1t E ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P

8-bit Atmel Microcontroller with 16/32/64/128K Bytes
In-System Programmable Flash

DATASHEET

Features

e High-performance, low-power 8-bit Atmel® AVR® Microcontroller
e Advanced RISC architecture

131 powerful Instructions — most single-clock cycle execution
32 x 8 general purpose working registers

Fully static operation

Up to 20MIPS throughput at 20MHz

On-chip 2-cycle multiplier

e High endurance non-volatile memory segments

16/32/64/128KBytes of In-System Self-programmable Flash program memory
512/1K/2K/4KBytes EEPROM
1/2/4/16KBytes Internal SRAM
Write/Erase Cycles: 10,000 Flash/ 100,000 EEPROM
Data retention: 20 years at 85°C/ 100 years at 25°C'"
Optional Boot Code Section with Independent Lock Bits
e In-System Programming by On-chip Boot Program
e True Read-While-Write Operation
Programming Lock for Software Security

e Atmel QTouch® library support

Capacitive touch buttons, sliders and wheels
QTouch and QMatrix acquisition
Up to 64 sense channels

e JTAG (IEEE std. 1149.1 Compliant) Interface

Boundary-scan Capabilities According to the JTAG Standard

Extensive On-chip Debug Support

Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG
Interface

e Peripheral Features

Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
One/two 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and
Capture Mode
Real Time Counter with Separate Oscillator
Six PWM Channels
8-channel, 10-bit ADC
e Differential mode with selectable gain at 1%, 10x or 200x
Byte-oriented Two-wire Serial Interface
Two Programmable Serial USART
Master/Slave SPI Serial Interface

Atmel-8272G-AVR-01/2015

— Programmable Watchdog Timer with Separate On-chip Oscillator

— On-chip Analog Comparator

— Interrupt and Wake-up on Pin Change
e Special Microcontroller Features

— Power-on Reset and Programmable Brown-out Detection

— Internal Calibrated RC Oscillator

— External and Internal Interrupt Sources

— Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby and Extended Standby
e 1/O and Packages

— 32 Programmable I/O Lines

— 40-pin PDIP, 44-lead TQFP, 44-pad VQFN/QFN/MLF

— 44-pad DRQFN

- 49-ball VFBGA
e Operating Voltages
- 1.8-55V

e Speed Grades
— 0-4MHz @ 1.8-5.5V
— 0-10MHz @ 2.7 - 5.5V
— 0-20MHz @ 4.5-5.5V
e Power Consumption at 1MHz, 1.8V, 25°C
— Active: 0.4mA
— Power-down Mode: 0.1pA
— Power-save Mode: 0.6pA (Including 32kHz RTC)

Note: 1. See "Data retention” on page 9 for details.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 2

Atmel-8272G-AVR-01/2015

1. Pin configurations

1.1 Pinout - PDIP/TQFP/VQFN/QFN/MLF for
ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P

Figure 1-1. Pinout.

(PCINT8/XCKO/TO
(PCINT9/CLKO/T1
(PCINT10/INT2/AINO
(PCINT11/OCOA/AIN1
(PCINT12/0C0B/SS) PB4
(PCINT13/ICP3/MOSI
(PCINT14/0C3A/MISO
(PCINT15/0C3B/SCK) PB7

(PCINT24/RXDO0/T3*) PDO
(PCINT25/TXD0) PD1
(PCINT26/RXD1/INTO) PD2
(PCINT27/TXD1/INT1) PD3
(PCINT28/XCK1/0C1B) PD4
(PCINT29/0C1A) PD5
(PCINT30/0C2B/ICP) PD6

(PCINT13/ICP3/MOSI) PB5
(PCINT14/0OC3A/MISO) PB6
(PCINT15/0C3B/SCK) PB7
RESET

vce

GND

XTAL2

XTAL1
(PCINT24/RXD0/T3*) PDO
(PCINT25/TXD0) PD1
(PCINT26/RXD1/INTO) PD2

*T3 is only available for ATmega1284/1284P

IN
w
o
N
w
©
w
~
w
o

anAAAAAAann

\/
PBO] 1 40 [0 PAO (ADCO/PCINTO)
PB1] 2 39 [0 PA1 (ADC1/PCINT1)
PB2] 3 38 [1 PA2 (ADC2/PCINT2)
PB3] 4 37 [J PA3 (ADC3/PCINT3)
5 36 [0 PA4 (ADC4/PCINT4)
PB5] 6 35 [J PA5 (ADC5/PCINT5)
PB6 O] 7 34 [PA6 (ADC6/PCINT6)
08 33 [0 PA7 (ADC7/PCINT7)
RESET] 9 32 [J AREF
VCC] 10 31 [J GND
GND] 11 30 [0 AVCC
XTAL2] 12 29 1 PC7 (TOSC2/PCINT23)
XTALT] 13 28 [0 PC6 (TOSC1/PCINT22)
1 14 27 [0 PC5 (TDI/PCINT21)
] 15 26 [J PC4 (TDO/PCINT20)
16 25 [0 PC3 (TMS/PCINT19)
O] 17 24 [0 PC2 (TCK/PCINT18)
] 18 23 [0 PC1 (SDA/PCINT17)
19 22 [0 PCO (SCL/PCINT16)
] 20 21 [1 PD7 (OC2A/PCINT31)
TQFP/QFN/MLF
SES .
—ZE9 oo
25258 s-oga
cL9Go EEEE
L%ag zzzz
B8Eos 0000
SQz¥kE gaad
6=30¢ 8588
NZZ=
BIIcR 2222
3RdER292:92
oo O0O>aaaaa
EERERERERENEREREREnEN
@ 44, .42 40, 38__36,_34

PA4 (ADC4/PCINT4

1 -)
2 32 [0 PA5 (ADC5/PCINTS)
3 31 [PA6 (ADC6/PCINT6)
4 30 [O PA7 (ADC7/PCINT7)
5 29 [T AREF
6 28 [GND
7 27 [Avce
8 26 [PC7 (TOSC2/PCINT23)
9 25 [PC6 (TOSC1/PCINT22)
10 24 [7 PC5 (TDI/PCINT21)
11 23 [T PC4 (TDO/PCINT20)
1

1213141516"745" %0252

U oooOon

OFTOLON~NO0ONO T NM

000000 zZz0000

ooooon s [0} oo a

c@ggg Jxg@

E e

25598 382¢

S0080 srss

[aRE RN ECEC o

REB8p EEEE

~XZ3Z O0O0O0

Reopos cieg

fpeze

= Z (6]

£5 <

e

Note: The large center pad underneath the VQFN/QFN/MLF package should be soldered to ground on the board to

ensure good mechanical stability.

Atmel

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET]

Atmel-8272G-AVR-01/2015

1.2 Pinout - DRQFN for Atmel ATmega164A/164PA/324A/324PA

Figure 1-2. DRQFN - pinout.

Top view Bottom view
&8 & & & & & 2 5 B B B B
® os) w ™ N w = ™ © ™ © S w 8 w E @ B @ ﬁ @ ﬁ
8 6 & < &5 5 R & © B8
4 U oo oo g
Al A18 A18 —1 |] |] |] |] |] | - Al
Bl B15 B15 a (| B1
A2 . A17 AL7 —1 poomEEEEEE 1 — A2
B2 ' B14 B14 | o | B2
A3 Ale A6 |3 : ' | RN
B3 B13 pa| 3 o | B3
A4 A5 A5 |4 . ' g
B4 B12 B12 O ! o | B4
AS A4 A4 = o STt - e RS
B5S Bi1 Bl O B5
A6 ms o oms B 00000 o .
On0nnonoan
8 % 8_83_8, .2.8_8 & 8
T 2 2 < 2 7 < 2T < 2 2 g
Table 1-1. DRQFN - pinout.
A1 PB5 A7 PD3 A13 PC4 A19 PA3
B1 PB6 B6 PD4 B11 PC5 B16 PA2
A2 PB7 A8 PD5 A14 PC6 A20 PA1
B2 RESET B7 PD6 B12 PC7 B17 PAO
A3 VCC A9 PD7 A15 AVCC A21 VCC
B3 GND B8 VCC B13 GND B18 GND
A4 XTAL2 A10 GND A16 AREF A22 PBO
B4 XTAL1 B9 PCO B14 PA7 B19 PB1
A5 PDO A11 PC1 A17 PA6 A23 PB2
B5 PD1 B10 PC2 B15 PA5 B20 PB3
A6 PD2 A12 PC3 A18 PA4 A24 PB4

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 4

Atmel-8272G-AVR-01/2015

1.3 Pinout - VFBGA for Atmel ATmega164A/164PA/324A/324PA

Figure 1-3. VFBGA - pinout.

Top view Bottom view
1 2 3 45 6 7 7 6 5 4 3 2 1

4 00000 00"

AVR | 2553555

G m m o O o >
@ m mo O @w >

Table 1-2. BGA - pinout.

1 2 3 4 5 6 7
A GND PB4 PB2 GND VCC PA2 GND
B PB6 PB5 PB3 PBO PAO PA3 PA5
C VCC RESET PB7 PB1 PA1 PAG6 AREF
D GND XTAL2 PDO GND PA4 PA7 GND
E XTAL1 PD1 PD5 PD7 PC5 PC7 AVCC
F PD2 PD3 PD6 PCO PC2 PC4 PC6
G GND PD4 VCC GND PC1 PC3 GND

2. Overview

The Atmel ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P is a low-power CMOS 8-bit
microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single
clock cycle, the ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P achieves throughputs
approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing
speed.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 5

Atmel-8272G-AVR-01/2015

21 Block diagram

Figure 2-1. Block diagram.

PA7..0 PB7..0
vee 4 A
r — — - —- — — e S —
Power \ 4
Supervision
RESET ~=—3] POR / BOD & PORT A (8) PORT B (8) <
I RESET
A A A t
Y Y
- I Watchdog
GND Timer A
I y v Y v
Watchdog AID Analog P
Oscillator Converter Comparator > »| USARTO
XTALL I +—| ,—+ — L
Oscillator = Internal
L I Circuits / »>| EEPROM Bandgap reference SPI < >
= I:l Clock
-E”Ll_ Generation i_
= XTAL2 K K 8hitT/ICO [« >
| = s AVR c-
16bit T/C 1 >
I | Jmacioco < 16bit T/C 1
o
A A
¥ goitTIc2 [
I Y Y
< <«—>»| USART1
TWI FLASH SRAM 16bit T/C 3* P
|) y 0
¢ '
y A V{
I PORT C (8) PORTD (8) [
| A 1
t ‘V
TOSC2/PC7 TOSC1/PC6 PC5..0 PD7..0

* Only available in ATmegal284/1284P

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are
directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one
single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving
throughputs up to ten times faster than conventional CISC microcontrollers.

The Atmel ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P provide the following features:

16/32/64/128Kbytes of In-System Programmable Flash with Read-While-Write capabilities, 512/1K/2K/4Kbytes
EEPROM, 1/2/4/16Kbytes SRAM, 32 general purpose /O lines, 32 general purpose working registers, Real
Time Counter (RTC), three (four for ATmega1284/1284P) flexible Timer/Counters with compare modes and
PWM, 2 USARTSs, a byte oriented two-wire Serial Interface, a 8-channel, 10-bit ADC with optional differential
input stage with programmable gain, programmable Watchdog Timer with Internal Oscillator, an SPI serial port,
IEEE std. 1149.1 compliant JTAG test interface, also used for accessing the On-chip Debug system and
programming and six software selectable power saving modes. The Idle mode stops the CPU while allowing the
SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves
the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or
Hardware Reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 6

Atmel-8272G-AVR-01/2015

timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all /0
modules except Asynchronous Timer and ADC, to minimize switching noise during ADC conversions. In
Standby mode, the Crystal/Resonator Oscillator is running while the rest of the device is sleeping. This allows
very fast start-up combined with low power consumption. In Extended Standby mode, both the main Oscillator
and the Asynchronous Timer continue to run.

Atmel offers the QTouch® library for embedding capacitive touch buttons, sliders and wheels functionality into
AVR microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully
debounced reporting of touch keys and includes Adjacent Key Suppression® (AKS™) technology for
unambiguous detection of key events. The easy-to-use QTouch Suite toolchain allows you to explore, develop
and debug your own touch applications.

The device is manufactured using Atmel’s high-density nonvolatile memory technology. The On-chip ISP Flash
allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional
nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program
can use any interface to download the application program in the application Flash memory. Software in the
Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-
While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a
monolithic chip, the Atmel ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P is a powerful
microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P is supported with a full suite of program and
system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit
emulators, and evaluation kits.

2.2 Comparison between ATmega164A, ATmega164PA, ATmega324A, ATmega324PA,
ATmega644A, ATmega644PA, ATmega1284 and ATmega1284P

Table 2-1. Differences between ATmega164A, ATmega164PA, ATmega324A, ATmega324PA, ATmega644A,
ATmega644PA, ATmega1284 and ATmega1284P.
Device Flash EEPROM RAM Units
ATmega164A 16K 512 1K
ATmega164PA 16K 512 1K
ATmega324A 32K 1K 2K
ATmega324PA 32K 1K 2K
bytes
ATmegab644A 64K 2K 4K
ATmegab44PA 64K 2K 4K
ATmega1284 128K 4K 16K
ATmega1284P 128K 4K 16K

2.3 Pin Descriptions11

231 VC
Digital supply voltage.

2.3.2 GND
Ground.
/lt m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 7

Atmel-8272G-AVR-01/2015

233

234

235

2.3.6

N
w
N

2.3.8

2.3.9

2.3.10

2.3.11

Port A (PA7:PAO0)

Port A serves as analog inputs to the Analog-to-digital Converter.

Port A also serves as an 8-bit bi-directional 1/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs,
Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins
are tri-stated when a reset condition becomes active, even if the clock is not running.

Port A also serves the functions of various special features of the Atmel
ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P as listed on page 79.

Port B (PB7:PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output
buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-
stated when a reset condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the
ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P as listed on page 80.

Port C (PC7:PCO0)

Port C is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The Port C output
buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-
stated when a reset condition becomes active, even if the clock is not running.

Port C also serves the functions of the JTAG interface, along with special features of the Atmel
ATmega164A/164PA/324A/324PAI644A/644PA/1284/1284P as listed on page 83.

Port D (PD7:PD0)

Port D is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The Port D output
buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-
stated when a reset condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the
ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P as listed on page 86.

RESET

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the
clock is not running. The minimum pulse length is given in ”” on page 325. Shorter pulses are not guaranteed to
generate a reset.

XTAL1
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

XTAL2
Output from the inverting Oscillator amplifier.

AvVCC

AVCC is the supply voltage pin for Port A and the Analog-to-digital Converter. It should be externally connected
to V¢, even if the ADC is not used. If the ADC is used, it should be connected to V. through a low-pass filter.

AREF

This is the analog reference pin for the Analog-to-digital Converter.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 8

Atmel-8272G-AVR-01/2015

3. Resources

A comprehensive set of development tools, application notes and datasheets are available for download on
http://www.atmel.com/avr.

4. About code examples

This documentation contains simple code examples that briefly show how to use various parts of the device. Be
aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is
compiler dependent. Please confirm with the C compiler documentation for more details.

The code examples assume that the part specific header file is included before compilation. For I/O registers
located in extended 1/0 map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instructions must be replaced with
instructions that allow access to extended 1/O. Typically "LDS" and "STS" combined with "SBRS", "SBRC",
"SBR", and "CBR".

5. Data retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over
20 years at 85°C or 100 years at 25°C.

6. Capacitive touch sensing

The Atmel QTouch Library provides a simple to use solution to realize touch sensitive interfaces on most Atmel
AVR microcontrollers. The QTouch Library includes support for the QTouch and QMatrix acquisition methods.

Touch sensing can be added to any application by linking the appropriate Atmel QTouch Library for the AVR
Microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then
calling the touch sensing API’s to retrieve the channel information and determine the touch sensor states.

The QTouch Library is FREE and downloadable from the Atmel website at the following location:
www.atmel.com/qtouchlibrary. For implementation details and other information, refer to the Atmel QTouch
Library User Guide - also available for download from the Atmel website.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 9

Atmel-8272G-AVR-01/2015

www.atmel.com/qtouchlibrary
http://www.atmel.com/dyn/resources/prod_documents/doc8207.pdf

7. AVR CPU Core

71 Overview

This section discusses the AVR core architecture in general. The main function of the CPU core is to ensure
correct program execution. The CPU must therefore be able to access memories, perform calculations, control
peripherals, and handle interrupts.

Figure 7-1. Block diagram of the AVR architecture.

[Data Bus 8-bit

A
Program Status
Flash < Counter [and Control
Program
Memory <
Interrupt
4 > 32x8 < Unit
Instruction General
Register Purpose h SP
< Registrers <> Unit
y
Instruction Watchdog
Decoder y A < Timer
= g N
£ ‘»
0 %)
l 3 £ ALU PN Analog
Control Lines 3 2 Comparator
<
- ©
| 8) ()
[0 =
= o] VG
o = <> /0 Modulel
- Data PN B I/0 Module 2
» SRAM
<—»| |/O Module n
EEPROM <
I/O Lines <

v

In order to maximize performance and parallelism, the AVR uses a Harvard architecture — with separate
memories and buses for program and data. Instructions in the program memory are executed with a single level
pipelining. While one instruction is being executed, the next instruction is pre-fetched from the program memory.
This concept enables instructions to be executed in every clock cycle. The program memory is In-System
Reprogrammable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with a single clock cycle
access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 10

Atmel-8272G-AVR-01/2015

operands are output from the Register File, the operation is executed, and the result is stored back in the
Register File — in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data Space addressing
— enabling efficient address calculations. One of the these address pointers can also be used as an address
pointer for look up tables in Flash program memory. These added function registers are the 16-bit X-, Y-, and Z-
register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and a register.
Single register operations can also be executed in the ALU. After an arithmetic operation, the Status Register is
updated to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the
whole address space. Most AVR instructions have a single 16-bit word format. Every program memory address
contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and the Application Program
section. Both sections have dedicated Lock bits for write and read/write protection. The SPM instruction that
writes into the Application Flash memory section must reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack. The
Stack is effectively allocated in the general data SRAM, and consequently the Stack size is only limited by the
total SRAM size and the usage of the SRAM. All user programs must initialize the SP in the Reset routine
(before subroutines or interrupts are executed). The Stack Pointer (SP) is read/write accessible in the 1/0 space.
The data SRAM can easily be accessed through the five different addressing modes supported in the AVR
architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the 1/0O space with an additional Global Interrupt Enable bit
in the Status Register. All interrupts have a separate Interrupt Vector in the Interrupt Vector table. The interrupts
have priority in accordance with their Interrupt Vector position. The lower the Interrupt Vector address, the
higher the priority.

The 1/0O memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI, and other
I/0O functions. The I/O Memory can be accessed directly, or as the Data Space locations following those of the
Register File, 0x20 - Ox5F. In addition, the ATmega164A/164PA/324A/324PA/644AI644PA/1284/1284P has
Extended I/O space from 0x60 - OxFF in SRAM where only the ST/STS/STD and LD/LDS/LDD instructions can
be used.

7.2 ALU - Arithmetic Logic Unit

The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers.
Within a single clock cycle, arithmetic operations between general purpose registers or between a register and
an immediate are executed. The ALU operations are divided into three main categories — arithmetic, logical, and
bit-functions. Some implementations of the architecture also provide a powerful multiplier supporting both

signed/unsigned multiplication and fractional format. See the “Instruction Set” section for a detailed description.

7.3 Status Register

The Status Register contains information about the result of the most recently executed arithmetic instruction.
This information can be used for altering program flow in order to perform conditional operations. Note that the
Status Register is updated after all ALU operations, as specified in the Instruction Set Reference. This will in
many cases remove the need for using the dedicated compare instructions, resulting in faster and more
compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored when returning
from an interrupt. This must be handled by software.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 11

Atmel-8272G-AVR-01/2015

7.3.1 SREG - Status Register

The AVR Status Register —- SREG — is defined as:

Bit 7 6 5 4 3 2 1 0

0x3F (0x5F) | I | T | H | S | 1 N z c] srec

Read/Write RIW RIW RIW RIW RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0
¢ Bit 7 - I: Global Interrupt Enable
The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable
control is then performed in separate control registers. If the Global Interrupt Enable Register is cleared, none of
the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by
hardware after an interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts.
The I-bit can also be set and cleared by the application with the SEI and CLI instructions, as described in the
instruction set reference.
* Bit 6 — T: Bit Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the
operated bit. A bit from a register in the Register File can be copied into T by the BST instruction, and a bitin T
can be copied into a bit in a register in the Register File by the BLD instruction.
* Bit 5 - H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful in BCD
arithmetic. See the “Instruction Set Description” for detailed information.
» Bit4-S:SignBit, S=N®V
The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement Overflow Flag V.
See the “Instruction Set Description” for detailed information.
¢ Bit 3 -V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetic. See the “Instruction Set
Description” for detailed information.
¢ Bit 2 — N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.
e Bit1-2Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction Set Description”
for detailed information.
e Bit 0 - C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set Description” for
detailed information.

/lt m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 12

Atmel-8272G-AVR-01/2015

7.4 General Purpose Register File
The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve the required
performance and flexibility, the following input/output schemes are supported by the Register File:
e One 8-bit output operand and one 8-bit result input
e Two 8-bit output operands and one 8-bit result input
e Two 8-bit output operands and one 16-bit result input
e One 16-bit output operand and one 16-bit result input
Figure 7-2 shows the structure of the 32 general purpose working registers in the CPU.
Figure 7-2. AVR CPU General Purpose Working Registers.
7 0 Addr.
RO 0x00
R1 0x01
R2 0x02
R13 0x0D
General R14 0x0E
Purpose R15 O0xOF
Working R16 0x10
Registers R17 0x11
R26 O0x1A X-register Low Byte
R27 0x1B X-register High Byte
R28 0x1C Y-register Low Byte
R29 0x1D Y-register High Byte
R30 Ox1E Z-register Low Byte
R31 Ox1F Z-register High Byte
Most of the instructions operating on the Register File have direct access to all registers, and most of them are
single cycle instructions.
As shown in Figure 7-2, each register is also assigned a data memory address, mapping them directly into the
first 32 locations of the user Data Space. Although not being physically implemented as SRAM locations, this
memory organization provides great flexibility in access of the registers, as the X-, Y- and Z-pointer registers
can be set to index any register in the file.
/lt m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 13

Atmel-8272G-AVR-01/2015

7.41 The X-register, Y-register, and Z-register
The registers R26..R31 have some added functions to their general purpose usage. These registers are 16-bit
address pointers for indirect addressing of the data space. The three indirect address registers X, Y, and Z are
defined as described in Figure 7-3.
Figure 7-3. The X-, Y-, and Z-registers.
15 XH XL 0
X-register I 7 0 I 7 0 I
R27 (0x1B) R26 (0x1A)
15 YH YL
Y-register |7 o7 o]
R29 (0x1D) R28 (0x1C)
15 ZH zL 0
Z-register I 7 0 I 7 0 I
R31 (Ox1F) R30 (OX1E)
In the different addressing modes these address registers have functions as fixed displacement, automatic
increment, and automatic decrement (see the instruction set reference for details).
7.5 Stack Pointer
The Stack is mainly used for storing temporary data, for storing local variables and for storing return addresses
after interrupts and subroutine calls. Note that the Stack is implemented as growing from higher to lower
memory locations. The Stack Pointer Register always points to the top of the Stack. The Stack Pointer points to
the data SRAM Stack area where the Subroutine and Interrupt Stacks are located. A Stack PUSH command will
decrease the Stack Pointer.
The Stack in the data SRAM must be defined by the program before any subroutine calls are executed or
interrupts are enabled. Initial Stack Pointer value equals the last address of the internal SRAM and the Stack
Pointer must be set to point above start of the SRAM, see Figure 8-2 on page 21.
See Table 7-1 for Stack Pointer details.
Table 7-1. Stack Pointer instructions.
Instruction Stack pointer Description
PUSH Decremented by 1 | Data is pushed onto the stack
CALL Decremented by 2 | Return address is pushed onto the stack with a subroutine call or
ICALL interrupt
RCALL
POP Incremented by 1 Data is popped from the stack
RET Incremented by 2 Return address is popped from the stack with return from
RETI subroutine or return from interrupt
The AVR Stack Pointer is implemented as two 8-bit registers in the 1/0 space. The number of bits actually used
is implementation dependent, see Table 7-2 on page 15. Note that the data space in some implementations of
the AVR architecture is so small that only SPL is needed. In this case, the SPH Register will not be present.
/lt m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 14

Atmel-8272G-AVR-01/2015

7.5.1 SPH and SPL - Stack Pointer High and Stack pointer Low

Bit 15 14 13 12 11 10 9 8
Ox3E (0x5E) - - - SP12 SP11 SP10 SP9 SP8 SPH
0x3D (0x5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO SPL
7 6 5 4 3 2 1 0
Read/Write R R R R/W R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 o/ 01 1/01 0 0

1 1 1 1 1
Note: 1. Initial values respectively for the ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P.

Table 7-2. Stack Pointer size

Device Stack Pointer size

ATmega164A/ATmega164PA SP[10:0]
ATmega324A/ATmega324PA SP[11:0]
ATmega644A/ATmegab644PA SP[12:0]
ATmega1284/ATmega1284P SP[13:0]

7.5.2 RAMPZ - Extended Z-pointer Register for ELPM/SPM'"

Bit 7 6 5 4 3 2 1 0
0x3B (0x5B) | RAMPZ7 | RAMPZ6 | RAMPZ5 | RAMPZ4 | RAMPZ3 | RAMPZ2 RAMPZ1 RAMPZ0 | RAMPZ
Read/Write R/IW R/W R/W R/IW R/W R/IW R/W R/IW
Initial Value 0 0 0 0 0 0 0 0

For ELPM/SPM instructions, the Z-pointer is a concatenation of RAMPZ, ZH, and ZL, as shown in Figure 7-4 on
page 15. Note that LPM is not affected by the RAMPZ setting.

Figure 7-4. The Z-pointer used by ELPM and SPM.

Bit (Individually) 7 0 7 0 7 0
| RAMPZ | ZH | ZL
Bit (Z-pointer) 23 16 15 8 7 0

The actual number of bits is implementation dependent. Unused bits in an implementation will always read as
zero. For compatibility with future devices, be sure to write these bits to zero.

Note: 1. RAMPZ s only valid for ATmega1284/ATmega1284P.

7.6 Instruction Execution Timing

This section describes the general access timing concepts for instruction execution. The AVR CPU is driven by
the CPU clock clkqpy, directly generated from the selected clock source for the chip. No internal clock division is
used.

Figure 7-5 on page 16 shows the parallel instruction fetches and instruction executions enabled by the Harvard
architecture and the fast-access Register File concept. This is the basic pipelining concept to obtain up to 1
MIPS per MHz with the corresponding unique results for functions per cost, functions per clocks, and functions
per power-unit.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 15

Atmel-8272G-AVR-01/2015

Figure 7-5. The Parallel Instruction Fetches and Instruction Executions.
T1 T2 T3 T4

ok — 4 N

CPU
1st Instruction Fetch

1

i

1st Instruction Execute :
2nd Instruction Fetch :

1

T

1

1

2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch | X X X

Figure 7-6 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using
two register operands is executed, and the result is stored back to the destination register.

Figure 7-6. Single Cycle ALU operation.

T1 T2 T3 T4
1 1 1 1
1 1 1 1
1 1 1 1

R A U S N S W S W

CPU
Total Execution Time

1

1

:
Register Operands Fetch :
1

ALU Operation Execute '

1

1

Result Write Back
1
1

7.7 Reset and interrupt handling

The AVR provides several different interrupt sources. These interrupts and the separate Reset Vector each
have a separate program vector in the program memory space. All interrupts are assigned individual enable bits
which must be written logic one together with the Global Interrupt Enable bit in the Status Register in order to
enable the interrupt. Depending on the Program Counter value, interrupts may be automatically disabled when
Boot Lock bits BLB02 or BLB12 are programmed. This feature improves software security. See the section
"Memory programming” on page 287 for details.

The lowest addresses in the program memory space are by default defined as the Reset and Interrupt Vectors.
The complete list of vectors is shown in "Interrupts” on page 61. The list also determines the priority levels of the
different interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and
next is INTO — the External Interrupt Request 0. The Interrupt Vectors can be moved to the start of the Boot
Flash section by setting the IVSEL bit in the MCU Control Register (MCUCR). Refer to "Interrupts” on page 61
for more information. The Reset Vector can also be moved to the start of the Boot Flash section by
programming the BOOTRST Fuse, see "Memory programming” on page 287.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. The user
software can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the
current interrupt routine. The I-bit is automatically set when a Return from Interrupt instruction — RETI — is
executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the Interrupt Flag. For
these interrupts, the Program Counter is vectored to the actual Interrupt Vector in order to execute the interrupt
handling routine, and hardware clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 16

Atmel-8272G-AVR-01/2015

writing a logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the
corresponding interrupt enable bit is cleared, the Interrupt Flag will be set and remembered until the interrupt is
enabled, or the flag is cleared by software. Similarly, if one or more interrupt conditions occur while the Global
Interrupt Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the Global
Interrupt Enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not
necessarily have Interrupt Flags. If the interrupt condition disappears before the interrupt is enabled, the
interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one more
instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor restored when
returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will
be executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following
example shows how this can be used to avoid interrupts during the timed EEPROM write sequence.

Assembly Code Example

in rl6, SREG ; store SREG
value

cli ; disable interrupts during timed
sequence

sbi EECR, EEMPE ; Sstart
EEPROM write

sbi EECR, EEPE

out SREG, rl6 ; restore

SREG value (I-bit)

C Code Example

char cSREG;

cSREG = SREG; /* store
SREG value */

/* disable interrupts during timed sequence */

__disable interrupt();

EECR |= (1<<EEMPE); /* start EEPROM write */

EECR |= (1<<EEPE) ;

SREG = cSREG; /* restore SREG value (I-bit) */

When using the SEI instruction to enable interrupts, the instruction following SEI will be executed before any
pending interrupts, as shown in this example.

Assembly Code Example

sei ; set Global Interrupt Enable

sleep ; enter sleep, waiting for interrupt
; note: will enter sleep before any pending

; interrupt (s)

C Code Example

__enable interrupt(); /* set Global Interrupt Enable */
__sleep(); /* enter sleep, waiting for interrupt */
/* note: will enter sleep before any pending interrupt(s) */

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 17

Atmel-8272G-AVR-01/2015

7.7.1 Interrupt response time

The interrupt execution response for all the enabled AVR interrupts is four clock cycles minimum. After four
clock cycles the program vector address for the actual interrupt handling routine is executed. During these four
clock cycle period, the Program Counter is pushed onto the Stack. The vector is normally a jump to the interrupt
routine, and this jump takes three clock cycles. If an interrupt occurs during execution of a multi-cycle
instruction, this instruction is completed before the interrupt is served. If an interrupt occurs when the MCU is in
sleep mode, the interrupt execution response time is increased by four clock cycles. This increase comes in
addition to the start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock cycles, the Program
Counter (three bytes) is popped back from the Stack, the Stack Pointer is incremented by two, and the I-bit in
SREG is set.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 18

Atmel-8272G-AVR-01/2015

8.1

8.2

AVR memories

Overview

This section describes the different memories in the Atmel
ATmega164A/164PA/324A/324PAI644A/644PA/1284/1284P. The AVR architecture has two main memory
spaces, the Data Memory and the Program Memory space. In addition, the
ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P features an EEPROM Memory for data storage.
All three memory spaces are linear and regular.

In-System Reprogrammable Flash Program Memory

The ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P contains 16/32/64/128Kbytes On-chip In-
System Reprogrammable Flash memory for program storage. Since all AVR instructions are 16 or 32 bits wide,
the Flash is organized as 32/64 x 16. For software security, the Flash Program memory space is divided into
two sections, Boot Program section and Application Program section.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The
ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P Program Counter (PC) is 15/16 bits wide, thus
addressing the 32/64K program memory locations. The operation of Boot Program section and associated Boot
Lock bits for software protection are described in detail in "Memory programming” on page 287. "Memory
programming” on page 287 contains a detailed description on Flash data serial downloading using the SPI pins
or the JTAG interface.

Constant tables can be allocated within the entire program memory address space (see the LPM — Load
Program Memory instruction description.

Timing diagrams for instruction fetch and execution are presented in “Instruction Execution Timing” on page 15.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 19

Atmel-8272G-AVR-01/2015

Figure 8-1. Program memory map.

Program Memory

0x0000

Application Flash Section

-

Boot Flash Section

0x1FFF/0x3FFF/0x7FFF/OXFFFF

8.3 SRAM data memory

Figure 8-2 shows how the ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P SRAM Memory is
organized.

The ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P is a complex microcontroller with more
peripheral units than can be supported within the 64 location reserved in the Opcode for the IN and OUT
instructions. For the Extended I/O space from $060 - $FF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.

The first 4,352 Data Memory locations address both the Register File, the I/O Memory, Extended 1/0 Memory,
and the internal data SRAM. The first 32 locations address the Register file, the next 64 location the standard
1/0 Memory, then 160 locations of Extended 1/0O memory and the next 4,096 locations address the internal data
SRAM.

The five different addressing modes for the data memory cover: Direct, Indirect with Displacement, Indirect,
Indirect with Pre-decrement, and Indirect with Post-increment. In the Register file, registers R26 to R31 feature
the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address given by the Y- or Z-
register.

When using register indirect addressing modes with automatic pre-decrement and post-increment, the address
registers X, Y, and Z are decremented or incremented.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 20

Atmel-8272G-AVR-01/2015

The 32 general purpose working registers, 64 1/O registers, 160 Extended I/O Registers and

the 1024/2048/4096 bytes of internal data SRAM in the Atmel
ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P are all accessible through all these addressing
modes. The Register File is described in "General Purpose Register File” on page 13.

Figure 8-2. Data Memory Map for ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P.

Data Memory

32 Registers 0x0000 - Ox001F
64 1/0 Registers 0x0020 - 0x005F
160 Ext /0 Reg. 0x0060 - OxO0FF

0x0100

Internal SRAM
1024/2048/4096/16384x 8

0x04FF/0x08FF/Ox10FF/Ox40FF

8.3.1 Data memory access times

This section describes the general access timing concepts for internal memory access. The internal data SRAM
access is performed in two clkgp cycles as described in Figure 8-3.

Figure 8-3. On-chip data SRAM access cycles.

Tl T2 T3
1 1 1
1 1 1
1 1 1

clk _/.’__/.’__/__

cPU X X X
Address ! Compute Address ; X Address valid |
1 1 1
Data — { N— =7
1 1 1 =
WR | / n_ g
| | :
Data - — D e
1 1 T [}
1 1 1 &
RD ! 1/ :\
1 1 1 -
Memory Access Instruction Next Instruction
/lt m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 21

Atmel-8272G-AVR-01/2015

8.4

8.41

8.4.2

EEPROM data memory

The ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P contains 512/1K/2K/4Kbytes of data
EEPROM memory. It is organized as a separate data space, in which single bytes can be read and written. The
EEPROM has an endurance of at least 100,000 write/erase cycles. The access between the EEPROM and the
CPU is described in the following, specifying the EEPROM Address Registers, the EEPROM Data Register, and
the EEPROM Control Register.

For a detailed description of SPI, JTAG and Parallel data downloading to the EEPROM, see page 291, page
301 and page 306 respectively.

EEPROM Read/Write Access

The EEPROM Access Registers are accessible in the I/O space. See "Register Description” on page 24 for
details.

The write access time for the EEPROM is given in Table 8-2 on page 26. A self-timing function, however, lets
the user software detect when the next byte can be written. If the user code contains instructions that write the
EEPROM, some precautions must be taken. In heavily filtered power supplies, V is likely to rise or fall slowly
on power-up/down. This causes the device for some period of time to run at a voltage lower than specified as
minimum for the clock frequency used. See Section “8.4.2” on page 22 for details on how to avoid problems in
these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed. Refer to the
description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is executed.
When the EEPROM is written, the CPU is halted for two clock cycles before the next instruction is executed.

Preventing EEPROM corruption

During periods of low V¢ the EEPROM data can be corrupted because the supply voltage is too low for the
CPU and the EEPROM to operate properly. These issues are the same as for board level systems using
EEPROM, and the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First, a regular write
sequence to the EEPROM requires a minimum voltage to operate correctly. Secondly, the CPU itself can
execute instructions incorrectly, if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can be done by
enabling the internal Brown-out Detector (BOD). If the detection level of the internal BOD does not match the
needed detection level, an external low V. reset Protection circuit can be used. If a reset occurs while a write
operation is in progress, the write operation will be completed provided that the power supply voltage is
sufficient.

AtmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 22

Atmel-8272G-AVR-01/2015

8.5 1/0 memory

The I/O space definition of the Atmel
ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P is shown in "Register summary” on page 628.

All ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P 1/Os and peripherals are placed in the 1/0
space. All I/O locations may be accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data
between the 32 general purpose working registers and the 1/0 space. I/O Registers within the address range
0x00 - Ox1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single
bits can be checked by using the SBIS and SBIC instructions. Refer to the instruction set section for more
details. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used.
When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these
addresses. The ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P is a complex microcontroller with
more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT
instructions. For the Extended I/0O space from 0x60 - OxFF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory
addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the
CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing
such Status Flags. The CBI and SBI instructions work with registers 0x00 to Ox1F only.

The I/O and peripherals control registers are explained in later sections.

The ATmega164A/164PA/324A/324PAI644A/644PA/1284/1284P contains three General Purpose 1/0O
Registers, see "Register Description” on page 24. These registers can be used for storing any information, and
they are particularly useful for storing global variables and Status Flags. General Purpose 1/O Registers within
the address range 0x00 - Ox1F are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 23

Atmel-8272G-AVR-01/2015

8.6 Register Description
8.6.1 EEARH and EEARL - The EEPROM Address Register
Bit 15 14 13 12 11 10 9 8
0x22 (0x42) = = = = EEAR11 | EEAR10 | EEAR9 | EEARS EEARH
0x21 (Ox41) EEAR7 | EEAR6 | EEAR5 | EEAR4 | EEAR3 | EEAR2 | EEAR1 | EEARO EEARL
7 6 5 4 3 2 1 0
Read/Write R R R R RIW RIW RIW RIW
RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 X X X X
X X X X X X X
* Bits 15:12 — Reserved
These bits are reserved bits in the Atmel
ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P and will always read as zero.
* Bits 11:0 — EEARS8:0: EEPROM Address
The EEPROM Address Registers — EEARH and EEARL specify the EEPROM address in the
512/1K/2K/4Kbytes EEPROM space. The EEPROM data bytes are addressed linearly between 0 and
511/1023/2047/4096. The initial value of EEAR is undefined. A proper value must be written before the
EEPROM may be accessed.
8.6.2 EEDR - The EEPROM Data Register
Bit 7 6 5 4 3 2 1 0
0x20 (0x40) | MsB | | | Lse | EEDR
Read/Write RIW RIW RIW RIW RIW RIW RW RIW
Initial Value 0 0 0 0 0 0 0 0
¢ Bits 7:0 - EEDR7:0: EEPROM Data
For the EEPROM write operation, the EEDR Register contains the data to be written to the EEPROM in the
address given by the EEAR Register. For the EEPROM read operation, the EEDR contains the data read out
from the EEPROM at the address given by EEAR.
8.6.3 EECR - The EEPROM Control Register
Bit 7 6 5 4 3 2 1 0
0x1F (0x3F) | = | = | EEPM1 | EEPMO EERIE EEMPE EEPE EERE | EECR
Read/Write R R RIW RIW RIW RIW RIW RIW
Initial Value 0 0 X X 0 0 X 0
» Bits 7:6 — Reserved
These bits are reserved bits in the ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P and will always
read as zero.
* Bits 5:4 - EEPM1 and EEPM0: EEPROM Programming Mode Bits
The EEPROM Programming mode bit setting defines which programming action that will be triggered when
writing EEPE. It is possible to program data in one atomic operation (erase the old value and program the new
value) or to split the Erase and Write operations in two different operations. The Programming times for the
At m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 24

Atmel-8272G-AVR-01/2015

different modes are shown in Table 8-1 on page 25. While EEPE is set, any write to EEPMn will be ignored.
During reset, the EEPMn bits will be reset to 0b00 unless the EEPROM is busy programming.

Table 8-1. EEPROM Mode Bits.
EEPM1 EEPMO Programming time Operation

0 0 3.4ms Erase and Write in one operation (Atomic Operation)
0 1 1.8ms Erase Only

1 0 1.8ms Write Only

1 1 - Reserved for future use

* Bit 3 — EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the | bit in SREG is set. Writing EERIE to zero
disables the interrupt. The EEPROM Ready interrupt generates a constant interrupt when EEPE is cleared.

* Bit 2 - EEMPE: EEPROM Master Programming Enable

The EEMPE bit determines whether setting EEPE to one causes the EEPROM to be written. When EEMPE is
set, setting EEPE within four clock cycles will write data to the EEPROM at the selected address If EEMPE is
zero, setting EEPE will have no effect. When EEMPE has been written to one by software, hardware clears the
bit to zero after four clock cycles. See the description of the EEPE bit for an EEPROM write procedure.

¢ Bit 1 - EEPE: EEPROM Programming Enable

The EEPROM Write Enable Signal EEPE is the write strobe to the EEPROM. When address and data are
correctly set up, the EEPE bit must be written to one to write the value into the EEPROM. The EEMPE bit must
be written to one before a logical one is written to EEPE, otherwise no EEPROM write takes place. The
following procedure should be followed when writing the EEPROM (the order of steps 3 and 4 is not essential):
1. Wait until EEPE becomes zero.

Wait until SPMEN in SPMCSR becomes zero.

Write new EEPROM address to EEAR (optional).

Write new EEPROM data to EEDR (optional).

Write a logical one to the EEMPE bit while writing a zero to EEPE in EECR.

6. Within four clock cycles after setting EEMPE, write a logical one to EEPE.

Al

The EEPROM can not be programmed during a CPU write to the Flash memory. The software must check that
the Flash programming is completed before initiating a new EEPROM write. Step 2 is only relevant if the

software contains a Boot Loader allowing the CPU to program the Flash. If the Flash is never being updated by
the CPU, step 2 can be omitted. See "Memory programming” on page 287 for details about Boot programming.

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the EEPROM Master Write
Enable will time-out. If an interrupt routine accessing the EEPROM is interrupting another EEPROM access, the
EEAR or EEDR Register will be modified, causing the interrupted EEPROM access to fail. It is recommended to
have the Global Interrupt Flag cleared during all the steps to avoid these problems.

When the write access time has elapsed, the EEPE bit is cleared by hardware. The user software can poll this
bit and wait for a zero before writing the next byte. When EEPE has been set, the CPU is halted for two cycles
before the next instruction is executed.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 25

Atmel-8272G-AVR-01/2015

* Bit 0 — EERE: EEPROM Read Enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the correct address is set
up in the EEAR Register, the EERE bit must be written to a logic one to trigger the EEPROM read. The
EEPROM read access takes one instruction, and the requested data is available immediately. When the
EEPROM is read, the CPU is halted for four cycles before the next instruction is executed.

The user should poll the EEPE bit before starting the read operation. If a write operation is in progress, it is
neither possible to read the EEPROM, nor to change the EEAR Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 8-2 on page 26 lists the typical
programming time for EEPROM access from the CPU.

Table 8-2. EEPROM programming time.

