND)

0x3803/0x7803 out SPL,r16
0x3804/0x7804 sei ; Enable interrupts

0x3805/0x7805 <instr>  xxx
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When the BOOTRST Fuse is programmed, the Boot section size set to 4K bytes and the IVSEL
bit in the MCUCR Register is set before any interrupts are enabled, the most typical and general
program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

;

.org 0x3800/0x7800
0x3800/0x7800 jmp RESET ; Reset handler
0x3802/0x7802 jmp EXT_INT0 ; IRQ0 Handler

0x3804/0x7804 jmp PCINT0 ; PCINT0 Handler

... ... ... ; 

0x382C/0x782C jmp SPM_RDY ; Store Program Memory Ready Handler

;

0x382E/0x782ERESET:ldir16,high(RAMEND); Main program start

0x382F/0x782F out SPH,r16 ; Set Stack Pointer to top of RAM

0x3830/0x7830 ldi r16,low(RAMEND)

0x3831/0x7831 out SPL,r16
0x3832/0x7832 sei ; Enable interrupts

0x3833/0x7833 <instr>  xxx

12.2 Moving Interrupts Between Application and Boot Space
The MCU Control Register controls the placement of the Interrupt Vector table.

12.3 Register Description

12.3.1 MCUCR – MCU Control Register

• Bit 1 – IVSEL: Interrupt Vector Select
When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash
memory. When this bit is set (one), the Interrupt Vectors are moved to the beginning of the Boot
Loader section of the Flash. The actual address of the start of the Boot Flash Section is deter-
mined by the BOOTSZ Fuses. Refer to the section “Boot Loader Support – Read-While-Write
Self-Programming” on page 251 for details. To avoid unintentional changes of Interrupt Vector
tables, a special write procedure must be followed to change the IVSEL bit:

1. Write the Interrupt Vector Change Enable (IVCE) bit to one.

2. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE. 

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled
in the cycle IVCE is set, and they remain disabled until after the instruction following the write to
IVSEL. If IVSEL is not written, interrupts remain disabled for four cycles. The I-bit in the Status
Register is unaffected by the automatic disabling.

Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is programmed,
interrupts are disabled while executing from the Application section. If Interrupt Vectors are placed

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) JTD – – PUD – – IVSEL IVCE MCUCR

Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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in the Application section and Boot Lock bit BLB12 is programed, interrupts are disabled while
executing from the Boot Loader section. Refer to the section “Boot Loader Support – Read-While-
Write Self-Programming” on page 251 for details on Boot Lock bits.

• Bit 0 – IVCE: Interrupt Vector Change Enable
The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by
hardware four cycles after it is written or when IVSEL is written. Setting the IVCE bit will disable
interrupts, as explained in the IVSEL description above. See Code Example below.

Assembly Code Example

Move_interrupts:

;Get MCUCR

in r16, MCUCR

mov r17, r16

; Enable change of Interrupt Vectors

ori  r16, (1<<IVCE)

out  MCUCR, r16

; Move interrupts to Boot Flash section

ori  r17, (1<<IVSEL)

out  MCUCR, r17

ret

C Code Example

void Move_interrupts(void)

{

/* Enable change of Interrupt Vectors */

MCUCR |= (1<<IVCE);

/* Move interrupts to Boot Flash section */

MCUCR |= (1<<IVSEL);

}
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13. External Interrupts
The External Interrupts are triggered by the INT0 pin or any of the PCINT30..0 pins. Observe
that, if enabled, the interrupts will trigger even if the INT0 or PCINT30..0 pins are configured as
outputs. This feature provides a way of generating a software interrupt. The pin change interrupt
PCI1 will trigger if any enabled PCINT15..8 pin toggles. Pin change interrupts PCI0 will trigger if
any enabled PCINT7..0 pin toggles. The PCMSK3, PCMSK2, PCMSK1, and PCMSK0 Registers
control which pins contribute to the pin change interrupts. Pin change interrupts on PCINT30..0
are detected asynchronously. This implies that these interrupts can be used for waking the part
also from sleep modes other than Idle mode.

The INT0 interrupts can be triggered by a falling or rising edge or a low level. This is set up as
indicated in the specification for the External Interrupt Control Register A – EICRA. When the
INT0 interrupt is enabled and is configured as level triggered, the interrupt will trigger as long as
the pin is held low. Note that recognition of falling or rising edge interrupts on INT0 requires the
presence of an I/O clock, described in “Clock Systems and their Distribution” on page 26. Low
level interrupt on INT0 is detected asynchronously. This implies that this interrupt can be used
for waking the part also from sleep modes other than Idle mode. The I/O clock is halted in all
sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down, the required level
must be held long enough for the MCU to complete the wake-up to trigger the level interrupt. If
the level disappears before the end of the Start-up Time, the MCU will still wake up, but no inter-
rupt will be generated. The start-up time is defined by the SUT and CKSEL Fuses as described
in “System Clock and Clock Options” on page 26.

13.1 Pin Change Interrupt Timing
An example of timing of a pin change interrupt is shown in Figure 13-1.
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Figure 13-1. Pin Change Interrupt

13.2 Register Description

13.2.1 EICRA – External Interrupt Control Register A
The External Interrupt Control Register A contains control bits for interrupt sense control.

• Bit 1, 0 – ISC01, ISC00: Interrupt Sense Control 0 Bit 1 and Bit 0
The External Interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the corre-
sponding interrupt mask are set. The level and edges on the external INT0 pin that activate the
interrupt are defined in Table 13-1. The value on the INT0 pin is sampled before detecting
edges. If edge or toggle interrupt is selected, pulses that last longer than one clock period will
generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level
interrupt is selected, the low level must be held until the completion of the currently executing
instruction to generate an interrupt.

clk

PCINT(n)

pin_lat

pin_sync

pcint_in_(n)

pcint_syn

pcint_setflag

PCIF

PCINT(0)

pin_sync
pcint_syn

pin_lat
D     Q

LE

pcint_setflag
PCIF

clk

clk
PCINT(0) in PCMSK(x)

pcint_in_(0) 0

x

Bit 7 6 5 4 3 2 1 0

(0x69) – – – – – – ISC01 ISC00 EICRA

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 13-1. Interrupt 0 Sense Control

ISC01 ISC00 Description

0 0 The low level of INT0 generates an interrupt request.

0 1 Any logical change on INT0 generates an interrupt request.

1 0 The falling edge of INT0 generates an interrupt request.

1 1 The rising edge of INT0 generates an interrupt request.



57
2570N–AVR–05/11

ATmega325/3250/645/6450

13.2.2 EIMSK – External Interrupt Mask Register

• Bit 7 – PCIE3: Pin Change Interrupt Enable 3
When the PCIE3 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 3 is enabled. Any change on any enabled PCINT30..24 pin will cause an inter-
rupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCINT3
Interrupt Vector. PCINT30..24 pins are enabled individually by the PCMSK3 Register.

This bit is reserved bit in ATmega325/645 and should always be written to zero.

• Bit 6 – PCIE2: Pin Change Interrupt Enable 2
When the PCIE2 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 2 is enabled. Any change on any enabled PCINT23..16 pin will cause an inter-
rupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCINT2
Interrupt Vector. PCINT23..16 pins are enabled individually by the PCMSK2 Register.

This bit is reserved bit in ATmega325/645 and should always be written to zero.

• Bit 5 – PCIE1: Pin Change Interrupt Enable 1
When the PCIE1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 1 is enabled. Any change on any enabled PCINT15..8 pin will cause an inter-
rupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCINT1
Interrupt Vector. PCINT15..8 pins are enabled individually by the PCMSK1 Register.

• Bit 4 – PCIE0: Pin Change Interrupt Enable 0
When the PCIE0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 0 is enabled. Any change on any enabled PCINT7..0 pin will cause an interrupt.
The corresponding interrupt of Pin Change Interrupt Request is executed from the PCINT0 Inter-
rupt Vector. PCINT7..0 pins are enabled individually by the PCMSK0 Register.

• Bit 0 – INT0: External Interrupt Request 0 Enable
When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the exter-
nal pin interrupt is enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and ISC00) in the
External Interrupt Control Register A (EICRA) define whether the external interrupt is activated
on rising and/or falling edge of the INT0 pin or level sensed. Activity on the pin will cause an
interrupt request even if INT0 is configured as an output. The corresponding interrupt of External
Interrupt Request 0 is executed from the INT0 Interrupt Vector.

13.2.3 EIFR – External Interrupt Flag Registe

• Bit 7– PCIF3: Pin Change Interrupt Flag 3
When a logic change on any PCINT30..24 pin triggers an interrupt request, PCIF3 becomes set
(one). If the I-bit in SREG and the PCIE3 bit in EIMSK are set (one), the MCU will jump to the

Bit 7 6 5 4 3 2 1 0

0x1D (0x3D) PCIE3 PCIE2 PCIE1 PCIE0 – – – INT0 EIMSK

Read/Write R/W R/W R/W R/W R R R R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1C (0x3C) PCIF3 PCIF2 PCIF1 PCIF0 – – – INTF0 EIFR

Read/Write R/W R/W R/W R/W R R R R/W

Initial Value 0 0 0 0 0 0 0 0
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corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

This bit is reserved bit in ATmega325/645 and will always be read as zero.

• Bit 6– PCIF2: Pin Change Interrupt Flag 2
When a logic change on any PCINT24..16 pin triggers an interrupt request, PCIF2 becomes set
(one). If the I-bit in SREG and the PCIE2 bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

This bit is reserved bit in ATmega325/645 and will always be read as zero.

• Bit 5– PCIF1: Pin Change Interrupt Flag 1
When a logic change on any PCINT15..8 pin triggers an interrupt request, PCIF1 becomes set
(one). If the I-bit in SREG and the PCIE1 bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

• Bit 4– PCIF0: Pin Change Interrupt Flag 0
When a logic change on any PCINT7..0 pin triggers an interrupt request, PCIF0 becomes set
(one). If the I-bit in SREG and the PCIE0 bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

• Bit 0 – INTF0: External Interrupt Flag 0
When an edge or logic change on the INT0 pin triggers an interrupt request, INTF0 becomes set
(one). If the I-bit in SREG and the INT0 bit in EIMSK are set (one), the MCU will jump to the cor-
responding Interrupt Vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared
when INT0 is configured as a level interrupt.

13.2.4 PCMSK3 – Pin Change Mask Register 3(1)

• Bit 6:0 – PCINT30:24: Pin Change Enable Mask 30:24
Each PCINT30:24-bit selects whether pin change interrupt is enabled on the corresponding I/O
pin. If PCINT30:24 is set and the PCIE3 bit in EIMSK is set, pin change interrupt is enabled on
the corresponding I/O pin. If PCINT30:24 is cleared, pin change interrupt on the corresponding
I/O pin is disabled.

13.2.5 PCMSK2 – Pin Change Mask Register 2(1)

Bit 7 6 5 4 3 2 1 0

(0x73) – PCINT30 PCINT29 PCINT28 PCINT27 PCINT26 PCINT25 PCINT24 PCMSK3

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6D) PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 PCMSK2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial
Value

0 0 0 0 0 0 0 0
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• Bit 7:0 – PCINT23:16: Pin Change Enable Mask 23..16
Each PCINT23:16 bit selects whether pin change interrupt is enabled on the corresponding I/O
pin. If PCINT23:16 is set and the PCIE2 bit in EIMSK is set, pin change interrupt is enabled on
the corresponding I/O pin. If PCINT23:16 is cleared, pin change interrupt on the corresponding
I/O pin is disabled.

Note: 1. PCMSK3 and PCMSK2 are only present in ATmega3250/6450.

13.2.6 PCMSK1 – Pin Change Mask Register 1

• Bit 7:0 – PCINT15:8: Pin Change Enable Mask 15..8
Each PCINT15:8-bit selects whether pin change interrupt is enabled on the corresponding I/O
pin. If PCINT15:8 is set and the PCIE1 bit in EIMSK is set, pin change interrupt is enabled on the
corresponding I/O pin. If PCINT15:8 is cleared, pin change interrupt on the corresponding I/O
pin is disabled.

13.2.7 PCMSK0 – Pin Change Mask Register 0

• Bit 7:0 – PCINT7:0: Pin Change Enable Mask 7..0
Each PCINT7:0 bit selects whether pin change interrupt is enabled on the corresponding I/O pin.
If PCINT7:0 is set and the PCIE0 bit in EIMSK is set, pin change interrupt is enabled on the cor-
responding I/O pin. If PCINT7:0 is cleared, pin change interrupt on the corresponding I/O pin is
disabled.

Bit 7 6 5 4 3 2 1 0

(0x6C) PCINT15 PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 PCMSK1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6B) PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 PCMSK0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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14. I/O-Ports

14.1 Overview
All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports.
This means that the direction of one port pin can be changed without unintentionally changing
the direction of any other pin with the SBI and CBI instructions. The same applies when chang-
ing drive value (if configured as output) or enabling/disabling of pull-up resistors (if configured as
input). Each output buffer has symmetrical drive characteristics with both high sink and source
capability. Port B has a higher pin driver strength than the other ports, but all the pin drivers are
strong enough to drive LED displays directly. All port pins have individually selectable pull-up
resistors with a supply-voltage invariant resistance. All I/O pins have protection diodes to both
VCC and Ground as indicated in Figure 14-1. Refer to “Electrical Characteristics” on page 297 for
a complete list of parameters. If exceeding the pin voltage “Absolute Maximum Ratings”, result-
ing currents can harm the device if not limited accordingly. For segment pins used as general
I/O, the same situation can also influence the LCD voltage level.

Figure 14-1. I/O Pin Equivalent Schematic

All registers and bit references in this section are written in general form. A lower case “x” repre-
sents the numbering letter for the port, and a lower case “n” represents the bit number. However,
when using the register or bit defines in a program, the precise form must be used. For example,
PORTB3 for bit no. 3 in Port B, here documented generally as PORTxn. The physical I/O Regis-
ters and bit locations are listed in “Register Description” on page 81.

Three I/O memory address locations are allocated for each port, one each for the Data Register
– PORTx, Data Direction Register – DDRx, and the Port Input Pins – PINx. The Port Input Pins
I/O location is read only, while the Data Register and the Data Direction Register are read/write.
However, writing a logic one to a bit in the PINx Register, will result in a toggle in the correspond-
ing bit in the Data Register. In addition, the Pull-up Disable – PUD bit in MCUCR disables the
pull-up function for all pins in all ports when set.

Using the I/O port as General Digital I/O is described in “Ports as General Digital I/O” on page
61. Most port pins are multiplexed with alternate functions for the peripheral features on the
device. How each alternate function interferes with the port pin is described in “Alternate Port

Cpin

Logic

Rpu

See Figure
"General Digital I/O" for

Details

Pxn
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Functions” on page 66. Refer to the individual module sections for a full description of the alter-
nate functions.

Note that enabling the alternate function of some of the port pins does not affect the use of the
other pins in the port as general digital I/O.

14.2 Ports as General Digital I/O
The ports are bi-directional I/O ports with optional internal pull-ups. Figure 14-2 shows a func-
tional description of one I/O-port pin, here generically called Pxn.

Figure 14-2. General Digital I/O(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O, 
SLEEP, and PUD are common to all ports.

14.2.1 Configuring the Pin
Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in “Register
Description” on page 81, the DDxn bits are accessed at the DDRx I/O address, the PORTxn bits
at the PORTx I/O address, and the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one,
Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input
pin. 

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is
activated. To switch the pull-up resistor off, PORTxn has to be written logic zero or the pin has to
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be configured as an output pin. The port pins are tri-stated when reset condition becomes active,
even if no clocks are running.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven
high (one). If PORTxn is written logic zero when the pin is configured as an output pin, the port
pin is driven low (zero). 

14.2.2 Toggling the Pin
Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn.
Note that the SBI instruction can be used to toggle one single bit in a port.

14.2.3 Switching Between Input and Output
When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn}
= 0b11), an intermediate state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output
low ({DDxn, PORTxn} = 0b10) must occur. Normally, the pull-up enabled state is fully accept-
able, as a high-impedant environment will not notice the difference between a strong high driver
and a pull-up. If this is not the case, the PUD bit in the MCUCR Register can be set to disable all
pull-ups in all ports. 

Switching between input with pull-up and output low generates the same problem. The user
must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn}
= 0b11) as an intermediate step.

Table 14-1 summarizes the control signals for the pin value.

14.2.4 Reading the Pin Value
Independent of the setting of Data Direction bit DDxn, the port pin can be read through the
PINxn Register bit. As shown in Figure 14-2, the PINxn Register bit and the preceding latch con-
stitute a synchronizer. This is needed to avoid metastability if the physical pin changes value
near the edge of the internal clock, but it also introduces a delay. Figure 14-3 shows a timing dia-
gram of the synchronization when reading an externally applied pin value. The maximum and
minimum propagation delays are denoted tpd,max and tpd,min respectively.

Table 14-1. Port Pin Configurations

DDxn PORTxn
PUD

(in MCUCR) I/O Pull-up Comment

0 0 X Input No Tri-state (Hi-Z)

0 1 0 Input Yes
Pxn will source current if ext. pulled 
low.

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Output Low (Sink)

1 1 X Output No Output High (Source)
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Figure 14-3. Synchronization when Reading an Externally Applied Pin value

XXX in r17, PINx

0x00 0xFF

INSTRUCTIONS

SYNC LATCH
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Consider the clock period starting shortly after the first falling edge of the system clock. The latch
is closed when the clock is low, and goes transparent when the clock is high, as indicated by the
shaded region of the “SYNC LATCH” signal. The signal value is latched when the system clock
goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As indi-
cated by the two arrows tpd,max and tpd,min, a single signal transition on the pin will be delayed
between ½ and 1½ system clock period depending upon the time of assertion.
When reading back a software assigned pin value, a nop instruction must be inserted as indi-
cated in Figure 14-4. The out instruction sets the “SYNC LATCH” signal at the positive edge of
the clock. In this case, the delay tpd through the synchronizer is 1 system clock period.

Figure 14-4. Synchronization when Reading a Software Assigned Pin Value

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define
the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin
values are read back again, but as previously discussed, a nop instruction is included to be able
to read back the value recently assigned to some of the pins.

out PORTx, r16 nop in r17, PINx

0xFF

0x00 0xFF

SYSTEM CLK

r16

INSTRUCTIONS

SYNC LATCH

PINxn

r17

tpd
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Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-
ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3 
as low and redefining bits 0 and 1 as strong high drivers.

14.2.5 Digital Input Enable and Sleep Modes
As shown in Figure 14-2, the digital input signal can be clamped to ground at the input of the
Schmitt-trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep Controller in
Power-down mode, Power-save mode, and Standby mode to avoid high power consumption if
some input signals are left floating, or have an analog signal level close to VCC/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt
request is not enabled, SLEEP is active also for these pins. SLEEP is also overridden by various
other alternate functions as described in “Alternate Port Functions” on page 66.

If a logic high level (“one”) is present on an asynchronous external interrupt pin configured as
“Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the external interrupt
is not enabled, the corresponding External Interrupt Flag will be set when resuming from the
above mentioned Sleep mode, as the clamping in these sleep mode produces the requested
logic change.

14.2.6 Unconnected Pins
If some pins are unused, it is recommended to ensure that these pins have a defined level. Even
though most of the digital inputs are disabled in the deep sleep modes as described above, float-

Assembly Code Example(1)

...

; Define pull-ups and set outputs high

; Define directions for port pins

ldi r16,(1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0)

ldi r17,(1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)

out PORTB,r16

out DDRB,r17

; Insert nop for synchronization

nop

; Read port pins

in r16,PINB

...

C Code Example

unsigned char i;

...

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0);

DDRB = (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0);

/* Insert nop for synchronization*/

__no_operation();

/* Read port pins */

i = PINB;

...
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ing inputs should be avoided to reduce current consumption in all other modes where the digital
inputs are enabled (Reset, Active mode and Idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal pull-up.
In this case, the pull-up will be disabled during reset. If low power consumption during reset is
important, it is recommended to use an external pull-up or pull-down. Connecting unused pins
directly to VCC or GND is not recommended, since this may cause excessive currents if the pin is
accidentally configured as an output.

14.3 Alternate Port Functions
Most port pins have alternate functions in addition to being general digital I/Os. Figure 14-5
shows how the port pin control signals from the simplified Figure 14-2 can be overridden by
alternate functions. The overriding signals may not be present in all port pins, but the figure
serves as a generic description applicable to all port pins in the AVR microcontroller family.

Figure 14-5. Alternate Port Functions(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O,
SLEEP, and PUD are common to all ports. All other signals are unique for each pin.
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Table 14-2 summarizes the function of the overriding signals. The pin and port indexes from Fig-
ure 14-5 are not shown in the succeeding tables. The overriding signals are generated internally
in the modules having the alternate function.

The following subsections shortly describe the alternate functions for each port, and relate the
overriding signals to the alternate function. Refer to the alternate function description for further
details.

Table 14-2. Generic Description of Overriding Signals for Alternate Functions

Signal Name Full Name Description

PUOE Pull-up Override 
Enable

If this signal is set, the pull-up enable is controlled by the 
PUOV signal. If this signal is cleared, the pull-up is 
enabled when {DDxn, PORTxn, PUD} = 0b010. 

PUOV Pull-up Override 
Value

If PUOE is set, the pull-up is enabled/disabled when 
PUOV is set/cleared, regardless of the setting of the 
DDxn, PORTxn, and PUD Register bits.

DDOE Data Direction 
Override Enable

If this signal is set, the Output Driver Enable is controlled 
by the DDOV signal. If this signal is cleared, the Output 
driver is enabled by the DDxn Register bit. 

DDOV Data Direction 
Override Value

If DDOE is set, the Output Driver is enabled/disabled 
when DDOV is set/cleared, regardless of the setting of 
the DDxn Register bit.

PVOE Port Value 
Override Enable

If this signal is set and the Output Driver is enabled, the 
port value is controlled by the PVOV signal. If PVOE is 
cleared, and the Output Driver is enabled, the port Value 
is controlled by the PORTxn Register bit.

PVOV Port Value 
Override Value

If PVOE is set, the port value is set to PVOV, regardless 
of the setting of the PORTxn Register bit.

PTOE Port Toggle 
Override Enable

If PTOE is set, the PORTxn Register bit is inverted.

DIEOE Digital Input 
Enable Override 
Enable

If this bit is set, the Digital Input Enable is controlled by 
the DIEOV signal. If this signal is cleared, the Digital Input 
Enable is determined by MCU state (Normal mode, sleep 
mode).

DIEOV Digital Input 
Enable Override 
Value

If DIEOE is set, the Digital Input is enabled/disabled when 
DIEOV is set/cleared, regardless of the MCU state 
(Normal mode, sleep mode).

DI Digital Input This is the Digital Input to alternate functions. In the 
figure, the signal is connected to the output of the schmitt 
trigger but before the synchronizer. Unless the Digital 
Input is used as a clock source, the module with the 
alternate function will use its own synchronizer.

AIO Analog 
Input/Output

This is the Analog Input/output to/from alternate 
functions. The signal is connected directly to the pad, and 
can be used bi-directionally.



68
2570N–AVR–05/11

ATmega325/3250/645/6450

14.3.1 Alternate Functions of Port B
The Port B pins with alternate functions are shown in Table 14-3.

The alternate pin configuration is as follows:

• OC2A/PCINT15, Bit 7
OC2, Output Compare Match A output: The PB7 pin can serve as an external output for the
Timer/Counter2 Output Compare A. The pin has to be configured as an output (DDB7 set (one))
to serve this function. The OC2A pin is also the output pin for the PWM mode timer function.

PCINT15, Pin Change Interrupt source 15: The PB7 pin can serve as an external interrupt
source.

• OC1B/PCINT14, Bit 6
OC1B, Output Compare Match B output: The PB6 pin can serve as an external output for the
Timer/Counter1 Output Compare B. The pin has to be configured as an output (DDB6 set (one))
to serve this function. The OC1B pin is also the output pin for the PWM mode timer function.

PCINT14, Pin Change Interrupt Source 14: The PB6 pin can serve as an external interrupt
source.

Table 14-3. Port B Pins Alternate Functions

Port Pin Alternate Functions

PB7
OC2A/PCINT15 (Output Compare and PWM Output A for Timer/Counter2 or 
Pin Change Interrupt15).

PB6
OC1B/PCINT14 (Output Compare and PWM Output B for Timer/Counter1 or 
Pin Change Interrupt14).

PB5
OC1A/PCINT13 (Output Compare and PWM Output A for Timer/Counter1 or 
Pin Change Interrupt13).

PB4
OC0A/PCINT12 (Output Compare and PWM Output A for Timer/Counter0 or 
Pin Change Interrupt12).

PB3
MISO/PCINT11 (SPI Bus Master Input/Slave Output or Pin Change 
Interrupt11).

PB2
MOSI/PCINT10 (SPI Bus Master Output/Slave Input or Pin Change 
Interrupt10).

PB1 SCK/PCINT9 (SPI Bus Serial Clock or Pin Change Interrupt9).

PB0 SS/PCINT8 (SPI Slave Select input or Pin Change Interrupt8).
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• OC1A/PCINT13, Bit 5

OC1A, Output Compare Match A output: The PB5 pin can serve as an external output for the
Timer/Counter1 Output Compare A. The pin has to be configured as an output (DDB5 set (one))
to serve this function. The OC1A pin is also the output pin for the PWM mode timer function.

PCINT13, Pin Change Interrupt Source 13: The PB5 pin can serve as an external interrupt
source.

• OC0A/PCINT12, Bit 4
OC0A, Output Compare Match A output: The PB4 pin can serve as an external output for the
Timer/Counter0 Output Compare A. The pin has to be configured as an output (DDB4 set (one))
to serve this function. The OC0A pin is also the output pin for the PWM mode timer function.

PCINT12, Pin Change Interrupt Source 12: The PB4 pin can serve as an external interrupt
source.

• MISO/PCINT11 – Port B, Bit 3
MISO: Master Data input, Slave Data output pin for SPI. When the SPI is enabled as a Master,
this pin is configured as an input regardless of the setting of DDB3. When the SPI is enabled as
a Slave, the data direction of this pin is controlled by DDB3. When the pin is forced to be an
input, the pull-up can still be controlled by the PORTB3 bit.

PCINT11, Pin Change Interrupt Source 11: The PB3 pin can serve as an external interrupt
source.

• MOSI/PCINT10 – Port B, Bit 2
MOSI: SPI Master Data output, Slave Data input for SPI. When the SPI is enabled as a Slave,
this pin is configured as an input regardless of the setting of DDB2. When the SPI is enabled as
a Master, the data direction of this pin is controlled by DDB2. When the pin is forced to be an
input, the pull-up can still be controlled by the PORTB2 bit.

PCINT10, Pin Change Interrupt Source 10: The PB2 pin can serve as an external interrupt
source.

• SCK/PCINT9 – Port B, Bit 1
SCK: Master Clock output, Slave Clock input pin for SPI. When the SPI is enabled as a Slave,
this pin is configured as an input regardless of the setting of DDB1. When the SPI is enabled as
a Master, the data direction of this pin is controlled by DDB1. When the pin is forced to be an
input, the pull-up can still be controlled by the PORTB1 bit.

PCINT9, Pin Change Interrupt Source 9: The PB1 pin can serve as an external interrupt source.

• SS/PCINT8 – Port B, Bit 0
SS: Slave Port Select input. When the SPI is enabled as a Slave, this pin is configured as an
input regardless of the setting of DDB0. As a Slave, the SPI is activated when this pin is driven
low. When the SPI is enabled as a Master, the data direction of this pin is controlled by DDB0.
When the pin is forced to be an input, the pull-up can still be controlled by the PORTB0 bit

PCINT8, Pin Change Interrupt Source 8: The PB0 pin can serve as an external interrupt source.
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Table 14-4 and Table 14-5 relate the alternate functions of Port B to the overriding signals
shown in Figure 14-5 on page 66. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute the
MISO signal, while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE INPUT.

 

Table 14-4. Overriding Signals for Alternate Functions in PB7:PB4

Signal 
Name

PB7/OC2A/
PCINT15

PB6/OC1B/
PCINT14

PB5/OC1A/
PCINT13

PB4/OC0A/
PCINT12

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE OC2A ENABLE OC1B ENABLE OC1A ENABLE OC0A ENABLE

PVOV OC2A OC1B OC1A OC0A

PTOE – – – –

DIEOE PCINT15 • 
PCIE1

PCINT14 • 
PCIE1

PCINT13 • 
PCIE1

PCINT12 • 
PCIE1

DIEOV 1 1 1 1

DI PCINT15 INPUT PCINT14 INPUT PCINT13 INPUT PCINT12 INPUT

AIO – – – –

Table 14-5. Overriding Signals for Alternate Functions in PB3:PB0

Signal 
Name

PB3/MISO/
PCINT11

PB2/MOSI/
PCINT10

PB1/SCK/
PCINT9

PB0/SS/
PCINT8

PUOE SPE • MSTR SPE • MSTR SPE • MSTR SPE • MSTR

PUOV PORTB3 • PUD PORTB2 • PUD PORTB1 • PUD PORTB0 • PUD

DDOE SPE • MSTR SPE • MSTR SPE • MSTR SPE • MSTR

DDOV 0 0 0 0

PVOE SPE • MSTR SPE • MSTR SPE • MSTR 0

PVOV SPI SLAVE 
OUTPUT

SPI MSTR 
OUTPUT

SCK OUTPUT 0

PTOE – – – –

DIEOE PCINT11 • 
PCIE1

PCINT10 • 
PCIE1

PCINT9 • PCIE1 PCINT8 • PCIE1

DIEOV 1 1 1 1

DI PCINT11 INPUT

SPI MSTR 
INPUT

PCINT10 INPUT

SPI SLAVE 
INPUT

PCINT9 INPUT

SCK INPUT

PCINT8 INPUT

SPI SS

AIO – – – –
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14.3.2 Alternate Functions of Port D
The Port D pins with alternate functions are shown in Table 14-6.

The alternate pin configuration is as follows:

• INT0 – Port D, Bit 1
INT0, External Interrupt Source 0. The PD1 pin can serve as an external interrupt source to the
MCU.

• ICP1 – Port D, Bit 0
ICP1 – Input Capture pin1: The PD0 pin can act as an Input Capture pin for Timer/Counter1.

Table 14-7 relates the alternate functions of Port D to the overriding signals shown in Figure 14-
5 on page 66.  

Table 14-6. Port D Pins Alternate Functions

Port Pin Alternate Function

PD7 -

PD6 -

PD5 -

PD4 -

PD3 -

PD2 -

PD1 INT0 (External Interrupt0 Input)

PD0 ICP1 (Timer/Counter1 Input Capture pin)

Table 14-7. Overriding Signals for Alternate Functions in PD3:PD0

Signal 
Name PD3 PD2 PD1/INT0 PD0/ICP1

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE – – – –

DIEOE 0 0 INT0 ENABLE 0

DIEOV 0 0 INT0 ENABLE 0

DI – – INT0 INPUT ICP1 INPUT

AIO – – – –
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14.3.3 Alternate Functions of Port E
The Port E pins with alternate functions are shown in Table 14-8.

• PCINT7 – Port E, Bit 7
PCINT7, Pin Change Interrupt Source 7: The PE7 pin can serve as an external interrupt source.

CLKO, Divided System Clock: The divided system clock can be output on the PE7 pin. The
divided system clock will be output if the CKOUT Fuse is programmed, regardless of the
PORTE7 and DDE7 settings. It will also be output during reset.

• DO/PCINT6 – Port E, Bit 6
DO, Universal Serial Interface Data output. 

PCINT6, Pin Change Interrupt Source 6: The PE6 pin can serve as an external interrupt source.

• DI/SDA/PCINT5 – Port E, Bit 5
DI, Universal Serial Interface Data input.

SDA, Two-wire Serial Interface Data: 

PCINT5, Pin Change Interrupt Source 5: The PE5 pin can serve as an external interrupt source.

• USCK/SCL/PCINT4 – Port E, Bit 4
USCK, Universal Serial Interface Clock.

SCL, Two-wire Serial Interface Clock.

PCINT4, Pin Change Interrupt Source 4: The PE4 pin can serve as an external interrupt source.

• AIN1/PCINT3 – Port E, Bit 3
AIN1 – Analog Comparator Negative input. This pin is directly connected to the negative input of
the Analog Comparator.

PCINT3, Pin Change Interrupt Source 3: The PE3 pin can serve as an external interrupt source.

Table 14-8. Port E Pins Alternate Functions

Port Pin Alternate Function

PE7
PCINT7 (Pin Change Interrupt7)
CLKO (Divided System Clock)

PE6 DO/PCINT6 (USI Data Output or Pin Change Interrupt6)

PE5 DI/SDA/PCINT5 (USI Data Input or TWI Serial DAta or Pin Change Interrupt5)

PE4
USCK/SCL/PCINT4 (USART External Clock Input/Output or TWI Serial Clock 
or Pin Change Interrupt4)

PE3 AIN1/PCINT3 (Analog Comparator Negative Input or Pin Change Interrupt3)

PE2
XCK/AIN0/ PCINT2 (USART External Clock or Analog Comparator Positive 
Input or Pin Change Interrupt2)

PE1 TXD/PCINT1 (USART Transmit Pin or Pin Change Interrupt1)

PE0 RXD/PCINT0 (USART Receive Pin or Pin Change Interrupt0)
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• XCK/AIN0/PCINT2 – Port E, Bit 2

XCK, USART External Clock. The Data Direction Register (DDE2) controls whether the clock is
output (DDE2 set) or input (DDE2 cleared). The XCK pin is active only when the USART oper-
ates in synchronous mode.

AIN0 – Analog Comparator Positive input. This pin is directly connected to the positive input of
the Analog Comparator.

PCINT2, Pin Change Interrupt Source 2: The PE2 pin can serve as an external interrupt source.

• TXD/PCINT1 – Port E, Bit 1
TXD0, UART0 Transmit pin.

PCINT1, Pin Change Interrupt Source 1: The PE1 pin can serve as an external interrupt source.

• RXD/PCINT0 – Port E, Bit 0
RXD, USART Receive pin. Receive Data (Data input pin for the USART). When the USART
Receiver is enabled this pin is configured as an input regardless of the value of DDE0. When the
USART forces this pin to be an input, a logical one in PORTE0 will turn on the internal pull-up.

PCINT0, Pin Change Interrupt Source 0: The PE0 pin can serve as an external interrupt source.

Table 14-9 and Table 14-10 relates the alternate functions of Port E to the overriding signals
shown in Figure 14-5 on page 66. 

Note: 1. CKOUT is one if the CKOUT Fuse is programmed

Table 14-9. Overriding Signals for Alternate Functions PE7:PE4

Signal 
Name PE7/PCINT7

PE6/DO/
PCINT6

PE5/DI/SDA/
PCINT5

PE4/USCK/SCL/
PCINT4

PUOE 0 0 USI_TWO-WIRE USI_TWO-WIRE

PUOV 0 0 0 0

DDOE CKOUT(1) 0 USI_TWO-WIRE USI_TWO-WIRE

DDOV 1 0 (SDA + 
PORTE5) • 
DDE5

(USI_SCL_HOL
D + PORTE4) • 
DDE4

PVOE CKOUT(1) USI_THREE-
WIRE

USI_TWO-WIRE 
• DDE5

USI_TWO-WIRE 
• DDE4

PVOV clkI/O DO 0 0

PTOE – – 0 USITC

DIEOE PCINT7 • PCIE0 PCINT6 • PCIE0 (PCINT5 • 
PCIE0) + USISIE

(PCINT4 • 
PCIE0) + USISIE

DIEOV 1 1 1 1

DI PCINT7 INPUT PCINT6 INPUT DI/SDA INPUT

PCINT5 INPUT

USCKL/SCL 
INPUT

PCINT4 INPUT

AIO – – – –
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Note: 1. AIN0D and AIN1D is described in “DIDR1 – Digital Input Disable Register 1” on page 200.

14.3.4 Alternate Functions of Port F
The Port F has an alternate function as analog input for the ADC as shown in Table 14-11. If
some Port F pins are configured as outputs, it is essential that these do not switch when a con-
version is in progress. This might corrupt the result of the conversion. If the JTAG interface is
enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS) and PF4(TCK) will be activated even
if a reset occurs.

• TDI, ADC7 – Port F, Bit 7
ADC7, Analog to Digital Converter, Channel 7.

TDI, JTAG Test Data In: Serial input data to be shifted in to the Instruction Register or Data Reg-
ister (scan chains). When the JTAG interface is enabled, this pin can not be used as an I/O pin.

Table 14-10. Overriding Signals for Alternate Functions in PE3:PE0

Signal 
Name

PE3/AIN1/
PCINT3

PE2/XCK/AIN0/
PCINT2

PE1/TXD/
PCINT1

PE0/RXD/PCINT
0

PUOE 0 XCK OUTPUT 
ENABLE

TXEN RXEN

PUOV 0 XCK 0 PORTE0 • PUD

DDOE 0 0 TXEN RXEN

DDOV 0 0 1 0

PVOE 0 0 TXEN 0

PVOV 0 0 TXD 0

PTOE – – – –

DIEOE (PCINT3 • 
PCIE0) + 
AIN1D(1)

(PCINT2 • 
PCIE0) + 
AIN0D(1)

PCINT1 • PCIE0 PCINT0 • PCIE0

DIEOV PCINT3 • PCIE0 PCINT2 • PCIE0 1 1

DI PCINT3 INPUT XCK/PCINT2 
INPUT

PCINT1 INPUT RXD/PCINT0 
INPUT

AIO AIN1 INPUT AIN0 INPUT – –

Table 14-11. Port F Pins Alternate Functions

Port Pin Alternate Function

PF7 ADC7/TDI (ADC input channel 7 or JTAG Test Data Input)

PF6 ADC6/TDO (ADC input channel 6 or JTAG Test Data Output)

PF5 ADC5/TMS (ADC input channel 5 or JTAG Test mode Select)

PF4 ADC4/TCK (ADC input channel 4 or JTAG Test ClocK)

PF3 ADC3 (ADC input channel 3)

PF2 ADC2 (ADC input channel 2)

PF1 ADC1 (ADC input channel 1)

PF0 ADC0 (ADC input channel 0)
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• TDO, ADC6 – Port F, Bit 6

ADC6, Analog to Digital Converter, Channel 6.

TDO, JTAG Test Data Out: Serial output data from Instruction Register or Data Register. When
the JTAG interface is enabled, this pin can not be used as an I/O pin. In TAP states that shift out
data, the TDO pin drives actively. In other states the pin is pulled high.

• TMS, ADC5 – Port F, Bit 5
ADC5, Analog to Digital Converter, Channel 5.

TMS, JTAG Test mode Select: This pin is used for navigating through the TAP-controller state
machine. When the JTAG interface is enabled, this pin can not be used as an I/O pin.

• TCK, ADC4 – Port F, Bit 4
ADC4, Analog to Digital Converter, Channel 4.

TCK, JTAG Test Clock: JTAG operation is synchronous to TCK. When the JTAG interface is
enabled, this pin can not be used as an I/O pin.

• ADC3 - ADC0 – Port F, Bit 3:0
Analog to Digital Converter, Channel 3-0.

Table 14-12. Overriding Signals for Alternate Functions in PF7:PF4

Signal 
Name PF7/ADC7/TDI PF6/ADC6/TDO PF5/ADC5/TMS PF4/ADC4/TCK

PUOE JTAGEN JTAGEN JTAGEN JTAGEN

PUOV 1 1 1 1

DDOE JTAGEN JTAGEN JTAGEN JTAGEN

DDOV 0 SHIFT_IR + 
SHIFT_DR

0 0

PVOE 0 JTAGEN 0 0

PVOV 0 TDO 0 0

PTOE – – – –

DIEOE JTAGEN JTAGEN JTAGEN JTAGEN

DIEOV 0 0 0 0

DI – – – –

AIO TDI
ADC7 INPUT

ADC6 INPUT TMS
ADC5 INPUT

TCK
ADC4 INPUT
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14.3.5 Alternate Functions of Port G
The alternate pin configuration is as follows:

Note: 1. Port G, PG5 is input only. Pull-up is always on. 
See Table 27-3 on page 266 for RSTDISBL fuse.

The alternate pin configuration is as follows:

• RESET – Port G, Bit 5
RESET: External Reset input. When the RSTDISBL Fuse is programmed ('0'), PG5 will function
as input with pull-up always on.

• T0 – Port G, Bit 4
T0, Timer/Counter0 Counter Source.

• T1 – Port G, Bit 3
T1, Timer/Counter1 Counter Source.

Table 14-14 and Table 14-15 relates the alternate functions of Port G to the overriding signals
shown in Figure 14-5 on page 66.

Table 14-13. Overriding Signals for Alternate Functions in PF3:PF0

Signal 
Name PF3/ADC3 PF2/ADC2 PF1/ADC1 PF0/ADC0

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE – – – –

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI – – – –

AIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADC0 INPUT

Table 14-14. Port G Pins Alternate Functions

Port Pin Alternate Function

PG5 RESET(1)

PG4 T0 (Timer/Counter0 Clock Inpu)

PG3 T1 (Timer/Counter1 Clock Input)

PG2 -

PG1 -

PG0 -
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14.3.6 Alternate Functions of Port H
Port H is only present in ATmega3250/6450. The alternate pin configuration is as follows:

The alternate pin configuration is as follows:

• PCINT23 – Port H, Bit 7
PCINT23, Pin Change Interrupt Source 23: The PH7 pin can serve as an external interrupt
source.

• PCINT22 – Port H, Bit 6
PCINT22, Pin Change Interrupt Source 22: The PH6 pin can serve as an external interrupt
source.

• PCINT21 – Port H, Bit 5
PCINT21, Pin Change Interrupt Source 21: The PH5 pin can serve as an external interrupt
source.

Table 14-15. Overriding Signals for Alternate Functions in PG4 and PG3

Signal Name PG4/T0 PG3/T1

PUOE 0 0

PUOV 0 0

DDOE 0 0

DDOV 0 0

PVOE 0 0

PVOV 0 0

PTOE – –

DIEOE 0 0

DIEOV 0 0

DI T0 INPUT T1 INPUT

AIO - -

Table 14-16. Port H Pins Alternate Functions

Port Pin Alternate Function

PH7 PCINT23 (Pin Change Interrupt23)

PH6 PCINT22 (Pin Change Interrupt22)

PH5 PCINT21 (Pin Change Interrupt21)

PH4 PCINT20 (Pin Change Interrupt20)

PH3 PCINT19 (Pin Change Interrupt19)

PH2 PCINT18 (Pin Change Interrupt18)

PH1 PCINT17 (Pin Change Interrupt17)

PH0 PCINT16 (Pin Change Interrupt16)
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• PCINT20 – Port H, Bit 4
PCINT20, Pin Change Interrupt Source 20: The PH4 pin can serve as an external interrupt
source.

• PCINT19 – Port H, Bit 3
PCINT19, Pin Change Interrupt Source 19: The PH3 pin can serve as an external interrupt
source.

• PCINT18 – Port H, Bit 2
PCINT18, Pin Change Interrupt Source 18: The PH2 pin can serve as an external interrupt
source.

• PCINT17 – Port H, Bit 1
PCINT17, Pin Change Interrupt Source 17: The P1 pin can serve as an external interrupt
source.

• PCINT16 – Port H, Bit 0
PCINT16, Pin Change Interrupt Source 16: The PH0 pin can serve as an external interrupt
source.

Table 14-17 and Table 14-18 relates the alternate functions of Port H to the overriding signals
shown in Figure 14-5 on page 66.

Table 14-17. Overriding Signals for Alternate Functions in PH7:4

Signal 
Name PH7/PCINT23 PH6/PCINT22 PH5/PCINT21 PH4/PCINT20

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE – – – –

DIEOE PCINT23 • 
PCIE0

PCINT22 • 
PCIE0

PCINT21 • 
PCIE0

PCINT20 • 
PCIE0

DIEOV 0 0 0 0

DI PCINT23 INPUT PCINT22 INPUT PCINT21 INPUT PCINT20 INPUT

AIO – – – –
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14.3.7 Alternate Functions of Port J
Port J is only present in ATmega3250/6450. The alternate pin configuration is as follows:

The alternate pin configuration is as follows:

• PCINT30 – Port J, Bit 6
PCINT30, Pin Change Interrupt Source 30: The PE30 pin can serve as an external interrupt
source.

• PCINT29 – Port J, Bit 5
PCINT29, Pin Change Interrupt Source 29: The PE29 pin can serve as an external interrupt
source.

• PCINT28 – Port J, Bit 4
PCINT28, Pin Change Interrupt Source 28: The PE28 pin can serve as an external interrupt
source.

Table 14-18. Overriding Signals for Alternate Functions in PH3:0

Signal 
Name PH3/PCINT19 PH2/PCINT18 PH1/PCINT17 PH0/PCINT16

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE – – – –

DIEOE PCINT19 • 
PCIE0

PCINT18 • 
PCIE0

PCINT17 • 
PCIE0

PCINT16 • 
PCIE0

DIEOV 0 0 0 0

DI PCINT19 INPUT PCINT18 INPUT PCINT17 INPUT PCINT16 INPUT

AIO – – – –

Table 14-19. Port J Pins Alternate Functions

Port Pin Alternate Function

PJ6 PCINT30 (Pin Change Interrupt30)

PJ5 PCINT29 (Pin Change Interrupt29)

PJ4 PCINT28 (Pin Change Interrupt28)

PJ3 PCINT27 (Pin Change Interrupt27)

PJ2 PCINT26(Pin Change Interrupt26)

PJ1 PCINT25(Pin Change Interrupt25)

PJ0 PCINT24 (Pin Change Interrupt26)
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• PCINT27 – Port J, Bit 3
PCINT27, Pin Change Interrupt Source 27: The PE27 pin can serve as an external interrupt
source.

• PCINT26 – Port J, Bit 2
PCINT26, Pin Change Interrupt Source 26: The PE26 pin can serve as an external interrupt
source.

• PCINT25 – Port J, Bit 1
PCINT25, Pin Change Interrupt Source 25: The PE25 pin can serve as an external interrupt
source.

• PCINT24 – Port J, Bit 0
PCINT24, Pin Change Interrupt Source 24: The PE24 pin can serve as an external interrupt
source.

Table 14-20 and Table 14-21 relates the alternate functions of Port J to the overriding signals
shown in Figure 14-5 on page 66.

Table 14-20. Overriding Signals for Alternate Functions in PJ7:4

Signal 
Name PJ6/PCINT30 PJ5/PCINT29 PJ4/PCINT28

PUOE 0 0 0

PUOV 0 0 0

DDOE 0 0 0

DDOV 0 0 0

PVOE 0 0 0

PVOV 0 0 0

PTOE – – –

DIEOE PCINT30 • 
PCIE0

PCINT29 • 
PCIE0

PCINT28 • 
PCIE0

DIEOV 0 0 0

DI – – –

AIO – – –
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14.4 Register Description

14.4.1 MCUCR – MCU Control Register

• Bit 4 – PUD: Pull-up Disable
When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and
PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See “Con-
figuring the Pin” on page 61 for more details about this feature.

14.4.2 PORTA – Port A Data Register

14.4.3 DDRA – Port A Data Direction Register

14.4.4 PINA – Port A Input Pins Address

Table 14-21. Overriding Signals for Alternate Functions in PH3:0

Signal 
Name PJ3/PCINT27 PJ2/PCINT26 PJ1/PCINT25 PJ0/PCINT24

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE – – – –

DIEOE PCINT27 • 
PCIE0

PCINT26 • 
PCIE0

PCINT25 • 
PCIE0

PCINT24 • 
PCIE0

DIEOV 0 0 0 0

DI – – – –

AIO – – – –

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) JTD – – PUD – – IVSEL IVCE MCUCR

Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x02 (0x22) PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 PORTA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x01 (0x21) DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 DDRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x00 (0x20) PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 PINA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
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14.4.5 PORTB – Port B Data Register

14.4.6 DDRB – Port B Data Direction Register

14.4.7 PINB – Port B Input Pins Address

14.4.8 PORTC – Port C Data Register

14.4.9 DDRC – Port C Data Direction Register

14.4.10 PINC – Port C Input Pins Address

14.4.11 PORTD – Port D Data Register

14.4.12 DDRD – Port D Data Direction Register

Bit 7 6 5 4 3 2 1 0

0x05 (0x25) PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 PORTB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x04 (0x24) DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 DDRB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x03 (0x23) PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 PINB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

0x08 (0x28) PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 PORTC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x07 (0x27) DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 DDRC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x06 (0x26) PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 PINC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

0x0B (0x2B) PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 PORTD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x0A (0x2A) DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 DDRD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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14.4.13 PIND – Port D Input Pins Address

14.4.14 PORTE – Port E Data Register

14.4.15 DDRE – Port E Data Direction Register

14.4.16 PINE – Port E Input Pins Address

14.4.17 PORTF – Port F Data Register

14.4.18 DDRF – Port F Data Direction Register

14.4.19 PINF – Port F Input Pins Address

14.4.20 PORTG – Port G Data Register

Bit 7 6 5 4 3 2 1 0

0x09 (0x29) PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 PIND

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

0x0E (0x2E) PORTE7 PORTE6 PORTE5 PORTE4 PORTE3 PORTE2 PORTE1 PORTE0 PORTE

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x0D (0x2D) DDE7 DDE6 DDE5 DDE4 DDE3 DDE2 DDE1 DDE0 DDRE

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x0C (0x2C) PINE7 PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINE0 PINE

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

0x11 (0x31) PORTF7 PORTF6 PORTF5 PORTF4 PORTF3 PORTF2 PORTF1 PORTF0 PORTF

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x10 (0x30) DDF7 DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDF0 DDRF

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x0F (0x2F) PINF7 PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINF0 PINF

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

0x14 (0x34) – – – PORTG4 PORTG3 PORTG2 PORTG1 PORTG0 PORTG

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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14.4.21 DDRG – Port G Data Direction Register

14.4.22 PING – Port G Input Pins Address

14.4.23 PORTH – Port H Data Register(1)

14.4.24 DDRH – Port H Data Direction Register(1)

14.4.25 PINH – Port H Input Pins Address(1)

14.4.26 PORTJ – Port J Data Register(1)

14.4.27 DDRJ – Port J Data Direction Register(1)

14.4.28 PINJ – Port J Input Pins Address(1)

Note: 1. Register only available in ATmega3250/6450.

Bit 7 6 5 4 3 2 1 0

0x13 (0x33) – – – DDG4 DDG3 DDG2 DDG1 DDG0 DDRG

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x12 (0x32) – – PING5 PING4 PING3 PING2 PING1 PING0 PING

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

(0xDA) PORTH7 PORTH6 PORTH5 PORTH4 PORTH3 PORTH2 PORTH1 PORTH0 PORTH

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xD9) DDH7 DDH6 DDH5 DDH4 DDH3 DDH2 DDH1 DDH0 DDRH

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xD8) PINH7 PINH6 PINH5 PINH4 PINH3 PINH2 PINH1 PINH0 PINH

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

(0xDD) – PORTJ6 PORTJ5 PORTJ4 PORTJ3 PORTJ2 PORTJ1 PORTJ0 PORTJ

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xDC) – DDJ6 DDJ5 DDJ4 DDJ3 DDJ2 DDJ1 DDJ0 DDRJ

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xDB) – PINJ6 PINJ5 PINJ4 PINJ3 PINJ2 PINJ1 PINJ0 PINJ

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 N/A N/A N/A N/A N/A N/A N/A
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15. 8-bit Timer/Counter0 with PWM

15.1 Features
Timer/Counter0 is a general purpose, single compare unit, 8-bit Timer/Counter module. The
main features are:

• Single Compare Unit Counter
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Frequency Generator
• External Event Counter
• 10-bit Clock Prescaler
• Overflow and Compare Match Interrupt Sources (TOV0 and OCF0A)

15.2 Overview
A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 15-1. For the actual
placement of I/O pins, refer to “Pinout ATmega3250/6450” on page 2 and “Pinout
ATmega325/645” on page 3. CPU accessible I/O Registers, including I/O bits and I/O pins, are
shown in bold. The device-specific I/O Register and bit locations are listed in the “Register
Description” on page 96.

Figure 15-1. 8-bit Timer/Counter Block Diagram 

15.2.1 Definitions
Many register and bit references in this section are written in general form. A lower case “n”
replaces the Timer/Counter number, in this case 0. A lower case “x” replaces the Output Com-
pare unit number, in this case unit A. However, when using the register or bit defines in a
program, the precise form must be used, i.e., TCNT0 for accessing Timer/Counter0 counter
value and so on.
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The definitions in Table 15-1 are also used extensively throughout the document.

15.2.2 Registers
The Timer/Counter (TCNT0) and Output Compare Register (OCR0A) are 8-bit registers. Inter-
rupt request (abbreviated to Int.Req. in the figure) signals are all visible in the Timer Interrupt
Flag Register (TIFR0). All interrupts are individually masked with the Timer Interrupt Mask Reg-
ister (TIMSK0). TIFR0 and TIMSK0 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the T0 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the Clock Select logic is referred to as the timer clock (clkT0).

The double buffered Output Compare Register (OCR0A) is compared with the Timer/Counter
value at all times. The result of the compare can be used by the Waveform Generator to gener-
ate a PWM or variable frequency output on the Output Compare pin (OC0A). See “Output
Compare Unit” on page 87. for details. The compare match event will also set the Compare Flag
(OCF0A) which can be used to generate an Output Compare interrupt request.

15.3 Timer/Counter Clock Sources
The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CS02:0) bits
located in the Timer/Counter Control Register (TCCR0A). For details on clock sources and pres-
caler, see “Timer/Counter0 and Timer/Counter1 Prescalers” on page 99.

Table 15-1. Definitions of Timer/Counter values.

BOTTOM The counter reaches the BOTTOM when it becomes 0x00.
MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).
TOP The counter reaches the TOP when it becomes equal to the highest

value in the count sequence. The TOP value can be assigned to be the
fixed value 0xFF (MAX) or the value stored in the OCR0A Register. The
assignment is dependent on the mode of operation.
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15.4 Counter Unit
The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure
15-2 shows a block diagram of the counter and its surroundings.

Figure 15-2. Counter Unit Block Diagram

Signal description (internal signals):

count Increment or decrement TCNT0 by 1.

direction Select between increment and decrement.

clear Clear TCNT0 (set all bits to zero).

clkTn Timer/Counter clock, referred to as clkT0 in the following.

top Signalize that TCNT0 has reached maximum value.

bottom Signalize that TCNT0 has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clkT0). clkT0 can be generated from an external or internal clock source,
selected by the Clock Select bits (CS02:0). When no clock source is selected (CS02:0 = 0) the
timer is stopped. However, the TCNT0 value can be accessed by the CPU, regardless of
whether clkT0 is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the WGM01 and WGM00 bits located in
the Timer/Counter Control Register (TCCR0A). There are close connections between how the
counter behaves (counts) and how waveforms are generated on the Output Compare output
OC0A. For more details about advanced counting sequences and waveform generation, see
“Modes of Operation” on page 90.

The Timer/Counter Overflow Flag (TOV0) is set according to the mode of operation selected by
the WGM01:0 bits. TOV0 can be used for generating a CPU interrupt.

15.5 Output Compare Unit
The 8-bit comparator continuously compares TCNT0 with the Output Compare Register
(OCR0A). Whenever TCNT0 equals OCR0A, the comparator signals a match. A match will set
the Output Compare Flag (OCF0A) at the next timer clock cycle. If enabled (OCIE0A = 1 and
Global Interrupt Flag in SREG is set), the Output Compare Flag generates an Output Compare
interrupt. The OCF0A Flag is automatically cleared when the interrupt is executed. Alternatively,
the OCF0A Flag can be cleared by software by writing a logical one to its I/O bit location. The
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Waveform Generator uses the match signal to generate an output according to operating mode
set by the WGM01:0 bits and Compare Output mode (COM0A1:0) bits. The max and bottom sig-
nals are used by the Waveform Generator for handling the special cases of the extreme values
in some modes of operation (See “Modes of Operation” on page 90.).

Figure 15-3 shows a block diagram of the Output Compare unit. 

Figure 15-3. Output Compare Unit, Block Diagram
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The OCR0A Register is double buffered when using any of the Pulse Width Modulation (PWM)
modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the double buff-
ering is disabled. The double buffering synchronizes the update of the OCR0 Compare Register
to either top or bottom of the counting sequence. The synchronization prevents the occurrence
of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.
The OCR0A Register access may seem complex, but this is not case. When the double buffer-
ing is enabled, the CPU has access to the OCR0A Buffer Register, and if double buffering is
disabled the CPU will access the OCR0A directly. 

15.5.1 Force Output Compare
In non-PWM waveform generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC0A) bit. Forcing compare match will not set the
OCF0A Flag or reload/clear the timer, but the OC0A pin will be updated as if a real compare
match had occurred (the COM0A1:0 bits settings define whether the OC0A pin is set, cleared or
toggled). 

15.5.2 Compare Match Blocking by TCNT0 Write
All CPU write operations to the TCNT0 Register will block any compare match that occur in the
next timer clock cycle, even when the timer is stopped. This feature allows OCR0A to be initial-
ized to the same value as TCNT0 without triggering an interrupt when the Timer/Counter clock is
enabled.

15.5.3 Using the Output Compare Unit
Since writing TCNT0 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT0 when using the Output Compare unit,
independently of whether the Timer/Counter is running or not. If the value written to TCNT0
equals the OCR0A value, the compare match will be missed, resulting in incorrect waveform
generation. Similarly, do not write the TCNT0 value equal to BOTTOM when the counter is
counting down.

The setup of the OC0A should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC0A value is to use the Force Output Com-
pare (FOC0A) strobe bits in Normal mode. The OC0A Register keeps its value even when
changing between Waveform Generation modes.

Be aware that the COM0A1:0 bits are not double buffered together with the compare value.
Changing the COM0A1:0 bits will take effect immediately.

15.6 Compare Match Output Unit
The Compare Output mode (COM0A1:0) bits have two functions. The Waveform Generator
uses the COM0A1:0 bits for defining the Output Compare (OC0A) state at the next compare
match. Also, the COM0A1:0 bits control the OC0A pin output source. Figure 15-4 shows a sim-
plified schematic of the logic affected by the COM0A1:0 bit setting. The I/O Registers, I/O bits,
and I/O pins in the figure are shown in bold. Only the parts of the general I/O port control regis-
ters (DDR and PORT) that are affected by the COM0A1:0 bits are shown. When referring to the
OC0A state, the reference is for the internal OC0A Register, not the OC0A pin. If a System
Reset occur, the OC0A Register is reset to “0”.
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Figure 15-4. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the Output Compare (OC0A) from the Waveform
Generator if either of the COM0A1:0 bits are set. However, the OC0A pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OC0A pin (DDR_OC0A) must be set as output before the OC0A value is vis-
ible on the pin. The port override function is independent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OC0A state before the
output is enabled. Note that some COM0A1:0 bit settings are reserved for certain modes of
operation. See “Register Description” on page 96.

15.6.1 Compare Output Mode and Waveform Generation
The Waveform Generator uses the COM0A1:0 bits differently in Normal, CTC, and PWM
modes. For all modes, setting the COM0A1:0 = 0 tells the Waveform Generator that no action on
the OC0A Register is to be performed on the next compare match. For compare output actions
in the non-PWM modes refer to Table 15-3 on page 97. For fast PWM mode, refer to Table 15-4
on page 97, and for phase correct PWM refer to Table 15-5 on page 98.

A change of the COM0A1:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOC0A strobe bits.

15.7 Modes of Operation
The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is
defined by the combination of the Waveform Generation mode (WGM01:0) and Compare Output
mode (COM0A1:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COM0A1:0 bits control whether the PWM
output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM
modes the COM0A1:0 bits control whether the output should be set, cleared, or toggled at a
compare match (See “Compare Match Output Unit” on page 89.).

For detailed timing information refer to Figure 15-8, Figure 15-9, Figure 15-10 and Figure 15-11
in “Timer/Counter Timing Diagrams” on page 95.
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15.7.1 Normal Mode
The simplest mode of operation is the Normal mode (WGM01:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-
tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV0) will be set in the same
timer clock cycle as the TCNT0 becomes zero. The TOV0 Flag in this case behaves like a ninth
bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt
that automatically clears the TOV0 Flag, the timer resolution can be increased by software.
There are no special cases to consider in the Normal mode, a new counter value can be written
anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the Out-
put Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

15.7.2 Clear Timer on Compare Match (CTC) Mode
In Clear Timer on Compare or CTC mode (WGM01:0 = 2), the OCR0A Register is used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter
value (TCNT0) matches the OCR0A. The OCR0A defines the top value for the counter, hence
also its resolution. This mode allows greater control of the compare match output frequency. It
also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 15-5. The counter value (TCNT0)
increases until a compare match occurs between TCNT0 and OCR0A, and then counter
(TCNT0) is cleared.

Figure 15-5. CTC Mode, Timing Diagram

An interrupt can be generated each time the counter value reaches the TOP value by using the
OCF0A Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating
the TOP value. However, changing TOP to a value close to BOTTOM when the counter is run-
ning with none or a low prescaler value must be done with care since the CTC mode does not
have the double buffering feature. If the new value written to OCR0A is lower than the current
value of TCNT0, the counter will miss the compare match. The counter will then have to count to
its maximum value (0xFF) and wrap around starting at 0x00 before the compare match can
occur. 

For generating a waveform output in CTC mode, the OC0A output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COM0A1:0 = 1). The OC0A value will not be visible on the port pin unless the data direction for
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the pin is set to output. The waveform generated will have a maximum frequency of fOC0 =
fclk_I/O/2 when OCR0A is set to zero (0x00). The waveform frequency is defined by the following
equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV0 Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x00.

15.7.3 Fast PWM Mode
The fast Pulse Width Modulation or fast PWM mode (WGM01:0 = 3) provides a high frequency
PWM waveform generation option. The fast PWM differs from the other PWM option by its sin-
gle-slope operation. The counter counts from BOTTOM to MAX then restarts from BOTTOM. In
non-inverting Compare Output mode, the Output Compare (OC0A) is cleared on the compare
match between TCNT0 and OCR0A, and set at BOTTOM. In inverting Compare Output mode,
the output is set on compare match and cleared at BOTTOM. Due to the single-slope operation,
the operating frequency of the fast PWM mode can be twice as high as the phase correct PWM
mode that use dual-slope operation. This high frequency makes the fast PWM mode well suited
for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast
PWM mode is shown in Figure 15-6. The TCNT0 value is in the timing diagram shown as a his-
togram for illustrating the single-slope operation. The diagram includes non-inverted and
inverted PWM outputs. The small horizontal line marks on the TCNT0 slopes represent compare
matches between OCR0A and TCNT0.

Figure 15-6. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches MAX. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.
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In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC0A pin.
Setting the COM0A1:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COM0A1:0 to three (See Table 15-4 on page 97). The actual
OC0A value will only be visible on the port pin if the data direction for the port pin is set as out-
put. The PWM waveform is generated by setting (or clearing) the OC0A Register at the compare
match between OCR0A and TCNT0, and clearing (or setting) the OC0A Register at the timer
clock cycle the counter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0A Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR0A is set equal to BOTTOM, the output will
be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR0A equal to MAX will result
in a constantly high or low output (depending on the polarity of the output set by the COM0A1:0
bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC0A to toggle its logical level on each compare match (COM0A1:0 = 1). The waveform
generated will have a maximum frequency of fOC0 = fclk_I/O/2 when OCR0A is set to zero. This
feature is similar to the OC0A toggle in CTC mode, except the double buffer feature of the Out-
put Compare unit is enabled in the fast PWM mode.

15.7.4 Phase Correct PWM Mode
The phase correct PWM mode (WGM01:0 = 1) provides a high resolution phase correct PWM
waveform generation option. The phase correct PWM mode is based on a dual-slope operation.
The counter counts repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In non-
inverting Compare Output mode, the Output Compare (OC0A) is cleared on the compare match
between TCNT0 and OCR0A while counting up, and set on the compare match while counting
down. In inverting Output Compare mode, the operation is inverted. The dual-slope operation
has lower maximum operation frequency than single slope operation. However, due to the sym-
metric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase correct
PWM mode the counter is incremented until the counter value matches MAX. When the counter
reaches MAX, it changes the count direction. The TCNT0 value will be equal to MAX for one
timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 15-7.
The TCNT0 value is in the timing diagram shown as a histogram for illustrating the dual-slope
operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal
line marks on the TCNT0 slopes represent compare matches between OCR0A and TCNT0.

fOCnxPWM
fclk_I/O

N 256⋅
------------------=
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Figure 15-7. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches BOTTOM. The
Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM
value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OC0A pin. Setting the COM0A1:0 bits to two will produce a non-inverted PWM. An inverted
PWM output can be generated by setting the COM0A1:0 to three (See Table 15-5 on page 98).
The actual OC0A value will only be visible on the port pin if the data direction for the port pin is
set as output. The PWM waveform is generated by clearing (or setting) the OC0A Register at the
compare match between OCR0A and TCNT0 when the counter increments, and setting (or
clearing) the OC0A Register at compare match between OCR0A and TCNT0 when the counter
decrements. The PWM frequency for the output when using phase correct PWM can be calcu-
lated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0A Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR0A is set equal to BOTTOM, the
output will be continuously low and if set equal to MAX the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of period 2 in Figure 15-7 OCn has a transition from high to low even though
there is no Compare Match. The point of this transition is to guarantee symmetry around BOT-
TOM. There are two cases that give a transition without Compare Match. 

• OCR0A changes its value from MAX, like in Figure 15-7. When the OCR0A value is MAX the 
OCn pin value is the same as the result of a down-counting Compare Match. To ensure 
symmetry around BOTTOM the OCn value at MAX must correspond to the result of an up-
counting Compare Match.
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• The timer starts counting from a value higher than the one in OCR0A, and for that reason 
misses the Compare Match and hence the OCn change that would have happened on the 
way up.

15.8 Timer/Counter Timing Diagrams
The Timer/Counter is a synchronous design and the timer clock (clkT0) is therefore shown as a
clock enable signal in the following figures. The figures include information on when Interrupt
Flags are set. Figure 15-8 contains timing data for basic Timer/Counter operation. The figure
shows the count sequence close to the MAX value in all modes other than phase correct PWM
mode.

Figure 15-8. Timer/Counter Timing Diagram, no Prescaling

Figure 15-9 shows the same timing data, but with the prescaler enabled.

Figure 15-9. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 15-10 shows the setting of OCF0A in all modes except CTC mode.

Figure 15-10. Timer/Counter Timing Diagram, Setting of OCF0A, with Prescaler (fclk_I/O/8)
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Figure 15-11 shows the setting of OCF0A and the clearing of TCNT0 in CTC mode.

Figure 15-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Pres-
caler (fclk_I/O/8)

15.9 Register Description

15.9.1 TCCR0A – Timer/Counter Control Register A

• Bit 7 – FOC0A: Force Output Compare A
The FOC0A bit is only active when the WGM00 bit specifies a non-PWM mode. However, for
ensuring compatibility with future devices, this bit must be set to zero when TCCR0 is written
when operating in PWM mode. When writing a logical one to the FOC0A bit, an immediate com-
pare match is forced on the Waveform Generation unit. The OC0A output is changed according
to its COM0A1:0 bits setting. Note that the FOC0A bit is implemented as a strobe. Therefore it is
the value present in the COM0A1:0 bits that determines the effect of the forced compare.

A FOC0A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR0A as TOP.

The FOC0A bit is always read as zero.

• Bit 6, 3 – WGM01:0: Waveform Generation Mode
These bits control the counting sequence of the counter, the source for the maximum (TOP)
counter value, and what type of waveform generation to be used. Modes of operation supported
by the Timer/Counter unit are: Normal mode, Clear Timer on Compare match (CTC) mode, and
two types of Pulse Width Modulation (PWM) modes. See Table 15-2 and “Modes of Operation”
on page 90.

OCFnx

OCRnx

TCNTn
(CTC)

TOP

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

Bit 7 6 5 4 3 2 1 0

0x24 (0x44) FOC0A WGM00 COM0A1 COM0A0 WGM01 CS02 CS01 CS00 TCCR0

Read/Write W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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Note: 1. The CTC0 and PWM0 bit definition names are now obsolete. Use the WGM01:0 definitions. 
However, the functionality and location of these bits are compatible with previous versions of 
the timer.

• Bit 5:4 – COM01:0: Compare Match Output Mode
These bits control the Output Compare pin (OC0A) behavior. If one or both of the COM0A1:0
bits are set, the OC0A output overrides the normal port functionality of the I/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to the OC0A pin
must be set in order to enable the output driver.

When OC0A is connected to the pin, the function of the COM0A1:0 bits depends on the
WGM01:0 bit setting. Table 15-3 shows the COM0A1:0 bit functionality when the WGM01:0 bits
are set to a normal or CTC mode (non-PWM).

Table 15-4 shows the COM0A1:0 bit functionality when the WGM01:0 bits are set to fast PWM
mode.

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the com-
pare match is ignored, but the set or clear is done at TOP. See “Fast PWM Mode” on page 92 
for more details.

Table 15-5 shows the COM0A1:0 bit functionality when the WGM01:0 bits are set to phase cor-
rect PWM mode.

Table 15-2. Waveform Generation Mode Bit Description(1)

Mode
WGM01
(CTC0)

WGM00
(PWM0)

Timer/Counter 
Mode of Operation TOP

Update of 
OCR0A at

TOV0 Flag 
Set on

0 0 0 Normal 0xFF Immediate MAX

1 0 1 PWM, Phase Correct 0xFF TOP BOTTOM

2 1 0 CTC OCR0A Immediate MAX

3 1 1 Fast PWM 0xFF BOTTOM MAX

Table 15-3. Compare Output Mode, non-PWM Mode

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Toggle OC0A on compare match

1 0 Clear OC0A on compare match

1 1 Set OC0A on compare match

Table 15-4. Compare Output Mode, Fast PWM Mode(1)

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Reserved

1 0 Clear OC0A on compare match, set OC0A at BOTTOM,
(non-inverting mode)

1 1 Set OC0A on compare match, clear OC0A at BOTTOM,
(inverting mode.)
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Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the com-
pare match is ignored, but the set or clear is done at TOP. See “Phase Correct PWM Mode” on 
page 93 for more details.

• Bit 2:0 – CS02:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter.

If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

15.9.2 TCNT0 – Timer/Counter Register

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNT0 Register blocks (removes) the compare
match on the following timer clock. Modifying the counter (TCNT0) while the counter is running,
introduces a risk of missing a compare match between TCNT0 and the OCR0A Register.

15.9.3 OCR0A – Output Compare Register A

Table 15-5. Compare Output Mode, Phase Correct PWM Mode(1)

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Reserved

1 0 Clear OC0A on compare match when up-counting. Set OC0A on 
compare match when counting down.

1 1 Set OC0A on compare match when up-counting. Clear OC0A on 
compare match when counting down.

Table 15-6. Clock Select Bit Description

CS02 CS01 CS00 Description

0 0 0 No clock source (Timer/Counter stopped)

0 0 1 clkI/O/(No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on T0 pin. Clock on falling edge.

1 1 1 External clock source on T0 pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

0x26 (0x46) TCNT0[7:0] TCNT0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x27 (0x47) OCR0A[7:0] OCR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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The Output Compare Register A contains an 8-bit value that is continuously compared with the
counter value (TCNT0). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC0A pin.

15.9.4 TIMSK0 – Timer/Counter 0 Interrupt Mask Register

• Bit 1 – OCIE0A: Timer/Counter0 Output Compare Match A Interrupt Enable
When the OCIE0A bit is written to one, and the I-bit in the Status Register is set (one), the
Timer/Counter0 Compare Match A interrupt is enabled. The corresponding interrupt is executed
if a compare match in Timer/Counter0 occurs, i.e., when the OCF0A bit is set in the Timer/Coun-
ter 0 Interrupt Flag Register – TIFR0.

• Bit 0 – TOIE0: Timer/Counter0 Overflow Interrupt Enable
When the TOIE0 bit is written to one, and the I-bit in the Status Register is set (one), the
Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter0 occurs, i.e., when the TOV0 bit is set in the Timer/Counter 0 Inter-
rupt Flag Register – TIFR0.

15.9.5 TIFR0 – Timer/Counter 0 Interrupt Flag Register

• Bit 1 – OCF0A: Output Compare Flag 0 A
The OCF0A bit is set (one) when a compare match occurs between the Timer/Counter0 and the
data in OCR0A – Output Compare Register0. OCF0A is cleared by hardware when executing
the corresponding interrupt handling vector. Alternatively, OCF0A is cleared by writing a logic
one to the flag. When the I-bit in SREG, OCIE0A (Timer/Counter0 Compare match Interrupt
Enable), and OCF0A are set (one), the Timer/Counter0 Compare match Interrupt is executed.

• Bit 0 – TOV0: Timer/Counter0 Overflow Flag
The bit TOV0 is set (one) when an overflow occurs in Timer/Counter0. TOV0 is cleared by hard-
ware when executing the corresponding interrupt handling vector. Alternatively, TOV0 is cleared
by writing a logic one to the flag. When the SREG I-bit, TOIE0 (Timer/Counter0 Overflow Inter-
rupt Enable), and TOV0 are set (one), the Timer/Counter0 Overflow interrupt is executed. In
phase correct PWM mode, this bit is set when Timer/Counter0 changes counting direction at
0x00.

16. Timer/Counter0 and Timer/Counter1 Prescalers
Timer/Counter1 and Timer/Counter0 share the same prescaler module, but the Timer/Counters
can have different prescaler settings. The description below applies to both Timer/Counter1 and
Timer/Counter0.

Bit 7 6 5 4 3 2 1 0

(0x6E) – – – – – – OCIE0A TOIE0 TIMSK0

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x15 (0x35) – – – – – – OCF0A TOV0 TIFR0

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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16.0.1 Internal Clock Source
The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This
provides the fastest operation, with a maximum Timer/Counter clock frequency equal to system
clock frequency (fCLK_I/O). Alternatively, one of four taps from the prescaler can be used as a
clock source. The prescaled clock has a frequency of either fCLK_I/O/8, fCLK_I/O/64, fCLK_I/O/256, or
fCLK_I/O/1024.

16.0.2 Prescaler Reset
The prescaler is free running, i.e., operates independently of the Clock Select logic of the
Timer/Counter, and it is shared by Timer/Counter1 and Timer/Counter0. Since the prescaler is
not affected by the Timer/Counter’s clock select, the state of the prescaler will have implications
for situations where a prescaled clock is used. One example of prescaling artifacts occurs when
the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1). The number of system clock
cycles from when the timer is enabled to the first count occurs can be from 1 to N+1 system
clock cycles, where N equals the prescaler divisor (8, 64, 256, or 1024).

It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execu-
tion. However, care must be taken if the other Timer/Counter that shares the same prescaler
also uses prescaling. A prescaler reset will affect the prescaler period for all Timer/Counters it is
connected to.

16.0.3 External Clock Source
An external clock source applied to the T1/T0 pin can be used as Timer/Counter clock
(clkT1/clkT0). The T1/T0 pin is sampled once every system clock cycle by the pin synchronization
logic. The synchronized (sampled) signal is then passed through the edge detector. Figure 1
shows a functional equivalent block diagram of the T1/T0 synchronization and edge detector
logic. The registers are clocked at the positive edge of the internal system clock (clkI/O). The latch
is transparent in the high period of the internal system clock.

The edge detector generates one clkT1/clkT0 pulse for each positive (CSn2:0 = 7) or negative
(CSn2:0 = 6) edge it detects.

Figure 1.  T1/T0 Pin Sampling

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles
from an edge has been applied to the T1/T0 pin to the counter is updated.

Enabling and disabling of the clock input must be done when T1/T0 has been stable for at least
one system clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse is generated.

Each half period of the external clock applied must be longer than one system clock cycle to
ensure correct sampling. The external clock must be guaranteed to have less than half the sys-
tem clock frequency (fExtClk < fclk_I/O/2) given a 50/50% duty cycle. Since the edge detector uses
sampling, the maximum frequency of an external clock it can detect is half the sampling fre-
quency (Nyquist sampling theorem). However, due to variation of the system clock frequency
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and duty cycle caused by Oscillator source (crystal, resonator, and capacitors) tolerances, it is
recommended that maximum frequency of an external clock source is less than fclk_I/O/2.5.

An external clock source can not be prescaled.

Figure 16-1. Prescaler for Timer/Counter0 and Timer/Counter1(1)

Note: 1. The synchronization logic on the input pins (T1/T0) is shown in Figure 1.

16.1 Register Description

16.1.1 GTCCR – General Timer/Counter Control Register

• Bit 7 – TSM: Timer/Counter Synchronization Mode
Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this mode, the
value that is written to the PSR2 and PSR10 bits is kept, hence keeping the corresponding pres-
caler reset signals asserted. This ensures that the corresponding Timer/Counters are halted and
can be configured to the same value without the risk of one of them advancing during configura-
tion. When the TSM bit is written to zero, the PSR2 and PSR10 bits are cleared by hardware,
and the Timer/Counters start counting simultaneously.

• Bit 0 – PSR10: Prescaler Reset Timer/Counter1 and Timer/Counter0
When this bit is one, Timer/Counter1 and Timer/Counter0 prescaler will be Reset. This bit is nor-
mally cleared immediately by hardware, except if the TSM bit is set. Note that Timer/Counter1
and Timer/Counter0 share the same prescaler and a reset of this prescaler will affect both
timers.

PSR10

Clear

clkT1 clkT0

T1

T0

clkI/O

Synchronization

Synchronization

Bit 7 6 5 4 3 2 1 0

0x23 (0x43) TSM – – – – – PSR2 PSR10 GTCCR

Read/Write R/W R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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17. 16-bit Timer/Counter1

17.1 Features
The 16-bit Timer/Counter unit allows accurate program execution timing (event management),
wave generation, and signal timing measurement. The main features are:

• True 16-bit Design (i.e., Allows 16-bit PWM)
• Two independent Output Compare Units
• Double Buffered Output Compare Registers
• One Input Capture Unit
• Input Capture Noise Canceler
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Variable PWM Period
• Frequency Generator
• External Event Counter
• Four independent interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1)

17.2 Overview
Most register and bit references in this section are written in general form. A lower case “n”
replaces the Timer/Counter number, and a lower case “x” replaces the Output Compare unit.
However, when using the register or bit defines in a program, the precise form must be used,
i.e., TCNT1 for accessing Timer/Counter1 counter value and so on. 

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 17-1. For the actual
placement of I/O pins, refer to “Pinout ATmega3250/6450” on page 2. CPU accessible I/O Reg-
isters, including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit
locations are listed in the “Register Description” on page 123.

The PRTIM1 bit in “Power Reduction Register” on page 37 must be written to zero to enable the
Timer/Counter1 module.
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Figure 17-1. 16-bit Timer/Counter Block Diagram(1)

Note: 1. Refer to Figure 1-1 on page 2, “Alternate Functions of Port D” on page 71, and “Alternate
Functions of Port G” on page 76for Timer/Counter1 pin placement and description.

17.2.1 Registers
The Timer/Counter (TCNT1), Output Compare Registers (OCR1A/B), and Input Capture Regis-
ter (ICR1) are all 16-bit registers. Special procedures must be followed when accessing the 16-
bit registers. These procedures are described in the section “Accessing 16-bit Registers” on
page 104. The Timer/Counter Control Registers (TCCR1A/B) are 8-bit registers and have no
CPU access restrictions. Interrupt requests (abbreviated to Int.Req. in the figure) signals are all
visible in the Timer Interrupt Flag Register (TIFR1). All interrupts are individually masked with
the Timer Interrupt Mask Register (TIMSK1). TIFR1 and TIMSK1 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the T1 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the Clock Select logic is referred to as the timer clock (clkT1).

The double buffered Output Compare Registers (OCR1A/B) are compared with the Timer/Coun-
ter value at all time. The result of the compare can be used by the Waveform Generator to
generate a PWM or variable frequency output on the Output Compare pin (OC1A/B). See “Out-
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put Compare Units” on page 111. The compare match event will also set the Compare Match
Flag (OCF1A/B) which can be used to generate an Output Compare interrupt request.

The Input Capture Register can capture the Timer/Counter value at a given external (edge trig-
gered) event on either the Input Capture pin (ICP1) or on the Analog Comparator pins (See
“Analog Comparator” on page 197.) The Input Capture unit includes a digital filtering unit (Noise
Canceler) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined
by either the OCR1A Register, the ICR1 Register, or by a set of fixed values. When using
OCR1A as TOP value in a PWM mode, the OCR1A Register can not be used for generating a
PWM output. However, the TOP value will in this case be double buffered allowing the TOP
value to be changed in run time. If a fixed TOP value is required, the ICR1 Register can be used
as an alternative, freeing the OCR1A to be used as PWM output.

17.2.2 Definitions
The following definitions are used extensively throughout the section:

17.2.3 Compatibility
The 16-bit Timer/Counter has been updated and improved from previous versions of the 16-bit
AVR Timer/Counter. This 16-bit Timer/Counter is fully compatible with the earlier version
regarding:

• All 16-bit Timer/Counter related I/O Register address locations, including Timer Interrupt 
Registers.

• Bit locations inside all 16-bit Timer/Counter Registers, including Timer Interrupt Registers.

• Interrupt Vectors.

The following control bits have changed name, but have same functionality and register location:

• PWM10 is changed to WGM10.

• PWM11 is changed to WGM11.

• CTC1 is changed to WGM12.

The following bits are added to the 16-bit Timer/Counter Control Registers:

• FOC1A and FOC1B are added to TCCR1C.

• WGM13 is added to TCCR1B.

The 16-bit Timer/Counter has improvements that will affect the compatibility in some special
cases.

17.3 Accessing 16-bit Registers
The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR CPU via
the 8-bit data bus. The 16-bit register must be byte accessed using two read or write operations.
Each 16-bit timer has a single 8-bit register for temporary storing of the high byte of the 16-bit

Table 17-1. Definitions of Timer/Counter values.

BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.

MAX The counter reaches its MAXimum when it becomes 0xFFFF (decimal 65535).

TOP

The counter reaches the TOP when it becomes equal to the highest value in the 
count sequence. The TOP value can be assigned to be one of the fixed values: 
0x00FF, 0x01FF, or 0x03FF, or to the value stored in the OCR1A or ICR1 Regis-
ter. The assignment is dependent of the mode of operation.
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access. The same temporary register is shared between all 16-bit registers within each 16-bit
timer. Accessing the low byte triggers the 16-bit read or write operation. When the low byte of a
16-bit register is written by the CPU, the high byte stored in the temporary register, and the low
byte written are both copied into the 16-bit register in the same clock cycle. When the low byte of
a 16-bit register is read by the CPU, the high byte of the 16-bit register is copied into the tempo-
rary register in the same clock cycle as the low byte is read.

Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCR1A/B 16-
bit registers does not involve using the temporary register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low
byte must be read before the high byte.

The following code examples show how to access the 16-bit Timer Registers assuming that no
interrupts updates the temporary register. The same principle can be used directly for accessing
the OCR1A/B and ICR1 Registers. Note that when using “C”, the compiler handles the 16-bit
access.

Note: 1. See “About Code Examples” on page 9.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt
occurs between the two instructions accessing the 16-bit register, and the interrupt code
updates the temporary register by accessing the same or any other of the 16-bit Timer Regis-
ters, then the result of the access outside the interrupt will be corrupted. Therefore, when both
the main code and the interrupt code update the temporary register, the main code must disable
the interrupts during the 16-bit access.

Assembly Code Examples(1)

...

; Set TCNT1 to 0x01FF
ldi r17,0x01

ldi r16,0xFF

out TCNT1H,r17
out TCNT1L,r16
; Read TCNT1 into r17:r16
in r16,TCNT1L
in r17,TCNT1H
...

C Code Examples(1)

unsigned int i;

...

/* Set TCNT1 to 0x01FF */
TCNT1 = 0x1FF;
/* Read TCNT1 into i */
i = TCNT1;
...
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The following code examples show how to do an atomic read of the TCNT1 Register contents.
Reading any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

Note: 1. See “About Code Examples” on page 9.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

Assembly Code Example(1)

TIM16_ReadTCNT1:
; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Read TCNT1 into r17:r16
in r16,TCNT1L
in r17,TCNT1H
; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

unsigned int TIM16_ReadTCNT1( void )
{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

__disable_interrupt();

/* Read TCNT1 into i */
i = TCNT1;
/* Restore global interrupt flag */

SREG = sreg;

return i;

}
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The following code examples show how to do an atomic write of the TCNT1 Register contents.
Writing any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

Note: 1. See “About Code Examples” on page 9.

The assembly code example requires that the r17:r16 register pair contains the value to be writ-
ten to TCNT1.

17.3.1 Reusing the Temporary High Byte Register
If writing to more than one 16-bit register where the high byte is the same for all registers written,
then the high byte only needs to be written once. However, note that the same rule of atomic
operation described previously also applies in this case.

17.4 Timer/Counter Clock Sources
The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CS12:0) bits
located in the Timer/Counter control Register B (TCCR1B). For details on clock sources and
prescaler, see “Timer/Counter0 and Timer/Counter1 Prescalers” on page 99.

Assembly Code Example(1)

TIM16_WriteTCNT1:
; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Set TCNT1 to r17:r16
out TCNT1H,r17
out TCNT1L,r16
; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

void TIM16_WriteTCNT1( unsigned int i )
{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

__disable_interrupt();

/* Set TCNT1 to i */
TCNT1 = i;
/* Restore global interrupt flag */

SREG = sreg;

}
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17.5 Counter Unit
The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit.
Figure 17-2 shows a block diagram of the counter and its surroundings.

Figure 17-2. Counter Unit Block Diagram

Signal description (internal signals):

Count Increment or decrement TCNT1 by 1.

Direction Select between increment and decrement.

Clear Clear TCNT1 (set all bits to zero).

clkT1 Timer/Counter clock.

TOP Signalize that TCNT1 has reached maximum value.

BOTTOM Signalize that TCNT1 has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNT1H) con-
taining the upper eight bits of the counter, and Counter Low (TCNT1L) containing the lower eight
bits. The TCNT1H Register can only be indirectly accessed by the CPU. When the CPU does an
access to the TCNT1H I/O location, the CPU accesses the high byte temporary register (TEMP).
The temporary register is updated with the TCNT1H value when the TCNT1L is read, and
TCNT1H is updated with the temporary register value when TCNT1L is written. This allows the
CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data bus.
It is important to notice that there are special cases of writing to the TCNT1 Register when the
counter is counting that will give unpredictable results. The special cases are described in the
sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clkT1). The clkT1 can be generated from an external or internal clock source,
selected by the Clock Select bits (CS12:0). When no clock source is selected (CS12:0 = 0) the
timer is stopped. However, the TCNT1 value can be accessed by the CPU, independent of
whether clkT1 is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the Waveform Generation mode bits
(WGM13:0) located in the Timer/Counter Control Registers A and B (TCCR1A and TCCR1B).
There are close connections between how the counter behaves (counts) and how waveforms
are generated on the Output Compare outputs OC1x. For more details about advanced counting
sequences and waveform generation, see “Modes of Operation” on page 114.
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The Timer/Counter Overflow Flag (TOV1) is set according to the mode of operation selected by
the WGM13:0 bits. TOV1 can be used for generating a CPU interrupt.

17.6 Input Capture Unit
The Timer/Counter incorporates an Input Capture unit that can capture external events and give
them a time-stamp indicating time of occurrence. The external signal indicating an event, or mul-
tiple events, can be applied via the ICP1 pin or alternatively, via the analog-comparator unit. The
time-stamps can then be used to calculate frequency, duty-cycle, and other features of the sig-
nal applied. Alternatively the time-stamps can be used for creating a log of the events.

The Input Capture unit is illustrated by the block diagram shown in Figure 17-3. The elements of
the block diagram that are not directly a part of the Input Capture unit are gray shaded. The
small “n” in register and bit names indicates the Timer/Counter number.

Figure 17-3. Input Capture Unit Block Diagram

When a change of the logic level (an event) occurs on the Input Capture pin (ICP1), alternatively
on the Analog Comparator output (ACO), and this change confirms to the setting of the edge
detector, a capture will be triggered. When a capture is triggered, the 16-bit value of the counter
(TCNT1) is written to the Input Capture Register (ICR1). The Input Capture Flag (ICF1) is set at
the same system clock as the TCNT1 value is copied into ICR1 Register. If enabled (ICIE1 = 1),
the Input Capture Flag generates an Input Capture interrupt. The ICF1 Flag is automatically
cleared when the interrupt is executed. Alternatively the ICF1 Flag can be cleared by software
by writing a logical one to its I/O bit location.

Reading the 16-bit value in the Input Capture Register (ICR1) is done by first reading the low
byte (ICR1L) and then the high byte (ICR1H). When the low byte is read the high byte is copied
into the high byte temporary register (TEMP). When the CPU reads the ICR1H I/O location it will
access the TEMP Register.

The ICR1 Register can only be written when using a Waveform Generation mode that utilizes
the ICR1 Register for defining the counter’s TOP value. In these cases the Waveform Genera-
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tion mode (WGM13:0) bits must be set before the TOP value can be written to the ICR1
Register. When writing the ICR1 Register the high byte must be written to the ICR1H I/O location
before the low byte is written to ICR1L.

For more information on how to access the 16-bit registers refer to “Accessing 16-bit Registers”
on page 104.

17.6.1 Input Capture Trigger Source
The main trigger source for the Input Capture unit is the Input Capture pin (ICP1).
Timer/Counter1 can alternatively use the Analog Comparator output as trigger source for the
Input Capture unit. The Analog Comparator is selected as trigger source by setting the Analog
Comparator Input Capture (ACIC) bit in the Analog Comparator Control and Status Register
(ACSR). Be aware that changing trigger source can trigger a capture. The Input Capture Flag
must therefore be cleared after the change.

Both the Input Capture pin (ICP1) and the Analog Comparator output (ACO) inputs are sampled
using the same technique as for the T1 pin (Figure 1 on page 100). The edge detector is also
identical. However, when the noise canceler is enabled, additional logic is inserted before the
edge detector, which increases the delay by four system clock cycles. Note that the input of the
noise canceler and edge detector is always enabled unless the Timer/Counter is set in a Wave-
form Generation mode that uses ICR1 to define TOP.

An Input Capture can be triggered by software by controlling the port of the ICP1 pin.

17.6.2 Noise Canceler
The noise canceler improves noise immunity by using a simple digital filtering scheme. The
noise canceler input is monitored over four samples, and all four must be equal for changing the
output that in turn is used by the edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNC1) bit in
Timer/Counter Control Register B (TCCR1B). When enabled the noise canceler introduces addi-
tional four system clock cycles of delay from a change applied to the input, to the update of the
ICR1 Register. The noise canceler uses the system clock and is therefore not affected by the
prescaler.

17.6.3 Using the Input Capture Unit
The main challenge when using the Input Capture unit is to assign enough processor capacity
for handling the incoming events. The time between two events is critical. If the processor has
not read the captured value in the ICR1 Register before the next event occurs, the ICR1 will be
overwritten with a new value. In this case the result of the capture will be incorrect.

When using the Input Capture interrupt, the ICR1 Register should be read as early in the inter-
rupt handler routine as possible. Even though the Input Capture interrupt has relatively high
priority, the maximum interrupt response time is dependent on the maximum number of clock
cycles it takes to handle any of the other interrupt requests.

Using the Input Capture unit in any mode of operation when the TOP value (resolution) is
actively changed during operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after
each capture. Changing the edge sensing must be done as early as possible after the ICR1
Register has been read. After a change of the edge, the Input Capture Flag (ICF1) must be
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cleared by software (writing a logical one to the I/O bit location). For measuring frequency only,
the clearing of the ICF1 Flag is not required (if an interrupt handler is used).

17.7 Output Compare Units
The 16-bit comparator continuously compares TCNT1 with the Output Compare Register
(OCR1x). If TCNT equals OCR1x the comparator signals a match. A match will set the Output
Compare Flag (OCF1x) at the next timer clock cycle. If enabled (OCIE1x = 1), the Output Com-
pare Flag generates an Output Compare interrupt. The OCF1x Flag is automatically cleared
when the interrupt is executed. Alternatively the OCF1x Flag can be cleared by software by writ-
ing a logical one to its I/O bit location. The Waveform Generator uses the match signal to
generate an output according to operating mode set by the Waveform Generation mode
(WGM13:0) bits and Compare Output mode (COM1x1:0) bits. The TOP and BOTTOM signals
are used by the Waveform Generator for handling the special cases of the extreme values in
some modes of operation (See “Modes of Operation” on page 114.)

A special feature of Output Compare unit A allows it to define the Timer/Counter TOP value (i.e.,
counter resolution). In addition to the counter resolution, the TOP value defines the period time
for waveforms generated by the Waveform Generator.

Figure 17-4 shows a block diagram of the Output Compare unit. The small “n” in the register and
bit names indicates the device number (n = 1 for Timer/Counter 1), and the “x” indicates Output
Compare unit (A/B). The elements of the block diagram that are not directly a part of the Output
Compare unit are gray shaded.

Figure 17-4. Output Compare Unit, Block Diagram

The OCR1x Register is double buffered when using any of the twelve Pulse Width Modulation
(PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the
double buffering is disabled. The double buffering synchronizes the update of the OCR1x Com-
pare Register to either TOP or BOTTOM of the counting sequence. The synchronization
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prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the out-
put glitch-free.

The OCR1x Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCR1x Buffer Register, and if double buffering is dis-
abled the CPU will access the OCR1x directly. The content of the OCR1x (Buffer or Compare)
Register is only changed by a write operation (the Timer/Counter does not update this register
automatically as the TCNT1 and ICR1 Register). Therefore OCR1x is not read via the high byte
temporary register (TEMP). However, it is a good practice to read the low byte first as when
accessing other 16-bit registers. Writing the OCR1x Registers must be done via the TEMP Reg-
ister since the compare of all 16 bits is done continuously. The high byte (OCR1xH) has to be
written first. When the high byte I/O location is written by the CPU, the TEMP Register will be
updated by the value written. Then when the low byte (OCR1xL) is written to the lower eight bits,
the high byte will be copied into the upper 8-bits of either the OCR1x buffer or OCR1x Compare
Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to “Accessing 16-bit Registers”
on page 104.

17.7.1 Force Output Compare
In non-PWM Waveform Generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC1x) bit. Forcing compare match will not set the
OCF1x Flag or reload/clear the timer, but the OC1x pin will be updated as if a real compare
match had occurred (the COM11:0 bits settings define whether the OC1x pin is set, cleared or
toggled). 

17.7.2 Compare Match Blocking by TCNT1 Write
All CPU writes to the TCNT1 Register will block any compare match that occurs in the next timer
clock cycle, even when the timer is stopped. This feature allows OCR1x to be initialized to the
same value as TCNT1 without triggering an interrupt when the Timer/Counter clock is enabled.

17.7.3 Using the Output Compare Unit
Since writing TCNT1 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT1 when using any of the Output Compare
units, independent of whether the Timer/Counter is running or not. If the value written to TCNT1
equals the OCR1x value, the compare match will be missed, resulting in incorrect waveform
generation. Do not write the TCNT1 equal to TOP in PWM modes with variable TOP values. The
compare match for the TOP will be ignored and the counter will continue to 0xFFFF. Similarly,
do not write the TCNT1 value equal to BOTTOM when the counter is counting down.

The setup of the OC1x should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC1x value is to use the Force Output Com-
pare (FOC1x) strobe bits in Normal mode. The OC1x Register keeps its value even when
changing between Waveform Generation modes.

Be aware that the COM1x1:0 bits are not double buffered together with the compare value.
Changing the COM1x1:0 bits will take effect immediately.

17.8 Compare Match Output Unit
The Compare Output mode (COM1x1:0) bits have two functions. The Waveform Generator uses
the COM1x1:0 bits for defining the Output Compare (OC1x) state at the next compare match.
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Secondly the COM1x1:0 bits control the OC1x pin output source. Figure 17-5 shows a simplified
schematic of the logic affected by the COM1x1:0 bit setting. The I/O Registers, I/O bits, and I/O
pins in the figure are shown in bold. Only the parts of the general I/O Port Control Registers
(DDR and PORT) that are affected by the COM1x1:0 bits are shown. When referring to the
OC1x state, the reference is for the internal OC1x Register, not the OC1x pin. If a system reset
occur, the OC1x Register is reset to “0”.

Figure 17-5. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the Output Compare (OC1x) from the Waveform
Generator if either of the COM1x1:0 bits are set. However, the OC1x pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OC1x pin (DDR_OC1x) must be set as output before the OC1x value is visi-
ble on the pin. The port override function is generally independent of the Waveform Generation
mode, but there are some exceptions. Refer to Table 17-2, Table 17-3 and Table 17-4 for
details.

The design of the Output Compare pin logic allows initialization of the OC1x state before the out-
put is enabled. Note that some COM1x1:0 bit settings are reserved for certain modes of
operation. See “Register Description” on page 123.

The COM1x1:0 bits have no effect on the Input Capture unit.

17.8.1 Compare Output Mode and Waveform Generation
The Waveform Generator uses the COM1x1:0 bits differently in normal, CTC, and PWM modes.
For all modes, setting the COM1x1:0 = 0 tells the Waveform Generator that no action on the
OC1x Register is to be performed on the next compare match. For compare output actions in the
non-PWM modes refer to Table 17-2 on page 123. For fast PWM mode refer to Table 17-3 on
page 124, and for phase correct and phase and frequency correct PWM refer to Table 17-4 on
page 124.
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A change of the COM1x1:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOC1x strobe bits.

17.9 Modes of Operation
The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is
defined by the combination of the Waveform Generation mode (WGM13:0) and Compare Output
mode (COM1x1:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COM1x1:0 bits control whether the PWM out-
put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes
the COM1x1:0 bits control whether the output should be set, cleared or toggle at a compare
match (See “Compare Match Output Unit” on page 112.)

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 121.

17.9.1 Normal Mode
The simplest mode of operation is the Normal mode (WGM13:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 16-bit value (MAX = 0xFFFF) and then restarts from the
BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag (TOV1) will be set in
the same timer clock cycle as the TCNT1 becomes zero. The TOV1 Flag in this case behaves
like a 17th bit, except that it is only set, not cleared. However, combined with the timer overflow
interrupt that automatically clears the TOV1 Flag, the timer resolution can be increased by soft-
ware. There are no special cases to consider in the Normal mode, a new counter value can be
written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maximum
interval between the external events must not exceed the resolution of the counter. If the interval
between events are too long, the timer overflow interrupt or the prescaler must be used to
extend the resolution for the capture unit.

The Output Compare units can be used to generate interrupts at some given time. Using the
Output Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

17.9.2 Clear Timer on Compare Match (CTC) Mode
In Clear Timer on Compare or CTC mode (WGM13:0 = 4 or 12), the OCR1A or ICR1 Register
are used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when
the counter value (TCNT1) matches either the OCR1A (WGM13:0 = 4) or the ICR1 (WGM13:0 =
12). The OCR1A or ICR1 define the top value for the counter, hence also its resolution. This
mode allows greater control of the compare match output frequency. It also simplifies the opera-
tion of counting external events.

The timing diagram for the CTC mode is shown in Figure 17-6. The counter value (TCNT1)
increases until a compare match occurs with either OCR1A or ICR1, and then counter (TCNT1)
is cleared.
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Figure 17-6. CTC Mode, Timing Diagram

An interrupt can be generated at each time the counter value reaches the TOP value by either
using the OCF1A or ICF1 Flag according to the register used to define the TOP value. If the
interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. How-
ever, changing the TOP to a value close to BOTTOM when the counter is running with none or a
low prescaler value must be done with care since the CTC mode does not have the double buff-
ering feature. If the new value written to OCR1A or ICR1 is lower than the current value of
TCNT1, the counter will miss the compare match. The counter will then have to count to its max-
imum value (0xFFFF) and wrap around starting at 0x0000 before the compare match can occur.
In many cases this feature is not desirable. An alternative will then be to use the fast PWM mode
using OCR1A for defining TOP (WGM13:0 = 15) since the OCR1A then will be double buffered.

For generating a waveform output in CTC mode, the OC1A output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COM1A1:0 = 1). The OC1A value will not be visible on the port pin unless the data direction for
the pin is set to output (DDR_OC1A = 1). The waveform generated will have a maximum fre-
quency of fOC1A = fclk_I/O/2 when OCR1A is set to zero (0x0000). The waveform frequency is
defined by the following equation:

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV1 Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x0000.

17.9.3 Fast PWM Mode
The fast Pulse Width Modulation or fast PWM mode (WGM13:0 = 5, 6, 7, 14, or 15) provides a
high frequency PWM waveform generation option. The fast PWM differs from the other PWM
options by its single-slope operation. The counter counts from BOTTOM to TOP then restarts
from BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is cleared
on the compare match between TCNT1 and OCR1x, and set at BOTTOM. In inverting Compare
Output mode output is set on compare match and cleared at BOTTOM. Due to the single-slope
operation, the operating frequency of the fast PWM mode can be twice as high as the phase cor-
rect and phase and frequency correct PWM modes that use dual-slope operation. This high
frequency makes the fast PWM mode well suited for power regulation, rectification, and DAC
applications. High frequency allows physically small sized external components (coils, capaci-
tors), hence reduces total system cost.
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The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either ICR1 or
OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the max-
imum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can be
calculated by using the following equation:

In fast PWM mode the counter is incremented until the counter value matches either one of the
fixed values 0x00FF, 0x01FF, or 0x03FF (WGM13:0 = 5, 6, or 7), the value in ICR1 (WGM13:0 =
14), or the value in OCR1A (WGM13:0 = 15). The counter is then cleared at the following timer
clock cycle. The timing diagram for the fast PWM mode is shown in Figure 17-7. The figure
shows fast PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value is in the
timing diagram shown as a histogram for illustrating the single-slope operation. The diagram
includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1
slopes represent compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will
be set when a compare match occurs.

Figure 17-7. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches TOP. In addition
the OC1A or ICF1 Flag is set at the same timer clock cycle as TOV1 is set when either OCR1A
or ICR1 is used for defining the TOP value. If one of the interrupts are enabled, the interrupt han-
dler routine can be used for updating the TOP and compare values.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.
Note that when using fixed TOP values the unused bits are masked to zero when any of the
OCR1x Registers are written.

The procedure for updating ICR1 differs from updating OCR1A when used for defining the TOP
value. The ICR1 Register is not double buffered. This means that if ICR1 is changed to a low
value when the counter is running with none or a low prescaler value, there is a risk that the new
ICR1 value written is lower than the current value of TCNT1. The result will then be that the
counter will miss the compare match at the TOP value. The counter will then have to count to the
MAX value (0xFFFF) and wrap around starting at 0x0000 before the compare match can occur.
The OCR1A Register however, is double buffered. This feature allows the OCR1A I/O location
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to be written anytime. When the OCR1A I/O location is written the value written will be put into
the OCR1A Buffer Register. The OCR1A Compare Register will then be updated with the value
in the Buffer Register at the next timer clock cycle the TCNT1 matches TOP. The update is done
at the same timer clock cycle as the TCNT1 is cleared and the TOV1 Flag is set.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using
ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However,
if the base PWM frequency is actively changed (by changing the TOP value), using the OCR1A
as TOP is clearly a better choice due to its double buffer feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins.
Setting the COM1x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COM1x1:0 to three (see Table 17-3 on page 124). The actual
OC1x value will only be visible on the port pin if the data direction for the port pin is set as output
(DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x Register at
the compare match between OCR1x and TCNT1, and clearing (or setting) the OC1x Register at
the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR1x is set equal to BOTTOM (0x0000) the out-
put will be a narrow spike for each TOP+1 timer clock cycle. Setting the OCR1x equal to TOP
will result in a constant high or low output (depending on the polarity of the output set by the
COM1x1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC1A to toggle its logical level on each compare match (COM1A1:0 = 1). This applies only
if OCR1A is used to define the TOP value (WGM13:0 = 15). The waveform generated will have
a maximum frequency of fOC1A = fclk_I/O/2 when OCR1A is set to zero (0x0000). This feature is
similar to the OC1A toggle in CTC mode, except the double buffer feature of the Output Com-
pare unit is enabled in the fast PWM mode.

17.9.4 Phase Correct PWM Mode
The phase correct Pulse Width Modulation or phase correct PWM mode (WGM13:0 = 1, 2, 3,
10, or 11) provides a high resolution phase correct PWM waveform generation option. The
phase correct PWM mode is, like the phase and frequency correct PWM mode, based on a dual-
slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from
TOP to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is
cleared on the compare match between TCNT1 and OCR1x while counting up, and set on the
compare match while counting down. In inverting Output Compare mode, the operation is
inverted. The dual-slope operation has lower maximum operation frequency than single slope
operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes
are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or defined
by either ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to

fOCnxPWM
fclk_I/O

N 1 TOP+( )⋅
-----------------------------------=
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0x0003), and the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolu-
tion in bits can be calculated by using the following equation:

In phase correct PWM mode the counter is incremented until the counter value matches either
one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGM13:0 = 1, 2, or 3), the value in ICR1
(WGM13:0 = 10), or the value in OCR1A (WGM13:0 = 11). The counter has then reached the
TOP and changes the count direction. The TCNT1 value will be equal to TOP for one timer clock
cycle. The timing diagram for the phase correct PWM mode is shown on Figure 17-8. The figure
shows phase correct PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1
value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The
diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on
the TCNT1 slopes represent compare matches between OCR1x and TCNT1. The OC1x Inter-
rupt Flag will be set when a compare match occurs.

Figure 17-8. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches BOTTOM. When
either OCR1A or ICR1 is used for defining the TOP value, the OC1A or ICF1 Flag is set accord-
ingly at the same timer clock cycle as the OCR1x Registers are updated with the double buffer
value (at TOP). The Interrupt Flags can be used to generate an interrupt each time the counter
reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.
Note that when using fixed TOP values, the unused bits are masked to zero when any of the
OCR1x Registers are written. As the third period shown in Figure 17-8 illustrates, changing the
TOP actively while the Timer/Counter is running in the phase correct mode can result in an
unsymmetrical output. The reason for this can be found in the time of update of the OCR1x Reg-
ister. Since the OCR1x update occurs at TOP, the PWM period starts and ends at TOP. This
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implies that the length of the falling slope is determined by the previous TOP value, while the
length of the rising slope is determined by the new TOP value. When these two values differ the
two slopes of the period will differ in length. The difference in length gives the unsymmetrical
result on the output. 

It is recommended to use the phase and frequency correct mode instead of the phase correct
mode when changing the TOP value while the Timer/Counter is running. When using a static
TOP value there are practically no differences between the two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the
OC1x pins. Setting the COM1x1:0 bits to two will produce a non-inverted PWM and an inverted
PWM output can be generated by setting the COM1x1:0 to three (See Table 1 on page 124).
The actual OC1x value will only be visible on the port pin if the data direction for the port pin is
set as output (DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x
Register at the compare match between OCR1x and TCNT1 when the counter increments, and
clearing (or setting) the OC1x Register at compare match between OCR1x and TCNT1 when
the counter decrements. The PWM frequency for the output when using phase correct PWM can
be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR1x is set equal to BOTTOM the
output will be continuously low and if set equal to TOP the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values. If
OCR1A is used to define the TOP value (WGM13:0 = 11) and COM1A1:0 = 1, the OC1A output
will toggle with a 50% duty cycle.

17.9.5 Phase and Frequency Correct PWM Mode
The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM
mode (WGM13:0 = 8 or 9) provides a high resolution phase and frequency correct PWM wave-
form generation option. The phase and frequency correct PWM mode is, like the phase correct
PWM mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM
(0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output mode, the
Output Compare (OC1x) is cleared on the compare match between TCNT1 and OCR1x while
counting up, and set on the compare match while counting down. In inverting Compare Output
mode, the operation is inverted. The dual-slope operation gives a lower maximum operation fre-
quency compared to the single-slope operation. However, due to the symmetric feature of the
dual-slope PWM modes, these modes are preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct PWM
mode is the time the OCR1x Register is updated by the OCR1x Buffer Register, (see Figure 17-
8 and Figure 17-9).

The PWM resolution for the phase and frequency correct PWM mode can be defined by either
ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and

fOCnxPCPWM
fclk_I/O

2 N TOP⋅ ⋅
----------------------------=
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the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can
be calculated using the following equation:

In phase and frequency correct PWM mode the counter is incremented until the counter value
matches either the value in ICR1 (WGM13:0 = 8), or the value in OCR1A (WGM13:0 = 9). The
counter has then reached the TOP and changes the count direction. The TCNT1 value will be
equal to TOP for one timer clock cycle. The timing diagram for the phase correct and frequency
correct PWM mode is shown on Figure 17-9. The figure shows phase and frequency correct
PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value is in the timing dia-
gram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-
inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1 slopes repre-
sent compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will be set when a
compare match occurs.

Figure 17-9. Phase and Frequency Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV1) is set at the same timer clock cycle as the OCR1x
Registers are updated with the double buffer value (at BOTTOM). When either OCR1A or ICR1
is used for defining the TOP value, the OC1A or ICF1 Flag set when TCNT1 has reached TOP.
The Interrupt Flags can then be used to generate an interrupt each time the counter reaches the
TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.

As Figure 17-9 shows the output generated is, in contrast to the phase correct mode, symmetri-
cal in all periods. Since the OCR1x Registers are updated at BOTTOM, the length of the rising
and the falling slopes will always be equal. This gives symmetrical output pulses and is therefore
frequency correct.
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Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using
ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However,
if the base PWM frequency is actively changed by changing the TOP value, using the OCR1A as
TOP is clearly a better choice due to its double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM wave-
forms on the OC1x pins. Setting the COM1x1:0 bits to two will produce a non-inverted PWM and
an inverted PWM output can be generated by setting the COM1x1:0 to three (See Table 1 on
page 124). The actual OC1x value will only be visible on the port pin if the data direction for the
port pin is set as output (DDR_OC1x). The PWM waveform is generated by setting (or clearing)
the OC1x Register at the compare match between OCR1x and TCNT1 when the counter incre-
ments, and clearing (or setting) the OC1x Register at compare match between OCR1x and
TCNT1 when the counter decrements. The PWM frequency for the output when using phase
and frequency correct PWM can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR1x is set equal to BOTTOM the
output will be continuously low and if set equal to TOP the output will be set to high for non-
inverted PWM mode. For inverted PWM the output will have the opposite logic values. If OCR1A
is used to define the TOP value (WGM13:0 = 9) and COM1A1:0 = 1, the OC1A output will toggle
with a 50% duty cycle.

17.10 Timer/Counter Timing Diagrams
The Timer/Counter is a synchronous design and the timer clock (clkT1) is therefore shown as a
clock enable signal in the following figures. The figures include information on when Interrupt
Flags are set, and when the OCR1x Register is updated with the OCR1x buffer value (only for
modes utilizing double buffering). Figure 17-10 shows a timing diagram for the setting of OCF1x. 