Number of calibrated RC oscillator cycles Typical programming time

EEPROM write

(from CPU) 26,368 3.3ms

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 26

Atmel-8272G-AVR-01/2015

The following code examples show one assembly and one C function for writing to the EEPROM. The examples
assume that interrupts are controlled (e.g. by disabling interrupts globally) so that no interrupts will occur during
execution of these functions. The examples also assume that no Flash Boot Loader is present in the software. If
such code is present, the EEPROM write function must also wait for any ongoing SPM command to finish.

Assembly Code Example (")

EEPROM write:

; Wait for completion of previous write

sbic EECR, EEPE

rjmp EEPROM write

; Set up address (r18:rl17) in address register
out EEARH, rl8

out EEARL, rl7

; Write data (rlé6) to Data Register
out EEDR, rl6

; Write logical one to EEMPE

sbi EECR, EEMPE

; Start eeprom write by setting EEPE
sbi EECR, EEPE

ret

C Code Example

void EEPROM write (unsigned int uiAddress, unsigned char ucData)
{

/* Wait for completion of previous write */

while (EECR & (1<<EEPE))

/* Set up address and Data Registers */

EEAR = uiAddress;

EEDR = ucDbata;

/* Write logical one to EEMPE */

EECR |= (1<<EEMPE) ;
/* Start eeprom write by setting EEPE */
EECR |= (1<<EEPE) ;

Note: 1. See “About code examples” on page 9.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 27

Atmel-8272G-AVR-01/2015

The next code examples show assembly and C functions for reading the EEPROM. The examples assume that
interrupts are controlled so that no interrupts will occur during execution of these functions.

Assembly Code Example (

EEPROM read:
Wait for completion of previous write

7

sbic EECR, EEPE

rjmp EEPROM read

; Set up address (r18:rl17) in address register
out EEARH, rl8

out EEARL, rl7

; Start eeprom read by writing EERE

sbi EECR, EERE

; Read data from Data Register

in r16,EEDR

ret

C Code Example ("

unsigned char EEPROM read(unsigned int uiAddress)

{

/* Wait for completion of previous write */
while (EECR & (1<<EEPE))

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */
EECR |= (1<<EERE) ;

/* Return data from Data Register */
return EEDR;

Note: 1. See “About code examples” on page 9.

/It L ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 28
me Atmel-8272G-AVR-01/2015

8.6.4 GPIOR2 - General Purpose I/0 Register 2
Bit 7 6 5 4 3 2 1 0
0x2B (0x4B) | MSB | | | | LSB | GPIOR2
Read/Write RIW R/W R/W RIW R/W R/W RIW R/W
Initial Value 0 0 0 0 0 0 0 0
8.6.5 GPIOR1 - General Purpose 1/0 Register 1
Bit 7 6 5 4 3 2 1 0
0x2A (0x4A) | MSB | | | | LSB | GPIOR1
Read/Write R/W R/W RIW R/W R/W R/W R/W RIW
Initial Value 0 0 0 0 0 0 0 0
8.6.6 GPIORO - General Purpose I/O Register 0
Bit 7 6 5 4 3 2 1 0
ox1E(0x3E) | msB | | | | LsB | GPIORO
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
Note: 1. SRWn1 = SRW11 (upper sector) or SRWO01 (lower sector), SRWn0 = SRW10 (upper sector) or SRWO0O0 (lower
sector). The ALE pulse in period T4 is only present if the next instruction accesses the RAM (internal or
external).
/It m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 29

Atmel-8272G-AVR-01/2015

9.1

9.11

Atmel

System clock and clock options

Clock systems and their distribution

Figure 9-1 presents the principal clock systems in the AVR and their distribution. All of the clocks need not be
active at a given time. In order to reduce power consumption, the clocks to modules not being used can be
halted by using different sleep modes, as described in "Power management and sleep modes” on page 42. The
clock systems are detailed below.

Figure 9-1. Clock distribution.

Asynchronous General I/0 Flash and
Timer/Counter Modules ADC CPU Core RAM EEPROM
[A A A A Y A A

clkype
clkyq AVR Clock clkep,
Control Unit
ClkASV ClkFLASH
Y [
Reset Logic Watchdog Timer
1 t
Source clock Watchdog clock
System Clock Watchdog
Prescaler Oscillator
Clock
Multiplexer
A A A A
Timer/Counter External Clock Crystal Low-frequency Calibrated RC
Oscillator Oscillator Crystal Oscillator Oscillator

The CPU clock is routed to parts of the system concerned with operation of the AVR core. Examples of such
modules are the General Purpose Register File, the Status Register and the data memory holding the Stack
Pointer. Halting the CPU clock inhibits the core from performing general operations and calculations.

1/0 Clock - clko

The 1/0O clock is used by the majority of the 1/0O modules, like Timer/Counters, SPI, and USART. The 1/O clock is
also used by the External Interrupt module, but note that some external interrupts are detected by asynchronous
logic, allowing such interrupts to be detected even if the 1/0 clock is halted. Also note that start condition
detection in the USI module is carried out asynchronously when clk 5 is halted, TWI address recognition in all
sleep modes.

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 30

Atmel-8272G-AVR-01/2015

The Flash clock controls operation of the Flash interface. The Flash clock is usually active simultaneously with
the CPU clock.
9.1.4 Asynchronous Timer Clock — clk,gy
The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked directly from an external
clock or an external 32kHz clock crystal. The dedicated clock domain allows using this Timer/Counter as a real-
time counter even when the device is in sleep mode.
9.1.5 ADC Clock - clkypc
The ADC is provided with a dedicated clock domain. This allows halting the CPU and /O clocks in order to
reduce noise generated by digital circuitry. This gives more accurate ADC conversion results.
9.2 Clock Sources
The device has the following clock source options, selectable by Flash Fuse bits as shown below. The clock
from the selected source is input to the AVR clock generator, and routed to the appropriate modules.
Table 9-1. Device clocking options select (.
Device Clocking Option CKSEL3..0
Low Power Crystal Oscillator 1111 - 1000
Full Swing Crystal Oscillator 0111 - 0110
Low Frequency Crystal Oscillator 0101 -0100
Internal 128kHz RC Oscillator 0011
Calibrated Internal RC Oscillator 0010
External Clock 0000
Reserved 0001
Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.
9.2.1 Default Clock Source
The device is shipped with internal RC oscillator at 8.0MHz and with the fuse CKDIV8 programmed, resulting in
1.0MHz system clock. The startup time is set to maximum and time-out period enabled. (CKSEL = "0010", SUT
="10", CKDIV8 = "0"). The default setting ensures that all users can make their desired clock source setting
using any available programming interface.
9.2.2 Clock Startup Sequence
Any clock source needs a sufficient V to start oscillating and a minimum number of oscillating cycles before it
can be considered stable.
To ensure sufficient V, the device issues an internal reset with a time-out delay (t;o7) after the device reset is
released by all other reset sources. "On-chip Debug System” on page 46 describes the start conditions for the
internal reset. The delay (troy7) is timed from the Watchdog Oscillator and the number of cycles in the delay is
set by the SUTx and CKSELXx fuse bits. The selectable delays are shown in Table 9-2. The frequency of the
Watchdog Oscillator is voltage dependent as shown in "Typical characteristics -TA = -40°C to 85°C” on page
336.
/lt L ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 31
m e Atmel-8272G-AVR-01/2015

9.2.3

Table 9-2. Number of Watchdog Oscillator Cycles.

Typical time-out (V¢ = 5.0V) Typical time-out (V¢ = 3.0V) Number of cycles
Oms Oms 0
4.1ms 4.3ms 512
65ms 69ms 8K (8,192)

Main purpose of the delay is to keep the AVR in reset until it is supplied with minimum Vcc. The delay will not
monitor the actual voltage and it will be required to select a delay longer than the Vcc rise time. If this is not
possible, an internal or external Brown-Out Detection circuit should be used. A BOD circuit will ensure sufficient
Vcc before it releases the reset, and the time-out delay can be disabled. Disabling the time-out delay without
utilizing a Brown-Out Detection circuit is not recommended.

The oscillator is required to oscillate for a minimum number of cycles before the clock is considered stable. An
internal ripple counter monitors the oscillator output clock, and keeps the internal reset active for a given
number of clock cycles. The reset is then released and the device will start to execute. The recommended
oscillator start-up time is dependent on the clock type, and varies from 6 cycles for an externally applied clock to
32K cycles for a low frequency crystal.

The start-up sequence for the clock includes both the time-out delay and the start-up time when the device
starts up from reset. When starting up from Power-save or Power-down mode, Vcc is assumed to be at a
sufficient level and only the start-up time is included.

Clock source connections

The pins XTAL1 and XTALZ2 are input and output, respectively, of an inverting amplifier which can be configured
for use as an On-chip Oscillator, as shown in Figure 9-2 on page 32. Either a quartz crystal or a ceramic
resonator may be used.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the capacitors
depends on the crystal or resonator in use, the amount of stray capacitance, and the electromagnetic noise of
the environment. For ceramic resonators, the capacitor values given by the manufacturer should be used.

Figure 9-2. Crystal oscillator connections.

XTAL2

L

s

XTAL1

GND

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 32

Atmel-8272G-AVR-01/2015

9.3 Low Power Crystal Oscillator
This Crystal Oscillator is a low power oscillator, with reduced voltage swing on the XTALZ2 output. It gives the
lowest power consumption, but is not capable of driving other clock inputs, and may be more susceptible to
noise in noisy environments. In these cases, refer to the "Full swing Crystal Oscillator” on page 34.
Some initial guidelines for choosing capacitors for use with crystals are given in Table 9-3. The crystal should be
connected as described in "Clock source connections” on page 32.
The Low Power Oscillator can operate in three different modes, each optimized for a specific frequency range.
The operating mode is selected by the fuses CKSEL3..1 as shown in Table 9-3.
Table 9-3. Low Power Crystal Oscillator Operating Modes ("
Frequency Range [MHz] CKSEL3..1 Recommended Range for Capacitors C1 and C2 [pF]
04-09 100 @ -
0.9-3.0 101 12-22
3.0-8.0 110 12-22
8.0-16.0 111 12-22
Notes: 1. If the crystal frequency exceeds the specification of the device (depends on V), the CKDIV8 Fuse can be
programmed in order to divide the internal frequency by 8. It must be ensured that the resulting divided clock
meets the frequency specification of the device.
2. This is the recommended CKSEL settings for the different frequency ranges.
3. This option should not be used with crystals, only with ceramic resonators.
The CKSELO Fuse together with the SUT1..0 Fuses select the start-up times as shown in Table 9-4.
Table 9-4. Start-up Times for the Low Power Crystal Oscillator Clock Selection.
Start-up time from Additional delay
Oscillator source / power-down and from reset
power conditions power-save (Ve =5.0V) CKSELO0O SUT1..0
Ceramic resonator, fast 258CK 14CK + 4.1ms() 0 00
rising power
Qgramlc resonator, slowly 258CK 14CK + 65ms") 0 01
rising power
Ceramic resonator, BOD 1K CK 14CK? 0 10
enabled
Ceramic resonator, fast @)
- 1K CK 14CK + 4.1ms 0 11
rising power
(?gramlc resonator, slowly 1K CK 14CK + 65ms? 1 00
rising power
Crystal Oscillator, BOD 16K CK 14CK 1 01
enabled
Crystal Oscillator, fast 16K CK 14CK + 4.1ms 1 10
rising power
erstal Oscillator, slowly 16K CK 14CK + 65ms 1 1
rising power
Notes: 1. These options should only be used when not operating close to the maximum frequency of the device, and
only if frequency stability at start-up is not important for the application. These options are not suitable for
crystals.
/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 33

Atmel-8272G-AVR-01/2015

2. These options are intended for use with ceramic resonators and will ensure frequency stability at start-up. They
can also be used with crystals when not operating close to the maximum frequency of the device, and if
frequency stability at start-up is not important for the application.

9.4 Full swing Crystal Oscillator
This Crystal Oscillator is a full swing oscillator, with rail-to-rail swing on the XTALZ2 output. This is useful for
driving other clock inputs and in noisy environments. The current consumption is higher than the "Low Power
Crystal Oscillator” on page 33. Note that the Full Swing Crystal Oscillator will only operate for Vcc = 2.7 - 5.5
volts.
Some initial guidelines for choosing capacitors for use with crystals are given in Table 9-6. The crystal should be
connected as described in "Clock source connections” on page 32.
The operating mode is selected by the fuses CKSEL3..1 as shown in Table 9-5.
Table 9-5. Full Swing Crystal Oscillator Operating Modes.
Frequency range '’ [MHz] CKSEL3..1 Recommended Range for Capacitors C1 and C2 [pF]
0.4-20 011 12-22
Notes: 1. If the crystal frequency exceeds the specification of the device (depends on V), the CKDIV8 Fuse can be
programmed in order to divide the internal frequency by 8. It must be ensured that the resulting divided clock
meets the frequency specification of the device.
Table 9-6. Start-up times for the Full Swing Crystal Oscillator Clock Selection.
Start-up time from Additional delay
Oscillator source / power-down and from reset
power conditions power-save (Ve =5.0V) CKSELO0O SUT1..0
Ceramic resonator, 258CK 14CK + 4.1ms() 0 00
fast rising power
Ceramic resonator, 258CK 14CK + 65ms'") 0 01
slowly rising power
Ceramic resonator, @
BOD enabled 1K CK 14CK 0 10
Ceramic resonator, 1K CK 14CK + 4.1ms® 0 11
fast rising power
Ceramic resonator, 1K CK 14CK + 65ms? 1 00
slowly rising power
Crystal Oscillator,
BOD enabled 16K CK 14CK 1 01
Crystal Oscillator, 16K CK 14CK + 4.1ms 1 10
fast rising power
el Oellen, 16K CK 14CK + 65ms 1 1
slowly rising power
Notes: 1. These options should only be used when not operating close to the maximum frequency of the device, and
only if frequency stability at start-up is not important for the application. These options are not suitable for
crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability at start-up. They
can also be used with crystals when not operating close to the maximum frequency of the device, and if
frequency stability at start-up is not important for the application.

/It L ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 34
m e Atmel-8272G-AVR-01/2015

9.5 Low Frequency Crystal Oscillator
The Low-frequency Crystal Oscillator is optimized for use with a 32.768kHz watch crystal. When selecting
crystals, load capacitance and crystal’s Equivalent Series Resistance, ESR must be taken into consideration.
Both values are specified by the crystal vendor. Atmel
ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P oscillator is optimized for very low power
consumption, and thus when selecting crystals, see Table 9-7 on page 35 for maximum ESR recommendations
on 9pF and 12.5pF crystals.
Table 9-7. Maximum ESR Recommendation for 32.768kHz Watch Crystal.

Crystal CL [pF] Max ESR [kQ]
9.0 65
12.5 30
Note: 1. Maximum ESR is typical value based on characterization.
The Low-frequency Crystal Oscillator provides an internal load capacitance, see Table on page 35 at each
TOSC pin.
Table 9-8. Capacitance for Low-frequency oscillator.
Device 32kHz osc. type Cap (Xtal1/Tosc1) Cap (Xtal2/Tosc2)
ATmega164A/164PA/324A/324PA/ System osc. 18pF 8pF
644A/644PA/1284/1284P .
Timer osc. 6pF 6pF
The capacitance (Ce + Ci) needed at each TOSC pin can be calculated by using:
Ce+Ci=2-CL-C,
where:
Ce - is optional external capacitors as described in Figure 9-2 on page 32
Ci - is the pin capacitance in Table 9-8 on page 35
CL - is the load capacitance for a 32.768kHz crystal specified by the crystal vendor.
Cg - is the total stray capacitance for one TOSC pin.
Crystals specifying load capacitance (CL) higher than the ones given in the Table 9-8 on page 35, require
external capacitors applied as described in Figure 9-2 on page 32.
Figure 9-3. Crystal oscillator connections.
I
.

Crystals specifying load capacitance (CL) higher than listed in Table 9-8 on page 35, require external capacitors
applied as described in Figure 9-2 on page 32.
To find suitable load capacitance for a 32.768kHz crysal, please consult the crystal datasheet.

/lt m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 35

Atmel-8272G-AVR-01/2015

9.6

When this oscillator is selected, start-up times are determined by the SUT Fuses and CKSELO as shown in
Table 9-9.

Table 9-9. Start-up times for the Low Frequency Crystal Oscillator Clock Selection.

Start-up time from Additional delay
power-down and from reset

Power conditions power-save (Vee =5.0V) CKSELO SUT1..0
BOD enabled 1K CK 14CK" 0 00
Fast rising power 1K CK 14CK + 4.1ms'" 0 01
Slowly rising power 1K CK 14CK + 65ms!") 0 10

Reserved 0 11
BOD enabled 32K CK 14CK 1 00
Fast rising power 32K CK 14CK + 4.1ms 1 01
Slowly rising power 32K CK 14CK + 65ms 1 10

Reserved 1 11

Note: 1. These options should only be used if frequency stability at start-up is not important for the application.

Calibrated Internal RC Oscillator

By default, the Internal RC Oscillator provides an approximate 8MHz clock. Though voltage and temperature
dependent, this clock can be very accurately calibrated by the user. See Table 28-10 on page 325 and "Internal
oscillator speed” on page 381 and page 433 for more details. The device is shipped with the CKDIV8 Fuse
programmed. See "System Clock Prescaler” on page 39 for more details.

This clock may be selected as the system clock by programming the CKSEL Fuses as shown in Table 9-10. If
selected, it will operate with no external components. During reset, hardware loads the pre-programmed
calibration value into the OSCCAL Register and thereby automatically calibrates the RC Oscillator. The
accuracy of this calibration is shown as Factory calibration in Table 28-10 on page 325.

By changing the OSCCAL register from SW, see "OSCCAL — Oscillator Calibration Register” on page 40, it is
possible to get a higher calibration accuracy than by using the factory calibration. The accuracy of this
calibration is shown as User calibration in Table 28-10 on page 325.

When this Oscillator is used as the chip clock, the Watchdog Oscillator will still be used for the Watchdog Timer
and for the Reset Time-out. For more information on the pre-programmed calibration value, see the section
"Calibration byte” on page 290.
Table 9-10. Internal Calibrated RC Oscillator Operating Modes.
Frequency range '“/ [MHz] CKSELS3..0
7.3-8.1 0010 ¥

Notes: 1. The device is shipped with this option selected.

2. If 8MHz frequency exceeds the specification of the device (depends on V), the CKDIV8 Fuse can be
programmed in order to divide the internal frequency by 8.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 36

Atmel-8272G-AVR-01/2015

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in Table 9-11 on
page 37.

Table 9-11. Start-up times for the Internal Calibrated RC Oscillator clock selection.
Start-up time from power- Additional delay from
Power conditions down and power-save reset (V¢c = 5.0V)
BOD enabled 6CK 14CK 00
Fast rising power 6CK 14CK + 4.1ms 01
Slowly rising power 6CK 14CK + 65ms 100"
Reserved 11

Note: 1. The device is shipped with this option selected.

9.7 128kHz internal oscillator
The 128kHz internal Oscillator is a low power Oscillator providing a clock of 128kHz. The frequency is nominal
at 3V and 25°C. This clock may be select as the system clock by programming the CKSEL Fuses to “0011” as
shown in Table 9-12.
Table 9-12. 128kHz Internal Oscillator Operating Modes %,
Nominal frequency CKSELS3..0
128kHz 0011
Note: 1. Note that the 128kHz oscillator is a very low power clock source, and is not designed for high accuracy.
When this clock source is selected, start-up times are determined by the SUT Fuses as shown in Table 9-13.
Table 9-13. Start-up times for the 128kHz internal oscillator.
Start-up time from power- Additional delay from
Power conditions down and power-save reset
BOD enabled 6CK 14CK 00
Fast rising power 6CK 14CK + 4ms 01
Slowly rising power 6CK 14CK + 64ms 10
Reserved 11
/It m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1 284IZ [DATASHEET] 37
tmel-8272G-AVR-01/2015

9.8 External clock

To drive the device from an external clock source, XTAL1 should be driven as shown in Figure 9-4. To run the
device on an external clock, the CKSEL Fuses must be programmed to “0000”.

Figure 9-4. External clock drive configuration.

NC —— XTAL2
EXTERNAL
CLOCK ——m8M XTAL1
SIGNAL
GND

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in Table 9-15.
Table 9-14. Crystal oscillator clock frequency.

Nominal frequency CKSEL3..0
0 - 20MHz 0000

Table 9-15. Start-up rimes for the external clock selection.

Start-up time from power- Additional delay from
Power conditions down and power-save reset (Vcc = 5.0V) SUT1..0
BOD enabled 6CK 14CK 00
Fast rising power 6CK 14CK + 4.1ms 01
Slowly rising power 6CK 14CK + 65ms 10
Reserved 11

When applying an external clock, it is required to avoid sudden changes in the applied clock frequency to
ensure stable operation of the MCU. A variation in frequency of more than 2% from one clock cycle to the next
can lead to unpredictable behavior. If changes of more than 2% is required, ensure that the MCU is kept in
Reset during the changes.

Note that the System Clock Prescaler can be used to implement run-time changes of the internal clock
frequency while still ensuring stable operation. Refer to "System Clock Prescaler” on page 39 for details.

9.9 Timer/Counter Oscillator

Atmel ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P uses the same type of crystal oscillator for
Low-frequency Crystal Oscillator and Timer/Counter Oscillator. See "Low Frequency Crystal Oscillator” on page
35 for details on the oscillator and crystal requirements.

The device can operate its Timer/Counter2 from an external 32.768kHz watch crystal or a external clock source.
See "Clock source connections” on page 32 for details.

Applying an external clock source to TOSC1 can be done if EXTCLK in the ASSR Register is written to logic
one. See "The Output Compare Register B contains an 8-bit value that is continuously compared with the
counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or to generate a

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 38

Atmel-8272G-AVR-01/2015

waveform output on the OC2B pin.” on page 155 for further description on selecting external clock as input
instead of a 32.768kHz watch crystal.

9.10 Clock Output Buffer

The device can output the system clock on the CLKO pin. To enable the output, the CKOUT Fuse has to be
programmed. This mode is suitable when the chip clock is used to drive other circuits on the system. The clock
also will be output during reset, and the normal operation of 1/0 pin will be overridden when the fuse is
programmed. Any clock source, including the internal RC Oscillator, can be selected when the clock is output on
CLKO. If the System Clock Prescaler is used, it is the divided system clock that is output.

9.11 System Clock Prescaler

The ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P has a system clock prescaler, and the system
clock can be divided by setting the "CLKPR — Clock Prescale Register” on page 40. This feature can be used to
decrease the system clock frequency and the power consumption when the requirement for processing power is
low. This can be used with all clock source options, and it will affect the clock frequency of the CPU and all
synchronous peripherals. clk),q, clkapc, Clkgpy, and clkg osy are divided by a factor as shown in Table 9-16 on
page 41.

When switching between prescaler settings, the System Clock Prescaler ensures that no glitches occurs in the
clock system. It also ensures that no intermediate frequency is higher than neither the clock frequency
corresponding to the previous setting, nor the clock frequency corresponding to the new setting.

The ripple counter that implements the prescaler runs at the frequency of the undivided clock, which may be
faster than the CPU's clock frequency. Hence, it is not possible to determine the state of the prescaler - even if
it were readable, and the exact time it takes to switch from one clock division to the other cannot be exactly
predicted. From the time the CLKPS values are written, it takes between T1 + T2 and T1 + 2 x T2 before the
new clock frequency is active. In this interval, 2 active clock edges are produced. Here, T1 is the previous clock
period, and T2 is the period corresponding to the new prescaler setting.

To avoid unintentional changes of clock frequency, a special write procedure must be followed to change the
CLKPS bits:

1. Wirite the Clock Prescaler Change Enable (CLKPCE) bit to one and all other bits in CLKPR to zero.
2. Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE.

Interrupts must be disabled when changing prescaler setting to make sure the write procedure is not interrupted.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 39

Atmel-8272G-AVR-01/2015

9.12

9.121

9.12.2

Register description

OSCCAL - Oscillator Calibration Register

Bit 7 6 5 4 3 2 1 0

(0x66) | cAL7 | cAe | cALs | cAL4 CAL3 CAL2 CAL1 CALO | OSCCAL
Read/Write R/W R/W R/W R/W RIW R/W R/W R/W

Initial Value Device Specific Calibration Value

e Bits 7:0 — CAL7:0: Oscillator Calibration Value

The Oscillator Calibration Register is used to trim the Calibrated Internal RC Oscillator to remove process
variations from the oscillator frequency. A pre-programmed calibration value is automatically written to this
register during chip reset, giving the Factory calibrated frequency as specified in Table 28-10 on page 325. The
application software can write this register to change the oscillator frequency. The oscillator can be calibrated to
frequencies as specified in Table 28-10 on page 325. Calibration outside that range is not guaranteed.

Note that this oscillator is used to time EEPROM and Flash write accesses, and these write times will be
affected accordingly. If the EEPROM or Flash are written, do not calibrate to more than 8.8MHz. Otherwise, the
EEPROM or Flash write may fail.

The CALY bit determines the range of operation for the oscillator. Setting this bit to 0 gives the lowest frequency
range, setting this bit to 1 gives the highest frequency range. The two frequency ranges are overlapping, in other
words a setting of OSCCAL = 0x7F gives a higher frequency than OSCCAL = 0x80.

The CALSG..0 bits are used to tune the frequency within the selected range. A setting of 0x00 gives the lowest
frequency in that range, and a setting of 0x7F gives the highest frequency in the range.

CLKPR - Clock Prescale Register

Bit 7 6 5 4 3 2 1 0

(0x61) | CLKPCE = | = | CLKPS3 | CLKPS2 | CLKPS1 | CLKPSO | CLKPR
Read/Write R/W R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description

* Bit 7 - CLKPCE: Clock Prescaler Change Enable

The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE bit is only
updated when the other bits in CLKPR are simultaneously written to zero. CLKPCE is cleared by hardware four
cycles after it is written or when CLKPS bits are written. Rewriting the CLKPCE bit within this time-out period
does neither extend the time-out period, nor clear the CLKPCE bit.

¢ Bits 3:0 —- CLKPS3:0: Clock Prescaler Select Bits 3 -0

These bits define the division factor between the selected clock source and the internal system clock. These bits
can be written run-time to vary the clock frequency to suit the application requirements. As the divider divides
the master clock input to the MCU, the speed of all synchronous peripherals is reduced when a division factor is
used. The division factors are given in Table 9-16 on page 41.

The CKDIV8 Fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed, the CLKPS bits
will be reset to “0000”. If CKDIV8 is programmed, CLKPS bits are reset to “0011”, giving a division factor of 8 at
start up. This feature should be used if the selected clock source has a higher frequency than the maximum
frequency of the device at the present operating conditions. Note that any value can be written to the CLKPS
bits regardless of the CKDIV8 Fuse setting. The Application software must ensure that a sufficient division factor

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 40

Atmel-8272G-AVR-01/2015

is chosen if the selected clock source has a higher frequency than the maximum frequency of the device at the
present operating conditions. The device is shipped with the CKDIV8 Fuse programmed.

Table 9-16. Clock prescaler select.

CLKPS3 CLKPS2 CLKPS1 CLKPS0 Clock division factor
0 0 0 1 2
0 0 1 0 4
0 0 1 1 8
0 1 0 0 16
0 1 0 1 32
0 1 1 0 64
0 1 1 1 128
1 0 0 0 256
1 0 0 1 Reserved
1 0 1 0 Reserved
1 0 1 1 Reserved
1 1 0 0 Reserved
1 1 0 1 Reserved
1 1 1 0 Reserved
1 1 1 1 Reserved

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 41

Atmel-8272G-AVR-01/2015

10. Power management and sleep modes

10.1 Overview

Sleep modes enable the application to shut down unused modules in the MCU, thereby saving power. The AVR
provides various sleep modes allowing the user to tailor the power consumption to the application’s
requirements.

When enabled, the Brown-out Detector (BOD) actively monitors the power supply voltage during the sleep
periods. To further save power, it is possible to disable the BOD in some sleep modes. See "BOD disable(1)” on
page 43 for more details.

10.2 Sleep Modes

Figure 9-1 on page 30 presents the different clock systems in the Atmel
ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P, and their distribution. The figure is helpful in
selecting an appropriate sleep mode. Table 10-1 shows the different sleep modes, their wake up sources and
BOD disable ability.

Table 10-1. Active Clock Domains and Wake-up Sources in the Different Sleep Modes.

Active Clock Domains Oscillators Wake-up Sources
2
-)
(7] [-% ()
. E 8o 2 8 2 o 5%
7] o 09 ® - = = =22
g 3 re) B 3 - £ 0
z 58 & < € 2 3o
= < gc p < E £ 95
° S FY oz % 2 © na
Sleep Mode
Idle X | X | X X X®@ X | X | X | X | X | X | X
(
ADCNRM X | X| X X2 X X)2() X | X | X
Power-down X X X X
Power-save X X2 | X | X | X X X
Standby!") X X | X X X
Extended X 2
Standby 5 | X X2 X | X | X X X

Notes: 1. Only recommended with external crystal or resonator selected as clock source.
2. If Timer/Counter2 is running in asynchronous mode.

To enter any of the sleep modes, the SE bit in SMCR must be written to logic one and a SLEEP instruction must
be executed. The SM2, SM1, and SMO bits in the SMCR Register select which sleep mode will be activated by
the SLEEP instruction. See Table 10-2 on page 47 for a summary.

If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU is then halted for
four cycles in addition to the start-up time, executes the interrupt routine, and resumes execution from the
instruction following SLEEP. The contents of the Register File and SRAM are unaltered when the device wakes
up from sleep. If a reset occurs during sleep mode, the MCU wakes up and executes from the Reset Vector.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 42

Atmel-8272G-AVR-01/2015

10.3

10.4

10.5

BOD disable!"

When the Brown-out Detector (BOD) is enabled by BODLEVEL fuses, Table 27-3 on page 288, the BOD is
actively monitoring the power supply voltage during a sleep period. To save power, it is possible to disable the
BOD by software for some of the sleep modes, see Table 10-1 on page 42. The sleep mode power consumption
will then be at the same level as when BOD is globally disabled by fuses. If BOD is disabled in software, the
BOD function is turned off immediately after entering the sleep mode. Upon wake-up from sleep, BOD is
automatically enabled again. This ensures safe operation in case the V. level has dropped during the sleep
period.

When the BOD has been disabled, the wake-up time from sleep mode will be approximately 60 ps to ensure
that the BOD is working correctly before the MCU continues executing code.

BOD disable is controlled by bit 6, BODS (BOD Sleep) in the control register MCUCR, see "MCUCR — MCU
Control Register” on page 48. Writing this bit to one turns off the BOD in relevant sleep modes, while a zero in
this bit keeps BOD active. Default setting keeps BOD active, that is, BODS set to zero.

Writing to the BODS bit is controlled by a timed sequence and an enable bit, see "MCUCR — MCU Control
Register” on page 48.

Note: 1. Only available in the Atmel ATmega164PA/324PA/644PA/1284P.

Idle mode

When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle mode, stopping the
CPU but allowing the SPI, USART, Analog Comparator, ADC, two-wire Serial Interface, Timer/Counters,
Watchdog, and the interrupt system to continue operating. This sleep mode basically halts clk;p and clkg agps
while allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal ones like the Timer
Overflow and USART Transmit Complete interrupts. If wake-up from the Analog Comparator interrupt is not
required, the Analog Comparator can be powered down by setting the ACD bit in the Analog Comparator
Control and Status Register — ACSR. This will reduce power consumption in Idle mode. If the ADC is enabled, a
conversion starts automatically when this mode is entered.

ADC Noise Reduction mode

When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC Noise Reduction
mode, stopping the CPU but allowing the ADC, the external interrupts, two-wire Serial Interface address match,
Timer/Counter2 and the Watchdog to continue operating (if enabled). This sleep mode basically halts clkl/O,
clkCPU, and clkFLASH, while allowing the other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If the ADC is
enabled, a conversion starts automatically when this mode is entered. Apart form the ADC Conversion
Complete interrupt, only an External Reset, a Watchdog System Reset, a Watchdog interrupt, a Brown-out
Reset, a two-wire serial interface interrupt, a Timer/Counter2 interrupt, an SPM/EEPROM ready interrupt, an
external level interrupt on INT7:4 or a pin change interrupt can wakeup the MCU from ADC Noise Reduction
mode.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 43

Atmel-8272G-AVR-01/2015

10.6 Power-down mode

When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-down mode. In
this mode, the external Oscillator is stopped, while the external interrupts, the two-wire Serial Interface, and the
Watchdog continue operating (if enabled). Only an External Reset, a Watchdog Reset, a Brown-out Reset, two-
wire Serial Interface address match, an external interrupt on INT2:0, or a pin change interrupt can wake up the
MCU. This sleep mode basically halts all generated clocks, allowing operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed level must be
held for some time to wake up the MCU. Refer to "External Interrupts” on page 67 for details.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs until the wake-up
becomes effective. This allows the clock to restart and become stable after having been stopped. The wake-up
period is defined by the same CKSEL Fuses that define the Reset Time-out period, as described in "Clock
Sources” on page 31.

10.7 Power-save mode

When the SM2:0 bits are written to 011, the SLEEP instruction makes the MCU enter Power-save mode. This
mode is identical to Power-down, with one exception:

If Timer/Counter2 is enabled, it will keep running during sleep. The device can wake up from either Timer
Overflow or Output Compare event from Timer/Counter2 if the corresponding Timer/Counter2 interrupt enable
bits are set in TIMSK2, and the Global Interrupt Enable bit in SREG is set.

If Timer/Counter2 is not running, Power-down mode is recommended instead of Power-save mode.

The Timer/Counter2 can be clocked both synchronously and asynchronously in Power-save mode. If the
Timer/Counter2 is not using the asynchronous clock, the Timer/Counter Oscillator is stopped during sleep. If the
Timer/Counter2 is not using the synchronous clock, the clock source is stopped during sleep. Note that even if
the synchronous clock is running in Power-save, this clock is only available for the Timer/Counter2.

10.8 Standby mode

When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected, the SLEEP instruction
makes the MCU enter Standby mode. This mode is identical to Power-down with the exception that the
Oscillator is kept running. From Standby mode, the device wakes up in six clock cycles.33

10.9 Extended Standby mode

When the SM2..0 bits are 111 and an external crystal/resonator clock option is selected, the SLEEP instruction
makes the MCU enter Extended Standby mode. This mode is identical to Power-save mode with the exception
that the Oscillator is kept running. From Extended Standby mode, the device wakes up in six clock cycles.

AtmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 44

Atmel-8272G-AVR-01/2015

10.10 Power Reduction Register
The Power Reduction Register (PRR), see "PRR0 — Power Reduction Register 0” on page 48, provides a
method to stop the clock to individual peripherals to reduce power consumption. The current state of the
peripheral is frozen and the 1/O registers can not be read or written. Resources used by the peripheral when
stopping the clock will remain occupied, hence the peripheral should in most cases be disabled before stopping
the clock. Waking up a peripheral, which is done by clearing the bit in PRR, puts the peripheral in the same state
as before shutdown.

Peripheral shutdown can be used in Idle mode and Active mode to significantly reduce the overall power
consumption. In all other sleep modes, the clock is already stopped.

10.11 Minimizing Power Consumption
There are several issues to consider when trying to minimize the power consumption in an AVR controlled
system. In general, sleep modes should be used as much as possible, and the sleep mode should be selected
so that as few as possible of the device’s functions are operating. All functions not needed should be disabled.
In particular, the following modules may need special consideration when trying to achieve the lowest possible
power consumption.

10.11.1 Analog to Digital Converter

If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be disabled before
entering any sleep mode. When the ADC is turned off and on again, the next conversion will be an extended
conversion. Refer to "ADC - Analog-to-digital converter” on page 235 for details on ADC operation.

10.11.2 Analog Comparator
When entering Idle mode, the Analog Comparator should be disabled if not used. When entering ADC Noise
Reduction mode, the Analog Comparator should be disabled. In other sleep modes, the Analog Comparator is
automatically disabled. However, if the Analog Comparator is set up to use the Internal Voltage Reference as
input, the Analog Comparator should be disabled in all sleep modes. Otherwise, the Internal Voltage Reference
will be enabled, independent of sleep mode. Refer to "AC - Analog Comparator” on page 232 for details on how
to configure the Analog Comparator.

10.11.3 Brown-out Detector
If the Brown-out Detector is not needed by the application, this module should be turned off. If the Brown-out
Detector is enabled by the BODLEVEL Fuses, it will be enabled in all sleep modes, and hence, always consume
power. In the deeper sleep modes, this will contribute significantly to the total current consumption. Refer to
"Brown-out Detection” on page 53 for details on how to configure the Brown-out Detector.

10.11.4 Internal Voltage Reference
The Internal Voltage Reference will be enabled when needed by the Brown-out Detection, the Analog
Comparator or the ADC. If these modules are disabled as described in the sections above, the internal voltage
reference will be disabled and it will not be consuming power. When turned on again, the user must allow the
reference to start up before the output is used. If the reference is kept on in sleep mode, the output can be used
immediately. Refer to "Internal Voltage Reference” on page 54 for details on the start-up time.

10.11.5 Watchdog Timer

If the Watchdog Timer is not needed in the application, the module should be turned off. If the Watchdog Timer
is enabled, it will be enabled in all sleep modes, and hence, always consume power. In the deeper sleep modes,
this will contribute significantly to the total current consumption. Refer to "Watchdog Timer” on page 55 for
details on how to configure the Watchdog Timer.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 45

Atmel-8272G-AVR-01/2015

10.11.6 Port Pins

When entering a sleep mode, all port pins should be configured to use minimum power. The most important is
then to ensure that no pins drive resistive loads. In sleep modes where both the I/O clock (clk;,g) and the ADC
clock (clkapc) are stopped, the input buffers of the device will be disabled. This ensures that no power is
consumed by the input logic when not needed. In some cases, the input logic is needed for detecting wake-up
conditions, and it will then be enabled. Refer to the section "Digital Input Enable and Sleep Modes” on page 76
for details on which pins are enabled. If the input buffer is enabled and the input signal is left floating or have an
analog signal level close to V/2, the input buffer will use excessive power.

For analog input pins, the digital input buffer should be disabled at all times. An analog signal level close to
Vc/2 on an input pin can cause significant current even in active mode. Digital input buffers can be disabled by
writing to the Digital Input Disable Registers (DIDR1 and DIDRO). Refer to "DIDR1 — Digital Input Disable
Register 1” on page 234 and "DIDRO — Digital Input Disable Register 0” on page 253 for details.

10.11.7 On-chip Debug System

If the On-chip debug system is enabled by the OCDEN Fuse and the chip enters sleep mode, the main clock
source is enabled, and hence, always consumes power. In the deeper sleep modes, this will contribute
significantly to the total current consumption.

There are three alternative ways to disable the OCD system:
e Disable the OCDEN Fuse
e Disable the JTAGEN Fuse
e Write one to the JTD bitin MCUCR

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 46

Atmel-8272G-AVR-01/2015

10.12 Register description

10.12.1 SMCR - Sleep Mode Control Register

The Sleep Mode Control Register contains control bits for power management.

Bit 7 6 5 4 3 2 1 0
ox3oxs3) f - | - | - | - | sm2 | sm1 | smo | SE | SMCR
Read/Write R R R R RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

e Bits 3, 2, 1 - SM2:0: Sleep Mode Select Bits 2, 1, and 0
These bits select between the five available sleep modes as shown in Table 10-2.

Table 10-2. Sleep mode select.

SM2 SM1 SMO Sleep mode
0 0 0 Idle
0 0 1 ADC Noise Reduction
0 1 0 Power-down
0 1 1 Power-save
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Standby("
1 1 1 Extended Standby!"

Note: 1. Standby modes are only recommended for use with external crystals or resonators.

¢ Bit 0 — SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP instruction is
executed. To avoid the MCU entering the sleep mode unless it is the programmer’s purpose, it is recommended
to write the Sleep Enable (SE) bit to one just before the execution of the SLEEP instruction and to clear it
immediately after waking up.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 47

Atmel-8272G-AVR-01/2015

10.12.2 MCUCR - MCU Control Register

Bit 7 6 5 4 3 2 1 0
0x35 (0x55) | JTD BoDS) | BODSE!) PUD = IVSEL IvcE | mcucr
Read/Write RIW RIW RIW RIW R R RIW RIW

Initial Value 0 0 0 0 0 0 0 0

Note: 1. Only available in the Atmel ATmega164PA/324PA/644PA/1284P.

» Bit 6 — BODS: BOD Sleep

The BODS bit must be written to logic one in order to turn off BOD during sleep, see Table 10-1 on page 42.
Writing to the BODS bit is controlled by a timed sequence and an enable bit, BODSE in MCUCR. To disable
BOD in relevant sleep modes, both BODS and BODSE must first be set to one. Then, to set the BODS bit,
BODS must be set to one and BODSE must be set to zero within four clock cycles.

The BODS bit is active three clock cycles after it is set. A sleep instruction must be executed while BODS is
active in order to turn off the BOD for the actual sleep mode. The BODS bit is automatically cleared after three
clock cycles.

* Bit 5- BODSE: BOD Sleep Enable

BODSE enables setting of BODS control bit, as explained in BODS bit description. BOD disable is controlled by
a timed sequence.

10.12.3 PRRO - Power Reduction Register 0

Bit 7 6 5 4 3 2 1 0
(0x64) | PRTWI | PRTIM2 | PRTIMO | PRUSART1 PRTIM1 | PRSPl | PRUSARTO | PRADC | PRRO
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 — PRTWI: Power Reduction TWI

Writing a logic one to this bit shuts down the TWI by stopping the clock to the module. When waking up the TWI
again, the TWI should be re initialized to ensure proper operation.

¢ Bit 6 — PRTIM2: Power Reduction Timer/Counter2

Writing a logic one to this bit shuts down the Timer/Counter2 module in synchronous mode (AS2 is 0). When the
Timer/Counter2 is enabled, operation will continue like before the shutdown.

¢ Bit 5 - PRTIMO: Power Reduction Timer/Counter0

Writing a logic one to this bit shuts down the Timer/Counter0 module. When the Timer/Counter0 is enabled,
operation will continue like before the shutdown.

¢ Bit 4 — PRUSART1: Power Reduction USART1

Writing a logic one to this bit shuts down the USART1 by stopping the clock to the module. When waking up the
USART1 again, the USART1 should be reinitialized to ensure proper operation.

¢ Bit 3 - PRTIM1: Power Reduction Timer/Counter1

Writing a logic one to this bit shuts down the Timer/Counter1 module. When the Timer/Counter1 is enabled,
operation will continue like before the shutdown.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 48

Atmel-8272G-AVR-01/2015

¢ Bit 2 - PRSPI: Power Reduction Serial Peripheral Interface

Writing a logic one to this bit shuts down the Serial Peripheral Interface by stopping the clock to the module.
When waking up the SPI again, the SPI should be re initialized to ensure proper operation.

* Bit 1 — PRUSARTO: Power Reduction USARTO

Writing a logic one to this bit shuts down the USARTO by stopping the clock to the module. When waking up the
USARTO again, the USARTO should be reinitialized to ensure proper operation.

« Bit 0 — PRADC: Power Reduction ADC

Writing a logic one to this bit shuts down the ADC. The ADC must be disabled before shut down. The analog
comparator cannot use the ADC input MUX when the ADC is shut down.

10.12.4 PRR1 - Power Reduction Register 1

Bit 7 6 5 4 3 2 1 0
(0x65) | = = | = = = = = PRTIM3 | PRR1
Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7:1 — Reserved

¢ Bit 0 — PRTIM3: Power Reduction Timer/Counter3

Writing a logic one to this bit shuts down the Timer/Counter3 module. When the Timer/Counter3 is enabled,
operation will continue like before the shutdown.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 49

Atmel-8272G-AVR-01/2015

1.