Figure 17-10. Timer/Counter Timing Diagram, Setting of OCF1x, no Prescaling

Figure 17-11 shows the same timing data, but with the prescaler enabled. 
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Figure 17-11. Timer/Counter Timing Diagram, Setting of OCF1x, with Prescaler (fclk_I/O/8)

Figure 17-12 shows the count sequence close to TOP in various modes. When using phase and
frequency correct PWM mode the OCR1x Register is updated at BOTTOM. The timing diagrams
will be the same, but TOP should be replaced by BOTTOM, TOP-1 by BOTTOM+1 and so on.
The same renaming applies for modes that set the TOV1 Flag at BOTTOM.

Figure 17-12. Timer/Counter Timing Diagram, no Prescaling

Figure 17-13 shows the same timing data, but with the prescaler enabled. 

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clkI/O

clkTn
(clkI/O/8)

TOVn (FPWM)
and ICFn (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clkTn
(clkI/O/1)

clkI/O



123
2570N–AVR–05/11

ATmega325/3250/645/6450

Figure 17-13. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

17.11 Register Description

17.11.1 TCCR1A – Timer/Counter1 Control Register A

• Bit 7:6 – COM1A1:0: Compare Output Mode for Unit A

• Bit 5:4 – COM1B1:0: Compare Output Mode for Unit B
The COM1A1:0 and COM1B1:0 control the Output Compare pins (OC1A and OC1B respec-
tively) behavior. If one or both of the COM1A1:0 bits are written to one, the OC1A output
overrides the normal port functionality of the I/O pin it is connected to. If one or both of the
COM1B1:0 bit are written to one, the OC1B output overrides the normal port functionality of the
I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit correspond-
ing to the OC1A or OC1B pin must be set in order to enable the output driver.

When the OC1A or OC1B is connected to the pin, the function of the COM1x1:0 bits is depen-
dent of the WGM13:0 bits setting. Table 17-2 shows the COM1x1:0 bit functionality when the
WGM13:0 bits are set to a Normal or a CTC mode (non-PWM).

TOVn (FPWM)
and ICFn (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)
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Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

Bit 7 6 5 4 3 2 1 0

(0x80) COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 TCCR1A

Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 17-2. Compare Output Mode, non-PWM

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B 
disconnected.

0 1 Toggle OC1A/OC1B on Compare Match.

1 0 Clear OC1A/OC1B on Compare Match (Set 
output to low level).

1 1 Set OC1A/OC1B on Compare Match (Set output 
to high level).
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Table 17-3 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the fast
PWM mode.

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. In 
this case the compare match is ignored, but the set or clear is done at BOTTOM. See “Fast 
PWM Mode” on page 115. for more details.

Table 17-4 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the phase
correct or the phase and frequency correct, PWM mode.

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. See 
“Phase Correct PWM Mode” on page 117. for more details.

• Bit 1:0 – WGM11:0: Waveform Generation Mode
Combined with the WGM13:2 bits found in the TCCR1B Register, these bits control the counting
sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-
form generation to be used, see Table 17-5. Modes of operation supported by the Timer/Counter
unit are: Normal mode (counter), Clear Timer on Compare match (CTC) mode, and three types
of Pulse Width Modulation (PWM) modes. (See “Modes of Operation” on page 114.).

Table 17-3. Compare Output Mode, Fast PWM(1)

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B 
disconnected.

0 1 WGM13:0 = 14 or 15: Toggle OC1A on Compare 
Match, OC1B disconnected (normal port 
operation). For all other WGM1 settings, normal 
port operation, OC1A/OC1B disconnected.

1 0 Clear OC1A/OC1B on Compare Match, set 
OC1A/OC1B at BOTTOM (non-inverting mode).

1 1 Set OC1A/OC1B on Compare Match, clear 
OC1A/OC1B at BOTTOM (inverting mode).

Table 17-4. Compare Output Mode, Phase Correct and Phase and Frequency Correct 
PWM(1)

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B 
disconnected.

0 1 WGM13:0 = 9 or 11: Toggle OC1A on Compare 
Match, OC1B disconnected (normal port 
operation). For all other WGM1 settings, normal 
port operation, OC1A/OC1B disconnected.

1 0 Clear OC1A/OC1B on Compare Match when up-
counting. Set OC1A/OC1B on Compare Match 
when counting down.

1 1 Set OC1A/OC1B on Compare Match when up-
counting. Clear OC1A/OC1B on Compare Match 
when counting down.
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Note: 1. The CTC1 and PWM11:0 bit definition names are obsolete. Use the WGM12:0 definitions. However, the functionality and 
location of these bits are compatible with previous versions of the timer.

17.11.2 TCCR1B – Timer/Counter1 Control Register B

• Bit 7 – ICNC1: Input Capture Noise Canceler
Setting this bit (to one) activates the Input Capture Noise Canceler. When the noise canceler is
activated, the input from the Input Capture pin (ICP1) is filtered. The filter function requires four
successive equal valued samples of the ICP1 pin for changing its output. The Input Capture is
therefore delayed by four Oscillator cycles when the noise canceler is enabled.

• Bit 6 – ICES1: Input Capture Edge Select
This bit selects which edge on the Input Capture pin (ICP1) that is used to trigger a capture
event. When the ICES1 bit is written to zero, a falling (negative) edge is used as trigger, and
when the ICES1 bit is written to one, a rising (positive) edge will trigger the capture.

When a capture is triggered according to the ICES1 setting, the counter value is copied into the
Input Capture Register (ICR1). The event will also set the Input Capture Flag (ICF1), and this
can be used to cause an Input Capture Interrupt, if this interrupt is enabled.

Table 17-5. Waveform Generation Mode Bit Description(1)

Mode WGM13
WGM12
(CTC1)

WGM11
(PWM11)

WGM10
(PWM10)

Timer/Counter Mode of 
Operation TOP

Update of 
OCR1x at

TOV1 Flag 
Set on

0 0 0 0 0 Normal 0xFFFF Immediate MAX

1 0 0 0 1 PWM, Phase Correct, 8-bit 0x00FF TOP BOTTOM

2 0 0 1 0 PWM, Phase Correct, 9-bit 0x01FF TOP BOTTOM

3 0 0 1 1 PWM, Phase Correct, 10-bit 0x03FF TOP BOTTOM

4 0 1 0 0 CTC OCR1A Immediate MAX

5 0 1 0 1 Fast PWM, 8-bit 0x00FF BOTTOM TOP

6 0 1 1 0 Fast PWM, 9-bit 0x01FF BOTTOM TOP

7 0 1 1 1 Fast PWM, 10-bit 0x03FF BOTTOM TOP

8 1 0 0 0 PWM, Phase and Frequency 
Correct

ICR1 BOTTOM BOTTOM

9 1 0 0 1 PWM, Phase and Frequency 
Correct

OCR1A BOTTOM BOTTOM

10 1 0 1 0 PWM, Phase Correct ICR1 TOP BOTTOM

11 1 0 1 1 PWM, Phase Correct OCR1A TOP BOTTOM

12 1 1 0 0 CTC ICR1 Immediate MAX

13 1 1 0 1 (Reserved) – – –

14 1 1 1 0 Fast PWM ICR1 BOTTOM TOP

15 1 1 1 1 Fast PWM OCR1A BOTTOM TOP

Bit 7 6 5 4 3 2 1 0

(0x81) ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 TCCR1B

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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When the ICR1 is used as TOP value (see description of the WGM13:0 bits located in the
TCCR1A and the TCCR1B Register), the ICP1 is disconnected and consequently the Input Cap-
ture function is disabled.

• Bit 5 – Reserved Bit
This bit is reserved for future use. For ensuring compatibility with future devices, this bit must be
written to zero when TCCR1B is written.

• Bit 4:3 – WGM13:2: Waveform Generation Mode
See TCCR1A Register description.

• Bit 2:0 – CS12:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter, see Figure
17-10 and Figure 17-11.

If external pin modes are used for the Timer/Counter1, transitions on the T1 pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

17.11.3 TCCR1C – Timer/Counter1 Control Register C

• Bit 7 – FOC1A: Force Output Compare for Unit A

• Bit 6 – FOC1B: Force Output Compare for Unit B
The FOC1A/FOC1B bits are only active when the WGM13:0 bits specifies a non-PWM mode.
However, for ensuring compatibility with future devices, these bits must be set to zero when
TCCR1A is written when operating in a PWM mode. When writing a logical one to the
FOC1A/FOC1B bit, an immediate compare match is forced on the Waveform Generation unit.
The OC1A/OC1B output is changed according to its COM1x1:0 bits setting. Note that the
FOC1A/FOC1B bits are implemented as strobes. Therefore it is the value present in the
COM1x1:0 bits that determine the effect of the forced compare.

Table 17-6. Clock Select Bit Description

CS12 CS11 CS10 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkI/O/1 (No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on T1 pin. Clock on falling edge.

1 1 1 External clock source on T1 pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

(0x82) FOC1A FOC1B – – – – – – TCCR1C

Read/Write R/W R/W R R R R R R

Initial Value 0 0 0 0 0 0 0 0
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A FOC1A/FOC1B strobe will not generate any interrupt nor will it clear the timer in Clear Timer
on Compare match (CTC) mode using OCR1A as TOP. The FOC1A/FOC1B bits are always
read as zero.

17.11.4 TCNT1H and TCNT1L – Timer/Counter1

The two Timer/Counter I/O locations (TCNT1H and TCNT1L, combined TCNT1) give direct
access, both for read and for write operations, to the Timer/Counter unit 16-bit counter. To
ensure that both the high and low bytes are read and written simultaneously when the CPU
accesses these registers, the access is performed using an 8-bit temporary High Byte Register
(TEMP). This temporary register is shared by all the other 16-bit registers. See “Accessing 16-bit
Registers” on page 104.

Modifying the counter (TCNT1) while the counter is running introduces a risk of missing a com-
pare match between TCNT1 and one of the OCR1x Registers.

Writing to the TCNT1 Register blocks (removes) the compare match on the following timer clock
for all compare units.

17.11.5 OCR1AH and OCR1AL – Output Compare Register 1 A

17.11.6 OCR1BH and OCR1BL – Output Compare Register 1 B

The Output Compare Registers contain a 16-bit value that is continuously compared with the
counter value (TCNT1). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC1x pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and low bytes are
written simultaneously when the CPU writes to these registers, the access is performed using an
8-bit temporary High Byte Register (TEMP). This temporary register is shared by all the other
16-bit registers. See “Accessing 16-bit Registers” on page 104.

17.11.7 ICR1H and ICR1L – Input Capture Register 1

Bit 7 6 5 4 3 2 1 0

(0x85) TCNT1[15:8] TCNT1H

(0x84) TCNT1[7:0] TCNT1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x89) OCR1A[15:8] OCR1AH

(0x88) OCR1A[7:0] OCR1AL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x8B) OCR1B[15:8] OCR1BH

(0x8A) OCR1B[7:0] OCR1BL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x87) ICR1[15:8] ICR1H

(0x86) ICR1[7:0] ICR1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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The Input Capture is updated with the counter (TCNT1) value each time an event occurs on the
ICP1 pin (or optionally on the Analog Comparator output for Timer/Counter1). The Input Capture
can be used for defining the counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes are read
simultaneously when the CPU accesses these registers, the access is performed using an 8-bit
temporary High Byte Register (TEMP). This temporary register is shared by all the other 16-bit
registers. See “Accessing 16-bit Registers” on page 104.

17.11.8 TIMSK1 – Timer/Counter1 Interrupt Mask Register

• Bit 5 – ICIE1: Timer/Counter1, Input Capture Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Input Capture interrupt is enabled. The corresponding Interrupt
Vector (See “Interrupts” on page 49.) is executed when the ICF1 Flag, located in TIFR1, is set.

• Bit 2 – OCIE1B: Timer/Counter1, Output Compare B Match Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare B Match interrupt is enabled. The corresponding
Interrupt Vector (See “Interrupts” on page 49.) is executed when the OCF1B Flag, located in
TIFR1, is set.

• Bit 1 – OCIE1A: Timer/Counter1, Output Compare A Match Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare A Match interrupt is enabled. The corresponding
Interrupt Vector (See “Interrupts” on page 49.) is executed when the OCF1A Flag, located in
TIFR1, is set.

• Bit 0 – TOIE1: Timer/Counter1, Overflow Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Overflow interrupt is enabled. The corresponding Interrupt Vector
(See “Interrupts” on page 49.) is executed when the TOV1 Flag, located in TIFR1, is set.

17.11.9 TIFR1 – Timer/Counter1 Interrupt Flag Register

• Bit 5 – ICF1: Timer/Counter1, Input Capture Flag
This flag is set when a capture event occurs on the ICP1 pin. When the Input Capture Register
(ICR1) is set by the WGM13:0 to be used as the TOP value, the ICF1 Flag is set when the coun-
ter reaches the TOP value.

ICF1 is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively,
ICF1 can be cleared by writing a logic one to its bit location.

Bit 7 6 5 4 3 2 1 0

(0x6F) – – ICIE1 – – OCIE1B OCIE1A TOIE1 TIMSK1

Read/Write R R R/W R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x16 (0x36) – – ICF1 – – OCF1B OCF1A TOV1 TIFR1

Read/Write R R R/W R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 2 – OCF1B: Timer/Counter1, Output Compare B Match Flag
This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output
Compare Register B (OCR1B).

Note that a Forced Output Compare (FOC1B) strobe will not set the OCF1B Flag.

OCF1B is automatically cleared when the Output Compare Match B Interrupt Vector is exe-
cuted. Alternatively, OCF1B can be cleared by writing a logic one to its bit location.

• Bit 1 – OCF1A: Timer/Counter1, Output Compare A Match Flag
This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output
Compare Register A (OCR1A).

Note that a Forced Output Compare (FOC1A) strobe will not set the OCF1A Flag.

OCF1A is automatically cleared when the Output Compare Match A Interrupt Vector is exe-
cuted. Alternatively, OCF1A can be cleared by writing a logic one to its bit location.

• Bit 0 – TOV1: Timer/Counter1, Overflow Flag
The setting of this flag is dependent of the WGM13:0 bits setting. In Normal and CTC modes,
the TOV1 Flag is set when the timer overflows. Refer to Table 17-5 on page 125 for the TOV1
Flag behavior when using another WGM13:0 bit setting.

TOV1 is automatically cleared when the Timer/Counter1 Overflow Interrupt Vector is executed.
Alternatively, TOV1 can be cleared by writing a logic one to its bit location.
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18. 8-bit Timer/Counter2 with PWM and Asynchronous Operation

18.1 Features
Timer/Counter2 is a general purpose, single compare unit, 8-bit Timer/Counter module. The
main features are:

• Single Compare Unit Counter
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Frequency Generator
• 10-bit Clock Prescaler
• Overflow and Compare Match Interrupt Sources (TOV2 and OCF2A)
• Allows Clocking from External 32kHz Watch Crystal Independent of the I/O Clock

18.2 Overview
A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 18-1. For the actual
placement of I/O pins, refer to “Pinout ATmega3250/6450” on page 2. CPU accessible I/O Reg-
isters, including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit
locations are listed in the “Register Description” on page 143.

Figure 18-1. 8-bit Timer/Counter Block Diagram 
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18.2.1 Registers
The Timer/Counter (TCNT2) and Output Compare Register (OCR2A) are 8-bit registers. Inter-
rupt request (shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag Register
(TIFR2). All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK2).
TIFR2 and TIMSK2 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from
the TOSC1/2 pins, as detailed later in this section. The asynchronous operation is controlled by
the Asynchronous Status Register (ASSR). The Clock Select logic block controls which clock
source the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inac-
tive when no clock source is selected. The output from the Clock Select logic is referred to as the
timer clock (clkT2).

The double buffered Output Compare Register (OCR2A) is compared with the Timer/Counter
value at all times. The result of the compare can be used by the Waveform Generator to gener-
ate a PWM or variable frequency output on the Output Compare pin (OC2A). See “Output
Compare Unit” on page 132. for details. The compare match event will also set the Compare
Flag (OCF2A) which can be used to generate an Output Compare interrupt request.

18.2.2 Definitions
Many register and bit references in this document are written in general form. A lower case “n”
replaces the Timer/Counter number, in this case 2. However, when using the register or bit
defines in a program, the precise form must be used, i.e., TCNT2 for accessing Timer/Counter2
counter value and so on.

The definitions in Table 18-1 are also used extensively throughout the section.

18.3 Timer/Counter Clock Sources
The Timer/Counter can be clocked by an internal synchronous or an external asynchronous
clock source. The clock source clkT2 is by default equal to the MCU clock, clkI/O. When the AS2
bit in the ASSR Register is written to logic one, the clock source is taken from the Timer/Counter
Oscillator connected to TOSC1 and TOSC2. For details on asynchronous operation, see “ASSR
– Asynchronous Status Register” on page 145. For details on clock sources and prescaler, see
“Timer/Counter Prescaler” on page 142.

18.4 Counter Unit
The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure
18-2 shows a block diagram of the counter and its surrounding environment.

Table 18-1. Definitions of Timer/Counter values.

BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00).
MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).
TOP The counter reaches the TOP when it becomes equal to the highest

value in the count sequence. The TOP value can be assigned to be the
fixed value 0xFF (MAX) or the value stored in the OCR2A Register. The
assignment is dependent on the mode of operation.
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Figure 18-2. Counter Unit Block Diagram

Signal description (internal signals):

count Increment or decrement TCNT2 by 1.

direction Selects between increment and decrement.

clear Clear TCNT2 (set all bits to zero).

clkT2 Timer/Counter clock.

top Signalizes that TCNT2 has reached maximum value.

bottom Signalizes that TCNT2 has reached minimum value (zero).

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clkT2). clkT2 can be generated from an external or internal clock source,
selected by the Clock Select bits (CS22:0). When no clock source is selected (CS22:0 = 0) the
timer is stopped. However, the TCNT2 value can be accessed by the CPU, regardless of
whether clkT2 is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the WGM21 and WGM20 bits located in
the Timer/Counter Control Register (TCCR2A). There are close connections between how the
counter behaves (counts) and how waveforms are generated on the Output Compare output
OC2A. For more details about advanced counting sequences and waveform generation, see
“Modes of Operation” on page 135.

The Timer/Counter Overflow Flag (TOV2) is set according to the mode of operation selected by
the WGM21:0 bits. TOV2 can be used for generating a CPU interrupt.

18.5 Output Compare Unit
The 8-bit comparator continuously compares TCNT2 with the Output Compare Register
(OCR2A). Whenever TCNT2 equals OCR2A, the comparator signals a match. A match will set
the Output Compare Flag (OCF2A) at the next timer clock cycle. If enabled (OCIE2A = 1), the
Output Compare Flag generates an Output Compare interrupt. The OCF2A Flag is automatically
cleared when the interrupt is executed. Alternatively, the OCF2A Flag can be cleared by soft-
ware by writing a logical one to its I/O bit location. The Waveform Generator uses the match
signal to generate an output according to operating mode set by the WGM21:0 bits and Com-
pare Output mode (COM2A1:0) bits. The max and bottom signals are used by the Waveform
Generator for handling the special cases of the extreme values in some modes of operation
(“Modes of Operation” on page 135).

Figure 18-3 shows a block diagram of the Output Compare unit. 
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Figure 18-3. Output Compare Unit, Block Diagram

The OCR2A Register is double buffered when using any of the Pulse Width Modulation (PWM)
modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the double
buffering is disabled. The double buffering synchronizes the update of the OCR2A Compare
Register to either top or bottom of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR2A Register access may seem complex, but this is not case. When the double buffer-
ing is enabled, the CPU has access to the OCR2A Buffer Register, and if double buffering is
disabled the CPU will access the OCR2A directly. 

18.5.1 Force Output Compare
In non-PWM waveform generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC2A) bit. Forcing compare match will not set the
OCF2A Flag or reload/clear the timer, but the OC2A pin will be updated as if a real compare
match had occurred (the COM2A1:0 bits settings define whether the OC2A pin is set, cleared or
toggled).

18.5.2 Compare Match Blocking by TCNT2 Write
All CPU write operations to the TCNT2 Register will block any compare match that occurs in the
next timer clock cycle, even when the timer is stopped. This feature allows OCR2A to be initial-
ized to the same value as TCNT2 without triggering an interrupt when the Timer/Counter clock is
enabled.

18.5.3 Using the Output Compare Unit
Since writing TCNT2 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT2 when using the Output Compare unit,
independently of whether the Timer/Counter is running or not. If the value written to TCNT2
equals the OCR2A value, the compare match will be missed, resulting in incorrect waveform
generation. Similarly, do not write the TCNT2 value equal to BOTTOM when the counter is
counting down.
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The setup of the OC2A should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC2A value is to use the Force Output Com-
pare (FOC2A) strobe bit in Normal mode. The OC2A Register keeps its value even when
changing between Waveform Generation modes.

Be aware that the COM2A1:0 bits are not double buffered together with the compare value.
Changing the COM2A1:0 bits will take effect immediately.

18.6 Compare Match Output Unit
The Compare Output mode (COM2A1:0) bits have two functions. The Waveform Generator
uses the COM2A1:0 bits for defining the Output Compare (OC2A) state at the next compare
match. Also, the COM2A1:0 bits control the OC2A pin output source. Figure 18-4 shows a sim-
plified schematic of the logic affected by the COM2A1:0 bit setting. The I/O Registers, I/O bits,
and I/O pins in the figure are shown in bold. Only the parts of the general I/O Port Control Regis-
ters (DDR and PORT) that are affected by the COM2A1:0 bits are shown. When referring to the
OC2A state, the reference is for the internal OC2A Register, not the OC2A pin.

Figure 18-4. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the Output Compare (OC2A) from the Waveform
Generator if either of the COM2A1:0 bits are set. However, the OC2A pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OC2A pin (DDR_OC2A) must be set as output before the OC2A value is vis-
ible on the pin. The port override function is independent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OC2A state before the
output is enabled. Note that some COM2A1:0 bit settings are reserved for certain modes of
operation. See “Register Description” on page 143.
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18.6.1 Compare Output Mode and Waveform Generation
The Waveform Generator uses the COM2A1:0 bits differently in normal, CTC, and PWM modes.
For all modes, setting the COM2A1:0 = 0 tells the Waveform Generator that no action on the
OC2A Register is to be performed on the next compare match. For compare output actions in
the non-PWM modes refer to Table 18-3 on page 144. For fast PWM mode, refer to Table 18-4
on page 144, and for phase correct PWM refer to Table 18-5 on page 144.

A change of the COM2A1:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOC2A strobe bits.

18.7 Modes of Operation
The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is
defined by the combination of the Waveform Generation mode (WGM21:0) and Compare Output
mode (COM2A1:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COM2A1:0 bits control whether the PWM
output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM
modes the COM2A1:0 bits control whether the output should be set, cleared, or toggled at a
compare match (See “Compare Match Output Unit” on page 134.).

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 139.

18.7.1 Normal Mode
The simplest mode of operation is the Normal mode (WGM21:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-
tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV2) will be set in the same
timer clock cycle as the TCNT2 becomes zero. The TOV2 Flag in this case behaves like a ninth
bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt
that automatically clears the TOV2 Flag, the timer resolution can be increased by software.
There are no special cases to consider in the Normal mode, a new counter value can be written
anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the Out-
put Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

18.7.2 Clear Timer on Compare Match (CTC) Mode
In Clear Timer on Compare or CTC mode (WGM21:0 = 2), the OCR2A Register is used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter
value (TCNT2) matches the OCR2A. The OCR2A defines the top value for the counter, hence
also its resolution. This mode allows greater control of the compare match output frequency. It
also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 18-5. The counter value (TCNT2)
increases until a compare match occurs between TCNT2 and OCR2A, and then counter
(TCNT2) is cleared.
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Figure 18-5. CTC Mode, Timing Diagram

An interrupt can be generated each time the counter value reaches the TOP value by using the
OCF2A Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating
the TOP value. However, changing the TOP to a value close to BOTTOM when the counter is
running with none or a low prescaler value must be done with care since the CTC mode does
not have the double buffering feature. If the new value written to OCR2A is lower than the cur-
rent value of TCNT2, the counter will miss the compare match. The counter will then have to
count to its maximum value (0xFF) and wrap around starting at 0x00 before the compare match
can occur.

For generating a waveform output in CTC mode, the OC2A output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COM2A1:0 = 1). The OC2A value will not be visible on the port pin unless the data direction for
the pin is set to output. The waveform generated will have a maximum frequency of fOC2A =
fclk_I/O/2 when OCR2A is set to zero (0x00). The waveform frequency is defined by the following
equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

As for the Normal mode of operation, the TOV2 Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x00.

18.7.3 Fast PWM Mode
The fast Pulse Width Modulation or fast PWM mode (WGM21:0 = 3) provides a high frequency
PWM waveform generation option. The fast PWM differs from the other PWM option by its sin-
gle-slope operation. The counter counts from BOTTOM to MAX then restarts from BOTTOM. In
non-inverting Compare Output mode, the Output Compare (OC2A) is cleared on the compare
match between TCNT2 and OCR2A, and set at BOTTOM. In inverting Compare Output mode,
the output is set on compare match and cleared at BOTTOM. Due to the single-slope operation,
the operating frequency of the fast PWM mode can be twice as high as the phase correct PWM
mode that uses dual-slope operation. This high frequency makes the fast PWM mode well suited
for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast

TCNTn
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1 4Period 2 3
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PWM mode is shown in Figure 18-6. The TCNT2 value is in the timing diagram shown as a his-
togram for illustrating the single-slope operation. The diagram includes non-inverted and
inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes represent compare
matches between OCR2A and TCNT2.

Figure 18-6. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches MAX. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2A pin.
Setting the COM2A1:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COM2A1:0 to three (See Table 18-4 on page 144). The actual
OC2A value will only be visible on the port pin if the data direction for the port pin is set as out-
put. The PWM waveform is generated by setting (or clearing) the OC2A Register at the compare
match between OCR2A and TCNT2, and clearing (or setting) the OC2A Register at the timer
clock cycle the counter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR2A is set equal to BOTTOM, the output will
be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2A equal to MAX will result
in a constantly high or low output (depending on the polarity of the output set by the COM2A1:0
bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC2A to toggle its logical level on each compare match (COM2A1:0 = 1). The waveform
generated will have a maximum frequency of foc2 = fclk_I/O/2 when OCR2A is set to zero. This fea-
ture is similar to the OC2A toggle in CTC mode, except the double buffer feature of the Output
Compare unit is enabled in the fast PWM mode.
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18.7.4 Phase Correct PWM Mode
The phase correct PWM mode (WGM21:0 = 1) provides a high resolution phase correct PWM
waveform generation option. The phase correct PWM mode is based on a dual-slope operation.
The counter counts repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In non-
inverting Compare Output mode, the Output Compare (OC2A) is cleared on the compare match
between TCNT2 and OCR2A while counting up, and set on the compare match while counting
down. In inverting Output Compare mode, the operation is inverted. The dual-slope operation
has lower maximum operation frequency than single slope operation. However, due to the sym-
metric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase correct
PWM mode the counter is incremented until the counter value matches MAX. When the counter
reaches MAX, it changes the count direction. The TCNT2 value will be equal to MAX for one
timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 18-7.
The TCNT2 value is in the timing diagram shown as a histogram for illustrating the dual-slope
operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal
line marks on the TCNT2 slopes represent compare matches between OCR2A and TCNT2.

Figure 18-7. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOTTOM. The
Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM
value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OC2A pin. Setting the COM2A1:0 bits to two will produce a non-inverted PWM. An inverted
PWM output can be generated by setting the COM2A1:0 to three (See Table 18-5 on page 144).
The actual OC2A value will only be visible on the port pin if the data direction for the port pin is
set as output. The PWM waveform is generated by clearing (or setting) the OC2A Register at the
compare match between OCR2A and TCNT2 when the counter increments, and setting (or
clearing) the OC2A Register at compare match between OCR2A and TCNT2 when the counter
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decrements. The PWM frequency for the output when using phase correct PWM can be calcu-
lated by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR2A is set equal to BOTTOM, the
output will be continuously low and if set equal to MAX the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of period 2 in Figure 18-7 OCn has a transition from high to low even though
there is no Compare Match. The point of this transition is to guarantee symmetry around BOT-
TOM. There are two cases that give a transition without Compare Match. 

• OCR2A changes its value from MAX, like in Figure 18-7. When the OCR2A value is MAX the 
OCn pin value is the same as the result of a down-counting compare match. To ensure 
symmetry around BOTTOM the OCn value at MAX must correspond to the result of an up-
counting Compare Match.

• The timer starts counting from a value higher than the one in OCR2A, and for that reason 
misses the Compare Match and hence the OCn change that would have happened on the 
way up.

18.8 Timer/Counter Timing Diagrams
The following figures show the Timer/Counter in synchronous mode, and the timer clock (clkT2)
is therefore shown as a clock enable signal. In asynchronous mode, clkI/O should be replaced by
the Timer/Counter Oscillator clock. The figures include information on when Interrupt Flags are
set. Figure 2 contains timing data for basic Timer/Counter operation. The figure shows the count
sequence close to the MAX value in all modes other than phase correct PWM mode.

Figure 2.  Timer/Counter Timing Diagram, no Prescaling

Figure 18-8 shows the same timing data, but with the prescaler enabled.

fOCnxPCPWM
fclk_I/O

N 510⋅
------------------=

clkTn
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clkI/O
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Figure 18-8. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 18-9 shows the setting of OCF2A in all modes except CTC mode.

Figure 18-9. Timer/Counter Timing Diagram, Setting of OCF2A, with Prescaler (fclk_I/O/8)

Figure 18-10 shows the setting of OCF2A and the clearing of TCNT2 in CTC mode.

Figure 18-10. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Pres-
caler (fclk_I/O/8)
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18.9 Asynchronous Operation of Timer/Counter2
When Timer/Counter2 operates asynchronously, some considerations must be taken.

• Warning: When switching between asynchronous and synchronous clocking of 
Timer/Counter2, the Timer Registers TCNT2, OCR2A, and TCCR2A might be corrupted. A 
safe procedure for switching clock source is:

1. Disable the Timer/Counter2 interrupts by clearing OCIE2A and TOIE2.

2. Select clock source by setting AS2 as appropriate.

3. Write new values to TCNT2, OCR2A, and TCCR2A.

4. To switch to asynchronous operation: Wait for TCN2UB, OCR2UB, and TCR2UB.

5. Clear the Timer/Counter2 Interrupt Flags.

6. Enable interrupts, if needed.

• The CPU main clock frequency must be more than four times the Oscillator frequency.

• When writing to one of the registers TCNT2, OCR2A, or TCCR2A, the value is transferred to 
a temporary register, and latched after two positive edges on TOSC1. The user should not 
write a new value before the contents of the temporary register have been transferred to its 
destination. Each of the three mentioned registers have their individual temporary register, 
which means that e.g. writing to TCNT2 does not disturb an OCR2A write in progress. To 
detect that a transfer to the destination register has taken place, the Asynchronous Status 
Register – ASSR has been implemented.

• When entering Power-save or ADC Noise Reduction mode after having written to TCNT2, 
OCR2A, or TCCR2A, the user must wait until the written register has been updated if 
Timer/Counter2 is used to wake up the device. Otherwise, the MCU will enter sleep mode 
before the changes are effective. This is particularly important if the Output Compare2 
interrupt is used to wake up the device, since the Output Compare function is disabled 
during writing to OCR2A or TCNT2. If the write cycle is not finished, and the MCU enters 
sleep mode before the OCR2UB bit returns to zero, the device will never receive a compare 
match interrupt, and the MCU will not wake up.

• If Timer/Counter2 is used to wake the device up from Power-save or ADC Noise Reduction 
mode, precautions must be taken if the user wants to re-enter one of these modes: The 
interrupt logic needs one TOSC1 cycle to be reset. If the time between wake-up and re-
entering sleep mode is less than one TOSC1 cycle, the interrupt will not occur, and the 
device will fail to wake up. If the user is in doubt whether the time before re-entering Power-
save or ADC Noise Reduction mode is sufficient, the following algorithm can be used to 
ensure that one TOSC1 cycle has elapsed:

1. Write a value to TCCR2A, TCNT2, or OCR2A.

2. Wait until the corresponding Update Busy Flag in ASSR returns to zero.

3. Enter Power-save or ADC Noise Reduction mode.

• When the asynchronous operation is selected, the 32.768kHz Oscillator for Timer/Counter2 
is always running, except in Power-down and Standby modes. After a Power-up Reset or 
wake-up from Power-down or Standby mode, the user should be aware of the fact that this 
Oscillator might take as long as one second to stabilize. The user is advised to wait for at 
least one second before using Timer/Counter2 after power-up or wake-up from Power-down 
or Standby mode. The contents of all Timer/Counter2 Registers must be considered lost 
after a wake-up from Power-down or Standby mode due to unstable clock signal upon start-
up, no matter whether the Oscillator is in use or a clock signal is applied to the TOSC1 pin.

• Description of wake up from Power-save or ADC Noise Reduction mode when the timer is 
clocked asynchronously: When the interrupt condition is met, the wake up process is started 
on the following cycle of the timer clock, that is, the timer is always advanced by at least one 
before the processor can read the counter value. After wake-up, the MCU is halted for four 
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cycles, it executes the interrupt routine, and resumes execution from the instruction 
following SLEEP.

• Reading of the TCNT2 Register shortly after wake-up from Power-save may give an 
incorrect result. Since TCNT2 is clocked on the asynchronous TOSC clock, reading TCNT2 
must be done through a register synchronized to the internal I/O clock domain. 
Synchronization takes place for every rising TOSC1 edge. When waking up from Power-
save mode, and the I/O clock (clkI/O) again becomes active, TCNT2 will read as the previous 
value (before entering sleep) until the next rising TOSC1 edge. The phase of the TOSC 
clock after waking up from Power-save mode is essentially unpredictable, as it depends on 
the wake-up time. The recommended procedure for reading TCNT2 is thus as follows: 

1. Write any value to either of the registers OCR2A or TCCR2A. 

2. Wait for the corresponding Update Busy Flag to be cleared. 

3. Read TCNT2. 

• During asynchronous operation, the synchronization of the Interrupt Flags for the 
asynchronous timer takes 3 processor cycles plus one timer cycle. The timer is therefore 
advanced by at least one before the processor can read the timer value causing the setting 
of the Interrupt Flag. The Output Compare pin is changed on the timer clock and is not 
synchronized to the processor clock.

18.10 Timer/Counter Prescaler

Figure 18-11. Prescaler for Timer/Counter2

The clock source for Timer/Counter2 is named clkT2S. clkT2S is by default connected to the main
system I/O clock clkIO. By setting the AS2 bit in ASSR, Timer/Counter2 is asynchronously
clocked from the TOSC1 pin. This enables use of Timer/Counter2 as a Real Time Counter
(RTC). When AS2 is set, pins TOSC1 and TOSC2 are disconnected from Port C. A crystal can
then be connected between the TOSC1 and TOSC2 pins to serve as an independent clock
source for Timer/Counter2. The Oscillator is optimized for use with a 32.768kHz crystal. If apply-
ing an external clock on TOSC1, the EXCLK bit in ASSR must be set.
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For Timer/Counter2, the possible prescaled selections are: clkT2S/8, clkT2S/32, clkT2S/64,
clkT2S/128, clkT2S/256, and clkT2S/1024. Additionally, clkT2S as well as 0 (stop) may be selected.
Setting the PSR2 bit in GTCCR resets the prescaler. This allows the user to operate with a pre-
dictable prescaler.

18.11 Register Description

18.11.1 TCCR2A – Timer/Counter Control Register A

• Bit 7 – FOC2A: Force Output Compare A
The FOC2A bit is only active when the WGM bits specify a non-PWM mode. However, for ensur-
ing compatibility with future devices, this bit must be set to zero when TCCR2A is written when
operating in PWM mode. When writing a logical one to the FOC2A bit, an immediate compare
match is forced on the Waveform Generation unit. The OC2A output is changed according to its
COM2A1:0 bits setting. Note that the FOC2A bit is implemented as a strobe. Therefore it is the
value present in the COM2A1:0 bits that determines the effect of the forced compare.

A FOC2A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR2A as TOP.

The FOC2A bit is always read as zero.

• Bit 6, 3 – WGM21:0: Waveform Generation Mode
These bits control the counting sequence of the counter, the source for the maximum (TOP)
counter value, and what type of waveform generation to be used. Modes of operation supported
by the Timer/Counter unit are: Normal mode, Clear Timer on Compare match (CTC) mode, and
two types of Pulse Width Modulation (PWM) modes. See Table 18-2 and “Modes of Operation”
on page 135.

Note: 1. The CTC2 and PWM2 bit definition names are now obsolete. Use the WGM21:0 definitions. 
However, the functionality and location of these bits are compatible with previous versions of 
the timer.

Bit 7 6 5 4 3 2 1 0

(0xB0) FOC2A WGM20 COM2A1 COM2A0 WGM21 CS22 CS21 CS20 TCCR2A

Read/Write W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 18-2. Waveform Generation Mode Bit Description(1)

Mode
WGM21
(CTC2)

WGM20
(PWM2)

Timer/Counter Mode 
of Operation TOP

Update of
OCR2A at

TOV2 Flag
Set on

0 0 0 Normal 0xFF Immediate MAX

1 0 1 PWM, Phase Correct 0xFF TOP BOTTOM

2 1 0 CTC OCR2A Immediate MAX

3 1 1 Fast PWM 0xFF BOTTOM MAX
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• Bit 5:4 – COM2A1:0: Compare Match Output Mode A

These bits control the Output Compare pin (OC2A) behavior. If one or both of the COM2A1:0
bits are set, the OC2A output overrides the normal port functionality of the I/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to OC2A pin must be
set in order to enable the output driver.

When OC2A is connected to the pin, the function of the COM2A1:0 bits depends on the
WGM21:0 bit setting. Table 18-3 shows the COM2A1:0 bit functionality when the WGM21:0 bits
are set to a normal or CTC mode (non-PWM).

Table 18-4 shows the COM2A1:0 bit functionality when the WGM21:0 bits are set to fast PWM
mode.

Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the com-
pare match is ignored, but the set or clear is done at BOTTOM. See “Fast PWM Mode” on 
page 136 for more details.

Table 18-5 shows the COM21:0 bit functionality when the WGM21:0 bits are set to phase cor-
rect PWM mode.

Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the com-
pare match is ignored, but the set or clear is done at TOP. See “Phase Correct PWM Mode” on 
page 138 for more details.

Table 18-3. Compare Output Mode, non-PWM Mode

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected.

0 1 Toggle OC2A on compare match.

1 0 Clear OC2A on compare match.

1 1 Set OC2A on compare match.

Table 18-4. Compare Output Mode, Fast PWM Mode(1)

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected.

0 1 Reserved

1 0 Clear OC2A on compare match, set OC2A at BOTTOM,
(non-inverting mode).

1 1 Set OC2A on compare match, clear OC2A at BOTTOM,
(inverting mode).

Table 18-5. Compare Output Mode, Phase Correct PWM Mode(1)

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected.

0 1 Reserved

1 0 Clear OC2A on compare match when up-counting. Set OC2A on 
compare match when counting down.

1 1 Set OC2A on compare match when up-counting. Clear OC2A on 
compare match when counting down.
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• Bit 2:0 – CS22:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter, see Table
18-6.

18.11.2 TCNT2 – Timer/Counter Register

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNT2 Register blocks (removes) the compare
match on the following timer clock. Modifying the counter (TCNT2) while the counter is running,
introduces a risk of missing a compare match between TCNT2 and the OCR2A Register.

18.11.3 OCR2A – Output Compare Register A

The Output Compare Register A contains an 8-bit value that is continuously compared with the
counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC2A pin.

18.11.4 ASSR – Asynchronous Status Register

• Bit 4 – EXCLK: Enable External Clock Input
When EXCLK is written to one, and asynchronous clock is selected, the external clock input buf-
fer is enabled and an external clock can be input on Timer Oscillator 1 (TOSC1) pin instead of a
32kHz crystal. Writing to EXCLK should be done before asynchronous operation is selected.
Note that the crystal Oscillator will only run when this bit is zero.

Table 18-6. Clock Select Bit Description

CS22 CS21 CS20 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkT2S/(No prescaling)

0 1 0 clkT2S/8 (From prescaler)

0 1 1 clkT2S/32 (From prescaler)

1 0 0 clkT2S/64 (From prescaler)

1 0 1 clkT2S/128 (From prescaler)

1 1 0 clkT2S/256 (From prescaler)

1 1 1 clkT2S/1024 (From prescaler)

Bit 7 6 5 4 3 2 1 0

(0xB2) TCNT2[7:0] TCNT2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xB3) OCR2A[7:0] OCR2A

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xB6) – – – EXCLK AS2 TCN2UB OCR2UB TCR2UB ASSR

Read/Write R R R R/W R/W R R R

Initial Value 0 0 0 0 0 0 0 0
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• Bit 3 – AS2: Asynchronous Timer/Counter2
When AS2 is written to zero, Timer/Counter2 is clocked from the I/O clock, clkI/O. When AS2 is
written to one, Timer/Counter2 is clocked from a crystal Oscillator connected to the Timer Oscil-
lator 1 (TOSC1) pin. When the value of AS2 is changed, the contents of TCNT2, OCR2A, and
TCCR2A might be corrupted.

• Bit 2 – TCN2UB: Timer/Counter2 Update Busy
When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes set.
When TCNT2 has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that TCNT2 is ready to be updated with a new value.

• Bit 1 – OCR2UB: Output Compare Register2 Update Busy
When Timer/Counter2 operates asynchronously and OCR2A is written, this bit becomes set.
When OCR2A has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that OCR2A is ready to be updated with a new value.

• Bit 0 – TCR2UB: Timer/Counter Control Register2 Update Busy
When Timer/Counter2 operates asynchronously and TCCR2A is written, this bit becomes set.
When TCCR2A has been updated from the temporary storage register, this bit is cleared by
hardware. A logical zero in this bit indicates that TCCR2A is ready to be updated with a new
value.

If a write is performed to any of the three Timer/Counter2 Registers while its update busy flag is
set, the updated value might get corrupted and cause an unintentional interrupt to occur.

The mechanisms for reading TCNT2, OCR2A, and TCCR2A are different. When reading
TCNT2, the actual timer value is read. When reading OCR2A or TCCR2A, the value in the tem-
porary storage register is read.

18.11.5 TIMSK2 – Timer/Counter2 Interrupt Mask Register

• Bit 1 – OCIE2A: Timer/Counter2 Output Compare Match A Interrupt Enable
When the OCIE2A bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Compare Match A interrupt is enabled. The corresponding interrupt is executed
if a compare match in Timer/Counter2 occurs, i.e., when the OCF2A bit is set in the Timer/Coun-
ter 2 Interrupt Flag Register – TIFR2.

• Bit 0 – TOIE2: Timer/Counter2 Overflow Interrupt Enable
When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter2 occurs, i.e., when the TOV2 bit is set in the Timer/Counter2 Interrupt
Flag Register – TIFR2.

Bit 7 6 5 4 3 2 1 0

(0x70) – – – – – – OCIE2A TOIE2 TIMSK2

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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18.11.6 TIFR2 – Timer/Counter2 Interrupt Flag Register

• Bit 1 – OCF2A: Output Compare Flag 2 A
The OCF2A bit is set (one) when a compare match occurs between the Timer/Counter2 and the
data in OCR2A – Output Compare Register2. OCF2A is cleared by hardware when executing
the corresponding interrupt handling vector. Alternatively, OCF2A is cleared by writing a logic
one to the flag. When the I-bit in SREG, OCIE2A (Timer/Counter2 Compare match Interrupt
Enable), and OCF2A are set (one), the Timer/Counter2 Compare match Interrupt is executed.

• Bit 0 – TOV2: Timer/Counter2 Overflow Flag
The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared by hard-
ware when executing the corresponding interrupt handling vector. Alternatively, TOV2 is cleared
by writing a logic one to the flag. When the SREG I-bit, TOIE2A (Timer/Counter2 Overflow Inter-
rupt Enable), and TOV2 are set (one), the Timer/Counter2 Overflow interrupt is executed. In
PWM mode, this bit is set when Timer/Counter2 changes counting direction at 0x00.

18.11.7 GTCCR – General Timer/Counter Control Register

• Bit 1 – PSR2: Prescaler Reset Timer/Counter2
When this bit is one, the Timer/Counter2 prescaler will be reset. This bit is normally cleared
immediately by hardware. If the bit is written when Timer/Counter2 is operating in asynchronous
mode, the bit will remain one until the prescaler has been reset. The bit will not be cleared by
hardware if the TSM bit is set. Refer to the description of the “Bit 7 – TSM: Timer/Counter Syn-
chronization Mode” on page 101 for a description of the Timer/Counter Synchronization mode.

Bit 7 6 5 4 3 2 1 0

0x17 (0x37) – – – – – – OCF2A TOV2 TIFR2

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x23 (0x43) TSM – – – – – PSR2 PSR10 GTCCR

Read/Write R/W R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0



148
2570N–AVR–05/11

ATmega325/3250/645/6450

19. SPI – Serial Peripheral Interface

19.1 Features
The Atmel ATmega325/3250/645/6450 SPI includes the following features:

• Full-duplex, Three-wire Synchronous Data Transfer
• Master or Slave Operation
• LSB First or MSB First Data Transfer
• Seven Programmable Bit Rates
• End of Transmission Interrupt Flag
• Write Collision Flag Protection
• Wake-up from Idle Mode
• Double Speed (CK/2) Master SPI Mode

19.2 Overview
The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the
Atmel ATmega325/3250/645/6450 and peripheral devices or between several AVR devices. 

The PRSPI bit in “Power Reduction Register” on page 37 must be written to zero to enable the
SPI module.

Figure 19-1. SPI Block Diagram(1)

Note: 1. Refer to Figure 1-1 on page 2, and Table 14-3 on page 68 for SPI pin placement. 
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The interconnection between Master and Slave CPUs with SPI is shown in Figure 19-2. The sys-
tem consists of two shift Registers, and a Master clock generator. The SPI Master initiates the
communication cycle when pulling low the Slave Select SS pin of the desired Slave. Master and
Slave prepare the data to be sent in their respective shift Registers, and the Master generates
the required clock pulses on the SCK line to interchange data. Data is always shifted from Mas-
ter to Slave on the Master Out – Slave In, MOSI, line, and from Slave to Master on the Master In
– Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling
high the Slave Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This
must be handled by user software before communication can start. When this is done, writing a
byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight
bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of
Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an
interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or
signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be
kept in the Buffer Register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long
as the SS pin is driven high. In this state, software may update the contents of the SPI Data
Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin
until the SS pin is driven low. As one byte has been completely shifted, the end of Transmission
Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt
is requested. The Slave may continue to place new data to be sent into SPDR before reading
the incoming data. The last incoming byte will be kept in the Buffer Register for later use.

Figure 19-2. SPI Master-slave Interconnection

The system is single buffered in the transmit direction and double buffered in the receive direc-
tion. This means that bytes to be transmitted cannot be written to the SPI Data Register before
the entire shift cycle is completed. When receiving data, however, a received character must be
read from the SPI Data Register before the next character has been completely shifted in. Oth-
erwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure
correct sampling of the clock signal, the minimum low and high period should be:

Low period: longer than 2 CPU clock cycles.

High period: longer than 2 CPU clock cycles.

SHIFT
ENABLE
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When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden
according to Table 19-1. For more details on automatic port overrides, refer to “Alternate Port
Functions” on page 66.

Note: 1. See “Alternate Functions of Port B” on page 68 for a detailed description of how to define the 
direction of the user defined SPI pins.

Table 19-1. SPI Pin Overrides(1)

Pin Direction, Master SPI Direction, Slave SPI

MOSI User Defined Input

MISO Input User Defined

SCK User Defined Input

SS User Defined Input
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The following code examples show how to initialize the SPI as a Master and how to perform a
simple transmission. DDR_SPI in the examples must be replaced by the actual Data Direction
Register controlling the SPI pins. DD_MOSI, DD_MISO and DD_SCK must be replaced by the
actual data direction bits for these pins. E.g. if MOSI is placed on pin PB5, replace DD_MOSI
with DDB5 and DDR_SPI with DDRB.

Note: 1. See “About Code Examples” on page 9.

Assembly Code Example(1)

SPI_MasterInit:

; Set MOSI and SCK output, all others input

ldi r17,(1<<DD_MOSI)|(1<<DD_SCK)

out DDR_SPI,r17

; Enable SPI, Master, set clock rate fck/16

ldi r17,(1<<SPE)|(1<<MSTR)|(1<<SPR0)

out SPCR,r17

ret

SPI_MasterTransmit:

; Start transmission of data (r16)

out SPDR,r16

Wait_Transmit:

; Wait for transmission complete

sbis SPSR,SPIF

rjmp Wait_Transmit

ret

C Code Example(1)

void SPI_MasterInit(void)

{

/* Set MOSI and SCK output, all others input */

DDR_SPI = (1<<DD_MOSI)|(1<<DD_SCK);

/* Enable SPI, Master, set clock rate fck/16 */

SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPR0);

}

void SPI_MasterTransmit(char cData)

{

/* Start transmission */

SPDR = cData;

/* Wait for transmission complete */

while(!(SPSR & (1<<SPIF)))

;

}
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The following code examples show how to initialize the SPI as a Slave and how to perform a
simple reception.

Note: 1. See “About Code Examples” on page 9.

19.3 SS Pin Functionality

19.3.1 Slave Mode
When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When SS is
held low, the SPI is activated, and MISO becomes an output if configured so by the user. All
other pins are inputs. When SS is driven high, all pins are inputs, and the SPI is passive, which

Assembly Code Example(1)

SPI_SlaveInit:

; Set MISO output, all others input

ldi r17,(1<<DD_MISO)

out DDR_SPI,r17

; Enable SPI

ldi r17,(1<<SPE)

out SPCR,r17

ret

SPI_SlaveReceive:

; Wait for reception complete

sbis SPSR,SPIF

rjmp SPI_SlaveReceive

; Read received data and return

in r16,SPDR

ret

C Code Example(1)

void SPI_SlaveInit(void)

{

/* Set MISO output, all others input */

DDR_SPI = (1<<DD_MISO);

/* Enable SPI */

SPCR = (1<<SPE);

}

char SPI_SlaveReceive(void)

{

/* Wait for reception complete */

while(!(SPSR & (1<<SPIF)))

;

/* Return Data Register */

return SPDR;

}
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means that it will not receive incoming data. Note that the SPI logic will be reset once the SS pin
is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous
with the master clock generator. When the SS pin is driven high, the SPI slave will immediately
reset the send and receive logic, and drop any partially received data in the Shift Register.

19.3.2 Master Mode
When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the
direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the SPI
system. Typically, the pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If the SS pin
is driven low by peripheral circuitry when the SPI is configured as a Master with the SS pin
defined as an input, the SPI system interprets this as another master selecting the SPI as a
slave and starting to send data to it. To avoid bus contention, the SPI system takes the following
actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a result of
the SPI becoming a Slave, the MOSI and SCK pins become inputs.

2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG is
set, the interrupt routine will be executed.

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a possi-
bility that SS is driven low, the interrupt should always check that the MSTR bit is still set. If the
MSTR bit has been cleared by a slave select, it must be set by the user to re-enable SPI Master
mode.

19.4 Data Modes
There are four combinations of SCK phase and polarity with respect to serial data, which are
determined by control bits CPHA and CPOL. The SPI data transfer formats are shown in Figure
19-3 and Figure 19-4. Data bits are shifted out and latched in on opposite edges of the SCK sig-
nal, ensuring sufficient time for data signals to stabilize. This is clearly seen by summarizing
Table 19-3 and Table 19-4, as done below:

Table 19-2. CPOL Functionality

Leading Edge Trailing eDge SPI Mode

CPOL=0, CPHA=0 Sample (Rising) Setup (Falling) 0

CPOL=0, CPHA=1 Setup (Rising) Sample (Falling) 1

CPOL=1, CPHA=0 Sample (Falling) Setup (Rising) 2

CPOL=1, CPHA=1 Setup (Falling) Sample (Rising) 3
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Figure 19-3. SPI Transfer Format with CPHA = 0

Figure 19-4. SPI Transfer Format with CPHA = 1

19.5 Register Description

19.5.1 SPCR – SPI Control Register

• Bit 7 – SPIE: SPI Interrupt Enable
This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if
the Global Interrupt Enable bit in SREG is set.

• Bit 6 – SPE: SPI Enable
When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI
operations.

Bit 1
Bit 6

LSB
MSB

SCK (CPOL = 0)
mode 0

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 2

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

MSB first (DORD = 0)
LSB first (DORD = 1)

SCK (CPOL = 0)
mode 1

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 3

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB first (DORD = 0)
LSB first (DORD = 1)

Bit 7 6 5 4 3 2 1 0

0x2C (0x4C) SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 SPCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 5 – DORD: Data Order
When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

• Bit 4 – MSTR: Master/Slave Select
This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic
zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared,
and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable SPI Mas-
ter mode.

• Bit 3 – CPOL: Clock Polarity
When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low
when idle. Refer to Figure 19-3 and Figure 19-4 for an example. The CPOL functionality is sum-
marized below:

• Bit 2 – CPHA: Clock Phase
The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or
trailing (last) edge of SCK. Refer to Figure 19-3 and Figure 19-4 for an example. The CPOL
functionality is summarized below:

• Bits 1, 0 – SPR1, SPR0: SPI Clock Rate Select 1 and 0
These two bits control the SCK rate of the device configured as a Master. SPR1 and SPR0 have
no effect on the Slave. The relationship between SCK and the Oscillator Clock frequency fosc is
shown in the following table:

Table 19-3. CPOL Functionality

CPOL Leading Edge Trailing Edge

0 Rising Falling

1 Falling Rising

Table 19-4. CPHA Functionality

CPHA Leading Edge Trailing Edge

0 Sample Setup

1 Setup Sample

Table 19-5. Relationship Between SCK and the Oscillator Frequency 

SPI2X SPR1 SPR0 SCK Frequency

0 0 0 fosc/4

0 0 1 fosc/16

0 1 0 fosc/64

0 1 1 fosc/128

1 0 0 fosc/2

1 0 1 fosc/8

1 1 0 fosc/32

1 1 1 fosc/64
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19.5.2 SPSR – SPI Status Register

• Bit 7 – SPIF: SPI Interrupt Flag
When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if SPIE in
SPCR is set and global interrupts are enabled. If SS is an input and is driven low when the SPI is
in Master mode, this will also set the SPIF Flag. SPIF is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, the SPIF bit is cleared by first reading the
SPI Status Register with SPIF set, then accessing the SPI Data Register (SPDR).

• Bit 6 – WCOL: Write COLlision Flag
The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The
WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register with WCOL set,
and then accessing the SPI Data Register.

• Bit 5:1 – Reserved Bits
These bits are reserved bits in the Atmel ATmega325/3250/645/6450 and will always read as
zero.

• Bit 0 – SPI2X: Double SPI Speed Bit
When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI
is in Master mode (see Table 19-5). This means that the minimum SCK period will be two CPU
clock periods. When the SPI is configured as Slave, the SPI is only guaranteed to work at fosc/4
or lower.

The SPI interface on the Atmel ATmega325/3250/645/6450 is also used for program memory
and EEPROM downloading or uploading. See page 280 for serial programming and verification.

19.5.3 SPDR – SPI Data Register

The SPI Data Register is a read/write register used for data transfer between the Register File 
and the SPI Shift Register. Writing to the register initiates data transmission. Reading the regis-
ter causes the Shift Register Receive buffer to be read.

Bit 7 6 5 4 3 2 1 0

0x2D (0x4D) SPIF WCOL – – – – – SPI2X SPSR

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x2E (0x4E) MSB LSB SPDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X Undefined
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20. USART0

20.1 Features
The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a
highly flexible serial communication device. The main features are:

• Full Duplex Operation (Independent Serial Receive and Transmit Registers)
• Asynchronous or Synchronous Operation
• Master or Slave Clocked Synchronous Operation
• High Resolution Baud Rate Generator
• Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits
• Odd or Even Parity Generation and Parity Check Supported by Hardware
• Data OverRun Detection
• Framing Error Detection
• Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter
• Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete
• Multi-processor Communication Mode
• Double Speed Asynchronous Communication Mode

20.2 Overview
A simplified block diagram of the USART Transmitter is shown in Figure 20-1. CPU accessible
I/O Registers and I/O pins are shown in bold.

The Power Reduction USART bit, PRUSART0, in “Power Reduction Register” on page 37 must
be written to zero to enable the USART0 module.
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Figure 20-1. USART Block Diagram(1)

Note: 1. Refer to Figure 1-1 on page 2, Figure 1-2 on page 3 and “Alternate Functions of Port E” on
page 72 for USART pin placement. 
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The dashed boxes in the block diagram separate the three main parts of the USART (listed from
the top): Clock Generator, Transmitter and Receiver. Control Registers are shared by all units.
The Clock Generation logic consists of synchronization logic for external clock input used by
synchronous slave operation, and the baud rate generator. The XCK (Transfer Clock) pin is only
used by synchronous transfer mode. The Transmitter consists of a single write buffer, a serial
Shift Register, Parity Generator and Control logic for handling different serial frame formats. The
write buffer allows a continuous transfer of data without any delay between frames. The
Receiver is the most complex part of the USART module due to its clock and data recovery
units. The recovery units are used for asynchronous data reception. In addition to the recovery
units, the Receiver includes a Parity Checker, Control logic, a Shift Register and a two level
receive buffer (UDRn). The Receiver supports the same frame formats as the Transmitter, and
can detect Frame Error, Data OverRun and Parity Errors.

20.2.1 AVR USART vs. AVR UART – Compatibility
The USART is fully compatible with the AVR UART regarding:

• Bit locations inside all USART Registers.

• Baud Rate Generation.

• Transmitter Operation.

• Transmit Buffer Functionality.

• Receiver Operation.

However, the receive buffering has two improvements that will affect the compatibility in some
special cases:

• A second Buffer Register has been added. The two Buffer Registers operate as a circular 
FIFO buffer. Therefore the UDRn must only be read once for each incoming data! More 
important is the fact that the Error Flags (FEn and DORn) and the ninth data bit (RXB8n) are 
buffered with the data in the receive buffer. Therefore the status bits must always be read 
before the UDRn Register is read. Otherwise the error status will be lost since the buffer 
state is lost.

• The Receiver Shift Register can now act as a third buffer level. This is done by allowing the 
received data to remain in the serial Shift Register (see Figure 20-1) if the Buffer Registers 
are full, until a new start bit is detected. The USART is therefore more resistant to Data 
OverRun (DORn) error conditions.

The following control bits have changed name, but have same functionality and register location:

• CHR9 is changed to UCSZn2.

• OR is changed to DORn.

20.3 Clock Generation
The Clock Generation logic generates the base clock for the Transmitter and Receiver. The
USART supports four modes of clock operation: Normal asynchronous, Double Speed asyn-
chronous, Master synchronous and Slave synchronous mode. The UMSELn bit in USART
Control and Status Register C (UCSRnC) selects between asynchronous and synchronous
operation. Double Speed (asynchronous mode only) is controlled by the U2Xn found in the
UCSRnA Register. When using synchronous mode (UMSELn = 1), the Data Direction Register
for the XCK pin (DDR_XCK) controls whether the clock source is internal (Master mode) or
external (Slave mode). The XCK pin is only active when using synchronous mode.

Figure 20-2 shows a block diagram of the clock generation logic.
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Figure 20-2. Clock Generation Logic, Block Diagram

Signal description:

txclk Transmitter clock (Internal Signal).

rxclk Receiver base clock (Internal Signal).

xcki Input from XCK pin (internal Signal). Used for synchronous slave
operation.

xcko Clock output to XCK pin (Internal Signal). Used for synchronous master
operation.

fosc XTAL pin frequency (System Clock).

20.3.1 Internal Clock Generation – The Baud Rate Generator
Internal clock generation is used for the asynchronous and the synchronous master modes of
operation. The description in this section refers to Figure 20-2.

The USART Baud Rate Register (UBRR) and the down-counter connected to it function as a
programmable prescaler or baud rate generator. The down-counter, running at system clock
(fosc), is loaded with the UBRR value each time the counter has counted down to zero or when
the UBRRL Register is written. A clock is generated each time the counter reaches zero. This
clock is the baud rate generator clock output (= fosc/(UBRR+1)). The Transmitter divides the
baud rate generator clock output by 2, 8 or 16 depending on mode. The baud rate generator out-
put is used directly by the Receiver’s clock and data recovery units. However, the recovery units
use a state machine that uses 2, 8 or 16 states depending on mode set by the state of the
UMSELn, U2Xn and DDR_XCK bits.

Table 20-1 contains equations for calculating the baud rate (in bits per second) and for calculat-
ing the UBRR value for each mode of operation using an internally generated clock source.

Prescaling
Down-Counter /2

UBRR

/4 /2

fosc

UBRR+1

Sync
Register

OSC

XCK
Pin

txclk

U2X

UMSEL

DDR_XCK

0

1

0

1

xcki

xcko

DDR_XCK
rxclk

0

1

1

0
Edge

Detector

UCPOL
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Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)

BAUD Baud rate (in bits per second, bps)

fOSC System Oscillator clock frequency

UBRR Contents of the UBRRH and UBRRL Registers, (0-4095)

Some examples of UBRR values for some system clock frequencies are found in Table 20-4
(see page 176).

20.3.2 Double Speed Operation (U2Xn)
The transfer rate can be doubled by setting the U2Xn bit in UCSRnA. Setting this bit only has
effect for the asynchronous operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling
the transfer rate for asynchronous communication. Note however that the Receiver will in this
case only use half the number of samples (reduced from 16 to 8) for data sampling and clock
recovery, and therefore a more accurate baud rate setting and system clock are required when
this mode is used. For the Transmitter, there are no downsides.

20.3.3 External Clock
External clocking is used by the synchronous slave modes of operation. The description in this
section refers to Figure 20-2 for details.

External clock input from the XCK pin is sampled by a synchronization register to minimize the
chance of meta-stability. The output from the synchronization register must then pass through
an edge detector before it can be used by the Transmitter and Receiver. This process intro-
duces a two CPU clock period delay and therefore the maximum external XCK clock frequency
is limited by the following equation:

Note that fosc depends on the stability of the system clock source. It is therefore recommended to
add some margin to avoid possible loss of data due to frequency variations.

20.3.4 Synchronous Clock Operation
When synchronous mode is used (UMSELn = 1), the XCK pin will be used as either clock input
(Slave) or clock output (Master). The dependency between the clock edges and data sampling

Table 20-1. Equations for Calculating Baud Rate Register Setting

Operating Mode
Equation for Calculating 

Baud Rate(1)
Equation for Calculating 

UBRR Value

Asynchronous Normal 
mode (U2Xn = 0)

Asynchronous Double 
Speed mode 
(U2Xn = 1)

Synchronous Master 
mode

BAUD
fOSC

16 UBRR 1+( )
---------------------------------------= UBRR

fOSC
16BAUD
------------------------ 1–=

BAUD
fOSC

8 UBRR 1+( )
-----------------------------------= UBRR

fOSC
8BAUD
-------------------- 1–=

BAUD
fOSC

2 UBRR 1+( )
-----------------------------------= UBRR

fOSC
2BAUD
-------------------- 1–=

fXCK
fOSC

4
-----------<
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or data change is the same. The basic principle is that data input (on RxD) is sampled at the
opposite XCK clock edge of the edge the data output (TxD) is changed.

Figure 20-3. Synchronous Mode XCK Timing.

The UCPOLn bit in UCSRnC selects which XCK clock edge is used for data sampling and which
is used for data change. As Figure 20-3 shows, when UCPOLn is zero the data will be changed
at rising XCK edge and sampled at falling XCK edge. If UCPOLn is set, the data will be changed
at falling XCK edge and sampled at rising XCK edge.

20.4 Frame Formats
A serial frame is defined to be one character of data bits with synchronization bits (start and stop
bits), and optionally a parity bit for error checking. The USART accepts all 30 combinations of
the following as valid frame formats:

• 1 start bit

• 5, 6, 7, 8, or 9 data bits

• no, even or odd parity bit

• 1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit. Then the next data bits,
up to a total of nine, are succeeding, ending with the most significant bit. If enabled, the parity bit
is inserted after the data bits, before the stop bits. When a complete frame is transmitted, it can
be directly followed by a new frame, or the communication line can be set to an idle (high) state.
Figure 20-4 illustrates the possible combinations of the frame formats. Bits inside brackets are
optional.

RxD / TxD

XCK

RxD / TxD

XCKUCPOL = 0

UCPOL = 1

Sample

Sample
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Figure 20-4. Frame Formats

St Start bit, always low.

(n) Data bits (0 to 8).

P Parity bit. Can be odd or even.

Sp Stop bit, always high.

IDLE No transfers on the communication line (RxD or TxD). An IDLE line must
be

high.

The frame format used by the USART is set by the UCSZn2:0, UPMn1:0 and USBSn bits in
UCSRnB and UCSRnC. The Receiver and Transmitter use the same setting. Note that changing
the setting of any of these bits will corrupt all ongoing communication for both the Receiver and
Transmitter. 

The USART Character SiZe (UCSZn2:0) bits select the number of data bits in the frame. The
USART Parity mode (UPMn1:0) bits enable and set the type of parity bit. The selection between
one or two stop bits is done by the USART Stop Bit Select (USBSn) bit. The Receiver ignores
the second stop bit. An FEn (Frame Error) will therefore only be detected in the cases where the
first stop bit is zero.

20.4.1 Parity Bit Calculation
The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the
result of the exclusive or is inverted. The relation between the parity bit and data bits is as
follows:

Peven Parity bit using even parity

Podd Parity bit using odd parity

dn Data bit n of the character

If used, the parity bit is located between the last data bit and first stop bit of a serial frame.

20.5 USART Initialization
The USART has to be initialized before any communication can take place. The initialization pro-
cess normally consists of setting the baud rate, setting frame format and enabling the
Transmitter or the Receiver depending on the usage. For interrupt driven USART operation, the
Global Interrupt Flag should be cleared (and interrupts globally disabled) when doing the
initialization.

10 2 3 4 [5] [6] [7] [8] [P]St Sp1 [Sp2] (St / IDLE)(IDLE)

FRAME

Peven dn 1– … d3 d2 d1 d0 0
Podd

⊕ ⊕ ⊕ ⊕ ⊕ ⊕
dn 1– … d3 d2 d1 d0 1⊕ ⊕ ⊕ ⊕ ⊕ ⊕

=
=



164
2570N–AVR–05/11

ATmega325/3250/645/6450

Before doing a re-initialization with changed baud rate or frame format, be sure that there are no
ongoing transmissions during the period the registers are changed. The TXCn Flag can be used
to check that the Transmitter has completed all transfers, and the RXCn Flag can be used to
check that there are no unread data in the receive buffer. Note that the TXCn Flag must be
cleared before each transmission (before UDRn is written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C func-
tion that are equal in functionality. The examples assume asynchronous operation using polling
(no interrupts enabled) and a fixed frame format. The baud rate is given as a function parameter.
For the assembly code, the baud rate parameter is assumed to be stored in the r17:r16
Registers.

Note: 1. See “About Code Examples” on page 9.

Assembly Code Example(1)

USART_Init:

; Set baud rate

out UBRRH, r17

out UBRRL, r16

; Enable receiver and transmitter

ldi r16, (1<<RXEN0)|(1<<TXEN0)

out UCSR0B,r16

; Set frame format: 8data, 2stop bit

ldi r16, (1<<USBS0)|(3<<UCSZ0)

out UCSR0C,r16

ret

C Code Example(1)

#define FOSC 1843200 // Clock Speed

#define BAUD 9600

#define MYUBRR FOSC/16/BAUD-1

void main( void )

{

...

USART_Init(MYUBRR)

...

}

void USART_Init( unsigned int ubrr)

{

/* Set baud rate */

UBRRH = (unsigned char)(ubrr>>8);

UBRRL = (unsigned char)ubrr;

/* Enable receiver and transmitter */

UCSR0B = (1<<RXEN0)|(1<<TXEN0);

/* Set frame format: 8data, 2stop bit */

UCSR0C = (1<<USBS0)|(3<<UCSZ0);

}
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More advanced initialization routines can be made that include frame format as parameters, dis-
able interrupts and so on. However, many applications use a fixed setting of the baud and
control registers, and for these types of applications the initialization code can be placed directly
in the main routine, or be combined with initialization code for other I/O modules.

20.6 Data Transmission – The USART Transmitter
The USART Transmitter is enabled by setting the Transmit Enable (TXENn) bit in the UCSRnB
Register. When the Transmitter is enabled, the normal port operation of the TxD pin is overrid-
den by the USART and given the function as the Transmitter’s serial output. The baud rate,
mode of operation and frame format must be set up once before doing any transmissions. If syn-
chronous operation is used, the clock on the XCK pin will be overridden and used as
transmission clock.

20.6.1 Sending Frames with 5 to 8 Data Bit
A data transmission is initiated by loading the transmit buffer with the data to be transmitted. The
CPU can load the transmit buffer by writing to the UDRn I/O location. The buffered data in the
transmit buffer will be moved to the Shift Register when the Shift Register is ready to send a new
frame. The Shift Register is loaded with new data if it is in idle state (no ongoing transmission) or
immediately after the last stop bit of the previous frame is transmitted. When the Shift Register is
loaded with new data, it will transfer one complete frame at the rate given by the Baud Register,
U2Xn bit or by XCK depending on mode of operation.

The following code examples show a simple USART transmit function based on polling of the
Data Register Empty (UDREn) Flag. When using frames with less than eight bits, the most sig-
nificant bits written to the UDRn are ignored. The USART has to be initialized before the function
can be used. For the assembly code, the data to be sent is assumed to be stored in Register
R16.

Note: 1. See “About Code Examples” on page 9.

Assembly Code Example(1)

USART_Transmit:

; Wait for empty transmit buffer

sbis UCSR0A,UDRE0

rjmp USART_Transmit

; Put data (r16) into buffer, sends the data

out UDR0,r16

ret

C Code Example(1)

void USART_Transmit( unsigned char data )

{

/* Wait for empty transmit buffer */

while ( !( UCSR0A & (1<<UDRE0)) )

;

/* Put data into buffer, sends the data */

UDR0 = data;

}
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The function simply waits for the transmit buffer to be empty by checking the UDREn Flag,
before loading it with new data to be transmitted. If the Data Register Empty interrupt is utilized,
the interrupt routine writes the data into the buffer.

20.6.2 Sending Frames with 9 Data Bit
If 9-bit characters are used (UCSZ = 7), the ninth bit must be written to the TXB8n bit in
UCSRnB before the low byte of the character is written to UDRn. The following code examples
show a transmit function that handles 9-bit characters. For the assembly code, the data to be
sent is assumed to be stored in registers R17:R16.

Notes: 1. These transmit functions are written to be general functions. They can be optimized if the con-
tents of the UCSRnB is static. For example, only the TXB8n bit of the UCSRnB Register is
used after initialization.

2. See “About Code Examples” on page 9.

The ninth bit can be used for indicating an address frame when using multi processor communi-
cation mode or for other protocol handling as for example synchronization.

20.6.3 Transmitter Flags and Interrupts
The USART Transmitter has two flags that indicate its state: USART Data Register Empty
(UDREn) and Transmit Complete (TXCn). Both flags can be used for generating interrupts.

Assembly Code Example(1)(2)

USART_Transmit:

; Wait for empty transmit buffer

sbis UCSR0A,UDRE0

rjmp USART_Transmit

; Copy 9th bit from r17 to TXB80

cbi UCSR0B,TXB80

sbrc r17,0

sbi UCSR0B,TXB80

; Put LSB data (r16) into buffer, sends the data

out UDR0,r16

ret

C Code Example(1)(2)

void USART_Transmit( unsigned int data )

{

/* Wait for empty transmit buffer */

while ( !( UCSR0A & (1<<UDRE0))) )

;

/* Copy 9th bit to TXB80 */

UCSR0B &= ~(1<<TXB80);

if ( data & 0x0100 )

UCSR0B |= (1<<TXB80);

/* Put data into buffer, sends the data */

UDR0 = data;

}
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The Data Register Empty (UDREn) Flag indicates whether the transmit buffer is ready to receive
new data. This bit is set when the transmit buffer is empty, and cleared when the transmit buffer
contains data to be transmitted that has not yet been moved into the Shift Register. For compat-
ibility with future devices, always write this bit to zero when writing the UCSRnA Register.

When the Data Register Empty Interrupt Enable (UDRIEn) bit in UCSRnB is written to one, the
USART Data Register Empty Interrupt will be executed as long as UDREn is set (provided that
global interrupts are enabled). UDREn is cleared by writing UDRn. When interrupt-driven data
transmission is used, the Data Register Empty interrupt routine must either write new data to
UDRn in order to clear UDREn or disable the Data Register Empty interrupt, otherwise a new
interrupt will occur once the interrupt routine terminates.

The Transmit Complete (TXCn) Flag bit is set one when the entire frame in the Transmit Shift
Register has been shifted out and there are no new data currently present in the transmit buffer.
The TXCn Flag bit is automatically cleared when a transmit complete interrupt is executed, or it
can be cleared by writing a one to its bit location. The TXCn Flag is useful in half-duplex commu-
nication interfaces (like the RS-485 standard), where a transmitting application must enter
receive mode and free the communication bus immediately after completing the transmission.

When the Transmit Compete Interrupt Enable (TXCIEn) bit in UCSRnB is set, the USART
Transmit Complete Interrupt will be executed when the TXCn Flag becomes set (provided that
global interrupts are enabled). When the transmit complete interrupt is used, the interrupt han-
dling routine does not have to clear the TXCn Flag, this is done automatically when the interrupt
is executed.

20.6.4 Parity Generator
The Parity Generator calculates the parity bit for the serial frame data. When parity bit is enabled
(UPMn1 = 1), the transmitter control logic inserts the parity bit between the last data bit and the
first stop bit of the frame that is sent.

20.6.5 Disabling the Transmitter
The disabling of the Transmitter (setting the TXENn to zero) will not become effective until ongo-
ing and pending transmissions are completed, i.e., when the Transmit Shift Register and
Transmit Buffer Register do not contain data to be transmitted. When disabled, the Transmitter
will no longer override the TxD pin.

20.7 Data Reception – The USART Receiver
The USART Receiver is enabled by writing the Receive Enable (RXENn) bit in the UCSRnB
Register to one. When the Receiver is enabled, the normal pin operation of the RxD pin is over-
ridden by the USART and given the function as the Receiver’s serial input. The baud rate, mode
of operation and frame format must be set up once before any serial reception can be done. If
synchronous operation is used, the clock on the XCK pin will be used as transfer clock.

20.7.1 Receiving Frames with 5 to 8 Data Bits
The Receiver starts data reception when it detects a valid start bit. Each bit that follows the start
bit will be sampled at the baud rate or XCK clock, and shifted into the Receive Shift Register until
the first stop bit of a frame is received. A second stop bit will be ignored by the Receiver. When
the first stop bit is received, i.e., a complete serial frame is present in the Receive Shift Register,
the contents of the Shift Register will be moved into the receive buffer. The receive buffer can
then be read by reading the UDRn I/O location.
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The following code example shows a simple USART receive function based on polling of the
Receive Complete (RXCn) Flag. When using frames with less than eight bits the most significant
bits of the data read from the UDRn will be masked to zero. The USART has to be initialized
before the function can be used.

Note: 1. See “About Code Examples” on page 9.

The function simply waits for data to be present in the receive buffer by checking the RXCn Flag,
before reading the buffer and returning the value.

20.7.2 Receiving Frames with 9 Data Bits
If 9-bit characters are used (UCSZ=7) the ninth bit must be read from the RXB8n bit in UCSRnB
before reading the low bits from the UDRn. This rule applies to the FEn, DORn and UPEn Sta-
tus Flags as well. Read status from UCSRnA, then data from UDRn. Reading the UDRn I/O
location will change the state of the receive buffer FIFO and consequently the TXB8n, FEn,
DORn and UPEn bits, which all are stored in the FIFO, will change.

Assembly Code Example(1)

USART_Receive:

; Wait for data to be received

sbis UCSR0A, RXC0

rjmp USART_Receive

; Get and return received data from buffer

in r16, UDR0

ret

C Code Example(1)

unsigned char USART_Receive( void )

{

/* Wait for data to be received */

while ( !(UCSR0A & (1<<RXC0)) )

;

/* Get and return received data from buffer */

return UDR0;

}
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The following code example shows a simple USART receive function that handles both nine bit
characters and the status bits.

Note: 1. See “About Code Examples” on page 9.

The receive function example reads all the I/O Registers into the Register File before any com-
putation is done. This gives an optimal receive buffer utilization since the buffer location read will
be free to accept new data as early as possible.

Assembly Code Example(1)

USART_Receive:

; Wait for data to be received

sbis UCSR0A, RXC0

rjmp USART_Receive

; Get status and 9th bit, then data from buffer

in r18, UCSR0A

in r17, UCSR0B

in r16, UDR0

; If error, return -1

andi r18,(1<<FE0)|(1<<DOR0)|(1<<UPE0)

breq USART_ReceiveNoError

ldi r17, HIGH(-1)

ldi r16, LOW(-1)

USART_ReceiveNoError:

; Filter the 9th bit, then return

lsr r17

andi r17, 0x01

ret

C Code Example(1)

unsigned int USART_Receive( void )

{

unsigned char status, resh, resl;

/* Wait for data to be received */

while ( !(UCSR0A & (1<<RXC0)) )

;

/* Get status and 9th bit, then data */

/* from buffer */

status = UCSR0A;

resh = UCSR0B;

resl = UDR0;

/* If error, return -1 */

if ( status & (1<<FE0)|(1<<DOR0)|(1<<UPE0) )

return -1;

/* Filter the 9th bit, then return */

resh = (resh >> 1) & 0x01;

return ((resh << 8) | resl);

}



170
2570N–AVR–05/11

ATmega325/3250/645/6450

20.7.3 Receive Compete Flag and Interrupt
The USART Receiver has one flag that indicates the Receiver state.

The Receive Complete (RXCn) Flag indicates if there are unread data present in the receive buf-
fer. This flag is one when unread data exist in the receive buffer, and zero when the receive
buffer is empty (i.e., does not contain any unread data). If the Receiver is disabled (RXENn = 0),
the receive buffer will be flushed and consequently the RXCn bit will become zero.

When the Receive Complete Interrupt Enable (RXCIEn) in UCSRnB is set, the USART Receive
Complete interrupt will be executed as long as the RXCn Flag is set (provided that global inter-
rupts are enabled). When interrupt-driven data reception is used, the receive complete routine
must read the received data from UDRn in order to clear the RXCn Flag, otherwise a new inter-
rupt will occur once the interrupt routine terminates.

20.7.4 Receiver Error Flags
The USART Receiver has three Error Flags: Frame Error (FEn), Data OverRun (DORn) and
Parity Error (UPEn). All can be accessed by reading UCSRnA. Common for the Error Flags is
that they are located in the receive buffer together with the frame for which they indicate the
error status. Due to the buffering of the Error Flags, the UCSRnA must be read before the
receive buffer (UDRn), since reading the UDRn I/O location changes the buffer read location.
Another equality for the Error Flags is that they can not be altered by software doing a write to
the flag location. However, all flags must be set to zero when the UCSRnA is written for upward
compatibility of future USART implementations. None of the Error Flags can generate interrupts.

The Frame Error (FEn) Flag indicates the state of the first stop bit of the next readable frame
stored in the receive buffer. The FEn Flag is zero when the stop bit was correctly read (as one),
and the FEn Flag will be one when the stop bit was incorrect (zero). This flag can be used for
detecting out-of-sync conditions, detecting break conditions and protocol handling. The FEn
Flag is not affected by the setting of the USBSn bit in UCSRnC since the Receiver ignores all,
except for the first, stop bits. For compatibility with future devices, always set this bit to zero
when writing to UCSRnA.

The Data OverRun (DORn) Flag indicates data loss due to a receiver buffer full condition. A
Data OverRun occurs when the receive buffer is full (two characters), it is a new character wait-
ing in the Receive Shift Register, and a new start bit is detected. If the DORn Flag is set there
was one or more serial frame lost between the frame last read from UDRn, and the next frame
read from UDRn. For compatibility with future devices, always write this bit to zero when writing
to UCSRnA. The DORn Flag is cleared when the frame received was successfully moved from
the Shift Register to the receive buffer.

The Parity Error (UPEn) Flag indicates that the next frame in the receive buffer had a Parity
Error when received. If Parity Check is not enabled the UPEn bit will always be read zero. For
compatibility with future devices, always set this bit to zero when writing to UCSRnA. For more
details see “Parity Bit Calculation” on page 163 and “Parity Checker” on page 170.

20.7.5 Parity Checker
The Parity Checker is active when the high USART Parity mode (UPMn1) bit is set. Type of Par-
ity Check to be performed (odd or even) is selected by the UPMn0 bit. When enabled, the Parity
Checker calculates the parity of the data bits in incoming frames and compares the result with
the parity bit from the serial frame. The result of the check is stored in the receive buffer together
with the received data and stop bits. The Parity Error (UPEn) Flag can then be read by software
to check if the frame had a Parity Error.
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The UPEn bit is set if the next character that can be read from the receive buffer had a Parity
Error when received and the Parity Checking was enabled at that point (UPMn1 = 1). This bit is
valid until the receive buffer (UDRn) is read.

20.7.6 Disabling the Receiver
In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing
receptions will therefore be lost. When disabled (i.e., the RXENn is set to zero) the Receiver will
no longer override the normal function of the RxD port pin. The Receiver buffer FIFO will be
flushed when the Receiver is disabled. Remaining data in the buffer will be lost

20.7.7 Flushing the Receive Buffer
The receiver buffer FIFO will be flushed when the Receiver is disabled, i.e., the buffer will be
emptied of its contents. Unread data will be lost. If the buffer has to be flushed during normal
operation, due to for instance an error condition, read the UDRn I/O location until the RXCn Flag
is cleared. The following code example shows how to flush the receive buffer.

Note: 1. See “About Code Examples” on page 9.

20.8 Asynchronous Data Reception
The USART includes a clock recovery and a data recovery unit for handling asynchronous data
reception. The clock recovery logic is used for synchronizing the internally generated baud rate
clock to the incoming asynchronous serial frames at the RxD pin. The data recovery logic sam-
ples and low pass filters each incoming bit, thereby improving the noise immunity of the
Receiver. The asynchronous reception operational range depends on the accuracy of the inter-
nal baud rate clock, the rate of the incoming frames, and the frame size in number of bits.

20.8.1 Asynchronous Clock Recovery
The clock recovery logic synchronizes internal clock to the incoming serial frames. Figure 20-5
illustrates the sampling process of the start bit of an incoming frame. The sample rate is 16 times
the baud rate for Normal mode, and eight times the baud rate for Double Speed mode. The hor-
izontal arrows illustrate the synchronization variation due to the sampling process. Note the
larger time variation when using the Double Speed mode (U2Xn = 1) of operation. Samples
denoted zero are samples done when the RxD line is idle (i.e., no communication activity).

Assembly Code Example(1)

USART_Flush:

sbis UCSR0A, RXC0

ret

in r16, UDR0

rjmp USART_Flush

C Code Example(1)

void USART_Flush( void )

{

unsigned char dummy;

while ( UCSR0A & (1<<RXC0) ) dummy = UDR0;

}
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Figure 20-5. Start Bit Sampling

When the clock recovery logic detects a high (idle) to low (start) transition on the RxD line, the
start bit detection sequence is initiated. Let sample 1 denote the first zero-sample as shown in
the figure. The clock recovery logic then uses samples 8, 9, and 10 for Normal mode, and sam-
ples 4, 5, and 6 for Double Speed mode (indicated with sample numbers inside boxes on the
figure), to decide if a valid start bit is received. If two or more of these three samples have logical
high levels (the majority wins), the start bit is rejected as a noise spike and the Receiver starts
looking for the next high to low-transition. If however, a valid start bit is detected, the clock recov-
ery logic is synchronized and the data recovery can begin. The synchronization process is
repeated for each start bit.

20.8.2 Asynchronous Data Recovery
When the receiver clock is synchronized to the start bit, the data recovery can begin. The data
recovery unit uses a state machine that has 16 states for each bit in Normal mode and eight
states for each bit in Double Speed mode. Figure 20-6 shows the sampling of the data bits and
the parity bit. Each of the samples is given a number that is equal to the state of the recovery
unit.

Figure 20-6. Sampling of Data and Parity Bit

The decision of the logic level of the received bit is taken by doing a majority voting of the logic
value to the three samples in the center of the received bit. The center samples are emphasized
on the figure by having the sample number inside boxes. The majority voting process is done as
follows: If two or all three samples have high levels, the received bit is registered to be a logic 1.
If two or all three samples have low levels, the received bit is registered to be a logic 0. This
majority voting process acts as a low pass filter for the incoming signal on the RxD pin. The
recovery process is then repeated until a complete frame is received. Including the first stop bit.
Note that the Receiver only uses the first stop bit of a frame.

Figure 20-7 shows the sampling of the stop bit and the earliest possible beginning of the start bit
of the next frame.
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Figure 20-7. Stop Bit Sampling and Next Start Bit Sampling

The same majority voting is done to the stop bit as done for the other bits in the frame. If the stop
bit is registered to have a logic 0 value, the Frame Error (FEn) Flag will be set. 

A new high to low transition indicating the start bit of a new frame can come right after the last of
the bits used for majority voting. For Normal Speed mode, the first low level sample can be at
point marked (A) in Figure 20-7. For Double Speed mode the first low level must be delayed to
(B). (C) marks a stop bit of full length. The early start bit detection influences the operational
range of the Receiver.

20.8.3 Asynchronous Operational Range
The operational range of the Receiver is dependent on the mismatch between the received bit
rate and the internally generated baud rate. If the Transmitter is sending frames at too fast or too
slow bit rates, or the internally generated baud rate of the Receiver does not have a similar (see
Table 20-2) base frequency, the Receiver will not be able to synchronize the frames to the start
bit.

The following equations can be used to calculate the ratio of the incoming data rate and internal
receiver baud rate.

D Sum of character size and parity size (D = 5 to 10 bit)

S Samples per bit. S = 16 for Normal Speed mode and S = 8 for Double Speed
mode.

SF First sample number used for majority voting. SF = 8 for normal speed and SF = 4
for Double Speed mode.

SM Middle sample number used for majority voting. SM = 9 for normal speed and
SM = 5 for Double Speed mode.

Rslow is the ratio of the slowest incoming data rate that can be accepted in relation to the
receiver baud rate. Rfast is the ratio of the fastest incoming data rate that can be
accepted in relation to the receiver baud rate.

Table 20-2 and Table 20-3 list the maximum receiver baud rate error that can be tolerated. Note
that Normal Speed mode has higher toleration of baud rate variations.
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The recommendations of the maximum receiver baud rate error was made under the assump-
tion that the Receiver and Transmitter equally divides the maximum total error.

There are two possible sources for the receivers baud rate error. The Receiver’s system clock
(XTAL) will always have some minor instability over the supply voltage range and the tempera-
ture range. When using a crystal to generate the system clock, this is rarely a problem, but for a
resonator the system clock may differ more than 2% depending of the resonators tolerance. The
second source for the error is more controllable. The baud rate generator can not always do an
exact division of the system frequency to get the baud rate wanted. In this case an UBRR value
that gives an acceptable low error can be used if possible.

20.9 Multi-processor Communication Mode
Setting the Multi-processor Communication mode (MPCMn) bit in UCSRnA enables a filtering
function of incoming frames received by the USART Receiver. Frames that do not contain
address information will be ignored and not put into the receive buffer. This effectively reduces
the number of incoming frames that has to be handled by the CPU, in a system with multiple
MCUs that communicate via the same serial bus. The Transmitter is unaffected by the MPCMn
setting, but has to be used differently when it is a part of a system utilizing the Multi-processor
Communication mode.

If the Receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop bit indi-
cates if the frame contains data or address information. If the Receiver is set up for frames with

Table 20-2. Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode 
(U2Xn = 0)

D
# (Data+Parity Bit) Rslow (%) Rfast (%) Max Total Error (%)

Recommended Max 
Receiver Error (%)

5 93.20 106.67 +6.67/-6.8 ± 3.0

6 94.12 105.79 +5.79/-5.88 ± 2.5

7 94.81 105.11 +5.11/-5.19 ± 2.0

8 95.36 104.58 +4.58/-4.54 ± 2.0

9 95.81 104.14 +4.14/-4.19 ± 1.5

10 96.17 103.78 +3.78/-3.83 ± 1.5

Table 20-3. Recommended Maximum Receiver Baud Rate Error for Double Speed Mode 
(U2Xn = 1)

D
# (Data+Parity Bit) Rslow (%) Rfast (%) Max Total Error (%)

Recommended Max 
Receiver Error (%)

5 94.12 105.66 +5.66/-5.88 ± 2.5

6 94.92 104.92 +4.92/-5.08 ± 2.0

7 95.52 104,35 +4.35/-4.48 ± 1.5

8 96.00 103.90 +3.90/-4.00 ± 1.5

9 96.39 103.53 +3.53/-3.61 ± 1.5

10 96.70 103.23 +3.23/-3.30 ± 1.0
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nine data bits, then the ninth bit (RXB8n) is used for identifying address and data frames. When
the frame type bit (the first stop or the ninth bit) is one, the frame contains an address. When the
frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several slave MCUs to receive data from a
master MCU. This is done by first decoding an address frame to find out which MCU has been
addressed. If a particular slave MCU has been addressed, it will receive the following data
frames as normal, while the other slave MCUs will ignore the received frames until another
address frame is received.

20.9.1 Using MPCMn
For an MCU to act as a master MCU, it can use a 9-bit character frame format (UCSZ = 7). The
ninth bit (TXB8n) must be set when an address frame (TXB8n = 1) or cleared when a data frame
(TXB = 0) is being transmitted. The slave MCUs must in this case be set to use a 9-bit character
frame format. 

The following procedure should be used to exchange data in Multi-processor Communication
mode:

1. All Slave MCUs are in Multi-processor Communication mode (MPCMn in UCSRnA is
set).

2. The Master MCU sends an address frame, and all slaves receive and read this frame. In
the Slave MCUs, the RXCn Flag in UCSRnA will be set as normal.

3. Each Slave MCU reads the UDRn Register and determines if it has been selected. If so,
it clears the MPCMn bit in UCSRnA, otherwise it waits for the next address byte and
keeps the MPCMn setting.

4. The addressed MCU will receive all data frames until a new address frame is received.
The other Slave MCUs, which still have the MPCMn bit set, will ignore the data frames.

5. When the last data frame is received by the addressed MCU, the addressed MCU sets
the MPCMn bit and waits for a new address frame from master. The process then
repeats from 2.

Using any of the 5- to 8-bit character frame formats is possible, but impractical since the
Receiver must change between using n and n+1 character frame formats. This makes full-
duplex operation difficult since the Transmitter and Receiver uses the same character size set-
ting. If 5- to 8-bit character frames are used, the Transmitter must be set to use two stop bit
(USBSn = 1) since the first stop bit is used for indicating the frame type.

Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCMn bit. The
MPCMn bit shares the same I/O location as the TXCn Flag and this might accidentally be
cleared when using SBI or CBI instructions.
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20.10 Examples of Baud Rate Setting
For standard crystal and resonator frequencies, the most commonly used baud rates for asyn-
chronous operation can be generated by using the UBRR settings in Table 20-4. UBRR values
which yield an actual baud rate differing less than 0.5% from the target baud rate, are bold in the
table. Higher error ratings are acceptable, but the Receiver will have less noise resistance when
the error ratings are high, especially for large serial frames (see “Asynchronous Operational
Range” on page 173). The error values are calculated using the following equation:

Error[%]
BaudRateClosest Match

BaudRate
-------------------------------------------------------- 1–⎝ ⎠

⎛ ⎞ 100%•=

Table 20-4. Examples of UBRR Settings for Commonly Used Oscillator Frequencies

Baud 
Rate 
(bps)

fosc = 1.0000 MHz fosc = 1.8432 MHz fosc = 2.0000 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%

4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%

9600 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%

14.4k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%

19.2k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 0.2%

28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%

38.4k 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%

57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%

76.8k – – 1 -18.6% 1 -25.0% 2 0.0% 1 -18.6% 2 8.5%

115.2k – – 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%

230.4k – – – – – – 0 0.0% – – – –

250k – – – – – – – – – – 0 0.0%

Max. (1) 62.5 kbps 125 kbps 115.2 kbps 230.4 kbps 125 kbps 250 kbps

1. UBRR = 0, Error = 0.0%
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Table 20-5. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

Baud 
Rate 
(bps)

fosc = 3.6864 MHz fosc = 4.0000 MHz fosc = 7.3728 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%

4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%

9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%

14.4k 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 31 0.0% 63 0.0%

19.2k 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%

28.8k 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 15 0.0% 31 0.0%

38.4k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 11 0.0% 23 0.0%

57.6k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%

76.8k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 11 0.0%

115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%

230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%

250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%

0.5M – – 0 -7.8% – – 0 0.0% 0 -7.8% 1 -7.8%

1M – – – – – – – – – – 0 -7.8%

Max. (1) 230.4 kbps 460.8 kbps 250 kbps 0.5 Mbps 460.8 kbps 921.6 kbps

1. UBRR = 0, Error = 0.0%
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Table 20-6. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

Baud 
Rate 
(bps)

fosc = 8.0000 MHz fosc = 11.0592 MHz fosc = 14.7456 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 207 0.2% 416 -0.1% 287 0.0% 575 0.0% 383 0.0% 767 0.0%

4800 103 0.2% 207 0.2% 143 0.0% 287 0.0% 191 0.0% 383 0.0%

9600 51 0.2% 103 0.2% 71 0.0% 143 0.0% 95 0.0% 191 0.0%

14.4k 34 -0.8% 68 0.6% 47 0.0% 95 0.0% 63 0.0% 127 0.0%

19.2k 25 0.2% 51 0.2% 35 0.0% 71 0.0% 47 0.0% 95 0.0%

28.8k 16 2.1% 34 -0.8% 23 0.0% 47 0.0% 31 0.0% 63 0.0%

38.4k 12 0.2% 25 0.2% 17 0.0% 35 0.0% 23 0.0% 47 0.0%

57.6k 8 -3.5% 16 2.1% 11 0.0% 23 0.0% 15 0.0% 31 0.0%

76.8k 6 -7.0% 12 0.2% 8 0.0% 17 0.0% 11 0.0% 23 0.0%

115.2k 3 8.5% 8 -3.5% 5 0.0% 11 0.0% 7 0.0% 15 0.0%

230.4k 1 8.5% 3 8.5% 2 0.0% 5 0.0% 3 0.0% 7 0.0%

250k 1 0.0% 3 0.0% 2 -7.8% 5 -7.8% 3 -7.8% 6 5.3%

0.5M 0 0.0% 1 0.0% – – 2 -7.8% 1 -7.8% 3 -7.8%

1M – – 0 0.0% – – – – 0 -7.8% 1 -7.8%

Max. (1) 0.5 Mbps 1 Mbps 691.2 kbps 1.3824 Mbps 921.6 kbps 1.8432 Mbps

1. UBRR = 0, Error = 0.0%



179
2570N–AVR–05/11

ATmega325/3250/645/6450

20.11 Register Description

20.11.1 UDRn – USART I/O Data Register n

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers share the
same I/O address referred to as USART Data Register or UDRn. The Transmit Data Buffer Reg-
ister (TXB) will be the destination for data written to the UDRn Register location. Reading the
UDRn Register location will return the contents of the Receive Data Buffer Register (RXB).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the Transmitter and set to
zero by the Receiver.

The transmit buffer can only be written when the UDREn Flag in the UCSRnA Register is set.
Data written to UDRn when the UDREn Flag is not set, will be ignored by the USART Transmit-
ter. When data is written to the transmit buffer, and the Transmitter is enabled, the Transmitter
will load the data into the Transmit Shift Register when the Shift Register is empty. Then the
data will be serially transmitted on the TxD pin.

Table 20-7. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

Baud 
Rate 
(bps)

fosc = 16.0000 MHz fosc = 18.4320 MHz fosc = 20.0000 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 416 -0.1% 832 0.0% 479 0.0% 959 0.0% 520 0.0% 1041 0.0%

4800 207 0.2% 416 -0.1% 239 0.0% 479 0.0% 259 0.2% 520 0.0%

9600 103 0.2% 207 0.2% 119 0.0% 239 0.0% 129 0.2% 259 0.2%

14.4k 68 0.6% 138 -0.1% 79 0.0% 159 0.0% 86 -0.2% 173 -0.2%

19.2k 51 0.2% 103 0.2% 59 0.0% 119 0.0% 64 0.2% 129 0.2%

28.8k 34 -0.8% 68 0.6% 39 0.0% 79 0.0% 42 0.9% 86 -0.2%

38.4k 25 0.2% 51 0.2% 29 0.0% 59 0.0% 32 -1.4% 64 0.2%

57.6k 16 2.1% 34 -0.8% 19 0.0% 39 0.0% 21 -1.4% 42 0.9%

76.8k 12 0.2% 25 0.2% 14 0.0% 29 0.0% 15 1.7% 32 -1.4%

115.2k 8 -3.5% 16 2.1% 9 0.0% 19 0.0% 10 -1.4% 21 -1.4%

230.4k 3 8.5% 8 -3.5% 4 0.0% 9 0.0% 4 8.5% 10 -1.4%

250k 3 0.0% 7 0.0% 4 -7.8% 8 2.4% 4 0.0% 9 0.0%

0.5M 1 0.0% 3 0.0% – – 4 -7.8% – – 4 0.0%

1M 0 0.0% 1 0.0% – – – – – – – –

Max. (1) 1 Mbps 2 Mbps 1.152 Mbps 2.304 Mbps 1.25 Mbps 2.5 Mbps

1. UBRR = 0, Error = 0.0%

Bit 7 6 5 4 3 2 1 0

RXB[7:0] UDRn (Read)

TXB[7:0] UDRn (Write)

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the
receive buffer is accessed. Due to this behavior of the receive buffer, do not use Read-Modify-
Write instructions (SBI and CBI) on this location. Be careful when using bit test instructions
(SBIC and SBIS), since these also will change the state of the FIFO.

20.11.2 UCSRnA – USART Control and Status Register n A

• Bit 7 – RXCn: USART Receive Complete
This flag bit is set when there are unread data in the receive buffer and cleared when the receive
buffer is empty (i.e., does not contain any unread data). If the Receiver is disabled, the receive
buffer will be flushed and consequently the RXCn bit will become zero. The RXCn Flag can be
used to generate a Receive Complete interrupt (see description of the RXCIEn bit).

• Bit 6 – TXCn: USART Transmit Complete
This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and
there are no new data currently present in the transmit buffer (UDRn). The TXCn Flag bit is auto-
matically cleared when a transmit complete interrupt is executed, or it can be cleared by writing
a one to its bit location. The TXCn Flag can generate a Transmit Complete interrupt (see
description of the TXCIEn bit).

• Bit 5 – UDREn: USART Data Register Empty
The UDREn Flag indicates if the transmit buffer (UDRn) is ready to receive new data. If UDREn
is one, the buffer is empty, and therefore ready to be written. The UDREn Flag can generate a
Data Register Empty interrupt (see description of the UDRIEn bit).

UDREn is set after a reset to indicate that the Transmitter is ready.

• Bit 4 – FEn: Frame Error
This bit is set if the next character in the receive buffer had a Frame Error when received. I.e.,
when the first stop bit of the next character in the receive buffer is zero. This bit is valid until the
receive buffer (UDRn) is read. The FEn bit is zero when the stop bit of received data is one.
Always set this bit to zero when writing to UCSRnA.

• Bit 3 – DORn: Data OverRun
This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the receive
buffer is full (two characters), it is a new character waiting in the Receive Shift Register, and a
new start bit is detected. This bit is valid until the receive buffer (UDRn) is read. Always set this
bit to zero when writing to UCSRnA.

• Bit 2 – UPEn: USART Parity Error
This bit is set if the next character in the receive buffer had a Parity Error when received and the
Parity Checking was enabled at that point (UPMn1 = 1). This bit is valid until the receive buffer
(UDRn) is read. Always set this bit to zero when writing to UCSRnA.

Bit 7 6 5 4 3 2 1 0

RXCn TXCn UDREn FEn DORn UPEn U2Xn MPCMn UCSRnA

Read/Write R R/W R R R R R/W R/W

Initial Value 0 0 1 0 0 0 0 0
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• Bit 1 – U2Xn: Double the USART Transmission Speed
This bit only has effect for the asynchronous operation. Write this bit to zero when using syn-
chronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effectively dou-
bling the transfer rate for asynchronous communication.

• Bit 0 – MPCMn: Multi-processor Communication Mode
This bit enables the Multi-processor Communication mode. When the MPCMn bit is written to
one, all the incoming frames received by the USART Receiver that do not contain address infor-
mation will be ignored. The Transmitter is unaffected by the MPCMn setting. For more detailed
information see “Multi-processor Communication Mode” on page 174.

20.11.3 UCSRnB – USART Control and Status Register n B

• Bit 7 – RXCIEn: RX Complete Interrupt Enable
Writing this bit to one enables interrupt on the RXCn Flag. A USART Receive Complete interrupt
will be generated only if the RXCIEn bit is written to one, the Global Interrupt Flag in SREG is
written to one and the RXCn bit in UCSRnA is set.

• Bit 6 – TXCIEn: TX Complete Interrupt Enable
Writing this bit to one enables interrupt on the TXCn Flag. A USART Transmit Complete interrupt
will be generated only if the TXCIEn bit is written to one, the Global Interrupt Flag in SREG is
written to one and the TXCn bit in UCSRnA is set.

• Bit 5 – UDRIEn: USART Data Register Empty Interrupt Enable
Writing this bit to one enables interrupt on the UDREn Flag. A Data Register Empty interrupt will
be generated only if the UDRIEn bit is written to one, the Global Interrupt Flag in SREG is written
to one and the UDREn bit in UCSRnA is set.

• Bit 4 – RXENn: Receiver Enable
Writing this bit to one enables the USART Receiver. The Receiver will override normal port oper-
ation for the RxD pin when enabled. Disabling the Receiver will flush the receive buffer
invalidating the FEn, DORn, and UPEn Flags.

• Bit 3 – TXENn: Transmitter Enable
Writing this bit to one enables the USART Transmitter. The Transmitter will override normal port
operation for the TxD pin when enabled. The disabling of the Transmitter (writing TXENn to
zero) will not become effective until ongoing and pending transmissions are completed, i.e.,
when the Transmit Shift Register and Transmit Buffer Register do not contain data to be trans-
mitted. When disabled, the Transmitter will no longer override the TxD port.

Bit 7 6 5 4 3 2 1 0

RXCIEn TXCIEn UDRIEn RXENn TXENn UCSZn2 RXB8n TXB8n UCSRnB

Read/Write R/W R/W R/W R/W R/W R/W R R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 2 – UCSZn2: Character Size
The UCSZn2 bits combined with the UCSZn1:0 bit in UCSRnC sets the number of data bits
(Character SiZe) in a frame the Receiver and Transmitter use. 

• Bit 1 – RXB8n: Receive Data Bit 8
RXB8n is the ninth data bit of the received character when operating with serial frames with nine
data bits. Must be read before reading the low bits from UDRn.

• Bit 0 – TXB8n: Transmit Data Bit 8
TXB8n is the ninth data bit in the character to be transmitted when operating with serial frames
with nine data bits. Must be written before writing the low bits to UDRn.

20.11.4 UCSRnC – USART Control and Status Register n C

• Bit 6 – UMSELn: USART Mode Select
This bit selects between asynchronous and synchronous mode of operation.

• Bit 5:4 – UPMn1:0: Parity Mode
These bits enable and set type of parity generation and check. If enabled, the Transmitter will
automatically generate and send the parity of the transmitted data bits within each frame. The
Receiver will generate a parity value for the incoming data and compare it to the UPMn0 setting.
If a mismatch is detected, the UPEn Flag in UCSRnA will be set.

Bit 7 6 5 4 3 2 1 0

– UMSELn UPMn1 UPMn0 USBSn UCSZn1 UCSZn0 UCPOLn UCSRnC

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 1 1 0

Table 20-8. UMSEL Bit Settings

UMSELn Mode

0 Asynchronous Operation

1 Synchronous Operation

Table 20-9. UPM Bits Settings

UPMn1 UPMn0 Parity Mode

0 0 Disabled

0 1 Reserved

1 0 Enabled, Even Parity

1 1 Enabled, Odd Parity
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• Bit 3 – USBSn: Stop Bit Select
This bit selects the number of stop bits to be inserted by the Transmitter. The Receiver ignores
this setting.

• Bit 2:1 – UCSZn1:0: Character Size
The UCSZn1:0 bits combined with the UCSZn2 bit in UCSRnB sets the number of data bits
(Character SiZe) in a frame the Receiver and Transmitter use.

• Bit 0 – UCPOLn: Clock Polarity
This bit is used for synchronous mode only. Write this bit to zero when asynchronous mode is
used. The UCPOLn bit sets the relationship between data output change and data input sample,
and the synchronous clock (XCK).

Table 20-10. USBS Bit Settings

USBSn Stop Bit(s)

0 1-bit

1 2-bit

Table 20-11. UCSZ Bits Settings

UCSZn2 UCSZn1 UCSZn0 Character Size

0 0 0 5-bit

0 0 1 6-bit

0 1 0 7-bit

0 1 1 8-bit

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 9-bit

Table 20-12. UCPOL Bit Settings

UCPOLn
Transmitted Data Changed 
(Output of TxD Pin)

Received Data Sampled 
(Input on RxD Pin)

0 Rising XCK Edge Falling XCK Edge

1 Falling XCK Edge Rising XCK Edge
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20.11.5 UBRRnL and UBRRnH – USART Baud Rate Registers

• Bit 15:12 – Reserved Bits
These bits are reserved for future use. For compatibility with future devices, these bit must be
written to zero when UBRRH is written.

• Bit 11:0 – UBRR11:0: USART Baud Rate Register
This is a 12-bit register which contains the USART baud rate. The UBRRH contains the four 
most significant bits, and the UBRRL contains the eight least significant bits of the USART baud 
rate. Ongoing transmissions by the Transmitter and Receiver will be corrupted if the baud rate is 
changed. Writing UBRRL will trigger an immediate update of the baud rate prescaler.

Bit 15 14 13 12 11 10 9 8

– – – – UBRRn[11:8] UBRRnH

UBRRn[7:0] UBRRnL

7 6 5 4 3 2 1 0

Read/Write R R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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21. USI – Universal Serial Interface
The Universal Serial Interface, or USI, provides the basic hardware resources needed for serial
communication. Combined with a minimum of control software, the USI allows significantly
higher transfer rates and uses less code space than solutions based on software only. Interrupts
are included to minimize the processor load. The main features of the USI are:

• Two-wire Synchronous Data Transfer (Master or Slave)
• Three-wire Synchronous Data Transfer (Master or Slave)
• Data Received Interrupt
• Wake up from Idle Mode
• In Two-wire Mode: Wake-up from All Sleep Modes, Including Power-down Mode
• Two-wire Start Condition Detector with Interrupt Capability

21.1 Overview
A simplified block diagram of the USI is shown on Figure 21-1. For the actual placement of I/O
pins, refer to “Pinout ATmega3250/6450” on page 2 and “Pinout ATmega325/645” on page 3.
CPU accessible I/O Registers, including I/O bits and I/O pins, are shown in bold. The device-
specific I/O Register and bit locations are listed in the “Register Descriptions” on page 192.

Figure 21-1. Universal Serial Interface, Block Diagram

The 8-bit Shift Register is directly accessible via the data bus and contains the incoming and
outgoing data. The register has no buffering so the data must be read as quickly as possible to
ensure that no data is lost. The most significant bit is connected to one of two output pins
depending of the wire mode configuration. A transparent latch is inserted between the Serial
Register Output and output pin, which delays the change of data output to the opposite clock
edge of the data input sampling. The serial input is always sampled from the Data Input (DI) pin
independent of the configuration.

The 4-bit counter can be both read and written via the data bus, and can generate an overflow
interrupt. Both the Serial Register and the counter are clocked simultaneously by the same clock
source. This allows the counter to count the number of bits received or transmitted and generate
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an interrupt when the transfer is complete. Note that when an external clock source is selected
the counter counts both clock edges. In this case the counter counts the number of edges, and
not the number of bits. The clock can be selected from three different sources: The USCK pin,
Timer/Counter0 Compare Match or from software.

The Two-wire clock control unit can generate an interrupt when a start condition is detected on
the Two-wire bus. It can also generate wait states by holding the clock pin low after a start con-
dition is detected, or after the counter overflows.

21.2 Functional Descriptions

21.2.1 Three-wire Mode
The USI Three-wire mode is compliant to the Serial Peripheral Interface (SPI) mode 0 and 1, but
does not have the slave select (SS) pin functionality. However, this feature can be implemented
in software if necessary. Pin names used by this mode are: DI, DO, and USCK.

Figure 21-2. Three-wire Mode Operation, Simplified Diagram

Figure 21-2 shows two USI units operating in Three-wire mode, one as Master and one as
Slave. The two Shift Registers are interconnected in such way that after eight USCK clocks, the
data in each register are interchanged. The same clock also increments the USI’s 4-bit counter.
The Counter Overflow (interrupt) Flag, or USIOIF, can therefore be used to determine when a
transfer is completed. The clock is generated by the Master device software by toggling the
USCK pin via the PORT Register or by writing a one to the USITC bit in USICR.
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DO

DI

USCK

PORTxn
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Figure 21-3. Three-wire Mode, Timing Diagram

The Three-wire mode timing is shown in Figure 21-3. At the top of the figure is a USCK cycle ref-
erence. One bit is shifted into the USI Shift Register (USIDR) for each of these cycles. The
USCK timing is shown for both external clock modes. In External Clock mode 0 (USICS0 = 0), DI
is sampled at positive edges, and DO is changed (Data Register is shifted by one) at negative
edges. External Clock mode 1 (USICS0 = 1) uses the opposite edges versus mode 0, i.e., sam-
ples data at negative and changes the output at positive edges. The USI clock modes
corresponds to the SPI data mode 0 and 1.

Referring to the timing diagram (Figure 21-3.), a bus transfer involves the following steps:

1. The Slave device and Master device sets up its data output and, depending on the proto-
col used, enables its output driver (mark A and B). The output is set up by writing the
data to be transmitted to the Serial Data Register. Enabling of the output is done by set-
ting the corresponding bit in the port Data Direction Register. Note that point A and B
does not have any specific order, but both must be at least one half USCK cycle before
point C where the data is sampled. This must be done to ensure that the data setup
requirement is satisfied. The 4-bit counter is reset to zero.