11.1

11.1.1

System Control and Reset

Resetting the AVR

During reset, all I/0O Registers are set to their initial values, and the program starts execution from the Reset
Vector. The instruction placed at the Reset Vector must be a JMP — Absolute Jump — instruction to the reset
handling routine. If the program never enables an interrupt source, the Interrupt Vectors are not used, and
regular program code can be placed at these locations. This is also the case if the Reset Vector is in the
Application section while the Interrupt Vectors are in the Boot section or vice versa. The circuit diagram in Figure
11-1 on page 51 shows the reset logic. ”” on page 325 defines the electrical parameters of the reset circuitry.

The I/O ports of the AVR are immediately reset to their initial state when a reset source goes active. This does
not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal reset. This allows
the power to reach a stable level before normal operation starts. The time-out period of the delay counter is
defined by the user through the SUT and CKSEL Fuses. The different selections for the delay period are
presented in "Clock Sources” on page 31.

Reset Sources
The Atmel ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P has five sources of reset:

e Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset threshold
(Veor)-

e External Reset. The MCU is reset when a low level is present on the RESET pin for longer than the
minimum pulse length.

e Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the Watchdog is
enabled.

e Brown-out Reset. The MCU is reset when the supply voltage V. is below the Brown-out Reset threshold
(Vgot) and the Brown-out Detector is enabled.

e JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset Register, one of the scan
chains of the JTAG system. Refer to the section "IEEE 1149.1 (JTAG) Boundary-scan” on page 260 for
details.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 50

Atmel-8272G-AVR-01/2015

Figure 11-1. Reset logic.

DATA BUS
A

<

MCU Status
Register (MCUSR)

L Lo
ol
O| Of
ajm

TS
o
[a)
=

EXTRF
JTR

vee _ Powerfon _Reset
e Circuit

Brown-out
BODLEVEL [2..0] Reset Circuit

I:‘:l Pull-up Resistor
RESET SPIKE Reset Circuit \ s Qf—

FILTER

INTERNAL RESET

JTAG Reset Watchdog
Register Timer

i

Watchdog

Oscillator

Clock CK Delay Counters |
Generator TIMEOUT

A A

COUNTER RESET

CKSEL[3:0]
SUT[1:0]

11.1.2 Power-on Reset

9

A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detection level is defined in
on page 325. The POR is activated whenever V. is below the detection level. The POR circuit can be used to
trigger the start-up Reset, as well as to detect a failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the Power-on Reset
threshold voltage invokes the delay counter, which determines how long the device is kept in RESET after V¢
rise. The RESET signal is activated again, without any delay, when V. decreases below the detection level.

Figure 11-2. MCU Start-up, RESET Tied to V.

1

-2~ Veor
Vee J

A
RESET J RST

tTOUT >

TIME-OUT E‘
INTERNAL |
RESET
/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 51

Atmel-8272G-AVR-01/2015

Figure 11-3. MCU Start-up, RESET Extended Externally.

1
- A~ Veor
Vee J

RESET

TIME-OUT

INTERNAL
RESET

11.1.3 External Reset

An External Reset is generated by a low level on the RESET pin. Reset pulses longer than the minimum pulse
width (see "’ on page 325) will generate a reset, even if the clock is not running. Shorter pulses are not
guaranteed to generate a reset. When the applied signal reaches the Reset Threshold Voltage — Vggt — 0n its
positive edge, the delay counter starts the MCU after the Time-out period — t;o 1 —has expired.

Figure 11-4. External Reset During Operation

Vee
RESET \ |
i — —]
TIME-OUT ! - oo
INTERNAL |
RESET
/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 52

Atmel-8272G-AVR-01/2015

11.1.4

11.1.5

Brown-out Detection

ATmega164A/164PA/324A/324PAI644A/644PA/1284/1284P has an On-chip Brown-out Detection (BOD) circuit
for monitoring the V¢ level during operation by comparing it to a fixed trigger level. The trigger level for the BOD
can be selected by the BODLEVEL Fuses. The trigger level has a hysteresis to ensure spike free Brown-out
Detection. The hysteresis on the detection level should be interpreted as Vgor, = Vgor + Viyst/2 and Vggor. =
Veor - Vhyst/2.

When the BOD is enabled, and V. decreases to a value below the trigger level (Vgor. in Figure 11-5 on page
53), the Brown-out Reset is immediately activated. When V increases above the trigger level (Vgor, in Figure
11-5 on page 53), the delay counter starts the MCU after the Time-out period t;or has expired.

The BOD circuit will only detect a drop in V if the voltage stays below the trigger level for longer than tzop
given in 7’ on page 325.

Figure 11-5. Brown-out Reset during operation.

Vee

RESET

tour

TIME-OUT

INTERNAL
RESET

e el L e

I

Watchdog Reset

When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On the falling edge
of this pulse, the delay timer starts counting the Time-out period t;o, 7. Refer to "Watchdog Timer” on page 55
for details on operation of the Watchdog Timer.

Figure 11-6. Watchdog Reset during operation.

VCC

RESET

—> [«— 1 CK Cycle
WDT
TIME-OUT H

1

:

1

De—— t —>|
RESET N Tout

1

1

TIME-OUT

INTERNAL
RESET

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 53

Atmel-8272G-AVR-01/2015

11.2

11.2.1

Internal Voltage Reference

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P features an internal bandgap reference. This
reference is used for Brown-out Detection, and it can be used as an input to the Analog Comparator or the ADC.

Voltage Reference Enable Signals and Start-up Time

The voltage reference has a start-up time that may influence the way it should be used. The start-up time is
given in 7’ on page 325. To save power, the reference is not always turned on. The reference is on during the
following situations:

1. When the BOD is enabled (by programming the BODLEVEL [2:0] Fuse).
2. When the bandgap reference is connected to the Analog Comparator (by setting the ACBG bit in ACSR).
3. When the ADC is enabled.
Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user must always allow
the reference to start up before the output from the Analog Comparator or ADC is used. To reduce power

consumption in Power-down mode, the user can avoid the three conditions above to ensure that the reference
is turned off before entering Power-down mode.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 54

Atmel-8272G-AVR-01/2015

11.3

11.3.1

11.3.2

Watchdog Timer

Features

* Clocked from separate On-chip Oscillator
* Three operating modes
— Interrupt
— System Reset
— Interrupt and System Reset
* Selectable Time-out period from 16ms to 8s
* Possible Hardware fuse Watchdog always on (WDTON) for fail-safe mode

Overview

Atmel ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P has an Enhanced Watchdog Timer (WDT).
The WDT is a timer counting cycles of a separate on-chip 128kHz oscillator. The WDT gives an interrupt or a
system reset when the counter reaches a given time-out value. In normal operation mode, it is required that the
system uses the WDR - Watchdog Timer Reset - instruction to restart the counter before the time-out value is
reached. If the system doesn't restart the counter, an interrupt or system reset will be issued.

Figure 11-7. Watchdog Timer.

WATCHDOG
PRESCALER

y
%

128kHz
OSCILLATOR

0SC/2K
0SC/4K
0SC/8K
0SC/16K
0SC/32K
0SC/64K
0SC/128K
0SC/256K
0SC/512K
0SC/1024K

<
<
<

Al

i
<
»i
<
»i
<
»i
<«
»i
<
<
<
&

'1— WDPO

WATCHDOG Woba

RESET WDP3

WDE 3—» MCU RESET
WDIF D

WDIE

INTERRUPT

In Interrupt mode, the WDT gives an interrupt when the timer expires. This interrupt can be used to wake the
device from sleep-modes, and also as a general system timer. One example is to limit the maximum time
allowed for certain operations, giving an interrupt when the operation has run longer than expected. In System
Reset mode, the WDT gives a reset when the timer expires. This is typically used to prevent system hang-up in
case of runaway code. The third mode, Interrupt and System Reset mode, combines the other two modes by
first giving an interrupt and then switch to System Reset mode. This mode will for instance allow a safe
shutdown by saving critical parameters before a system reset.

The Watchdog always on (WDTON) fuse, if programmed, will force the Watchdog Timer to System Reset mode.
With the fuse programmed the System Reset mode bit (WDE) and Interrupt mode bit (WDIE) are locked to 1
and 0 respectively. To further ensure program security, alterations to the Watchdog set-up must follow timed
sequences. The sequence for clearing WDE and changing time-out configuration is as follows:

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 55

Atmel-8272G-AVR-01/2015

1. In the same operation, write a logic one to the Watchdog change enable bit (WDCE) and WDE. A logic
one must be written to WDE regardless of the previous value of the WDE bit.
2. Within the next four clock cycles, write the WDE and Watchdog prescaler bits (WDP) as desired, but with
the WDCE bit cleared. This must be done in one operation.

The following code example shows one assembly and one C function for turning off the Watchdog Timer. The
example assumes that interrupts are controlled (for example, by disabling interrupts globally) so that no
interrupts will occur during the execution of these functions.

Assembly Code Example ((?)

WDT off:
; Turn off global interrupt
cli
; Reset Watchdog Timer
wdr

; Clear WDRF in MCUSR

1lds rl6, MCUSR

andi 1rl16, ~ (1<<WDRF)

out MCUSR, rlé6

; Write logical one to WDCE and WDE

; Keep old prescaler setting to prevent unintentional
time-out

1di rl6, WDTCSR

ori rl6, (L<<WDCE) | (1<<WDE)

sts WDTCSR, rl6

; Turn off WDT

1di rl6, (0O<<WDE)

sts WDTCSR, rl6

; Turn on global interrupt

sei

ret

C Code Example (V

void WDT off (void)
{
__disable interrupt();
__watchdog reset();
/* Clear WDRF in MCUSR */
MCUSR &= ~ (1<<WDRF) ;
/* Write logical one to WDCE and WDE */
/* Keep old prescaler setting to prevent unintentional
time-out */
WDTCSR |= (1<<WDCE) | (1<<WDE) ;
/* Turn off WDT */
WDTCSR = 0x00;
__enable interrupt();

Notes: 1. The example code assumes that the part specific header file is included.
2. In the example code IN and OUT instruction is used for access the /O memory space above the IN and OUT
address limit (IN and OUT limit is 0x00 to Ox3F).
Note: If the Watchdog is accidentally enabled, for example by a runaway pointer or brown-out condition, the
device will be reset and the Watchdog Timer will stay enabled. If the code is not set up to handle the Watchdog,
this might lead to an eternal loop of time-out resets. To avoid this situation, the application software should

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 56

Atmel-8272G-AVR-01/2015

always clear the Watchdog System Reset Flag (WDRF) and the WDE control bit in the initialization routine,

even if the Watchdog is not in use.

The following code example shows one assembly and one C function for changing the time-out value of the

Watchdog Timer.

Assembly Code Example (V)

WDT_ Prescaler_ Change:

; Turn off global interrupt
cli

; Reset Watchdog Timer
wdr

; Start timed sequence
1ds rl6e, WDTCSR

ori rle, (1<<WDCE) |
sts WDTCSR, rlé6

(1<<WDE)

; Set new prescaler (time-out)
1di rl6, (1<<WDE) | (1<<WDP2)
sts WDTCSR, rlé6

; Turn on global interrupt
sei
ret

; —— Got four cycles to set the new values from here -
value

; —— Finished setting new values,

64K cycles (~0.5 s)

| (1<<WDPO)

used 2 cycles -

C Code Example

void WDT Prescaler Change (void)

{
__disable interrupt();
__watchdog reset();
/* Start timed equence */
WDTCSR (1<<WDCE) | (1<<WDE) ;
/* Set new prescaler (time-out)

*/

WDTCSR (1<<WDE) | (1<<WDP2)

__enable interrupt();

value 64K cycles (~0.5

| (1L<<WDPO) ;

Note: 1.

The example code assumes that the part specific header file is included.

Note: The Watchdog Timer should be reset before any change of the WDP bits, since a change in the WDP bits
can result in a time-out when switching to a shorter time-out period.

Atmel

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET]

57

Atmel-8272G-AVR-01/2015

11.4 Register description

11.4.1 MCUSR - MCU Status Register

The MCU Status Register provides information on which reset source caused an MCU reset.

Bit 7 6 5 4 3 2 1 0
0x34 (0x54) | = | = | = | JTRF | WDRF | BORF | EXTRF | PORF | MCUSR
Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description

¢ Bit 4 - JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by the JTAG
instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic zero to the flag.

» Bit 3 - WDRF: Watchdog Reset Flag

This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by writing a logic zero to the
flag.

¢ Bit 2 - BORF: Brown-out Reset Flag

This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a logic zero to the
flag.

* Bit 1 — EXTRF: External Reset Flag

This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a logic zero to the
flag.

« Bit 0 — PORF: Power-on Reset Flag
This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.

To make use of the Reset Flags to identify a reset condition, the user should read and then Reset the MCUSR
as early as possible in the program. If the register is cleared before another reset occurs, the source of the reset
can be found by examining the Reset Flags.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 58

Atmel-8272G-AVR-01/2015

11.4.2 WDTCSR - Watchdog Timer Control Register

Bit 7 6 5 4 3 2 1 0

(0x60) | woF | wblE | wDP3 | WDCE | WDE WDP2 WDP1 wDP0 | WDTCSR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 X 0 0 0

* Bit 7 - WDIF: Watchdog Interrupt Flag

This bit is set when a time-out occurs in the Watchdog Timer and the Watchdog Timer is configured for interrupt.
WDIF is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, WDIF is
cleared by writing a logic one to the flag. When the I-bit in SREG and WDIE are set, the Watchdog Time-out
Interrupt is executed.

* Bit 6 - WDIE: Watchdog Interrupt Enable

When this bit is written to one and the I-bit in the Status Register is set, the Watchdog Interrupt is enabled. If
WDE is cleared in combination with this setting, the Watchdog Timer is in Interrupt Mode, and the
corresponding interrupt is executed if time-out in the Watchdog Timer occurs.

If WDE is set, the Watchdog Timer is in Interrupt and System Reset Mode. The first time-out in the Watchdog
Timer will set WDIF. Executing the corresponding interrupt vector will clear WDIE and WDIF automatically by
hardware (the Watchdog goes to System Reset Mode). This is useful for keeping the Watchdog Timer security
while using the interrupt. To stay in Interrupt and System Reset Mode, WDIE must be set after each interrupt.
This should however not be done within the interrupt service routine itself, as this might compromise the safety-
function of the Watchdog System Reset mode. If the interrupt is not executed before the next time-out, a System
Reset will be applied.

Table 11-1. Watchdog Timer configuration.

Action on time-out

1 0 0 Stopped None

1 0 1 Interrupt Mode Interrupt

1 1 0 System Reset Mode Reset

1 1 1 Interrupt and System Reset Interrupt, then go to System
Mode Reset Mode

0 X X System Reset Mode Reset

¢ Bit 4 - WDCE: Watchdog Change Enable

This bit is used in timed sequences for changing WDE and prescaler bits. To clear the WDE bit, and/or change
the prescaler bits, WDCE must be set.

Once written to one, hardware will clear WDCE after four clock cycles.

¢ Bit 3 - WDE: Watchdog System Reset Enable

WODE is overridden by WDRF in MCUSR. This means that WDE is always set when WDREF is set. To clear
WDE, WDRF must be cleared first. This feature ensures multiple resets during conditions causing failure, and a
safe start-up after the failure.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 59

Atmel-8272G-AVR-01/2015

* Bit 5, 2:0 - WDP3:0: Watchdog Timer Prescaler 3, 2,1 and 0

The WDP3:0 bits determine the Watchdog Timer prescaling when the Watchdog Timer is running. The different
prescaling values and their corresponding time-out periods are shown in Table 11-2 on page 60.

Table 11-2. Watchdog Timer Prescale Select.

Number of WDT oscillator

Typical time-out at

WDP3 WDP2 WDP1 WDPO cycles Vce = 5.0V
0 0 0 0 2K (2048) cycles 16ms
0 0 0 1 4K (4096) cycles 32ms
0 0 1 0 8K (8192) cycles 64ms
0 0 1 1 16K (16384) cycles 0.125s
0 1 0 0 32K (32768) cycles 0.25s
0 1 0 1 64K (65536) cycles 0.5s
0 1 1 0 128K (131072) cycles 1.0s
0 1 1 1 256K (262144) cycles 2.0s
1 0 0 0 512K (524288) cycles 4.0s
1 0 0 1 1024K (1048576) cycles 8.0s
1 0 1 0
1 0 1 1
1 1 0 0

Reserved
1 1 0 1
1 1 1 0
1 1 1 1

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 60

Atmel-8272G-AVR-01/2015

12. Interrupts

12.1 Overview

This section describes the specifics of the interrupt handling as performed in Atmel
ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P. For a general explanation of the AVR interrupt
handling, refer to "Reset and interrupt handling” on page 16.

12.2 Interrupt Vectors in ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P

Table 12-1. Reset and Interrupt Vectors.
Vector Program
no. address Source Interrupt definition
1| $o000 | RESET Watehdog Resel, and JTAG AVR Reset
2 $0002 INTO External Interrupt Request O
3 $0004 INT1 External Interrupt Request 1
4 $0006 INT2 External Interrupt Request 2
5 $0008 PCINTO Pin Change Interrupt Request 0
6 $000A PCINT1 Pin Change Interrupt Request 1
7 $000C PCINT2 Pin Change Interrupt Request 2
8 $000E PCINT3 Pin Change Interrupt Request 3
9 $0010 WDT Watchdog Time-out Interrupt
10 $0012 TIMER2_COMPA Timer/Counter2 Compare Match A
11 $0014 TIMER2_COMPB Timer/Counter2 Compare Match B
12 $0016 TIMER2_OVF Timer/Counter2 Overflow
13 $0018 TIMER1_CAPT Timer/Counter1 Capture Event
14 $001A TIMER1_COMPA Timer/Counter1 Compare Match A
15 $001C TIMER1_COMPB Timer/Counter1 Compare Match B
16 $001E TIMER1_OVF Timer/Counter1 Overflow
17 $0020 TIMERO_COMPA Timer/Counter0 Compare Match A
18 $0022 TIMERO_COMPB Timer/Counter0 Compare match B
19 $0024 TIMERO_OVF Timer/Counter0 Overflow
20 $0026 SPI_STC SPI Serial Transfer Complete
21 $0028 USARTO_RX USARTO Rx Complete
22 $002A USARTO_UDRE USARTO Data Register Empty
23 $002C USARTO_TX USARTO Tx Complete
24 $002E ANALOG_COMP Analog Comparator
25 $0030 ADC ADC Conversion Complete
26 $0032 EE_READY EEPROM Ready

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 61

Atmel-8272G-AVR-01/2015

Table 12-1. Reset and Interrupt Vectors. (Continued)

Vector Program
no. address Source Interrupt definition
27 $0034 TWI two-wire Serial Interface
28 $0036 SPM_READY Store Program Memory Ready
29 $0038 USART1_RX USART1 Rx Complete
30 $003A USART1_UDRE USART1 Data Register Empty
31 $003C USART1_TX USART1 Tx Complete
32 $003E TIMER3_CAPT®) Timer/Counter3 Capture Event
33 $0040 TIMER3_COMPA®) | Timer/Counter3 Compare Match A
34 $0042 TIMER3_COMPB® | Timer/Counter3 Compare Match B
35 $0044 TIMER3_OVF®) Timer/Counter3 Overflow

Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at reset, see
"Memory programming” on page 287.

2. When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of the Boot Flash Section.
The address of each Interrupt Vector will then be the address in this table added to the start address of the
Boot Flash Section.

3. Applies only to Atmel ATmega1284P.
Table 12-2 shows reset and Interrupt Vectors placement for the various combinations of BOOTRST and IVSEL
settings. If the program never enables an interrupt source, the Interrupt Vectors are not used, and regular
program code can be placed at these locations. This is also the case if the Reset Vector is in the Application
section while the Interrupt Vectors are in the Boot section or vice versa.

Table 12-2. Reset and Interrupt Vectors placement (.

BOOTRST IVSEL Reset Address Interrupt Vectors Start Address
1 0 0x0000 0x0002
1 1 0x0000 Boot Reset Address + 0x0002
0 0 Boot Reset Address 0x0002
0 1 Boot Reset Address Boot Reset Address + 0x0002

Note: 1. The Boot Reset Address is shown in Table 26-10 on page 282. For the BOOTRST Fuse “1” means
unprogrammed while “0” means programmed.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 62

Atmel-8272G-AVR-01/2015

The most typical and general program setup for the Reset and Interrupt Vector Addresses in Atmel
ATmega164A/164PA/324A/324PAI644A/644PA/1284/1284P is:

Address Labels Code Comments

0x0000 jmp RESET : Reset

0x0002 jmp INTO ; IRQO

0x0004 jmp INT1 ; IRQ1

0x0006 jmp INT2 ; IRQ2

0x0008 jmp PCINTO ; PCINTO

0x000A jmp PCINT1 ; PCINT1

0x000C jmp PCINT2 ; PCINT2

0x000E jmp PCINT3 ; PCINT3

0x0010 jmp WDT ; Watchdog Timeout
0x0012 jmp TIM2_COMPA ; Timer2 CompareA
0x0014 jmp TIM2_COMPB ; Timer2 CompareB
0x0016 jmp TIM2_OVF ; Timer2 Overflow
0x0018 jmp TIM1_CAPT ; Timer1 Capture
0x001A jmp TIM1_COMPA ; Timer1 CompareA
0x001C jmp TIM1_COMPB ; Timer1 CompareB
0x001E jmp TIM1_OVF ; Timer1 Overflow
0x0020 jmp TIMO_COMPA ; TimerQ CompareA
0x0022 jmp TIMO_COMPB ; TimerQ CompareB
0x0024 jmp TIMO_OVF ; TimerQ Overflow
0x0026 jmp SPI_STC ; SPI Transfer Complete
0x0028 jmp USARTO_RXC ; USARTO RX Complete
0x002A jmp USARTO_UDRE ; USARTO,UDR Empty
0x002C jmp USARTO_TXC ; USARTO TX Complete
0x002E jmp ANA_COMP ; Analog Comparator
0x0030 jmp ADC ; ADC Conversion Complete
0x0032 jmp EE_RDY ; EEPROM Ready
0x0034 jmp TWI ; two-wire Serial
0x0036 jmp SPM_RDY ; SPM Ready

0x0038 jmp USART1_RXC ; USART1 RX Complete
0x003A jmp USART1_UDRE ; USART1,UDR Empty
0x003C jmp USART1_TXC ; USART1 TX Complete
0x003E jmp TIM3_CAPT : Timer3 Capture!"
0x0040 jmp TIM3_COMPA ; Timer3 Compare!"
0x0042 jimp TIM3_COMPB ; Timer3 CompareB'"
0x0044 jmp TIM3_OVF : Timer3 Overflow("

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 63

Atmel-8272G-AVR-01/2015

0x0046 RESET:
0x0047
0x0048
0x0049
0x004A
0x004B

Idi r16,high(RAMEND) ; Main program start

out SPH,r16 ; Set Stack Pointer to top of RAM
Idi r16,low(RAMEND)

out SPL,r16

sei ; Enable interrupts

<instr> XXX

Notes: 1. Applies only to Atmel ATmega1284P.

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 8K bytes and the IVSEL bit in the
MCUCR Register is set before any interrupts are enabled, the most typical and general program setup for the
Reset and Interrupt Vector Addresses is:

Address
0x00000
program start
0x00001

Labels CodeComments
RESET: 1dirl6,high (RAMEND) ; Main

outSPH,rl6; Set Stack

Pointer to top of RAM

0x00002
0x00003
0x00004
0x00005
.org 0x1F002
0x1F002
0x1F004
0x1F036
Handler

1ldirl6, low (RAMEND)
outSPL,rl6

sei; Enable interrupts
<instr> =xxx

JmpEXT INTO; IRQO Handler
JmpEXT INT1; IRQ1 Handler

jmpSPM RDY; SPM Ready

When the BOOTRST Fuse is programmed and the Boot section size set to 8K bytes, the most typical and
general program setup for the Reset and Interrupt Vector Addresses is:

Address
.org 0x0002
0x00002
0x00004
0x00036
Handler
.org 0x1F000
0x1F000

program start
0x1F001

Labels CodeComments

JmpEXT INTO; IRQO Handler
JmpEXT INT1; IRQ1 Handler

jmpSPM_RDY; SPM Ready

RESET: 1dirl6,high (RAMEND) ; Main

outSPH,rl6; Set Stack

Pointer to top of RAM

0x1F002

Atmel

1ldirlo, low (RAMEND)

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 64

Atmel-8272G-AVR-01/2015

0x1F003 outSPL,rl6
0x1F004 sei; Enable interrupts
0x1F005 <instr> xxx

When the BOOTRST Fuse is programmed, the Boot section size set to 8K bytes and the IVSEL bit in the
MCUCR Register is set before any interrupts are enabled, the most typical and general program setup for the
Reset and Interrupt Vector Addresses is:

Address Labels CodeComments

.org 0x1F000

0x1F000 JmpRESET; Reset handler
0x1F002 JmpEXT INTO; IRQO Handler
0x1F004 JmpEXT INT1; IRQ1 Handler
0x1F036 jmpSPM RDY; SPM Ready
Handler

0x1F03E RESET: 1dirl6,high (RAMEND); Main
program start

0x1FO3F outSPH, rl6; Set Stack
Pointer to top of RAM

0x1F040 1dirle, low (RAMEND)
0x1F041 outSPL, rl6

0x1F042 sei; Enable interrupts
0x1F043 <instr> xxx

12.2.1 Moving Interrupts Between Application and Boot Space
The General Interrupt Control Register controls the placement of the Interrupt Vector table.
12.3 Register description
12.3.1 MCUCR - MCU Control Register
Bit 7 6 5 4 3 2 1 0
0x35(0x55) | JTD | BODS!) | BODSE") PUD = = IVSEL IVCE | Mmcucr
Read/Write RIW RIW RIW RIW R R RIW RIW
Initial Value 0 0 0 0 0 0 0 0
Note: 1. Only available in the Atmel ATmega164PA/324PA/644PA/1284P.
¢ Bit 1 - IVSEL: Interrupt Vector Select
When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash memory. When
this bit is set (one), the Interrupt Vectors are moved to the beginning of the Boot Loader section of the Flash.
The actual address of the start of the Boot Flash Section is determined by the BOOTSZ Fuses. Refer to the
section "Memory programming” on page 287 for details. To avoid unintentional changes of Interrupt Vector
tables, a special write procedure must be followed to change the IVSEL bit:
a. Write the Interrupt Vector Change Enable (IVCE) bit to one.
1. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.
Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled in the cycle
IVCE is set, and they remain disabled until after the instruction following the write to IVSEL. If IVSEL is not
/lt m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 65

Atmel-8272G-AVR-01/2015

written, interrupts remain disabled for four cycles. The I-bit in the Status Register is unaffected by the automatic

disabling.

Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is programmed, interrupts are
disabled while executing from the Application section. If Interrupt Vectors are placed in the Application section and

Boot Lock bit BLB12 is programed, interrupts are disabled while executing from the Boot Loader section. Refer to
the section "Memory programming” on page 287 for details on Boot Lock bits.

¢ Bit 0 — IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by hardware four
cycles after it is written or when IVSEL is written. Setting the IVCE bit will disable interrupts, as explained in the
IVSEL description above. See the following Code Example.

Assembly Code Example

Move interrupts:

; Get MCUCR

in rl6, MCUCR

mov rl7, rlé

; Enable change of Interrupt Vectors
ori rle, (1<<IVCE)

out MCUCR, rlé6

; Move interrupts to Boot Flash section
ori rl7, (1<<IVSEL)

out MCUCR, rl7

ret

C Code Example

void Move interrupts (void)

{

uchar temp;
/* GET MCUCR*/
temp = MCUCR;
/* Enable change of Interrupt Vectors */
MCUCR = temp/| (1<<IVCE) ;
/* Move interrupts to Boot Flash section */
MCUCR = temp| (1<<IVSEL) ;

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 66

Atmel-8272G-AVR-01/2015

13.

13.1

13.2

13.21

External Interrupts

Overview

The External Interrupts are triggered by the INT2:0 pin or any of the PCINT31:0 pins. Observe that, if enabled,
the interrupts will trigger even if the INT2:0 or PCINT31:0 pins are configured as outputs. This feature provides
a way of generating a software interrupt.

The Pin change interrupt PCI3 will trigger if any enabled PCINT31:24 pin toggle, Pin change interrupt PCI2 will
trigger if any enabled PCINT23:16 pin toggles, Pin change interrupt PCI1 if any enabled PCINT15:8 toggles and
Pin change interrupts PCIO will trigger if any enabled PCINT7:0 pin toggles. PCMSK3, PCMSK2, PCMSK1 and
PCMSKO Registers control which pins contribute to the pin change interrupts. Pin change interrupts on
PCINT31:0 are detected asynchronously. This implies that these interrupts can be used for waking the part also
from sleep modes other than Idle mode.

In order for a pin change interrupt (PCINT) to be generated, the device must have an active 1/O clock. As shown
in Table 10-1 on page 42, the 1/0 clock domain is active in Idle Mode, but not in deeper sleep modes. In sleep
modes deeper than Idle Mode, a toggled pin must remain in its toggled state until the device has fully woken up.
See Section 9. "System clock and clock options” on page 30 for wake up times. If the pin toggles back to its
initial state during wake up, the device will still complete the procedure, but will not generate an interrupt once
awake.

The External Interrupts can be triggered by a falling or rising edge or a low level. This is set up as indicated in
the specification for the External Interrupt Control Registers — EICRA (INT2:0). When the external interrupt is
enabled and is configured as level triggered, the interrupt will trigger as long as the pin is held low. Low level
interrupts and the edge interrupt on INT2:0 are detected asynchronously. This implies that these interrupts can
be used for waking the part also from sleep modes other than Idle mode. The I/O clock is halted in all sleep
modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down, the required level must be held long
enough for the MCU to complete the wake-up to trigger the level interrupt. If the level disappears before the end
of the Start-up Time, the MCU will still wake up, but no interrupt will be generated. The start-up time is defined
by the SUT and CKSEL Fuses as described in "System clock and clock options” on page 30.

Register description

EICRA - External Interrupt Control Register A
The External Interrupt Control Register A contains control bits for interrupt sense control.

Bit 7 6 5 4 3 2 1 0
(0x69) | - | = | 1sc21 | 1sc20 | Isc11 | Isc10 | Isco1 | Iscoo | EICRA
Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

¢ Bits 7:6 — Reserved

These bits are reserved in the ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P, and will always
read as zero.

¢ Bits 5:0 - 1SC21, ISC20 - ISCO00, ISC00: External Interrupt 2 - 0 Sense Control Bits

The External Interrupts 2 - 0 are activated by the external pins INT2:0 if the SREG I-flag and the corresponding
interrupt mask in the EIMSK is set. The level and edges on the external pins that activate the interrupts are

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 67

Atmel-8272G-AVR-01/2015

defined in Table 13-1. Edges on INT2:INTO are registered asynchronously. Pulses on INT2:0 pins wider than
the minimum pulse width given in "External interrupts characteristics” on page 326 will generate an interrupt.
Shorter pulses are not guaranteed to generate an interrupt. If low level interrupt is selected, the low level must
be held until the completion of the currently executing instruction to generate an interrupt. If enabled, a level
triggered interrupt will generate an interrupt request as long as the pin is held low. When changing the ISCn bit,
an interrupt can occur. Therefore, it is recommended to first disable INTn by clearing its Interrupt Enable bit in
the EIMSK Register. Then, the ISCn bit can be changed. Finally, the INTn interrupt flag should be cleared by
writing a logical one to its Interrupt Flag bit (INTFn) in the EIFR Register before the interrupt is re-enabled.

Table 13-1. Interrupt Sense Control ("),
ISCn1 ISCn0 Description

0 0 The low level of INTn generates an interrupt request

0 1 Any edge of INTn generates asynchronously an interrupt request

1 0 The falling edge of INTn generates asynchronously an interrupt request
1 1 The rising edge of INTn generates asynchronously an interrupt request

Note: 1. n=2,10r0.
When changing the ISCn1/ISCn0 bits, the interrupt must be disabled by clearing its Interrupt Enable bit in the
EIMSK Register. Otherwise an interrupt can occur when the bits are changed.

13.2.2 EIMSK - External Interrupt Mask Register
Bit 7 6 5 4 3 2 1 0
ox1D (0x3D) | = | = | = | = = INT2 INT1 IINTO | EIMSK
Read/Write R R R R R RIW RW RIW
Initial Value 0 0 0 0 0 0 0 0
* Bits 2:0 — INT2:0: External Interrupt Request 2 - 0 Enable
When an INT2:0 bit is written to one and the I-bit in the Status Register (SREG) is set (one), the corresponding
external pin interrupt is enabled. The Interrupt Sense Control bits in the External Interrupt Control Register,
EICRA, defines whether the external interrupt is activated on rising or falling edge or level sensed. Activity on
any of these pins will trigger an interrupt request even if the pin is enabled as an output. This provides a way of
generating a software interrupt.
13.2.3 EIFR —External Interrupt Flag Register
Bit 7 6 5 4 3 2 1 0
ox1c (0x3c) | = | = | = | = = INTF2 INTF1 IINTFO | EIFR
Read/Write RW R R R R RIW RW RIW
Initial Value 0 0 0 0 0 0 0 0
¢ Bits 2:0 — INTF2:0: External Interrupt Flags 2 - 0
When an edge or logic change on the INT2:0 pin triggers an interrupt request, INTF2:0 becomes set (one). If the
I-bit in SREG and the corresponding interrupt enable bit, INT2:0 in EIMSK, are set (one), the MCU will jump to
the interrupt vector. The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be
cleared by writing a logical one to it. These flags are always cleared when INT2:0 are configured as level
interrupt. Note that when entering sleep mode with the INT2:0 interrupts disabled, the input buffers on these
pins will be disabled. This may cause a logic change in internal signals which will set the INTF2:0 flags. See
"Digital Input Enable and Sleep Modes” on page 76 for more information.
/lt m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 68

Atmel-8272G-AVR-01/2015

13.2.4 PCICR - Pin Change Interrupt Control Register
Bit 7 6 5 4 3 2 1 0
(0x68) | = | = | = | = | PCIE3 PCIE2 PCIE1 PCIEO | PCICR
Read/Write R R R R RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
¢ Bit 3 - PCIE3: Pin Change Interrupt Enable 3
When the PCIE3 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin change interrupt 3 is
enabled. Any change on any enabled PCINT31:24 pin will cause an interrupt. The corresponding interrupt of Pin
Change Interrupt Request is executed from the PCI3 Interrupt Vector. PCINT31:24 pins are enabled individually
by the PCMSK3 Register.
* Bit 2 - PCIE2: Pin Change Interrupt Enable 2
When the PCIE2 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin change interrupt 2 is
enabled. Any change on any enabled PCINT23:16 pin will cause an interrupt. The corresponding interrupt of Pin
Change Interrupt Request is executed from the PCI2 Interrupt Vector. PCINT23:16 pins are enabled individually
by the PCMSK2 Register.
* Bit 1 - PCIE1: Pin Change Interrupt Enable 1
When the PCIE1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin change interrupt 1 is
enabled. Any change on any enabled PCINT15:8 pin will cause an interrupt. The corresponding interrupt of Pin
Change Interrupt Request is executed from the PCI1 Interrupt Vector. PCINT15:8 pins are enabled individually
by the PCMSK1 Register.
¢ Bit 0 — PCIEO: Pin Change Interrupt Enable 0
When the PCIEOQ bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin change interrupt 0 is
enabled. Any change on any enabled PCINT7:.0 pin will cause an interrupt. The corresponding interrupt of Pin
Change Interrupt Request is executed from the PCIO Interrupt Vector. PCINT7:0 pins are enabled individually by
the PCMSKO Register.
13.2.5 PCIFR - Pin Change Interrupt Flag Register
Bit 7 6 5 4 3 2 1 0
0x1B (0x3B) | | | = | = | PCIF3 PCIF2 PCIF1 PCIFO | PCIFR
Read/Write R R R R RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
¢ Bit 3- PCIF3: Pin Change Interrupt Flag 3
When a logic change on any PCINT31:24 pin triggers an interrupt request, PCIF3 becomes set (one). If the I-bit
in SREG and the PCIES bit in PCICR are set (one), the MCU will jump to the corresponding Interrupt Vector.
The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a
logical one to it.
¢ Bit 2 - PCIF2: Pin Change Interrupt Flag 2
When a logic change on any PCINT23:16 pin triggers an interrupt request, PCIF2 becomes set (one). If the I-bit
in SREG and the PCIE2 bit in PCICR are set (one), the MCU will jump to the corresponding Interrupt Vector.
The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a
logical one to it.
/lt m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 69

Atmel-8272G-AVR-01/2015

* Bit 1 — PCIF1: Pin Change Interrupt Flag 1

When a logic change on any PCINT15:8 pin triggers an interrupt request, PCIF1 becomes set (one). If the I-bit
in SREG and the PCIE1 bit in PCICR are set (one), the MCU will jump to the corresponding Interrupt Vector.
The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a
logical one to it.

¢ Bit 0 — PCIFO0: Pin Change Interrupt Flag 0

When a logic change on any PCINT7:0 pin triggers an interrupt request, PCIFO becomes set (one). If the I-bit in
SREG and the PCIEOQ bit in PCICR are set (one), the MCU will jump to the corresponding Interrupt Vector. The
flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical
one to it.

13.2.6 PCMSKS3 - Pin Change Mask Register 3
Bit 7 6 5 4 3 2 1 0
(0x73) | PCINT31 | PCINT30 | PCINT29 | PCINT28 | PCINT27 | PCINT26 | PCINT25 | PCINT24 | PCMSK3
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
* Bit 7:0 — PCINT31:24: Pin Change Enable Mask 31:24
Each PCINT31:24-bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If
PCINT31:24 is set and the PCIE3 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O
pin. If PCINT31:24 is cleared, pin change interrupt on the corresponding I/O pin is disabled.
13.2.7 PCMSK2 - Pin Change Mask Register 2
Bit 7 6 5 4 3 2 1 0
(0x6D)] pcinT23 | PCINT22 | PCINT21 | PCINT20 | PCINT19 | PCINT18 | PCINT17 | PCINT16 | PCMSK2
Read/Write RIW RW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
e Bit 7:0 — PCINT23:16: Pin Change Enable Mask 23..16
Each PCINT23:16-bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If
PCINT23:16 is set and the PCIE2 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O
pin. If PCINT23:16 is cleared, pin change interrupt on the corresponding I/O pin is disabled.
13.2.8 PCMSK1 - Pin Change Mask Register 1
Bit 7 6 5 4 3 2 1 0
(0x6C) I PCINT15 | PCINT14 | PCINT13 | PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 I PCMSK1
Read/Write RIW RW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
e Bit 7:0 — PCINT15:8: Pin Change Enable Mask 15..8
Each PCINT15:8-bit selects whether pin change interrupt is enabled on the corresponding 1/O pin. If PCINT15:8
is set and the PCIE1 bit in PCICR is set, pin change interrupt is enabled on the corresponding 1/O pin. If
PCINT15:8 is cleared, pin change interrupt on the corresponding I/O pin is disabled.
/lt m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 70

Atmel-8272G-AVR-01/2015

13.2.9 PCMSKO - Pin Change Mask Register 0

Bit 7 6 5 4 3 2 1 0

(0x6B) | PCINTZ | PCINT6 | PCINT5 | PCINT4 | PCINT3 PCINT2 PCINT1 PCINTO | PCMSKO
Read/Write ~ R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7:0 — PCINT7:0: Pin Change Enable Mask 7..0

Each PCINT7:0 bit selects whether pin change interrupt is enabled on the corresponding 1/O pin. If PCINT7:0 is
set and the PCIEO bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT7..0
is cleared, pin change interrupt on the corresponding I/O pin is disabled.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 71

Atmel-8272G-AVR-01/2015

14. 1/O-Ports
14.1 Overview
All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports. This means that
the direction of one port pin can be changed without unintentionally changing the direction of any other pin with
the SBI and CBI instructions. The same applies when changing drive value (if configured as output) or
enabling/disabling of pull-up resistors (if configured as input). Each output buffer has symmetrical drive
characteristics with both high sink and source capability. The pin driver is strong enough to drive LED displays
directly. All port pins have individually selectable pull-up resistors with a supply-voltage invariant resistance. All
I/0 pins have protection diodes to both V- and Ground as indicated in Figure 14-1. Refer to "Electrical
characteristics (TA = -40°C to 85°C)” on page 318 for a complete list of parameters.
Figure 14-1. /O pin equivalent schematic.
I
I
I
e
I
B
Pun } Logic
I
Cpin T | See Figure
| "General Digital I/0" for
J | Details
= - L o .
All registers and bit references in this section are written in general form. A lower case “x” represents the
numbering letter for the port, and a lower case “n” represents the bit number. However, when using the register
or bit defines in a program, the precise form must be used. For example, PORTB3 for bit no. 3 in Port B, here
documented generally as PORTxn. The physical I/O Registers and bit locations are listed in "Register
description” on page 89.
Three 1/0O memory address locations are allocated for each port, one each for the Data Register —- PORTX, Data
Direction Register — DDRX, and the Port Input Pins — PINx. The Port Input Pins I/O location is read only, while
the Data Register and the Data Direction Register are read/write. However, writing a logic one to a bit in the
PINx Register, will result in a toggle in the corresponding bit in the Data Register. In addition, the Pull-up Disable
— PUD bit in MCUCR disables the pull-up function for all pins in all ports when set.
Using the 1/O port as General Digital I/O is described in "Ports as General Digital I/O” on page 73. Most port pins
are multiplexed with alternate functions for the peripheral features on the device. How each alternate function
interferes with the port pin is described in "Alternate Port Functions” on page 77. Refer to the individual module
sections for a full description of the alternate functions.
Note that enabling the alternate function of some of the port pins does not affect the use of the other pins in the
port as general digital 1/O.
At m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 72

Atmel-8272G-AVR-01/2015

14.2 Ports as General Digital /10
The ports are bi-directional 1/0 ports with optional internal pull-ups. Figure 14-2 shows a functional description of
one I/O-port pin, here generically called Pxn.
Figure 14-2. General digital I/O (")
Y PUD
b <] —
5. 4
= L wox
RESET RDx
g S
> 2
Pxn d Q D m
\‘ PORTxn <
G I<T:
| a
RESET
WRx WPx
p———— SLEEP RRx
L
L~
__SYNCHRONIZER RPx
U T
= | PINxXn L
L g > 3 |
SO Nl
|_ _____ f clkyo
- WDx: WRITE DDRx v
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WRx: WRITE PORTx
clk;: 1/0 CLOCK RRx: READ PORTx REGISTER
RPx: READ PORTx PIN
WPXx: WRITE PINx REGISTER
Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clk,,o, SLEEP, and PUD are
common to all ports.
14.2.1 Configuring the Pin
Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in "Register description” on
page 89, the DDxn bits are accessed at the DDRx I/O address, the PORTxn bits at the PORTx I/O address, and
the PINxn bits at the PINx I/O address.
The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one, Pxn is
configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input pin.
If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is activated. To
switch the pull-up resistor off, PORTxn has to be written logic zero or the pin has to be configured as an output
pin. The port pins are tri-stated when reset condition becomes active, even if no clocks are running.
If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven high (one). If
PORTXxn is written logic zero when the pin is configured as an output pin, the port pin is driven low (zero).
14.2.2 Toggling the pin
Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn. Note that the
SBIl instruction can be used to toggle one single bit in a port.
/lt m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 73

Atmel-8272G-AVR-01/2015

14.2.3 Switching between input and output
When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn} = 0b11), an
intermediate state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output low ({DDxn, PORTxn} = 0b10)
must occur. Normally, the pull-up enabled state is fully acceptable, as a high-impedant environment will not
notice the difference between a strong high driver and a pull-up. If this is not the case, the PUD bit in the
MCUCR Register can be set to disable all pull-ups in all ports.
Switching between input with pull-up and output low generates the same problem. The user must use either the
tri-state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn} = 0b11) as an intermediate step.
Table 14-1 summarizes the control signals for the pin value.
Table 14-1. Port pin configurations.
PUD
DDxn PORTxn (in MCUCR) 110 Pull-up Comment
0 0 X Input No Tri-state (Hi-Z)
0 1 0 Input Yes Pxn will source current if ext. pulled low.
0 1 1 Input No Tri-state (Hi-Z)
1 0 X Output No Output Low (Sink)
1 1 X Output No Output High (Source)
14.2.4 Reading the Pin Value
Independent of the setting of Data Direction bit DDxn, the port pin can be read through the PINxn Register bit.
As shown in Figure 14-2, the PINxn Register bit and the preceding latch constitute a synchronizer. This is
needed to avoid metastability if the physical pin changes value near the edge of the internal clock, but it also
introduces a delay. Figure 14-3 shows a timing diagram of the synchronization when reading an externally
applied pin value. The maximum and minimum propagation delays are denoted t,4 ., @and tyq i, respectively.
Figure 14-3. Synchronization when reading an externally applied pin value.
SYSTEM CLK | | | | |
INSTRUCTIONS X XXX X XXX C inn7, PN X
SYNC LATCH v
PINxn
r17 0x00 : X OxFF
:‘ tpd, max L
54 tpd, min R
Consider the clock period starting shortly after the first falling edge of the system clock. The latch is closed when
the clock is low, and goes transparent when the clock is high, as indicated by the shaded region of the “SYNC
LATCH? signal. The signal value is latched when the system clock goes low. It is clocked into the PINxn
Register at the succeeding positive clock edge. As indicated by the two arrows tpd,max and tpd,min, a single
/lt m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 74

Atmel-8272G-AVR-01/2015

signal transition on the pin will be delayed between %2 and 1'% system clock period depending upon the time of
assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as indicated in Figure 14-
4. The out instruction sets the “SYNC LATCH” signal at the positive edge of the clock. In this case, the delay tpd
through the synchronizer is 1 system clock period.