2. The Master generates a clock pulse by software toggling the USCK line twice (C and D).
The bit value on the slave and master’s data input (DI) pin is sampled by the USI on the
first edge (C), and the data output is changed on the opposite edge (D). The 4-bit counter
will count both edges.

3. Step 2. is repeated eight times for a complete register (byte) transfer.

4. After eight clock pulses (i.e., 16 clock edges) the counter will overflow and indicate that
the transfer is completed. The data bytes transferred must now be processed before a
new transfer can be initiated. The overflow interrupt will wake up the processor if it is set
to Idle mode. Depending of the protocol used the slave device can now set its output to
high impedance.

21.2.2 SPI Master Operation Example
The following code demonstrates how to use the USI module as a SPI Master:

SPITransfer:

sts USIDR,r16

ldi r16,(1<<USIOIF)

sts USISR,r16

ldi r16,(1<<USIWM0)|(1<<USICS1)|(1<<USICLK)|(1<<USITC)

SPITransfer_loop:

sts USICR,r16

lds r16, USISR

sbrs r16, USIOIF

MSB

MSB

6 5 4 3 2 1 LSB

1 2 3 4 5 6 7 8

6 5 4 3 2 1 LSB

USCK

USCK

DO

DI

DCBA E

CYCLE ( Reference )
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rjmp SPITransfer_loop

lds r16,USIDR

ret

The code is size optimized using only eight instructions (+ ret). The code example assumes that
the DO and USCK pins are enabled as output in the DDRE Register. The value stored in register
r16 prior to the function is called is transferred to the Slave device, and when the transfer is com-
pleted the data received from the Slave is stored back into the r16 Register.

The second and third instructions clears the USI Counter Overflow Flag and the USI counter
value. The fourth and fifth instruction set Three-wire mode, positive edge Shift Register clock,
count at USITC strobe, and toggle USCK. The loop is repeated 16 times.

The following code demonstrates how to use the USI module as a SPI Master with maximum
speed (fsck = fck/4):

SPITransfer_Fast:

sts USIDR,r16

ldi r16,(1<<USIWM0)|(0<<USICS0)|(1<<USITC)

ldi r17,(1<<USIWM0)|(0<<USICS0)|(1<<USITC)|(1<<USICLK)

sts USICR,r16 ; MSB

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16 ; LSB

sts USICR,r17

lds r16,USIDR

ret
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21.2.3 SPI Slave Operation Example 
The following code demonstrates how to use the USI module as a SPI Slave:

init:

ldi r16,(1<<USIWM0)|(1<<USICS1)

sts USICR,r16

...

SlaveSPITransfer:

sts USIDR,r16

ldi r16,(1<<USIOIF)

sts USISR,r16

SlaveSPITransfer_loop:

lds r16, USISR

sbrs r16, USIOIF

rjmp SlaveSPITransfer_loop

lds r16,USIDR

ret

The code is size optimized using only eight instructions (+ ret). The code example assumes that
the DO is configured as output and USCK pin is configured as input in the DDR Register. The
value stored in register r16 prior to the function is called is transferred to the master device, and
when the transfer is completed the data received from the Master is stored back into the r16
Register.

Note that the first two instructions is for initialization only and needs only to be executed
once.These instructions sets Three-wire mode and positive edge Shift Register clock. The loop
is repeated until the USI Counter Overflow Flag is set.

21.2.4 Two-wire Mode
The USI Two-wire mode is compliant to the Inter IC (TWI) bus protocol, but without slew rate lim-
iting on outputs and input noise filtering. Pin names used by this mode are SCL and SDA.
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Figure 21-4. Two-wire Mode Operation, Simplified Diagram

Figure 21-4 shows two USI units operating in Two-wire mode, one as Master and one as Slave.
It is only the physical layer that is shown since the system operation is highly dependent of the
communication scheme used. The main differences between the Master and Slave operation at
this level, is the serial clock generation which is always done by the Master, and only the Slave
uses the clock control unit. Clock generation must be implemented in software, but the shift
operation is done automatically by both devices. Note that only clocking on negative edge for
shifting data is of practical use in this mode. The slave can insert wait states at start or end of
transfer by forcing the SCL clock low. This means that the Master must always check if the SCL
line was actually released after it has generated a positive edge.

Since the clock also increments the counter, a counter overflow can be used to indicate that the
transfer is completed. The clock is generated by the master by toggling the USCK pin via the
PORT Register.

The data direction is not given by the physical layer. A protocol, like the one used by the TWI-
bus, must be implemented to control the data flow.

Figure 21-5. Two-wire Mode, Typical Timing Diagram

Referring to the timing diagram (Figure 21-5.), a bus transfer involves the following steps:

MASTER
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1. The a start condition is generated by the Master by forcing the SDA low line while the
SCL line is high (A). SDA can be forced low either by writing a zero to bit 7 of the Shift
Register, or by setting the corresponding bit in the PORT Register to zero. Note that the
Data Direction Register bit must be set to one for the output to be enabled. The slave
device’s start detector logic (Figure 21-6.) detects the start condition and sets the USISIF
Flag. The flag can generate an interrupt if necessary. 

2. In addition, the start detector will hold the SCL line low after the Master has forced an
negative edge on this line (B). This allows the Slave to wake up from sleep or complete
its other tasks before setting up the Shift Register to receive the address. This is done by
clearing the start condition flag and reset the counter. 

3. The Master set the first bit to be transferred and releases the SCL line (C). The Slave
samples the data and shift it into the Serial Register at the positive edge of the SCL
clock.

4. After eight bits are transferred containing slave address and data direction (read or
write), the Slave counter overflows and the SCL line is forced low (D). If the slave is not
the one the Master has addressed, it releases the SCL line and waits for a new start
condition.

5. If the Slave is addressed it holds the SDA line low during the acknowledgment cycle
before holding the SCL line low again (i.e., the Counter Register must be set to 14 before
releasing SCL at (D)). Depending of the R/W bit the Master or Slave enables its output. If
the bit is set, a master read operation is in progress (i.e., the slave drives the SDA line)
The slave can hold the SCL line low after the acknowledge (E).

6. Multiple bytes can now be transmitted, all in same direction, until a stop condition is given
by the Master (F). Or a new start condition is given.

If the Slave is not able to receive more data it does not acknowledge the data byte it has last
received. When the Master does a read operation it must terminate the operation by force the
acknowledge bit low after the last byte transmitted.

Figure 21-6. Start Condition Detector, Logic Diagram

21.2.5 Start Condition Detector
The start condition detector is shown in Figure 21-6. The SDA line is delayed (in the range of 50
to 300 ns) to ensure valid sampling of the SCL line. The start condition detector is only enabled
in Two-wire mode.

The start condition detector is working asynchronously and can therefore wake up the processor
from the Power-down sleep mode. However, the protocol used might have restrictions on the
SCL hold time. Therefore, when using this feature in this case the Oscillator start-up time set by
the CKSEL Fuses (see “Clock Systems and their Distribution” on page 26) must also be taken
into the consideration. Refer to the USISIF bit description on page 193 for further details.

21.2.6 Clock speed considerations.
Maximum frequency for SCL and SCK is fCK /4. This is also the maximum data transmit and
receieve rate in both two- and three-wire mode. In two-wire slave mode the Two-wire Clock Con-
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trol Unit will hold the SCL low until the slave is ready to receive more data. This may reduce the
actual data rate in two-wire mode.

21.3 Alternative USI Usage
When the USI unit is not used for serial communication, it can be set up to do alternative tasks
due to its flexible design.

21.3.1 Half-duplex Asynchronous Data Transfer
By utilizing the Shift Register in Three-wire mode, it is possible to implement a more compact
and higher performance UART than by software only.

21.3.2 4-bit Counter
The 4-bit counter can be used as a stand-alone counter with overflow interrupt. Note that if the
counter is clocked externally, both clock edges will generate an increment.

21.3.3 12-bit Timer/Counter
Combining the USI 4-bit counter and Timer/Counter0 allows them to be used as a 12-bit
counter.

21.3.4 Edge Triggered External Interrupt
By setting the counter to maximum value (F) it can function as an additional external interrupt.
The Overflow Flag and Interrupt Enable bit are then used for the external interrupt. This feature
is selected by the USICS1 bit.

21.3.5 Software Interrupt
The counter overflow interrupt can be used as a software interrupt triggered by a clock strobe.

21.4 Register Descriptions

21.4.1 USIDR – USI Data Register

The USI uses no buffering of the Serial Register, i.e., when accessing the Data Register
(USIDR) the Serial Register is accessed directly. If a serial clock occurs at the same cycle the
register is written, the register will contain the value written and no shift is performed. A (left) shift
operation is performed depending of the USICS1..0 bits setting. The shift operation can be con-
trolled by an external clock edge, by a Timer/Counter0 Compare Match, or directly by software
using the USICLK strobe bit. Note that even when no wire mode is selected (USIWM1..0 = 0)
both the external data input (DI/SDA) and the external clock input (USCK/SCL) can still be used
by the Shift Register.

The output pin in use, DO or SDA depending on the wire mode, is connected via the output latch
to the most significant bit (bit 7) of the Data Register. The output latch is open (transparent) dur-
ing the first half of a serial clock cycle when an external clock source is selected (USICS1 = 1),
and constantly open when an internal clock source is used (USICS1 = 0). The output will be
changed immediately when a new MSB written as long as the latch is open. The latch ensures
that data input is sampled and data output is changed on opposite clock edges.

Bit 7 6 5 4 3 2 1 0

(0xBA) MSB LSB USIDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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Note that the corresponding Data Direction Register to the pin must be set to one for enabling
data output from the Shift Register.

21.4.2 USISR – USI Status Register

The Status Register contains Interrupt Flags, line Status Flags and the counter value.

• Bit 7 – USISIF: Start Condition Interrupt Flag
When Two-wire mode is selected, the USISIF Flag is set (to one) when a start condition is
detected. When output disable mode or Three-wire mode is selected, the flag is set when the 4-
bit counter is incremented.

An interrupt will be generated when the flag is set while the USISIE bit in USICR and the Global
Interrupt Enable Flag are set. The flag will only be cleared by writing a logical one to the USISIF
bit. Clearing this bit will release the start detection hold of USCL in Two-wire mode. 

A start condition interrupt will wake up the processor from all sleep modes.

• Bit 6 – USIOIF: Counter Overflow Interrupt Flag
This flag is set (one) when the 4-bit counter overflows (i.e., at the transition from 15 to 0). An
interrupt will be generated when the flag is set while the USIOIE bit in USICR and the Global
Interrupt Enable Flag are set. The flag will only be cleared if a one is written to the USIOIF bit.
Clearing this bit will release the counter overflow hold of SCL in Two-wire mode.

A counter overflow interrupt will wake up the processor from Idle sleep mode.

• Bit 5 – USIPF: Stop Condition Flag
When Two-wire mode is selected, the USIPF Flag is set (one) when a stop condition is detected.
The flag is cleared by writing a one to this bit. Note that this is not an Interrupt Flag. This signal is
useful when implementing Two-wire bus master arbitration.

• Bit 4 – USIDC: Data Output Collision
This bit is logical one when bit 7 in the Shift Register differs from the physical pin value. The flag
is only valid when Two-wire mode is used. This signal is useful when implementing Two-wire
bus master arbitration.

• Bits 3:0 – USICNT3:0: Counter Value
These bits reflect the current 4-bit counter value. The 4-bit counter value can directly be read or
written by the CPU.

The 4-bit counter increments by one for each clock generated either by the external clock edge
detector, by a Timer/Counter0 Compare Match, or by software using USICLK or USITC strobe
bits. The clock source depends of the setting of the USICS1..0 bits. For external clock operation
a special feature is added that allows the clock to be generated by writing to the USITC strobe
bit. This feature is enabled by write a one to the USICLK bit while setting an external clock
source (USICS1 = 1).

Note that even when no wire mode is selected (USIWM1..0 = 0) the external clock input
(USCK/SCL) are can still be used by the counter.

Bit 7 6 5 4 3 2 1 0

(0xB9) USISIF USIOIF USIPF USIDC USICNT3 USICNT2 USICNT1 USICNT0 USISR

Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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21.4.3 USICR – USI Control Register

The Control Register includes interrupt enable control, wire mode setting, Clock Select setting,
and clock strobe.

• Bit 7 – USISIE: Start Condition Interrupt Enable
Setting this bit to one enables the Start Condition detector interrupt. If there is a pending inter-
rupt when the USISIE and the Global Interrupt Enable Flag is set to one, this will immediately be
executed. Refer to the USISIF bit description on page 193 for further details.

• Bit 6 – USIOIE: Counter Overflow Interrupt Enable
Setting this bit to one enables the Counter Overflow interrupt. If there is a pending interrupt when
the USIOIE and the Global Interrupt Enable Flag is set to one, this will immediately be executed.
Refer to the USIOIF bit description on page 193 for further details.

• Bit 5:4 – USIWM1:0: Wire Mode
These bits set the type of wire mode to be used. Basically only the function of the outputs are
affected by these bits. Data and clock inputs are not affected by the mode selected and will
always have the same function. The counter and Shift Register can therefore be clocked exter-
nally, and data input sampled, even when outputs are disabled. The relations between
USIWM1:0 and the USI operation is summarized in Table 21-1.

Bit 7 6 5 4 3 2 1 0

(0xB8) USISIE USIOIE USIWM1 USIWM0 USICS1 USICS0 USICLK USITC USICR

Read/Write R/W R/W R/W R/W R/W R/W W W

Initial Value 0 0 0 0 0 0 0 0
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Note: 1. The DI and USCK pins are renamed to Serial Data (SDA) and Serial Clock (SCL) respectively 
to avoid confusion between the modes of operation.

Table 21-1. Relations between USIWM1..0 and the USI Operation

USIWM1 USIWM0 Description

0 0 Outputs, clock hold, and start detector disabled. Port pins operates as 
normal.

0 1 Three-wire mode. Uses DO, DI, and USCK pins.

The Data Output (DO) pin overrides the corresponding bit in the PORT 
Register in this mode. However, the corresponding DDR bit still 
controls the data direction. When the port pin is set as input the pins 
pull-up is controlled by the PORT bit.

The Data Input (DI) and Serial Clock (USCK) pins do not affect the 
normal port operation. When operating as master, clock pulses are 
software generated by toggling the PORT Register, while the data 
direction is set to output. The USITC bit in the USICR Register can be 
used for this purpose.

1 0 Two-wire mode. Uses SDA (DI) and SCL (USCK) pins(1).

The Serial Data (SDA) and the Serial Clock (SCL) pins are bi-
directional and uses open-collector output drives. The output drivers 
are enabled by setting the corresponding bit for SDA and SCL in the 
DDR Register.

When the output driver is enabled for the SDA pin, the output driver will 
force the line SDA low if the output of the Shift Register or the 
corresponding bit in the PORT Register is zero. Otherwise the SDA 
line will not be driven (i.e., it is released). When the SCL pin output 
driver is enabled the SCL line will be forced low if the corresponding bit 
in the PORT Register is zero, or by the start detector. Otherwise the 
SCL line will not be driven.
The SCL line is held low when a start detector detects a start condition 
and the output is enabled. Clearing the Start Condition Flag (USISIF) 
releases the line. The SDA and SCL pin inputs is not affected by 
enabling this mode. Pull-ups on the SDA and SCL port pin are 
disabled in Two-wire mode.

1 1 Two-wire mode. Uses SDA and SCL pins.

Same operation as for the Two-wire mode described above, except 
that the SCL line is also held low when a counter overflow occurs, and 
is held low until the Counter Overflow Flag (USIOIF) is cleared.
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• Bit 3:2 – USICS1:0: Clock Source Select

These bits set the clock source for the Shift Register and counter. The data output latch ensures
that the output is changed at the opposite edge of the sampling of the data input (DI/SDA) when
using external clock source (USCK/SCL). When software strobe or Timer/Counter0 Compare
Match clock option is selected, the output latch is transparent and therefore the output is
changed immediately. Clearing the USICS1..0 bits enables software strobe option. When using
this option, writing a one to the USICLK bit clocks both the Shift Register and the counter. For
external clock source (USICS1 = 1), the USICLK bit is no longer used as a strobe, but selects
between external clocking and software clocking by the USITC strobe bit.

Table 21-2 shows the relationship between the USICS1..0 and USICLK setting and clock source
used for the Shift Register and the 4-bit counter.

• Bit 1 – USICLK: Clock Strobe
Writing a one to this bit location strobes the Shift Register to shift one step and the counter to
increment by one, provided that the USICS1..0 bits are set to zero and by doing so the software
clock strobe option is selected. The output will change immediately when the clock strobe is exe-
cuted, i.e., in the same instruction cycle. The value shifted into the Shift Register is sampled the
previous instruction cycle. The bit will be read as zero.

When an external clock source is selected (USICS1 = 1), the USICLK function is changed from
a clock strobe to a Clock Select Register. Setting the USICLK bit in this case will select the
USITC strobe bit as clock source for the 4-bit counter (see Table 21-2).

• Bit 0 – USITC: Toggle Clock Port Pin
Writing a one to this bit location toggles the USCK/SCL value either from 0 to 1, or from 1 to 0.
The toggling is independent of the setting in the Data Direction Register, but if the PORT value is
to be shown on the pin the DDRE4 must be set as output (to one). This feature allows easy clock
generation when implementing master devices. The bit will be read as zero.

When an external clock source is selected (USICS1 = 1) and the USICLK bit is set to one, writ-
ing to the USITC strobe bit will directly clock the 4-bit counter. This allows an early detection of 
when the transfer is done when operating as a master device.

Table 21-2. Relations between the USICS1..0 and USICLK Setting

USICS1 USICS0 USICLK
Shift Register Clock 
Source

4-bit Counter Clock 
Source

0 0 0 No Clock No Clock

0 0 1 Software clock strobe 
(USICLK)

Software clock strobe 
(USICLK)

0 1 X Timer/Counter0 Compare 
Match

Timer/Counter0 Compare 
Match

1 0 0 External, positive edge External, both edges

1 1 0 External, negative edge External, both edges

1 0 1 External, positive edge Software clock strobe 
(USITC)

1 1 1 External, negative edge Software clock strobe 
(USITC)
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22. Analog Comparator
The Analog Comparator compares the input values on the positive pin AIN0 and negative pin
AIN1. When the voltage on the positive pin AIN0 is higher than the voltage on the negative pin
AIN1, the Analog Comparator output, ACO, is set. The comparator’s output can be set to trigger
the Timer/Counter1 Input Capture function. In addition, the comparator can trigger a separate
interrupt, exclusive to the Analog Comparator. The user can select Interrupt triggering on com-
parator output rise, fall or toggle. A block diagram of the comparator and its surrounding logic is
shown in Figure 22-1.

The Power Reduction ADC bit, PRADC, in “Power Reduction Register” on page 37 must be dis-
abled by writing a logical zero to be able to use the ADC module.

Figure 22-1. Analog Comparator Block Diagram(2)

Notes: 1. See Table 22-1 on page 198.
2. Refer to Figure 1-1 on page 2, Figure 1-2 on page 3, and “Alternate Functions of Port E” on

page 72 for Analog Comparator pin placement.

ACBG

BANDGAP
REFERENCE

ADC MULTIPLEXER
OUTPUT

ACME
ADEN

(1)



198
2570N–AVR–05/11

ATmega325/3250/645/6450

22.1 Analog Comparator Multiplexed Input
It is possible to select any of the ADC7..0 pins to replace the negative input to the Analog Com-
parator. The ADC multiplexer is used to select this input, and consequently, the ADC must be
switched off to utilize this feature. If the Analog Comparator Multiplexer Enable bit (ACME in
ADCSRB) is set and the ADC is switched off (ADEN in ADCSRA is zero), MUX2..0 in ADMUX
select the input pin to replace the negative input to the Analog Comparator, as shown in Table
22-1. If ACME is cleared or ADEN is set, AIN1 is applied to the negative input to the Analog
Comparator.

22.2 Register Description

22.2.1 ADCSRB – ADC Control and Status Register B

• Bit 6 – ACME: Analog Comparator Multiplexer Enable
When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is zero), the
ADC multiplexer selects the negative input to the Analog Comparator. When this bit is written
logic zero, AIN1 is applied to the negative input of the Analog Comparator. For a detailed
description of this bit, see “DIDR1 – Digital Input Disable Register 1” on page 200. 

22.2.2 ACSR – Analog Comparator Control and Status Register

Table 22-1. Analog Comparator Multiplexed Input

ACME ADEN MUX2..0 Analog Comparator Negative Input

0 x xxx AIN1

1 1 xxx AIN1

1 0 000 ADC0

1 0 001 ADC1

1 0 010 ADC2

1 0 011 ADC3

1 0 100 ADC4

1 0 101 ADC5

1 0 110 ADC6

1 0 111 ADC7

Bit 7 6 5 4 3 2 1 0

(0x7B) – ACME – – – ADTS2 ADTS1 ADTS0 ADCSRB

Read/Write R R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x30 (0x50) ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 ACSR

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 N/A 0 0 0 0 0
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• Bit 7 – ACD: Analog Comparator Disable
When this bit is written logic one, the power to the Analog Comparator is switched off. This bit
can be set at any time to turn off the Analog Comparator. This will reduce power consumption in
Active and Idle mode. When changing the ACD bit, the Analog Comparator Interrupt must be
disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt can occur when the bit is
changed.

• Bit 6 – ACBG: Analog Comparator Bandgap Select
When this bit is set, a fixed bandgap reference voltage replaces the positive input to the Analog
Comparator. When this bit is cleared, AIN0 is applied to the positive input of the Analog Compar-
ator. When the bandgap reference is used as input to the analog comparator, it will take a
certain time for the voltage to stabilize. If not stabilized, the the first converison may give a wrong
value. See “Internal Voltage Reference” on page 44.

• Bit 5 – ACO: Analog Comparator Output
The output of the Analog Comparator is synchronized and then directly connected to ACO. The
synchronization introduces a delay of 1 - 2 clock cycles. 

• Bit 4 – ACI: Analog Comparator Interrupt Flag
This bit is set by hardware when a comparator output event triggers the interrupt mode defined
by ACIS1 and ACIS0. The Analog Comparator interrupt routine is executed if the ACIE bit is set
and the I-bit in SREG is set. ACI is cleared by hardware when executing the corresponding inter-
rupt handling vector. Alternatively, ACI is cleared by writing a logic one to the flag.

• Bit 3 – ACIE: Analog Comparator Interrupt Enable
When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Analog Com-
parator interrupt is activated. When written logic zero, the interrupt is disabled.

• Bit 2 – ACIC: Analog Comparator Input Capture Enable
When written logic one, this bit enables the Input Capture function in Timer/Counter1 to be trig-
gered by the Analog Comparator. The comparator output is in this case directly connected to the
Input Capture front-end logic, making the comparator utilize the noise canceler and edge select
features of the Timer/Counter1 Input Capture interrupt. When written logic zero, no connection
between the Analog Comparator and the Input Capture function exists. To make the comparator
trigger the Timer/Counter1 Input Capture interrupt, the ICIE1 bit in the Timer Interrupt Mask
Register (TIMSK1) must be set.
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• Bits 1, 0 – ACIS1, ACIS0: Analog Comparator Interrupt Mode Select
These bits determine which comparator events that trigger the Analog Comparator interrupt. The
different settings are shown in Table 22-2.

When changing the ACIS1/ACIS0 bits, the Analog Comparator Interrupt must be disabled by
clearing its Interrupt Enable bit in the ACSR Register. Otherwise an interrupt can occur when the
bits are changed.

22.2.3 DIDR1 – Digital Input Disable Register 1

• Bit 1, 0 – AIN1D, AIN0D: AIN1, AIN0 Digital Input Disable
When this bit is written logic one, the digital input buffer on the AIN1/0 pin is disabled. The corre-
sponding PIN Register bit will always read as zero when this bit is set. When an analog signal is
applied to the AIN1/0 pin and the digital input from this pin is not needed, this bit should be writ-
ten logic one to reduce power consumption in the digital input buffer. 

Table 22-2. ACIS1/ACIS0 Settings

ACIS1 ACIS0 Interrupt Mode

0 0 Comparator Interrupt on Output Toggle.

0 1 Reserved

1 0 Comparator Interrupt on Falling Output Edge.

1 1 Comparator Interrupt on Rising Output Edge.

Bit 7 6 5 4 3 2 1 0

(0x7F) – – – – – – AIN1D AIN0D DIDR1

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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23. Analog to Digital Converter

23.1 Features
• 10-bit Resolution
• 0.5 LSB Integral Non-linearity
• ± 2 LSB Absolute Accuracy
• 13µs - 260µs Conversion Time (50kHz to 1MHz ADC clock)
• Up to 76.9kSPS at Maximum Resolution (200kHz ADC clock)
• Eight Multiplexed Single Ended Input Channels
• Optional Left Adjustment for ADC Result Readout
• 0 - VCC ADC Input Voltage Range
• Selectable 1.1V ADC Reference Voltage
• Free Running or Single Conversion Mode
• ADC Start Conversion by Auto Triggering on Interrupt Sources
• Interrupt on ADC Conversion Complete
• Sleep Mode Noise Canceler

The Atmel ATmega325/3250/645/6450 features a 10-bit successive approximation ADC. The
ADC is connected to an 8-channel Analog Multiplexer which allows eight single-ended voltage
inputs constructed from the pins of Port F. The single-ended voltage inputs refer to 0V (GND).

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the ADC is
held at a constant level during conversion. A block diagram of the ADC is shown in Figure 23-1.

The ADC has a separate analog supply voltage pin, AVCC. AVCC must not differ more than ±
0.3V from VCC. See the paragraph “ADC Noise Canceler” on page 207 on how to connect this
pin.

Internal reference voltages of nominally 1.1V or AVCC are provided On-chip. The voltage refer-
ence may be externally decoupled at the AREF pin by a capacitor for better noise performance.

The Power Reduction ADC bit, PRADC, in “Power Reduction Register” on page 37 must be dis-
abled by writing a logical zero to be able to use the ADC module.
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Figure 23-1. Analog to Digital Converter Block Schematic

23.2 Operation
The ADC converts an analog input voltage to a 10-bit digital value through successive approxi-
mation. The minimum value represents GND and the maximum value represents the voltage on
the AREF pin minus 1 LSB. Optionally, AVCC or an internal 1.1V reference voltage may be con-
nected to the AREF pin by writing to the REFSn bits in the ADMUX Register. The internal
voltage reference may thus be decoupled by an external capacitor at the AREF pin to improve
noise immunity.

The analog input channel is selected by writing to the MUX bits in ADMUX. Any of the ADC input
pins, as well as GND and a fixed bandgap voltage reference, can be selected as single ended
inputs to the ADC. The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA. Volt-
age reference and input channel selections will not go into effect until ADEN is set. The ADC
does not consume power when ADEN is cleared, so it is recommended to switch off the ADC
before entering power saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and
ADCL. By default, the result is presented right adjusted, but can optionally be presented left
adjusted by setting the ADLAR bit in ADMUX.

ADC CONVERSION
COMPLETE IRQ

8-BIT DATA BUS

15 0

ADC MULTIPLEXER
SELECT (ADMUX)

ADC CTRL. & STATUS
REGISTER (ADCSRA)

ADC DATA REGISTER
(ADCH/ADCL)

M
U

X
2

A
D

IE

A
D

A
T

E

A
D

S
C

A
D

E
N

A
D

IF
A

D
IF

M
U

X
1

M
U

X
0

A
D

P
S

0

A
D

P
S

1

A
D

P
S

2

M
U

X
3

CONVERSION LOGIC

10-BIT DAC

+
-

SAMPLE & HOLD
COMPARATOR

INTERNAL 
REFERENCE

MUX DECODER

M
U

X
4

AVCC

ADC7

ADC6

ADC5

ADC4

ADC3

ADC2

ADC1

ADC0

R
E

F
S

0

R
E

F
S

1

A
D

LA
R

+

-

C
H

A
N

N
E

L 
S

E
LE

C
T

IO
N

G
A

IN
 S

E
LE

C
T

IO
N

A
D

C
[9

:0
]

ADC MULTIPLEXER
OUTPUT

DIFFERENTIAL
AMPLIFIER

AREF

BANDGAP
REFERENCE

PRESCALER

SINGLE ENDED / DIFFERENTIAL SELECTION

GND

POS.
INPUT
MUX

NEG.
INPUT
MUX

TRIGGER
SELECT

ADTS[2:0]

INTERRUPT
FLAGS

START



203
2570N–AVR–05/11

ATmega325/3250/645/6450

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read
ADCH. Otherwise, ADCL must be read first, then ADCH, to ensure that the content of the Data
Registers belongs to the same conversion. Once ADCL is read, ADC access to Data Registers
is blocked. This means that if ADCL has been read, and a conversion completes before ADCH is
read, neither register is updated and the result from the conversion is lost. When ADCH is read,
ADC access to the ADCH and ADCL Registers is re-enabled. 

The ADC has its own interrupt which can be triggered when a conversion completes. When ADC
access to the Data Registers is prohibited between reading of ADCH and ADCL, the interrupt
will trigger even if the result is lost.

23.3 Starting a Conversion
A single conversion is started by writing a logical one to the ADC Start Conversion bit, ADSC.
This bit stays high as long as the conversion is in progress and will be cleared by hardware
when the conversion is completed. If a different data channel is selected while a conversion is in
progress, the ADC will finish the current conversion before performing the channel change. 

Alternatively, a conversion can be triggered automatically by various sources. Auto Triggering is
enabled by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The trigger source is
selected by setting the ADC Trigger Select bits, ADTS in ADCSRB (See description of the ADTS
bits for a list of the trigger sources). When a positive edge occurs on the selected trigger signal,
the ADC prescaler is reset and a conversion is started. This provides a method of starting con-
versions at fixed intervals. If the trigger signal still is set when the conversion completes, a new
conversion will not be started. If another positive edge occurs on the trigger signal during con-
version, the edge will be ignored. Note that an Interrupt Flag will be set even if the specific
interrupt is disabled or the Global Interrupt Enable bit in SREG is cleared. A conversion can thus
be triggered without causing an interrupt. However, the Interrupt Flag must be cleared in order to
trigger a new conversion at the next interrupt event. 

Figure 23-2. ADC Auto Trigger Logic

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion as soon
as the ongoing conversion has finished. The ADC then operates in Free Running mode, con-
stantly sampling and updating the ADC Data Register. The first conversion must be started by
writing a logical one to the ADSC bit in ADCSRA. In this mode the ADC will perform successive
conversions independently of whether the ADC Interrupt Flag, ADIF is cleared or not.
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If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to
one. ADSC can also be used to determine if a conversion is in progress. The ADSC bit will be
read as one during a conversion, independently of how the conversion was started.

23.4 Prescaling and Conversion Timing

Figure 23-3. ADC Prescaler

By default, the successive approximation circuitry requires an input clock frequency between
50kHz and 200kHz to get maximum resolution. If a lower resolution than 10 bits is needed, the
input clock frequency to the ADC can be higher than 200kHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency
from any CPU frequency above 100kHz. The prescaling is set by the ADPS bits in ADCSRA.
The prescaler starts counting from the moment the ADC is switched on by setting the ADEN bit
in ADCSRA. The prescaler keeps running for as long as the ADEN bit is set, and is continuously
reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion
starts at the following rising edge of the ADC clock cycle. 

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is switched
on (ADEN in ADCSRA is set) takes 25 ADC clock cycles in order to initialize the analog circuitry.

When the bandgap reference voltage is used as input to the ADC, it will take a certain time for
the voltage to stabilize. If not stabilized the first value read after the first conversion may be
wrong.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal conver-
sion and 13.5 ADC clock cycles after the start of an first conversion. When a conversion is
complete, the result is written to the ADC Data Registers, and ADIF is set. In Single Conversion
mode, ADSC is cleared simultaneously. The software may then set ADSC again, and a new
conversion will be initiated on the first rising ADC clock edge. 

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This assures
a fixed delay from the trigger event to the start of conversion. In this mode, the sample-and-hold
takes place two ADC clock cycles after the rising edge on the trigger source signal. Three addi-
tional CPU clock cycles are used for synchronization logic. When using Differential mode, along
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with Auto triggering from a source other than the ADC Conversion Complete, each conversion
will require 25 ADC clocks. This is because the ADC must be disabled and re-enabled after
every conversion.

In Free Running mode, a new conversion will be started immediately after the conversion com-
pletes, while ADSC remains high. For a summary of conversion times, see Table 23-1.

Figure 23-4. ADC Timing Diagram, First Conversion (Single Conversion Mode)

Figure 23-5. ADC Timing Diagram, Single Conversion

Figure 23-6. ADC Timing Diagram, Auto Triggered Conversion
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Figure 23-7. ADC Timing Diagram, Free Running Conversion

23.5 Changing Channel or Reference Selection
The MUXn and REFS1:0 bits in the ADMUX Register are single buffered through a temporary
register to which the CPU has random access. This ensures that the channels and reference
selection only takes place at a safe point during the conversion. The channel and reference
selection is continuously updated until a conversion is started. Once the conversion starts, the
channel and reference selection is locked to ensure a sufficient sampling time for the ADC. Con-
tinuous updating resumes in the last ADC clock cycle before the conversion completes (ADIF in
ADCSRA is set). Note that the conversion starts on the following rising ADC clock edge after
ADSC is written. The user is thus advised not to write new channel or reference selection values
to ADMUX until one ADC clock cycle after ADSC is written.

If Auto Triggering is used, the exact time of the triggering event can be indeterministic. Special
care must be taken when updating the ADMUX Register, in order to control which conversion
will be affected by the new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the
ADMUX Register is changed in this period, the user cannot tell if the next conversion is based
on the old or the new settings. ADMUX can be safely updated in the following ways:

1. When ADATE or ADEN is cleared.

2. During conversion, minimum one ADC clock cycle after the trigger event.

3. After a conversion, before the Interrupt Flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next ADC
conversion.

Table 23-1. ADC Conversion Time
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23.5.1 ADC Input Channels
When changing channel selections, the user should observe the following guidelines to ensure
that the correct channel is selected:

In Single Conversion mode, always select the channel before starting the conversion. The chan-
nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the
simplest method is to wait for the conversion to complete before changing the channel selection.

In Free Running mode, always select the channel before starting the first conversion. The chan-
nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the
simplest method is to wait for the first conversion to complete, and then change the channel
selection. Since the next conversion has already started automatically, the next result will reflect
the previous channel selection. Subsequent conversions will reflect the new channel selection.

23.5.2 ADC Voltage Reference
The reference voltage for the ADC (VREF) indicates the conversion range for the ADC. Single
ended channels that exceed VREF will result in codes close to 0x3FF. VREF can be selected as
either AVCC, internal 1.1V reference, or external AREF pin.

AVCC is connected to the ADC through a passive switch. The internal 1.1V reference is gener-
ated from the internal bandgap reference (VBG) through an internal buffer. In either case, the
external AREF pin is directly connected to the ADC, and the reference voltage can be made
more immune to noise by connecting a capacitor between the AREF pin and ground. VREF can
also be measured at the AREF pin with a high impedant voltmeter. Note that VREF is a high
impedant source, and only a capacitive load should be connected in a system.

If the user has a fixed voltage source connected to the AREF pin, the user may not use the other
reference voltage options in the application, as they will be shorted to the external voltage. If no
external voltage is applied to the AREF pin, the user may switch between AVCC and 1.1V as
reference selection. The first ADC conversion result after switching reference voltage source
may be inaccurate, and the user is advised to discard this result.

23.6 ADC Noise Canceler
The ADC features a noise canceler that enables conversion during sleep mode to reduce noise
induced from the CPU core and other I/O peripherals. The noise canceler can be used with ADC
Noise Reduction and Idle mode. To make use of this feature, the following procedure should be
used:

1. Make sure that the ADC is enabled and is not busy converting. Single Conversion
mode must be selected and the ADC conversion complete interrupt must be
enabled.

2. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conversion
once the CPU has been halted.

3. If no other interrupts occur before the ADC conversion completes, the ADC interrupt
will wake up the CPU and execute the ADC Conversion Complete interrupt routine. If
another interrupt wakes up the CPU before the ADC conversion is complete, that
interrupt will be executed, and an ADC Conversion Complete interrupt request will be
generated when the ADC conversion completes. The CPU will remain in active mode
until a new sleep command is executed.

Note that the ADC will not be automatically turned off when entering other sleep modes than Idle
mode and ADC Noise Reduction mode. The user is advised to write zero to ADEN before enter-
ing such sleep modes to avoid excessive power consumption. 
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23.6.1 Analog Input Circuitry
The analog input circuitry for single ended channels is illustrated in Figure 23-8. An analog
source applied to ADCn is subjected to the pin capacitance and input leakage of that pin, regard-
less of whether that channel is selected as input for the ADC. When the channel is selected, the
source must drive the S/H capacitor through the series resistance (combined resistance in the
input path).

The ADC is optimized for analog signals with an output impedance of approximately 10 kΩ or
less. If such a source is used, the sampling time will be negligible. If a source with higher imped-
ance is used, the sampling time will depend on how long time the source needs to charge the
S/H capacitor, with can vary widely. The user is recommended to only use low impedant sources
with slowly varying signals, since this minimizes the required charge transfer to the S/H
capacitor.

Signal components higher than the Nyquist frequency (fADC/2) should not be present for either
kind of channels, to avoid distortion from unpredictable signal convolution. The user is advised
to remove high frequency components with a low-pass filter before applying the signals as
inputs to the ADC.

Figure 23-8. Analog Input Circuitry

23.6.2 Analog Noise Canceling Techniques
Digital circuitry inside and outside the device generates EMI which might affect the accuracy of
analog measurements. If conversion accuracy is critical, the noise level can be reduced by
applying the following techniques:

1. Keep analog signal paths as short as possible. Make sure analog tracks run over the
analog ground plane, and keep them well away from high-speed switching digital
tracks.

2. The AVCC pin on the device should be connected to the digital VCC supply voltage
via an LC network as shown in Figure 23-9.

3. Use the ADC noise canceler function to reduce induced noise from the CPU.

4. If any ADC port pins are used as digital outputs, it is essential that these do not
switch while a conversion is in progress.
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Figure 23-9. ADC Power Connections

23.6.3 ADC Accuracy Definitions
An n-bit single-ended ADC converts a voltage linearly between GND and VREF in 2n steps
(LSBs). The lowest code is read as 0, and the highest code is read as 2n-1. 

Several parameters describe the deviation from the ideal behavior:

• Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal transition 
(at 0.5 LSB). Ideal value: 0 LSB.

Figure 23-10. Offset Error
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• Gain Error: After adjusting for offset, the Gain Error is found as the deviation of the last 
transition (0x3FE to 0x3FF) compared to the ideal transition (at 1.5 LSB below maximum). 
Ideal value: 0 LSB

Figure 23-11. Gain Error

• Integral Non-linearity (INL): After adjusting for offset and gain error, the INL is the maximum 
deviation of an actual transition compared to an ideal transition for any code. Ideal value: 0 
LSB.

Figure 23-12. Integral Non-linearity (INL)
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• Differential Non-linearity (DNL): The maximum deviation of the actual code width (the 
interval between two adjacent transitions) from the ideal code width (1 LSB). Ideal value: 0 
LSB.

Figure 23-13. Differential Non-linearity (DNL)

• Quantization Error: Due to the quantization of the input voltage into a finite number of codes, 
a range of input voltages (1 LSB wide) will code to the same value. Always ± 0.5 LSB.

• Absolute Accuracy: The maximum deviation of an actual (unadjusted) transition compared 
to an ideal transition for any code. This is the compound effect of offset, gain error, 
differential error, non-linearity, and quantization error. Ideal value: ± 0.5 LSB.

23.7 ADC Conversion Result
After the conversion is complete (ADIF is high), the conversion result can be found in the ADC
Result Registers (ADCL, ADCH). 

For single ended conversion, the result is

where VIN is the voltage on the selected input pin and VREF the selected voltage reference (see
Table 23-3 on page 213 and Table 23-4 on page 214). 0x000 represents analog ground, and
0x3FF represents the selected reference voltage minus one LSB.
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Figure 23-14. Differential Measurement Range

ADMUX = 0xFB (ADC3 - ADC2, 1.1V reference, left adjusted result) 

Voltage on ADC3 is 300 mV, voltage on ADC2 is 500 mV. 

ADCR = 512 * (300 - 500) / 1100 = -93 = 0x3A3.

ADCL will thus read 0xC0, and ADCH will read 0xD8. Writing zero to ADLAR right adjusts the
result: ADCL = 0xA3, ADCH = 0x03.

Table 23-2. Correlation Between Input Voltage and Output Codes

VADCn Read Code Corresponding Decimal Value

 VADCm + VREF 0x1FF 511

VADCm + 511/512 VREF 0x1FF 511

VADCm + 510/512 VREF 0x1FE 510

... ... ...

VADCm + 1/512 VREF 0x001 1

VADCm 0x000 0

VADCm - 1/512 VREF 0x3FF -1

... ... ...

VADCm - 511/512 VREF 0x201 -511

VADCm - VREF 0x200 -512

0
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23.8 Register Description

23.8.1 ADMUX – ADC Multiplexer Selection Register

• Bit 7:6 – REFS1:0: Reference Selection Bits
These bits select the voltage reference for the ADC, as shown in Table 23-3. If these bits are
changed during a conversion, the change will not go in effect until this conversion is complete
(ADIF in ADCSRA is set). The internal voltage reference options may not be used if an external
reference voltage is being applied to the AREF pin.

•  Bit 5 – ADLAR: ADC Left Adjust Result
The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data Register.
Write one to ADLAR to left adjust the result. Otherwise, the result is right adjusted. Changing the
ADLAR bit will affect the ADC Data Register immediately, regardless of any ongoing conver-
sions. For a complete description of this bit, see “ADCL and ADCH – The ADC Data Register” on
page 216.

• Bits 4:0 – MUX4:0: Analog Channel Selection Bits
The value of these bits selects which combination of analog inputs are connected to the ADC.
See Table 23-4 for details. If these bits are changed during a conversion, the change will not go
in effect until this conversion is complete (ADIF in ADCSRA is set).

Bit 7 6 5 4 3 2 1 0

(0x7C) REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 ADMUX

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 23-3. Voltage Reference Selections for ADC

REFS1 REFS0 Voltage Reference Selection

0 0 AREF, Internal Vref turned off

0 1 AVCC with external capacitor at AREF pin

1 0 Reserved

1 1 Internal 1.1V Voltage Reference with external capacitor at AREF pin
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Table 23-4. Input Channel Selections

MUX4..0 Single Ended Input Positive Differential Input Negative Differential Input

00000 ADC0

N/A

00001 ADC1

00010 ADC2

00011 ADC3

00100 ADC4

00101 ADC5

00110 ADC6

00111 ADC7

01000

01001

01010

01011

01100

01101

01110

01111

10000 ADC0 ADC1

10001 ADC1 ADC1

10010 N/A ADC2 ADC1

10011 ADC3 ADC1

10100 ADC4 ADC1

10101 ADC5 ADC1

10110 ADC6 ADC1

10111 ADC7 ADC1

11000 ADC0 ADC2

11001 ADC1 ADC2

11010 ADC2 ADC2

11011 ADC3 ADC2

11100 ADC4 ADC2

11101 ADC5 ADC2

11110 1.1V (VBG) N/A

11111 0V (GND)



215
2570N–AVR–05/11

ATmega325/3250/645/6450

23.8.2 ADCSRA – ADC Control and Status Register A

• Bit 7 – ADEN: ADC Enable
Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the
ADC off while a conversion is in progress, will terminate this conversion.

• Bit 6 – ADSC: ADC Start Conversion
In Single Conversion mode, write this bit to one to start each conversion. In Free Running mode,
write this bit to one to start the first conversion. The first conversion after ADSC has been written
after the ADC has been enabled, or if ADSC is written at the same time as the ADC is enabled,
will take 25 ADC clock cycles instead of the normal 13. This first conversion performs initializa-
tion of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is complete,
it returns to zero. Writing zero to this bit has no effect.

• Bit 5 – ADATE: ADC Auto Trigger Enable
When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start a con-
version on a positive edge of the selected trigger signal. The trigger source is selected by setting
the ADC Trigger Select bits, ADTS in ADCSRB.

• Bit 4 – ADIF: ADC Interrupt Flag
This bit is set when an ADC conversion completes and the Data Registers are updated. The
ADC Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in SREG are set.
ADIF is cleared by hardware when executing the corresponding interrupt handling vector. Alter-
natively, ADIF is cleared by writing a logical one to the flag. Beware that if doing a Read-Modify-
Write on ADCSRA, a pending interrupt can be disabled. This also applies if the SBI and CBI
instructions are used.

• Bit 3 – ADIE: ADC Interrupt Enable
When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Complete Inter-
rupt is activated.

Bit 7 6 5 4 3 2 1 0

(0x7A) ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bits 2:0 – ADPS2:0: ADC Prescaler Select Bits
These bits determine the division factor between the XTAL frequency and the input clock to the
ADC.

23.8.3 ADCL and ADCH – The ADC Data Register

ADLAR = 0

ADLAR = 1

When an ADC conversion is complete, the result is found in these two registers. When ADCL is
read, the ADC Data Register is not updated until ADCH is read. Consequently, if the result is left
adjusted and no more than 8-bit precision is required, it is sufficient to read ADCH. Otherwise,
ADCL must be read first, then ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is read from
the registers. If ADLAR is set, the result is left adjusted. If ADLAR is cleared (default), the result
is right adjusted. 

Table 23-5. ADC Prescaler Selections

ADPS2 ADPS1 ADPS0 Division Factor

0 0 0 2

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

Bit 15 14 13 12 11 10 9 8

(0x79) – – – – – – ADC9 ADC8 ADCH

(0x78) ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

(0x79) ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH

(0x78) ADC1 ADC0 – – – – – – ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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• ADC9:0: ADC Conversion Result
These bits represent the result from the conversion, as detailed in “ADC Conversion Result” on
page 211.

23.8.4 ADCSRB – ADC Control and Status Register B

• Bit 7 – Reserved Bit
This bit is reserved for future use. To ensure compatibility with future devices, this bit must be
written to zero when ADCSRB is written.

• Bit 2:0 – ADTS2:0: ADC Auto Trigger Source
If ADATE in ADCSRA is written to one, the value of these bits selects which source will trigger
an ADC conversion. If ADATE is cleared, the ADTS2:0 settings will have no effect. A conversion
will be triggered by the rising edge of the selected Interrupt Flag. Note that switching from a trig-
ger source that is cleared to a trigger source that is set, will generate a positive edge on the
trigger signal. If ADEN in ADCSRA is set, this will start a conversion. Switching to Free Running
mode (ADTS[2:0]=0) will not cause a trigger event, even if the ADC Interrupt Flag is set.

23.8.5 DIDR0 – Digital Input Disable Register 0

• Bit 7:0 – ADC7D:ADC0D: ADC7:0 Digital Input Disable
When this bit is written logic one, the digital input buffer on the corresponding ADC pin is dis-
abled. The corresponding PIN Register bit will always read as zero when this bit is set. When an
analog signal is applied to the ADC7..0 pin and the digital input from this pin is not needed, this
bit should be written logic one to reduce power consumption in the digital input buffer. 

Bit 7 6 5 4 3 2 1 0

(0x7B) – ACME – – – ADTS2 ADTS1 ADTS0 ADCSRB

Read/Write R R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 23-6. ADC Auto Trigger Source Selections

ADTS2 ADTS1 ADTS0 Trigger Source

0 0 0 Free Running mode

0 0 1 Analog Comparator

0 1 0 External Interrupt Request 0

0 1 1 Timer/Counter0 Compare MatchA

1 0 0 Timer/Counter0 Overflow

1 0 1 Timer/Counter1 Compare Match B

1 1 0 Timer/Counter1 Overflow

1 1 1 Timer/Counter1 Capture Event

Bit 7 6 5 4 3 2 1 0

(0x7E) ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D DIDR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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24. JTAG Interface and On-chip Debug System

24.1 Features
• JTAG (IEEE std. 1149.1 Compliant) Interface
• Boundary-scan Capabilities According to the IEEE std. 1149.1 (JTAG) Standard
• Debugger Access to:

– All Internal Peripheral Units
– Internal and External RAM
– The Internal Register File
– Program Counter
– EEPROM and Flash Memories

• Extensive On-chip Debug Support for Break Conditions, Including
– AVR Break Instruction
– Break on Change of Program Memory Flow
– Single Step Break
– Program Memory Break Points on Single Address or Address Range
– Data Memory Break Points on Single Address or Address Range

• Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
• On-chip Debugging Supported by AVR Studio®

24.2 Overview
The AVR IEEE std. 1149.1 compliant JTAG interface can be used for 

• Testing PCBs by using the JTAG Boundary-scan capability

• Programming the non-volatile memories, Fuses and Lock bits

• On-chip debugging

A brief description is given in the following sections. Detailed descriptions for Programming via
the JTAG interface, and using the Boundary-scan Chain can be found in the sections “Program-
ming via the JTAG Interface” on page 284 and “IEEE 1149.1 (JTAG) Boundary-scan” on page
224, respectively. The On-chip Debug support is considered being private JTAG instructions,
and distributed within ATMEL and to selected third party vendors only.

Figure 24-1 shows a block diagram of the JTAG interface and the On-chip Debug system. The
TAP Controller is a state machine controlled by the TCK and TMS signals. The TAP Controller
selects either the JTAG Instruction Register or one of several Data Registers as the scan chain
(Shift Register) between the TDI – input and TDO – output. The Instruction Register holds JTAG
instructions controlling the behavior of a Data Register.

The ID-Register, Bypass Register, and the Boundary-scan Chain are the Data Registers used
for board-level testing. The JTAG Programming Interface (actually consisting of several physical
and virtual Data Registers) is used for serial programming via the JTAG interface. The Internal
Scan Chain and Break Point Scan Chain are used for On-chip debugging only.

24.3 TAP – Test Access Port
The JTAG interface is accessed through four of the AVR’s pins. In JTAG terminology, these pins
constitute the Test Access Port – TAP. These pins are:

• TMS: Test mode select. This pin is used for navigating through the TAP-controller state 
machine.

• TCK: Test Clock. JTAG operation is synchronous to TCK.

• TDI: Test Data In. Serial input data to be shifted in to the Instruction Register or Data 
Register (Scan Chains).
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• TDO: Test Data Out. Serial output data from Instruction Register or Data Register.

The IEEE std. 1149.1 also specifies an optional TAP signal; TRST – Test ReSeT – which is not
provided.

When the JTAGEN fuse is unprogrammed, these four TAP pins are normal port pins and the
TAP controller is in reset. When programmed and the JTD bit in MCUCSR is cleared, the TAP
pins are internally pulled high and the JTAG is enabled for Boundary-scan and programming.
The device is shipped with this fuse programmed.

For the On-chip Debug system, in addition to the JTAG interface pins, the RESET pin is moni-
tored by the debugger to be able to detect external reset sources. The debugger can also pull
the RESET pin low to reset the whole system, assuming only open collectors on the reset line
are used in the application.

Figure 24-1. Block Diagram
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Figure 24-2. TAP Controller State Diagram

24.4 TAP Controller
The TAP controller is a 16-state finite state machine that controls the operation of the Boundary-
scan circuitry, JTAG programming circuitry, or On-chip Debug system. The state transitions
depicted in Figure 24-2 depend on the signal present on TMS (shown adjacent to each state
transition) at the time of the rising edge at TCK. The initial state after a Power-on Reset is Test-
Logic-Reset.

As a definition in this document, the LSB is shifted in and out first for all Shift Registers.

Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG interface is:

• At the TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter the Shift 
Instruction Register – Shift-IR state. While in this state, shift the four bits of the JTAG 
instructions into the JTAG Instruction Register from the TDI input at the rising edge of TCK. 
The TMS input must be held low during input of the 3 LSBs in order to remain in the Shift-IR 
state. The MSB of the instruction is shifted in when this state is left by setting TMS high. 
While the instruction is shifted in from the TDI pin, the captured IR-state 0x01 is shifted out 
on the TDO pin. The JTAG Instruction selects a particular Data Register as path between 
TDI and TDO and controls the circuitry surrounding the selected Data Register.
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• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction is 
latched onto the parallel output from the Shift Register path in the Update-IR state. The Exit-
IR, Pause-IR, and Exit2-IR states are only used for navigating the state machine.

• At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the Shift 
Data Register – Shift-DR state. While in this state, upload the selected Data Register 
(selected by the present JTAG instruction in the JTAG Instruction Register) from the TDI 
input at the rising edge of TCK. In order to remain in the Shift-DR state, the TMS input must 
be held low during input of all bits except the MSB. The MSB of the data is shifted in when 
this state is left by setting TMS high. While the Data Register is shifted in from the TDI pin, 
the parallel inputs to the Data Register captured in the Capture-DR state is shifted out on the 
TDO pin.

• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected Data 
Register has a latched parallel-output, the latching takes place in the Update-DR state. The 
Exit-DR, Pause-DR, and Exit2-DR states are only used for navigating the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between selecting
JTAG instruction and using Data Registers, and some JTAG instructions may select certain
functions to be performed in the Run-Test/Idle, making it unsuitable as an Idle state.

Note: Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can always be
entered by holding TMS high for five TCK clock periods.

For detailed information on the JTAG specification, refer to the literature listed in “Bibliography”
on page 223.

24.5 Using the Boundary-scan Chain
A complete description of the Boundary-scan capabilities are given in the section “IEEE 1149.1
(JTAG) Boundary-scan” on page 224.

24.6 Using the On-chip Debug System
As shown in Figure 24-1, the hardware support for On-chip Debugging consists mainly of

• A scan chain on the interface between the internal AVR CPU and the internal peripheral 
units.

• Break Point unit.

• Communication interface between the CPU and JTAG system.

All read or modify/write operations needed for implementing the Debugger are done by applying
AVR instructions via the internal AVR CPU Scan Chain. The CPU sends the result to an I/O
memory mapped location which is part of the communication interface between the CPU and the
JTAG system.

The Break Point Unit implements Break on Change of Program Flow, Single Step Break, two
Program Memory Break Points, and two combined Break Points. Together, the four Break
Points can be configured as either:

• 4 single Program Memory Break Points.

• 3 Single Program Memory Break Point + 1 single Data Memory Break Point.

• 2 single Program Memory Break Points + 2 single Data Memory Break Points.

• 2 single Program Memory Break Points + 1 Program Memory Break Point with mask (“range 
Break Point”).

• 2 single Program Memory Break Points + 1 Data Memory Break Point with mask (“range 
Break Point”).
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A debugger, like the AVR Studio, may however use one or more of these resources for its inter-
nal purpose, leaving less flexibility to the end-user.

A list of the On-chip Debug specific JTAG instructions is given in “On-chip Debug Specific JTAG
Instructions” on page 222. 

The JTAGEN Fuse must be programmed to enable the JTAG Test Access Port. In addition, the
OCDEN Fuse must be programmed and no Lock bits must be set for the On-chip debug system
to work. As a security feature, the On-chip debug system is disabled when either of the LB1 or
LB2 Lock bits are set. Otherwise, the On-chip debug system would have provided a back-door
into a secured device.

The AVR Studio enables the user to fully control execution of programs on an AVR device with
On-chip Debug capability, AVR In-Circuit Emulator, or the built-in AVR Instruction Set Simulator.
AVR Studio® supports source level execution of Assembly programs assembled with Atmel Cor-
poration’s AVR Assembler and C programs compiled with third party vendors’ compilers.

AVR Studio runs under Microsoft® Windows® 95/98/2000, Windows NT® and Windows XP®.

For a full description of the AVR Studio, please refer to the AVR Studio User Guide. Only high-
lights are presented in this document.

All necessary execution commands are available in AVR Studio, both on source level and on
disassembly level. The user can execute the program, single step through the code either by
tracing into or stepping over functions, step out of functions, place the cursor on a statement and
execute until the statement is reached, stop the execution, and reset the execution target. In
addition, the user can have an unlimited number of code Break Points (using the BREAK
instruction) and up to two data memory Break Points, alternatively combined as a mask (range)
Break Point.

24.7 On-chip Debug Specific JTAG Instructions
The On-chip debug support is considered being private JTAG instructions, and distributed within
ATMEL and to selected third party vendors only. Instruction opcodes are listed for reference.

24.7.1 PRIVATE0; 0x8
Private JTAG instruction for accessing On-chip debug system.

24.7.2 PRIVATE1; 0x9
Private JTAG instruction for accessing On-chip debug system.

24.7.3 PRIVATE2; 0xA
Private JTAG instruction for accessing On-chip debug system.

24.7.4 PRIVATE3; 0xB
Private JTAG instruction for accessing On-chip debug system.
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24.8 Using the JTAG Programming Capabilities
Programming of AVR parts via JTAG is performed via the 4-pin JTAG port, TCK, TMS, TDI, and
TDO. These are the only pins that need to be controlled/observed to perform JTAG program-
ming (in addition to power pins). It is not required to apply 12V externally. The JTAGEN Fuse
must be programmed and the JTD bit in the MCUCR Register must be cleared to enable the
JTAG Test Access Port.

The JTAG programming capability supports:

• Flash programming and verifying.

• EEPROM programming and verifying.

• Fuse programming and verifying.

• Lock bit programming and verifying.

The Lock bit security is exactly as in parallel programming mode. If the Lock bits LB1 or LB2 are
programmed, the OCDEN Fuse cannot be programmed unless first doing a chip erase. This is a
security feature that ensures no back-door exists for reading out the content of a secured
device.

The details on programming through the JTAG interface and programming specific JTAG
instructions are given in the section “Programming via the JTAG Interface” on page 284.

24.9 Bibliography
For more information about general Boundary-scan, the following literature can be consulted:

• IEEE: IEEE Std. 1149.1-1990. IEEE Standard Test Access Port and Boundary-scan 
Architecture, IEEE, 1993.

Colin Maunder: The Board Designers Guide to Testable Logic Circuits, Addison-Wesley, 1992.

24.10 Register Description

24.10.1 OCDR – On-chip Debug Register

The OCDR Register provides a communication channel from the running program in the micro-
controller to the debugger. The CPU can transfer a byte to the debugger by writing to this
location. At the same time, an internal flag; I/O Debug Register Dirty – IDRD – is set to indicate
to the debugger that the register has been written. When the CPU reads the OCDR Register the
7 LSB will be from the OCDR Register, while the MSB is the IDRD bit. The debugger clears the
IDRD bit when it has read the information.

In some AVR devices, this register is shared with a standard I/O location. In this case, the OCDR
Register can only be accessed if the OCDEN Fuse is programmed, and the debugger enables
access to the OCDR Register. In all other cases, the standard I/O location is accessed.

Refer to the debugger documentation for further information on how to use this register.

Bit 7 6 5 4 3 2 1 0

0x31 (0x51) MSB/IDRD LSB OCDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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25. IEEE 1149.1 (JTAG) Boundary-scan

25.1 Features
• JTAG (IEEE std. 1149.1 compliant) Interface
• Boundary-scan Capabilities According to the JTAG Standard
• Full Scan of all Port Functions as well as Analog Circuitry having Off-chip Connections
• Supports the Optional IDCODE Instruction
• Additional Public AVR_RESET Instruction to Reset the AVR

25.2 System Overview
The Boundary-scan chain has the capability of driving and observing the logic levels on the digi-
tal I/O pins, as well as the boundary between digital and analog logic for analog circuitry having
off-chip connections. At system level, all ICs having JTAG capabilities are connected serially by
the TDI/TDO signals to form a long Shift Register. An external controller sets up the devices to
drive values at their output pins, and observe the input values received from other devices. The
controller compares the received data with the expected result. In this way, Boundary-scan pro-
vides a mechanism for testing interconnections and integrity of components on Printed Circuits
Boards by using the four TAP signals only.

The four IEEE 1149.1 defined mandatory JTAG instructions IDCODE, BYPASS, SAMPLE/PRE-
LOAD, and EXTEST, as well as the AVR specific public JTAG instruction AVR_RESET can be
used for testing the Printed Circuit Board. Initial scanning of the Data Register path will show the
ID-Code of the device, since IDCODE is the default JTAG instruction. It may be desirable to
have the AVR device in reset during test mode. If not reset, inputs to the device may be deter-
mined by the scan operations, and the internal software may be in an undetermined state when
exiting the test mode. Entering reset, the outputs of any port pin will instantly enter the high
impedance state, making the HIGHZ instruction redundant. If needed, the BYPASS instruction
can be issued to make the shortest possible scan chain through the device. The device can be
set in the reset state either by pulling the external RESET pin low, or issuing the AVR_RESET
instruction with appropriate setting of the Reset Data Register.

The EXTEST instruction is used for sampling external pins and loading output pins with data.
The data from the output latch will be driven out on the pins as soon as the EXTEST instruction
is loaded into the JTAG IR-Register. Therefore, the SAMPLE/PRELOAD should also be used for
setting initial values to the scan ring, to avoid damaging the board when issuing the EXTEST
instruction for the first time. SAMPLE/PRELOAD can also be used for taking a snapshot of the
external pins during normal operation of the part.

The JTAGEN Fuse must be programmed and the JTD bit in the I/O Register MCUCR must be
cleared to enable the JTAG Test Access Port.

When using the JTAG interface for Boundary-scan, using a JTAG TCK clock frequency higher
than the internal chip frequency is possible. The chip clock is not required to run.

25.3 Data Registers 
The Data Registers relevant for Boundary-scan operations are:

• Bypass Register

• Device Identification Register

• Reset Register

• Boundary-scan Chain
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25.3.1 Bypass Register
The Bypass Register consists of a single Shift Register stage. When the Bypass Register is
selected as path between TDI and TDO, the register is reset to 0 when leaving the Capture-DR
controller state. The Bypass Register can be used to shorten the scan chain on a system when
the other devices are to be tested.

25.3.2 Device Identification Register
Figure 25-1 shows the structure of the Device Identification Register. 

Figure 25-1. The Format of the Device Identification Register

25.3.2.1 Version
Version is a 4-bit number identifying the revision of the component. The JTAG version number
follows the revision of the device. Revision A is 0x0, revision B is 0x1 and so on.

25.3.2.2 Part Number
The part number is a 16-bit code identifying the component. The JTAG Part Number for Atmel
ATmega325/3250/645/6450 is listed in Table 25-1.

25.3.2.3 Manufacturer ID
The Manufacturer ID is a 11-bit code identifying the manufacturer. The JTAG manufacturer ID
for ATMEL is listed in Table 25-2.

25.3.3 Reset Register
The Reset Register is a test Data Register used to reset the part. Since the AVR tri-states Port
Pins when reset, the Reset Register can also replace the function of the unimplemented optional
JTAG instruction HIGHZ.

A high value in the Reset Register corresponds to pulling the external Reset low. The part is
reset as long as there is a high value present in the Reset Register. Depending on the fuse set-
tings for the clock options, the part will remain reset for a reset time-out period (refer to “Clock

MSB LSB

Bit 31 28 27 12 11 1 0

Device ID Version Part Number Manufacturer ID 1

4 bits 16 bits 11 bits 1-bit

Table 25-1. AVR JTAG Part Number

Part Number JTAG Part Number (Hex)

ATmega325 0x9505

ATmega3250 0x9506

ATmega645 0x9605

ATmega6450 0x9606

Table 25-2. Manufacturer ID

Manufacturer JTAG Manufacturer ID (Hex)

ATMEL 0x01F
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Sources” on page 27) after releasing the Reset Register. The output from this Data Register is
not latched, so the reset will take place immediately, as shown in Figure 25-2.

Figure 25-2. Reset Register

25.3.4 Boundary-scan Chain
The Boundary-scan Chain has the capability of driving and observing the logic levels on the dig-
ital I/O pins, as well as the boundary between digital and analog logic for analog circuitry having
off-chip connections.

See “Boundary-scan Chain” on page 228 for a complete description.

25.4 Boundary-scan Specific JTAG Instructions
The Instruction Register is 4-bit wide, supporting up to 16 instructions. Listed below are the
JTAG instructions useful for Boundary-scan operation. Note that the optional HIGHZ instruction
is not implemented, but all outputs with tri-state capability can be set in high-impedant state by
using the AVR_RESET instruction, since the initial state for all port pins is tri-state.

As a definition in this data sheet, the LSB is shifted in and out first for all Shift Registers.

The OPCODE for each instruction is shown behind the instruction name in hex format. The text
describes which Data Register is selected as path between TDI and TDO for each instruction.

25.4.1 EXTEST; 0x0
Mandatory JTAG instruction for selecting the Boundary-scan Chain as Data Register for testing
circuitry external to the AVR package. For port-pins, Pull-up Disable, Output Control, Output
Data, and Input Data are all accessible in the scan chain. For Analog circuits having off-chip
connections, the interface between the analog and the digital logic is in the scan chain. The con-
tents of the latched outputs of the Boundary-scan chain is driven out as soon as the JTAG IR-
Register is loaded with the EXTEST instruction.

The active states are:

• Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.

• Shift-DR: The Internal Scan Chain is shifted by the TCK input.

• Update-DR: Data from the scan chain is applied to output pins.
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25.4.2 IDCODE; 0x1
Optional JTAG instruction selecting the 32 bit ID-Register as Data Register. The ID-Register
consists of a version number, a device number and the manufacturer code chosen by JEDEC.
This is the default instruction after power-up.

The active states are:

• Capture-DR: Data in the IDCODE Register is sampled into the Boundary-scan Chain.

• Shift-DR: The IDCODE scan chain is shifted by the TCK input.

25.4.3 SAMPLE_PRELOAD; 0x2
Mandatory JTAG instruction for pre-loading the output latches and taking a snap-shot of the
input/output pins without affecting the system operation. However, the output latches are not
connected to the pins. The Boundary-scan Chain is selected as Data Register. 

The active states are: 

• Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain. 

• Shift-DR: The Boundary-scan Chain is shifted by the TCK input. 

• Update-DR: Data from the Boundary-scan chain is applied to the output latches. However, 
the output latches are not connected to the pins. 

25.4.4 AVR_RESET; 0xC
The AVR specific public JTAG instruction for forcing the AVR device into the Reset mode or
releasing the JTAG reset source. The TAP controller is not reset by this instruction. The one bit
Reset Register is selected as Data Register. Note that the reset will be active as long as there is
a logic “one” in the Reset Chain. The output from this chain is not latched. 

The active states are:

• Shift-DR: The Reset Register is shifted by the TCK input.

25.4.5 BYPASS; 0xF
Mandatory JTAG instruction selecting the Bypass Register for Data Register.

The active states are:

• Capture-DR: Loads a logic “0” into the Bypass Register.

• Shift-DR: The Bypass Register cell between TDI and TDO is shifted.

25.5 Boundary-scan Related Register in I/O Memory

25.5.1 MCUCR – MCU Control Register
The MCU Control Register contains control bits for general MCU functions.

• Bit 7 – JTD: JTAG Interface Disable
When this bit is zero, the JTAG interface is enabled if the JTAGEN Fuse is programmed. If this
bit is one, the JTAG interface is disabled. In order to avoid unintentional disabling or enabling of
the JTAG interface, a timed sequence must be followed when changing this bit: The application

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) JTD – – PUD – – IVSEL IVCE MCUCR

Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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software must write this bit to the desired value twice within four cycles to change its value. Note
that this bit must not be altered when using the On-chip Debug system.

If the JTAG interface is left unconnected to other JTAG circuitry, the JTD bit should be set to
one. The reason for this is to avoid static current at the TDO pin in the JTAG interface.

25.5.2 MCUSR – MCU Status Register
The MCU Status Register provides information on which reset source caused an MCU reset.

• Bit 4 – JTRF: JTAG Reset Flag
This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by
the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic
zero to the flag.

25.6 Boundary-scan Chain
The Boundary-scan chain has the capability of driving and observing the logic levels on the digi-
tal I/O pins, as well as the boundary between digital and analog logic for analog circuitry having
off-chip connection. 

25.6.1 Scanning the Digital Port Pins
Figure 25-3 shows the Boundary-scan Cell for a bi-directional port pin with pull-up function. The
cell consists of a standard Boundary-scan cell for the Pull-up Enable – PUExn – function, and a
bi-directional pin cell that combines the three signals Output Control – OCxn, Output Data –
ODxn, and Input Data – IDxn, into only a two-stage Shift Register. The port and pin indexes are
not used in the following description

The Boundary-scan logic is not included in the figures in the Data Sheet. Figure 25-4 shows a
simple digital port pin as described in the section “I/O-Ports” on page 60. The Boundary-scan
details from Figure 25-3 replaces the dashed box in Figure 25-4.

When no alternate port function is present, the Input Data – ID – corresponds to the PINxn Reg-
ister value (but ID has no synchronizer), Output Data corresponds to the PORT Register, Output
Control corresponds to the Data Direction – DD Register, and the Pull-up Enable – PUExn – cor-
responds to logic expression PUD · DDxn · PORTxn.

Digital alternate port functions are connected outside the dotted box in Figure 25-4 to make the
scan chain read the actual pin value. For Analog function, there is a direct connection from the
external pin to the analog circuit, and a scan chain is inserted on the interface between the digi-
tal logic and the analog circuitry.

Bit 7 6 5 4 3 2 1 0

0x34 (0x54) – – – JTRF WDRF BORF EXTRF PORF MCUSR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description
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Figure 25-3. Boundary-scan Cell for Bi-directional Port Pin with Pull-up Function.
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Figure 25-4. General Port Pin Schematic Diagram

25.6.2 Scanning the RESET Pin
The RESET pin accepts 5V active low logic for standard reset operation, and 12V active high
logic for High Voltage Parallel programming. An observe-only cell as shown in Figure 25-5 is
inserted both for the 5V reset signal; RSTT, and the 12V reset signal; RSTHV. 

Figure 25-5. Observe-only Cell
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25.6.3 Scanning the Clock Pins
The AVR devices have many clock options selectable by fuses. These are: Internal RC Oscilla-
tor, External Clock, (High Frequency) Crystal Oscillator, Low-frequency Crystal Oscillator, and
Ceramic Resonator.

Figure 25-6 shows how each Oscillator with external connection is supported in the scan chain.
The Enable signal is supported with a general Boundary-scan cell, while the Oscillator/clock out-
put is attached to an observe-only cell. In addition to the main clock, the timer Oscillator is
scanned in the same way. The output from the internal RC Oscillator is not scanned, as this
Oscillator does not have external connections. 

Figure 25-6. Boundary-scan Cells for Oscillators and Clock Options

Table 25-3 summaries the scan registers for the external clock pin XTAL1, oscillators with
XTAL1/XTAL2 connections as well as 32kHz Timer Oscillator.

Note: 1. Do not enable more than one clock source as main clock at a time.

2. Scanning an Oscillator output gives unpredictable results as there is a frequency drift between 
the internal Oscillator and the JTAG TCK clock. If possible, scanning an external clock is 
preferred.

3. The clock configuration is programmed by fuses. As a fuse is not changed run-time, the clock 
configuration is considered fixed for a given application. The user is advised to scan the same 
clock option as to be used in the final system. The enable signals are supported in the scan 
chain because the system logic can disable clock options in sleep modes, thereby disconnect-
ing the Oscillator pins from the scan path if not provided.

Table 25-3. Scan Signals for the Oscillator(1)(2)(3)

Enable Signal Scanned Clock Line Clock Option 

Scanned Clock 
Line when not 

Used

EXTCLKEN EXTCLK (XTAL1) External Clock 0

OSCON OSCCK External Crystal

External Ceramic Resonator

1

OSC32EN OSC32CK Low Freq. External Crystal 1
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25.6.4 Scanning the Analog Comparator
The relevant Comparator signals regarding Boundary-scan are shown in Figure 25-7. The
Boundary-scan cell from Figure 25-8 is attached to each of these signals. The signals are
described in Table 25-4.

The Comparator need not be used for pure connectivity testing, since all analog inputs are
shared with a digital port pin as well.

Figure 25-7. Analog Comparator

Figure 25-8. General Boundary-scan cell Used for Signals for Comparator and ADC
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25.6.5 Scanning the ADC
Figure 25-9 shows a block diagram of the ADC with all relevant control and observe signals. The
Boundary-scan cell from Figure 25-5 is attached to each of these signals. The ADC need not be
used for pure connectivity testing, since all analog inputs are shared with a digital port pin as
well. 

Figure 25-9. Analog to Digital Converter

The signals are described briefly in Table 25-5.

Table 25-4. Boundary-scan Signals for the Analog Comparator

Signal 
Name

Direction as 
Seen from the 
Comparator Description

Recommended 
Input when Not 
in Use

Output Values when 
Recommended 
Inputs are Used

AC_IDLE input
Turns off Analog 
Comparator when 
true

1
Depends upon µC 
code being executed

ACO output
Analog 
Comparator Output

Will become 
input to µC code 
being executed

0

ACME input
Uses output signal 
from ADC mux 
when true

0
Depends upon µC 
code being executed

ACBG input
Bandgap 
Reference enable

0
Depends upon µC 
code being executed

10-bit DAC +

-

AREF

PRECH

DACOUT

COMP

MUXEN_7
ADC_7

MUXEN_6
ADC_6

MUXEN_5
ADC_5

MUXEN_4
ADC_4

MUXEN_3
ADC_3

MUXEN_2
ADC_2

MUXEN_1
ADC_1

MUXEN_0
ADC_0

NEGSEL_2
ADC_2

NEGSEL_1
ADC_1

NEGSEL_0
ADC_0

EXTCH

+

-
1x

ST
ACLK

AMPEN

1.11V
ref

IREFEN

AREF

VCCREN

DAC_9..0

ADCEN

HOLD

PRECH

GNDEN

PASSEN

COMP

SCTEST
ADCBGEN

To Comparator

1.22V
ref

ACTEN

AREF
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Table 25-5. Boundary-scan Signals for the ADC(1)

Signal Name
Direction as seen
from the ADC Description

Recommended 
Input when not 
in use

Output Values when 
recommended inputs are used, 
and CPU is not using the ADC

COMP Output Comparator Output 0 0

ACLK Input Clock signal to differential amplifier 
implemented as Switch-cap filters

0 0

ACTEN Input Enable path from differential amplifier to 
the comparator

0 0

ADCBGEN Input Enable Band-gap reference as negative 
input to comparator

0 0

ADCEN Input Power-on signal to the ADC 0 0

AMPEN Input Power-on signal to the differential amplifier 0 0

DAC_9 Input Bit 9 of digital value to DAC 1 1

DAC_8 Input Bit 8 of digital value to DAC 0 0

DAC_7 Input Bit 7 of digital value to DAC 0 0

DAC_6 Input Bit 6 of digital value to DAC 0 0

DAC_5 Input Bit 5 of digital value to DAC 0 0

DAC_4 Input Bit 4 of digital value to DAC 0 0

DAC_3 Input Bit 3 of digital value to DAC 0 0

DAC_2 Input Bit 2 of digital value to DAC 0 0

DAC_1 Input Bit 1 of digital value to DAC 0 0

DAC_0 Input Bit 0 of digital value to DAC 0 0

EXTCH Input Connect ADC channels 0 - 3 to by-pass 
path around differential amplifier

1 1

GNDEN Input Ground the negative input to comparator 
when true

0 0

HOLD Input Sample & Hold signal. Sample analog 
signal when low. Hold signal when high. If 
differential amplifier are used, this signal 
must go active when ACLK is high.

1 1

IREFEN Input Enables Band-gap reference as AREF 
signal to DAC

0 0

MUXEN_7 Input Input Mux bit 7 0 0

MUXEN_6 Input Input Mux bit 6 0 0

MUXEN_5 Input Input Mux bit 5 0 0

MUXEN_4 Input Input Mux bit 4 0 0

MUXEN_3 Input Input Mux bit 3 0 0

MUXEN_2 Input Input Mux bit 2 0 0

MUXEN_1 Input Input Mux bit 1 0 0

MUXEN_0 Input Input Mux bit 0 1 1
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Note: 1. Incorrect setting of the switches in Figure 25-9 will make signal contention and may damage the part. There are several input 
choices to the S&H circuitry on the negative input of the output comparator in Figure 25-9. Make sure only one path is 
selected from either one ADC pin, Bandgap reference source, or Ground.

If the ADC is not to be used during scan, the recommended input values from Table 25-5 should
be used. The user is recommended not to use the differential amplifier during scan. Switch-Cap
based differential amplifier require fast operation and accurate timing which is difficult to obtain
when used in a scan chain. Details concerning operations of the differential amplifier is therefore
not provided.

The AVR ADC is based on the analog circuitry shown in Figure 25-9 with a successive approxi-
mation algorithm implemented in the digital logic. When used in Boundary-scan, the problem is
usually to ensure that an applied analog voltage is measured within some limits. This can easily
be done without running a successive approximation algorithm: apply the lower limit on the digi-
tal DAC[9:0] lines, make sure the output from the comparator is low, then apply the upper limit
on the digital DAC[9:0] lines, and verify the output from the comparator to be high. 

The ADC need not be used for pure connectivity testing, since all analog inputs are shared with
a digital port pin as well.

When using the ADC, remember the following

• The port pin for the ADC channel in use must be configured to be an input with pull-up 
disabled to avoid signal contention.

• In Normal mode, a dummy conversion (consisting of 10 comparisons) is performed when 
enabling the ADC. The user is advised to wait at least 200ns after enabling the ADC before 
controlling/observing any ADC signal, or perform a dummy conversion before using the first 
result.

• The DAC values must be stable at the midpoint value 0x200 when having the HOLD signal 
low (Sample mode).

NEGSEL_2 Input Input Mux for negative input for differential 
signal, bit 2

0 0

NEGSEL_1 Input Input Mux for negative input for differential 
signal, bit 1

0 0

NEGSEL_0 Input Input Mux for negative input for differential 
signal, bit 0

0 0

PASSEN Input Enable pass-gate of differential amplifier. 1 1

PRECH Input Precharge output latch of comparator. 
(Active low)

1 1

SCTEST Input Switch-cap TEST enable. Output from 
differential amplifier send out to Port Pin 
having ADC_4

0 0

ST Input Output of differential amplifier will settle 
faster if this signal is high first two ACLK 
periods after AMPEN goes high.

0 0

VCCREN Input Selects Vcc as the ACC reference voltage. 0 0

Table 25-5. Boundary-scan Signals for the ADC(1) (Continued)

Signal Name
Direction as seen
from the ADC Description

Recommended 
Input when not 
in use

Output Values when 
recommended inputs are used, 
and CPU is not using the ADC
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As an example, consider the task of verifying a 1.5V ± 5% input signal at ADC channel 3 when
the power supply is 5.0V and AREF is externally connected to VCC.

The recommended values from Table 25-5 are used unless other values are given in the algo-
rithm in Table 25-6. Only the DAC and port pin values of the Scan Chain are shown. The column
“Actions” describes what JTAG instruction to be used before filling the Boundary-scan Register
with the succeeding columns. The verification should be done on the data scanned out when
scanning in the data on the same row in the table.

Using this algorithm, the timing constraint on the HOLD signal constrains the TCK clock fre-
quency. As the algorithm keeps HOLD high for five steps, the TCK clock frequency has to be at
least five times the number of scan bits divided by the maximum hold time, thold,max

Table 25-6. Algorithm for Using the ADC

Step Actions ADCEN DAC MUXEN HOLD PRECH
PA3.
Data

PA3.
Control

PA3.
Pull-
up_
Enable

1
SAMPLE_
PRELOAD

1 0x200 0x08 1 1 0 0 0

2 EXTEST 1 0x200 0x08 0 1 0 0 0

3 1 0x200 0x08 1 1 0 0 0

4 1 0x123 0x08 1 1 0 0 0

5 1 0x123 0x08 1 0 0 0 0

6

Verify the 
COMP bit 
scanned 
out to be 0

1 0x200 0x08 1 1 0 0 0

7 1 0x200 0x08 0 1 0 0 0

8 1 0x200 0x08 1 1 0 0 0

9 1 0x143 0x08 1 1 0 0 0

10 1 0x143 0x08 1 0 0 0 0

11

Verify the 
COMP bit 
scanned 
out to be 1

1 0x200 0x08 1 1 0 0 0

The lower limit is:      1024 1.5V 0,95 5V⁄⋅ ⋅ 291 0x123= =       
The upper limit is:      1024 1.5V 1.05 5V⁄⋅ ⋅ 323 0x143= =
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25.7 Boundary-scan Order
Table 25-7 and Table 25-8 shows the Scan order between TDI and TDO when the Boundary-
scan chain is selected as data path. Bit 0 is the LSB; the first bit scanned in, and the first bit
scanned out. The scan order follows the pin-out order as far as possible. Therefore, the bits of
Port A is scanned in the opposite bit order of the other ports. Exceptions from the rules are the
Scan chains for the analog circuits, which constitute the most significant bits of the scan chain
regardless of which physical pin they are connected to. In Figure 25-3, PXn. Data corresponds
to FF0, PXn. Control corresponds to FF1, and PXn. Pull-up_enable corresponds to FF2. Bit 4, 5,
6 and 7 of Port F is not in the scan chain, since these pins constitute the TAP pins when the
JTAG is enabled.

Table 25-7. ATmega325/645 Boundary-scan Order, 64-pin

Bit Number Signal Name Module

197 AC_IDLE Comparator

196 ACO

195 ACME

194 AINBG
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193 COMP ADC

192 ACLK

191 ACTEN

190 PRIVATE_SIGNAL1(1)

189 ADCBGEN

188 ADCEN

187 AMPEN

186 DAC_9

185 DAC_8

184 DAC_7

183 DAC_6

182 DAC_5

181 DAC_4

180 DAC_3

179 DAC_2

178 DAC_1

177 DAC_0

176 EXTCH

175 GNDEN

174 HOLD

173 IREFEN

172 MUXEN_7

171 MUXEN_6

170 MUXEN_5

169 MUXEN_4

168 MUXEN_3

167 MUXEN_2

166 MUXEN_1

165 MUXEN_0

164 NEGSEL_2

163 NEGSEL_1

162 NEGSEL_0

161 PASSEN

160 PRECH

159 ST

158 VCCREN

Table 25-7. ATmega325/645 Boundary-scan Order, 64-pin (Continued)

Bit Number Signal Name Module
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157 PE0.Data Port E

156 PE0.Control

155 PE0.Pull-up_Enable

154 PE1.Data

153 PE1.Control

152 PE1.Pull-up_Enable

151 PE2.Data

150 PE2.Control

149 PE2.Pull-up_Enable

148 PE3.Data

147 PE3.Control

146 PE3.Pull-up_Enable

145 PE4.Data

144 PE4.Control

143 PE4.Pull-up_Enable

142 PE5.Data

141 PE5.Control

140 PE5.Pull-up_Enable

139 PE6.Data

138 PE6.Control

137 PE6.Pull-up_Enable

136 PE7.Data

135 PE7.Control

134 PE7.Pull-up_Enable

Table 25-7. ATmega325/645 Boundary-scan Order, 64-pin (Continued)

Bit Number Signal Name Module
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133 PB0.Data Port B

132 PB0.Control

131 PB0.Pull-up_Enable

130 PB1.Data

129 PB1.Control

128 PB1.Pull-up_Enable

127 PB2.Data

126 PB2.Control

125 PB2.Pull-up_Enable

124 PB3.Data

123 PB3.Control

122 PB3.Pull-up_Enable

121 PB4.Data

120 PB4.Control

119 PB4.Pull-up_Enable

118 PB5.Data

117 PB5.Control

116 PB5.Pull-up_Enable

115 PB6.Data

114 PB6.Control

113 PB6.Pull-up_Enable

112 PB7.Data

111 PB7.Control

110 PB7.Pull-up_Enable

109 PG3.Data Port G

108 PG3.Control

107 PG3.Pull-up_Enable

106 PG4.Data

105 PG4.Control

104 PG4.Pull-up_Enable

103 PG5 (Observe Only)

102 RSTT Reset Logic 
(Observe-only)

101 RSTHV

Table 25-7. ATmega325/645 Boundary-scan Order, 64-pin (Continued)

Bit Number Signal Name Module
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100 EXTCLKEN Enable signals for main Clock/Oscillators

99 OSCON

98 RCOSCEN

97 OSC32EN

96 EXTCLK (XTAL1) Clock input and Oscillators for the main 
clock
(Observe-only)95 OSCCK

94 RCCK

93 OSC32CK

92 PD0.Data Port D

91 PD0.Control

90 PD0.Pull-up_Enable

89 PD1.Data

88 PD1.Control

87 PD1.Pull-up_Enable

86 PD2.Data

85 PD2.Control

84 PD2.Pull-up_Enable

83 PD3.Data

82 PD3.Control

81 PD3.Pull-up_Enable

80 PD4.Data

79 PD4.Control

78 PD4.Pull-up_Enable

77 PD5.Data

76 PD5.Control

75 PD5.Pull-up_Enable

74 PD6.Data

73 PD6.Control

72 PD6.Pull-up_Enable

71 PD7.Data

70 PD7.Control

69 PD7.Pull-up_Enable

68 PG0.Data Port G

67 PG0.Control

66 PG0.Pull-up_Enable

65 PG1.Data

Table 25-7. ATmega325/645 Boundary-scan Order, 64-pin (Continued)

Bit Number Signal Name Module
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64 PG1.Control

63 PG1.Pull-up_Enable

62 PC0.Data Port C

61 PC0.Control

60 PC0.Pull-up_Enable

59 PC1.Data

58 PC1.Control

57 PC1.Pull-up_Enable

56 PC2.Data

55 PC2.Control

54 PC2.Pull-up_Enable

53 PC3.Data

52 PC3.Control

51 PC3.Pull-up_Enable

50 PC4.Data

49 PC4.Control

48 PC4.Pull-up_Enable

47 PC5.Data

46 PC5.Control

45 PC5.Pull-up_Enable

44 PC6.Data

43 PC6.Control

42 PC6.Pull-up_Enable

41 PC7.Data

40 PC7.Control

39 PC7.Pull-up_Enable

38 PG2.Data Port G

37 PG2.Control

36 PG2.Pull-up_Enable

35 PA7.Data Port A

34 PA7.Control

33 PA7.Pull-up_Enable

32 PA6.Data

31 PA6.Control

30 PA6.Pull-up_Enable

29 PA5.Data

Table 25-7. ATmega325/645 Boundary-scan Order, 64-pin (Continued)

Bit Number Signal Name Module
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Note: 1. PRIVATE_SIGNAL1 should always be scanned in as zero.

28 PA5.Control

27 PA5.Pull-up_Enable

26 PA4.Data

25 PA4.Control

24 PA4.Pull-up_Enable

23 PA3.Data

22 PA3.Control

21 PA3.Pull-up_Enable

20 PA2.Data

19 PA2.Control

18 PA2.Pull-up_Enable

17 PA1.Data

16 PA1.Control

15 PA1.Pull-up_Enable

14 PA0.Data

13 PA0.Control

12 PA0.Pull-up_Enable

11 PF3.Data Port F

10 PF3.Control

9 PF3.Pull-up_Enable

8 PF2.Data

7 PF2.Control

6 PF2.Pull-up_Enable

5 PF1.Data

4 PF1.Control

3 PF1.Pull-up_Enable

2 PF0.Data

1 PF0.Control

0 PF0.Pull-up_Enable

Table 25-7. ATmega325/645 Boundary-scan Order, 64-pin (Continued)

Bit Number Signal Name Module
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Table 25-8. ATmega3250/6450 Boundary-scan Order, 100-pin

Bit Number Signal Name Module

242 AC_IDLE Comparator

241 ACO

240 ACME

239 AINBG

238 COMP ADC

237 ACLK

236 ACTEN

235 PRIVATE_SIGNAL1(1)

234 ADCBGEN

233 ADCEN

232 AMPEN

231 DAC_9

230 DAC_8

229 DAC_7

228 DAC_6

227 DAC_5

226 DAC_4

225 DAC_3

224 DAC_2

223 DAC_1

222 DAC_0

221 EXTCH

220 GNDEN

219 HOLD

218 IREFEN

217 MUXEN_7

216 MUXEN_6

215 MUXEN_5

214 MUXEN_4

213 MUXEN_3

212 MUXEN_2

211 MUXEN_1

210 MUXEN_0

209 NEGSEL_2

208 NEGSEL_1
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207 NEGSEL_0

206 PASSEN

205 PRECH

204 ST

203 VCCREN

202 PE0.Data Port E

201 PE0.Control

200 PE0.Pull-up_Enable

199 PE1.Data

198 PE1.Control

197 PE1.Pull-up_Enable

196 PE2.Data

195 PE2.Control

194 PE2.Pull-up_Enable

193 PE3.Data

192 PE3.Control

191 PE3.Pull-up_Enable

190 PE4.Data

189 PE4.Control

188 PE4.Pull-up_Enable

187 PE5.Data

186 PE5.Control

185 PE5.Pull-up_Enable

184 PE6.Data

183 PE6.Control

182 PE6.Pull-up_Enable

181 PE7.Data

180 PE7.Control

179 PE7.Pull-up_Enable

178 PJ0.Data Port J

177 PJ0.Control

176 PJ0.Pull-up_Enable

175 PJ1.Data

174 PJ1.Control

173 PJ1.Pull-up_Enable

172 PB0.Data Port B

Table 25-8. ATmega3250/6450 Boundary-scan Order, 100-pin (Continued)

Bit Number Signal Name Module



246
2570N–AVR–05/11

ATmega325/3250/645/6450

171 PB0.Control

170 PB0.Pull-up_Enable

169 PB1.Data

168 PB1.Control

167 PB1.Pull-up_Enable

166 PB2.Data

165 PB2.Control

164 PB2.Pull-up_Enable

163 PB3.Data

162 PB3.Control

161 PB3.Pull-up_Enable

160 PB4.Data

159 PB4.Control

158 PB4.Pull-up_Enable

157 PB5.Data

156 PB5.Control

155 PB5.Pull-up_Enable

154 PB6.Data

153 PB6.Control

152 PB6.Pull-up_Enable

151 PB7.Data

150 PB7.Control

149 PB7.Pull-up_Enable

148 PG3.Data Port G

147 PG3.Control

146 PG3.Pull-up_Enable

145 PG4.Data

144 PG4.Control

143 PG4.Pull-up_Enable

142 PG5 (Observe Only)

141 RSTT Reset Logic 
(Observe-only)

140 RSTHV

139 EXTCLKEN Enable signals for main Clock/Oscillators

138 OSCON

137 RCOSCEN

136 OSC32EN

Table 25-8. ATmega3250/6450 Boundary-scan Order, 100-pin (Continued)

Bit Number Signal Name Module
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135 EXTCLK (XTAL1) Clock input and Oscillators for the main 
clock
(Observe-only)134 OSCCK

133 RCCK

132 OSC32CK

131 PJ2.Data Port J

130 PJ2.Control

129 PJ2.Pull-up_Enable

128 PJ3.Data

127 PJ3.Control

126 PJ3.Pull-up_Enable

125 PJ4.Data

124 PJ4.Control

123 PJ4.Pull-up_Enable

122 PJ5.Data

121 PJ5.Control

120 PJ5.Pull-up_Enable

119 PJ6.Data

118 PJ6.Control

117 PJ6.Pull-up_Enable

116 PD0.Data Port D

115 PD0.Control

114 PD0.Pull-up_Enable

113 PD1.Data

112 PD1.Control

111 PD1.Pull-up_Enable

110 PD2.Data

109 PD2.Control

108 PD2.Pull-up_Enable

107 PD3.Data

106 PD3.Control

105 PD3.Pull-up_Enable

104 PD4.Data

103 PD4.Control

102 PD4.Pull-up_Enable

101 PD5.Data

100 PD5.Control

Table 25-8. ATmega3250/6450 Boundary-scan Order, 100-pin (Continued)

Bit Number Signal Name Module
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99 PD5.Pull-up_Enable

98 PD6.Data

97 PD6.Control

96 PD6.Pull-up_Enable

95 PD7.Data

94 PD7.Control

93 PD7.Pull-up_Enable

92 PG0.Data Port G

91 PG0.Control

90 PG0.Pull-up_Enable

89 PG1.Data

88 PG1.Control

87 PG1.Pull-up_Enable

86 PC0.Data Port C

85 PC0.Control

84 PC0.Pull-up_Enable

83 PC1.Data

82 PC1.Control

81 PC1.Pull-up_Enable

80 PC2.Data

79 PC2.Control

78 PC2.Pull-up_Enable

77 PC3.Data

76 PC3.Control

75 PC3.Pull-up_Enable

74 PC4.Data

73 PC4.Control

72 PC4.Pull-up_Enable

71 PC5.Data

70 PC5.Control

69 PC5.Pull-up_Enable

68 PH0.Data Port H

67 PH0.Control

66 PH0.Pull-up_Enable

65 PH1.Data

64 PH1.Control

Table 25-8. ATmega3250/6450 Boundary-scan Order, 100-pin (Continued)

Bit Number Signal Name Module



249
2570N–AVR–05/11

ATmega325/3250/645/6450

63 PH1.Pull-up_Enable

62 PH2.Data

61 PH2.Control

60 PH2.Pull-up_Enable

59 PH3.Data

58 PH3.Control

57 PH3.Pull-up_Enable

56 PC6.Data Port C

55 PC6.Control

54 PC6.Pull-up_Enable

53 PC7.Data

52 PC7.Control

51 PC7.Pull-up_Enable

50 PG2.Data Port G

49 PG2.Control

48 PG2.Pull-up_Enable

47 PA7.Data Port A

46 PA7.Control

45 PA7.Pull-up_Enable

44 PA6.Data

43 PA6.Control

42 PA6.Pull-up_Enable

41 PA5.Data

40 PA5.Control

39 PA5.Pull-up_Enable

38 PA4.Data

37 PA4.Control

36 PA4.Pull-up_Enable

35 PA3.Data

34 PA3.Control

33 PA3.Pull-up_Enable

32 PA2.Data

31 PA2.Control

30 PA2.Pull-up_Enable

29 PA1.Data

28 PA1.Control

Table 25-8. ATmega3250/6450 Boundary-scan Order, 100-pin (Continued)

Bit Number Signal Name Module
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Note: 1. PRIVATE_SIGNAL1 should always be scanned in as zero.

25.8 Boundary-scan Description Language Files
Boundary-scan Description Language (BSDL) files describe Boundary-scan capable devices in
a standard format used by automated test-generation software. The order and function of bits in
the Boundary-scan Data Register are included in this description. A BSDL file for Atmel
ATmega325/3250/645/6450 is available.

27 PA1.Pull-up_Enable

26 PA0.Data

25 PA0.Control

24 PA0.Pull-up_Enable

23 PH4.Data Port H

22 PH4.Control

21 PH4.Pull-up_Enable

20 PH5.Data

19 PH5.Control

18 PH5.Pull-up_Enable

17 PH6.Data

16 PH6.Control

15 PH6.Pull-up_Enable

14 PH7.Data

13 PH7.Control

12 PH7.Pull-up_Enable

11 PF3.Data Port F

10 PF3.Control

9 PF3.Pull-up_Enable

8 PF2.Data

7 PF2.Control

6 PF2.Pull-up_Enable

5 PF1.Data

4 PF1.Control

3 PF1.Pull-up_Enable

2 PF0.Data

1 PF0.Control

0 PF0.Pull-up_Enable

Table 25-8. ATmega3250/6450 Boundary-scan Order, 100-pin (Continued)

Bit Number Signal Name Module
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26. Boot Loader Support – Read-While-Write Self-Programming

26.1 Features
• Read-While-Write Self-Programming
• Flexible Boot Memory Size
• High Security (Separate Boot Lock Bits for a Flexible Protection)
• Separate Fuse to Select Reset Vector
• Optimized Page(1) Size
• Code Efficient Algorithm
• Efficient Read-Modify-Write Support

Note: 1. A page is a section in the Flash consisting of several bytes (see Table 27-10 on page 270)
used during programming. The page organization does not affect normal operation.

26.2 Overview
The Boot Loader Support provides a real Read-While-Write Self-Programming mechanism for
downloading and uploading program code by the MCU itself. This feature allows flexible applica-
tion software updates controlled by the MCU using a Flash-resident Boot Loader program. The
Boot Loader program can use any available data interface and associated protocol to read code
and write (program) that code into the Flash memory, or read the code from the program mem-
ory. The program code within the Boot Loader section has the capability to write into the entire
Flash, including the Boot Loader memory. The Boot Loader can thus even modify itself, and it
can also erase itself from the code if the feature is not needed anymore. The size of the Boot
Loader memory is configurable with fuses and the Boot Loader has two separate sets of Boot
Lock bits which can be set independently. This gives the user a unique flexibility to select differ-
ent levels of protection. 

26.3 Application and Boot Loader Flash Sections
The Flash memory is organized in two main sections, the Application section and the Boot
Loader section (see Figure 26-2). The size of the different sections is configured by the
BOOTSZ Fuses as shown in Table 26-6 on page 262 and Figure 26-2. These two sections can
have different level of protection since they have different sets of Lock bits.

26.3.1 Application Section
The Application section is the section of the Flash that is used for storing the application code.
The protection level for the Application section can be selected by the application Boot Lock bits
(Boot Lock bits 0), see Table 26-2 on page 255. The Application section can never store any
Boot Loader code since the SPM instruction is disabled when executed from the Application
section.

26.3.2 BLS – Boot Loader Section
While the Application section is used for storing the application code, the The Boot Loader soft-
ware must be located in the BLS since the SPM instruction can initiate a programming when
executing from the BLS only. The SPM instruction can access the entire Flash, including the
BLS itself. The protection level for the Boot Loader section can be selected by the Boot Loader
Lock bits (Boot Lock bits 1), see Table 26-3 on page 255.



252
2570N–AVR–05/11

ATmega325/3250/645/6450

26.4 Read-While-Write and No Read-While-Write Flash Sections
Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot Loader soft-
ware update is dependent on which address that is being programmed. In addition to the two
sections that are configurable by the BOOTSZ Fuses as described above, the Flash is also
divided into two fixed sections, the Read-While-Write (RWW) section and the No Read-While-
Write (NRWW) section. The limit between the RWW- and NRWW sections is given in Table 26-
7 on page 262 and Figure 26-2 on page 254. The main difference between the two sections is:

• When erasing or writing a page located inside the RWW section, the NRWW section can be 
read during the operation.

• When erasing or writing a page located inside the NRWW section, the CPU is halted during 
the entire operation.

Note that the user software can never read any code that is located inside the RWW section dur-
ing a Boot Loader software operation. The syntax “Read-While-Write section” refers to which
section that is being programmed (erased or written), not which section that actually is being
read during a Boot Loader software update.

26.4.1 RWW – Read-While-Write Section
If a Boot Loader software update is programming a page inside the RWW section, it is possible
to read code from the Flash, but only code that is located in the NRWW section. During an on-
going programming, the software must ensure that the RWW section never is being read. If the
user software is trying to read code that is located inside the RWW section (i.e., by a
call/jmp/lpm or an interrupt) during programming, the software might end up in an unknown
state. To avoid this, the interrupts should either be disabled or moved to the Boot Loader sec-
tion. The Boot Loader section is always located in the NRWW section. The RWW Section Busy
bit (RWWSB) in the Store Program Memory Control and Status Register (SPMCSR) will be read
as logical one as long as the RWW section is blocked for reading. After a programming is com-
pleted, the RWWSB must be cleared by software before reading code located in the RWW
section. See “Store Program Memory Control and Status Register – SPMCSR” on page 263. for
details on how to clear RWWSB.

26.4.2 NRWW – No Read-While-Write Section
The code located in the NRWW section can be read when the Boot Loader software is updating
a page in the RWW section. When the Boot Loader code updates the NRWW section, the CPU
is halted during the entire Page Erase or Page Write operation.

Table 26-1. Read-While-Write Features

Which Section does the Z-
pointer Address During the 

Programming?

Which Section Can 
be Read During 
Programming?

Is the CPU 
Halted?

Read-While-Write 
Supported?

RWW Section NRWW Section No Yes

NRWW Section None Yes No
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Figure 26-1. Read-While-Write vs. No Read-While-Write

Read-While-Write
(RWW) Section

No Read-While-Write 
(NRWW) Section

Z-pointer
Addresses RWW
Section

Z-pointer
Addresses NRWW
Section

CPU is Halted
During the Operation

Code Located in 
NRWW Section
Can be Read During
the Operation
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Figure 26-2. Memory Sections

Note: 1. The parameters in the figure above are given in Table 26-6 on page 262.

26.5 Boot Loader Lock Bits
If no Boot Loader capability is needed, the entire Flash is available for application code. The
Boot Loader has two separate sets of Boot Lock bits which can be set independently. This gives
the user a unique flexibility to select different levels of protection. 

The user can select:

• To protect the entire Flash from a software update by the MCU.

• To protect only the Boot Loader Flash section from a software update by the MCU.

• To protect only the Application Flash section from a software update by the MCU.

• Allow software update in the entire Flash.

See Table 26-2 and Table 26-3 for further details. The Boot Lock bits and general Lock bits can
be set in software and in Serial or Parallel Programming mode, but they can be cleared by a
Chip Erase command only. The general Write Lock (Lock Bit mode 2) does not control the pro-
gramming of the Flash memory by SPM instruction. Similarly, the general Read/Write Lock
(Lock Bit mode 1) does not control reading nor writing by LPM/SPM, if it is attempted. 
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Note: 1. “1” means unprogrammed, “0” means programmed

Note: 1. “1” means unprogrammed, “0” means programmed

26.6 Entering the Boot Loader Program
Entering the Boot Loader takes place by a jump or call from the application program. This may
be initiated by a trigger such as a command received via USART, or SPI interface. Alternatively,
the Boot Reset Fuse can be programmed so that the Reset Vector is pointing to the Boot Flash
start address after a reset. In this case, the Boot Loader is started after a reset. After the applica-
tion code is loaded, the program can start executing the application code. Note that the fuses
cannot be changed by the MCU itself. This means that once the Boot Reset Fuse is pro-
grammed, the Reset Vector will always point to the Boot Loader Reset and the fuse can only be
changed through the serial or parallel programming interface.

Table 26-2. Boot Lock Bit0 Protection Modes (Application Section)(1)

BLB0 Mode BLB02 BLB01 Protection

1 1 1 No restrictions for SPM or LPM accessing the Application 
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0 SPM is not allowed to write to the Application section, and 
LPM executing from the Boot Loader section is not 
allowed to read from the Application section. If Interrupt 
Vectors are placed in the Boot Loader section, interrupts 
are disabled while executing from the Application section.

4 0 1 LPM executing from the Boot Loader section is not 
allowed to read from the Application section. If Interrupt 
Vectors are placed in the Boot Loader section, interrupts 
are disabled while executing from the Application section.

Table 26-3. Boot Lock Bit1 Protection Modes (Boot Loader Section)(1)

BLB1 Mode BLB12 BLB11 Protection

1 1 1 No restrictions for SPM or LPM accessing the Boot Loader 
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0 SPM is not allowed to write to the Boot Loader section, 
and LPM executing from the Application section is not 
allowed to read from the Boot Loader section. If Interrupt 
Vectors are placed in the Application section, interrupts 
are disabled while executing from the Boot Loader section.

4 0 1 LPM executing from the Application section is not allowed 
to read from the Boot Loader section. If Interrupt Vectors 
are placed in the Application section, interrupts are 
disabled while executing from the Boot Loader section.

Table 26-4. Boot Reset Fuse(1)

BOOTRST Reset Address

1 Reset Vector = Application Reset (address 0x0000)

0 Reset Vector = Boot Loader Reset (see Table 26-6 on page 262)
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Note: 1. “1” means unprogrammed, “0” means programmed

26.7 Addressing the Flash During Self-Programming
The Z-pointer is used to address the SPM commands.

Since the Flash is organized in pages (see Table 27-10 on page 270), the Program Counter can
be treated as having two different sections. One section, consisting of the least significant bits, is
addressing the words within a page, while the most significant bits are addressing the pages.
This is shown in Figure 26-3. Note that the Page Erase and Page Write operations are
addressed independently. Therefore it is of major importance that the Boot Loader software
addresses the same page in both the Page Erase and Page Write operation. Once a program-
ming operation is initiated, the address is latched and the Z-pointer can be used for other
operations. 

The only SPM operation that does not use the Z-pointer is Setting the Boot Loader Lock bits.
The content of the Z-pointer is ignored and will have no effect on the operation. The LPM
instruction does also use the Z-pointer to store the address. Since this instruction addresses the
Flash byte-by-byte, also the LSB (bit Z0) of the Z-pointer is used.

Figure 26-3. Addressing the Flash During SPM(1)

Note: 1. The different variables used in Figure 26-3 are listed in Table 26-8 on page 262.

2. PCPAGE and PCWORD are listed in Table 27-10 on page 270.

Bit 15 14 13 12 11 10 9 8

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0

PROGRAM MEMORY
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Z - REGISTER

BIT

0

ZPAGEMSB

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

ZPCMSB

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM
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26.8 Self-Programming the Flash
The program memory is updated in a page by page fashion. Before programming a page with
the data stored in the temporary page buffer, the page must be erased. The temporary page buf-
fer is filled one word at a time using SPM and the buffer can be filled either before the Page
Erase command or between a Page Erase and a Page Write operation:

Alternative 1, fill the buffer before a Page Erase

• Fill temporary page buffer

• Perform a Page Erase

• Perform a Page Write

Alternative 2, fill the buffer after Page Erase

• Perform a Page Erase

• Fill temporary page buffer

• Perform a Page Write

If only a part of the page needs to be changed, the rest of the page must be stored (for example
in the temporary page buffer) before the erase, and then be rewritten. When using alternative 1,
the Boot Loader provides an effective Read-Modify-Write feature which allows the user software
to first read the page, do the necessary changes, and then write back the modified data. If alter-
native 2 is used, it is not possible to read the old data while loading since the page is already
erased. The temporary page buffer can be accessed in a random sequence. It is essential that
the page address used in both the Page Erase and Page Write operation is addressing the same
page. See “Simple Assembly Code Example for a Boot Loader” on page 260 for an assembly
code example.

26.8.1 Performing Page Erase by SPM
To execute Page Erase, set up the address in the Z-pointer, write “X0000011” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored.
The page address must be written to PCPAGE in the Z-register. Other bits in the Z-pointer will
be ignored during this operation.

• Page Erase to the RWW section: The NRWW section can be read during the Page Erase.

• Page Erase to the NRWW section: The CPU is halted during the operation.

26.8.2 Filling the Temporary Buffer (Page Loading)
To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write
“00000001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The
content of PCWORD in the Z-register is used to address the data in the temporary buffer. The
temporary buffer will auto-erase after a Page Write operation or by writing the RWWSRE bit in
SPMCSR. It is also erased after a system reset. Note that it is not possible to write more than
one time to each address without erasing the temporary buffer.

If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded will be
lost.

26.8.3 Performing a Page Write
To execute Page Write, set up the address in the Z-pointer, write “X0000101” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored.
The page address must be written to PCPAGE. Other bits in the Z-pointer must be written to
zero during this operation.
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• Page Write to the RWW section: The NRWW section can be read during the Page Write.

• Page Write to the NRWW section: The CPU is halted during the operation.

26.8.4 Using the SPM Interrupt
If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the
SPMEN bit in SPMCSR is cleared. This means that the interrupt can be used instead of polling
the SPMCSR Register in software. When using the SPM interrupt, the Interrupt Vectors should
be moved to the BLS section to avoid that an interrupt is accessing the RWW section when it is
blocked for reading. How to move the interrupts is described in “Interrupts” on page 49.

26.8.5 Consideration While Updating BLS
Special care must be taken if the user allows the Boot Loader section to be updated by leaving
Boot Lock bit11 unprogrammed. An accidental write to the Boot Loader itself can corrupt the
entire Boot Loader, and further software updates might be impossible. If it is not necessary to
change the Boot Loader software itself, it is recommended to program the Boot Lock bit11 to
protect the Boot Loader software from any internal software changes.

26.8.6 Prevent Reading the RWW Section During Self-Programming
During Self-Programming (either Page Erase or Page Write), the RWW section is always
blocked for reading. The user software itself must prevent that this section is addressed during
the self programming operation. The RWWSB in the SPMCSR will be set as long as the RWW
section is busy. During Self-Programming the Interrupt Vector table should be moved to the BLS
as described in “Interrupts” on page 49, or the interrupts must be disabled. Before addressing
the RWW section after the programming is completed, the user software must clear the
RWWSB by writing the RWWSRE. See “Simple Assembly Code Example for a Boot Loader” on
page 260 for an example.

26.8.7 Setting the Boot Loader Lock Bits by SPM
To set the Boot Loader Lock bits and general Lock bits, write the desired data to R0, write
“X0001001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR. 

See Table 26-2 and Table 26-3 for how the different settings of the Boot Loader bits affect the
Flash access.

If bits 5..0 in R0 are cleared (zero), the corresponding Lock bit will be programmed if an SPM
instruction is executed within four cycles after BLBSET and SPMEN are set in SPMCSR. The Z-
pointer is don’t care during this operation, but for future compatibility it is recommended to load
the Z-pointer with 0x0001 (same as used for reading the Lock bits). For future compatibility it is
also recommended to set bits 7, and 6 in R0 to “1” when writing the Lock bits. When program-
ming the Lock bits the entire Flash can be read during the operation.

26.8.8 EEPROM Write Prevents Writing to SPMCSR
Note that an EEPROM write operation will block all software programming to Flash. Reading the
Fuses and Lock bits from software will also be prevented during the EEPROM write operation. It
is recommended that the user checks the status bit (EEWE) in the EECR Register and verifies
that the bit is cleared before writing to the SPMCSR Register.

Bit 7 6 5 4 3 2 1 0

R0 1 1 BLB12 BLB11 BLB02 BLB01 LB2 LB1
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26.8.9 Reading the Fuse and Lock Bits from Software
It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the
Z-pointer with 0x0001 and set the BLBSET and SPMEN bits in SPMCSR. When an LPM instruc-
tion is executed within three CPU cycles after the BLBSET and SPMEN bits are set in SPMCSR,
the value of the Lock bits will be loaded in the destination register. The BLBSET and SPMEN
bits will auto-clear upon completion of reading the Lock bits or if no LPM instruction is executed
within three CPU cycles or no SPM instruction is executed within four CPU cycles. When BLB-
SET and SPMEN are cleared, LPM will work as described in the Instruction set Manual.

The algorithm for reading the Fuse Low byte is similar to the one described above for reading
the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and set the BLBSET
and SPMEN bits in SPMCSR. When an LPM instruction is executed within three cycles after the
BLBSET and SPMEN bits are set in the SPMCSR, the value of the Fuse Low byte (FLB) will be
loaded in the destination register as shown below. Refer to Table 27-5 on page 267 for a
detailed description and mapping of the Fuse Low byte.

Similarly, when reading the Fuse High byte, load 0x0003 in the Z-pointer. When an LPM instruc-
tion is executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR,
the value of the Fuse High byte (FHB) will be loaded in the destination register as shown below.
Refer to Table 27-4 on page 267 for detailed description and mapping of the Fuse High byte.