Figure 14-4. Synchronization when reading a software assigned pin value.

SYSTEM CLK | | | | | |

r16 OxFF

INSTRUCTIONS X out PORTX, r16 X nop X inr17, PINx X

SYNC LATCH

PINxn

r17 0x00 X OXFF

tog

A
A\

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define the port pins
from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin values are read back again, but
as previously discussed, a nop instruction is included to be able to read back the value recently assigned to
some of the pins.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 75

Atmel-8272G-AVR-01/2015

Assembly Code Example (V

; Define pull-ups and set outputs high
; Define directions for port pins

1di
rl6, (1<<PB7) | (1<<PB6) | (1<<PB1l) | (1<<PBO)
1di
rl7, (1<<DDB3) | (1<<DDB2) | (1<<DDBR1) | (1<<DDBO)
out PORTB, rl6
out DDRB, r17
; Insert nop for synchronization
nop
; Read port pins
in rl6, PINB

C Code Example

unsigned char i;

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7) | (1<<PB6) | (1<<PB1) | (1<<PBO) ;
DDRB = (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDRO) ;
/* Insert nop for synchronization*/
__no_operation();

/* Read port pins */

i = PINB;

Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-ups are set on pins
0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3 as low and redefining bits 0 and 1 as
strong high drivers.

14.2.5 Digital Input Enable and Sleep Modes

As shown in Figure 14-2, the digital input signal can be clamped to ground at the input of the schmitt-trigger. The
signal denoted SLEEP in the figure, is set by the MCU Sleep Controller in Power-down mode, Power-save
mode, and Standby mode to avoid high power consumption if some input signals are left floating, or have an
analog signal level close to Vc/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt request is not
enabled, SLEEP is active also for these pins. SLEEP is also overridden by various other alternate functions as
described in "Alternate Port Functions” on page 77.

If a logic high level (“one”) is present on an asynchronous external interrupt pin configured as “Interrupt on
Rising Edge, Falling Edge, or Any Logic Change on Pin” while the external interrupt is not enabled, the
corresponding External Interrupt Flag will be set when resuming from the above mentioned Sleep mode, as the
clamping in these sleep mode produces the requested logic change.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 76

Atmel-8272G-AVR-01/2015

14.2.6 Unconnected Pins

If some pins are unused, it is recommended to ensure that these pins have a defined level. Even though most of
the digital inputs are disabled in the deep sleep modes as described above, floating inputs should be avoided to
reduce current consumption in all other modes where the digital inputs are enabled (Reset, Active mode, and
Idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal pull-up. In this case,
the pull-up will be disabled during reset. If low power consumption during reset is important, it is recommended
to use an external pull-up or pull-down. Connecting unused pins directly to V; or GND is not recommended,
since this may cause excessive currents if the pin is accidentally configured as an output.

14.3 Alternate Port Functions
Most port pins have alternate functions in addition to being general digital I/Os. Figure 14-5 shows how the port
pin control signals from the simplified Figure 14-2 on page 73 can be overridden by alternate functions. The
overriding signals may not be present in all port pins, but the figure serves as a generic description applicable to
all port pins in the AVR microcontroller family.
Figure 14-5. Alternate port functions ("),
PUOExn A
PUOVxn
PUD
DDOExn
o> f DDOVxn
PVOExn
PVOVxn
n
1 2
Pxn [an]
0]
<
'_
DIEOExn <O(
o<_}— DIEOVXn
1 SLEEP
RPx
=
clk yo
- » Dixn
@ AlOxn
PUOExn: Pxn PULL-UP OVERRIDE ENABLE PUD: PULLUP DISABLE v
PUOVxn: Pxn PULL-UP OVERRIDE VALUE WDx: WRITE DDRx
DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE RDx: READ DDRx
DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE RRx: READ PORTx REGISTER
PVOExn: Pxn PORT VALUE OVERRIDE ENABLE WRx: WRITE PORTx
PVOVxn: Pxn PORT VALUE OVERRIDE VALUE RPx: READ PORTx PIN
DIEOExn: Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE WPx: WRITE PINx
DIEOVxn: Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE clk o /0 CLOCK
SLEEP: SLEEP CONTROL Dixn: DIGITAL INPUT PIN n ON PORTx
PTOExn: Pxn, PORT TOGGLE OVERRIDE ENABLE AlOxn: ANALOG INPUT/OUTPUT PIN n ON PORTx
Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clk,,5, SLEEP, and PUD are
common to all ports. All other signals are unique for each pin.
/lt m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 77

Atmel-8272G-AVR-01/2015

Table 14-2 summarizes the function of the overriding signals. The pin and port indexes from Figure 14-5 are not
shown in the succeeding tables. The overriding signals are generated internally in the modules having the
alternate function.

Table 14-2. Generic description of overriding signals for alternate functions.

Signal name Full name Description

If this signal is set, the pull-up enable is controlled by the PUOV

AT signal. If this signal is cleared, the pull-up is enabled when

PUCE

Skl {DDxn, PORTxn, PUD} = 0b010.
Pull-up Override If PUOE is set, the pull-up is enabled/disabled when PUQV is
PUOV P set/cleared, regardless of the setting of the DDxn, PORTxn,

Value and PUD Register bits.

Data Direction If this signal is set, the Output Driver Enable is controlled by the
DDOE Override Enable DDOQV signal. If this signal is cleared, the Output driver is
enabled by the DDxn Register bit.

. . If DDOE is set, the Output Driver is enabled/disabled when
Data Direction

DDOV . DDOQV is set/cleared, regardless of the setting of the DDxn
Override Value

Register bit.
If this signal is set and the Output Driver is enabled, the port
PVOE Port Value value is controlled by the PVOV signal. If PVOE is cleared, and
Override Enable the Output Driver is enabled, the port Value is controlled by the
PORTxn Register bit.
PVOV Port Value If PVOE is set, the port value is set to PVOV, regardless of the
Override Value setting of the PORTxn Register bit.
PTOE Rollodale If PTOE is set, the PORTxn Register bit is inverted.
Override Enable
Digital Input If this bit is set, the Digital Input Enable is controlled by the
DIEOE Enable Override DIEOV signal. If this signal is cleared, the Digital Input Enable
Enable is determined by MCU state (Normal mode, sleep mode).
Digital Input If DIEOE is set, the Digital Input is enabled/disabled when
DIEQV Enable Override DIEQV is set/cleared, regardless of the MCU state (Normal
Value mode, sleep mode).

This is the Digital Input to alternate functions. In the figure, the
signal is connected to the output of the schmitt trigger but

DI Digital Input before the synchronizer. Unless the Digital Input is used as a
clock source, the module with the alternate function will use its
own synchronizer.

This is the Analog Input/output to/from alternate functions. The
signal is connected directly to the pad, and can be used bi-
directionally.

Analog

Ao Input/Output

The following subsections shortly describe the alternate functions for each port, and relate the overriding signals
to the alternate function. Refer to the alternate function description for further details.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 78

Atmel-8272G-AVR-01/2015

14.3.1 Alternate Functions of Port A

The Port A pins with alternate functions are shown in Table 14-3.
Table 14-3. Port A pins alternate functions.

Port pin Alternate function

PAT7 ADC?7 (ADC input channel 7)
PCINT7 (Pin Change Interrupt 7)
PAG ADCS6 (ADC input channel 6)
PCINT6 (Pin Change Interrupt 6)
PA5 ADC5 (ADC input channel 5)
PCINT5 (Pin Change Interrupt 5)
PA4 ADC4 (ADC input channel 4)
PCINT4 (Pin Change Interrupt 4)
PA3 ADC3 (ADC input channel 3)
PCINT3 (Pin Change Interrupt 3)
PA2 ADC2 (ADC input channel 2)
PCINT2 (Pin Change Interrupt 2)
PA1 ADC1 (ADC input channel 1)
PCINT1 (Pin Change Interrupt 1)
PAO ADCO (ADC input channel 0)
PCINTO (Pin Change Interrupt 0)

¢« ADC7:0/PCINT7:0 — Port A, Bit 7:0
ADCY7:0, Analog to Digital Converter, Channels 7:0.
PCINT7:0, Pin Change Interrupt source 7:0: The PA7:0 pins can serve as external interrupt sources.

Table 14-4 on page 79 and Table 14-5 on page 80 relate the alternate functions of Port A to the overriding
signals shown in Figure 14-5 on page 77.

Table 14-4. Overriding Signals for Alternate Functions in PA7:PA4.

Signal PA7/ADC7/ PA6/ADC6/ PA5/ADCS5/ PA4/ADC4/

name PCINT7 PCINT6 PCINT5 PCINT4

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV | 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

DIEOE PCINT7 « PCIEO + PCINT6 « PCIEO + PCINT5 « PCIEO + PCINT4 - PCIEO +
ADC7D ADC6D ADC5D ADC4D

DIEQV | PCINT7 « PCIEO PCINT6 « PCIEQ PCINT5 ¢ PCIEO PCINT4 « PCIEQ

DI PCINT7 INPUT PCINT6 INPUT PCINT5 INPUT PCINT4 INPUT

AlO ADCY7 INPUT ADCS6 INPUT ADCS5 INPUT ADC4 INPUT

Atmel

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET]

Atmel-8272G-AVR-01/2015

79

Table 14-5.

Overriding Signals for Alternate Functions in PA3:PAO0.

PA3/ADC3/ PA2/ADC2/ PA1/ADC1/ PAO/ADCO/
PCINT3 PCINT2 PCINT1 PCINTO

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

DIEOE PCINT3 « PCIEO + PCINT2 « PCIEO + PCINT1 « PCIEO + PCINTO - PCIEO +
ADC3D ADC2D ADC1D ADCOD

DIEOV PCINT3 « PCIEO PCINT2 « PCIEO PCINT1 « PCIEQ PCINTO - PCIEQ

DI PCINT3 INPUT PCINT2 INPUT PCINT1 INPUT PCINTO INPUT

AlIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADCO INPUT

14.3.2 Alternate Functions of Port B

The Port B pins with alternate functions are shown in Table 14-6.

Table 14-6. Port B pins alternate functions.

Port Pin Alternate Functions

SCK (SPI Bus Master clock input)
PB7 OC3B (Timer/Counter 3 Output Compare Match B Output)
PCINT15 (Pin Change Interrupt 15)

MISO (SPI Bus Master Input/Slave Output)
PB6 OC3A (Timer/Counter 3 Output Compare Match A Output)
PCINT14 (Pin Change Interrupt 14)

MOSI (SPI Bus Master Output/Slave Input)
PB5 ICP3 (Timer/Counter3 Input Capture Trigger)
PCINT13 (Pin Change Interrupt 13)

SS (SPI Slave Select input)
PB4 OCOB (Timer/Counter 0 Output Compare Match B Output)
PCINT12 (Pin Change Interrupt 12)

AIN1 (Analog Comparator Negative Input)
PB3 OCOA (Timer/Counter 0 Output Compare Match A Output)
PCINT11 (Pin Change Interrupt 11)

AINO (Analog Comparator Positive Input)
PB2 INT2 (External Interrupt 2 Input)
PCINT10 (Pin Change Interrupt 10)

T1 (Timer/Counter 1 External Counter Input)
PB1 CLKO (Divided System Clock Output)
PCINT9 (Pin Change Interrupt 9)

TO (Timer/Counter 0 External Counter Input)
PBO XCKO (USARTO External Clock Input/Output)
PCINT8 (Pin Change Interrupt 8)

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 80

Atmel-8272G-AVR-01/2015

Atmel

The alternate pin configuration is as follows:

* SCK/OC3B/PCINT15 - Port B, Bit 7

SCK: Master Clock output, Slave Clock input pin for SPI channel. When the SPI is enabled as a slave, this pinis
configured as an input regardless of the setting of DDB7. When the SPIO0 is enabled as a master, the data
direction of this pin is controlled by DDB7. When the pin is forced to be an input, the pull-up can still be
controlled by the PORTB?7 bit.

OC3B, Output Compare Match B output: The PB7 pin can serve as an external output for the Timer/Counter3
Output Compare. The pin has to be configured as an output (DDB7 set “one”) to serve this function. The OC3B
pin is also the output pin for the PWM mode timer function.

PCINT15, Pin Change Interrupt source 15: The PB7 pin can serve as an external interrupt source.

* MISO/OC3A/PCINT14 — Port B, Bit 6

MISO: Master Data input, Slave Data output pin for SPI channel. When the SPI is enabled as a master, this pin
is configured as an input regardless of the setting of DDB6. When the SPI is enabled as a slave, the data
direction of this pin is controlled by DDB6. When the pin is forced to be an input, the pull-up can still be
controlled by the PORTBG bit.

OC3A, Output Compare Match A output: The PB6 pin can serve as an external output for the Timer/CounterQ
Output Compare. The pin has to be configured as an output (DDB6 set “one”) to serve this function. The OC3A
pin is also the output pin for the PWM mode timer function.

PCINT14, Pin Change Interrupt source 14: The PB6 pin can serve as an external interrupt source.

e MOSI/ICP3/PCINT13 - Port B, Bit 5

MOSI: SPI Master Data output, Slave Data input for SPI channel. When the SPI is enabled as a slave, this pin is
configured as an input regardless of the setting of DDB5. When the SPI is enabled as a master, the data
direction of this pin is controlled by DDB5. When the pin is forced to be an input, the pull-up can still be
controlled by the PORTBS bit.

ICP3, Input Capture Pin 3: The PB5 pin can act as an input capture pin for Timer/Counter3.
PCINT13, Pin Change Interrupt source 13: The PB5 pin can serve as an external interrupt source.

« SS/OCOB/PCINT12 - Port B, Bit 4

SS: Slave Port Select input. When the SPI is enabled as a slave, this pin is configured as an input regardless of
the setting of DDB4. As a slave, the SPI is activated when this pin is driven low. When the SPI is enabled as a

master, the data direction of this pin is controlled by DDB4. When the pin is forced to be an input, the pull-up can
still be controlled by the PORTB4 bit.

OCO0B, Output Compare Match B output: The PB4 pin can serve as an external output for the Timer/CounterQ
Output Compare. The pin has to be configured as an output (DDB4 set “one”) to serve this function. The OCOB
pin is also the output pin for the PWM mode timer function.

PCINT12, Pin Change Interrupt source 12: The PB4 pin can serve as an external interrupt source.

* AIN1/OCOA/PCINTM1, Bit 3

AIN1, Analog Comparator Negative input. This pin is directly connected to the negative input of the Analog
Comparator.

OCOA, Output Compare Match A output: The PB3 pin can serve as an external output for the Timer/CounterQ
Output Compare. The pin has to be configured as an output (DDB3 set “one”) to serve this function. The OCOA
pin is also the output pin for the PWM mode timer function.

PCINT11, Pin Change Interrupt source 11: The PB3 pin can serve as an external interrupt source.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 81

Atmel-8272G-AVR-01/2015

* AINO/INT2/PCINT10, Bit 2

AINO, Analog Comparator Positive input. This pin is directly connected to the positive input of the Analog
Comparator.

INT2, External Interrupt source 2. The PB2 pin can serve as an External Interrupt source to the MCU.
PCINT10, Pin Change Interrupt source 10: The PB2 pin can serve as an external interrupt source.

¢ T1/CLKO/PCINT9, Bit 1
T1, Timer/Counter1 counter source.

CLKO, Divided System Clock: The divided system clock can be output on the PB1 pin. The divided system clock
will be output if the CKOUT Fuse is programmed, regardless of the PORTB1 and DDB1 settings. It will also be
output during reset.

PCINT9, Pin Change Interrupt source 9: The PB1 pin can serve as an external interrupt source.

* TO/XCKO/PCINTS, Bit 0
TO, Timer/CounterO counter source.

XCKO0, USARTO External clock. The Data Direction Register (DDBO) controls whether the clock is output (DDDO
set “one”) or input (DDDO cleared). The XCKO pin is active only when the USARTO operates in Synchronous
mode.

PCINTS8, Pin Change Interrupt source 8: The PBO pin can serve as an external interrupt source.

Table 14-7 and Table 14-8 relate the alternate functions of Port B to the overriding signals shown in Figure 14-5
on page 77. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute the MISO signal, while MOSI is divided into
SPI MSTR OUTPUT and SPI SLAVE INPUT.

Table 14-7. Overriding Signals for Alternate Functions in PB7:PBA4.

Signal PB7/SCK/ PB6/MISO/ PB5/MOSI/ PB4/SS/OCOB/

name PCINT15 PCINT14 PCINT13 PCINT12

PUOE | SPE-MSTR SPE « MSTR SPE « MSTR SPE - MSTR

PUOV | PORTB7 « PUD PORTB14 « PUD PORTB13 « PUD PORTB12 « PUD

DDOE | SPE+MSTR SPE « MSTR SPE « MSTR SPE « MSTR

DDOV | 0 0 0 0

PVOE SPE « MSTR SPE - MSTR SPE « MSTR OCOA ENABLE

PVOV | SCK OUTPUT (S)Z'TSI’DLJ\;’ = SPIMSTR OUTPUT | OCOA

DIEOE | PCINT15 « PCIE1 PCINT14 « PCIE1 PCINT13 « PCIE1 PCINT12 « PCIE1

DIEOV | 1 1 1 1

o SCK INPUT SPI MSTR INPUT SPISLAVE INPUT | SPISS
PCINT17 INPUT PCINT14 INPUT PCINT13 INPUT PCINT12 INPUT

AIO — = — —

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 82

Atmel-8272G-AVR-01/2015

Overriding Signals for Alternate Functions in PB3:PBO0.

Table 14-8.

Signal PB3/AIN1/0COB/ PB2/AINO/INT2/ PB1/T1/CLKO/PCI PBO/TO/XCK/
name PCINT11 PCINT10 NT9 PCINT8

PUCE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 CKOUT 0

DDOV 0 0 CKOUT 0

PVOE OCO0B ENABLE 0 CKOUT 0

PVOV OCo0B 0 CLK I/O 0

DIEOE PCINT11 « PCIE1 g\lC-I-IIZ\IE"I\I(;A‘FIISCE)IE‘I PCINT9 « PCIE1 PCINT8 « PCIE1
DIEQV 1 1 1 1

Dl PONTHINPUT | SONPiOINPUT | PGINTOINPUT | POINTS INPUT
AlO AIN1 INPUT AINO INPUT = =

14.3.3 Alternate Functions of Port C
The Port C pins with alternate functions are shown in Table 14-9.

Table 14-9. Port C pins alternate functions.

Port pin Alternate function

PC7 TOSC2 (Timer Oscillator pin 2)
PCINT23 (Pin Change Interrupt 23)
PC6 TOSC1 (Timer Oscillator pin 1)
PCINT22 (Pin Change Interrupt 22)
PC5 TDI (JTAG Test Data Input)
PCINT21 (Pin Change Interrupt 21)
PC4 TDO (JTAG Test Data Output)
PCINT20 (Pin Change Interrupt 20)
PC3 TMS (JTAG Test Mode Select)
PCINT19 (Pin Change Interrupt 19)
PC2 TCK (JTAG Test Clock)
PCINT18 (Pin Change Interrupt 18)
PCA SDA (two-wire Serial Bus Data Input/Output Line)
PCINT17 (Pin Change Interrupt 17)
PCO SCL (two-wire Serial Bus Clock Line)
PCINT16 (Pin Change Interrupt 16)

* TOSC2/PCINT23 - Port C, Bit7
TOSC2, Timer Oscillator pin 2. The PC7 pin can serve as an external interrupt source to the MCU.

PCINT23, Pin Change Interrupt source 23: The PC7 pin can serve as an external interrupt source.

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 83

Atmel-8272G-AVR-01/2015

Atmel

e TOSC1/PCINT22 - Port C, Bit 6
TOSCH1, Timer Oscillator pin 1. The PC6 pin can serve as an external interrupt source to the MCU.

PCINT22, Pin Change Interrupt source 22: The PC6 pin can serve as an external interrupt source.

¢ TDI/PCINT21 - Port C, Bit 5
TDI, JTAG Test Data Input.

PCINT21, Pin Change Interrupt source 21: The PC5 pin can serve as an external interrupt source.

e TDO/PCINT20 - Port C, Bit 4
TDO, JTAG Test Data Output.

PCINT20, Pin Change Interrupt source 20: The PC4 pin can serve as an external interrupt source.

e TMS/PCINT19 - Port C, Bit 3
TMS, JTAG Test Mode Select.

PCINT19, Pin Change Interrupt source 19: The PC3 pin can serve as an external interrupt source.

¢ TCK/PCINT18 - Port C, Bit 2
TCK, JTAG Test Clock.

PCINT18, Pin Change Interrupt source 18: The PC2 pin can serve as an external interrupt source.

* SDA/PCINT17 - Port C, Bit 1
SDA, two-wire Serial Bus Data Input/Output Line.

PCINT17, Pin Change Interrupt source 17: The PC1 pin can serve as an external interrupt source.

e SCL/PCINT16 - Port C, Bit 0
SCL, two-wire Serial Bus Clock Line.
PCINT16, Pin Change Interrupt source 16: The PCO pin can serve as an external interrupt source.

Table 14-10 and Table 14-11 relate the alternate functions of Port C to the overriding signals shown in Figure
14-5 on page 77.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 84

Atmel-8272G-AVR-01/2015

Table 14-10.

Overriding Signals for Alternate Functions in PC7:PC4.

Signal PC7/TOSC2/ PC6/TOSC1/ PC5/TDI/ PC4/TDO/
name PCINT23 PCINT22 PCINT21 PCINT20
PUOE AS2 « EXCLK AS2 JTAGEN JTAGEN
PUOV 0 0 1 1
DDOE AS2 « EXCLK AS2 JTAGEN JTAGEN
DDOV | 0 0 0 2::E¥:’§R+
PVOE 0 0 0 JTAGEN
PVOV 0 0 0 TDO
SiEeE AS2 + EXCLK + AS2 + JTAGEN + JTAGEN +
PCINT23 « PCIE2 PCINT22+ PCIE2 | PCINT21+PCIE2 | PCINT20 « PCIE2

DIEOV AS2 EXCLK + AS2 JTAGEN JTAGEN
DI PCINT23 INPUT PCINT22 INPUT PCINT21 INPUT PCINT20 INPUT
AIO T/C2 OSC OUTPUT IT,\/lgfﬁSC TDI INPUT —

Table 14-11. Overriding Signals for Alternate Functions in PC3:PC0.
Signal PC3/TMS/ PC2/TCK/ PC1/SDA/ PCO/SCL/
name PCINT19 PCINT18 PCINT17 PCINT16
PUOE JTAGEN JTAGEN TWEN TWEN
PUOV 1 1 PORTC1 « PUD PORTCO » PUD
DDOE JTAGEN JTAGEN TWEN TWEN
DDOV 0 0 0 0
PVOE 0 0 TWEN TWEN
PVOV 0 0 SDA OUT SCL OUT
DIEOE ;ESTEFQJ: se ‘F’,LAIﬁTEFgf el PCINT17 « PCIE2 PCINT16 « PCIE2
DIEOV JTAGEN JTAGEN 1 1
DI PCINT19 INPUT PCINT18 INPUT PCINT17 INPUT PCINT16 INPUT
AIO TMS INPUT TCK INPUT SDA INPUT SCL INPUT

Atmel

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET]

Atmel-8272G-AVR-01/2015

85

14.3.4 Alternate Functions of Port D

The Port D pins with alternate functions are shown in Table 14-12.
Table 14-12. Port D pins alternate functions.

Port pin Alternate function

PD7 OC2A (Timer/Counter2 Output Compare Match A Output)
PCINT31 (Pin Change Interrupt 31)

ICP1 (Timer/Counter1 Input Capture Trigger)
PD6 OC2B (Timer/Counter2 Output Compare Match B Output)
PCINT30 (Pin Change Interrupt 30)

OC1A (Timer/Counter1 Output Compare Match A Output)
PCINT29 (Pin Change Interrupt 29)

OC1B (Timer/Counter1 Output Compare Match B Output)
PD4 XCK1 (USART1 External Clock Input/Output)
PCINT28 (Pin Change Interrupt 28)

PD5

INT1 (External Interrupt1 Input)
PD3 TXD1 (USART1 Transmit Pin)
PCINT27 (Pin Change Interrupt 27)

INTO (External InterruptO Input)
PD2 RXD1 (USART1 Receive Pin)
PCINT26 (Pin Change Interrupt 26)

TXDO0 (USARTO Transmit Pin)
PCINT25 (Pin Change Interrupt 25)

RXDO0 (USARTO Receive Pin)
PDO PCINT24 (Pin Change Interrupt 24)
T3 (Timer/Counter 3 External Counter Input)

PD1

The alternate pin configuration is as follows:

* OC2A/PCINT31 - Port D, Bit 7

OC2A, Output Compare Match A output: The PD7 pin can serve as an external output for the Timer/Counter2
Output Compare A. The pin has to be configured as an output (DDD7 set (one)) to serve this function. The
OC2A pin is also the output pin for the PWM mode timer function.

PCINT31, Pin Change Interrupt Source 31:The PD7 pin can serve as an external interrupt source.

* ICP1/0C2B/PCINT30 - Port D, Bit 6
ICP1, Input Capture Pin 1: The PD6 pin can act as an input capture pin for Timer/Counter1.

0OC2B, Output Compare Match B output: The PD6 pin can serve as an external output for the Timer/Counter2
Output Compare B. The pin has to be configured as an output (DDD6 set (one)) to serve this function. The
OC2B pin is also the output pin for the PWM mode timer function.

PCINT30, Pin Change Interrupt Source 30: The PD6 pin can serve as an external interrupt source.

* OC1A/PCINT29 — Port D, Bit 5

OC1A, Output Compare Match A output: The PD5 pin can serve as an external output for the Timer/Counter1
Output Compare A. The pin has to be configured as an output (DDD5 set (one)) to serve this function. The
OC1A pin is also the output pin for the PWM mode timer function.

PCINT29, Pin Change Interrupt Source 29: The PD5 pin can serve as an external interrupt source.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 86

Atmel-8272G-AVR-01/2015

* OC1B/XCK1/PCINT28 — Port D, Bit 4

OC1B, Output Compare Match B output: The PB4 pin can serve as an external output for the Timer/Counter1
Output Compare B. The pin has to be configured as an output (DDD4 set (one)) to serve this function. The
OC1B pin is also the output pin for the PWM mode timer function.

XCK1, USART1 External clock. The Data Direction Register (DDB4) controls whether the clock is output (DDD4
set “one”) or input (DDD4 cleared). The XCK4 pin is active only when the USART1 operates in Synchronous
mode.

PCINT28, Pin Change Interrupt Source 28: The PD4 pin can serve as an external interrupt source.

¢ INT1/TXD1/PCINT27 - Port D, Bit 3
INT1, External Interrupt source 1. The PD3 pin can serve as an external interrupt source to the MCU.

TXD1, Transmit Data (Data output pin for the USART1). When the USART1 Transmitter is enabled, this pin is
configured as an output regardless of the value of DDD3.

PCINT27, Pin Change Interrupt Source 27: The PD3 pin can serve as an external interrupt source.

* INTO/RXD1/PCINT26 - Port D, Bit 2
INTO, External Interrupt source 0. The PD2 pin can serve as an external interrupt source to the MCU.

RXD1, RXDO0, Receive Data (Data input pin for the USART1). When the USART1 receiver is enabled this pin is
configured as an input regardless of the value of DDD2. When the USART forces this pin to be an input, the
pull-up can still be controlled by the PORTD2 bit.

PCINT26, Pin Change Interrupt Source 26: The PD2 pin can serve as an external interrupt source.

* TXDO/PCINT25 - Port D, Bit 1

TXDO, Transmit Data (Data output pin for the USARTO0). When the USARTO Transmitter is enabled, this pin is
configured as an output regardless of the value of DDD1.

PCINT25, Pin Change Interrupt Source 25: The PD1 pin can serve as an external interrupt source.

* RXDO/T3/PCINT24 - Port D, Bit 0

RXDO0, Receive Data (Data input pin for the USARTO0). When the USARTO receiver is enabled this pin is
configured as an input regardless of the value of DDD0. When the USART forces this pin to be an input, the
pull-up can still be controlled by the PORTDO bit.

T3, Timer/Counter3 counter source (only for ATmega1284/1284P).
PCINT24, Pin Change Interrupt Source 24: The PDO pin can serve as an external interrupt source.

Table 14-13 on page 88 and Table 14-14 on page 88 relate the alternate functions of Port D to the overriding
signals shown in Figure 14-5 on page 77.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 87

Atmel-8272G-AVR-01/2015

Table 14-13. Overriding Signals for Alternate Functions PD7:PD4.
PD6/ICP1/
PD7/0C2A/ ocaB/ PD5/OC1A/ PD4/0C1B/XCK1/
Signal name PCINT31 PCINT30 PCINT29 PCINT28
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 0 0 0
DDOV 0 0 0 0
PVOE OC2A ENABLE OC2B ENABLE OC1A ENABLE OC1B ENABLE
PVOV OCA2A OoC2B OC1A OC1B
DIEOE PCINT31 « PCIE3 | PCINT30*PCIE3 | PCINT29 « PCIE3 | PCINT28 « PCIE3
DIEOV 1 1 1 1
DI PCINT31 INPUT :Ecplrll'lr'\:igllJIjJ—PUT PCINT29 INPUT PCINT28 INPUT
AlO - - - -
Table 14-14. Overriding Signals for Alternate Functions in PD3:PDO0 ("
PD3/INT1/TXD1/ PD2/INTO/RXD1/ PD1/TXDO0/ PDO/RXDO0/
Signal name PCINT27 PCINT26 PCINT25 PCINT27
PUOE TXEN1 RXEN1 TXENO RXEN1
PUOV 0 PORTD2 « PUD 0 PORTDO « PUD
DDOE TXEN1 RXEN1 TXENO RXEN1
DDOV 1 0 1 0
PVOE TXEN1 0 TXENO 0
PVOV TXD1 0 TXDO 0
DIEOE ::L\IJLES?BFEIB :L\IC.:I-IiI'II%;6A-IBII;EIE3 PCINT25 « PCIE3 | PCINT24 « PCIE3
DIEOV 1 1 1 1
INTO INPUT
AlO - - - -
Note: 1. When enabled, the two-wire Serial Interface enables Slew-Rate controls on the output pins PDO and PD1. This

is not shown in this table. In addition, spike filters are connected between the AlO outputs shown in the port
figure and the digital logic of the TWI module.

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 88

Atmel-8272G-AVR-01/2015

Atmel

Register description

14.3.5 MCUCR - MCU Control Register

14.3.6

14.3.7

14.3.8

14.3.9

Bit 7 6 5 4 3 2 1 0
0x35(0x55) | JTD | BODS" | BODSE" PUD = = IVSEL IVCE | mcucr
Read/Write R/W R/W R/W R/W R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Note: 1. Only available in the Atmel ATmega164PA/324PA/644PA/1284P.

¢ Bit 4 — PUD: Pull-up Disable

When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and PORTxn Registers
are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See "Configuring the Pin” on page 73 for more
details about this feature.

PORTA - Port A Data Register

Bit 7 6 5 4 3 2 1 0

0x02 (0x22) I PORTA7 | PORTA6 | PORTAS5 PORTA4 PORTA3 PORTA2 PORTA1 PORTAO0 I PORTA
Read/Write R/W R/IW R/W R/IW R/W R/IW RIW R/W

Initial Value 0 0 0 0 0 0 0 0

DDRA - Port A Data Direction Register

Bit 7 6 5 4 3 2 1 0

0x01(0x21) | DDA7 | DDA6 | DDA5 | DDA4 DDA3 DDA2 DDA1 DDA0 | DDRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

PINA — Port A Input Pins Address

Bit 7 6 5 4 3 2 1 0

0x00 (0x20) | PINA7 | PINA6 | PINAS PINA4 PINA3 PINA2 PINA1 PINAO | PINA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

PORTB - Port B Data Register

Bit 7 6 5 4 3 2 1 0
0x05 (0x25) | PORTB7 | PORTB6 | PORTB5 | PORTB4 | PORTB3 | PORTB2 | PORTB1 PORTBO | PORTB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

14.3.10 DDRB - Port B Data Direction Register

Bit 7 6 5 4 3 2 1 0

0x04 (0x24) | DDB7 | DDB6 | DDB5 | DDB4 DDB3 DDB2 DDB1 DDBO | DDRB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

AtmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 89

Atmel-8272G-AVR-01/2015

14.3.11 PINB — Port B Input Pins Address

Bit 7 6 5 4 3 2 1 0

0x03(0x23) | PINB7 | PINB6 | PINB5 PINB4 PINB3 PINB2 PINB1 PINBO | PINB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

14.3.12 PORTC - Port C Data Register

Bit 7 6 5 4 3 2 1 0

0x08 (0x28) I PORTC7 | PORTC6 | PORTCS5 PORTC4 PORTC3 PORTC2 PORTC1 PORTCO I PORTC
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

14.3.13 DDRC - Port C Data Direction Register

Bit 7 6 5 4 3 2 1 0

0x07 (0x27) | DDC7 | DDC6é | DDC5 | DDC4 DDC3 DDC2 DDC1 DDCO | DDRC
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

14.3.14 PINC - Port C Input Pins Address

Bit 7 6 5 4 3 2 1 0

0x06 (0x26) | PINC7 | PINC6 | PINC5 PINC4 PINC3 PINC2 PINC1 PINCO | PINC
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

14.3.15 PORTD - Port D Data Register

Bit 7 6 5 4 3 2 1 0

0x0B (0x2B) I PORTD7 | PORTD6 | PORTDS5 PORTD4 PORTD3 PORTD2 PORTD1 PORTDO I PORTD
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

14.3.16 DDRD - Port D Data Direction Register

Bit 7 6 5 4 3 2 1 0

0x0A (0x2A) | DDD7 | DDD6é | DDD5 | DDD4 DDD3 DDD2 DDD1 DDDO0 | DDRD
Read/Write R/W R/W R/W R/W R/W R/W R/W RIW

Initial Value 0 0 0 0 0 0 0 0

14.3.17 PIND - Port D Input Pins Address

Bit 7 6 5 4 3 2 1 0
0x09 (0x29) | PIND7 | PIND6 | PIND5S PIND4 PIND3 PIND2 PIND1 PINDO | PIND
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
/It m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 90

Atmel-8272G-AVR-01/2015

15.

15.1

15.2

8-bit Timer/Counter0 with PWM

Features

* Two independent output compare units

* Double buffered output compare registers

* Clear timer on compare match (auto reload)

* Glitch free, phase correct Pulse Width Modulator (PWM)

* Variable PWM Period

* Frequency generator

* Three independent interrupt sources (TOV0, OCFOA, and OCF0B)

Overview

Timer/Counter0 is a general purpose 8-bit Timer/Counter module, with two independent Output Compare Units,
and with PWM support. It allows accurate program execution timing (event management) and wave generation.

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 15-1. For the actual placement of I/O
pins, see "Pin configurations” on page 3. CPU accessible I/O Registers, including 1/O bits and 1/O pins, are
shown in bold. The device-specific I/O Register and bit locations are listed in the "Register description” on page
101.

Figure 15-1. 8-bit Timer/Counter block diagram.
Count TOVn
—»
Clear c | Logi (Int.Req.)
Direction ontrol Logie clky, Clock Select
Edge »
A Detector [™
TOP | BOTTOM
vYVY (From Prescaler)
A Timer/Counter [
<t TCNTn —
* * ocna
(Int.Req.)
i -
—] | Waveform

Generation

4

[}

i
s oo} g
Fixed
TOP
Value

oCnB
(Int.Req.)

Waveform
Generation

v v

DATA BUS

TCCRnA | | TCCRnB

i '
< A A >

15.2.1 Registers

Atmel

The Timer/Counter (TCNTO) and Output Compare Registers (OCROA and OCROB) are 8-bit registers. Interrupt
request (abbreviated to Int.Req. in the figure) signals are all visible in the Timer Interrupt Flag Register (TIFRO).
All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSKO). TIFRO and TIMSKO are
not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on the TO pin.
The Clock Select logic block controls which clock source and edge the Timer/Counter uses to increment (or

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 91

Atmel-8272G-AVR-01/2015

15.2.2

15.3

15.4

decrement) its value. The Timer/Counter is inactive when no clock source is selected. The output from the Clock
Select logic is referred to as the timer clock (clkyg).

The double buffered Output Compare Registers (OCROA and OCROB) are compared with the Timer/Counter
value at all times. The result of the compare can be used by the Waveform Generator to generate a PWM or
variable frequency output on the Output Compare pins (OCOA and OCOB). See Section “15.5” on page 93 for
details. The Compare Match event will also set the Compare Flag (OCFOA or OCFOB) which can be used to
generate an Output Compare interrupt request.

Definitions

Many register and bit references in this section are written in general form. A lower case “n” replaces the
Timer/Counter number, in this case 0. A lower case “x” replaces the Output Compare Unit, in this case Compare
Unit A or Compare Unit B. However, when using the register or bit defines in a program, the precise form must
be used, that is, TCNTO for accessing Timer/CounterQ counter value and so on.

The definitions in Table 15-1 are also used extensively throughout the document.

Table 15-1. Definitions.
BOTTOM The counter reaches the BOTTOM when it becomes 0x00.

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value OxFF
(MAX) or the value stored in the OCROA Register. The assignment is
dependent on the mode of operation.

TOP

Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source is selected by
the Clock Select logic which is controlled by the Clock Select (CS02:0) bits located in the Timer/Counter Control
Register (TCCROB). For details on clock sources and prescaler, see "Timer/Counter Prescaler” on page 150.

Counter Unit
The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure 15-2 shows a
block diagram of the counter and its surroundings.

Figure 15-2. Counter Unit block diagram.

TOVn

DATA BUS (Int.Req.)

-
: Clock Select

. count Edge <
1k Detector ™
clear P
TCNTn -t Control Logic |—2
direction
-

(From Prescaler)
bottom T Ttop

-¢

Signal description (internal signals):
count Increment or decrement TCNTO by 1.
direction Select between increment and decrement.
clear Clear TCNTO (set all bits to zero).

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 92

Atmel-8272G-AVR-01/2015

15.5

clkq, Timer/Counter clock, referred to as clky in the following.
top Signalize that TCNTO has reached maximum value.
bottom Signalize that TCNTO has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or decremented at each timer
clock (clkyy). clkyg can be generated from an external or internal clock source, selected by the Clock Select bits
(CS02:0). When no clock source is selected (CS02:0 = 0) the timer is stopped. However, the TCNTO value can
be accessed by the CPU, regardless of whether clky, is present or not. A CPU write overrides (has priority over)
all counter clear or count operations.

The counting sequence is determined by the setting of the WGMO01 and WGMOO bits located in the
Timer/Counter Control Register (TCCROA) and the WGMO02 bit located in the Timer/Counter Control Register B
(TCCROB). There are close connections between how the counter behaves (counts) and how waveforms are
generated on the Output Compare outputs OCOA and OCOB. For more details about advanced counting
sequences and waveform generation, see "Modes of operation” on page 95.

The Timer/Counter Overflow Flag (TOVO) is set according to the mode of operation selected by the WGMO02:0
bits. TOVO0 can be used for generating a CPU interrupt.

Output Compare unit

The 8-bit comparator continuously compares TCNTO with the Output Compare Registers (OCROA and
OCROB). Whenever TCNTO equals OCROA or OCROB, the comparator signals a match. A match will set the
Output Compare Flag (OCFOA or OCFOB) at the next timer clock cycle. If the corresponding interrupt is
enabled, the Output Compare Flag generates an Output Compare interrupt. The Output Compare Flag is
automatically cleared when the interrupt is executed. Alternatively, the flag can be cleared by software by writing
a logical one to its I/O bit location. The Waveform Generator uses the match signal to generate an output
according to operating mode set by the WGMO02:0 bits and Compare Output mode (COMO0x1:0) bits. The max
and bottom signals are used by the Waveform Generator for handling the special cases of the extreme values in
some modes of operation ("Modes of operation” on page 95).

Figure 15-3 shows a block diagram of the Output Compare unit.

Figure 15-3. Output Compare unit, block diagram.
DATA BUS

— —

OCRNXx TCNTn

| = (8-bit Comparator) |

OCFnx (Int.Req.)

top R

bowom .t Waveform Generator >l OCnx

1]

WGMn1:0 COMnNX1:0

FOCn >

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 93

Atmel-8272G-AVR-01/2015

The OCROx Registers are double buffered when using any of the Pulse Width Modulation (PWM) modes. For
the normal and Clear Timer on Compare (CTC) modes of operation, the double buffering is disabled. The
double buffering synchronizes the update of the OCROx Compare Registers to either top or bottom of the
counting sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical PWM pulses,
thereby making the output glitch-free.

The OCROx Register access may seem complex, but this is not case. When the double buffering is enabled, the
CPU has access to the OCROx Buffer Register, and if double buffering is disabled the CPU will access the
OCROx directly.

15.5.1 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to
the Force Output Compare (FOCOXx) bit. Forcing Compare Match will not set the OCFOx Flag or reload/clear the
timer, but the OCOx pin will be updated as if a real Compare Match had occurred (the COMO0x1:0 bits settings
define whether the OCOx pin is set, cleared or toggled).

15.5.2 Compare Match Blocking by TCNTO0 Write

All CPU write operations to the TCNTO Register will block any Compare Match that occur in the next timer clock
cycle, even when the timer is stopped. This feature allows OCROx to be initialized to the same value as TCNTO
without triggering an interrupt when the Timer/Counter clock is enabled.

15.5.3 Using the Output Compare Unit

Since writing TCNTO in any mode of operation will block all Compare Matches for one timer clock cycle, there
are risks involved when changing TCNTO when using the Output Compare Unit, independently of whether the
Timer/Counter is running or not. If the value written to TCNTO equals the OCROx value, the Compare Match will
be missed, resulting in incorrect waveform generation. Similarly, do not write the TCNTO value equal to
BOTTOM when the counter is down-counting.

The setup of the OCOx should be performed before setting the Data Direction Register for the port pin to output.
The easiest way of setting the OCOx value is to use the Force Output Compare (FOCOx) strobe bits in Normal
mode. The OCOx Registers keep their values even when changing between Waveform Generation modes.

Be aware that the COMOx1:0 bits are not double buffered together with the compare value. Changing the
COMOx1:0 bits will take effect immediately.

15.6 Compare Match Output unit

The Compare Output mode (COMOx1:0) bits have two functions. The Waveform Generator uses the COM0x1:0
bits for defining the Output Compare (OCOx) state at the next Compare Match. Also, the COMO0x1:0 bits control
the OCOx pin output source. Figure 15-4 shows a simplified schematic of the logic affected by the COMOx1:0 bit
setting. The 1/0O Registers, /O bits, and 1/O pins in the figure are shown in bold. Only the parts of the general I/O
Port Control Registers (DDR and PORT) that are affected by the COMOx1:0 bits are shown. When referring to
the OCOx state, the reference is for the internal OCOx Register, not the OCOx pin. If a system reset occur, the
OCOx Register is reset to “0”.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 94

Atmel-8272G-AVR-01/2015

15.6.1

15.7

15.7.1

Figure 15-4. Compare Match Output unit, schematic.

—

COMnx1
COMnx0 Waveform
D Q
FOCn Generator
— 1
OCnx|
OCnx 0 :: Pin
A
»D Q
% L
m PORT
<
ke
o »D Q
DDR
clkyg

The general 1/0 port function is overridden by the Output Compare (OCOx) from the Waveform Generator if
either of the COMOx1:0 bits are set. However, the OCOx pin direction (input or output) is still controlled by the
Data Direction Register (DDR) for the port pin. The Data Direction Register bit for the OCOx pin (DDR_OCO0x)
must be set as output before the OCOx value is visible on the pin. The port override function is independent of
the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OCOx state before the output is enabled.
Note that some COMOx1:0 bit settings are reserved for certain modes of operation. See Section “15.9” on page
101.

Compare Output Mode and Waveform Generation

The Waveform Generator uses the COMOx1:0 bits differently in Normal, CTC, and PWM modes. For all modes,
setting the COMOx1:0 = 0 tells the Waveform Generator that no action on the OCOx Register is to be performed
on the next Compare Match. For compare output actions in the non-PWM modes refer to Table 15-2 on page
101. For fast PWM mode, refer to Table 15-3 on page 101, and for phase correct PWM refer to Table 15-4 on
page 102.

A change of the COMOx1:0 bits state will have effect at the first Compare Match after the bits are written. For
non-PWM modes, the action can be forced to have immediate effect by using the FOCOx strobe bits.

Modes of operation

The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins, is defined by
the combination of the Waveform Generation mode (WGMO02:0) and Compare Output mode (COMOx1:0) bits.
The Compare Output mode bits do not affect the counting sequence, while the Waveform Generation mode bits
do. The COMOx1:0 bits control whether the PWM output generated should be inverted or not (inverted or non-
inverted PWM). For non-PWM modes the COMOx1:0 bits control whether the output should be set, cleared, or
toggled at a Compare Match (See Section “16.9” on page 118).

For detailed timing information see "Timer/Counter Timing diagrams” on page 99.

Normal mode

The simplest mode of operation is the Normal mode (WGMO02:0 = 0). In this mode the counting direction is
always up (incrementing), and no counter clear is performed. The counter simply overruns when it passes its

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 95

Atmel-8272G-AVR-01/2015

15.7.2

Atmel

maximum 8-bit value (TOP = OxFF) and then restarts from the bottom (0x00). In normal operation the
Timer/Counter Overflow Flag (TOVO) will be set in the same timer clock cycle as the TCNTO becomes zero. The
TOVO Flag in this case behaves like a ninth bit, except that it is only set, not cleared. However, combined with
the timer overflow interrupt that automatically clears the TOVO Flag, the timer resolution can be increased by
software. There are no special cases to consider in the Normal mode, a new counter value can be written
anytime.

The Output Compare Unit can be used to generate interrupts at some given time. Using the Output Compare to
generate waveforms in Normal mode is not recommended, since this will occupy too much of the CPU time.

Clear Timer on Compare Match (CTC) mode

In Clear Timer on Compare or CTC mode (WGMO02:0 = 2), the OCROA Register is used to manipulate the
counter resolution. In CTC mode the counter is cleared to zero when the counter value (TCNTO) matches the
OCROA. The OCROA defines the top value for the counter, hence also its resolution. This mode allows greater
control of the Compare Match output frequency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 15-5. The counter value (TCNTO) increases until a
Compare Match occurs between TCNTO and OCROA, and then counter (TCNTO) is cleared.

Figure 15-5. CTC mode, timing diagram.

w VYV W

OoCn

OCnx Interrupt Flag Set

-t—

(Toggle)

Period

(COMNX1:0 = 1)

e
An interrupt can be generated each time the counter value reaches the TOP value by using the OCFOA Flag. If
the interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. However,
changing TOP to a value close to BOTTOM when the counter is running with none or a low prescaler value must
be done with care since the CTC mode does not have the double buffering feature. If the new value written to
OCROA is lower than the current value of TCNTO, the counter will miss the Compare Match. The counter will
then have to count to its maximum value (OxFF) and wrap around starting at 0x00 before the Compare Match
can occur.

For generating a waveform output in CTC mode, the OCOA output can be set to toggle its logical level on each
Compare Match by setting the Compare Output mode bits to toggle mode (COMOA1:0 = 1). The OCOA value
will not be visible on the port pin unless the data direction for the pin is set to output. The waveform generated
will have a maximum frequency of focg = fy 10/2 when OCROA is set to zero (0x00). The waveform frequency is
defined by the following equation: -

Jei_ 1o
2-N-(1+0OCRnx)

fOCnx

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOVO Flag is set in the same timer clock cycle that the counter counts
from MAX to 0x00.

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET]

Atmel-8272G-AVR-01/2015

96

15.7.3 Fast PWM mode

The fast Pulse Width Modulation or fast PWM mode (WGMO02:0 = 3 or 7) provides a high frequency PWM
waveform generation option. The fast PWM differs from the other PWM option by its single-slope operation. The
counter counts from BOTTOM to TOP then restarts from BOTTOM. TOP is defined as OxFF when WGM2:0 = 3,
and OCROA when WGM2:0 = 7. In non-inverting Compare Output mode, the Output Compare (OCOx) is cleared
on the Compare Match between TCNTO and OCROx, and set at BOTTOM. In inverting Compare Output mode,
the output is set on Compare Match and cleared at BOTTOM. Due to the single-slope operation, the operating
frequency of the fast PWM mode can be twice as high as the phase correct PWM mode that use dual-slope
operation. This high frequency makes the fast PWM mode well suited for power regulation, rectification, and
DAC applications. High frequency allows physically small sized external components (coils, capacitors), and
therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the TOP value. The counter is
then cleared at the following timer clock cycle. The timing diagram for the fast PWM mode is shown in Figure
15-6. The TCNTO value is in the timing diagram shown as a histogram for illustrating the single-slope operation.
The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNTO
slopes represent Compare Matches between OCROx and TCNTO.

Figure 15-6. Fast PWM mode, timing diagram.

OCRnXx Interrupt Flag Set

OCRnx Update and
TOVnN Interrupt Flag Set

- VI

OCnx (COMNX1:0 = 2)

OCnx |_|_|_|_|—| |_| (COMNX1:0 = 3)
Period |<—1 —.|<—2 _.|._3_.|._4 I s I 6 I 7_,I

The Timer/Counter Overflow Flag (TOVO) is set each time the counter reaches TOP. If the interrupt is enabled,
the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OCOx pins. Setting the
COMO0x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output can be generated by
setting the COMOx1:0 to three: Setting the COMOA1:0 bits to one allows the OCOA pin to toggle on Compare
Matches if the WGMO2 bit is set. This option is not available for the OCOB pin (See Table 15-3 on page 101).
The actual OCOx value will only be visible on the port pin if the data direction for the port pin is set as output. The
PWM waveform is generated by setting (or clearing) the OCOx Register at the Compare Match between OCROx
and TCNTO, and clearing (or setting) the OCOx Register at the timer clock cycle the counter is cleared (changes
from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

~ Jaw o
Tocnxpwm = 3288

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 97

Atmel-8272G-AVR-01/2015

The extreme values for the OCROA Register represents special cases when generating a PWM waveform
output in the fast PWM mode. If the OCROA is set equal to BOTTOM, the output will be a narrow spike for each
MAX+1 timer clock cycle. Setting the OCROA equal to MAX will result in a constantly high or low output
(depending on the polarity of the output set by the COMO0OA1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OCOx to
toggle its logical level on each Compare Match (COMO0x1:0 = 1). The waveform generated will have a maximum
frequency of focg = fuk 1o/2 when OCROA is set to zero. This feature is similar to the OCOA toggle in CTC mode,
except the double buffer feature of the Output Compare unit is enabled in the fast PWM mode.

15.7.4 Phase Correct PWM mode

The phase correct PWM mode (WGMO02:0 = 1 or 5) provides a high resolution phase correct PWM waveform
generation option. The phase correct PWM mode is based on a dual-slope operation. The counter counts
repeatedly from BOTTOM to TOP and then from TOP to BOTTOM. TOP is defined as 0xFF when WGM2:0 = 1,
and OCROA when WGM2:0 = 5. In non-inverting Compare Output mode, the Output Compare (OCOx) is cleared
on the Compare Match between TCNTO and OCROx while upcounting, and set on the Compare Match while
down-counting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation has
lower maximum operation frequency than single slope operation. However, due to the symmetric feature of the
dual-slope PWM modes, these modes are preferred for motor control applications.

In phase correct PWM mode the counter is incremented until the counter value matches TOP. When the
counter reaches TOP, it changes the count direction. The TCNTO value will be equal to TOP for one timer clock
cycle. The timing diagram for the phase correct PWM mode is shown on Figure 15-7. The TCNTO value is in the
timing diagram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-
inverted and inverted PWM outputs. The small horizontal line marks on the TCNTO slopes represent Compare
Matches between OCROx and TCNTO.

Figure 15-7. Phase Correct PWM mode, timing diagram.

OCnx Interrupt Flag Set

OCRnx Update

TOVn Interrupt Flag Set

Y \/

e/ IN NN

OCnx |_| |_ (COMNx1:0 = 2)
OCnx |_| |_| |— (COMnx1:0 = 3)
Period I 1 ‘I 2 ‘I 3 ‘I

The Timer/Counter Overflow Flag (TOVO0) is set each time the counter reaches BOTTOM. The Interrupt Flag
can be used to generate an interrupt each time the counter reaches the BOTTOM value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the OCOx pins. Setting
the COMOXx1:0 bits to two will produce a non-inverted PWM. An inverted PWM output can be generated by

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 98

Atmel-8272G-AVR-01/2015

15.8

setting the COMOx1:0 to three: Setting the COMOAO bits to one allows the OCOA pin to toggle on Compare
Matches if the WGMO2 bit is set. This option is not available for the OCOB pin (See Table 15-4 on page 102).
The actual OCOx value will only be visible on the port pin if the data direction for the port pin is set as output. The
PWM waveform is generated by clearing (or setting) the OCOx Register at the Compare Match between OCROx
and TCNTO when the counter increments, and setting (or clearing) the OCOx Register at Compare Match
between OCROx and TCNTO when the counter decrements. The PWM frequency for the output when using
phase correct PWM can be calculated by the following equation:

_ Ja o

fOCnxPCPWM N-510

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCROA Register represent special cases when generating a PWM waveform output
in the phase correct PWM mode. If the OCROA is set equal to BOTTOM, the output will be continuously low and
if set equal to MAX the output will be continuously high for non-inverted PWM mode. For inverted PWM the
output will have the opposite logic values.

At the very start of period 2 in Figure 15-7 OCnx has a transition from high to low even though there is no
Compare Match. The point of this transition is to guarantee symmetry around BOTTOM. There are two cases
that give a transition without Compare Match.

e OCROA changes its value from MAX, like in Figure 15-7. When the OCROA value is MAX the OCn pin
value is the same as the result of a down-counting Compare Match. To ensure symmetry around
BOTTOM the OCn value at MAX must correspond to the result of an up-counting Compare Match.

e The timer starts counting from a value higher than the one in OCROA, and for that reason misses the
Compare Match and hence the OCn change that would have happened on the way up.

Timer/Counter Timing diagrams

The Timer/Counter is a synchronous design and the timer clock (clky) is therefore shown as a clock enable
signal in the following figures. The figures include information on when Interrupt Flags are set. Figure 15-8
contains timing data for basic Timer/Counter operation. The figure shows the count sequence close to the MAX
value in all modes other than phase correct PWM mode.

Figure 15-8. Timer/Counter Timing diagram, no prescaling.

clky,
(clk,o/1)
TCNTn] MAX -1 MAX BOTTOM BOTTOM + 1
TOVn

Figure 15-9 on page 100 shows the same timing data, but with the prescaler enabled.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 99

Atmel-8272G-AVR-01/2015

Figure 15-9.

clk,q

clky,
(clk,o/8)

TCNTn

TOVn

I

BINBEE]

Timer/Counter Timing diagram, with prescaler (f ,,0/8)-

LUuuuuuL
.

UINBBEE]
.

UUUUIUL

MAX -1

MAX

BOTTOM

BOTTOM + 1

Figure 15-10 shows the setting of OCFOB in all modes and OCFOA in all modes except CTC mode and PWM

mode, where OCROA is

TOP.

Figure 15-10. Timer/Counter Timing diagram, setting of OCFO0x, with prescaler (f;, ;0/8).

« [JUIUUUUULUUUUUUnguuu iy oL
clk,, r r
(clk,o/8)
TCNTn] OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2
OCRnx OCRnx Value
OCFnx

Figure 15-11 shows the setting of OCFOA and the clearing of TCNTO in CTC mode and fast PWM mode where

OCROA is TOP.

Figure 15-11. Timer/Counter Timing diagram, Clear Timer on Compare Match mode, with prescaler (f . ;0/8)-

clk,q

I

clky,
(clk,o/8)

BIIBEE]

LUUuuuuL
.

UINBBEE]
:

LUUUTUL

TCNTn
(CTC)

TOP -1

TOP

BOTTOM

BOTTOM + 1

OCRnx

TOP

OCFnx

Atmel

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)]

100

Atmel-8272G-AVR-01/2015

15.9 Register description

15.9.1 TCCROA - Timer/Counter Control Register A

Bit 7 6 5 4 3 2 1 0
0x24 (0x44)]| COMOA1 | COMOAO | COMOB1 | COMOBO | = = WGM01 | WGM00o | TCCROA
Read/Write RIW R/W R/W R/W R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bits 7:6 — COMO0A1:0: Compare Match Output A Mode

These bits control the Output Compare pin (OCO0A) behavior. If one or both of the COMO0A1:0 bits are set, the
OCOA output overrides the normal port functionality of the 1/0 pin it is connected to. However, note that the Data
Direction Register (DDR) bit corresponding to the OCOA pin must be set in order to enable the output driver.

When OCOA is connected to the pin, the function of the COMOA1:0 bits depends on the WGMO02:0 bit setting.
Table 15-2 shows the COMOA1:0 bit functionality when the WGMO02:0 bits are set to a normal or CTC mode

(non-PWM).
Table 15-2. Compare Output mode, non-PWM mode.
COMOA1 COMOAO Description
0 0 Normal port operation, OCOA disconnected
0 1 Toggle OCOA on Compare Match
1 0 Clear OCOA on Compare Match
1 1 Set OCOA on Compare Match

Table 15-3 shows the COMOA1:0 bit functionality when the WGMO01:0 bits are set to fast PWM mode.

Table 15-3. Compare Output mode, Fast PWM mode (",

COMOA1 COMOAO Description

0 0 Normal port operation, OCOA disconnected.

0 1 WGMO02 = 0: Normal Port Operation, OCOA Disconnected.
WGMO02 = 1: Toggle OCOA on Compare Match.

1 0 Clear OCOA on Compare Match, set OCOA at BOTTOM,
(non-inverting mode).

1 1 Set OCOA on Compare Match, clear OCOA at BOTTOM,
(inverting mode).

Note: 1. A special case occurs when OCROA equals TOP and COMOAT1 is set. In this case, the Compare Match is
ignored, but the set or clear is done at BOTTOM. See "Fast PWM mode” on page 97 for more details.

Table 15-4 on page 102 shows the COMOA1:0 bit functionality when the WGMO02:0 bits are set to phase correct

PWM mode.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 101

Atmel-8272G-AVR-01/2015

Table 15-4. Compare Output mode, Phase Correct PWM mode (.
COMOA1 COMOAO Description
0 0 Normal port operation, OCOA disconnected.
0 1 WGMO02 = 0: Normal Port Operation, OCOA Disconnected.
WGMO02 = 1: Toggle OCOA on Compare Match.
Clear OCOA on Compare Match when up-counting. Set OCOA on
1 0 .
Compare Match when down-counting.
1 1 Set OCOA on Compare Match when up-counting. Clear OCOA on
Compare Match when down-counting.
Note: 1. A special case occurs when OCROA equals TOP and COMO0AT1 is set. In this case, the Compare Match is

ignored, but the set or clear is done at TOP. See "Phase Correct PWM mode” on page 98 for more details.

¢ Bits 5:4 — COMO0B1:0: Compare Match Output B mode
These bits control the Output Compare pin (OCO0B) behavior. If one or both of the COMO0B1:0 bits are set, the

OCOB output overrides the normal port functionality of the 1/0 pin it is connected to. However, note that the Data
Direction Register (DDR) bit corresponding to the OCOB pin must be set in order to enable the output driver.

When OCOB is connected to the pin, the function of the COMOB1:0 bits depends on the WGMO02:0 bit setting.

Table 15-2 on page 101 shows the COMOA1:0 bit functionality when the WGMO02:0 bits are set to a normal or
CTC mode (non-PWM).

Table 15-5. Compare Output mode, non-PWM mode.
COMOB1 COMoBO Description
0 0 Normal port operation, OCOB disconnected.
0 1 Toggle OCOB on Compare Match
1 0 Clear OCOB on Compare Match
1 1 Set OCOB on Compare Match

Table 15-6 shows the COMOB1:0 bit functionality when the WGMO02:0 bits are set to fast PWM mode.

Table 15-6. Compare Output mode, Fast PWM mode (",
COoMoB1 COMOBO Description

0 0 Normal port operation, OCOB disconnected.

0 1 Reserved

1 0 Clear OCOB on Compare Match, set OCOB at BOTTOM,
(non-inverting mode).

1 1 Set OCOB on Compare Match, clear OCOB at BOTTOM,
(inverting mode).

Note: 1. A special case occurs when OCROB equals TOP and COMOB1 is set. In this case, the Compare Match is
ignored, but the set or clear is done at BOTTOM. See "Fast PWM mode” on page 97 for more details.

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 102

Atmel-8272G-AVR-01/2015

Atmel

Table 15-7 on page 103 shows the COMOB1:0 bit functionality when the WGMO02:0 bits are set to phase correct
PWM mode.

Table 15-7. Compare Output mode, Phase Correct PWM mode (.

(of0])" [1] 2% COMO0BO Description
0 0 Normal port operation, OCOB disconnected.
0 1 Reserved

Clear OCOB on Compare Match when up-counting. Set OC0OB on

L 0 Compare Match when down-counting.

Set OCOB on Compare Match when up-counting. Clear OCOB on

L L Compare Match when down-counting.

Note: 1. A special case occurs when OCROB equals TOP and COMOB1 is set. In this case, the Compare Match is
ignored, but the set or clear is done at TOP. See "Phase Correct PWM mode” on page 98 for more details.

¢ Bits 3:2 — Reserved

These bits are reserved bits in the Atmel
ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P and will always read as zero.

¢ Bits 1:0 - WGMO01:0: Waveform Generation mode

Combined with the WGMO02 bit found in the TCCROB Register, these bits control the counting sequence of the
counter, the source for maximum (TOP) counter value, and what type of waveform generation to be used, see
Table 15-8 on page 103. Modes of operation supported by the Timer/Counter unit are: Normal mode (counter),
Clear Timer on Compare Match (CTC) mode, and two types of Pulse Width Modulation (PWM) modes (see
"Modes of Operation” on page 119).

Table 15-8. Waveform Generation mode bit description.

Timer/Counter

mode of Update of TOV Flag
Mode WGM2 WGM1 WGMO operation OCRXx at set on

0 0 0 0 Normal OxFF Immediate MAX

1 0 0 1 | PWM, Phase OXFF TOP BOTTOM
Correct

2 0 1 0 CTC OCRA Immediate MAX

3 0 1 1 Fast PWM OxFF BOTTOM MAX

4 1 0 0 Reserved - - -

5 1 0 1 | PWM, Phase OCRA TOP BOTTOM
Correct

6 1 1 0 Reserved - - -

7 1 1 1 Fast PWM OCRA BOTTOM TOP

Notes: 1. MAX = OxFF

2. BOTTOM = 0x00

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 103

Atmel-8272G-AVR-01/2015

15.9.2 TCCROB - Timer/Counter Control Register B

Bit 7 6 5 4 3 2 1 0
0x25 (0x45) | FOCO0A | FOCO0B | = | = | WGM02 CS02 Cso1 CS00 | TCCROB
Read/Write w w R R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - FOCOA: Force Output Compare A
The FOCOA bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when TCCROB is written
when operating in PWM mode. When writing a logical one to the FOCOA bit, an immediate Compare Match is
forced on the Waveform Generation unit. The OCOA output is changed according to its COMOA1:0 bits setting.
Note that the FOCOA bit is implemented as a strobe. Therefore it is the value present in the COMOA1:0 bits that
determines the effect of the forced compare.

A FOCOA strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCROA as TOP.
The FOCOA bit is always read as zero.

e Bit 6 — FOCOB: Force Output Compare B
The FOCOB bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when TCCROB is written
when operating in PWM mode. When writing a logical one to the FOCOB bit, an immediate Compare Match is
forced on the Waveform Generation unit. The OCOB output is changed according to its COMOB1:0 bits setting.
Note that the FOCOB bit is implemented as a strobe. Therefore it is the value present in the COMO0B1:0 bits that
determines the effect of the forced compare.

A FOCOB strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCROB as TOP.
The FOCOB bit is always read as zero.

» Bits 5:4 — Reserved
These bits are reserved and will always read as zero.

* Bit 3 - WGM02: Waveform Generation Mode
See the description in the "TCCROA — Timer/Counter Control Register A” on page 101.

* Bits 2:0 — CS02:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter.

Table 15-9. Clock Select bit description.
CS02 CSo01 CS00 Description

0 0 0 No clock source (Timer/Counter stopped)
0 0 1 clk,,o/(No prescaling)
0 1 0 clk,,o/8 (From prescaler)
0 1 1 clk,,o/64 (From prescaler)
1 0 0 clky;0/256 (From prescaler)
/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1 284IZ [DATASHEET] 104
tmel-8272G-AVR-01/2015

Table 15-9. Clock Select bit description. (Continued)

CS02 CSso1 CS00 Description

1 0 1 clk;,o/1024 (From prescaler)
1 1 0 External clock source on TO pin. Clock on falling edge.
1 1 1 External clock source on TO pin. Clock on rising edge.

If external pin modes are used for the Timer/CounterO0, transitions on the TO pin will clock the counter even if the
pin is configured as an output. This feature allows software control of the counting.

15.9.3 TCNTO - Timer/Counter Register

Bit 7 6 5 4 3 2 1 0

0x26 (0x46) | TCNTO[7:0] | TonTo
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter Register gives direct access, both for read and write operations, to the Timer/Counter unit 8-
bit counter. Writing to the TCNTO Register blocks (removes) the Compare Match on the following timer clock.
Modifying the counter (TCNTO) while the counter is running, introduces a risk of missing a Compare Match
between TCNTO and the OCROx Registers.

15.9.4 OCROA — Output Compare Register A

Bit 7 6 5 4 3 2 1 0

ox27 (0x47) | OCROA[7:0] | ocroa
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register A contains an 8-bit value that is continuously compared with the counter value
(TCNTO). A match can be used to generate an Output Compare interrupt, or to generate a waveform output on
the OCOA pin.

15.9.5 OCROB - Output Compare Register B

Bit 7 6 5 4 3 2 1 0

0x28 (0x48) | OCROB[7:0] | ocros
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register B contains an 8-bit value that is continuously compared with the counter value
(TCNTO). A match can be used to generate an Output Compare interrupt, or to generate a waveform output on
the OCOB pin.

15.9.6 TIMSKO — Timer/Counter Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0

(OX6E) | | = | = | = | = OCIEOB | OCIEOA TOIEO | TIMSKO
Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bits 7:3 — Reserved
These bits are reserved and will always read as zero.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 105

Atmel-8272G-AVR-01/2015

¢ Bit 2 - OCIEOB: Timer/Counter Output Compare Match B Interrupt Enable

When the OCIEOB bit is written to one, and the I-bit in the Status Register is set, the Timer/Counter Compare
Match B interrupt is enabled. The corresponding interrupt is executed if a Compare Match in Timer/Counter
occurs, that is, when the OCFOB bit is set in the Timer/Counter Interrupt Flag Register — TIFRO.

¢ Bit 1 — OCIEOA: Timer/Counter0 Output Compare Match A Interrupt Enable

When the OCIEOQA bit is written to one, and the I-bit in the Status Register is set, the Timer/Counter0O Compare
Match A interrupt is enabled. The corresponding interrupt is executed if a Compare Match in Timer/CounterQ
occurs, that is, when the OCFOA bit is set in the Timer/Counter 0 Interrupt Flag Register — TIFRO.

¢ Bit 0 — TOIEO: Timer/Counter0 Overflow Interrupt Enable

When the TOIEO bit is written to one, and the I-bit in the Status Register is set, the Timer/Counter0 Overflow
interrupt is enabled. The corresponding interrupt is executed if an overflow in Timer/Counter0 occurs, that is,
when the TOVO bit is set in the Timer/Counter 0 Interrupt Flag Register — TIFRO.

15.9.7 TIFRO - Timer/Counter 0 Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0

0x15 (0x35) | = | = | = | = | = OCFO0B OCFO0A Tovo | TIFRO

Read/Write R R R R R RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0
* Bits 7:3 — Reserved
These bits are reserved and will always read as zero.
* Bit 2 - OCFOB: Timer/Counter 0 Output Compare B Match Flag
The OCFOB bit is set when a Compare Match occurs between the Timer/Counter and the data in OCROB —
Output Compare Register0 B. OCFOB is cleared by hardware when executing the corresponding interrupt
handling vector. Alternatively, OCFOB is cleared by writing a logic one to the flag. When the I-bit in SREG,
OCIEOB (Timer/Counter Compare B Match Interrupt Enable), and OCFOB are set, the Timer/Counter Compare
Match Interrupt is executed.
¢ Bit 1 — OCFOA: Timer/Counter 0 Output Compare A Match Flag
The OCFOA bit is set when a Compare Match occurs between the Timer/Counter0 and the data in OCROA —
Output Compare Register0. OCFOA is cleared by hardware when executing the corresponding interrupt
handling vector. Alternatively, OCFOA is cleared by writing a logic one to the flag. When the I-bit in SREG,
OCIEOA (Timer/Counter0 Compare Match Interrupt Enable), and OCFOA are set, the Timer/CounterO Compare
Match Interrupt is executed.
¢ Bit 0 — TOVO: Timer/Counter0 Overflow Flag
The bit TOVO is set when an overflow occurs in Timer/Counter0. TOVO is cleared by hardware when executing
the corresponding interrupt handling vector. Alternatively, TOVO is cleared by writing a logic one to the flag.
When the SREG I-bit, TOIEO (Timer/CounterO Overflow Interrupt Enable), and TOVO are set, the
Timer/Counter0 Overflow interrupt is executed.
The setting of this flag is dependent of the WGMO02:0 bit setting. Refer to Table 15-8, "Waveform Generation
mode bit description.” on page 103.

/lt m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 106

Atmel-8272G-AVR-01/2015

16. 16-bit Timer/Counter1 and Timer/Counter3'") with PWM
Note: 1. Timer/Counter3 is only available in ATmega1284/1284P

16.1 Features
* True 16-bit design (that is, allows 16-bit PWM)
* Two independent Output Compare units
* Double Buffered Output Compare Registers
* One Input Capture unit
* Input Capture Noise Canceler
* Clear Timer on Compare Match (Auto Reload)
* Glitch-free, Phase Correct Pulse Width Modulator (PWM)
* Variable PWM Period
* Frequency Generator
* External Event Counter
* Four independent interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1)

16.2 Overview
The 16-bit Timer/Counter unit allows accurate program execution timing (event management), wave generation,
and signal timing measurement.
Most register and bit references in this section are written in general form. A lower case “n” replaces the
Timer/Counter number, and a lower case “x” replaces the Output Compare unit channel. However, when using
the register or bit defines in a program, the precise form must be used, that is, TCNT1 for accessing
Timer/Counter1 counter value and so on.
A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 16-1. For the actual placement of /O
pins, see "Pin configurations” on page 3. CPU accessible /O Registers, including 1/0 bits and I/O pins, are
shown in bold. The device-specific I/O Register and bit locations are listed in the "Register description” on page
128.
The PRTIM1 bit in "PRRO — Power Reduction Register 0” on page 48 must be written to zero to enable
Timer/Counter1 module.

/lt m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 107

Atmel-8272G-AVR-01/2015

Figure 16-1. 16-bit Timer/Counter block diagram ("N°'¢),

Count TOVn
R ——
Clear c w (Int.Req.)
ontrol Logic
Direction 9 clk Clock Select

Edge
Y [Detector [Tn
TOP | BOTTOM
I vy / T\

Y (From Prescaler)
A Timer/Counter
TCNTn |
| | [=0 |
‘ OCnA
: (Int.Req.)
[}
— [} Waveform
|$ [} | Generation » OCnA
OCRnA g ;
l I 1 (]
o [Tixed ?C"':{B
0 ' TOP (Int.Req.)
S ‘ 1 [_Values
m = ! p| \Waveform »{ocnB
< 1 Generation
= [}
< |
o OCRnB ! (From Analog
> : Comparator Ouput)
1 ICFn (Int.Req.)
- J HI
1 ;
Edge Noise
IC:?n ' Detector [Canceler
H ' ICPn
| TCCRnA | | TCCRnB |
Note: Refer to Figure 1-1 on page 3 and "Alternate Port Functions” on page 77 for Timer/Counter1 pin placement and
description.

16.2.1 Registers

The Timer/Counter (TCNTn), Output Compare Registers (OCRNnA/B/C), and Input Capture Register (ICRn) are
all 16-bit registers. Special procedures must be followed when accessing the 16-bit registers. These procedures
are described in the section "Accessing 16-bit Registers” on page 109. The Timer/Counter Control Registers
(TCCRnNA/B/C) are 8-bit registers and have no CPU access restrictions. Interrupt requests (abbreviated to
Int.Req. in the figure) signals are all visible in the Timer Interrupt Flag Register (TIFRn). All interrupts are
individually masked with the Timer Interrupt Mask Register (TIMSKn). TIFRn and TIMSKn are not shown in the
figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on the Tn pin.
The Clock Select logic block controls which clock source and edge the Timer/Counter uses to increment (or
decrement) its value. The Timer/Counter is inactive when no clock source is selected. The output from the Clock
Select logic is referred to as the timer clock (clky,).

The double buffered Output Compare Registers (OCRnA/B/C) are compared with the Timer/Counter value at all
time. The result of the compare can be used by the Waveform Generator to generate a PWM or variable
frequency output on the Output Compare pin (OCnA/B/C). See Section “16.8” on page 115. The compare match
event will also set the Compare Match Flag (OCFnA/B/C) which can be used to generate an Output Compare
interrupt request.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 108

Atmel-8272G-AVR-01/2015

16.2.2

16.3

The Input Capture Register can capture the Timer/Counter value at a given external (edge triggered) event on
either the Input Capture pin (ICPn) or on the Analog Comparator pins (See Section “22.” on page 232) The Input
Capture unit includes a digital filtering unit (Noise Canceler) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined by either the
OCRNA Register, the ICRn Register, or by a set of fixed values. When using OCRnA as TOP value in a PWM
mode, the OCRnA Register can not be used for generating a PWM output. However, the TOP value will in this
case be double buffered allowing the TOP value to be changed in run time. If a fixed TOP value is required, the
ICRn Register can be used as an alternative, freeing the OCRnA to be used as PWM output.

Definitions

The following definitions are used extensively throughout the section:
Table 16-1. Definitions.

BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.

MAX The counter reaches its MAXimum when it becomes OxFFFF (decimal 65535).

The counter reaches the TOP when it becomes equal to the highest value in the count
sequence. The TOP value can be assigned to be one of the fixed values: 0xO0FF, Ox01FF,
or 0x03FF, or to the value stored in the OCRNA or ICRn Register. The assignment is
dependent of the mode of operation.

TOP

Accessing 16-bit Registers

The TCNTn, OCRNnA/B/C, and ICRn are 16-bit registers that can be accessed by the AVR CPU via the 8-bit
data bus. The 16-bit register must be byte accessed using two read or write operations. Each 16-bit timer has a
single 8-bit register for temporary storing of the high byte of the 16-bit access. The same temporary register is
shared between all 16-bit registers within each 16-bit timer. Accessing the low byte triggers the 16-bit read or
write operation. When the low byte of a 16-bit register is written by the CPU, the high byte stored in the
temporary register, and the low byte written are both copied into the 16-bit register in the same clock cycle.
When the low byte of a 16-bit register is read by the CPU, the high byte of the 16-bit register is copied into the
temporary register in the same clock cycle as the low byte is read.

Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCRnA/B/C 16-bit registers
does not involve using the temporary register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low byte must be
read before the high byte.

The following code examples show how to access the 16-bit Timer Registers assuming that no interrupts
updates the temporary register. The same principle can be used directly for accessing the OCRnA/B/C and
ICRn Registers. Note that when using “C”, the compiler handles the 16-bit access.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 109

Atmel-8272G-AVR-01/2015

Assembly Code Examples (")

; Set TCNTn to OxO0I1FF

1di rl7,0x01

1di rl6e, OxFF

out TCNTNH, r17
out TCNTNL, r1l6

; Read TCNTn into rl7:rlé6
in rl6, TCNTNL
in r17, TCNTNH

C Code Examples (V

unsigned int i;

/* Set TCNTn to O0xO0lFF */
TCNTn = Ox1FF;

/* Read TCNTn into i */

i = TCNTN;

Note: 1. The example code assumes that the part specific header file is included.
For 1/0 Registers located in extended 1/0 map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must
be replaced with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with
“SBRS”, “SBRC”, “SBR”, and “CBR”".

The assembly code example returns the TCNTn value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt occurs between the
two instructions accessing the 16-bit register, and the interrupt code updates the temporary register by
accessing the same or any other of the 16-bit Timer Registers, then the result of the access outside the interrupt
will be corrupted. Therefore, when both the main code and the interrupt code update the temporary register, the
main code must disable the interrupts during the 16-bit access.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 110

Atmel-8272G-AVR-01/2015

The following code examples show how to do an atomic read of the TCNTn Register contents. Reading any of
the OCRNA/B/C or ICRn Registers can be done by using the same principle.

Assembly Code Example (V

TIM16 ReadTCNTN:
; Save global interrupt flag

in rl8, SREG

; Disable interrupts

cli

; Read TCNTn into rl7:rl6

in rl6, TCNTNL

in r17, TCNTNH

; Restore global interrupt flag
out SREG, r18

ret

C Code Example

unsigned int TIM16 ReadTCNTn(wvoid)
{
unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
_CLIO);
/* Read TCNTn into i */
i = TCNTn;
/* Restore global interrupt flag */
SREG = sreg;
return 1i;

Note: 1. The example code assumes that the part specific header file is included.
For 1/0 Registers located in extended 1/0 map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must

be replaced with instructions that allow access to extended 1/O. Typically “LDS” and “STS” combined with
“SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example returns the TCNTn value in the r17:r16 register pair.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 111

Atmel-8272G-AVR-01/2015

16.3.1

16.4

16.5

The following code examples show how to do an atomic write of the TCNTn Register contents. Writing any of
the OCRNA/B/C or ICRn Registers can be done by using the same principle.

Assembly Code Example (V

TIM16 WriteTCNTN:
; Save global interrupt flag

in rl8, SREG

; Disable interrupts

cli

; Set TCNTn to rl7:rl6

out TCNTNH, r17

out TCNTNL, r16

; Restore global interrupt flag
out SREG, r18

ret

C Code Example

void TIM16 WriteTCNTNn(unsigned int i)
{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */
sreg = SREG;

/* Disable interrupts */

_CLIO);

/* Set TCNTn to i */

TCNTNn = 1i;

/* Restore global interrupt flag */
SREG = sreg;

Note: 1. The example code assumes that the part specific header file is included.
For 1/0 Registers located in extended 1/0 map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must
be replaced with instructions that allow access to extended 1/O. Typically “LDS” and “STS” combined with
“SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example requires that the r17:r16 register pair contains the value to be written to TCNTn.

Reusing the Temporary High Byte Register

If writing to more than one 16-bit register where the high byte is the same for all registers written, then the high
byte only needs to be written once. However, note that the same rule of atomic operation described previously
also applies in this case.

Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source is selected by
the Clock Select logic which is controlled by the Clock Select (CSn2:0) bits located in the Timer/Counter control
Register B (TCCRnB). For details on clock sources and prescaler, see "Timer/Counter Prescaler” on page 150.

Prescaler Reset

The prescaler is free running, that is, operates independently of the clock select logic of the Timer/Counter, and
it is shared by Timer/Counter1 and Timer/Counter0. Since the prescaler is not affected by the Timer/Counter’s
clock select, the state of the prescaler will have implications for situations where a prescaled clock is used. One
example of prescaling artifacts occurs when the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1).

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 112

Atmel-8272G-AVR-01/2015

The number of system clock cycles from when the timer is enabled to the first count occurs can be from 1 to
N+1 system clock cycles, where N equals the prescaler divisor (8, 64, 256, or 1024). It is possible to use the
Prescaler Reset for synchronizing the Timer/Counter to program execution. However, care must be taken if the
other Timer/Counter that shares the same prescaler also uses prescaling. A prescaler reset will affect the
prescaler period for all Timer/Counters it is connected to.

16.6 Counter Unit

The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit. Figure 16-2
shows a block diagram of the counter and its surroundings.

Figure 16-2. Counter unit block diagram.
DATA BUS (8-bit)

=
TOVn
(Int.Req.)
TEMP (8-bit)
Clock Select
Count Edge P n
| TCNTnH (8-bit) | TCNThL (8-bit) Clear | clkyy Detector
R Control Logic [
TCNTn (16-bit Counter) ¢ irection
(From Prescaler)
TTOP TBOTTOM
Signal description (internal signals):
Count Increment or decrement TCNTn by 1.
Direction Select between increment and decrement.
Clear Clear TCNTn (set all bits to zero).
clky, Timer/Counter clock.
TOP Signalize that TCNTn has reached maximum value.
BOTTOM Signalize that TCNTn has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNTnH) containing the upper
eight bits of the counter, and Counter Low (TCNTnL) containing the lower eight bits. The TCNTnH Register can
only be indirectly accessed by the CPU. When the CPU does an access to the TCNTnH I/O location, the CPU
accesses the high byte temporary register (TEMP). The temporary register is updated with the TCNTnH value
when the TCNTnL is read, and TCNTnH is updated with the temporary register value when TCNTnL is written.
This allows the CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data bus.
It is important to notice that there are special cases of writing to the TCNTn Register when the counter is
counting that will give unpredictable results. The special cases are described in the sections where they are of
importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented at each timer
clock (clkty,). The clky, can be generated from an external or internal clock source, selected by the Clock Select
bits (CSn2:0). When no clock source is selected (CSn2:0 = 0) the timer is stopped. However, the TCNTn value
can be accessed by the CPU, independent of whether clky, is present or not. A CPU write overrides (has priority
over) all counter clear or count operations.

The counting sequence is determined by the setting of the Waveform Generation mode bits (WGMn3:0) located
in the Timer/Counter Control Registers A and B (TCCRnA and TCCRnB). There are close connections between
how the counter behaves (counts) and how waveforms are generated on the Output Compare outputs OCnx.
For more details about advanced counting sequences and waveform generation, see "Modes of Operation” on
page 119.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 113

Atmel-8272G-AVR-01/2015

16.7

The Timer/Counter Overflow Flag (TOVn) is set according to the mode of operation selected by the WGMn3:0
bits. TOVn can be used for generating a CPU interrupt.

Input Capture Unit

The Timer/Counter incorporates an Input Capture unit that can capture external events and give them a time-
stamp indicating time of occurrence. The external signal indicating an event, or multiple events, can be applied
via the ICPn pin or alternatively, via the analog-comparator unit. The time-stamps can then be used to calculate
frequency, duty-cycle, and other features of the signal applied. Alternatively the time-stamps can be used for
creating a log of the events.

The Input Capture unit is illustrated by the block diagram shown in Figure 16-3. The elements of the block
diagram that are not directly a part of the Input Capture unit are gray shaded. The small “n” in register and bit
names indicates the Timer/Counter number.

Figure 16-3. Input Capture unit block diagram.

DATA BUS (8-bit
- t T (8-bit) >
[TEMP @b |
[icRnH(-biy | ICRnL (8-bi) | [ToNTnH @by | TONTAL(8-bit) |
»| WRITE ICRn (16-bit Register) TENTh (16-bit Counter)
* GBS Acic ICNC ICES
_ Analog ¢ ¢
Comparator e -
Noise Edge _
Canceler 1 Detector » ICFn (Int.Req.)
ICPn >

When a change of the logic level (an event) occurs on the Input Capture pin (ICPn), alternatively on the Analog
Comparator output (ACO), and this change confirms to the setting of the edge detector, a capture will be
triggered. When a capture is triggered, the 16-bit value of the counter (TCNTNn) is written to the Input Capture
Register (ICRn). The Input Capture Flag (ICFn) is set at the same system clock as the TCNTn value is copied
into ICRn Register. If enabled (ICIEn = 1), the Input Capture Flag generates an Input Capture interrupt. The
ICFn Flag is automatically cleared when the interrupt is executed. Alternatively the ICFn Flag can be cleared by
software by writing a logical one to its I/O bit location.

Reading the 16-bit value in the Input Capture Register (ICRn) is done by first reading the low byte (ICRnL) and
then the high byte (ICRnH). When the low byte is read the high byte is copied into the high byte temporary
register (TEMP). When the CPU reads the ICRnH 1/O location it will access the TEMP Register.

The ICRn Register can only be written when using a Waveform Generation mode that utilizes the ICRn Register
for defining the counter’'s TOP value. In these cases the Waveform Generation mode (WGMn3:0) bits must be
set before the TOP value can be written to the ICRn Register. When writing the ICRn Register the high byte
must be written to the ICRnH I/O location before the low byte is written to ICRnL.