When reading the Extended Fuse byte, load 0x0002 in the Z-pointer. When an LPM instruction
is executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR, the
value of the Extended Fuse byte (EFB) will be loaded in the destination register as shown below.
Refer to Table 27-3 on page 266 for detailed description and mapping of the Extended Fuse
byte.

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are
unprogrammed, will be read as one.

26.8.10 Preventing Flash Corruption
During periods of low VCC, the Flash program can be corrupted because the supply voltage is
too low for the CPU and the Flash to operate properly. These issues are the same as for board
level systems using the Flash, and the same design solutions should be applied. 

A Flash program corruption can be caused by two situations when the voltage is too low. First, a
regular write sequence to the Flash requires a minimum voltage to operate correctly. Secondly,
the CPU itself can execute instructions incorrectly, if the supply voltage for executing instructions
is too low.

Flash corruption can easily be avoided by following these design recommendations (one is
sufficient):

Bit 7 6 5 4 3 2 1 0

Rd – – BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0

Bit 7 6 5 4 3 2 1 0

Rd – – – – – EFB2 EFB1 EFB0
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1. If there is no need for a Boot Loader update in the system, program the Boot Loader Lock
bits to prevent any Boot Loader software updates.

2. Keep the AVR RESET active (low) during periods of insufficient power supply voltage.
This can be done by enabling the internal Brown-out Detector (BOD) if the operating volt-
age matches the detection level. If not, an external low VCC reset protection circuit can be
used. If a reset occurs while a write operation is in progress, the write operation will be
completed provided that the power supply voltage is sufficient.

3. Keep the AVR core in Power-down sleep mode during periods of low VCC. This will pre-
vent the CPU from attempting to decode and execute instructions, effectively protecting
the SPMCSR Register and thus the Flash from unintentional writes.

26.8.11 Programming Time for Flash when Using SPM
The calibrated RC Oscillator is used to time Flash accesses. Table 26-5 shows the typical pro-
gramming time for Flash accesses from the CPU.

26.8.12 Simple Assembly Code Example for a Boot Loader
;-the routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y pointer
; the first data location in Flash is pointed to by the Z-pointer
;-error handling is not included
;-the routine must be placed inside the Boot space
; (at least the Do_spm sub routine). Only code inside NRWW section can
; be read during Self-Programming (Page Erase and Page Write).
;-registers used: r0, r1, temp1 (r16), temp2 (r17), looplo (r24), 
; loophi (r25), spmcrval (r20)
; storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size
;-It is assumed that either the interrupt table is moved to the Boot
; loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is page size in BYTES, not words

.org SMALLBOOTSTART
Write_page:
; Page Erase
ldi spmcrval, (1<<PGERS) | (1<<SPMEN)
call Do_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm

; transfer data from RAM to Flash page buffer
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256

Wrloop:
ld r0, Y+
ld r1, Y+
ldi spmcrval, (1<<SPMEN)
call Do_spm
adiw ZH:ZL, 2
sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256

Table 26-5. SPM Programming Time

Symbol Min Programming Time Max Programming Time

Flash write (Page Erase, Page Write, 
and write Lock bits by SPM)

3.7ms 4.5ms
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brne Wrloop

; execute Page Write
subi ZL, low(PAGESIZEB) ;restore pointer
sbci ZH, high(PAGESIZEB) ;not required for PAGESIZEB<=256
ldi spmcrval, (1<<PGWRT) | (1<<SPMEN)
call Do_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm

; read back and check, optional
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ;restore pointer
sbci YH, high(PAGESIZEB)

Rdloop:
lpm r0, Z+
ld r1, Y+
cpse r0, r1
jmp Error
sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256
brne Rdloop

; return to RWW section
; verify that RWW section is safe to read

Return:
in temp1, SPMCSR
sbrs temp1, RWWSB ; If RWWSB is set, the RWW section is not ready yet
ret
; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm
rjmp Return

Do_spm:
; check for previous SPM complete

Wait_spm:
in temp1, SPMCSR
sbrc temp1, SPMEN
rjmp Wait_spm
; input: spmcrval determines SPM action
; disable interrupts if enabled, store status
in temp2, SREG
cli
; check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEWE
rjmp Wait_ee
; SPM timed sequence
out SPMCSR, spmcrval
spm
; restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret
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26.8.13 Atmel ATmega325/3250/645/6450 Boot Loader Parameters
In Table 26-6 through Table 26-8, the parameters used in the description of the Self-Program-
ming are given.

Note: 1. The different BOOTSZ Fuse configurations are shown in Figure 26-2

Note: 1. For details about these two section, see “NRWW – No Read-While-Write Section” on page 252 and “RWW – Read-While-
Write Section” on page 252.

Note: 1. Z0: should be zero for all SPM commands, byte select for the LPM instruction.
See “Addressing the Flash During Self-Programming” on page 256 for details about the use of Z-pointer during Self-
Programming.

Table 26-6. Boot Size Configuration(1)

BOOTSZ1 BOOTSZ0 Boot Size Pages
Application
Flash Section

Boot Loader 
Flash Section

End
Application
Section

Boot Reset
Address 
(Start
Boot Loader 
Section)

1 1 256/512 words 4 0x0000-0x3EFF/

0x0000-0x7DFF

0x3F00-0x3FFF/

0x7E00-0x7FFF

0x3EFF/

0x7DFF

0x3F00/

0x7E00

1 0 512/1024 words 8 0x0000-0x3DFF/

0x0000-0x7BFF/

0x3E00-0x3FFF/

0x7C00-0x7FFF

0x3DFF/

0x7BFF

0x3E00/

0x7C00

0 1 1024/2048 words 16 0x0000-0x3BFF/

0x0000-0x77FF

0x3C00-0x3FFF/

0x7800-0x7FFF

0x3BFF/

0x77FF

0x3C00/

0x7800

0 0 2048/4096 words 32 0x0000-0x37FF/

0x0000-0x6FFF

0x3800-0x3FFF/

0x7000-0x7FFF

0x37FF/

0x6FFF

0x3800/

0x7000

Table 26-7. Read-While-Write Limit(1)

Section Pages Address

Read-While-Write section (RWW) 224/224 0x0000 - x37FF/ 0x0000 - 0x6FFF

No Read-While-Write section (NRWW) 32/32 0x3800 - 0x3FFF/ 0x7000-0x7FFF

Table 26-8. Explanation of different variables used in Figure 26-3 and the mapping to the Z-pointer(1)

Variable
Corresponding 

Z-value Description

PCMSB 13/14
Most significant bit in the Program Counter. (Program Counter is 14/15 bits 
PC[13/14:0])

PAGEMSB 5/6
Most significant bit which is used to address the words within one page 
(64/128 words in a page requires six/seven bits PC [5/6:0]).

ZPCMSB Z14/15
Bit in Z-register that is mapped to PCMSB. Because Z0 is not used, the 
ZPCMSB equals PCMSB + 1.

ZPAGEMSB Z6/7
Bit in Z-register that is mapped to PCMSB. Because Z0 is not used, the 
ZPAGEMSB equals PAGEMSB + 1.

PCPAGE PC[13/14:6/7] Z14/15:Z7/8
Program Counter page address: Page select, for Page Erase and Page 
Write

PCWORD PC[5/6:0] Z6/7:Z1
Program Counter word address: Word select, for filling temporary buffer 
(must be zero during Page Write operation)
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26.9 Register Description

26.9.1 Store Program Memory Control and Status Register – SPMCSR
The Store Program Memory Control and Status Register contains the control bits needed to con-
trol the Boot Loader operations.

• Bit 7 – SPMIE: SPM Interrupt Enable
When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the SPM
ready interrupt will be enabled. The SPM ready Interrupt will be executed as long as the SPMEN
bit in the SPMCSR Register is cleared.

• Bit 6 – RWWSB: Read-While-Write Section Busy
When a Self-Programming (Page Erase or Page Write) operation to the RWW section is initi-
ated, the RWWSB will be set (one) by hardware. When the RWWSB bit is set, the RWW section
cannot be accessed. The RWWSB bit will be cleared if the RWWSRE bit is written to one after a
Self-Programming operation is completed. Alternatively the RWWSB bit will automatically be
cleared if a page load operation is initiated.

• Bit 5 – Reserved Bit
This bit is a reserved bit in the Atmel ATmega325/3250/645/6450 and always read as zero.

• Bit 4 – RWWSRE: Read-While-Write Section Read Enable
When programming (Page Erase or Page Write) to the RWW section, the RWW section is
blocked for reading (the RWWSB will be set by hardware). To re-enable the RWW section, the
user software must wait until the programming is completed (SPMEN will be cleared). Then, if
the RWWSRE bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles re-enables the RWW section. The RWW section cannot be re-enabled while
the Flash is busy with a Page Erase or a Page Write (SPMEN is set). If the RWWSRE bit is writ-
ten while the Flash is being loaded, the Flash load operation will abort and the data loaded will
be lost.

• Bit 3 – BLBSET: Boot Lock Bit Set
If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles sets Boot Lock bits and general Lock bits, according to the data in R0. The data in R1 and
the address in the Z-pointer are ignored. The BLBSET bit will automatically be cleared upon
completion of the Lock bit set, or if no SPM instruction is executed within four clock cycles. 

An LPM instruction within three cycles after BLBSET and SPMEN are set in the SPMCSR Reg-
ister, will read either the Lock bits or the Fuse bits (depending on Z0 in the Z-pointer) into the
destination register. See “Reading the Fuse and Lock Bits from Software” on page 259 for
details.

• Bit 2 – PGWRT: Page Write
If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles executes Page Write, with the data stored in the temporary buffer. The page address is
taken from the high part of the Z-pointer. The data in R1 and R0 are ignored. The PGWRT bit

Bit 7 6 5 4 3 2 1 0

SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SPMEN SPMCSR

Read/Write R/W R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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will auto-clear upon completion of a Page Write, or if no SPM instruction is executed within four
clock cycles. The CPU is halted during the entire Page Write operation if the NRWW section is
addressed.

• Bit 1 – PGERS: Page Erase
If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles executes Page Erase. The page address is taken from the high part of the Z-pointer. The
data in R1 and R0 are ignored. The PGERS bit will auto-clear upon completion of a Page Erase,
or if no SPM instruction is executed within four clock cycles. The CPU is halted during the entire
Page Write operation if the NRWW section is addressed.

• Bit 0 – SPMEN: Store Program Memory Enable
This bit enables the SPM instruction for the next four clock cycles. If written to one together with
either RWWSRE, BLBSET, PGWRT’ or PGERS, the following SPM instruction will have a spe-
cial meaning, see description above. If only SPMEN is written, the following SPM instruction will
store the value in R1:R0 in the temporary page buffer addressed by the Z-pointer. The LSB of
the Z-pointer is ignored. The SPMEN bit will auto-clear upon completion of an SPM instruction,
or if no SPM instruction is executed within four clock cycles. During Page Erase and Page Write,
the SPMEN bit remains high until the operation is completed. 

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower
five bits will have no effect.
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27. Memory Programming

27.1 Program And Data Memory Lock Bits
The Atmel ATmega325/3250/645/6450 provides six Lock bits which can be left unprogrammed
(“1”) or can be programmed (“0”) to obtain the additional features listed in Table 27-2. The Lock
bits can only be erased to “1” with the Chip Erase command.

Note: 1. “1” means unprogrammed, “0” means programmed

Table 27-1. Lock Bit Byte(1)

Lock Bit Byte Bit No Description Default Value

7 – 1 (unprogrammed)

6 – 1 (unprogrammed)

BLB12 5 Boot Lock bit 1 (unprogrammed)

BLB11 4 Boot Lock bit 1 (unprogrammed)

BLB02 3 Boot Lock bit 1 (unprogrammed)

BLB01 2 Boot Lock bit 1 (unprogrammed)

LB2 1 Lock bit 1 (unprogrammed)

LB1 0 Lock bit 1 (unprogrammed)

Table 27-2. Lock Bit Protection Modes(1)(2) 

Memory Lock Bits Protection Type

LB Mode LB2 LB1

1 1 1 No memory lock features enabled.

2 1 0

Further programming of the Flash and EEPROM is 
disabled in Parallel and Serial Programming mode. The 
Fuse bits are locked in both Serial and Parallel 
Programming mode.(1)

3 0 0

Further programming and verification of the Flash and 
EEPROM is disabled in Parallel and Serial Programming 
mode. The Boot Lock bits and Fuse bits are locked in both 
Serial and Parallel Programming mode.(1)

BLB0 Mode BLB02 BLB01

1 1 1
No restrictions for SPM or LPM accessing the Application 
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and 
LPM executing from the Boot Loader section is not 
allowed to read from the Application section. If Interrupt 
Vectors are placed in the Boot Loader section, interrupts 
are disabled while executing from the Application section.

4 0 1

LPM executing from the Boot Loader section is not 
allowed to read from the Application section. If Interrupt 
Vectors are placed in the Boot Loader section, interrupts 
are disabled while executing from the Application section.
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Note: 1. Program the Fuse bits and Boot Lock bits before programming the LB1 and LB2.

2. “1” means unprogrammed, “0” means programmed

27.2 Fuse Bits
The Atmel ATmega325/3250/645/6450 has three Fuse bytes. Table 27-3 - Table 27-5 describe
briefly the functionality of all the fuses and how they are mapped into the Fuse bytes. Note that
the fuses are read as logical zero, “0”, if they are programmed.

Note: 1. See Table 28-5 on page 301 for BODLEVEL Fuse decoding.

2. Port G, PG5 is input only. Pull-up is always on. See “Alternate Functions of Port G” on page 
76.

BLB1 Mode BLB12 BLB11

1 1 1
No restrictions for SPM or LPM accessing the Boot Loader 
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section, 
and LPM executing from the Application section is not 
allowed to read from the Boot Loader section. If Interrupt 
Vectors are placed in the Application section, interrupts 
are disabled while executing from the Boot Loader section.

4 0 1

LPM executing from the Application section is not allowed 
to read from the Boot Loader section. If Interrupt Vectors 
are placed in the Application section, interrupts are 
disabled while executing from the Boot Loader section.

Table 27-2. Lock Bit Protection Modes(1)(2)  (Continued)

Memory Lock Bits Protection Type

Table 27-3. Extended Fuse Byte

Extended Fuse Byte Bit No Description Default Value

– 7 – 1

– 6 – 1

– 5 – 1

– 4 – 1

– 5 – 1

BODLEVEL1(1) 2 Brown-out Detector trigger level 1 (unprogrammed)

BODLEVEL0(1) 1 Brown-out Detector trigger level 1 (unprogrammed)

RSTDISBL(2) 0 External Reset Disable 1 (unprogrammed)
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Note: 1. The SPIEN Fuse is not accessible in serial programming mode.

2. The default value of BOOTSZ1..0 results in maximum Boot Size. See Table 26-6 on page 262 
for details.

3. See “Register Description” on page 47 for details.

4. Never ship a product with the OCDEN Fuse programmed regardless of the setting of Lock bits 
and JTAGEN Fuse. A programmed OCDEN Fuse enables some parts of the clock system to 
be running in all sleep modes. This may increase the power consumption.

5. If the JTAG interface is left unconnected, the JTAGEN fuse should if possible be disabled. This 
to avoid static current at the TDO pin in the JTAG interface.

Note: 1. The default value of SUT1..0 results in maximum start-up time for the default clock source. 
See Table 28-4 on page 301 for details.

2. The default setting of CKSEL3..0 results in internal RC Oscillator @ 8 MHz. See Table 9-5 on 
page 29 for details.

3. The CKOUT Fuse allow the system clock to be output on PORTE7. See “Clock Output Buffer” 
on page 31 for details.

4. See “System Clock Prescaler” on page 32 for details.

Table 27-4. Fuse High Byte

Fuse High Byte Bit No Description Default Value

OCDEN(4) 7 Enable OCD
1 (unprogrammed, 
OCD disabled)

JTAGEN(5) 6 Enable JTAG
0 (programmed, JTAG 
enabled)

SPIEN(1) 5
Enable Serial Program and Data 
Downloading

0 (programmed, SPI 
prog. enabled)

WDTON(3) 4 Watchdog Timer always on 1 (unprogrammed)

EESAVE 3
EEPROM memory is preserved 
through the Chip Erase

1 (unprogrammed, 
EEPROM not 
preserved)

BOOTSZ1 2
Select Boot Size (see Table 27-6 
for details) 0 (programmed)(2)

BOOTSZ0 1
Select Boot Size (see Table 27-6 
for details) 0 (programmed)(2)

BOOTRST 0 Select Reset Vector 1 (unprogrammed)

Table 27-5. Fuse Low Byte

Fuse Low Byte Bit No Description Default Value

CKDIV8(4) 7 Divide clock by 8 0 (programmed)

CKOUT(3) 6 Clock output 1 (unprogrammed)

SUT1 5 Select start-up time 1 (unprogrammed)(1)

SUT0 4 Select start-up time 0 (programmed)(1)

CKSEL3 3 Select Clock source 0 (programmed)(2)

CKSEL2 2 Select Clock source 0 (programmed)(2)

CKSEL1 1 Select Clock source 1 (unprogrammed)(2)

CKSEL0 0 Select Clock source 0 (programmed)(2)



268
2570N–AVR–05/11

ATmega325/3250/645/6450

The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are locked if
Lock bit1 (LB1) is programmed. Program the Fuse bits before programming the Lock bits.

27.2.1 Latching of Fuses
The fuse values are latched when the device enters programming mode and changes of the
fuse values will have no effect until the part leaves Programming mode. This does not apply to
the EESAVE Fuse which will take effect once it is programmed. The fuses are also latched on
Power-up in Normal mode.

27.3 Signature Bytes
All Atmel microcontrollers have a three-byte signature code which identifies the device. This
code can be read in both serial and parallel mode, also when the device is locked. The three
bytes reside in a separate address space.

For the Atmel ATmega325/3250/645/6450 the signature bytes are:

1. 0x000: 0x1E (indicates manufactured by Atmel).

2. 0x001: 0x95/0x96 (indicates Flash memory,refer to “Part Number” on page 225).

3. 0x002: 0x05/0x06 (indicates device, refer to “Part Number” on page 225).

27.4 Calibration Byte
The Atmel ATmega325/3250/645/6450 has a byte calibration value for the internal RC Oscilla-
tor. This byte resides in the high byte of address 0x000 in the signature address space. During
reset, this byte is automatically written into the OSCCAL Register to ensure correct frequency of
the calibrated RC Oscillator.

27.5 Parallel Programming Parameters, Pin Mapping, and Commands
This section describes how to parallel program and verify Flash Program memory, EEPROM
Data memory, Memory Lock bits, and Fuse bits in the Atmel ATmega325/3250/645/6450.
Pulses are assumed to be at least 250ns unless otherwise noted.

27.5.1 Signal Names
In this section, some pins of the Atmel ATmega325/3250/645/6450 are referenced by signal
names describing their functionality during parallel programming, see Figure 27-1 and Table 27-
6. Pins not described in the following table are referenced by pin names.

The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a positive pulse.
The bit coding is shown in Table 27-8.

When pulsing WR or OE, the command loaded determines the action executed. The different
Commands are shown in Table 27-9.
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Figure 27-1. Parallel Programming

Table 27-6. Pin Name Mapping

Signal Name in 
Programming Mode Pin Name I/O Function

RDY/BSY PD1 O
0: Device is busy programming, 1: Device is ready 
for new command.

OE PD2 I Output Enable (Active low).

WR PD3 I Write Pulse (Active low).

BS1 PD4 I
Byte Select 1 (“0” selects low byte, “1” selects high 
byte).

XA0 PD5 I XTAL Action Bit 0

XA1 PD6 I XTAL Action Bit 1

PAGEL PD7 I Program Memory and EEPROM data Page Load.

BS2 PA0 I
Byte Select 2 (“0” selects low byte, “1” selects 2’nd 
high byte).

DATA PB7-0 I/O Bi-directional Data bus (Output when OE is low).

Table 27-7. Pin Values Used to Enter Programming Mode

Pin Symbol Value

PAGEL Prog_enable[3] 0

XA1 Prog_enable[2] 0

XA0 Prog_enable[1] 0

BS1 Prog_enable[0] 0

VCC

+5V

GND

XTAL1

PD1

PD2

PD3

PD4

PD5

PD6

 PB7 - PB0 DATA

RESET

PD7

+12 V

BS1

XA0

XA1

OE

RDY/BSY

PAGEL

PA0

WR

BS2

AVCC

+5V
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Table 27-8. XA1 and XA0 Coding

XA1 XA0 Action when XTAL1 is Pulsed

0 0 Load Flash or EEPROM Address (High or low address byte 
determined by BS1).

0 1 Load Data (High or Low data byte for Flash determined by BS1).

1 0 Load Command

1 1 No Action, Idle

Table 27-9. Command Byte Bit Coding

Command Byte Command Executed

1000 0000 Chip Erase

0100 0000 Write Fuse bits

0010 0000 Write Lock bits

0001 0000 Write Flash

0001 0001 Write EEPROM

0000 1000 Read Signature Bytes and Calibration byte

0000 0100 Read Fuse and Lock bits

0000 0010 Read Flash

0000 0011 Read EEPROM

Table 27-10. No. of Words in a Page and No. of Pages in the Flash

Flash Size Page Size PCWORD No. of Pages PCPAGE PCMSB

16/32K words
(32/64K bytes)

64/128 
words

PC[5/6:0] 256
PC

[13/14:6/7]
13/14

Table 27-11. No. of Words in a Page and No. of Pages in the EEPROM

EEPROM Size Page Size PCWORD No. of Pages PCPAGE EEAMSB

1K/2K bytes 4/8 bytes EEA[1/2:0] 256
EEA

[13/14:2/3]
13/14
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27.6 Parallel Programming

27.6.1 Enter Programming Mode
The following algorithm puts the device in Parallel (High-voltage) Programming mode:

1. Set Prog_enable pins listed in Table 27-7 on page 269 to “0000”, RESET pin and VCC to
0V.

2. Apply 4.5 - 5.5V between VCC and GND.

3. Ensure that VCC reaches at least 1.8V within the next 20 µs.

4. Wait 20 - 60 µs, and apply 11.5 - 12.5V to RESET.

5. Keep the Prog_enable pins unchanged for at least 10µs after the High-voltage has been
applied to ensure the Prog_enable Signature has been latched. 

6. Wait at least 300 µs before giving any parallel programming commands. 

7. Exit Programming mode by power the device down or by bringing RESET pin to 0V.

If the rise time of the VCC is unable to fulfill the requirements listed above, the following alterna-
tive algorithm can be used.

1. Set Prog_enable pins listed in Table 27-7 on page 269 to “0000”, RESET pin to 0V and
VCC to 0V.

2. Apply 4.5 - 5.5V between VCC and GND.

3. Monitor VCC, and as soon as VCC reaches 0.9 - 1.1V, apply 11.5 - 12.5V to RESET.

4. Keep the Prog_enable pins unchanged for at least 10µs after the High-voltage has been
applied to ensure the Prog_enable Signature has been latched.

5. Wait until VCC actually reaches 4.5 -5.5V before giving any parallel programming
commands.

6. Exit Programming mode by power the device down or by bringing RESET pin to 0V.

27.6.2 Considerations for Efficient Programming
The loaded command and address are retained in the device during programming. For efficient
programming, the following should be considered.

• The command needs only be loaded once when writing or reading multiple memory 
locations.

• Skip writing the data value 0xFF, that is the contents of the entire EEPROM (unless the 
EESAVE Fuse is programmed) and Flash after a Chip Erase.

• Address high byte needs only be loaded before programming or reading a new 256 word 
window in Flash or 256 byte EEPROM. This consideration also applies to Signature bytes 
reading.

27.6.3 Chip Erase
The Chip Erase will erase the Flash and EEPROM(1) memories plus Lock bits. The Lock bits are
not reset until the program memory has been completely erased. The Fuse bits are not
changed. A Chip Erase must be performed before the Flash and/or EEPROM are
reprogrammed.

Note: 1. The EEPRPOM memory is preserved during Chip Erase if the EESAVE Fuse is programmed.

Load Command “Chip Erase”
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1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “1000 0000”. This is the command for Chip Erase.

4. Give XTAL1 a positive pulse. This loads the command.

5. Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.

6. Wait until RDY/BSY goes high before loading a new command.

27.6.4 Programming the Flash
The Flash is organized in pages, see Table 27-10 on page 270. When programming the Flash,
the program data is latched into a page buffer. This allows one page of program data to be pro-
grammed simultaneously. The following procedure describes how to program the entire Flash
memory:

A. Load Command “Write Flash”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “0001 0000”. This is the command for Write Flash.

4. Give XTAL1 a positive pulse. This loads the command.

B. Load Address Low byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “0”. This selects low address.

3. Set DATA = Address low byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address low byte.

C. Load Data Low Byte

1. Set XA1, XA0 to “01”. This enables data loading.

2. Set DATA = Data low byte (0x00 - 0xFF).

3. Give XTAL1 a positive pulse. This loads the data byte.

D. Load Data High Byte

1. Set BS1 to “1”. This selects high data byte.

2. Set XA1, XA0 to “01”. This enables data loading.

3. Set DATA = Data high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the data byte.

E. Latch Data

1. Set BS1 to “1”. This selects high data byte.

2. Give PAGEL a positive pulse. This latches the data bytes. (See Figure 27-3 for signal
waveforms)

F. Repeat B through E until the entire buffer is filled or until all data within the page is loaded.

While the lower bits in the address are mapped to words within the page, the higher bits address
the pages within the FLASH. This is illustrated in Figure 27-2 on page 273. Note that if less than
eight bits are required to address words in the page (pagesize < 256), the most significant bit(s)
in the address low byte are used to address the page when performing a Page Write.

G. Load Address High byte
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1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “1”. This selects high address.

3. Set DATA = Address high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address high byte.

H. Program Page

1. Give WR a negative pulse. This starts programming of the entire page of data. RDY/BSY
goes low.

2. Wait until RDY/BSY goes high (See Figure 27-3 for signal waveforms).

I. Repeat B through H until the entire Flash is programmed or until all data has been
programmed.

J. End Page Programming

1. 1. Set XA1, XA0 to “10”. This enables command loading.

2. Set DATA to “0000 0000”. This is the command for No Operation.

3. Give XTAL1 a positive pulse. This loads the command, and the internal write signals are
reset.

Figure 27-2. Addressing the Flash Which is Organized in Pages(1)

Note: 1. PCPAGE and PCWORD are listed in Table 27-10 on page 270.

PROGRAM MEMORY

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM
COUNTER
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Figure 27-3. Programming the Flash Waveforms(1)

Note: 1. “XX” is don’t care. The letters refer to the programming description above.

27.6.5 Programming the EEPROM
The EEPROM is organized in pages, see Table 27-11 on page 270. When programming the
EEPROM, the program data is latched into a page buffer. This allows one page of data to be
programmed simultaneously. The programming algorithm for the EEPROM data memory is as
follows (refer to “Programming the Flash” on page 272 for details on Command, Address and
Data loading):

1. A: Load Command “0001 0001”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. C: Load Data (0x00 - 0xFF).

5. E: Latch data (give PAGEL a positive pulse).

K: Repeat 3 through 5 until the entire buffer is filled.

L: Program EEPROM page

1. Set BS1 to “0”.

2. Give WR a negative pulse. This starts programming of the EEPROM page. RDY/BSY
goes low.

3. Wait until to RDY/BSY goes high before programming the next page (See Figure 27-4 for
signal waveforms).

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x10 ADDR. LOW ADDR. HIGHDATA
DATA LOW DATA HIGH ADDR. LOW DATA LOW DATA HIGH

XA1

XA0

BS1

XTAL1

XX XX XX

A B C D E B C D E G H

F
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Figure 27-4. Programming the EEPROM Waveforms

27.6.6 Reading the Flash
The algorithm for reading the Flash memory is as follows (refer to “Programming the Flash” on
page 272 for details on Command and Address loading):

1. A: Load Command “0000 0010”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The Flash word low byte can now be read at DATA.

5. Set BS1 to “1”. The Flash word high byte can now be read at DATA.

6. Set OE to “1”.

27.6.7 Reading the EEPROM
The algorithm for reading the EEPROM memory is as follows (refer to “Programming the Flash”
on page 272 for details on Command and Address loading):

1. A: Load Command “0000 0011”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at DATA.

5. Set OE to “1”.

27.6.8 Programming the Fuse Low Bits
The algorithm for programming the Fuse Low bits is as follows (refer to “Programming the Flash”
on page 272 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

27.6.9 Programming the Fuse High Bits
The algorithm for programming the Fuse High bits is as follows (refer to “Programming the
Flash” on page 272 for details on Command and Data loading):

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x11 ADDR. HIGH
DATA

ADDR. LOW DATA ADDR. LOW DATA XX

XA1

XA0

BS1

XTAL1

XX

A G B C E B C E L

K
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1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Set BS1 to “1” and BS2 to “0”. This selects high data byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS1 to “0”. This selects low data byte.

27.6.10 Programming the Extended Fuse Bits
The algorithm for programming the Extended Fuse bits is as follows (refer to “Programming the
Flash” on page 272 for details on Command and Data loading):

1. 1. A: Load Command “0100 0000”.

2. 2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. 3. Set BS1 to “0” and BS2 to “1”. This selects extended data byte.

4. 4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. 5. Set BS2 to “0”. This selects low data byte.

Figure 27-5. Programming the FUSES Waveforms

27.6.11 Programming the Lock Bits
The algorithm for programming the Lock bits is as follows (refer to “Programming the Flash” on
page 272 for details on Command and Data loading):

1. A: Load Command “0010 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs the Lock bit. If LB mode 3 is programmed
(LB1 and LB2 is programmed), it is not possible to program the Boot Lock bits by any
External Programming mode.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

The Lock bits can only be cleared by executing Chip Erase.

27.6.12 Reading the Fuse and Lock Bits
The algorithm for reading the Fuse and Lock bits is as follows (refer to “Programming the Flash”
on page 272 for details on Command loading):

RDY/BSY

WR

OE

RESET +12V

PAGEL

0x40
DATA

DATA XX

XA1

XA0

BS1

XTAL1

A C

0x40 DATA XX

A C

Write Fuse Low byte Write Fuse high byte

0x40 DATA XX

A C

Write Extended Fuse byte

BS2
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1. A: Load Command “0000 0100”.

2. Set OE to “0”, BS2 to “0” and BS1 to “0”. The status of the Fuse Low bits can now be
read at DATA (“0” means programmed).

3. Set OE to “0”, BS2 to “1” and BS1 to “1”. The status of the Fuse High bits can now be
read at DATA (“0” means programmed).

4. Set OE to “0”, BS2 to “1”, and BS1 to “0”. The status of the Extended Fuse bits can now
be read at DATA (“0” means programmed).

5. Set OE to “0”, BS2 to “0” and BS1 to “1”. The status of the Lock bits can now be read at
DATA (“0” means programmed).

6. Set OE to “1”.

Figure 27-6. Mapping Between BS1, BS2 and the Fuse and Lock Bits During Read

27.6.13 Reading the Signature Bytes
The algorithm for reading the Signature bytes is as follows (refer to “Programming the Flash” on
page 272 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte (0x00 - 0x02).

3. Set OE to “0”, and BS1 to “0”. The selected Signature byte can now be read at DATA.

4. Set OE to “1”.

27.6.14 Reading the Calibration Byte
The algorithm for reading the Calibration byte is as follows (refer to “Programming the Flash” on
page 272 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte, 0x00.

3. Set OE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.

4. Set OE to “1”.

Lock Bits 0

1

BS2

Fuse High Byte

0

1

BS1

DATA

Fuse Low Byte 0

1

BS2

Extended Fuse Byte
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27.6.15 Parallel Programming Characteristics

Figure 27-7. Parallel Programming Timing, Including some General Timing Requirements

Figure 27-8. Parallel Programming Timing, Loading Sequence with Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 27-7 (i.e., tDVXH, tXHXL, and tXLDX) also apply to load-
ing operation.

Data & Contol
(DATA, XA0/1, BS1, BS2)

XTAL1
tXHXL

tWLWH

tDVXH tXLDX

tPLWL

tWLRH

WR

RDY/BSY

PAGEL tPHPL

tPLBXtBVPH

tXLWL

tWLBX
tBVWL

WLRL

XTAL1

PAGEL

tPLXHXLXHt tXLPH

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

LOAD DATA 
(LOW BYTE)

LOAD DATA
(HIGH BYTE)

LOAD DATA LOAD ADDRESS
(LOW BYTE)
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Figure 27-9. Parallel Programming Timing, Reading Sequence (within the Same Page) with 
Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 27-7 (i.e., tDVXH, tXHXL, and tXLDX) also apply to read-
ing operation.

Table 27-12. Parallel Programming Characteristics, VCC = 5V ± 10% 

Symbol Parameter Min Typ Max Units

VPP Programming Enable Voltage 11.5 12.5 V

IPP Programming Enable Current 250 μA

tDVXH Data and Control Valid before XTAL1 High 67 ns

tXLXH XTAL1 Low to XTAL1 High 200 ns

tXHXL XTAL1 Pulse Width High 150 ns

tXLDX Data and Control Hold after XTAL1 Low 67 ns

tXLWL XTAL1 Low to WR Low 0 ns

tXLPH XTAL1 Low to PAGEL high 0 ns

tPLXH PAGEL low to XTAL1 high 150 ns

tBVPH BS1 Valid before PAGEL High 67 ns

tPHPL PAGEL Pulse Width High 150 ns

tPLBX BS1 Hold after PAGEL Low 67 ns

tWLBX BS2/1 Hold after WR Low 67 ns

tPLWL PAGEL Low to WR Low 67 ns

tBVWL BS1 Valid to WR Low 67 ns

tWLWH WR Pulse Width Low 150 ns

tWLRL WR Low to RDY/BSY Low 0 1 μs

tWLRH WR Low to RDY/BSY High(1) 3.7 4.5 ms

tWLRH_CE WR Low to RDY/BSY High for Chip Erase(2) 7.5 9 ms

tXLOL XTAL1 Low to OE Low 0 ns

XTAL1

OE

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

READ DATA 
(LOW BYTE)

READ DATA
(HIGH BYTE)

LOAD ADDRESS
(LOW BYTE)

tBVDV

tOLDV

tXLOL

tOHDZ
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Notes: 1.  tWLRH is valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock bits 
commands.

2.  tWLRH_CE is valid for the Chip Erase command.

27.7 Serial Downloading
Both the Flash and EEPROM memory arrays can be programmed using the serial SPI bus while
RESET is pulled to GND. The serial interface consists of pins SCK, MOSI (input) and MISO (out-
put). After RESET is set low, the Programming Enable instruction needs to be executed first
before program/erase operations can be executed. NOTE, in Table 27-13 on page 280, the pin
mapping for SPI programming is listed. Not all parts use the SPI pins dedicated for the internal
SPI interface.

27.7.1 Serial Programming Pin Mapping

Figure 27-10. Serial Programming and Verify(1)

Notes: 1. If the device is clocked by the internal Oscillator, it is no need to connect a clock source to the
XTAL1 pin.

2. VCC - 0.3V < AVCC < VCC + 0.3V, however, AVCC should always be within 1.8 - 5.5V

When programming the EEPROM, an auto-erase cycle is built into the self-timed programming
operation (in the Serial mode ONLY) and there is no need to first execute the Chip Erase
instruction. The Chip Erase operation turns the content of every memory location in both the
Program and EEPROM arrays into 0xFF.

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and high periods
for the serial clock (SCK) input are defined as follows:

tBVDV BS1 Valid to DATA valid 0 250 ns

tOLDV OE Low to DATA Valid 250 ns

tOHDZ OE High to DATA Tri-stated 250 ns

Table 27-12. Parallel Programming Characteristics, VCC = 5V ± 10%  (Continued)

Symbol Parameter Min Typ Max Units

Table 27-13. Pin Mapping Serial Programming

Symbol Pins I/O Description

MOSI PB2 I Serial Data in

MISO PB3 O Serial Data out

SCK PB1 I Serial Clock

VCC

GND

XTAL1

SCK

MISO

MOSI

RESET

+1.8 - 5.5V

AVCC

+1.8 - 5.5V(2)
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Low: > 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz

High: > 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz

27.7.2 Serial Programming Algorithm
When writing serial data to the Atmel ATmega325/3250/645/6450, data is clocked on the rising
edge of SCK.

When reading data from the Atmel ATmega325/3250/645/6450, data is clocked on the falling
edge of SCK. See Figure 27-11 for timing details.

To program and verify the Atmel ATmega325/3250/645/6450 in the serial programming mode,
the following sequence is recommended (See four byte instruction formats in Table 27-15):

1. Power-up sequence:
Apply power between VCC and GND while RESET and SCK are set to “0”. In some sys-
tems, the programmer can not guarantee that SCK is held low during power-up. In this
case, RESET must be given a positive pulse of at least two CPU clock cycles duration
after SCK has been set to “0”.

2. Wait for at least 20ms and enable serial programming by sending the Programming
Enable serial instruction to pin MOSI.

3. The serial programming instructions will not work if the communication is out of synchro-
nization. When in sync. the second byte (0x53), will echo back when issuing the third
byte of the Programming Enable instruction. Whether the echo is correct or not, all four
bytes of the instruction must be transmitted. If the 0x53 did not echo back, give RESET a
positive pulse and issue a new Programming Enable command. 

4. The Flash is programmed one page at a time. The page size is found in Table 27-10 on
page 270. The memory page is loaded one byte at a time by supplying the 6/7 LSB of the
address and data together with the Load Program Memory Page instruction. To ensure
correct loading of the page, the data low byte must be loaded before data high byte is
applied for a given address. The Program Memory Page is stored by loading the Write
Program Memory Page instruction with the 8 MSB of the address. If polling is not used,
the user must wait at least tWD_FLASH before issuing the next page. (See Table 27-14.)
Accessing the serial programming interface before the Flash write operation completes
can result in incorrect programming.

5. A: The EEPROM array is programmed one byte at a time by supplying the address and 
data together with the appropriate Write instruction. An EEPROM memory location is first 
automatically erased before new data is written. If polling (RDY/BSY) is not used, the 
user must wait at least tWD_EEPROM before issuing the next byte (See Table 27-14.) In a 
chip erased device, no 0xFFs in the data file(s) need to be programmed.
B: The EEPROM array is programmed one page at a time. The Memory page is loaded 
one byte at a time by supplying the 2 LSB of the address and data together with the Load 
EEPROM Memory Page instruction. The EEPROM Memory Page is stored by loading 
the Write EEPROM Memory Page Instruction with the 4 MSB of the address. When using 
EEPROM page access only byte locations loaded with the Load EEPROM Memory Page 
instruction is altered. The remaining locations remain unchanged. If polling (RDY/BSY) is 
not used, the used must wait at least tWD_EEPROM before issuing the next page (See Table 
27-11). In a chip erased device, no 0xFF in the data file(s) need to be programmed.

6. Any memory location can be verified by using the Read instruction which returns the con-
tent at the selected address at serial output MISO.

7. At the end of the programming session, RESET can be set high to commence normal
operation.
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8. Power-off sequence (if needed):
Set RESET to “1”.
Turn VCC power off.

Figure 27-11. Serial Programming Waveforms

27.7.3 Serial Programming Instruction set
Table 27-15 and Figure 27-12 on page 284 describes the Instruction set.

Table 27-14. Minimum Wait Delay Before Writing the Next Flash or EEPROM Location

Symbol Minimum Wait Delay

tWD_FUSE 4.5ms

tWD_FLASH 4.5ms

tWD_EEPROM 9.0ms

tWD_ERASE 9.0ms

MSB

MSB

LSB

LSB

SERIAL CLOCK INPUT
(SCK)

SERIAL DATA INPUT
 (MOSI)

(MISO)

SAMPLE

SERIAL DATA OUTPUT

Table 27-15. Serial Programming Instruction Set

Instruction/Operation

Instruction Format

Byte 1 Byte 2 Byte 3 Byte4

Programming Enable $AC $53 $00 $00

Chip Erase (Program Memory/EEPROM) $AC $80 $00 $00

Poll RDY/BSY $F0 $00 $00 data byte out

Load Instructions

Load Extended Address byte(1) $4D $00 Extended adr $00

Load Program Memory Page, High byte $48 $00 adr LSB high data byte in

Load Program Memory Page, Low byte $40 $00 adr LSB low data byte in

Load EEPROM Memory Page (page access) $C1 $00 0000 00aa
/

0000 0aaa

data byte in

Read Instructions

Read Program Memory, High byte $28 adr MSB adr LSB high data byte out

Read Program Memory, Low byte $20 adr MSB adr LSB low data byte out

Read EEPROM Memory $A0 0000 00aa
/

0000 0aaa

aaaa aaaa data byte out
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Notes: 1. Not all instructions are applicable for all parts
2. a = address
3. Bits are programmed ‘0’, unprogrammed ‘1’.
4. To ensure future compatibility, unused Fuses and Lock bits should be unprogrammed (‘1’) .
5. Refer to the correspondig section for Fuse and Lock bits, Calibration and Signature bytes and

Page size.
6. See htt://www.atmel.com/avr for Application Notes regarding programming and programmers.

If the LSB in RDY/BSY data byte out is ‘1’, a programming operation is still pending. Wait until
this bit returns ‘0’ before the next instruction is carried out.

Within the same page, the low data byte must be loaded prior to the high data byte.

After data is loaded to the page buffer, program the EEPROM page, see Figure 27-12.

Read Lock bits $58 $00 $00 data byte out

Read Signature Byte $30 $00 0000 000aa data byte out

Read Fuse bits $50 $00 $00 data byte out

Read Fuse High bits $58 $08 $00 data byte out

Read Extended Fuse Bits $50 $08 $00 data byte out

Read Calibration Byte $38 $00 $00 data byte out

Write Instructions

Write Program Memory Page $4C adr MSB adr LSB $00

Write EEPROM Memory $C0 0000 00aa
/

0000 0aaa

aaaa aaaa data byte in

Write EEPROM Memory Page (page access) $C2 0000 00aa
/

0000 0aaa

aaaa aa00
/

aaaa a000

$00

Write Lock bits $AC $E0 $00 data byte in

Write Fuse bits $AC $A0 $00 data byte in

Write Fuse High bits $AC $A8 $00 data byte in

Write Extended Fuse Bits $AC $A4 $00 data byte in

Table 27-15. Serial Programming Instruction Set

Instruction/Operation

Instruction Format

Byte 1 Byte 2 Byte 3 Byte4
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Figure 27-12. Serial Programming Instruction example

27.7.4 SPI Serial Programming Characteristics
For characteristics of the SPI module see “SPI Timing Characteristics” on page 302.

27.8 Programming via the JTAG Interface
Programming through the JTAG interface requires control of the four JTAG specific pins: TCK,
TMS, TDI, and TDO. Control of the reset and clock pins is not required.

To be able to use the JTAG interface, the JTAGEN Fuse must be programmed. The device is
default shipped with the fuse programmed. In addition, the JTD bit in MCUCSR must be cleared.
Alternatively, if the JTD bit is set, the external reset can be forced low. Then, the JTD bit will be
cleared after two chip clocks, and the JTAG pins are available for programming. This provides a
means of using the JTAG pins as normal port pins in Running mode while still allowing In-Sys-
tem Programming via the JTAG interface. Note that this technique can not be used when using
the JTAG pins for Boundary-scan or On-chip Debug. In these cases the JTAG pins must be ded-
icated for this purpose.

During programming the clock frequency of the TCK Input must be less than the maximum fre-
quency of the chip. The System Clock Prescaler can not be used to divide the TCK Clock Input
into a sufficiently low frequency.

As a definition in this data sheet, the LSB is shifted in and out first of all Shift Registers.

Byte 1 Byte 2 Byte 3 Byte 4

Adr LSB

Bit 15  B        0

Serial Programming Instruction

Program Memory/
EEPROM Memory

Page 0

Page 1

Page 2

Page N-1

Page Buffer

Write Program Memory Page/
Write EEPROM Memory Page

Load Program Memory Page (High/Low Byte)/
Load EEPROM Memory Page (page access)

Byte 1 Byte 2 Byte 3 Byte 4

Bit 15  B        0

Adr MSB

Page Offset

Page Number

Adr MMSSBA AAdrr LLSBB
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27.8.1 Programming Specific JTAG Instructions
The Instruction Register is 4-bit wide, supporting up to 16 instructions. The JTAG instructions
useful for programming are listed below.

The OPCODE for each instruction is shown behind the instruction name in hex format. The text
describes which Data Register is selected as path between TDI and TDO for each instruction.

The Run-Test/Idle state of the TAP controller is used to generate internal clocks. It can also be
used as an idle state between JTAG sequences. The state machine sequence for changing the
instruction word is shown in Figure 27-13.

Figure 27-13. State Machine Sequence for Changing the Instruction Word

27.8.2 AVR_RESET (0xC)
The AVR specific public JTAG instruction for setting the AVR device in the Reset mode or taking
the device out from the Reset mode. The TAP controller is not reset by this instruction. The one
bit Reset Register is selected as Data Register. Note that the reset will be active as long as there
is a logic “one” in the Reset Chain. The output from this chain is not latched. 

The active states are:

• Shift-DR: The Reset Register is shifted by the TCK input.

Test-Logic-Reset

Run-Test/Idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select-DR Scan

Capture-DR

0

1

0 1 1 1

0 0

0 0

1 1

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

00

11
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27.8.3 PROG_ENABLE (0x4)
The AVR specific public JTAG instruction for enabling programming via the JTAG port. The 16-
bit Programming Enable Register is selected as Data Register. The active states are the
following:

• Shift-DR: The programming enable signature is shifted into the Data Register.

• Update-DR: The programming enable signature is compared to the correct value, and 
Programming mode is entered if the signature is valid.

27.8.4 PROG_COMMANDS (0x5)
The AVR specific public JTAG instruction for entering programming commands via the JTAG
port. The 15-bit Programming Command Register is selected as Data Register. The active
states are the following:

• Capture-DR: The result of the previous command is loaded into the Data Register.

• Shift-DR: The Data Register is shifted by the TCK input, shifting out the result of the 
previous command and shifting in the new command.

• Update-DR: The programming command is applied to the Flash inputs

• Run-Test/Idle: One clock cycle is generated, executing the applied command (not always 
required, see Table 27-16 below).

27.8.5 PROG_PAGELOAD (0x6)
The AVR specific public JTAG instruction to directly load the Flash data page via the JTAG port.
An 8-bit Flash Data Byte Register is selected as the Data Register. This is physically the 8 LSBs
of the Programming Command Register. The active states are the following:

• Shift-DR: The Flash Data Byte Register is shifted by the TCK input.

• Update-DR: The content of the Flash Data Byte Register is copied into a temporary register. 
A write sequence is initiated that within 11 TCK cycles loads the content of the temporary 
register into the Flash page buffer. The AVR automatically alternates between writing the low 
and the high byte for each new Update-DR state, starting with the low byte for the first 
Update-DR encountered after entering the PROG_PAGELOAD command. The Program 
Counter is pre-incremented before writing the low byte, except for the first written byte. This 
ensures that the first data is written to the address set up by PROG_COMMANDS, and 
loading the last location in the page buffer does not make the program counter increment 
into the next page.

27.8.6 PROG_PAGEREAD (0x7)
The AVR specific public JTAG instruction to directly capture the Flash content via the JTAG port.
An 8-bit Flash Data Byte Register is selected as the Data Register. This is physically the 8 LSBs
of the Programming Command Register. The active states are the following:

• Capture-DR: The content of the selected Flash byte is captured into the Flash Data Byte 
Register. The AVR automatically alternates between reading the low and the high byte for 
each new Capture-DR state, starting with the low byte for the first Capture-DR encountered 
after entering the PROG_PAGEREAD command. The Program Counter is post-incremented 
after reading each high byte, including the first read byte. This ensures that the first data is 
captured from the first address set up by PROG_COMMANDS, and reading the last location 
in the page makes the program counter increment into the next page.

• Shift-DR: The Flash Data Byte Register is shifted by the TCK input.
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27.8.7 Data Registers
The Data Registers are selected by the JTAG instruction registers described in section “Pro-
gramming Specific JTAG Instructions” on page 285. The Data Registers relevant for
programming operations are:

• Reset Register

• Programming Enable Register

• Programming Command Register

• Flash Data Byte Register

27.8.8 Reset Register
The Reset Register is a Test Data Register used to reset the part during programming. It is
required to reset the part before entering Programming mode.

A high value in the Reset Register corresponds to pulling the external reset low. The part is reset
as long as there is a high value present in the Reset Register. Depending on the Fuse settings
for the clock options, the part will remain reset for a Reset Time-out period (refer to “Clock
Sources” on page 27) after releasing the Reset Register. The output from this Data Register is
not latched, so the reset will take place immediately, as shown in Figure 25-2 on page 226.

27.8.9 Programming Enable Register
The Programming Enable Register is a 16-bit register. The contents of this register is compared
to the programming enable signature, binary code 0b1010_0011_0111_0000. When the con-
tents of the register is equal to the programming enable signature, programming via the JTAG
port is enabled. The register is reset to 0 on Power-on Reset, and should always be reset when
leaving Programming mode.

Figure 3.  Programming Enable Register

27.8.10 Programming Command Register
The Programming Command Register is a 15-bit register. This register is used to serially shift in
programming commands, and to serially shift out the result of the previous command, if any. The
JTAG Programming Instruction Set is shown in Table 27-16. The state sequence when shifting
in the programming commands is illustrated in Figure 27-15.
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Figure 27-14. Programming Command Register
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Table 27-16. JTAG Programming Instruction Set  
a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

Instruction TDI Sequence TDO Sequence Notes

1a. Chip Erase 0100011_10000000

0110001_10000000

0110011_10000000

0110011_10000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

1b. Poll for Chip Erase Complete 0110011_10000000 xxxxxox_xxxxxxxx (2)

2a. Enter Flash Write 0100011_00010000 xxxxxxx_xxxxxxxx

2b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

2c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

2d. Load Data Low Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

2e. Load Data High Byte 0010111_iiiiiiii xxxxxxx_xxxxxxxx

2f. Latch Data 0110111_00000000

1110111_00000000
0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

(1)

2g. Write Flash Page 0110111_00000000
0110101_00000000

0110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

2h. Poll for Page Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

3a. Enter Flash Read 0100011_00000010 xxxxxxx_xxxxxxxx

3b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

3c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

3d. Read Data Low and High Byte 0110010_00000000

0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo
xxxxxxx_oooooooo

Low byte

High byte

4a. Enter EEPROM Write 0100011_00010001 xxxxxxx_xxxxxxxx

4b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

4c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

4d. Load Data Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

4e. Latch Data 0110111_00000000

1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

4f. Write EEPROM Page 0110011_00000000

0110001_00000000
0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

4g. Poll for Page Write Complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

5a. Enter EEPROM Read 0100011_00000011 xxxxxxx_xxxxxxxx

5b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)
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5c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

5d. Read Data Byte 0110011_bbbbbbbb
0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

6a. Enter Fuse Write 0100011_01000000 xxxxxxx_xxxxxxxx

6b. Load Data Low Byte(6) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)

6c. Write Fuse Extended Byte 0111011_00000000

0111001_00000000
0111011_00000000

0111011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6d. Poll for Fuse Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

6e. Load Data Low Byte(7) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)

6f. Write Fuse High Byte 0110111_00000000

0110101_00000000
0110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6g. Poll for Fuse Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

6h. Load Data Low Byte(7) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)

6i. Write Fuse Low Byte 0110011_00000000

0110001_00000000
0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6j. Poll for Fuse Write Complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

7a. Enter Lock Bit Write 0100011_00100000 xxxxxxx_xxxxxxxx

7b. Load Data Byte(9) 0010011_11iiiiii xxxxxxx_xxxxxxxx (4)

7c. Write Lock Bits 0110011_00000000

0110001_00000000

0110011_00000000
0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

(1)

7d. Poll for Lock Bit Write complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

8a. Enter Fuse/Lock Bit Read 0100011_00000100 xxxxxxx_xxxxxxxx

8b. Read Extended Fuse Byte(6) 0111010_00000000

0111011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

8c. Read Fuse High Byte(7) 0111110_00000000

0111111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

8d. Read Fuse Low Byte(8) 0110010_00000000
0110011_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_oooooooo

8e. Read Lock Bits(9) 0110110_00000000
0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxoooooo

(5)

Table 27-16. JTAG Programming Instruction Set  (Continued) 
a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

Instruction TDI Sequence TDO Sequence Notes
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Note: 1. This command sequence is not required if the seven MSB are correctly set by the previous command sequence (which is 
normally the case).

2. Repeat until o = “1”.

3. Set bits to “0” to program the corresponding Fuse, “1” to unprogram the Fuse.

4. Set bits to “0” to program the corresponding Lock bit, “1” to leave the Lock bit unchanged.

5. “0” = programmed, “1” = unprogrammed.

6. The bit mapping for Fuses Extended byte is listed in Table 27-3 on page 266

7. The bit mapping for Fuses High byte is listed in Table 27-4 on page 267

8. The bit mapping for Fuses Low byte is listed in Table 27-5 on page 267

9. The bit mapping for Lock bits byte is listed in Table 27-1 on page 265

10. Address bits exceeding PCMSB and EEAMSB (Table 27-10 and Table 27-11) are don’t care

11. All TDI and TDO sequences are represented by binary digits (0b...).

8f. Read Fuses and Lock Bits 0111010_00000000

0111110_00000000
0110010_00000000

0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo
xxxxxxx_oooooooo
xxxxxxx_oooooooo
xxxxxxx_oooooooo

(5)

Fuse Ext. byte
Fuse High byte

Fuse Low byte

Lock bits

9a. Enter Signature Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

9b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

9c. Read Signature Byte 0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

10a. Enter Calibration Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

10b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

10c. Read Calibration Byte 0110110_00000000
0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_oooooooo

11a. Load No Operation Command 0100011_00000000
0110011_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

Table 27-16. JTAG Programming Instruction Set  (Continued) 
a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

Instruction TDI Sequence TDO Sequence Notes
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Figure 27-15. State Machine Sequence for Changing/Reading the Data Word

27.8.11 Flash Data Byte Register
The Flash Data Byte Register provides an efficient way to load the entire Flash page buffer
before executing Page Write, or to read out/verify the content of the Flash. A state machine sets
up the control signals to the Flash and senses the strobe signals from the Flash, thus only the
data words need to be shifted in/out.

The Flash Data Byte Register actually consists of the 8-bit scan chain and a 8-bit temporary reg-
ister. During page load, the Update-DR state copies the content of the scan chain over to the
temporary register and initiates a write sequence that within 11 TCK cycles loads the content of
the temporary register into the Flash page buffer. The AVR automatically alternates between
writing the low and the high byte for each new Update-DR state, starting with the low byte for the
first Update-DR encountered after entering the PROG_PAGELOAD command. The Program
Counter is pre-incremented before writing the low byte, except for the first written byte. This
ensures that the first data is written to the address set up by PROG_COMMANDS, and loading
the last location in the page buffer does not make the Program Counter increment into the next
page.

During Page Read, the content of the selected Flash byte is captured into the Flash Data Byte
Register during the Capture-DR state. The AVR automatically alternates between reading the
low and the high byte for each new Capture-DR state, starting with the low byte for the first Cap-
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ture-DR encountered after entering the PROG_PAGEREAD command. The Program Counter is
post-incremented after reading each high byte, including the first read byte. This ensures that
the first data is captured from the first address set up by PROG_COMMANDS, and reading the
last location in the page makes the program counter increment into the next page.