For more information on how to access the 16-bit registers refer to "Accessing 16-bit Registers” on page 109.

AtmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 114

Atmel-8272G-AVR-01/2015

16.7.1

16.7.2

16.7.3

16.8

Input Capture Trigger Source

The main trigger source for the Input Capture unit is the Input Capture pin (ICPn). Timer/Counter1 can
alternatively use the Analog Comparator output as trigger source for the Input Capture unit. The Analog
Comparator is selected as trigger source by setting the Analog Comparator Input Capture (ACIC) bit in the
Analog Comparator Control and Status Register (ACSR). Be aware that changing trigger source can trigger a
capture. The Input Capture Flag must therefore be cleared after the change.

Both the Input Capture pin (ICPn) and the Analog Comparator output (ACO) inputs are sampled using the same
technique as for the Tn pin (Figure 16-1 on page 108). The edge detector is also identical. However, when the
noise canceler is enabled, additional logic is inserted before the edge detector, which increases the delay by
four system clock cycles. Note that the input of the noise canceler and edge detector is always enabled unless
the Timer/Counter is set in a Waveform Generation mode that uses ICRn to define TOP.

An Input Capture can be triggered by software by controlling the port of the ICPn pin.

Noise Canceler

The noise canceler improves noise immunity by using a simple digital filtering scheme. The noise canceler input
is monitored over four samples, and all four must be equal for changing the output that in turn is used by the
edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler ICNCn) bit in Timer/Counter Control
Register B (TCCRnB). When enabled the noise canceler introduces additional four system clock cycles of delay
from a change applied to the input, to the update of the ICRn Register. The noise canceler uses the system
clock and is therefore not affected by the prescaler.

Using the Input Capture unit

The main challenge when using the Input Capture unit is to assign enough processor capacity for handling the
incoming events. The time between two events is critical. If the processor has not read the captured value in the
ICRnN Register before the next event occurs, the ICRn will be overwritten with a new value. In this case the result
of the capture will be incorrect.

When using the Input Capture interrupt, the ICRn Register should be read as early in the interrupt handler
routine as possible. Even though the Input Capture interrupt has relatively high priority, the maximum interrupt
response time is dependent on the maximum number of clock cycles it takes to handle any of the other interrupt
requests.

Using the Input Capture unit in any mode of operation when the TOP value (resolution) is actively changed
during operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after each capture.
Changing the edge sensing must be done as early as possible after the ICRn Register has been read. After a
change of the edge, the Input Capture Flag (ICFn) must be cleared by software (writing a logical one to the I/O
bit location). For measuring frequency only, the clearing of the ICFn Flag is not required (if an interrupt handler
is used).

Output Compare units

The 16-bit comparator continuously compares TCNTn with the Output Compare Register (OCRnXx). If TCNT
equals OCRnx the comparator signals a match. A match will set the Output Compare Flag (OCFnx) at the next
timer clock cycle. If enabled (OCIEnx = 1), the Output Compare Flag generates an Output Compare interrupt.
The OCFnx Flag is automatically cleared when the interrupt is executed. Alternatively the OCFnx Flag can be
cleared by software by writing a logical one to its I/O bit location. The Waveform Generator uses the match
signal to generate an output according to operating mode set by the Waveform Generation mode (WGMn3:0)
bits and Compare Output mode (COMnx1:0) bits. The TOP and BOTTOM signals are used by the Waveform

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 115

Atmel-8272G-AVR-01/2015

Generator for handling the special cases of the extreme values in some modes of operation (See “Modes of
Operation” on page 119).

A special feature of Output Compare unit A allows it to define the Timer/Counter TOP value (i.e., counter
resolution). In addition to the counter resolution, the TOP value defines the period time for waveforms generated
by the Waveform Generator.

o

Figure 16-4 shows a block diagram of the Output Compare unit. The small “n” in the register and bit names
indicates the device number (n = n for Timer/Counter n), and the “x” indicates Output Compare unit (A/B/C). The
elements of the block diagram that are not directly a part of the Output Compare unit are gray shaded.

Figure 16-4. Output Compare unit, block diagram.

DATA BUS (s-bit
11 1 = >

TEMP (8-bit)

—] ¥ ¥

| ocRnxH But. (8-bit) | OCRnxL Buf. (8-bit) | [ToNTnH(sbity | TONTAL (8-bit) |
OCRnx Buffer (16-bit Register) TCNTn (16-bit Counter)
1
—Y ‘

OCRnxH (8-bi) | OCRnxL (8-bit) |
OCRnXx (16-bit Register)

J L

| = (16-bit Comparator) |

——— OCFnx (Int.Req.)
4

TP
BOTTOM ——»|

Waveform Generator | OCnx

7

WGMn3:0 COMnx1:0

The OCRnx Register is double buffered when using any of the twelve Pulse Width Modulation (PWM) modes.
For the Normal and Clear Timer on Compare (CTC) modes of operation, the double buffering is disabled. The
double buffering synchronizes the update of the OCRnx Compare Register to either TOP or BOTTOM of the
counting sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical PWM pulses,
thereby making the output glitch-free.

The OCRnx Register access may seem complex, but this is not case. When the double buffering is enabled, the
CPU has access to the OCRnx Buffer Register, and if double buffering is disabled the CPU will access the
OCRnNx directly. The content of the OCR1x (Buffer or Compare) Register is only changed by a write operation
(the Timer/Counter does not update this register automatically as the TCNT1 and ICR1 Register). Therefore
OCR1x is not read via the high byte temporary register (TEMP). However, it is a good practice to read the low
byte first as when accessing other 16-bit registers. Writing the OCRnx Registers must be done via the TEMP
Register since the compare of all 16 bits is done continuously. The high byte (OCRnxH) has to be written first.
When the high byte 1/O location is written by the CPU, the TEMP Register will be updated by the value written.
Then when the low byte (OCRnxL) is written to the lower eight bits, the high byte will be copied into the upper 8-
bits of either the OCRnx buffer or OCRnx Compare Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to "Accessing 16-bit Registers” on page 109.

AtmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 116

Atmel-8272G-AVR-01/2015

16.8.1

16.8.2

16.8.3

Force Output Compare

In non-PWM Waveform Generation modes, the match output of the comparator can be forced by writing a one
to the Force Output Compare (FOCnx) bit. Forcing compare match will not set the OCFnx Flag or reload/clear
the timer, but the OCnx pin will be updated as if a real compare match had occurred (the COMn1:0 bits settings
define whether the OCnx pin is set, cleared or toggled).

Compare Match Blocking by TCNTn Write

All CPU writes to the TCNTn Register will block any compare match that occurs in the next timer clock cycle,
even when the timer is stopped. This feature allows OCRnx to be initialized to the same value as TCNTn without
triggering an interrupt when the Timer/Counter clock is enabled.

Using the Output Compare Unit

Since writing TCNTn in any mode of operation will block all compare matches for one timer clock cycle, there
are risks involved when changing TCNTn when using any of the Output Compare channels, independent of
whether the Timer/Counter is running or not. If the value written to TCNTn equals the OCRnx value, the
compare match will be missed, resulting in incorrect waveform generation. Do not write the TCNTn equal to
TOP in PWM modes with variable TOP values. The compare match for the TOP will be ignored and the counter
will continue to OxFFFF. Similarly, do not write the TCNTn value equal to BOTTOM when the counter is
downcounting.

The setup of the OCnx should be performed before setting the Data Direction Register for the port pin to output.
The easiest way of setting the OCnx value is to use the Force Output Compare (FOCnx) strobe bits in Normal
mode. The OCnx Register keeps its value even when changing between Waveform Generation modes.

Be aware that the COMnx1:0 bits are not double buffered together with the compare value. Changing the
COMnNx1:0 bits will take effect immediately.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 117

Atmel-8272G-AVR-01/2015

16.9 Compare Match Output unit

The Compare Output mode (COMnx1:0) bits have two functions. The Waveform Generator uses the COMnx1:0
bits for defining the Output Compare (OCnx) state at the next compare match. Secondly the COMnx1:0 bits
control the OCnx pin output source. Figure 16-5 shows a simplified schematic of the logic affected by the
COMnNx1:0 bit setting. The I/O Registers, 1/0 bits, and 1/O pins in the figure are shown in bold. Only the parts of
the general I/O Port Control Registers (DDR and PORT) that are affected by the COMnx1:0 bits are shown.
When referring to the OCnx state, the reference is for the internal OCnx Register, not the OCnx pin. If a system
reset occur, the OCnx Register is reset to “0”.

Figure 16-5. Compare Match Output unit, schematic.

—

COMnx1
COMnNx0 Waveform
D Q
FOCnx Generator
1
| OCnx
A OCnx y = Pin
»D Q
2
m PORT
<
i
a »D Q
 / DDR
clk, o

The general 1/0 port function is overridden by the Output Compare (OCnx) from the Waveform Generator if
either of the COMnx1:0 bits are set. However, the OCnx pin direction (input or output) is still controlled by the
Data Direction Register (DDR) for the port pin. The Data Direction Register bit for the OCnx pin (DDR_OCnx)
must be set as output before the OCnx value is visible on the pin. The port override function is generally
independent of the Waveform Generation mode, but there are some exceptions. Refer to Table 16-2, Table 16-
3 and Table 16-4 for details.

The design of the Output Compare pin logic allows initialization of the OCnx state before the output is enabled.
Note that some COMnx1:0 bit settings are reserved for certain modes of operation. See “Register description”
on page 128.

The COMnx1:0 bits have no effect on the Input Capture unit.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 118

Atmel-8272G-AVR-01/2015

16.9.1

16.10

Compare Output Mode and Waveform Generation

The Waveform Generator uses the COMnx1:0 bits differently in normal, CTC, and PWM modes. For all modes,
setting the COMnx1:0 = 0 tells the Waveform Generator that no action on the OCnx Register is to be performed
on the next compare match. For compare output actions in the non-PWM modes refer to Table 16-2 on page
128. For fast PWM mode refer to Table 16-3 on page 128, and for phase correct and phase and frequency
correct PWM refer to Table 16-4 on page 129.

A change of the COMnx1:0 bits state will have effect at the first compare match after the bits are written. For
non-PWM modes, the action can be forced to have immediate effect by using the FOCnx strobe bits.

Modes of Operation

The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins, is defined by
the combination of the Waveform Generation mode (WGMn3:0) and Compare Output mode (COMnx1:0) bits.
The Compare Output mode bits do not affect the counting sequence, while the Waveform Generation mode bits
do. The COMnx1:0 bits control whether the PWM output generated should be inverted or not (inverted or non-
inverted PWM). For non-PWM modes the COMnx1:0 bits control whether the output should be set, cleared or
toggle at a compare match (See “Compare Match Output unit” on page 118).

For detailed timing information refer to "Timer/Counter Timing diagrams” on page 126.

16.10.1 Normal mode

The simplest mode of operation is the Normal mode (WGMn3:0 = 0). In this mode the counting direction is
always up (incrementing), and no counter clear is performed. The counter simply overruns when it passes its
maximum 16-bit value (MAX = OxFFFF) and then restarts from the BOTTOM (0x0000). In normal operation the
Timer/Counter Overflow Flag (TOVn) will be set in the same timer clock cycle as the TCNTn becomes zero. The
TOVn Flag in this case behaves like a 17th bit, except that it is only set, not cleared. However, combined with
the timer overflow interrupt that automatically clears the TOVn Flag, the timer resolution can be increased by
software. There are no special cases to consider in the Normal mode, a new counter value can be written
anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maximum interval between
the external events must not exceed the resolution of the counter. If the interval between events are too long,
the timer overflow interrupt or the prescaler must be used to extend the resolution for the capture unit.

The Output Compare units can be used to generate interrupts at some given time. Using the Output Compare to
generate waveforms in Normal mode is not recommended, since this will occupy too much of the CPU time.

16.10.2 Clear Timer on Compare Match (CTC) mode

In Clear Timer on Compare or CTC mode (WGMn3:0 =4 or 12), the OCRNA or ICRn Register are used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter value (TCNTn)
matches either the OCRnA (WGMn3:0 = 4) or the ICRn (WGMn3:0 = 12). The OCRNA or ICRn define the top
value for the counter, hence also its resolution. This mode allows greater control of the compare match output
frequency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 16-6. The counter value (TCNTn) increases until a
compare match occurs with either OCRnA or ICRn, and then counter (TCNTn) is cleared.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 119

Atmel-8272G-AVR-01/2015

Figure 16-6. CTC mode, timing diagram.

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set

é (Interrupt on TOP)
\ -
- _ _ Y
_ A

TCNTn / %%
OCnA r N
(Toggle) L L (COMnA1:0 = 1)
Period I 1 I 2 I 3 I 4 |

An interrupt can be generated at each time the counter value reaches the TOP value by either using the OCFnA
or ICFn Flag according to the register used to define the TOP value. If the interrupt is enabled, the interrupt
handler routine can be used for updating the TOP value. However, changing the TOP to a value close to
BOTTOM when the counter is running with none or a low prescaler value must be done with care since the CTC
mode does not have the double buffering feature. If the new value written to OCRNA or ICRn is lower than the
current value of TCNTn, the counter will miss the compare match. The counter will then have to count to its
maximum value (OxFFFF) and wrap around starting at 0x0000 before the compare match can occur. In many
cases this feature is not desirable. An alternative will then be to use the fast PWM mode using OCRnA for
defining TOP (WGMn3:0 = 15) since the OCRnNA then will be double buffered.

For generating a waveform output in CTC mode, the OCnA output can be set to toggle its logical level on each
compare match by setting the Compare Output mode bits to toggle mode (COMnA1:0 = 1). The OCnA value will
not be visible on the port pin unless the data direction for the pin is set to output (DDR_OCnA = 1). The
waveform generated will have a maximum frequency of foca = ok 110/2 when OCRNA is set to zero (0x0000).
The waveform frequency is defined by the following equation: -

p _ Jelk 1o
OCnd 2.N.(1+ OCRnA)

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOVn Flag is set in the same timer clock cycle that the counter counts
from MAX to 0x0000.

16.10.3 Fast PWM mode

The fast Pulse Width Modulation or fast PWM mode (WGMn3:0 = 5, 6, 7, 14, or 15) provides a high frequency
PWM waveform generation option. The fast PWM differs from the other PWM options by its single-slope
operation. The counter counts from BOTTOM to TOP then restarts from BOTTOM. In non-inverting Compare
Output mode, the Output Compare (OCnx) is cleared on the compare match between TCNTn and OCRnx, and
set at BOTTOM. In inverting Compare Output mode output is set on compare match and cleared at BOTTOM.
Due to the single-slope operation, the operating frequency of the fast PWM mode can be twice as high as the
phase correct and phase and frequency correct PWM modes that use dual-slope operation. This high frequency
makes the fast PWM mode well suited for power regulation, rectification, and DAC applications. High frequency
allows physically small sized external components (coils, capacitors), hence reduces total system cost.

The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either ICRn or OCRnA. The
minimum resolution allowed is 2-bit (ICRn or OCRnA set to 0x0003), and the maximum resolution is 16-bit
(ICRn or OCRNA set to MAX). The PWM resolution in bits can be calculated by using the following equation:

R _ log(Topr+1)
FPWM Iog(2)
/lt m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 120

Atmel-8272G-AVR-01/2015

In fast PWM mode the counter is incremented until the counter value matches either one of the fixed values
0x00FF, 0x01FF, or Ox03FF (WGMn3:0 = 5, 6, or 7), the value in ICRn (WGMn3:0 = 14), or the value in OCRnA
(WGMnN3:0 = 15). The counter is then cleared at the following timer clock cycle. The timing diagram for the fast
PWM mode is shown in Figure 16-7. The figure shows fast PWM mode when OCRnA or ICRn is used to define
TOP. The TCNTn value is in the timing diagram shown as a histogram for illustrating the single-slope operation.
The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNTn
slopes represent compare matches between OCRnx and TCNTn. The OCnx Interrupt Flag will be set when a
compare match occurs.

Figure 16-7. Fast PWM mode, timing diagram.

OCRNx/TOP Update and
TOVn Interrupt Flag Set and
OCnA Interrupt Flag Set

or ICFn Interrupt Flag Set
(Interrupt on TOP)

=

y Y y

w V]

OCnx (COMNX1:0 = 2)
oo [UL || (Comma0=3

Period |<—1 ~I 2 ~I 3 ~I 4—>|<5+el 7 ~I 8 ~I

The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches TOP. In addition the OCnA or

ICFn Flag is set at the same timer clock cycle as TOVn is set when either OCRNA or ICRn is used for defining
the TOP value. If one of the interrupts are enabled, the interrupt handler routine can be used for updating the

TOP and compare values.

P ——

P ——

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value
of all of the Compare Registers. If the TOP value is lower than any of the Compare Registers, a compare match
will never occur between the TCNTn and the OCRnx. Note that when using fixed TOP values the unused bits
are masked to zero when any of the OCRnx Registers are written.

The procedure for updating ICRn differs from updating OCRnA when used for defining the TOP value. The ICRn
Register is not double buffered. This means that if ICRn is changed to a low value when the counter is running
with none or a low prescaler value, there is a risk that the new ICRn value written is lower than the current value
of TCNTn. The result will then be that the counter will miss the compare match at the TOP value. The counter
will then have to count to the MAX value (OxFFFF) and wrap around starting at 0x0000 before the compare
match can occur. The OCRNnA Register however, is double buffered. This feature allows the OCRnA 1/O location
to be written anytime. When the OCRNA I/O location is written the value written will be put into the OCRnA
Buffer Register. The OCRnA Compare Register will then be updated with the value in the Buffer Register at the
next timer clock cycle the TCNTn matches TOP. The update is done at the same timer clock cycle as the
TCNTn is cleared and the TOVn Flag is set.

Using the ICRn Register for defining TOP works well when using fixed TOP values. By using ICRn, the OCRnA
Register is free to be used for generating a PWM output on OCnA. However, if the base PWM frequency is
actively changed (by changing the TOP value), using the OCRnA as TOP is clearly a better choice due to its
double buffer feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins. Setting the
COMnx1:0 bits to two will produce a non-inverted PWM and an inverted PWM output can be generated by
setting the COMnx1:0 to three (see Table on page 128). The actual OCnx value will only be visible on the port

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 121

Atmel-8272G-AVR-01/2015

pin if the data direction for the port pin is set as output (DDR_OCnx). The PWM waveform is generated by
setting (or clearing) the OCnx Register at the compare match between OCRnx and TCNTn, and clearing (or
setting) the OCnx Register at the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

_ Jako
focnpwn = §(1 5 T70P)

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating a PWM waveform
output in the fast PWM mode. If the OCRnx is set equal to BOTTOM (0x0000) the output will be a narrow spike
for each TOP+1 timer clock cycle. Setting the OCRnx equal to TOP will result in a constant high or low output
(depending on the polarity of the output set by the COMnx1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OCnA to
toggle its logical level on each compare match (COMnA1:0 = 1). This applies only if OCR1A is used to define
the TOP value (WGM13:0 = 15). The waveform generated will have a maximum frequency of focna = fox 10/2
when OCRnNA is set to zero (0x0000). This feature is similar to the OCnA toggle in CTC mode, except the double
buffer feature of the Output Compare unit is enabled in the fast PWM mode.

16.10.4 Phase Correct PWM mode

The phase correct Pulse Width Modulation or phase correct PWM mode (WGMn3:0 = 1, 2, 3, 10, or 11)
provides a high resolution phase correct PWM waveform generation option. The phase correct PWM mode is,
like the phase and frequency correct PWM mode, based on a dual-slope operation. The counter counts
repeatedly from BOTTOM (0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output
mode, the Output Compare (OCnx) is cleared on the compare match between TCNTn and OCRnx while
upcounting, and set on the compare match while downcounting. In inverting Output Compare mode, the
operation is inverted. The dual-slope operation has lower maximum operation frequency than single slope
operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes are preferred for
motor control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or defined by either ICRn
or OCRnA. The minimum resolution allowed is 2-bit (ICRn or OCRnA set to 0x0003), and the maximum
resolution is 16-bit (ICRn or OCRNA set to MAX). The PWM resolution in bits can be calculated by using the
following equation:

_ log(TOP+1)
RPCPWM o log(2)

In phase correct PWM mode the counter is incremented until the counter value matches either one of the fixed
values 0xO0FF, 0x01FF, or OXO3FF (WGMn3:0 = 1, 2, or 3), the value in ICRn (WGMn3:0 = 10), or the value in
OCRNA (WGMn3:0 = 11). The counter has then reached the TOP and changes the count direction. The TCNTn
value will be equal to TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is
shown on Figure 16-8. The figure shows phase correct PWM mode when OCRNA or ICRn is used to define
TOP. The TCNTn value is in the timing diagram shown as a histogram for illustrating the dual-slope operation.
The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNTn
slopes represent compare matches between OCRnx and TCNTn. The OCnx Interrupt Flag will be set when a
compare match occurs.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 122

Atmel-8272G-AVR-01/2015

Figure 16-8. Phase Correct PWM mode, timing diagram.

OCRNx/TOP Update and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

TOVn Interrupt Flag Set
(Interrupt on Bottom)

x
ot \/\\/

OCnx (COMNX1:0 = 2)
OCnx (COMNx1:0 = 3)
Period I 1 ~I 2 ~I 3 ~I 4)

The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches BOTTOM. When either OCRnA
or ICRn is used for defining the TOP value, the OCnA or ICFn Flag is set accordingly at the same timer clock
cycle as the OCRnx Registers are updated with the double buffer value (at TOP). The Interrupt Flags can be
used to generate an interrupt each time the counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value
of all of the Compare Registers. If the TOP value is lower than any of the Compare Registers, a compare match
will never occur between the TCNTn and the OCRnx. Note that when using fixed TOP values, the unused bits
are masked to zero when any of the OCRnx Registers are written. As the third period shown in Figure 16-8
illustrates, changing the TOP actively while the Timer/Counter is running in the phase correct mode can result in
an unsymmetrical output. The reason for this can be found in the time of update of the OCRnx Register. Since
the OCRnx update occurs at TOP, the PWM period starts and ends at TOP. This implies that the length of the
falling slope is determined by the previous TOP value, while the length of the rising slope is determined by the
new TOP value. When these two values differ the two slopes of the period will differ in length. The difference in
length gives the unsymmetrical result on the output.

It is recommended to use the phase and frequency correct mode instead of the phase correct mode when
changing the TOP value while the Timer/Counter is running. When using a static TOP value there are practically
no differences between the two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins. Setting
the COMnx1:0 bits to two will produce a non-inverted PWM and an inverted PWM output can be generated by
setting the COMnx1:0 to three (See Table on page 129). The actual OCnx value will only be visible on the port
pin if the data direction for the port pin is set as output (DDR_OCnx). The PWM waveform is generated by
setting (or clearing) the OCnx Register at the compare match between OCRnx and TCNTn when the counter
increments, and clearing (or setting) the OCnx Register at compare match between OCRnx and TCNTn when
the counter decrements. The PWM frequency for the output when using phase correct PWM can be calculated
by the following equation:

_ Jak o
fOCnxPCPWM - 2.N-TOP

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

AtmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 123

Atmel-8272G-AVR-01/2015

The extreme values for the OCRnx Register represent special cases when generating a PWM waveform output
in the phase correct PWM mode. If the OCRnx is set equal to BOTTOM the output will be continuously low and
if set equal to TOP the output will be continuously high for non-inverted PWM mode. For inverted PWM the
output will have the opposite logic values. If OCR1A is used to define the TOP value (WGM13:0 = 11) and
COM1A1:0 = 1, the OC1A output will toggle with a 50% duty cycle.

16.10.5 Phase and Frequency Correct PWM mode

The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM mode
(WGMn3:0 = 8 or 9) provides a high resolution phase and frequency correct PWM waveform generation option.
The phase and frequency correct PWM mode is, like the phase correct PWM mode, based on a dual-slope
operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from TOP to BOTTOM. In
non-inverting Compare Output mode, the Output Compare (OCnx) is cleared on the compare match between
TCNTn and OCRnx while upcounting, and set on the compare match while downcounting. In inverting Compare
Output mode, the operation is inverted. The dual-slope operation gives a lower maximum operation frequency
compared to the single-slope operation. However, due to the symmetric feature of the dual-slope PWM modes,
these modes are preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct PWM mode is the time
the OCRnx Register is updated by the OCRnx Buffer Register, (see Figure 16-8 and Figure 16-9).

The PWM resolution for the phase and frequency correct PWM mode can be defined by either ICRn or OCRnA.
The minimum resolution allowed is 2-bit (ICRn or OCRNA set to 0x0003), and the maximum resolution is 16-bit
(ICRn or OCRnNA set to MAX). The PWM resolution in bits can be calculated using the following equation:

_ log(TOP+1)
Rprcrwm = —og@)

In phase and frequency correct PWM mode the counter is incremented until the counter value matches either
the value in ICRn (WGMn3:0 = 8), or the value in OCRnA (WGMn3:0 = 9). The counter has then reached the
TOP and changes the count direction. The TCNTn value will be equal to TOP for one timer clock cycle. The
timing diagram for the phase correct and frequency correct PWM mode is shown on Figure 16-9. The figure
shows phase and frequency correct PWM mode when OCRNA or ICRn is used to define TOP. The TCNTn
value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The diagram
includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNTn slopes
represent compare matches between OCRnx and TCNTn. The OCnx Interrupt Flag will be set when a compare
match occurs.

AtmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 124

Atmel-8272G-AVR-01/2015

Figure 16-9. Phase and Frequency Correct PWM mode, timing diagram.

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

OCRnNX/TOP Updateand
TOVn Interrupt Flag Set
(Interrupt on Bottom)

Y

OCnx (COMNX1:0 = 2)
OCnx (COMNx1:0 = 3)
Period I 1 I 2 I 3 I 4 |

The Timer/Counter Overflow Flag (TOVn) is set at the same timer clock cycle as the OCRnx Registers are
updated with the double buffer value (at BOTTOM). When either OCRNA or ICRn is used for defining the TOP
value, the OCnA or ICFn Flag set when TCNTn has reached TOP. The Interrupt Flags can then be used to
generate an interrupt each time the counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value
of all of the Compare Registers. If the TOP value is lower than any of the Compare Registers, a compare match
will never occur between the TCNTn and the OCRnx.

As Figure 16-9 shows the output generated is, in contrast to the phase correct mode, symmetrical in all periods.
Since the OCRnx Registers are updated at BOTTOM, the length of the rising and the falling slopes will always
be equal. This gives symmetrical output pulses and is therefore frequency correct.

Using the ICRn Register for defining TOP works well when using fixed TOP values. By using ICRn, the OCRnA
Register is free to be used for generating a PWM output on OCnA. However, if the base PWM frequency is
actively changed by changing the TOP value, using the OCRnA as TOP is clearly a better choice due to its
double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM waveforms on the
OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM and an inverted PWM output can
be generated by setting the COMnx1:0 to three (See Table 16-4 on page 129). The actual OCnx value will only
be visible on the port pin if the data direction for the port pin is set as output (DDR_OCnx). The PWM waveform
is generated by setting (or clearing) the OCnx Register at the compare match between OCRnx and TCNTn
when the counter increments, and clearing (or setting) the OCnx Register at compare match between OCRnx
and TCNTn when the counter decrements. The PWM frequency for the output when using phase and frequency
correct PWM can be calculated by the following equation:

_ Jak o
focaxprepwar = 2.N-TOP

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating a PWM waveform
output in the phase correct PWM mode. If the OCRnx is set equal to BOTTOM the output will be continuously
low and if set equal to TOP the output will be set to high for non-inverted PWM mode. For inverted PWM the

AtmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 125

Atmel-8272G-AVR-01/2015

output will have the opposite logic values. If OCR1A is used to define the TOP value (WGM13:0 = 9) and
COM1A1:0 = 1, the OC1A output will toggle with a 50% duty cycle.

16.11 Timer/Counter Timing diagrams

The Timer/Counter is a synchronous design and the timer clock (clky,) is therefore shown as a clock enable
signal in the following figures. The figures include information on when Interrupt Flags are set, and when the
OCRnNx Register is updated with the OCRnx buffer value (only for modes utilizing double buffering). Figure 16-
10 shows a timing diagram for the setting of OCFnx.

Figure 16-10. Timer/Counter Timing diagram, setting of OCFnx, no prescaling.

clk

/10

clkq,

(clk, /1)

TCNTn >< OCRnx -1 OCRnNx OCRnx +1 >< OCRnNx + 2

OCRNx OCRnNXx Value

OCFnx

Figure 16-11 shows the same timing data, but with the prescaler enabled.

Figure 16-11. Timer/Counter Timing diagram, setting of OCFnx, with prescaler (f ,,0/8)-

R
(c(fli.l,(gfs) F F F F

TCNTn X OCRnx - 1 X OCRnNx OCRnx + 1 X OCRNXx + 2
OCRnNx OCRnx Value
OCFnx

Figure 16-12 shows the count sequence close to TOP in various modes. When using phase and frequency
correct PWM mode the OCRnx Register is updated at BOTTOM. The timing diagrams will be the same, but
TOP should be replaced by BOTTOM, TOP-1 by BOTTOM+1 and so on. The same renaming applies for modes
that set the TOVn Flag at BOTTOM.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 126

Atmel-8272G-AVR-01/2015

Figure 16-12. Timer/Counter Timing diagram, no prescaling.

clk

1/10

clk,
(clk,o/1)

TCNTn X TOP -1 TOP BOTTOM BOTTOM + 1

(CTC and FPWM) |

e a:f,D‘FTC“PWM) X TOP -1 TOP TOP -1 TOP -2

TOVn (FPWM)
and ICFn (if used
as TOP)

OCRnx

(Update at TOP) Old OCRnNx Value New OCRnx Value

i i
Figure 16-13 shows the same timing data, but with the prescaler enabled.

Figure 16-13. Timer/Counter Timing diagram, with prescaler (f;, ;,0/8).

O R R
% LI J T
(clis48)
TCNTn]
(CTC and FPWM)_X TOP-1 TOP BOTTOM BOTTOM + 1
TCNTn | i
(PC and PFC PWM)_X ToP-1 TOP TOP -1 TOP - 2
TOVn(FPWM)
and ICFn(if used
as TOP)
OCRNx
(Update at TOP) Old OCRnx Value New OCRnx Value
i i
/It m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 127

Atmel-8272G-AVR-01/2015

16.12 Register description

16.12.1 TCCRnA - Timer/Counter n Control Register A

Bit 7 6 5 4 3 2 1 0
(0x80) | comnat | comnAo | comnB1 | cCOMnBO | = = WGMn1 WGMn0 | TCCRnA
Read/Write R/W R/W R/W R/W R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7:6 — COMnA1:0: Compare Output Mode for Channel A

¢ Bit 5:4 — COMnB1:0: Compare Output Mode for Channel B

The COMnA1:0 and COMnB1:0 control the Output Compare pins (OCnA and OCnB respectively) behavior. If
one or both of the COMnA1:0 bits are written to one, the OCnA output overrides the normal port functionality of
the 1/O pin it is connected to. If one or both of the COMNnB1:0 bit are written to one, the OCnB output overrides
the normal port functionality of the 1/O pin it is connected to. However, note that the Data Direction Register
(DDR) bit corresponding to the OCnA or OCnB pin must be set in order to enable the output driver.

When the OCnA or OCnB is connected to the pin, the function of the COMnx1:0 bits is dependent of the
WGMN3:0 bits setting. Table 16-2 on page 128 shows the COMnx1:0 bit functionality when the WGMn3:0 bits
are set to a Normal or a CTC mode (non-PWM).

Table 16-2. Compare Output mode, non-PWM.
COMnA1/COMnB1 COMNnAO0/COMNnB0 Description

0 0 Normal port operation, OCnA/OCnB disconnected.

0 1 Toggle OCnA/OCnB on Compare Match.

1 0 Clear OCnA/OCnB on Compare Match (Set output to
low level).

1 1 Set OCnA/OCnB on Compare Match (Set output to
high level).

Table 16-3 on page 128 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to the fast PWM

mode.
Table 16-3. Compare Output mode, fast PWM ('),
COMnA1/COMNB1 COMNnAO0/COMNnB0 Description
0 0 Normal port operation, OCnA/OCnB disconnected.
WGMn3:0 = 14 or 15: Toggle OC1A on Compare
0 1 Match, OC1B disconnected (normal port operation).
For all other WGM1 settings, normal port operation,
OC1A/OC1B disconnected.
1 0 Clear OCnA/OCnB on Compare Match, set
OCnA/OCnB at BOTTOM (non-inverting mode)
1 1 Set OCnA/OCnB on Compare Match, clear
OCnA/OCnB at BOTTOM (inverting mode)
Note: 1. A special case occurs when OCRnA/OCRNB equals TOP and COMnA1/COMnNB1 is set. In this case the

compare match is ignored, but the set or clear is done at BOTTOM. See Section “16.10.3” on page 120 for
more details.

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 128

Atmel-8272G-AVR-01/2015

Atmel

Table 16-4 on page 129 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to the phase
correct or the phase and frequency correct, PWM mode.
Table 16-4. Compare Output mode, phase correct and phase and frequency correct PWM (.
COMnA1/COMNB1 COMNnAO0/COMNnBO Description

0 0 Normal port operation, OCnA/OCnB disconnected.

WGMn3:0 = 9 or 11: Toggle OCnA on Compare
Match, OCnB disconnected (normal port operation).

¢ ! For all other WGM1 settings, normal port operation,
OC1A/OC1B disconnected.
Clear OCnA/OCnB on Compare Match when up-

1 0 counting. Set OCnA/OCnB on Compare Match when

downcounting.

Set OCnA/OCnB on Compare Match when up-
1 1 counting. Clear OCnA/OCnB on Compare Match
when downcounting.

Note: 1. A special case occurs when OCRnA/OCRnNB equals TOP and COMnA1/COMnNB1 is set. See Section “16.10.4”
on page 122 for more details.

¢ Bit 1:0 - WGMn1:0: Waveform Generation Mode

Combined with the WGMn3:2 bits found in the TCCRNnB Register, these bits control the counting sequence of
the counter, the source for maximum (TOP) counter value, and what type of waveform generation to be used,
see Table 16-5 on page 130. Modes of operation supported by the Timer/Counter unit are: Normal mode
(counter), Clear Timer on Compare match (CTC) mode, and three types of Pulse Width Modulation (PWM)
modes. (See Section “16.10” on page 119).

AtmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 129

Atmel-8272G-AVR-01/2015

Table 16-5.

WGMn1

WGMnO

Waveform Generation mode bit description (.

WGMn2

Timer/Counter mode of

Update of

TOVn flag

Mode WGMnN3 (CTCn) (PWMn1) (PWMnO0) operation TOP OCRnx at seton

0 0 0 0 0 Normal OxFFFF Immediate | MAX

1 0 0 0 1 PWM, Phase Correct, 8-bit O0x00FF TOP BOTTOM
2 0 0 1 0 PWM, Phase Correct, 9-bit 0x01FF TOP BOTTOM
3 0 0 1 1 PWM, Phase Correct, 10-bit 0x03FF TOP BOTTOM
4 0 1 0 0 CTC OCRNnA Immediate | MAX

5 0 1 0 1 Fast PWM, 8-bit 0x00FF BOTTOM TOP

6 0 1 1 0 Fast PWM, 9-bit 0x01FF BOTTOM TOP

7 0 1 1 1 Fast PWM, 10-bit 0x03FF BOTTOM TOP

8 1 0 0 0 z\c’)\ir'\g'cfhase and Frequency | \~pn BOTTOM | BOTTOM
9 1 0 0 1 DM, Bhase and FIequency | ocrnA | BOTTOM | BOTTOM
10 1 0 1 0 PWM, Phase Correct ICRn TOP BOTTOM
11 1 0 1 1 PWM, Phase Correct OCRnA TOP BOTTOM
12 1 1 0 0 CTC ICRn Immediate | MAX

13 1 1 0 1 (Reserved) - - -

14 1 1 1 0 Fast PWM ICRn BOTTOM TOP

15 1 1 1 1 Fast PWM OCRnA BOTTOM TOP

Note: 1. The CTCn and PWMn1:0 bit definition names are obsolete. Use the WGMn2:0 definitions. However, the functionality
and location of these bits are compatible with previous versions of the timer.

16.12.2 TCCRNB - Timer/Counter n Control Register B

Bit 7 6 5 4 3 2 1 0
(0x81) | 1cNen | icEsn | = | WGMn3 | WGMn2 CSn2 csn1 csno | TccrnB
Read/Write R/W R/W R R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 — ICNCn: Input Capture Noise Canceler

Setting this bit (to one) activates the Input Capture Noise Canceler. When the noise canceler is activated, the
input from the Input Capture pin (ICPn) is filtered. The filter function requires four successive equal valued
samples of the ICPn pin for changing its output. The Input Capture is therefore delayed by four Oscillator cycles
when the noise canceler is enabled.

¢ Bit 6 — ICESn: Input Capture Edge Select

This bit selects which edge on the Input Capture pin (ICPn) that is used to trigger a capture event. When the
ICESn bit is written to zero, a falling (negative) edge is used as trigger, and when the ICESn bit is written to one,
a rising (positive) edge will trigger the capture.

When a capture is triggered according to the ICESnh setting, the counter value is copied into the Input Capture
Register (ICRn). The event will also set the Input Capture Flag (ICFn), and this can be used to cause an Input
Capture Interrupt, if this interrupt is enabled.

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 130

Atmel-8272G-AVR-01/2015

Atmel

When the ICRn is used as TOP value (see description of the WGMn3:0 bits located in the TCCRnA and the
TCCRnNB Register), the ICPn is disconnected and consequently the Input Capture function is disabled.

¢ Bit 5 - Reserved

This bit is reserved for future use. For ensuring compatibility with future devices, this bit must be written to zero
when TCCRnB is written.

* Bit 4:3 —- WGMn3:2: Waveform Generation Mode
See “TCCRNA — Timer/Counter n Control Register A description on page 128.

e Bit 2:0 - CSn2:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter, see Figure 16-10 and
Figure 16-11.
Table 16-6. Clock Select bit description.

CSn2 CSn1 CSn0 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clk,o/1 (No prescaling)

0 1 0 clk;,o/8 (From prescaler)

0 1 1 clk;o/64 (From prescaler)

1 0 0 clk,o/256 (From prescaler)

1 0 1 clk,o/1024 (From prescaler)

1 1 0 External clock source on Tn pin. Clock on falling edge.
1 1 1 External clock source on Tn pin. Clock on rising edge.

If external pin modes are used for the Timer/Countern, transitions on the Tn pin will clock the counter even if the
pin is configured as an output. This feature allows software control of the counting.

16.12.3 TCCRNC - Timer/Counter n Control Register C

Bit 7 6 5 4 3 2 1 0
(0x82) | Focna | FocnB | = | = | = = = =] Tccrnc
Read/Write R/W R/W R R R R R R
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - FOCnA: Force Output Compare for Channel A

¢ Bit 6 —- FOCnB: Force Output Compare for Channel B

The FOCnA/FOCnB bits are only active when the WGMn3:0 bits specifies a non-PWM mode. However, for
ensuring compatibility with future devices, these bits must be set to zero when TCCRnA is written when
operating in a PWM mode. When writing a logical one to the FOCnA/FOCnB bit, an immediate compare match
is forced on the Waveform Generation unit. The OCnA/OCnB output is changed according to its COMnx1:0 bits
setting. Note that the FOCnA/FOCnB bits are implemented as strobes. Therefore it is the value present in the
COMnNx1:0 bits that determine the effect of the forced compare.

A FOCnA/FOCnB strobe will not generate any interrupt nor will it clear the timer in Clear Timer on Compare
match (CTC) mode using OCRnA as TOP.

The FOCnA/FOCnB bits are always read as zero.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 131

Atmel-8272G-AVR-01/2015

16.12.4 TCNT1H and TCNT1L —Timer/Counter1

Bit 7 6 5 4 3 2 1 0

(0x85) TCNT1[15:8] TCNT1H
(0x84) TCNT1[7:0] TCNT1IL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The two Timer/Counter 1/0 locations (TCNT1H and TCNT1L, combined TCNT1) give direct access, both for
read and for write operations, to the Timer/Counter unit 16-bit counter. To ensure that both the high and low
bytes are read and written simultaneously when the CPU accesses these registers, the access is performed
using an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all the other 16-bit
registers. See “Accessing 16-bit Registers” on page 109.

Modifying the counter (TCNT1) while the counter is running introduces a risk of missing a compare match
between TCNT1 and one of the OCRnx Registers.

Writing to the TCNT1 Register blocks (removes) the compare match on the following timer clock for all compare
units.

16.12.5 TCNT3H and TCNT3L —-Timer/Counter3

Bit 7 6 5 4 3 2 1 0

(0x95) TCNT3[15:8] TCNT3H
(0x94) TCNT3[7:0] TCNT3L
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The two Timer/Counter 1/0O locations (TCNT3H and TCNT3L, combined TCNT3) give direct access, both for
read and for write operations, to the Timer/Counter unit 16-bit counter. To ensure that both the high and low
bytes are read and written simultaneously when the CPU accesses these registers, the access is performed
using an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all the other 16-bit
registers. See “Accessing 16-bit Registers” on page 109.

Modifying the counter (TCNT3) while the counter is running introduces a risk of missing a compare match
between TCNT3 and one of the OCRnx Registers.

Writing to the TCNT3 Register blocks (removes) the compare match on the following timer clock for all compare
units.

16.12.6 OCR1AH and OCR1AL - Output Compare Register1 A

Bit 7 6 5 4 3 2 1 0

(0x89) OCR1A[15:8] OCR1AH
(0x88) OCR1A[7:0] OCR1AL
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

16.12.7 OCR1BH and OCR1BL — Output Compare Register1 B

Bit 7 6 5 4 3 2 1 0

(0x8B) OCR1B[15:8] OCR1BH
(Ox8A) OCR1B[7:0] OCR1BL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared with the counter value
(TCNT1). A match can be used to generate an Output Compare interrupt, or to generate a waveform output on
the OCnx pin.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 132

Atmel-8272G-AVR-01/2015

The Output Compare Registers are 16-bit in size. To ensure that both the high and low bytes are written
simultaneously when the CPU writes to these registers, the access is performed using an 8-bit temporary High
Byte Register (TEMP). This temporary register is shared by all the other 16-bit registers. See “Accessing 16-bit
Registers” on page 109.

16.12.8 OCR3AH and OCR3AL - Output Compare Register3 A

Bit 7 6 5 4 3 2 1 0

(0x99) OCR3A[15:8] OCR3AH
(0x98) OCR3A[7:0] OCR3AL
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

16.12.9 OCR3BH and OCR3BL - Output Compare Register3 B

Bit 7 6 5 4 3 2 1 0

(0x9B) OCR3B[15:8] OCR3BH
(0x9A) OCR3B[7:0] OCR3BL
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared with the counter value
(TCNT3). A match can be used to generate an Output Compare interrupt, or to generate a waveform output on
the OCnx pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and low bytes are written
simultaneously when the CPU writes to these registers, the access is performed using an 8-bit temporary High
Byte Register (TEMP). This temporary register is shared by all the other 16-bit registers. See “Accessing 16-bit
Registers” on page 109.

16.12.10ICR1H and ICR1L - Input Capture Register 1

Bit 7 6 5 4 3 2 1 0

(0x87) ICR1[15:8] ICR1H
(0x86) ICR1[7:0] ICRIL
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

The Input Capture is updated with the counter (TCNT1) value each time an event occurs on the ICPn pin (or
optionally on the Analog Comparator output for Timer/Counter1). The Input Capture can be used for defining the
counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes are read simultaneously
when the CPU accesses these registers, the access is performed using an 8-bit temporary High Byte Register
(TEMP). This temporary register is shared by all the other 16-bit registers. See “Accessing 16-bit Registers” on
page 109.

16.12.11ICR3H and ICR3L - Input Capture Register 3

Bit 7 6 5 4 3 2 1 0
(0x97) ICR3[15:8] ICR3H
(0x96) ICR3[7:0] ICR3L
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
/ItmeL ATmega164A/164PA/324A/324PA/644AI644PA/1284/1284P [DATASHEET] 133

Atmel-8272G-AVR-01/2015

The Input Capture is updated with the counter (TCNT3) value each time an event occurs on the ICPn pin (or
optionally on the Analog Comparator output for Timer/Counter3). The Input Capture can be used for defining the
counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes are read simultaneously
when the CPU accesses these registers, the access is performed using an 8-bit temporary High Byte Register
(TEMP). This temporary register is shared by all the other 16-bit registers. See “Accessing 16-bit Registers” on
page 109.

16.12.12TIMSK1 — Timer/Counter1 Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0
(Ox6F) | = | = | ICIE1 | = | = |OCIE1B OCIE1A TOIE1 | TIMSK1
Read/Write R R R/W R R R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7:6 — Reserved
These bits are unused and will always read as zero.

¢ Bit 5 - ICIE1: Timer/Counter1, Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the
Timer/Counter1 Input Capture interrupt is enabled. The corresponding Interrupt Vector (see “Interrupts” on page
61) is executed when the ICF1 Flag, located in TIFR1, is set.

* Bit 4:3 — Reserved
These bits are unused and will always read as zero.

¢ Bit 2 - OCIE1B: Timer/Counter1, Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the
Timer/Counter1 Output Compare B Match interrupt is enabled. The corresponding Interrupt Vector (see
“Interrupts” on page 61) is executed when the OCF1B Flag, located in TIFR1, is set.

¢ Bit 1 — OCIE1A: Timer/Counter1, Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the
Timer/Counter1 Output Compare A Match interrupt is enabled. The corresponding Interrupt Vector (see
“Interrupts” on page 61) is executed when the OCF1A Flag, located in TIFR1, is set.

¢ Bit 0 — TOIE1: Timer/Counter1, Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the
Timer/Counter1 Overflow interrupt is enabled. The corresponding Interrupt Vector (See Section “11.3” on page
55) is executed when the TOV1 Flag, located in TIFR1, is set.

16.12.13TIMSK3 — Timer/Counter3 Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0
(0x71) | | = | ICIE3 | = | = | OCIE3B | OCIE3A TOIE3 | TIMSK3
Read/Write R R R/W R R R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7:6 — Reserved
These bits are unused and will always read as zero.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 134

Atmel-8272G-AVR-01/2015

¢ Bit 5 - ICIE3: Timer/Counter3, Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the
Timer/Counter1 Input Capture interrupt is enabled. The corresponding Interrupt Vector (See “Interrupts” on
page 61) is executed when the ICF3 Flag, located in TIFR3, is set.

* Bit 4:3 — Reserved
These bits are unused and will always read as zero.

¢ Bit 2 - OCIE3B: Timer/Counter3, Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the
Timer/Counter3 Output Compare B Match interrupt is enabled. The corresponding Interrupt Vector (See
“Interrupts” on page 61) is executed when the OCF3B Flag, located in TIFR3, is set.

¢ Bit 1 — OCIE3A: Timer/Counter3, Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the
Timer/Counter3 Output Compare A Match interrupt is enabled. The corresponding Interrupt Vector (See
“Interrupts” on page 61) is executed when the OCF3A Flag, located in TIFRS3, is set.

¢ Bit 0 — TOIE3: Timer/Counter3, Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the
Timer/Counter3 Overflow interrupt is enabled. The corresponding Interrupt Vector (See “Watchdog Timer” on
page 55) is executed when the TOV3 Flag, located in TIFR3, is set.

16.12.14TIFR1 — Timer/Counter1 Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0
ox16 (0x36) | = | = | IcF1] = | = OCF1B OCF1A Tovi | TIFR1
Read/Write R R R/W R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bit 7:6 — Reserved
These bits are unused and will always read as zero.

* Bit 5 - ICF1: Timer/Counter1, Input Capture Flag

This flag is set when a capture event occurs on the ICP1 pin. When the Input Capture Register (ICR1) is set by
the WGMn3:0 to be used as the TOP value, the ICF1 Flag is set when the counter reaches the TOP value.

ICF1 is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively, ICF1 can be
cleared by writing a logic one to its bit location.

e Bit4:3 - Reserved
These bits are unused and will always read as zero.

* Bit 2 - OCF1B: Timer/Counter1, Output Compare B Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output Compare Register B
(OCR1B).

Note that a Forced Output Compare (FOC1B) strobe will not set the OCF1B Flag.

OCF1B is automatically cleared when the Output Compare Match B Interrupt Vector is executed. Alternatively,
OCF1B can be cleared by writing a logic one to its bit location.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 135

Atmel-8272G-AVR-01/2015

¢ Bit 1 — OCF1A: Timer/Counter1, Output Compare A Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output Compare Register A
(OCR1A).

Note that a Forced Output Compare (FOC1A) strobe will not set the OCF1A Flag.

OCF1A is automatically cleared when the Output Compare Match A Interrupt Vector is executed. Alternatively,
OCF1A can be cleared by writing a logic one to its bit location.

* Bit 0 — TOV1: Timer/Counter1, Overflow Flag

The setting of this flag is dependent of the WGMn3:0 bits setting. In Normal and CTC modes, the TOV1 Flag is
set when the timer overflows. Refer to Table 16-5 on page 130 for the TOV1 Flag behavior when using another
WGMnN3:0 bit setting.

TOV1 is automatically cleared when the Timer/Counter1 Overflow Interrupt Vector is executed. Alternatively,
TOV1 can be cleared by writing a logic one to its bit location.

16.12.15TIFR3 - Timer/Counter3 Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0

ox18 (0x38) | = | = | IcF3 | = | = OCF3B OCF3A Tov3 | TIFR3
Read/Write R R R/W R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bit 7:6 — Reserved
These bits are unused and will always read as zero.

¢ Bit 5 - ICF3: Timer/Counter3, Input Capture Flag

This flag is set when a capture event occurs on the ICP3 pin. When the Input Capture Register (ICR1) is set by
the WGMn3:0 to be used as the TOP value, the ICF3 Flag is set when the counter reaches the TOP value.

ICF3 is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively, ICF3 can be
cleared by writing a logic one to its bit location.

* Bit 4:3 — Reserved
These bits are unused and will always read as zero.

¢ Bit 2 - OCF3B: Timer/Counter3, Output Compare B Match Flag

This flag is set in the timer clock cycle after the counter (TCNT3) value matches the Output Compare Register B
(OCR3B).

Note that a Forced Output Compare (FOC3B) strobe will not set the OCF3B Flag.

OCF3B is automatically cleared when the Output Compare Match B Interrupt Vector is executed. Alternatively,
OCF3B can be cleared by writing a logic one to its bit location.

¢ Bit 1 — OCF3A: Timer/Counter3, Output Compare A Match Flag

This flag is set in the timer clock cycle after the counter (TCNT3) value matches the Output Compare Register A
(OCR3A).

Note that a Forced Output Compare (FOC3A) strobe will not set the OCF3A Flag.

OCF3A is automatically cleared when the Output Compare Match A Interrupt Vector is executed. Alternatively,
OCF3A can be cleared by writing a logic one to its bit location.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 136

Atmel-8272G-AVR-01/2015

¢ Bit 0 — TOV3: Timer/Counter1, Overflow Flag

The setting of this flag is dependent of the WGMn3:0 bits setting. In Normal and CTC modes, the TOV3 Flag is
set when the timer overflows. Refer to Table 16-5 on page 130 for the TOV3 Flag behavior when using another
WGMnN3:0 bit setting.

TOV3 is automatically cleared when the Timer/Counter3 Overflow Interrupt Vector is executed. Alternatively,
TOV3 can be cleared by writing a logic one to its bit location.

AtmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 137

Atmel-8272G-AVR-01/2015

17. 8-bit Timer/Counter2 with PWM and asynchronous operation

17.1 Features
* Single channel counter

* Clear Timer on Compare Match (Auto Reload)
* Glitch-free, phase correct Pulse Width Modulator (PWM)

* Frequency generator
* 10-bit clock prescaler

* Overflow and Compare Match Interrupt Sources (TOV2, OCF2A and OCF2B)
* Allows clocking from external 32kHz watch crystal independent of the 1/0 clock

17.2 Overview

Timer/Counter2 is a general purpose, single channel, 8-bit Timer/Counter module.

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 16-12.. For the actual placement of /0O
pins, see "Pin configurations” on page 3. CPU accessible /O Registers, including 1/0 bits and I/O pins, are
shown in bold. The device-specific /0 Register and bit locations are listed in the "Register description” on page

151.

The Power Reduction Timer/Counter2 bit, PRTIM2, in "PRR0O — Power Reduction Register 0” on page 48 must
be written to zero to enable Timer/Counter2 module.

Figure 17-1. 8-bit Timer/Counter block diagram.

Count

Clear
Control Lo

Direction

Yy v V

TOVn

ic
9 clk.

A

BOTTOM

Prescaler

> (Int.Req.)

-t TOSC1

T/C
il Oscillator

A

TOSC2

[e— clk,

A Timer/Counter]
<} TCNTn — p—
OCnA
? ? ? (Im.rl‘Req.)
y : Wavef
aveform
=] 9 | Generation | OCnA
> 1----
Fixed ocnB
* V;c;: r(lnlﬂeq.)
3 - - S, »ocne
g
Synchronized Status flags - . < clkio
Synchronization Unit
[e—— clk,q,
Y asynchronous mode 1 A
Status flags select (ASn)
ASSRn
[TCCRnA | TCCRnB |
i '
< A A y >
\j
/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 138

Atmel-8272G-AVR-01/2015

17.2.1

17.2.2

17.3

Registers

The Timer/Counter (TCNT2) and Output Compare Register (OCR2A and OCR2B) are 8-bit registers. Interrupt
request (abbreviated to Int.Req.) signals are all visible in the Timer Interrupt Flag Register (TIFR2). All interrupts
are individually masked with the Timer Interrupt Mask Register (TIMSK2). TIFR2 and TIMSK2 are not shown in
the figure.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from the TOSC1/2
pins, as detailed later in this section. The asynchronous operation is controlled by the Asynchronous Status
Register (ASSR). The Clock Select logic block controls which clock source the Timer/Counter uses to increment
(or decrement) its value. The Timer/Counter is inactive when no clock source is selected. The output from the
Clock Select logic is referred to as the timer clock (clky,).

The double buffered Output Compare Register (OCR2A and OCR2B) are compared with the Timer/Counter
value at all times. The result of the compare can be used by the Waveform Generator to generate a PWM or
variable frequency output on the Output Compare pins (OC2A and OC2B). See “Output Compare unit’ on page
140 for details. The compare match event will also set the Compare Flag (OCF2A or OCF2B) which can be
used to generate an Output Compare interrupt request.

Definitions

Many register and bit references in this document are written in general form. A lower case “n” replaces the
Timer/Counter number, in this case 2. However, when using the register or bit defines in a program, the precise
form must be used, that is, TCNT2 for accessing Timer/Counter2 counter value and so on.

The definitions in Table 17-1 are also used extensively throughout the section.

Table 17-1. Definitions.
BOTTOM | The counter reaches the BOTTOM when it becomes zero (0x00).

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value OxFF
(MAX) or the value stored in the OCR2A Register. The assignment is
dependent on the mode of operation.

TOP

Timer/Counter clock sources

The Timer/Counter can be clocked by an internal synchronous or an external asynchronous clock source. The
clock source clky, is by default equal to the MCU clock, clk;,o. When the AS2 bit in the ASSR Register is written
to logic one, the clock source is taken from the Timer/Counter Oscillator connected to TOSC1 and TOSC2. For
details on asynchronous operation, see "ASSR — Asynchronous Status Register” on page 155. For details on
clock sources and prescaler, see "Timer/Counter Prescaler” on page 150.

AtmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 139

Atmel-8272G-AVR-01/2015

17.4

17.5

Counter unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure 17-2 shows a
block diagram of the counter and its surrounding environment.

Figure 17-2. Counter Unit block diagram.

TOVn

—»
(Int.Req.)
DATA BUS > q

<l
) ¢
- TOSC1

count

TIC

clk y
clear Tn Oscillator

TCNTn - Control Logic [
direction

bottom T Ttop

count Increment or decrement TCNT2 by 1.

Prescaler

—® TOSC2

ClkI/O

Signal description (internal signals):

direction Selects between increment and decrement.

clear Clear TCNT2 (set all bits to zero).

clky, Timer/Counter clock, referred to as clky, in the following.
top Signalizes that TCNT2 has reached maximum value.
bottom Signalizes that TCNT2 has reached minimum value (zero).

Depending on the mode of operation used, the counter is cleared, incremented, or decremented at each timer

clock (clky,). clky, can be generated from an external or internal clock source, selected by the Clock Select bits
(CS22:0). When no clock source is selected (CS22:0 = 0) the timer is stopped. However, the TCNT2 value can
be accessed by the CPU, regardless of whether clk, is present or not. A CPU write overrides (has priority over)
all counter clear or count operations.

The counting sequence is determined by the setting of the WGM21 and WGM20 bits located in the
Timer/Counter Control Register (TCCR2A) and the WGM22 located in the Timer/Counter Control Register B
(TCCR2B). There are close connections between how the counter behaves (counts) and how waveforms are
generated on the Output Compare outputs OC2A and OC2B. For more details about advanced counting
sequences and waveform generation, see "Modes of operation” on page 143.

The Timer/Counter Overflow Flag (TOV2) is set according to the mode of operation selected by the WGM22:0
bits. TOV2 can be used for generating a CPU interrupt.

Output Compare unit

The 8-bit comparator continuously compares TCNT2 with the Output Compare Register (OCR2A and OCR2B).
Whenever TCNT2 equals OCR2A or OCR2B, the comparator signals a match. A match will set the Output
Compare Flag (OCF2A or OCF2B) at the next timer clock cycle. If the corresponding interrupt is enabled, the
Output Compare Flag generates an Output Compare interrupt. The Output Compare Flag is automatically
cleared when the interrupt is executed. Alternatively, the Output Compare Flag can be cleared by software by
writing a logical one to its I/0O bit location. The Waveform Generator uses the match signal to generate an output
according to operating mode set by the WGM22:0 bits and Compare Output mode (COM2x1:0) bits. The max
and bottom signals are used by the Waveform Generator for handling the special cases of the extreme values in
some modes of operation (see "Modes of operation” on page 143).

Figure 16-10 on page 126 shows a block diagram of the Output Compare unit.

AtmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 140

Atmel-8272G-AVR-01/2015

Figure 17-3. Output Compare unit, block diagram.
DATA BUS

OCRnx TCNTn

4L iy

| = (8-bit Comparator) |

OCFnx (Int.Req.)

P

bottom Waveform Generator »| 0Cnx

1]

WGMnN1:0 COMnX1:0

FOCn S

The OCR2x Register is double buffered when using any of the Pulse Width Modulation (PWM) modes. For the
Normal and Clear Timer on Compare (CTC) modes of operation, the double buffering is disabled. The double
buffering synchronizes the update of the OCR2x Compare Register to either top or bottom of the counting
sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby
making the output glitch-free.

The OCR2x Register access may seem complex, but this is not case. When the double buffering is enabled, the
CPU has access to the OCR2x Buffer Register, and if double buffering is disabled the CPU will access the
OCR2x directly.

17.5.1 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to
the Force Output Compare (FOC2x) bit. Forcing compare match will not set the OCF2x Flag or reload/clear the
timer, but the OC2x pin will be updated as if a real compare match had occurred (the COM2x1:0 bits settings
define whether the OC2x pin is set, cleared or toggled).

17.5.2 Compare Match Blocking by TCNT2 Write

All CPU write operations to the TCNT2 Register will block any compare match that occurs in the next timer clock
cycle, even when the timer is stopped. This feature allows OCR2x to be initialized to the same value as TCNT2
without triggering an interrupt when the Timer/Counter clock is enabled.

17.5.3 Using the Output Compare Unit

Since writing TCNT2 in any mode of operation will block all compare matches for one timer clock cycle, there
are risks involved when changing TCNT2 when using the Output Compare channel, independently of whether
the Timer/Counter is running or not. If the value written to TCNT2 equals the OCR2x value, the compare match
will be missed, resulting in incorrect waveform generation. Similarly, do not write the TCNT2 value equal to
BOTTOM when the counter is downcounting.

The setup of the OC2x should be performed before setting the Data Direction Register for the port pin to output.
The easiest way of setting the OC2x value is to use the Force Output Compare (FOC2x) strobe bit in Normal
mode. The OC2x Register keeps its value even when changing between Waveform Generation modes.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 141

Atmel-8272G-AVR-01/2015

Be aware that the COM2x1:0 bits are not double buffered together with the compare value. Changing the
COM2x1:0 bits will take effect immediately.

17.6 Compare Match Output unit

The Compare Output mode (COM2x1:0) bits have two functions. The Waveform Generator uses the COM2x1:0
bits for defining the Output Compare (OC2x) state at the next compare match. Also, the COM2x1:0 bits control
the OC2x pin output source. Figure 17-4 shows a simplified schematic of the logic affected by the COM2x1:0 bit
setting. The 1/0O Registers, /O bits, and 1/O pins in the figure are shown in bold. Only the parts of the general I/O
Port Control Registers (DDR and PORT) that are affected by the COM2x1:0 bits are shown. When referring to

the OC2x state, the reference is for the internal OC2x Register, not the OC2x pin.

Figure 17-4. Compare Match Output unit, schematic.

=5

COMnx1
COMnNX0 Waveform D Q
FOCnx Generator
1
| OCnx
A OCnx 0 I/ Pin
3
m PORT
<
%
[a) » D Q
 J DDR
clk,q

The general 1/0 port function is overridden by the Output Compare (OC2x) from the Waveform Generator if
either of the COM2x1:0 bits are set. However, the OC2x pin direction (input or output) is still controlled by the
Data Direction Register (DDR) for the port pin. The Data Direction Register bit for the OC2x pin (DDR_OC2x)
must be set as output before the OC2x value is visible on the pin. The port override function is independent of
the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OC2x state before the output is enabled.
Note that some COM2x1:0 bit settings are reserved for certain modes of operation. See "Register description”
on page 151.

17.6.1 Compare Output Mode and Waveform Generation

The Waveform Generator uses the COM2x1:0 bits differently in normal, CTC, and PWM modes. For all modes,
setting the COM2x1:0 = 0 tells the Waveform Generator that no action on the OC2x Register is to be performed
on the next compare match. For compare output actions in the non-PWM modes refer to Table 17-5 on page
152. For fast PWM mode, refer to Table 17-6 on page 152, and for phase correct PWM refer to Table 17-7 on
page 153.

A change of the COM2x1:0 bits state will have effect at the first compare match after the bits are written. For
non-PWM modes, the action can be forced to have immediate effect by using the FOC2x strobe bits.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 142

Atmel-8272G-AVR-01/2015

17.7

17.71

17.7.2

Atmel

Modes of operation

The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins, is defined by
the combination of the Waveform Generation mode (WGM22:0) and Compare Output mode (COM2x1:0) bits.
The Compare Output mode bits do not affect the counting sequence, while the Waveform Generation mode bits
do. The COM2x1:0 bits control whether the PWM output generated should be inverted or not (inverted or non-
inverted PWM). For non-PWM modes the COM2x1:0 bits control whether the output should be set, cleared, or
toggled at a compare match (See “Compare Match Output unit” on page 142).

For detailed timing information refer to "Timer/Counter Timing diagrams” on page 147.

Normal Mode

The simplest mode of operation is the Normal mode (WGM22:0 = 0). In this mode the counting direction is
always up (incrementing), and no counter clear is performed. The counter simply overruns when it passes its
maximum 8-bit value (TOP = OxFF) and then restarts from the bottom (0x00). In normal operation the
Timer/Counter Overflow Flag (TOV2) will be set in the same timer clock cycle as the TCNT2 becomes zero. The
TOV2 Flag in this case behaves like a ninth bit, except that it is only set, not cleared. However, combined with
the timer overflow interrupt that automatically clears the TOV2 Flag, the timer resolution can be increased by
software. There are no special cases to consider in the Normal mode, a new counter value can be written
anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the Output Compare to
generate waveforms in Normal mode is not recommended, since this will occupy too much of the CPU time.

Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGM22:0 = 2), the OCR2A Register is used to manipulate the
counter resolution. In CTC mode the counter is cleared to zero when the counter value (TCNT2) matches the
OCR2A. The OCR2A defines the top value for the counter, hence also its resolution. This mode allows greater
control of the compare match output frequency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Table 17-5 on page 143. The counter value (TCNT2)
increases until a compare match occurs between TCNT2 and OCR2A, and then counter (TCNT2) is cleared.

Figure 17-5. CTC mode, timing diagram.

/ / / v
el

OCnx Interrupt Flag Set

-

(COMNx1:0 = 1)

Period I 1 I 2 I 3 I 4 I

An interrupt can be generated each time the counter value reaches the TOP value by using the OCF2A Flag. If
the interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. However,
changing TOP to a value close to BOTTOM when the counter is running with none or a low prescaler value must
be done with care since the CTC mode does not have the double buffering feature. If the new value written to
OCRZ2A is lower than the current value of TCNT2, the counter will miss the compare match. The counter will
then have to count to its maximum value (0xFF) and wrap around starting at 0x00 before the compare match
can occur.

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)]

Atmel-8272G-AVR-01/2015

143

17.7.3

For generating a waveform output in CTC mode, the OC2A output can be set to toggle its logical level on each
compare match by setting the Compare Output mode bits to toggle mode (COM2A1:0 = 1). The OC2A value will
not be visible on the port pin unless the data direction for the pin is set to output. The waveform generated will
have a maximum frequency of focop = T 110/2 Wwhen OCR2A is set to zero (0x00). The waveform frequency is
defined by the following equation: -

P _ Jeik_io
OCnx 2N .(1+ OCRnx)

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

As for the Normal mode of operation, the TOV2 Flag is set in the same timer clock cycle that the counter counts
from MAX to 0x00.

Fast PWM mode

The fast Pulse Width Modulation or fast PWM mode (WGM22:0 = 3 or 7) provides a high frequency PWM
waveform generation option. The fast PWM differs from the other PWM option by its single-slope operation. The
counter counts from BOTTOM to TOP then restarts from BOTTOM. TOP is defined as OxFF when WGM22:0 =
3, and OCR2A when WGM22:0 = 7. In non-inverting Compare Output mode, the Output Compare (OC2x) is
cleared on the compare match between TCNT2 and OCR2x, and set at BOTTOM. In inverting Compare Output
mode, the output is set on compare match and cleared at BOTTOM. Due to the single-slope operation, the
operating frequency of the fast PWM mode can be twice as high as the phase correct PWM mode that uses
dual-slope operation. This high frequency makes the fast PWM mode well suited for power regulation,
rectification, and DAC applications. High frequency allows physically small sized external components (coils,
capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the TOP value. The counter is
then cleared at the following timer clock cycle. The timing diagram for the fast PWM mode is shown in Figure
17-6 on page 144. The TCNT2 value is in the timing diagram shown as a histogram for illustrating the single-
slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks
on the TCNT2 slopes represent compare matches between OCR2x and TCNT2.

Figure 17-6. Fast PWM mode, timing diagram.

OCRnXx Interrupt Flag Set

OCRnx Update and
TOVn Interrupt Flag Set

AN /
m//////
OCnx (COMNx1:0 = 2)

OCnx |_| (COMNx1:0 = 3)
Periodl«—ll2l3l4l5lel7—>|

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches TOP. If the interrupt is enabled,
the interrupt handler routine can be used for updating the compare value.

AtmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 144

Atmel-8272G-AVR-01/2015

17.7.4

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2x pin. Setting the
COM2x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output can be generated by
setting the COM2x1:0 to three. TOP is defined as OxFF when WGM2:0 = 3, and OCR2A when WGM2:0 =7
(See Table 17-3 on page 151). The actual OC2x value will only be visible on the port pin if the data direction for
the port pin is set as output. The PWM waveform is generated by setting (or clearing) the OC2x Register at the
compare match between OCR2x and TCNTZ2, and clearing (or setting) the OC2x Register at the timer clock
cycle the counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

_ Jaw o
Tocnxpwm = 3288

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM waveform output
in the fast PWM mode. If the OCR2A is set equal to BOTTOM, the output will be a narrow spike for each MAX+1
timer clock cycle. Setting the OCR2A equal to MAX will result in a constantly high or low output (depending on

the polarity of the output set by the COM2A1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OC2x to
toggle its logical level on each compare match (COM2x1:0 = 1). The waveform generated will have a maximum
frequency of f ., = fy 110/2 when OCR2A is set to zero. This feature is similar to the OC2A toggle in CTC mode,
except the double buffer feature of the Output Compare unit is enabled in the fast PWM mode.

Phase Correct PWM mode

The phase correct PWM mode (WGM22:0 = 1 or 5) provides a high resolution phase correct PWM waveform
generation option. The phase correct PWM mode is based on a dual-slope operation. The counter counts
repeatedly from BOTTOM to TOP and then from TOP to BOTTOM. TOP is defined as OxFF when WGM22:0 =
1, and OCR2A when WGM22:0 = 5. In non-inverting Compare Output mode, the Output Compare (OC2x) is
cleared on the compare match between TCNT2 and OCR2x while upcounting, and set on the compare match
while downcounting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation has
lower maximum operation frequency than single slope operation. However, due to the symmetric feature of the
dual-slope PWM modes, these modes are preferred for motor control applications.

In phase correct PWM mode the counter is incremented until the counter value matches TOP. When the
counter reaches TOP, it changes the count direction. The TCNT2 value will be equal to TOP for one timer clock
cycle. The timing diagram for the phase correct PWM mode is shown on Figure 17-7. The TCNT2 value is in the
timing diagram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-
inverted and inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes represent compare
matches between OCR2x and TCNT2.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 145

Atmel-8272G-AVR-01/2015

Figure 17-7. Phase Correct PWM mode, timing diagram.

OCnx Interrupt Flag Set

OCRnx Update

TOVn Interrupt Flag Set

Y \/

w /IN TN N

OCnx |_| |_ (COMnNx1:0 = 2)
OCnx |_| |_| |— (COMNX1:0 = 3)
Period I 1 ~I 2 ~I 3 ~I

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOTTOM. The Interrupt Flag
can be used to generate an interrupt each time the counter reaches the BOTTOM value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the OC2x pin. Setting
the COM2x1:0 bits to two will produce a non-inverted PWM. An inverted PWM output can be generated by
setting the COM2x1:0 to three. TOP is defined as OxFF when WGM2:0 = 3, and OCR2A when WGM2:0 =7
(See Table 17-4 on page 152). The actual OC2x value will only be visible on the port pin if the data direction for
the port pin is set as output. The PWM waveform is generated by clearing (or setting) the OC2x Register at the
compare match between OCR2x and TCNT2 when the counter increments, and setting (or clearing) the OC2x
Register at compare match between OCR2x and TCNT2 when the counter decrements. The PWM frequency
for the output when using phase correct PWM can be calculated by the following equation:

_ Ja o
fOCnxPCPWM - N-510

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM waveform output
in the phase correct PWM mode. If the OCR2A is set equal to BOTTOM, the output will be continuously low and
if set equal to MAX the output will be continuously high for non-inverted PWM mode. For inverted PWM the
output will have the opposite logic values.

At the very start of period 2 in Figure 17-7 on page 146 OCnx has a transition from high to low even though
there is no Compare Match. The point of this transition is to guarantee symmetry around BOTTOM. There are
two cases that give a transition without Compare Match.

e OCR2A changes its value from MAX, like in Figure 17-7 on page 146. When the OCR2A value is MAX the
OCn pin value is the same as the result of a down-counting compare match. To ensure symmetry around
BOTTOM the OCn value at MAX must correspond to the result of an up-counting Compare Match

e The timer starts counting from a value higher than the one in OCR2A, and for that reason misses the
Compare Match and hence the OCn change that would have happened on the way up

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 146

Atmel-8272G-AVR-01/2015

17.8 Timer/Counter Timing diagrams

The following figures show the Timer/Counter in synchronous mode, and the timer clock (clky,) is therefore
shown as a clock enable signal. In asynchronous mode, clk;,o should be replaced by the Timer/Counter
Oscillator clock. The figures include information on when Interrupt Flags are set. Figure 17-8 on page 147
contains timing data for basic Timer/Counter operation. The figure shows the count sequence close to the MAX
value in all modes other than phase correct PWM mode.

Figure 17-8. Timer/Counter Timing diagram, no prescaling.

clk

110

clky,
(clk,o/1)

TCNTn X MAX -1 X MAX BOTTOM X BOTTOM + 1

TOVn

Figure 17-9 on page 147 shows the same timing data, but with the prescaler enabled.

Figure 17-9. Timer/Counter Timing diagram, with prescaler (f;, ,/8).

e W
(cflil.g/%) F F F

TCNTn X MAX -1 X MAX BOTTOM X BOTTOM + 1

TOVn

Figure 17-10 on page 148 shows the setting of OCF2A in all modes except CTC mode.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 147

Atmel-8272G-AVR-01/2015

Figure 17-10. Timer/Counter Timing diagram, setting of OCF2A, with prescaler (f ;,0/8)-

. IR
(ctltlit,(glns) F F F F

OCRNx OCRNnx +1 OCRNnx + 2

TCNTn X OCRNnx -1

——

OCRnNx OCRNx Value

OCFnx

Figure 17-11 on page 148 shows the setting of OCF2A and the clearing of TCNT2 in CTC mode.

Figure 17-11. Timer/Counter Timing diagram, Clear Timer on Compare Match mode, with prescaler (f ,,0/8)-

o AT AT
(c?iflf"m F F F F

TCNTn
(CTC)

X TOP -1 X TOP BOTTOM BOTTOM + 1

—

OCRnNx TOP

OCFnx

17.9 Asynchronous Operation of Timer/Counter2
When Timer/Counter2 operates asynchronously, some considerations must be taken.

e Warning: When switching between asynchronous and synchronous clocking of Timer/Counter2, the Timer
Registers TCNT2, OCR2x, and TCCR2x might be corrupted. A safe procedure for switching clock source
is:

a. Disable the Timer/Counter2 interrupts by clearing OCIE2x and TOIE2.

Select clock source by setting AS2 as appropriate.

Write new values to TCNT2, OCR2x, and TCCR2x.

To switch to asynchronous operation: Wait for TCN2UB, OCR2xUB, and TCR2xUB.

Clear the Timer/Counter2 Interrupt Flags.

6. Enable interrupts, if needed.
e The CPU main clock frequency must be more than four times the Oscillator frequency

e When writing to one of the registers TCNT2, OCR2x, or TCCR2x, the value is transferred to a temporary
register, and latched after two positive edges on TOSC1. The user should not write a new value before the
contents of the temporary register have been transferred to its destination. Each of the five mentioned

Al

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 148

Atmel-8272G-AVR-01/2015

Atmel

registers have their individual temporary register, which means that e.g. writing to TCNT2 does not disturb
an OCR2x write in progress. To detect that a transfer to the destination register has taken place, the
Asynchronous Status Register — ASSR has been implemented

When entering Power-save or ADC Noise Reduction mode after having written to TCNT2, OCR2x, or
TCCR2x, the user must wait until the written register has been updated if Timer/Counter2 is used to wake
up the device. Otherwise, the MCU will enter sleep mode before the changes are effective. This is
particularly important if any of the Output Compare2 interrupt is used to wake up the device, since the
Output Compare function is disabled during writing to OCR2x or TCNTZ2. If the write cycle is not finished,
and the MCU enters sleep mode before the corresponding OCR2xUB bit returns to zero, the device will
never receive a compare match interrupt, and the MCU will not wake up

If Timer/Counter2 is used to wake the device up from Power-save or ADC Noise Reduction mode,
precautions must be taken if the user wants to re-enter one of these modes: The interrupt logic needs one
TOSC1 cycle to be reset. If the time between wake-up and re-entering sleep mode is less than one
TOSC1 cycle, the interrupt will not occur, and the device will fail to wake up. If the user is in doubt whether
the time before re-entering Power-save or ADC Noise Reduction mode is sufficient, the following
algorithm can be used to ensure that one TOSC1 cycle has elapsed:

Write a value to TCCR2x, TCNT2, or OCR2x.
7. Wait until the corresponding Update Busy Flag in ASSR returns to zero.
8. Enter Power-save or ADC Noise Reduction mode.

When the asynchronous operation is selected, the 32.768kHz Oscillator for Timer/Counter2 is always
running, except in Power-down and Standby modes. After a Power-up Reset or wake-up from Power-
down or Standby mode, the user should be aware of the fact that this Oscillator might take as long as one
second to stabilize. The user is advised to wait for at least one second before using Timer/Counter2 after
power-up or wake-up from Power-down or Standby mode. The contents of all Timer/Counter2 Registers
must be considered lost after a wake-up from Power-down or Standby mode due to unstable clock signal
upon start-up, no matter whether the Oscillator is in use or a clock signal is applied to the TOSC1 pin

Description of wake up from Power-save or ADC Noise Reduction mode when the timer is clocked
asynchronously: When the interrupt condition is met, the wake up process is started on the following cycle
of the timer clock, that is, the timer is always advanced by at least one before the processor can read the
counter value. After wake-up, the MCU is halted for four cycles, it executes the interrupt routine, and
resumes execution from the instruction following SLEEP

Reading of the TCNT2 Register shortly after wake-up from Power-save may give an incorrect result.
Since TCNT2 is clocked on the asynchronous TOSC clock, reading TCNT2 must be done through a
register synchronized to the internal I/0O clock domain. Synchronization takes place for every rising
TOSC1 edge. When waking up from Power-save mode, and the I/O clock (clk;,) again becomes active,
TCNT2 will read as the previous value (before entering sleep) until the next rising TOSC1 edge. The
phase of the TOSC clock after waking up from Power-save mode is essentially unpredictable, as it
depends on the wake-up time. The recommended procedure for reading TCNT2 is thus as follows:

Write any value to either of the registers OCR2x or TCCR2x.
9. Wait for the corresponding Update Busy Flag to be cleared.
10. Read TCNT2.

During asynchronous operation, the synchronization of the Interrupt Flags for the asynchronous timer
takes 3 processor cycles plus one timer cycle. The timer is therefore advanced by at least one before the
processor can read the timer value causing the setting of the Interrupt Flag. The Output Compare pin is
changed on the timer clock and is not synchronized to the processor clock

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 149

Atmel-8272G-AVR-01/2015

17.10 Timer/Counter Prescaler

Figure 17-12. Prescaler for Timer/Counter2.

ck,o —» Clk
Clear 10-BIT T/C PRESCALER
TOSC1 —» A © o 3 @) 5
4 o 1s 18 |8 S
3 S5 R B B
AS2] © % % %_
PSRASY 0
lv y y YyYYV
CS20 ;x
CS21 r&
CS22

TIMER/COUNTER2 CLOCK SOURCE
clky,

The clock source for Timer/Counter2 is named clky,g. Clky,g is by default connected to the main system /O
clock clko. By setting the AS2 bit in ASSR, Timer/Counter2 is asynchronously clocked from the TOSC1 pin.
This enables use of Timer/Counter2 as a Real Time Counter (RTC). When AS2 is set, pins TOSC1 and TOSC2
are disconnected from Port C. A crystal can then be connected between the TOSC1 and TOSC2 pins to serve
as an independent clock source for Timer/Counter2. The Oscillator is optimized for use with a 32.768kHz
crystal. By setting the EXCLK bit in the ASSR a 32kHz external clock can be applied. See "ASSR —
Asynchronous Status Register” on page 155 for details.

For Timer/Counter2, the possible prescaled selections are: clky,4/8, Clkyog/32, clky,5/64, clk,g/128, clky,5/256,
and clkr,5/1024. Additionally, clky,g as well as 0 (stop) may be selected. Setting the PSRASY bit in GTCCR
resets the prescaler. This allows the user to operate with a predictable prescaler.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 150

Atmel-8272G-AVR-01/2015

17.11 Register description

17.11.1 TCCR2A - Timer/Counter Control Register A

Bit 7 6 5 4 3 2 1 0
(0xBO) | com2at1 | com2a0 | com2B1 | COM2BO | - - wGM21 | wem20 | TCCR2A
Read/Write RIW RIW R/W R/W R R RIW R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bits 7:6 — COM2A1:0: Compare Match Output A Mode

These bits control the Output Compare pin (OC2A) behavior. If one or both of the COM2A1:0 bits are set, the
OC2A output overrides the normal port functionality of the 1/O pin it is connected to. However, note that the Data
Direction Register (DDR) bit corresponding to the OC2A pin must be set in order to enable the output driver.

When OC2A is connected to the pin, the function of the COM2A1:0 bits depends on the WGM22:0 bit setting.
Table 17-2 shows the COM2A1:0 bit functionality when the WGM22:0 bits are set to a normal or CTC mode

(non-PWM).
Table 17-2. Compare Output mode, non-PWM mode.
COM2A1 COM2A0 Description
0 0 Normal port operation, OC2A disconnected.
0 1 Toggle OC2A on Compare Match
1 0 Clear OC2A on Compare Match
1 1 Set OC2A on Compare Match

Table 17-3 shows the COM2A1:0 bit functionality when the WGM21:0 bits are set to fast PWM mode.

Table 17-3. Compare Output mode, fast PWM mode ('),

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected.

0 1 WGM22 = 0: Normal Port Operation, OCOA Disconnected.
WGM22 = 1: Toggle OC2A on Compare Match.

1 0 Clear OC2A on Compare Match, set OC2A at BOTTOM,
(non-inverting mode).

1 1 Set OC2A on Compare Match, clear OC2A at BOTTOM,
(inverting mode).

Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the Compare Match is
ignored, but the set or clear is done at BOTTOM. See "Fast PWM mode” on page 144 for more details.

Table 17-4 shows the COM2A1:0 bit functionality when the WGM22:0 bits are set to phase correct PWM mode.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 151

Atmel-8272G-AVR-01/2015

Table 17-4. Compare Output mode, phase correct PWM mode (.

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected.

0 1 WGM22 = 0: Normal Port Operation, OC2A Disconnected.
WGM22 = 1: Toggle OC2A on Compare Match.
Clear OC2A on Compare Match when up-counting. Set OC2A on

1 0)
Compare Match when down-counting.

1 1 Set OC2A on Compare Match when up-counting. Clear OC2A on
Compare Match when down-counting.

Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the Compare Match is
ignored, but the set or clear is done at TOP. See "Phase Correct PWM mode” on page 145 for more details.

¢ Bits 5:4 - COM2B1:0: Compare Match Output B Mode

These bits control the Output Compare pin (OC2B) behavior. If one or both of the COM2B1:0 bits are set, the
OC2B output overrides the normal port functionality of the 1/0 pin it is connected to. However, note that the Data
Direction Register (DDR) bit corresponding to the OC2B pin must be set in order to enable the output driver.

When OC2B is connected to the pin, the function of the COM2B1:0 bits depends on the WGM22:0 bit setting.
Table 17-5 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to a normal or CTC mode

(non-PWM).
Table 17-5. Compare Output mode, non-PWM mode.
CcOoM2B1 COM2B0 Description
0 0 Normal port operation, OC2B disconnected.
0 1 Toggle OC2B on Compare Match
1 0 Clear OC2B on Compare Match
1 1 Set OC2B on Compare Match

Table 17-6 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to fast PWM mode.

Table 17-6. Compare Output mode, fast PWM mode ('),

comM2B1 COM2B0 Description
0 0 Normal port operation, OC2B disconnected.
0 1 Reserved

Clear OC2B on Compare Match, set OC2B at BOTTOM,
(non-inverting mode).

Set OC2B on Compare Match, clear OC2B at BOTTOM,
(inverting mode).

1 0

1 1

Note: 1. A special case occurs when OCR2B equals TOP and COM2B1 is set. In this case, the Compare Match is
ignored, but the set or clear is done at BOTTOM. See "Fast PWM mode” on page 144 for more details.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 152

Atmel-8272G-AVR-01/2015

Table 17-7 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to phase correct PWM mode.

Table 17-7. Compare Output mode, phase correct PWM mode (.

COM2B1 COM2B0 Description
0 0 Normal port operation, OC2B disconnected.
0 1 Reserved
Clear OC2B on Compare Match when up-counting. Set OC2B on
1 0 .
Compare Match when down-counting.
1 1 Set OC2B on Compare Match when up-counting. Clear OC2B on

Compare Match when down-counting.

Note: 1. A special case occurs when OCR2B equals TOP and COM2B1 is set. In this case, the Compare Match is
ignored, but the set or clear is done at TOP. See "Phase Correct PWM mode” on page 145 for more details.

* Bits 3:2 - Reserved
These bits are reserved and will always read as zero.

* Bits 1:0 - WGM21:0: Waveform Generation Mode

Combined with the WGM22 bit found in the TCCR2B Register, these bits control the counting sequence of the
counter, the source for maximum (TOP) counter value, and what type of waveform generation to be used, see
Table 17-8. Modes of operation supported by the Timer/Counter unit are: Normal mode (counter), Clear Timer
on Compare Match (CTC) mode, and two types of Pulse Width Modulation (PWM) modes (see "Modes of
operation” on page 143).

Table 17-8. Waveform Generation mode bit description.

Timer/Counter

Mode of Update of TOV Flag
Mode WGM2 WGM1 WGMO Operation OCRXx at Set on

0 0 0 0 Normal OxFF Immediate MAX

1 0 0 1 P, [l OXFF TOP BOTTOM
Correct

2 0 1 0 CTC OCRA | Immediate MAX

3 0 1 1 Fast PWM OxFF BOTTOM MAX

4 1 0 0 Reserved - - -

5 1 0 1 PRI, [l OCRA TOP BOTTOM
Correct

6 1 1 0 Reserved - - -

7 1 1 1 Fast PWM OCRA BOTTOM TOP

Notes: 1. MAX= 0xFF
2. BOTTOM= 0x00

17.11.2 TCCR2B - Timer/Counter Control Register B

Bit 7 6 5 4 3 2 1 0
(0xB1) | Foc2a | Foc2s | = | = | weMm22 cs22 cs21 cs20 | TccrzB
Read/Write w w R R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 153

Atmel-8272G-AVR-01/2015

e Bit 7 - FOC2A: Force Output Compare A
The FOC2A bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when TCCR2B is written
when operating in PWM mode. When writing a logical one to the FOC2A bit, an immediate Compare Match is
forced on the Waveform Generation unit. The OC2A output is changed according to its COM2A1:0 bits setting.
Note that the FOC2A bit is implemented as a strobe. Therefore it is the value present in the COM2A1:0 bits that
determines the effect of the forced compare.

A FOC2A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCR2A as TOP.
The FOC2A bit is always read as zero.

* Bit 6 —- FOC2B: Force Output Compare B
The FOC2B bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when TCCR2B is written
when operating in PWM mode. When writing a logical one to the FOC2B bit, an immediate Compare Match is
forced on the Waveform Generation unit. The OC2B output is changed according to its COM2B1:0 bits setting.
Note that the FOC2B bit is implemented as a strobe. Therefore it is the value present in the COM2B1:0 bits that
determines the effect of the forced compare.

A FOCZ2B strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCR2B as TOP.
The FOC2B bit is always read as zero.

* Bits 5:4 — Reserved
These bits are reserved and will always read as zero.