Figure 27-16. Flash Data Byte Register

The state machine controlling the Flash Data Byte Register is clocked by TCK. During normal
operation in which eight bits are shifted for each Flash byte, the clock cycles needed to navigate
through the TAP controller automatically feeds the state machine for the Flash Data Byte Regis-
ter with sufficient number of clock pulses to complete its operation transparently for the user.
However, if too few bits are shifted between each Update-DR state during page load, the TAP
controller should stay in the Run-Test/Idle state for some TCK cycles to ensure that there are at
least 11 TCK cycles between each Update-DR state.

27.8.12 Programming Algorithm
All references below of type “1a”, “1b”, and so on, refer to Table 27-16.

27.8.13 Entering Programming Mode

1. Enter JTAG instruction AVR_RESET and shift 1 in the Reset Register.

2. Enter instruction PROG_ENABLE and shift 0b1010_0011_0111_0000 in the Program-
ming Enable Register.

27.8.14 Leaving Programming Mode

1. Enter JTAG instruction PROG_COMMANDS.

2. Disable all programming instructions by using no operation instruction 11a.

3. Enter instruction PROG_ENABLE and shift 0b0000_0000_0000_0000 in the program-
ming Enable Register.

4. Enter JTAG instruction AVR_RESET and shift 0 in the Reset Register.

TDI
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D
A
T
A

Flash
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Fuses
Lock Bits

STROBES

ADDRESS

State
Machine
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27.8.15 Performing Chip Erase

1. Enter JTAG instruction PROG_COMMANDS.

2. Start Chip Erase using programming instruction 1a.

3. Poll for Chip Erase complete using programming instruction 1b, or wait for tWLRH_CE (refer
to Table 27-12 on page 279).

27.8.16 Programming the Flash
Before programming the Flash a Chip Erase must be performed, see “Performing Chip Erase”
on page 294.

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load address High byte using programming instruction 2b.

4. Load address Low byte using programming instruction 2c.

5. Load data using programming instructions 2d, 2e and 2f.

6. Repeat steps 4 and 5 for all instruction words in the page.

7. Write the page using programming instruction 2g.

8. Poll for Flash write complete using programming instruction 2h, or wait for tWLRH (refer to
Table 27-12 on page 279).

9. Repeat steps 3 to 7 until all data have been programmed.

A more efficient data transfer can be achieved using the PROG_PAGELOAD instruction:

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load the page address using programming instructions 2b and 2c. PCWORD (refer to
Table 27-10 on page 270) is used to address within one page and must be written as 0.

4. Enter JTAG instruction PROG_PAGELOAD.

5. Load the entire page by shifting in all instruction words in the page byte-by-byte, starting
with the LSB of the first instruction in the page and ending with the MSB of the last
instruction in the page. Use Update-DR to copy the contents of the Flash Data Byte Reg-
ister into the Flash page location and to auto-increment the Program Counter before
each new word.

6. Enter JTAG instruction PROG_COMMANDS.

7. Write the page using programming instruction 2g.

8. Poll for Flash write complete using programming instruction 2h, or wait for tWLRH (refer to
Table 27-12 on page 279).

9. Repeat steps 3 to 8 until all data have been programmed.

27.8.17 Reading the Flash

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.

3. Load address using programming instructions 3b and 3c.

4. Read data using programming instruction 3d.

5. Repeat steps 3 and 4 until all data have been read.

A more efficient data transfer can be achieved using the PROG_PAGEREAD instruction:

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.
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3. Load the page address using programming instructions 3b and 3c. PCWORD (refer to
Table 27-10 on page 270) is used to address within one page and must be written as 0.

4. Enter JTAG instruction PROG_PAGEREAD.

5. Read the entire page (or Flash) by shifting out all instruction words in the page (or Flash),
starting with the LSB of the first instruction in the page (Flash) and ending with the MSB
of the last instruction in the page (Flash). The Capture-DR state both captures the data
from the Flash, and also auto-increments the program counter after each word is read.
Note that Capture-DR comes before the shift-DR state. Hence, the first byte which is
shifted out contains valid data.

6. Enter JTAG instruction PROG_COMMANDS.

7. Repeat steps 3 to 6 until all data have been read.

27.8.18 Programming the EEPROM
Before programming the EEPROM a Chip Erase must be performed, see “Performing Chip
Erase” on page 294.

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable EEPROM write using programming instruction 4a.

3. Load address High byte using programming instruction 4b.

4. Load address Low byte using programming instruction 4c.

5. Load data using programming instructions 4d and 4e.

6. Repeat steps 4 and 5 for all data bytes in the page.

7. Write the data using programming instruction 4f.

8. Poll for EEPROM write complete using programming instruction 4g, or wait for tWLRH
(refer to Table 27-12 on page 279).

9. Repeat steps 3 to 8 until all data have been programmed.

Note that the PROG_PAGELOAD instruction can not be used when programming the EEPROM.

27.8.19 Reading the EEPROM

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable EEPROM read using programming instruction 5a.

3. Load address using programming instructions 5b and 5c.

4. Read data using programming instruction 5d.

5. Repeat steps 3 and 4 until all data have been read.

Note that the PROG_PAGEREAD instruction can not be used when reading the EEPROM.

27.8.20 Programming the Fuses

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Fuse write using programming instruction 6a.

3. Load data high byte using programming instructions 6b. A bit value of “0” will program the
corresponding fuse, a “1” will unprogram the fuse.

4. Write Fuse High byte using programming instruction 6c.

5. Poll for Fuse write complete using programming instruction 6d, or wait for tWLRH (refer to
Table 27-12 on page 279).

6. Load data low byte using programming instructions 6e. A “0” will program the fuse, a “1”
will unprogram the fuse.

7. Write Fuse low byte using programming instruction 6f.
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8. Poll for Fuse write complete using programming instruction 6g, or wait for tWLRH (refer to
Table 27-12 on page 279).

27.8.21 Programming the Lock Bits

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Lock bit write using programming instruction 7a.

3. Load data using programming instructions 7b. A bit value of “0” will program the corre-
sponding lock bit, a “1” will leave the lock bit unchanged.

4. Write Lock bits using programming instruction 7c.

5. Poll for Lock bit write complete using programming instruction 7d, or wait for tWLRH (refer
to Table 27-12 on page 279).

27.8.22 Reading the Fuses and Lock Bits

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Fuse/Lock bit read using programming instruction 8a.

3. To read all Fuses and Lock bits, use programming instruction 8e.
To only read Fuse High byte, use programming instruction 8b.
To only read Fuse Low byte, use programming instruction 8c.
To only read Lock bits, use programming instruction 8d.

27.8.23 Reading the Signature Bytes

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Signature byte read using programming instruction 9a.

3. Load address 0x00 using programming instruction 9b.

4. Read first signature byte using programming instruction 9c.

5. Repeat steps 3 and 4 with address 0x01 and address 0x02 to read the second and third
signature bytes, respectively.

27.8.24 Reading the Calibration Byte

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Calibration byte read using programming instruction 10a.

3. Load address 0x00 using programming instruction 10b.

Read the calibration byte using programming instruction 10c.
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28. Electrical Characteristics

28.1 Absolute Maximum Ratings*

28.2 DC Characteristics

Operating Temperature.................................. -55°C to +125°C *NOTICE: Stresses beyond those listed under “Absolute 
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and 
functional operation of the device at these or 
other conditions beyond those indicated in the 
operational sections of this specification is not 
implied. Exposure to absolute maximum rating 
conditions for extended periods may affect 
device reliability.

Storage Temperature ..................................... -65°C to +150°C

Voltage on any Pin except RESET
with respect to Ground ................................-0.5V to VCC+0.5V

Voltage on RESET with respect to Ground......-0.5V to +13.0V

Maximum Operating Voltage ............................................ 6.0V

DC Current per I/O Pin ............................................... 40.0 mA

DC Current VCC and GND Pins................................ 200.0 mA

Table 28-1. TA = -40°C to 85°C, VCC = 1.8V to 5.5V (unless otherwise noted) 

Symbol Parameter Condition Min. Typ. Max. Units

VIL
Input Low Voltage, Except 
XTAL1 pin

VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V

-0.5
-0.5

0.2VCC
(1)

0.3VCC
(1) V

VIL1
Input Low Voltage, XTAL1 
pin

VCC = 1.8V - 5.5V -0.5 0.1VCC
(1) V

VIH

Input High Voltage, 
Except XTAL1 and 
RESET pins

VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V

0.7VCC
(2)

0.6VCC
(2)

VCC + 0.5
VCC + 0.5

V

VIH1
Input High Voltage, 
XTAL1 pin

VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V

0.8VCC
(2)

0.7VCC
(2)

VCC + 0.5
VCC + 0.5

V

VIH2
Input High Voltage, 
RESET pin

VCC = 1.8V - 5.5V 0.85VCC
(2) VCC + 0.5 V

VOL
Output Low Voltage(3), 
Port A, C, D, E, F, G, H, J

IOL = 10mA, VCC = 5V
IOL = 5mA, VCC = 3V

0.7
0.5

V

VOL1
Output Low Voltage(3), 
Port B

IOL = 20mA, VCC = 5V
IOL = 10mA, VCC = 3V

0.7
0.5

V

VOH
Output High Voltage(4), 
Port A, C, D, E, F, G, H, J

IOH = -10mA, VCC = 5V
IOH = -5mA, VCC = 3V

4.2
2.3

V

VOH1
Output High Voltage(4), 
Port B

IOH = -20mA, VCC = 5V
IOH = -10mA, VCC = 3V

4.2
2.3

V

IIL
Input Leakage
Current I/O Pin

VCC = 5.5V, pin low
(absolute value)

1 µA

IIH
Input Leakage
Current I/O Pin

VCC = 5.5V, pin high
(absolute value)

1 µA

RRST Reset Pull-up Resistor 20 100 kΩ

RPU I/O Pin Pull-up Resistor 20 100 kΩ
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Note: 1. “Max” means the highest value where the pin is guaranteed to be read as low

2. “Min” means the lowest value where the pin is guaranteed to be read as high

3. Although each I/O port can sink more than the test conditions (20 mA at VCC = 5V, 10 mA at VCC = 3V for Port B and 10 mA 
at VCC = 5V, 5 mA at VCC = 3V for all other ports) under steady state conditions (non-transient), the following must be 
observed:
TQFP and QFN/MLF Package:
1] The sum of all IOL, for all ports, should not exceed 400 mA.
2] The sum of all IOL, for ports A0 - A7, C4 - C7, G2 should not exceed 100 mA.
3] The sum of all IOL, for ports B0 - B7, E0 - E7, G3 - G5 should not exceed 100 mA.
4] The sum of all IOL, for ports D0 - D7, C0 - C3, G0 - G1 should not exceed 100 mA.
5] The sum of all IOL, for ports F0 - F7, should not exceed 100 mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater 
than the listed test condition.

4. Although each I/O port can source more than the test conditions (20 mA at VCC = 5V, 10 mA at VCC = 3V for Port B and 10mA 
at VCC = 5V, 5 mA at VCC = 3V for all other ports) under steady state conditions (non-transient), the following must be 
observed:
TQFP and QFN/MLF Package:
1] The sum of all IOL, for all ports, should not exceed 400 mA.
2] The sum of all IOL, for ports A0 - A7, C4 - C7, G2 should not exceed 100 mA.
3] The sum of all IOL, for ports B0 - B7, E0 - E7, G3 - G5 should not exceed 100 mA.
4] The sum of all IOL, for ports D0 - D7, C0 - C3, G0 - G1 should not exceed 100 mA.
5] The sum of all IOL, for ports F0 - F7, should not exceed 100 mA.
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current 
greater than the listed test condition.

5. Typical values at 25°C.

ICC

Power Supply Current

Active 1MHz, VCC = 2V 0.55 mA

Active 4MHz, VCC = 3V 2.5 mA

Active 8MHz, VCC = 5V 9 mA

Idle 1MHz, VCC = 2V 0.2 mA

Idle 4MHz, VCC = 3V 0.85 mA

Idle 8MHz, VCC = 5V 3 mA

Power-down mode(5)
WDT enabled, VCC = 3V 7 15 µA

WDT disabled, VCC = 3V 0.25 5 µA

VACIO
Analog Comparator 
Input Offset Voltage

VCC = 5V

Vin = VCC/2
<10 40 mV

IACLK
Analog Comparator 
Input Leakage Current

VCC = 5V
Vin = VCC/2

-50 50 nA

tACID
Analog Comparator 
Propagation Delay

VCC = 2.7V
VCC = 4.0V

750
500

ns

Table 28-1. TA = -40°C to 85°C, VCC = 1.8V to 5.5V (unless otherwise noted)  (Continued)

Symbol Parameter Condition Min. Typ. Max. Units
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28.3 Speed Grades

Maximum frequency is dependent on VCC. As shown in Figure 28-1 on page 299 and Figure 28-
2 on page 299, the Maximum Frequency vs. VCC curve is linear between 1.8V < VCC < 2.7V and
between 2.7V < VCC < 4.5V.

Figure 28-1. Maximum Frequency vs. VCC (4 - 8 MHz).

Figure 28-2. Maximum Frequency vs. VCC (8 - 16 MHz).

8 MHz

4 MHz

1.8V 2.7V 5.5V

Safe Operating Area

16 MHz

8 MHz

2.7V 4.5V 5.5V

Safe Operating Area
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28.4 Clock Characteristics

28.4.1 Calibrated Internal Oscillator Accuracy

Note: 1. Voltage range for ATmega325V/3250V/645V/6450V.

2. Voltage range for Atmel ATmega325/3250/645/6450.

28.4.2 External Clock Drive Waveforms

Figure 28-3. External Clock Drive Waveforms

28.4.3 External Clock Drive

Table 28-2. Calibration Accuracy of Internal RC Oscillator

Frequency VCC Temperature Calibration Accuracy

Factory
Calibration

8.0 MHz 3V 25°C ±10%

User
Calibration

7.3 - 8.1 MHz
1.8V - 5.5V(1)

2.7V - 5.5V(2) -40°C - 85°C ±1%

VIL1

VIH1

Table 28-3. External Clock Drive

Symbol Parameter

VCC=1.8-5.5V VCC=2.7-5.5V VCC=4.5-5.5V

UnitsMin. Max. Min. Max. Min. Max.

1/tCLCL

Oscillator 
Frequency

0 1 0 8 0 16 MHz

tCLCL Clock Period 1000 125 62.5 ns

tCHCX High Time 400 50 25 ns

tCLCX Low Time 400 50 25 ns

tCLCH Rise Time 2.0 1.6 0.5 μs

tCHCL Fall Time 2.0 1.6 0.5 μs

ΔtCLCL

Change in period 
from one clock 
cycle to the next

2 2 2 %
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28.5 System and Reset Characteristics

Notes: 1. The Power-on Reset will not work unless the supply voltage has been below VPOT (falling)

Note: 1. VBOT may be below nominal minimum operating voltage for some devices. For devices where this is the case, the device is 
tested down to VCC = VBOT during the production test. This guarantees that a Brown-Out Reset will occur before VCC drops to 
a voltage where correct operation of the microcontroller is no longer guaranteed. The test is performed using 
BODLEVEL = 10 for Atmel ATmega325/3250/645/6450 and BODLEVEL = 01 for Atmel ATmega325/3250/645/6450V.

Table 28-4. Reset, Brown-out and Internal Voltage Reference Characteristics

Symbol Parameter Condition Min Typ Max Units

VPOT
(1)

Power-on Reset Threshold Voltage (rising) TA = -40°C to 85°C 0.7 1.0 1.4 V

Power-on Reset Threshold Voltage (falling)(1) TA = -40°C to 85°C 0.05 0.9 1.3 V

VPSR Power-on Slope Rate 0.01 4.5 V/ms

VRST RESET Pin Threshold Voltage VCC = 3V 0.2VCC 0.85VCC V

tRST Minimum pulse width on RESET Pin VCC = 3V 800 ns

VHYST Brown-out Detector Hysteresis 50 mV

tBOD Min Pulse Width on Brown-out Reset 2 µs

VBG Bandgap reference voltage VCC= 2.7V, TA = 25°C 1.0 1.1 1.2 V

tBG Bandgap reference start-up time VCC= 2.7V, TA = 25°C 40 70 µs

IBG Bandgap reference current consumption VCC= 2.7V, TA = 25°C 15 µA

Table 28-5. BODLEVEL Fuse Coding(1)

BODLEVEL 2:0 Fuses Min VBOT Typ VBOT Max VBOT Units

11 BOD Disabled

10 1.7 1.8 2.0

V01 2.5 2.7 2.9

00 4.1 4.3 4.5
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28.6 SPI Timing Characteristics

See Figure 28-4 and Figure 28-5 for details.

Note: 1. In SPI Programming mode the minimum SCK high/low period is:
- 2 tCLCL for fCK < 12 MHz
- 3 tCLCL for fCK > 12 MHz

Figure 28-4. SPI Interface Timing Requirements (Master Mode)

Table 28-6. SPI Timing Parameters

Description Mode Min Typ Max

1 SCK period Master See Table 19-5

ns

2 SCK high/low Master 50% duty cycle

3 Rise/Fall time Master 3.6

4 Setup Master 10

5 Hold Master 10

6 Out to SCK Master 0.5 • tsck

7 SCK to out Master 10

8 SCK to out high Master 10

9 SS low to out Slave 15

10 SCK period Slave 4 • tck

11 SCK high/low(1) Slave 2 • tck

12 Rise/Fall time Slave 1.6 µs

13 Setup Slave 10

ns

14 Hold Slave tck

15 SCK to out Slave 15

16 SCK to SS high Slave 20

17 SS high to tri-state Slave 10

18 SS low to SCK Slave 20 • tck

MOSI
(Data Output)

SCK
(CPOL = 1)

MISO
(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

6 1

2 2

34 5

87
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Figure 28-5. SPI Interface Timing Requirements (Slave Mode)

MISO
(Data Output)

SCK
(CPOL = 1)

MOSI
(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

10

11 11

1213 14

1715

9

X

16
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28.7 ADC

Table 28-7. ADC Characteristics

Symbol Parameter Condition Min Typ Max Units

Resolution
Single Ended Conversion 10 Bits

Differential Conversion 8 Bits

Absolute accuracy (Including 
INL, DNL, quantization error, 
gain and offset error)

Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 200kHz

2 2.5 LSB

Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 1MHz

4.5 LSB

Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 200kHz
Noise Reduction Mode

2 LSB

Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 1 MHz
Noise Reduction Mode

4.5 LSB

Integral Non-Linearity (INL)
Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 200kHz

0.5 LSB

Differential Non-Linearity (DNL)
Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 200kHz

0.25 LSB

Gain Error
Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 200kHz

2 LSB

Offset Error
Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 200kHz

2 LSB

Conversion Time Free Running Conversion 13 260 µs

Clock Frequency Single Ended Conversion 50 1000 kHz

AVCC Analog Supply Voltage VCC - 0.3 VCC + 0.3 V

VREF Reference Voltage
Single Ended Conversion 1.0 AVCC V

Differential Conversion 1.0 AVCC - 0.5 V

VIN

Pin Input Voltage
Single Ended Channels GND VREF V

Differential Channels GND AVCC V

Input Range
Single Ended Channels GND VREF V

Differential Channels(1) -0.85VREF VREF V

Input Bandwidth
Single Ended Channels 38,5 kHz

Differential Channels 4 kHz
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Note: 1. Voltage difference between channels

VINT Internal Voltage Reference 1.0 1.1 1.2 V

RREF Reference Input Resistance 32 kΩ

RAIN Analog Input Resistance 100 MΩ

Table 28-7. ADC Characteristics

Symbol Parameter Condition Min Typ Max Units
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29.  Typical Characteristics
The following charts show typical behavior. These figures are not tested during manufacturing.
All current consumption measurements are performed with all I/O pins configured as inputs and
with internal pull-ups enabled. A sine wave generator with rail-to-rail output is used as clock
source.

All Active- and Idle current consumption measurements are done with all bits in the PRR register
set and thus, the corresponding I/O modules are turned off. Also the Analog Comparator is dis-
abled during these measurements. See “Power Reduction Register” on page 37 for details.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating
frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient tempera-
ture. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as CL*VCC*f where
CL = load capacitance, VCC = operating voltage and f = average switching frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to
function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timer
enabled and Power-down mode with Watchdog Timer disabled represents the differential cur-
rent drawn by the Watchdog Timer.

29.1 Active Supply Current

Figure 29-1. Active Supply Current vs. Frequency (0.1 - 1.0MHz)
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Figure 29-2. Active Supply Current vs. Frequency (1 - 16MHz))

Figure 29-3. Active Supply Current vs. VCC (Internal RC Oscillator, 8MHz)
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Figure 29-4. Active Supply Current vs. VCC (Internal RC Oscillator, CKDIV8 Programmed, 
1MHz)

Figure 29-5. Active Supply Current vs. VCC (32kHz External Oscillator)
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29.2 Idle Supply Current

Figure 29-6. Idle Supply Current vs. Frequency (0.1 - 1.0 MHz)

Figure 29-7. Idle Supply Current vs. Frequency (1 - 16MHz)
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Figure 29-8. Idle Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)

Figure 29-9. Idle Supply Current vs. VCC (Internal RC Oscillator, CKDIV8 Programmed, 1MHz)
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Figure 29-10. Idle Supply Current vs. VCC (32kHz External Oscillator)

29.3 Supply Current of I/O modules

The tables and formulas below can be used to calculate the additional current consumption for
the different I/O modules in Active and Idle mode. The enabling or disabling of the I/O modules
are controlled by the Power Reduction Register. See “PRR – Power Reduction Register” on
page 40 for details.

It is possible to calculate the typical current consumption based on the numbers from Table 29-2
for other VCC and frequency settings than listed in Table 29-1. 
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Table 29-1. Additional Current Consumption for the different I/O modules (absolute values)

PRR bit Typical numbers

VCC = 2V, F = 1MHz VCC = 3V, F = 4MHz VCC = 5V, F = 8MHz

PRADC 17µA 116µA 562µA

PRUSART0 9µA 59µA 248µA

PRSPI 10µA 62µA 257µA

PRTIM1 5µA 33µA 135µA

Table 29-2. Additional Current Consumption (percentage) in Active and Idle mode

PRR bit

Additional Current consumption 
compared to Active with external 
clock 
(see Figure 29-1 and Figure 29-2)

Additional Current consumption 
compared to Idle with external 
clock 
(see Figure 29-6 and Figure 29-7)

PRADC 5.4% 16.8%

PRUSART0 2.7% 8.5%

PRSPI 2.9% 9.0%

PRTIM1 1.5% 4.8%
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29.3.0.1 Example

Calculate the expected current consumption in idle mode with USART0, TIMER1, and SPI
enabled at VCC = 3.0V and F = 1MHz. Table 29-2 shows that we need to add 8.5% for the
USART0, 9% for the SPI, and 4.8% for the TIMER1 module. From Figure 29-6, we find that the
idle current consumption is ~0.16mA at VCC = 3.0V and F = 1MHz. The total current consump-
tion in idle mode with USART0, TIMER1, and SPI enabled, gives:

29.4 Power-down Supply Current

Figure 29-11. Power-down Supply Current vs. VCC (Watchdog Timer Disabled)

Figure 29-12. Power-down Supply Current vs. VCC (Watchdog Timer Enabled)
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29.5 Power-save Supply Current

Figure 29-13. Power-save Supply Current vs. VCC (Watchdog Timer Disabled)

29.6 Standby Supply Current

Figure 29-14. Standby Supply Current vs. VCC (Low Power Crystal Oscillator)
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29.7 Pin Pull-up

Figure 29-15. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 5V)

Figure 29-16. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 2.7V)
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Figure 29-17. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 1.8V)

Figure 29-18. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V)
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Figure 29-19. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V)

Figure 29-20. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V)
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29.8 Pin Driver Strength

Figure 29-21. I/O Pin Source Current vs. Output Voltage, Ports A, C, D, E, F, G, H, J (VCC = 5V)

Figure 29-22. I/O Pin Source Current vs. Output Voltage, Ports A, C, D, E, F, G, H, J 
(VCC = 2.7V)
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Figure 29-23. I/O Pin Source Current vs. Output Voltage, Ports A, C, D, E, F, G, H, J 
(VCC = 1.8V)

Figure 29-24. I/O Pin Source Current vs. Output Voltage, Port B (VCC= 5V)
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Figure 29-25. I/O Pin Source Current vs. Output Voltage, Port B (VCC = 2.7V)

Figure 29-26. I/O Pin Source Current vs. Output Voltage, Port B (VCC = 1.8V)
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Figure 29-27. I/O Pin Sink Current vs. Output Voltage, Ports A, C, D, E, F, G, H, J 
(VCC = 5V)

Figure 29-28. I/O Pin Sink Current vs. Output Voltage, Ports A, C, D, E, F, G, H, J
(VCC = 2.7V)
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Figure 29-29. I/O Pin Sink Current vs. Output Voltage, Ports A, C, D, E, F, G, H, J
(VCC = 1.8V)

Figure 29-30. I/O Pin Sink Current vs. Output Voltage, Port B (VCC = 5V)
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Figure 29-31. I/O Pin Sink Current vs. Output Voltage, Port B (VCC = 2.7V)

Figure 29-32. I/O Pin Sink Current vs. Output Voltage, Port B (VCC = 1.8V)
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29.9 Pin Thresholds and hysteresis

Figure 29-33. I/O Pin Input Threshold Voltage vs. VCC (VIH, I/O Pin Read as “1”)

Figure 29-34. I/O Pin Input Threshold Voltage vs. VCC (VIL, I/O Pin Read as “0”)
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Figure 29-35. I/O Pin Input Hysteresis vs. VCC

Figure 29-36. Reset Input Threshold Voltage vs. VCC (VIH,Reset Pin Read as “1”)
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Figure 29-37. Reset Input Threshold Voltage vs. VCC (VIL,Reset Pin Read as “0”)

Figure 29-38. Reset Input Pin Hysteresis vs. VCC 
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29.10 BOD Thresholds and Analog Comparator Offset

Figure 29-39. BOD Thresholds vs. Temperature (BOD Level is 4.3V)

Figure 29-40. BOD Thresholds vs. Temperature (BOD Level is 2.7V)
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Figure 29-41. BOD Thresholds vs. Temperature (BOD Level is 1.8V)

Figure 29-42. Bandgap Voltage vs. VCC 
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Figure 29-43. Analog Comparator Offset Voltage vs. Common Mode Voltage (VCC = 5V)

Figure 29-44. Analog Comparator Offset Voltage vs. Common Mode Voltage (VCC = 2.7V)
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29.11 Internal Oscillator Speed

Figure 29-45. Watchdog Oscillator Frequency vs. VCC 

Figure 29-46. Calibrated 8 MHz RC Oscillator Frequency vs. Temperature
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Figure 29-47. Calibrated 8MHz RC Oscillator Frequency vs. VCC 

Figure 29-48. Calibrated 8MHz RC Oscillator Frequency vs. Osccal Value
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29.12 Current Consumption of Peripheral Units

Figure 29-49. Brownout Detector Current vs. VCC 

Figure 29-50. ADC Current vs. VCC (AREF = AVCC)
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Figure 29-51. AREF External Reference Current vs. VCC 

Figure 29-52. 32kHZ TOSC Current vs. VCC (Watchdog Timer Disabled)
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Figure 29-53. Watchdog Timer Current vs. VCC 

Figure 29-54. Analog Comparator Current vs. VCC 
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Figure 29-55. Programming Current vs. VCC 

29.13 Current Consumption in Reset and Reset Pulsewidth

Figure 29-56. Reset Supply Current vs. VCC (0.1 - 1.0MHz, Excluding Current Through The 
Reset Pull-up)
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Figure 29-57. Reset Supply Current vs. VCC (1 - 16MHz, Excluding Current Through The Reset 
Pull-up)

Figure 29-58. Reset Pulse Width vs. VCC 
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30. Register Summary
Note: Registers with bold type only available in ATmega3250/6450.

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

(0xFF) Reserved - - - - - - - -

(0xFE) Reserved - - - - - - - -

(0xFD) Reserved - - - - - - - -

(0xFC) Reserved - - - - - - - -

(0xFB) Reserved - - - - - - - -

(0xFA) Reserved - - - - - - - -

(0xF9) Reserved - - - - - - - -

(0xF8) Reserved - - - - - - - -

(0xF7) Reserved - - - - - - - -

(0xF6) Reserved - - - - - - - -

(0xF5) Reserved - - - - - - - -

(0xF4) Reserved - - - - - - - -

(0xF3) Reserved - - - - - - - -

(0xF2) Reserved - - - - - - - -

(0xF1) Reserved - - - - - - - -

(0xF0) Reserved - - - - - - - -

(0xEF) Reserved - - - - - - - -

(0xEE) Reserved - - - - - - - -

(0xED) Reserved - - - - - - - -

(0xEC) Reserved - - - - - - - -

(0xEB) Reserved - - - - - - - -

(0xEA) Reserved - - - - - - - -

(0xE9) Reserved - - - - - - - -

(0xE8) Reserved - - - - - - - -

(0xE7) Reserved - - - - - - - -

(0xE6) Reserved - - - - - - - -

(0xE5) Reserved - - - - - - - -

(0xE4) Reserved - - - - - - - -

(0xE3) Reserved - - - - - - - -

(0xE2) Reserved - - - - - - - -

(0xE1) Reserved - - - - - - - -

(0xE0) Reserved - - - - - - - -

(0xDF) Reserved - - - - - - - -

(0xDE) Reserved - - - - - - - -

(0xDD) PORTJ - PORTJ6 PORTJ5 PORTJ4 PORTJ3 PORTJ2 PORTJ1 PORTJ0 84

(0xDC) DDRJ - DDJ6 DDJ5 DDJ4 DDJ3 DDJ2 DDJ1 DDJ0 84

(0xDB) PINJ - PINJ6 PINJ5 PINJ4 PINJ3 PINJ2 PINJ1 PINJ0 84

(0xDA) PORTH PORTH7 PORTH6 PORTH5 PORTH4 PORTH3 PORTH2 PORTH1 PORTH0 84

(0xD9) DDRH DDH7 DDH6 DDH5 DDH4 DDH3 DDH2 DDH1 DDH0 84

(0xD8) PINH PINH7 PINH6 PINH5 PINH4 PINH3 PINH2 PINH1 PINH0 84

(0xD7) Reserved - - - - - - - -

(0xD6) Reserved - - - - - - - -

(0xD5) Reserved - - - - - - - -

(0xD4) Reserved - - - - - - - -

(0xD3) Reserved - - - - - - - -

(0xD2) Reserved - - - - - - - -

(0xD1) Reserved - - - - - - - -

(0xD0) Reserved - - - - - - - -

(0xCF) Reserved - - - - - - - -

(0xCE) Reserved - - - - - - - -

(0xCD) Reserved - - - - - - - -

(0xCC) Reserved - - - - - - - -

(0xCB) Reserved - - - - - - - -

(0xCA) Reserved - - - - - - - -

(0xC9) Reserved - - - - - - - -

(0xC8) Reserved - - - - - - - -

(0xC7) Reserved - - - - - - - -

(0xC6) UDR0 USART0 Data Register 179

(0xC5) UBRR0H USART0 Baud Rate Register High 184

(0xC4) UBRR0L USART0 Baud Rate Register Low 184
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(0xC3) Reserved - - - - - - - -

(0xC2) UCSR0C - UMSEL0 UPM01 UPM00 USBS0 UCSZ01 UCSZ00 UCPOL0 182

(0xC1) UCSR0B RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 181

(0xC0) UCSR0A RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 180

(0xBF) Reserved - - - - - - - -

(0xBE) Reserved - - - - - - - -

(0xBD) Reserved - - - - - - - -

(0xBC) Reserved - - - - - - - -

(0xBB) Reserved - - - - - - - -

(0xBA) USIDR USI Data Register 192

(0xB9) USISR USISIF USIOIF USIPF USIDC USICNT3 USICNT2 USICNT1 USICNT0 193

(0xB8) USICR USISIE USIOIE USIWM1 USIWM0 USICS1 USICS0 USICLK USITC 194

(0xB7) Reserved - - - - - - - -

(0xB6) ASSR - - - EXCLK AS2 TCN2UB OCR2UB TCR2UB 145

(0xB5) Reserved - - - - - - - -

(0xB4) Reserved - - - - - - - -

(0xB3) OCR2A Timer/Counter 2 Output Compare Register A 145

(0xB2) TCNT2 Timer/Counter2 145

(0xB1) Reserved - - - - - - - -

(0xB0) TCCR2A FOC2A WGM20 COM2A1 COM2A0 WGM21 CS22 CS21 CS20 143

(0xAF) Reserved - - - - - - - -

(0xAE) Reserved - - - - - - - -

(0xAD) Reserved - - - - - - - -

(0xAC) Reserved - - - - - - - -

(0xAB) Reserved - - - - - - - -

(0xAA) Reserved - - - - - - - -

(0xA9) Reserved - - - - - - - -

(0xA8) Reserved - - - - - - - -

(0xA7) Reserved - - - - - - - -

(0xA6) Reserved - - - - - - - -

(0xA5) Reserved - - - - - - - -

(0xA4) Reserved - - - - - - - -

(0xA3) Reserved - - - - - - - -

(0xA2) Reserved - - - - - - - -

(0xA1) Reserved - - - - - - - -

(0xA0) Reserved - - - - - - - -

(0x9F) Reserved - - - - - - - -

(0x9E) Reserved - - - - - - - -

(0x9D) Reserved - - - - - - - -

(0x9C) Reserved - - - - - - - -

(0x9B) Reserved - - - - - - - -

(0x9A) Reserved - - - - - - - -

(0x99) Reserved - - - - - - - -

(0x98) Reserved - - - - - - - -

(0x97) Reserved - - - - - - - -

(0x96) Reserved - - - - - - - -

(0x95) Reserved - - - - - - - -

(0x94) Reserved - - - - - - - -

(0x93) Reserved - - - - - - - -

(0x92) Reserved - - - - - - - -

(0x91) Reserved - - - - - - - -

(0x90) Reserved - - - - - - - -

(0x8F) Reserved - - - - - - - -

(0x8E) Reserved - - - - - - - -

(0x8D) Reserved - - - - - - - -

(0x8C) Reserved - - - - - - - -

(0x8B) OCR1BH Timer/Counter1 Output Compare Register B High 127

 (0x8A) OCR1BL Timer/Counter1 Output Compare Register B Low 127

(0x89) OCR1AH Timer/Counter1 Output Compare Register A High 127

(0x88) OCR1AL Timer/Counter1 Output Compare Register A Low 127

(0x87) ICR1H Timer/Counter1 Input Capture Register High 127

(0x86) ICR1L Timer/Counter1 Input Capture Register Low 127

(0x85) TCNT1H Timer/Counter1 High 127

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
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(0x84) TCNT1L Timer/Counter1 Low 127

(0x83) Reserved - - - - - - - -

(0x82) TCCR1C FOC1A FOC1B - - - - - - 126

(0x81) TCCR1B ICNC1 ICES1 - WGM13 WGM12 CS12 CS11 CS10 125

(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 - - WGM11 WGM10 123

(0x7F) DIDR1 - - - - - - AIN1D AIN0D 200

(0x7E) DIDR0 ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D 217

(0x7D) Reserved - - - - - - - -

(0x7C) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 213

(0x7B) ADCSRB - ACME - - - ADTS2 ADTS1 ADTS0 198/217

(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 215

(0x79) ADCH ADC Data Register High 216

(0x78) ADCL ADC Data Register Low 216

(0x77) Reserved - - - - - - - -

(0x76) Reserved - - - - - - - -

(0x75) Reserved - - - - - - - -

(0x74) Reserved - - - - - - - -

(0x73) PCMSK3 - PCINT30 PCINT29 PCINT28 PCINT27 PCINT26 PCINT25 PCINT24 58

(0x72) Reserved - - - - - - - -

(0x71) Reserved - - - - - - - -

(0x70) TIMSK2 - - - - - - OCIE2A TOIE2 146

(0x6F) TIMSK1 - - ICIE1 - - OCIE1B OCIE1A TOIE1 128

(0x6E) TIMSK0 - - - - - - OCIE0A TOIE0 99

(0x6D) PCMSK2 PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 58

(0x6C) PCMSK1 PCINT15 PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 59

(0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 59

(0x6A) Reserved - - - - - - - -

(0x69) EICRA - - - - - - ISC01 ISC00 56

(0x68) Reserved - - - - - - - -

(0x67) Reserved - - - - - - - -

(0x66) OSCCAL Oscillator Calibration Register [CAL7..0] 32

(0x65) Reserved - - - - - - - -

(0x64) PRR - - - - PRTIM1 PRSPI PSUSART0 PRADC 40

(0x63) Reserved - - - - - - - -

(0x62) Reserved - - - - - - - -

(0x61) CLKPR CLKPCE - - - CLKPS3 CLKPS2 CLKPS1 CLKPS0 32

(0x60) WDTCR - - - WDCE WDE WDP2 WDP1 WDP0 47

0x3F (0x5F) SREG I T H S V N Z C 12

0x3E (0x5E) SPH Stack Pointer High 14

0x3D (0x5D) SPL Stack Pointer Low 14

0x3C (0x5C) Reserved - - - - - - - -

0x3B (0x5B) Reserved - - - - - - - -

0x3A (0x5A) Reserved - - - - - - - -

0x39 (0x59) Reserved - - - - - - - -

0x38 (0x58) Reserved - - - - - - - -

0x37 (0x57) SPMCSR SPMIE RWWSB - RWWSRE BLBSET PGWRT PGERS SPMEN 263

0x36 (0x56) Reserved

0x35 (0x55) MCUCR JTD - - PUD - - IVSEL IVCE 53/81/227

0x34 (0x54) MCUSR - - - JTRF WDRF BORF EXTRF PORF 47

0x33 (0x53) SMCR - - - - SM2 SM1 SM0 SE 35

0x32 (0x52) Reserved - - - - - - - -

0x31 (0x51) OCDR IDRD/OCDR7 OCDR6 OCDR5 OCDR4 OCDR3 OCDR2 OCDR1 OCDR0 223

0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 198

0x2F (0x4F) Reserved - - - - - - - -

0x2E (0x4E) SPDR SPI Data Register 156

0x2D (0x4D) SPSR SPIF WCOL - - - - - SPI2X 156

0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 154

0x2B (0x4B) GPIOR2 General Purpose I/O Register 25

0x2A (0x4A) GPIOR1 General Purpose I/O Register 25

0x29 (0x49) Reserved - - - - - - - -

0x28 (0x48) Reserved - - - - - - - -

0x27 (0x47) OCR0A Timer/Counter0 Output Compare A 98

0x26 (0x46) TCNT0 Timer/Counter0 98

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
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Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses 
should never be written.

2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these 
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI 
instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The 
CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O 
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The Atmel 
ATmega325/3250/645/6450 is a complex microcontroller with more peripheral units than can be supported within the 64 
location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only 
the ST/STS/STD and LD/LDS/LDD instructions can be used.

0x25 (0x45) Reserved - - - - - - - -

0x24 (0x44) TCCR0A FOC0A WGM00 COM0A1 COM0A0 WGM01 CS02 CS01 CS00 96

0x23 (0x43) GTCCR TSM - - - - - PSR2 PSR10 101/147

0x22 (0x42) EEARH - - - - - EEPROM Address Register High 22

0x21 (0x41) EEARL EEPROM Address Register Low 22

0x20 (0x40) EEDR EEPROM Data Register 22

0x1F (0x3F) EECR - - - - EERIE EEMWE EEWE EERE 22

0x1E (0x3E) GPIOR0 General Purpose I/O Register 25

0x1D (0x3D) EIMSK PCIE3 PCIE2 PCIE1 PCIE0 - - - INT0 57

0x1C (0x3C) EIFR PCIF3 PCIF2 PCIF1 PCIF0 - - - INTF0 57

0x1B (0x3B) Reserved - - - - - - - -

0x1A (0x3A) Reserved - - - - - - - -

0x19 (0x39) Reserved - - - - - - - -

0x18 (0x38) Reserved - - - - - - - -

0x17 (0x37) TIFR2 - - - - - - OCF2A TOV2 147

0x16 (0x36) TIFR1 - - ICF1 - - OCF1B OCF1A TOV1 128

0x15 (0x35) TIFR0 - - - - - - OCF0A TOV0 99

0x14 (0x34) PORTG - - - PORTG4 PORTG3 PORTG2 PORTG1 PORTG0 83

0x13 (0x33) DDRG - - - DDG4 DDG3 DDG2 DDG1 DDG0 84

0x12 (0x32) PING - - PING5 PING4 PING3 PING2 PING1 PING0 84

0x11 (0x31) PORTF PORTF7 PORTF6 PORTF5 PORTF4 PORTF3 PORTF2 PORTF1 PORTF0 83

0x10 (0x30) DDRF DDF7 DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDF0 83

0x0F (0x2F) PINF PINF7 PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINF0 83

0x0E (0x2E) PORTE PORTE7 PORTE6 PORTE5 PORTE4 PORTE3 PORTE2 PORTE1 PORTE0 83

0x0D (0x2D) DDRE DDE7 DDE6 DDE5 DDE4 DDE3 DDE2 DDE1 DDE0 83

0x0C (0x2C) PINE PINE7 PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINE0 83

0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 82

0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 82

0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 83

0x08 (0x28) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 82

0x07 (0x27) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 82

0x06 (0x26) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 82

0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 82

0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 82

0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 82

0x02 (0x22) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 81

0x01 (0x21) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 81

0x00 (0x20) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 81

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
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31. Instruction Set Summary
Mnemonics Operands Description Operation Flags #Clocks

ARITHMETIC AND LOGIC INSTRUCTIONS

ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1

ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1

ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2

SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1

SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1

SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1

SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1

SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2

AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1

ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1

OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1

ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1

EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1

COM Rd One’s Complement Rd ← 0xFF − Rd Z,C,N,V 1

NEG Rd Two’s Complement Rd ← 0x00 − Rd Z,C,N,V,H 1

SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1

CBR Rd,K Clear Bit(s) in Register Rd ← Rd • (0xFF - K) Z,N,V 1

INC Rd Increment Rd ← Rd + 1 Z,N,V 1

DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1

TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1

CLR Rd Clear Register Rd  ← Rd ⊕ Rd Z,N,V 1

SER Rd Set Register Rd ← 0xFF None 1

MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C 2

MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C 2

MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C 2

FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

FMULS Rd, Rr Fractional Multiply Signed R1:R0 ← (Rd x Rr) << 1 Z,C 2

FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

BRANCH INSTRUCTIONS

RJMP k Relative Jump PC ← PC + k  + 1 None 2

IJMP Indirect Jump to (Z) PC ← Z None 2

JMP k Direct Jump PC ← k None 3

RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3

ICALL Indirect Call to (Z) PC ← Z None 3

CALL k Direct Subroutine Call PC ← k None 4

RET Subroutine Return PC ← STACK None 4

RETI Interrupt Return PC ← STACK I 4

CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1/2/3

CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1 

CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1

CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3

SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3

SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3

SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3

BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1/2

BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1/2

BREQ  k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2

BRNE  k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2

BRCS  k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2

BRCC  k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2

BRSH  k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2

BRLO  k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2

BRMI  k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2

BRPL  k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1/2

BRGE  k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1/2

BRLT  k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1/2

BRHS  k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1/2

BRHC  k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1/2

BRTS  k Branch if T Flag Set if (T = 1) then PC ← PC + k  + 1 None 1/2
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BRTC  k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1/2

BRVS  k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1/2

BRVC  k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2

BRIE  k Branch if Interrupt Enabled if ( I = 1) then PC ← PC + k + 1 None 1/2

BRID  k Branch if Interrupt Disabled if ( I = 0) then PC ← PC + k + 1 None 1/2

BIT AND BIT-TEST INSTRUCTIONS

SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2

CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2

LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1

LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1

ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1

ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1

ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1

BSET s Flag Set SREG(s) ← 1 SREG(s) 1

BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1

BST Rr, b Bit Store from Register to T T ← Rr(b) T 1

BLD Rd, b Bit load from T to Register Rd(b) ← T None 1

SEC Set Carry C ← 1 C 1

CLC Clear Carry C ← 0 C 1

SEN Set Negative Flag N ← 1 N 1

CLN Clear Negative Flag N ← 0 N 1

SEZ Set Zero Flag Z ← 1 Z 1

CLZ Clear Zero Flag Z ← 0 Z 1

SEI Global Interrupt Enable I ← 1 I 1

CLI Global Interrupt Disable I ← 0 I 1

SES Set Signed Test Flag S ← 1 S 1

CLS Clear Signed Test Flag S ← 0 S 1

SEV Set Twos Complement Overflow. V ← 1 V 1

CLV Clear Twos Complement Overflow V ← 0 V 1

SET Set T in SREG T ← 1 T 1

CLT Clear T in SREG T ← 0 T 1

SEH Set Half Carry Flag in SREG H ← 1 H 1

CLH Clear Half Carry Flag in SREG H ← 0 H 1

DATA TRANSFER INSTRUCTIONS

MOV Rd, Rr Move Between Registers Rd ← Rr None 1

MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1

LDI Rd, K Load Immediate Rd  ← K None 1

LD Rd, X Load Indirect Rd ← (X) None 2

LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2

LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2

LD Rd, Y Load Indirect Rd ← (Y) None 2

LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2

LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2

LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2

LD Rd, Z Load Indirect Rd ← (Z) None 2

LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2

LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2

LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2

LDS Rd, k Load Direct from SRAM Rd  ← (k) None 2

ST X, Rr Store Indirect (X) ← Rr None 2

ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2

ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2

ST Y, Rr Store Indirect (Y) ← Rr None 2

ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2

ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2

STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2

ST Z, Rr Store Indirect (Z) ← Rr None 2

ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2

ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2

STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2

STS k, Rr Store Direct to SRAM (k) ← Rr None 2

LPM Load Program Memory R0 ← (Z) None 3

LPM Rd, Z Load Program Memory Rd ← (Z) None 3

LPM Rd, Z+ Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1 None 3

SPM Store Program Memory (Z) ← R1:R0 None -

Mnemonics Operands Description Operation Flags #Clocks
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IN Rd, P In Port Rd ← P None 1

OUT P, Rr Out Port P ← Rr None 1

PUSH Rr Push Register on Stack STACK ← Rr None 2

POP Rd Pop Register from Stack Rd ← STACK None 2

MCU CONTROL INSTRUCTIONS

NOP No Operation None 1

SLEEP Sleep (see specific descr. for Sleep function) None 1

WDR Watchdog Reset (see specific descr. for WDR/timer) None 1

BREAK Break For On-chip Debug Only None N/A

Mnemonics Operands Description Operation Flags #Clocks
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32. Ordering Information

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information 
and minimum quantities.

2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS direc-
tive). Also Halide free and fully Green.

3. For Speed Grades see Figure 28-1 on page 299 and Figure 28-2 on page 299.

4. Tape & Reel

32.1 ATmega325
Speed (MHz)(3) Power Supply Ordering Code(2) Package Type(1) Operational Range

8 1.8 - 5.5V

ATmega325V-8AU
ATmega325V-8AUR(4)

ATmega325V-8MU
ATmega325V-8MUR(4)

64A
64A
64M1
64M1 Industrial

(-40°C to 85°C)

16 2.7 - 5.5V

ATmega325-16AU
ATmega325-16AUR(4)

ATmega325-16MU
ATmega325-16MUR(4)

64A
64A
64M1
64M1

Package Type

64A 64-lead, 14 x 14 x 1.0mm, Thin Profile Plastic Quad Flat Package (TQFP)

64M1 64-pad, 9 x 9 x 1.0mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
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Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information 
and minimum quantities.

2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS direc-
tive). Also Halide free and fully Green.

3. For Speed Grades see Figure 28-1 on page 299 and Figure 28-2 on page 299.

4. Tape & Reel

32.2 ATmega3250
Speed (MHz)(3) Power Supply Ordering Code(2) Package Type(1) Operational Range

8 1.8 - 5.5V
ATmega3250V-8AU
ATmega3250V-8AUR(4)

100A
100A Industrial

(-40°C to 85°C)
16 2.7 - 5.5V

ATmega3250-16AU
ATmega3250-16AUR(4)

100A
100A

Package Type

100A 100-lead, 14 x 14 x 1.0mm, 0.5mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
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Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information 
and minimum quantities.

2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS direc-
tive). Also Halide free and fully Green.

3. For Speed Grades see Figure 28-1 on page 299 and Figure 28-2 on page 299.

4. Tape & Reel

32.3 ATmega645
Speed (MHz)(3) Power Supply Ordering Code(2) Package Type(1) Operational Range

8 1.8 - 5.5V

ATmega645V-8AU
ATmega645V-8AUR(4)

ATmega645V-8MU
ATmega645V-8MUR(4)

64A
64A
64M1
64M1 Industrial

(-40°C to 85°C)

16 2.7 - 5.5V

ATmega645-16AU
ATmega645-16AUR(4)

ATmega645-16MU
ATmega645-16MUR(4)

64A
64A
64M1
64M1

Package Type

64A 64-lead, 14 x 14 x 1.0mm, Thin Profile Plastic Quad Flat Package (TQFP)

64M1 64-pad, 9 x 9 x 1.0mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
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Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information 
and minimum quantities.

2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS direc-
tive). Also Halide free and fully Green.

3. For Speed Grades see Figure 28-1 on page 299 and Figure 28-2 on page 299.

4. Tape & Reel

32.4 ATmega6450
Speed (MHz)(3) Power Supply Ordering Code(2) Package Type(1) Operational Range

8 1.8 - 5.5V
ATmega6450V-8AU
ATmega6450V-8AUR(4)

100A
100A Industrial

(-40°C to 85°C)
16 2.7 - 5.5V

ATmega6450-16AU
ATmega6450-16AUR(4)

100A
100A

Package Type

100A 100-lead, 14 x 14 x 1.0mm, 0.5mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)



347
2570N–AVR–05/11

ATmega325/3250/645/6450

33. Packaging Information

33.1 64A

  2325 Orchard Parkway
  San Jose, CA  95131

TITLE DRAWING NO.

R

REV.  

64A, 64-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness,
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) 

C64A

2010-10-20

PIN 1 IDENTIFIER

0°~7°

PIN 1 

L

C

A1 A2 A

D1

D

e

E1 E

B

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

Notes:
     1.This package conforms to JEDEC reference MS-026, Variation AEB. 
 2. Dimensions D1 and E1 do not include mold protrusion.  Allowable 
  protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum 
  plastic body size dimensions including mold mismatch.
 3. Lead coplanarity is 0.10 mm maximum.

 A – – 1.20

 A1 0.05 – 0.15

 A2  0.95 1.00 1.05           

 D 15.75 16.00 16.25

 D1 13.90 14.00 14.10 Note 2

 E 15.75 16.00 16.25

 E1 13.90 14.00 14.10 Note 2

 B           0.30 – 0.45

 C 0.09 – 0.20

 L 0.45 –  0.75

 e  0.80 TYP
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33.2 64M1

  2325 Orchard Parkway
  San Jose, CA  95131

TITLE DRAWING NO.

R

REV.  
64M1, 64-pad, 9 x 9 x 1.0 mm Body, Lead Pitch 0.50 mm, 

 H64M1

2010-10-19

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

 A 0.80 0.90 1.00

 A1 – 0.02 0.05

 b 0.18 0.25 0.30

 D 

 D2 5.20 5.40 5.60

8.90 9.00 9.10

8.90 9.00 9.10 E  

 E2 5.20 5.40 5.60

 e  0.50 BSC

L 0.35 0.40 0.45 

Notes:

  1. JEDEC Standard MO-220, (SAW Singulation) Fig. 1, VMMD.
  2. Dimension and tolerance conform to ASMEY14.5M-1994.

TOP VIEW

SIDE VIEW

BOTTOM VIEW

D

E

Marked Pin# 1 ID

SEATING PLANE

A1

C

A

C0.08

1
2
3

K 1.25 1.40 1.55

E2

D2

b e

Pin #1 Corner
L

Pin #1 
Triangle

Pin #1 
Chamfer
(C 0.30)

Option A

Option B

Pin #1 
Notch
(0.20 R)

Option C

K

K

5.40 mm Exposed Pad, Micro Lead Frame Package (MLF) 
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33.3 100A

  2325 Orchard Parkway
  San Jose, CA  95131

TITLE DRAWING NO.

R

REV.  

100A, 100-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness,
0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) 

D100A

2010-10-20

PIN 1 IDENTIFIER

0°~7°

PIN 1 

L

C

A1 A2 A

D1

D

e E1 E

B

 A – – 1.20

 A1 0.05 – 0.15

 A2  0.95 1.00 1.05           

 D 15.75 16.00 16.25

 D1 13.90 14.00 14.10 Note 2

 E 15.75 16.00 16.25

 E1 13.90 14.00 14.10 Note 2

 B           0.17 – 0.27

 C 0.09 – 0.20

 L 0.45 –  0.75

 e  0.50 TYP

Notes: 
 1. This package conforms to JEDEC reference MS-026, Variation AED. 
 2. Dimensions D1 and E1 do not include mold protrusion.  Allowable 
  protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum 
  plastic body size dimensions including mold mismatch.
 3. Lead coplanarity is 0.08 mm maximum.

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE
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34. Errata

34.1 Errata ATmega325
The revision letter in this section refers to the revision of the ATmega325 device.

34.1.1 ATmega325 Rev. C
• Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Interrupts may be lost when writing the timer registers in the asynchronous timer
The interrupt will be lost if a timer register that is synchronous timer clock is written when the
asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem Fix/ Workaround
Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor
0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous
Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

34.1.2 ATmega325 Rev. B

Not sampled.

34.1.3 ATmega325 Rev. A
• Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Interrupts may be lost when writing the timer registers in the asynchronous timer
The interrupt will be lost if a timer register that is synchronous timer clock is written when the
asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem Fix/ Workaround
Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor
0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous
Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

34.2 Errata ATmega3250
The revision letter in this section refers to the revision of the ATmega3250 device.

34.2.1 ATmega3250 Rev. C
• Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Interrupts may be lost when writing the timer registers in the asynchronous timer
The interrupt will be lost if a timer register that is synchronous timer clock is written when the
asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem Fix/ Workaround
Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor
0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous
Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

34.2.2 ATmega3250 Rev. B

Not sampled.
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34.2.3 ATmega3250 Rev. A
• Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Interrupts may be lost when writing the timer registers in the asynchronous timer
The interrupt will be lost if a timer register that is synchronous timer clock is written when the
asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem Fix/ Workaround
Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor
0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous
Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

34.3 Errata ATmega645
The revision letter in this section refers to the revision of the ATmega645 device.

34.3.1 ATmega645 Rev. A
• Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Interrupts may be lost when writing the timer registers in the asynchronous timer
The interrupt will be lost if a timer register that is synchronous timer clock is written when the
asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem Fix/ Workaround
Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor
0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous
Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

34.4 Errata ATmega6450
The revision letter in this section refers to the revision of the ATmega6450 device.

34.4.1 ATmega6450 Rev. A
• Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Interrupts may be lost when writing the timer registers in the asynchronous timer
The interrupt will be lost if a timer register that is synchronous timer clock is written when the
asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem Fix/ Workaround
Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor
0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous
Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).
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35. Datasheet Revision History
Please note that the referring page numbers in this section are referring to this document. The
referring revision in this section are referring to the document revision.

35.1 Rev. 2570N – 05/11

35.2 Rev. 2570M – 04/11

35.3 Rev. 2570L – 08/07

35.4 Rev. 2570K – 04/07

35.5 Rev. 2570J – 11/06

1. Added Atmel QTouch Library Support and QTouch Sensing Capablity Features.

2. Updated the last page with Atmel® trademarks and Microsft Windows® trademarks.

1. Removed “Preliminary” from the front page
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