* Bit 3 - WGM22: Waveform Generation Mode
See the description in the "TCCR2A — Timer/Counter Control Register A” on page 151.

e Bit 2:0 - CS22:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter, see Table 17-9 on page
154,
Table 17-9. Clock Select bit description.

CS22 Ccs21 CS20 Description
0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clktog/(No prescaling)
0 1 0 clkog/8 (From prescaler)
0 1 1 clky,5/32 (From prescaler)
1 0 0 clktog/64 (From prescaler)
1 0 1 clkr,5/128 (From prescaler)
1 1 0 clky,5/256 (From prescaler)
1 1 1 clky,5/1024 (From prescaler)

17.11.3 TCNT2 - Timer/Counter Register

Bit 7 6 5 4 3 2 1 0
(0xB2) | TCNT2[7:0] | Tont2
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 154
Atmel-8272G-AVR-01/2015

The Timer/Counter Register gives direct access, both for read and write operations, to the Timer/Counter unit 8-
bit counter. Writing to the TCNT2 Register blocks (removes) the Compare Match on the following timer clock.
Modifying the counter (TCNT2) while the counter is running, introduces a risk of missing a Compare Match
between TCNT2 and the OCR2x Registers.

17.11.4 OCR2A - Output Compare Register A

Bit 7 6 5 4 3 2 1 0

(0xB3) | OCR2A[7:0] | ocr2a
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register A contains an 8-bit value that is continuously compared with the counter value
(TCNT2). A match can be used to generate an Output Compare interrupt, or to generate a waveform output on
the OC2A pin.

17.11.5 OCR2B - Output Compare Register B

Bit 7 6 5 4 3 2 1 0

(0xB4) | OCR2B[7:0] | ocrze
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register B contains an 8-bit value that is continuously compared with the counter value
(TCNT2). A match can be used to generate an Output Compare interrupt, or to generate a waveform output on
the OC2B pin.

17.11.6 ASSR - Asynchronous Status Register

Bit 7 6 5 4 3 2 1 0
(0xB6) | - | ExcLk | As2 | TCN2UB | OCR2AUB | OCR2BUB | TCR2AUB | TCR2BUB | ASSR
Read/Write R R/W R/W R R R R R
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 6 - EXCLK: Enable External Clock Input

When EXCLK is written to one, and asynchronous clock is selected, the external clock input buffer is enabled
and an external clock can be input on Timer Oscillator 1 (TOSC1) pin instead of a 32kHz crystal. Writing to
EXCLK should be done before asynchronous operation is selected. Note that the crystal Oscillator will only run
when this bit is zero.

* Bit 5 - AS2: Asynchronous Timer/Counter2

When AS2 is written to zero, Timer/Counter2 is clocked from the I/O clock, clk,o. When AS2 is written to one,
Timer/Counter2 is clocked from a crystal Oscillator connected to the Timer Oscillator 1 (TOSC1) pin. When the
value of AS2 is changed, the contents of TCNT2, OCR2A, OCR2B, TCCR2A and TCCR2B might be corrupted.

¢ Bit 4 —- TCN2UB: Timer/Counter2 Update Busy

When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes set. When TCNT2 has
been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit
indicates that TCNT2 is ready to be updated with a new value.

* Bit 3 - OCR2AUB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR2A is written, this bit becomes set. When OCR2A has
been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit
indicates that OCR2A is ready to be updated with a new value.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 155

Atmel-8272G-AVR-01/2015

¢ Bit 2 - OCR2BUB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR2B is written, this bit becomes set. When OCR2B has
been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit
indicates that OCR2B is ready to be updated with a new value.

¢ Bit 1 - TCR2AUB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2A is written, this bit becomes set. When TCCR2A
has been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit
indicates that TCCR2A is ready to be updated with a new value.

¢ Bit 0 —- TCR2BUB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2B is written, this bit becomes set. When TCCR2B
has been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit
indicates that TCCR2B is ready to be updated with a new value.

If a write is performed to any of the five Timer/Counter2 Registers while its update busy flag is set, the updated
value might get corrupted and cause an unintentional interrupt to occur.

The mechanisms for reading TCNT2, OCR2A, OCR2B, TCCR2A and TCCR2B are different. When reading
TCNT2, the actual timer value is read. When reading OCR2A, OCR2B, TCCR2A and TCCR2B the value in the
temporary storage register is read.

17.11.7 TIMSK2 — Timer/Counter2 Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0
(0x70) Il - | - | - | - | = | OCIE2B OCIE2A TOIE2 | TIMSK2
Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bit 2 - OCIE2B: Timer/Counter2 Output Compare Match B Interrupt Enable

When the OCIE2B bit is written to one and the I-bit in the Status Register is set (one), the Timer/Counter2
Compare Match B interrupt is enabled. The corresponding interrupt is executed if a compare match in
Timer/Counter2 occurs, that is, when the OCF2B bit is set in the Timer/Counter 2 Interrupt Flag Register —
TIFR2.

¢ Bit 1 — OCIE2A: Timer/Counter2 Output Compare Match A Interrupt Enable

When the OCIE2A bit is written to one and the I-bit in the Status Register is set (one), the Timer/Counter2
Compare Match A interrupt is enabled. The corresponding interrupt is executed if a compare match in
Timer/Counter2 occurs, that is, when the OCF2A bit is set in the Timer/Counter 2 Interrupt Flag Register —
TIFR2.

¢ Bit 0 — TOIE2: Timer/Counter2 Overflow Interrupt Enable

When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the Timer/Counter2
Overflow interrupt is enabled. The corresponding interrupt is executed if an overflow in Timer/Counter2 occurs,
that is, when the TOV2 bit is set in the Timer/Counter2 Interrupt Flag Register — TIFR2.

17.11.8 TIFR2 - Timer/Counter2 Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0
ox17 (0x37) | = | = | = | | = OCF2B OCF2A Tov2 | TIFR2
Read/Write R R R R R R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 156

Atmel-8272G-AVR-01/2015

¢ Bit 2 - OCF2B: Output Compare Flag 2 B

The OCF2B bit is set (one) when a compare match occurs between the Timer/Counter2 and the data in OCR2B
— Output Compare Register2. OCF2B is cleared by hardware when executing the corresponding interrupt
handling vector. Alternatively, OCF2B is cleared by writing a logic one to the flag. When the I-bit in SREG,
OCIE2B (Timer/Counter2 Compare match Interrupt Enable), and OCF2B are set (one), the Timer/Counter2
Compare match Interrupt is executed.

e Bit 1 — OCF2A: Output Compare Flag 2 A

The OCF2A bit is set (one) when a compare match occurs between the Timer/Counter2 and the data in OCR2A
— Output Compare Register2. OCF2A is cleared by hardware when executing the corresponding interrupt
handling vector. Alternatively, OCF2A is cleared by writing a logic one to the flag. When the I-bit in SREG,
OCIE2A (Timer/Counter2 Compare match Interrupt Enable), and OCF2A are set (one), the Timer/Counter2
Compare match Interrupt is executed.

¢ Bit 0 — TOV2: Timer/Counter2 Overflow Flag

The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared by hardware when
executing the corresponding interrupt handling vector. Alternatively, TOV2 is cleared by writing a logic one to
the flag. When the SREG I-bit, TOIE2A (Timer/Counter2 Overflow Interrupt Enable), and TOV2 are set (one),
the Timer/Counter2 Overflow interrupt is executed. In PWM mode, this bit is set when Timer/Counter2 changes
counting direction at 0x00.

17.11.9 GTCCR - General Timer/Counter Control Register

Bit 7 6 5 4 3 2 1 0
0x23(0x43) | TSM | = | = | = | = = PSRASY | PSRSYNC | GTCCR
Read/Write R/W R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bit 7 — TSM: Timer/Counter Synchronization mode

Writing the TSM bit to one, activates the Timer/Counter Synchronization mode. In this mode, the value that is
written to the PSRASY and PSRSYNC bits is kept, hence keeping the corresponding prescaler reset signals
asserted. This ensures that the corresponding Timer/Counters are halted and can be configured to the same
value without the risk of one of them advancing during configuration. When the TSM bit is written to zero, the
PSRASY and PSRSYNC bits are cleared by hardware, and the Timer/Counters start counting simultaneously.

¢ Bit 1 — PSRASY: Prescaler Reset Timer/Counter2

When this bit is one, the Timer/Counter2 prescaler will be reset. This bit is normally cleared immediately by
hardware. If the bit is written when Timer/Counter2 is operating in asynchronous mode, the bit will remain one
until the prescaler has been reset. The bit will not be cleared by hardware if the TSM bit is set. Refer to the
description of the “Bit 7 — TSM: Timer/Counter Synchronization Mode” on this page for a description of the
Timer/Counter Synchronization mode.

¢ Bit 0 — PSRSYNC: Prescaler Reset

When this bit is one, Timer/Counter1 and Timer/Counter0 prescaler will be Reset. This bit is normally cleared
immediately by hardware, except if the TSM bit is set. Note that Timer/Counter1 and Timer/Counter0 share the
same prescaler and a reset of this prescaler will affect both timers.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 157

Atmel-8272G-AVR-01/2015

18.

18.1

18.2

Atmel

SPI - Serial Peripheral Interface

Features

* Full-duplex, three-wire synchronous data transfer
* Master or Slave operation

* LSB first or MSB first data transfer

* Seven programmable bit rates

* End of Transmission Interrupt flag

* Write Collision flag protection

* Wake-up from Idle mode

* Double speed (CK/2) Master SPI mode

Overview

The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the Atmel
ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P and peripheral devices or between several AVR

devices.

USART can also be used in Master SPI mode, see "USART in SPI mode” on page 194.
The Power Reduction SPI bit, PRSPI, in "PRR0 — Power Reduction Register 0” on page 48 must be written to

zero to enable SPI module.

Figure 18-1. SPI block diagram (")

| O 2
MISO
y =0
M MOSI
XTAL MSB LSB o -
e . ® s O
l 8 BIT SHIFT REGISTER o]
READ DATA BUFFER 3
DIVIDER &
1214/8/16/32/64/128 ‘ E
v o
(6]
‘v v CLOCK z
SPI CLOCK (MASTER T
SELECT CLOCK ¢ S ScK
LOGIC M
><“— O“ 4 4 A Y3
N|lX| SS
55| & 3 -
x [a]
= owl X
26 8
MSTR
SPI CONTROL +SPE
= O x| 4 < < o
(o]
& o 8 g w8 B 2 F EE
(/)' ;V ‘ ‘ ‘ ‘ ‘% wl »n O = O O un o
[SPI STATUS REGISTER | [SPI CONTROL REGISTER
R 8 8,
A
v v

SPIINTERRUPT INTERNAL
REQUEST DATA BUS

Note: 1. Referto Figure 1-1 on page 3, and Table 14-6 on page 80 for SPI pin placement.

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 158

Atmel-8272G-AVR-01/2015

The interconnection between Master and Slave CPUs with SPI is shown in Figure 18-2. The system consists of
two shift Registers, and a Master clock generator. The SPI Master initiates the communication cycle when
pulling low the Slave Select Ss pin of the desired Slave. Master and Slave prepare the data to be sent in their
respective shift Registers, and the Master generates the required clock pulses on the SCK line to interchange
data. Data is always shifted from Master to Slave on the Master Out — Slave In, MOSI, line, and from Slave to
Master on the Master In — Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave
by pulling high the Slave Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This must be handled
by user software before communication can start. When this is done, writing a byte to the SPI Data Register
starts the SPI clock generator, and the hardware shifts the eight bits into the Slave. After shifting one byte, the
SPI clock generator stops, setting the end of Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in
the SPCR Register is set, an interrupt is requested. The Master may continue to shift the next byte by writing it
into SPDR, or signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be
kept in the Buffer Register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long as the SS pin is
driven high. In this state, software may update the contents of the SP| Data Register, SPDR, but the data will not
be shifted out by incoming clock pulses on the SCK pin until the SS pin is driven low. As one byte has been
completely shifted, the end of Transmission Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR
Register is set, an interrupt is requested. The Slave may continue to place new data to be sent into SPDR
before reading the incoming data. The last incoming byte will be kept in the Buffer Register for later use.

Figure 18-2. SPI Master-slave interconnection.
MSB MASTER LSB §M|so MISO§ MSB SLAVE LSB

4'8 BIT SHIFT REGISTER 8 BIT SHIFT REGISTER}‘—l

R MOSI_MOSI_,
SHIFT
‘ ENABLE
SPI iSCK SCK|
CLOCK GENERATOR > - !
'ss 58

The system is single buffered in the transmit direction and double buffered in the receive direction. This means
that bytes to be transmitted cannot be written to the SPI Data Register before the entire shift cycle is completed.
When receiving data, however, a received character must be read from the SPI| Data Register before the next
character has been completely shifted in. Otherwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure correct sampling
of the clock signal, the minimum low and high periods should be:

Low period: longer than two CPU clock cycles.
High period: longer than two CPU clock cycles.

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden according to
Table 18-1. For more details on automatic port overrides, refer to "Alternate Port Functions” on page 77.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 159

Atmel-8272G-AVR-01/2015

Table 18-1. SPI pin overrides (")

Pin Direction, Master SPI Direction, Slave SPI
MOSI User Defined Input
MISO Input User Defined

SCK User Defined Input

Ss User Defined Input

Note: 1. See "Alternate Functions of Port B” on page 80 for a detailed description of how to define the direction of the
user defined SPI pins.

The following code examples show how to initialize the SPI as a Master and how to perform a simple

transmission. DDR_SPI in the examples must be replaced by the actual Data Direction Register controlling the

SPI pins. DD_MOSI, DD_MISO and DD_SCK must be replaced by the actual data direction bits for these pins.

For example, if MOSI is placed on pin PB5, replace DD_MOSI with DDB5 and DDR_SPI with DDRB.

Assembly Code Example (")

SPI MasterInit:
; Set MOSI and SCK output, all others input

1di rl7, (1<<DD_MOSI) | (1<<DD_SCK)

out DDR SPI,rl7

; Enable SPI, Master, set clock rate fck/16

1di rl7, (1<<SPE) | (1<<MSTR) | (1<<SPRO)
out SPCR, rl7

ret

SPI MasterTransmit:
; Start transmission of data (rl6)
out SPDR, rl6

Wait Transmit:
; Wait for transmission complete

sbis SPSR, SPIF
rjmp Wait Transmit
ret

C Code Example (V

void SPI MasterInit (void)

{
/* Set MOSI and SCK output, all others input */
DDR_SPI = (1<<DD MOSI) | (1<<DD_SCK) ;
/* Enable SPI, Master, set clock rate fck/16 */
SPCR = (1<<SPE) | (1<<MSTR) | (1<<SPRO) ;

void SPI MasterTransmit (char cData)
{
/* Start transmission */
SPDR = cData;
/* Wait for transmission complete */
while (! (SPSR & (1<<SPIF)))

’

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 160

Atmel-8272G-AVR-01/2015

Note: 1. See “About code examples” on page 9.
The following code examples show how to initialize the SPI as a Slave and how to perform a simple reception.

Assembly Code Example (V)

SPI SlavelInit:
; Set MISO output, all others input

1di rl7, (1<<DD_MISO)
out DDR_SPI,rl7

; Enable SPI

1di rl7, (1<<SPE)

out SPCR, rl7

ret

SPI_SlaveReceive:
; Wait for reception complete

sbis SPSR, SPIF

rjmp SPI SlaveReceive
; Read received data and return

in r16,SPDR

ret

C Code Example ("

void SPI Slavelnit (void)
{

/* Set MISO output, all others input */
DDR_SPI = (1<<DD MISO) ;

/* Enable SPI */

SPCR = (1<<SPE);

char SPI SlaveReceive (void)
{
/* Wait for reception complete */
while (! (SPSR & (1<<SPIF)))
/* Return Data Register */
return SPDR;

Note: 1. See “About code examples” on page 9.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 161

Atmel-8272G-AVR-01/2015

18.3 SS pin functionality

18.3.1 Slave mode

When the SPI is configured as a Slave, the Slave Select (S_S) pin is always input. When SS is held low, the SPI
is activated, and MISO becomes an output if configured so by the user. All other pins are inputs. When SSis
driven high, all pins are inputs, and the SPI is passive, which means that it will not receive incoming data. Note
that the SPI logic will be reset once the SS pin is driven high.

The SS pin is useful for pacﬂetlbyte synchronization to keep the slave bit counter synchronous with the master
clock generator. When the SS pin is driven high, the SPI slave will immediately reset the send and receive logic,
and drop any partially received data in the Shift Register.

18.3.2 Master mode

When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the direction of the SS
pin.

If SS is configured as an output, the pin is a general output pin which does not affect the SPI system. Typically,
the pin will be driving the SS pin of the SPI Slave.

If SSis configured as an input, it must be held high to ensure Master SPI operation. If the SsS pin is driven low by
peripheral circuitry when the SPI is configured as a Master with the SS pin defined as an input, the SPI system
interprets this as another master selecting the SPI as a slave and starting to send data to it. To avoid bus
contention, the SPI system takes the following actions:

1. The MSTR bitin SPCR is cleared and the SPI system becomes a Slave. As a result of the SPI becoming
a Slave, the MOSI and SCK pins become inputs.
2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bitin SREG is set, the interrupt
routine will be executed.

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a possibility that SSis
driven low, the interrupt should always check that the MSTR bit is still set. If the MSTR bit has been cleared by
a slave select, it must be set by the user to re-enable SPI Master mode.

18.4 Data modes

There are four combinations of SCK phase and polarity with respect to serial data, which are determined by
control bits CPHA and CPOL. The SPI data transfer formats are shown in Figure 18-3 on page 163 and Figure
18-4 on page 163. Data bits are shifted out and latched in on opposite edges of the SCK signal, ensuring
sufficient time for data signals to stabilize. This is clearly seen by summarizing Table 18-3 on page 164 and
Table 18-4 on page 164, as done in Table 18-2 on page 163

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 162

Atmel-8272G-AVR-01/2015

Table 18-2. SPI modes.

SPI Mode Conditions Leading Edge Trailing Edge
0 CPOL=0, CPHA=0 Sample (Rising) Setup (Falling)
1 CPOL=0, CPHA=1 Setup (Rising) Sample (Falling)
2 CPOL=1, CPHA=0 Sample (Falling) Setup (Rising)
3 CPOL=1, CPHA=1 Setup (Falling) Sample (Rising)

Figure 18-3. SPI transfer format with CPHA = 0.

[~ SCK (CPOL = 0)
mode 0

gl
e L]
N

Y

SAMPLE |
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

L L) L) L L L
SESEEEEEEEEE
X H_ H_ A
H_ HC H O

A
3t

[s

MSB first (DORD = 0) MSB Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 LSB
LSB first (DORD =1) LSB Bit 1 Bit 2 Bit 3 Bit 4 Bit5 Bit 6 MSB

//L/’
B

Figure 18-4. SPI transfer format with CPHA = 1.

SCK (CPOL = 0)
mode 1

]
moes L

—

AN

SAMPLE |
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

L L L
L L L L
K KX
HOHCNA

<

L
L L
A
R

I

I

MSB first (DORD = 0) MSB Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 LSB
LSB first (DORD = 1) LSB Bit 1 Bit 2 Bit 3 Bit 4 Bit5 Bit 6 MSB

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 163

Atmel-8272G-AVR-01/2015

18.5 Register description

18.5.1 SPCR - SPI Control Register

Bit 7 6 5 4 3 2 1 0
0x2C (0x4C) | SPIE | SPE | DORD MSTR CPOL CPHA SPR1 SPRO | SPCR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — SPIE: SPI Interrupt Enable

This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if the Global
Interrupt Enable bit in SREG is set.

» Bit 6 — SPE: SPI Enable
When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI operations.

e Bit 5 - DORD: Data Order
When the DORD bit is written to one, the LSB of the data word is transmitted first.
When the DORD bit is written to zero, the MSB of the data word is transmitted first.

* Bit 4 — MSTR: Master/Slave Select

This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic zero. If SS is
configured as an input and is driven low while MSTR is set, MSTR will be cleared, and SPIF in SPSR will
become set. The user will then have to set MSTR to re-enable SPI Master mode.

¢ Bit 3 - CPOL: Clock Polarity

When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low when idle.
Refer to Figure 18-3 and Figure 18-4 for an example. The CPOL functionality is summarized below:
Table 18-3. CPOL functionality.

CPOL Leading Edge Trailing Edge
0 Rising Falling
1 Falling Rising

¢ Bit 2 - CPHA: Clock Phase

The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or trailing (last)
edge of SCK. Refer to Figure 18-3 and Figure 18-4 for an example. The CPOL functionality is summarized

below:
Table 18-4. CPHA functionality.
CPHA Leading Edge Trailing Edge
0 Sample Setup
1 Setup Sample
/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 164

Atmel-8272G-AVR-01/2015

¢ Bits 1:0 — SPR1, SPRO0: SPI Clock Rate Select 1 and 0

These two bits control the SCK rate of the device configured as a Master. SPR1 and SPRO have no effect on
the Slave. The relationship between SCK and the Oscillator Clock frequency f,..is shown in the following table:
Table 18-5. Relationship between SCK and the oscillator frequency.

SPI2X SPR1 SPRO SCK Frequency
0 0 0 foscld
0 0 1 f,s./16
0 1 0 f /64
0 1 1 fosc/128
1 0 0 fosc/2
1 0 1 fosc/8
1 1 0 fosc/32
1 1 1 fosc/64
18.5.2 SPSR - SPI Status Register
Bit 7 6 5 4 3 2 1 0
0x2D (0x4D) | SPIF | wcoL | = = = = = SP2X | SPSR
Read/Write R R R R R R R RIW
Initial Value 0 0 0 0 0 0 0 0
* Bit 7 — SPIF: SPI Interrupt Flag
When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if SPIE in SPCR is set and
global interrupts are enabled. If SS is an input and is driven low when the SPI is in Master mode, this will also
set the SPIF Flag. SPIF is cleared by hardware when executing the corresponding interrupt handling vector.
Alternatively, the SPIF bit is cleared by first reading the SPI Status Register with SPIF set, then accessing the
SPI Data Register (SPDR).
¢ Bit 6 — WCOL: Write COLlIision Flag
The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The WCOL bit (and the
SPIF bit) are cleared by first reading the SPI Status Register with WCOL set, and then accessing the SPI Data
Register.
* Bit 5:1 — Reserved
These bits are reserved and will always read as zero.
¢ Bit 0 — SPI2X: Double SPI Speed Bit
When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI is in Master
mode (see Table 18-5). This means that the minimum SCK period will be two CPU clock periods. When the SPI
is configured as Slave, the SPI is only guaranteed to work at f_. /4 or lower.
The SPl interface on the Atmel ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P is also used for
program memory and EEPROM downloading or uploading. See page 301 for serial programming and
verification.
/lt m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 165

Atmel-8272G-AVR-01/2015

18.5.3 SPDR - SPI Data Register

Bit 7 6 5 4 3 2 1 0

O0x2E (0x4E) | MSB | | LsB | SPDR
Read/Write R/W RIW RIW R/W R/W R/W R/W R/W

Initial Value X X X X X X X X Undefined

The SPI Data Register is a read/write register used for data transfer between the Register File and the SPI Shift
Register. Writing to the register initiates data transmission. Reading the register causes the Shift Register
Receive buffer to be read.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 166

Atmel-8272G-AVR-01/2015

19. USART
19.1 Features
* Full duplex operation (independent serial receive and transmit registers)
* Asynchronous or synchronous operation
* Master or Slave clocked synchronous operation
* High resolution baud rate generator
* Supports Serial Frames with 5, 6, 7, 8, or 9 data bits and 1 or 2 stop bits
* Odd or even parity generation and parity check supported by hardware
* Data OverRun detection
* Framing Error detection
* Noise filtering includes False Start bit detection and Digital Low Pass Filter
* Three separate interrupts on TX complete, TX Data Register Empty and RX Complete
* Multi-processor Communication mode
* Double Speed Asynchronous Communication mode
19.2 USART1 and USARTO
The Atmel ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P has two USART’s, USARTO and
USART1.
The functionality for all USART’s is described below, most register and bit references in this section are written
in general form. A lower case “n” replaces the USART number.
USARTO and USART1 have different I/O registers as shown in "Register summary” on page 628.
19.3 Overview
The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a highly flexible
serial communication device.
A simplified block diagram of the USART Transmitter is shown in Figure 19-1 on page 168. CPU accessible 1/0
Registers and 1/O pins are shown in bold.
The Power Reduction USARTO bit, PRUSARTO, in "PRRO — Power Reduction Register 0” on page 48 must be
disabled by writing a logical zero to it.
The Power Reduction USART1 bit, PRUSART1, in "PRR1 — Power Reduction Register 1” on page 49 must be
disabled by writing a logical zero to it.
/It m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 167

Atmel-8272G-AVR-01/2015

19.4

Atmel

Figure 19-1. USART block diagram (",
T T T T T ‘______________cEck_GZnEEor—l
| UBRR[H:L] |
| [oe} |
| v |
: BAUD RATE GENERATOR -t :
I v I
' e oacke—en] 1,
I A »| conTrROL [*1™] XCK
| |
:'" _________ -'_______________?ra_nsTniEer_:
| UDR (Transmit) CON?ROL |
I * PARITY I
ol | GENERATOR |
8 : TRANSMIT SHIFT REGISTER CO:\]I'II"\:?OL : | TxD
< >
= - v _ L ____ 1
<D(' Receiver |
| > cLock RX |
| RECOVERY CONTROL |
| |
I |—> DATA PIN I
] _—:D_' RECEIVE SHIFT REGISTER RECOVERY -t CONTROL i RxD
| |
| v J |
| UDR (Receive) Cf{éz%R |
| |
[r - __ I
UCSRA UCSRB UCSRC
Note: 1. See Figure 1-1 on page 3 and "Alternate Port Functions” on page 77 for USART pin placement.

The dashed boxes in the block diagram separate the three main parts of the USART (listed from the top): Clock
Generator, Transmitter and Receiver. Control Registers are shared by all units. The Clock Generation logic
consists of synchronization logic for external clock input used by synchronous slave operation, and the baud
rate generator. The XCKn (Transfer Clock) pin is only used by synchronous transfer mode. The Transmitter
consists of a single write buffer, a serial Shift Register, Parity Generator and Control logic for handling different
serial frame formats. The write buffer allows a continuous transfer of data without any delay between frames.
The Receiver is the most complex part of the USART module due to its clock and data recovery units. The
recovery units are used for asynchronous data reception. In addition to the recovery units, the Receiver includes
a Parity Checker, Control logic, a Shift Register and a two level receive buffer (UDRn). The Receiver supports
the same frame formats as the Transmitter, and can detect Frame Error, Data OverRun and Parity Errors.

Clock Generation

The Clock Generation logic generates the base clock for the Transmitter and Receiver. The USARTn supports
four modes of clock operation: Normal asynchronous, Double Speed asynchronous, Master synchronous and
Slave synchronous mode. The UMSELn bit in USART Control and Status Register C (UCSRNC) selects
between asynchronous and synchronous operation. Double Speed (asynchronous mode only) is controlled by
the U2Xn found in the UCSRNA Register. When using synchronous mode (UMSELn = 1), the Data Direction
Register for the XCKn pin (DDR_XCKn) controls whether the clock source is internal (Master mode) or external
(Slave mode). The XCKn pin is only active when using synchronous mode.

Figure 19-2 shows a block diagram of the clock generation logic.

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)]

Atmel-8272G-AVR-01/2015

168

19.4.1

Figure 19-2. Clock Generation Logic, block diagram.

UBRR
u2x
fosc

Prescaling UBRR+1 /2 ' I ‘

Down-Counter 0
A

0OSC — txclk
DDR_XCK
A }
Sync . Edge .
xcki |_> Register | Detector ™o

XCK Iy
Pin | xcko y >

f

DDR_XCK UCPOL

UMSEL

rxclk

Signal description:
txclk Transmitter clock (Internal Signal).
rxclk Receiver base clock (Internal Signal).
xcki Input from XCK pin (internal Signal). Used for synchronous slave operation.

xcko Clock output to XCK pin (Internal Signal). Used for synchronous master
operation.

fosc XTAL pin frequency (System Clock).

Internal Clock Generation — The Baud Rate Generator

Internal clock generation is used for the asynchronous and the synchronous master modes of operation. The
description in this section refers to Figure 19-2 on page 169.

The USART Baud Rate Register (UBRRn) and the down-counter connected to it function as a programmable
prescaler or baud rate generator. The down-counter, running at system clock (f..), is loaded with the UBRRn
value each time the counter has counted down to zero or when the UBRRnL Register is written. A clock is
generated each time the counter reaches zero. This clock is the baud rate generator clock output (=
f.sc/(UBRRN+1)). The Transmitter divides the baud rate generator clock output by 2, 8, or 16 depending on
mode. The baud rate generator output is used directly by the Receiver’s clock and data recovery units.
However, the recovery units use a state machine that uses 2, 8, or 16 states depending on mode set by the

state of the UMSELn, U2Xn and DDR_XCKn bits.

Table 19-1 on page 170 contains equations for calculating the baud rate (in bits per second) and for calculating
the UBRRn value for each mode of operation using an internally generated clock source.

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)

BAUDBaud rate (in bits per second, bps).

foscSystem Oscillator clock frequency.

UBRRNContents of the UBRRnH and UBRRnL Registers, (0-4095).

Some examples of UBRRn values for some system clock frequencies are found in Table 19-9 on page 190.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 169

Atmel-8272G-AVR-01/2015

Table 19-1. Equations for calculating baud rate register setting.
()
fOSC
UBRRn = ———————-1GBAUD—1
Asynchronous Normal B Josc
mode (U2Xn = 0) BAUD = 18 UBRRn T)
fOSC
UBRRn = 840D
Asynchronous Double Josc
Speed mode (U2Xn = 1) BAUD = 8(UBRRn+1)
fOSC
UBRRn = 5 540D
Synchronous Master _ Josc
mode BAUD = 2(UBRRn+1)

19.4.2 Double Speed Operation (U2Xn)

The transfer rate can be doubled by setting the U2Xn bit in UCSRnA. Setting this bit only has effect for the
asynchronous operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling the transfer rate
for asynchronous communication. Note however that the Receiver will in this case only use half the number of
samples (reduced from 16 to 8) for data sampling and clock recovery, and therefore a more accurate baud rate
setting and system clock are required when this mode is used. For the Transmitter, there are no downsides.

19.4.3 External Clock

External clocking is used by the synchronous slave modes of operation. The description in this section refers to
Figure 19-2 on page 169 for details.

External clock input from the XCKn pin is sampled by a synchronization register to minimize the chance of meta-
stability. The output from the synchronization register must then pass through an edge detector before it can be
used by the Transmitter and Receiver. This process introduces a two CPU clock period delay and therefore the
maximum external XCKn clock frequency is limited by the following equation:

fOSC

fxck <=7

Note that f .. depends on the stability of the system clock source. It is therefore recommended to add some
margin to avoid possible loss of data due to frequency variations.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 170

Atmel-8272G-AVR-01/2015

19.4.4 Synchronous Clock Operation

When synchronous mode is used (UMSELnN = 1), the XCKn pin will be used as either clock input (Slave) or clock
output (Master). The dependency between the clock edges and data sampling or data change is the same. The
basic principle is that data input (on RxDn) is sampled at the opposite XCKn clock edge of the edge the data
output (TxDn) is changed.

Figure 19-3. Synchronous mode XCKn timing.

UCPOL =1 XCK m

w00 X Y Y Y

| . Sample

UCPOL =0 XCK

womo Y Y Y Y

t Sample

The UCPOLN bit UCRSC selects which XCKn clock edge is used for data sampling and which is used for data
change. As Figure 19-3 on page 171 shows, when UCPOLn is zero the data will be changed at rising XCKn
edge and sampled at falling XCKn edge. If UCPOLn is set, the data will be changed at falling XCKn edge and
sampled at rising XCKn edge.

19.5 Frame formats

A serial frame is defined to be one character of data bits with synchronization bits (start and stop bits), and
optionally a parity bit for error checking. The USART accepts all 30 combinations of the following as valid frame
formats:

e One start bit

e 5,6,7,8, or9data bits

e No, even, or odd parity bit

e One or two stop bits
A frame starts with the start bit followed by the least significant data bit. Then the next data bits, up to a total of
nine, are succeeding, ending with the most significant bit. If enabled, the parity bit is inserted after the data bits,
before the stop bits. When a complete frame is transmitted, it can be directly followed by a new frame, or the

communication line can be set to an idle (high) state. Figure 19-4 on page 171 illustrates the possible
combinations of the frame formats. Bits inside brackets are optional.

Figure 19-4. Frame formats.

I FRAME |

(IDLE) \St/ 0 X 1 X 2 X 3 X 4 X[s] X [6]X[7] X [8]X[P] /Sp1 [sz]\ (St/IDLE)

StStart bit, always low.
(n)Data bits (0 to 8).
PParity bit. Can be odd or even.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 171

Atmel-8272G-AVR-01/2015

19.5.1

19.6

SpStop bit, always high.

IDLENOo transfers on the communication line (RxDn or TxDn). An IDLE line
must be high.

The frame format used by the USART is set by the UCSZn2:0, UPMn1:0 and USBSn bits in UCSRnB and
UCSRNC. The Receiver and Transmitter use the same setting. Note that changing the setting of any of these
bits will corrupt all ongoing communication for both the Receiver and Transmitter.

The USART Character SiZe (UCSZn2:0) bits select the number of data bits in the frame. The USART Parity
mode (UPMn1:0) bits enable and set the type of parity bit. The selection between one or two stop bits is done by
the USART Stop Bit Select (USBSn) bit. The Receiver ignores the second stop bit. An FE (Frame Error) will
therefore only be detected in the cases where the first stop bit is zero.

Parity Bit Calculation

The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the result of the
exclusive or is inverted. The relation between the parity bit and data bits is as follows:

even dn,1®-~~®d3@d2@d1®do®o
Poyg=d, 1©..0d3®dy®d;Ddy®1

P
P,qqParity bit using odd parity.

evenParity bit using even parity.

d,Data bit n of the character.

If used, the parity bit is located between the last data bit and first stop bit of a serial frame.

USART Initialization

The USART has to be initialized before any communication can take place. The initialization process normally
consists of setting the baud rate, setting frame format and enabling the Transmitter or the Receiver depending
on the usage. For interrupt driven USART operation, the Global Interrupt Flag should be cleared and the
USART interrupts should be disabled.

Before doing a re-initialization with changed baud rate or frame format, be sure that there are no ongoing
transmissions during the period the registers are changed. The TXCn Flag can be used to check that the
Transmitter has completed all transfers, and the RXC Flag can be used to check that there are no unread data
in the receive buffer. Note that the TXCn Flag must be cleared before each transmission (before UDRn is
written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C function that are equal
in functionality. The examples assume asynchronous operation using polling (no interrupts enabled) and a fixed

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 172

Atmel-8272G-AVR-01/2015

frame format. The baud rate is given as a function parameter. For the assembly code, the baud rate parameter
is assumed to be stored in the r17:r16 Registers.

Assembly Code Example

USART Init:
; Set baud rate

out UBRRnH, rl7

out UBRRnL, rlé6

; Enable receiver and transmitter

1di rl6e, (1<<RXENn) | (1<<TXENn)
out UCSRnB, rl6

; Set frame format: 8data, Z2stop bit

1di rl6, (1<<USBSn) | (3<<UCSZn0)
out UCSRnC, rl6

ret

C Code Example

void USART Init(unsigned int baud)

{
/* Set baud rate */

UBRRnH = (unsigned char) (baud>>8);
UBRRnL = (unsigned char)baud;

/* Enable receiver and transmitter */
UCSRnB = (1<<RXENn) | (1<<TXENn) ;

/* Set frame format: 8data, 2stop bit */
UCSRnC = (1<<USBSn) | (3<<UCSZn0) ;

Note: 1. See “About code examples” on page 9.

More advanced initialization routines can be made that include frame format as parameters, disable interrupts
and so on. However, many applications use a fixed setting of the baud and control registers, and for these types
of applications the initialization code can be placed directly in the main routine, or be combined with initialization
code for other I/O modules.

19.7 Data Transmission — The USART Transmitter

The USART Transmitter is enabled by setting the Transmit Enable (TXEN) bit in the UCSRnB Register. When
the Transmitter is enabled, the normal port operation of the TxDn pin is overridden by the USART and given the
function as the Transmitter’s serial output. The baud rate, mode of operation and frame format must be set up
once before doing any transmissions. If synchronous operation is used, the clock on the XCKn pin will be
overridden and used as transmission clock.

19.7.1 Sending Frames with 5 to 8 Data Bit

A data transmission is initiated by loading the transmit buffer with the data to be transmitted. The CPU can load
the transmit buffer by writing to the UDRn 1/O location. The buffered data in the transmit buffer will be moved to
the Shift Register when the Shift Register is ready to send a new frame. The Shift Register is loaded with new
data if it is in idle state (no ongoing transmission) or immediately after the last stop bit of the previous frame is
transmitted. When the Shift Register is loaded with new data, it will transfer one complete frame at the rate
given by the Baud Register, U2Xn bit or by XCKn depending on mode of operation.

The following code examples show a simple USART transmit function based on polling of the Data Register
Empty (UDREN) Flag. When using frames with less than eight bits, the most significant bits written to the UDRn

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 173

Atmel-8272G-AVR-01/2015

are ignored. The USART has to be initialized before the function can be used. For the assembly code, the data

19.7.2

Atmel

to be sent is assumed to be stored in Register R16.

Assembly Code Example (V

USART Transmit:
; Wait for empty transmit buffer

sbis UCSRnA, UDREN

rjmp USART Transmit

; Put data (rlé) into buffer, sends the data
out UDRn, rlo6

ret

C Code Example

void USART Transmit (unsigned char data)
{
/* Wait for empty transmit buffer */
while (! (UCSRnA & (1<<UDREn)))
/* Put data into buffer, sends the data */
UDRn = data;

Note: 1. See “About code examples” on page 9.

The function simply waits for the transmit buffer to be empty by checking the UDREn Flag, before loading it with
new data to be transmitted. If the Data Register Empty interrupt is utilized, the interrupt routine writes the data

into the buffer.

Sending Frames with 9 Data Bit

If 9-bit characters are used (UCSZn = 7), the ninth bit must be written to the TXB8 bit in UCSRnB before the low
byte of the character is written to UDRn. The following code examples show a transmit function that handles 9-
bit characters. For the assembly code, the data to be sent is assumed to be stored in registers R17:R16.

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 174

Atmel-8272G-AVR-01/2015

19.7.3

Assembly Code Example (%)

USART Transmit:
; Wait for empty transmit buffer

sbis UCSRnA, UDREN

rjmp USART Transmit

; Copy 9th bit from rl7 to TXBS8

cbi UCSRnB, TXB8

sbrc rl7,0

sbi UCSRnB, TXB8

; Put LSB data (rlé) into buffer, sends the data
out UDRn, rlo6

ret

C Code Example (V@)

void USART Transmit (unsigned int data)

{
/* Wait for empty transmit buffer */
while (! (UCSRnA & (1<<UDREn))))

/* Copy 9th bit to TXB8 */

UCSRnB &= ~ (1<<TXBS8) ;
if (data & 0x0100)
UCSRnB |= (1<<TXBS8):;

/* Put data into buffer, sends the data */
UDRn = data;

Notes: 1. These transmit functions are written to be general functions. They can be optimized if the contents of the
UCSRnB is static. For example, only the TXB8 bit of the UCSRnB Register is used after initialization.

2. See “About code examples” on page 9.

The ninth bit can be used for indicating an address frame when using multi processor communication mode or
for other protocol handling as for example synchronization.

Transmitter Flags and Interrupts

The USART Transmitter has two flags that indicate its state: USART Data Register Empty (UDREnN) and
Transmit Complete (TXCn). Both flags can be used for generating interrupts.

The Data Register Empty (UDREN) Flag indicates whether the transmit buffer is ready to receive new data. This
bit is set when the transmit buffer is empty, and cleared when the transmit buffer contains data to be transmitted
that has not yet been moved into the Shift Register. For compatibility with future devices, always write this bit to
zero when writing the UCSRnA Register.

When the Data Register Empty Interrupt Enable (UDRIEN) bit in UCSRnB is written to one, the USART Data
Register Empty Interrupt will be executed as long as UDRERn is set (provided that global interrupts are enabled).
UDREn is cleared by writing UDRn. When interrupt-driven data transmission is used, the Data Register Empty
interrupt routine must either write new data to UDRn in order to clear UDREn or disable the Data Register
Empty interrupt, otherwise a new interrupt will occur once the interrupt routine terminates.

The Transmit Complete (TXCn) Flag bit is set one when the entire frame in the Transmit Shift Register has been
shifted out and there are no new data currently present in the transmit buffer. The TXCn Flag bit is automatically
cleared when a transmit complete interrupt is executed, or it can be cleared by writing a one to its bit location.
The TXCn Flag is useful in half-duplex communication interfaces (like the RS-485 standard), where a

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 175

Atmel-8272G-AVR-01/2015

transmitting application must enter receive mode and free the communication bus immediately after completing
the transmission.

When the Transmit Compete Interrupt Enable (TXCIEn) bit in UCSRnB is set, the USART Transmit Complete
Interrupt will be executed when the TXCn Flag becomes set (provided that global interrupts are enabled). When
the transmit complete interrupt is used, the interrupt handling routine does not have to clear the TXCn Flag, this
is done automatically when the interrupt is executed.

19.7.4 Parity Generator

The Parity Generator calculates the parity bit for the serial frame data. When parity bit is enabled (UPMn1 = 1),
the transmitter control logic inserts the parity bit between the last data bit and the first stop bit of the frame that is
sent.

19.7.5 Disabling the Transmitter

The disabling of the Transmitter (setting the TXEN to zero) will not become effective until ongoing and pending
transmissions are completed, that is, when the Transmit Shift Register and Transmit Buffer Register do not
contain data to be transmitted. When disabled, the Transmitter will no longer override the TxDn pin.

19.8 Data Reception — The USART Receiver

The USART Receiver is enabled by writing the Receive Enable (RXENN) bit in the

UCSRnNB Register to one. When the Receiver is enabled, the normal pin operation of the RxDn pin is overridden
by the USART and given the function as the Receiver’s serial input. The baud rate, mode of operation and
frame format must be set up once before any serial reception can be done. If synchronous operation is used,
the clock on the XCKn pin will be used as transfer clock.

19.8.1 Receiving Frames with 5 to 8 Data Bits

The Receiver starts data reception when it detects a valid start bit. Each bit that follows the start bit will be
sampled at the baud rate or XCKn clock, and shifted into the Receive Shift Register until the first stop bit of a
frame is received. A second stop bit will be ignored by the Receiver. When the first stop bit is received, that is, a
complete serial frame is present in the Receive Shift Register, the contents of the Shift Register will be moved
into the receive buffer. The receive buffer can then be read by reading the UDRn I/O location.

The following code example shows a simple USART receive function based on polling of the Receive Complete
(RXCn) Flag. When using frames with less than eight bits the most significant bits of the data read from the
UDRnN will be masked to zero. The USART has to be initialized before the function can be used.

AtmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 176

Atmel-8272G-AVR-01/2015

Assembly Code Example ()

USART Receive:
; Wait for data to be received

sbis UCSRnA, RXCn

rjmp USART Receive

; Get and return received data from buffer
in rl6, UDRn

ret

C Code Example

unsigned char USART Receive(void)
{
/* Wait for data to be received */
while (! (UCSRnA & (1<<RXCn)))
/* Get and return received data from buffer */
return UDRn;

Note: 1. See “About code examples” on page 9.

The function simply waits for data to be present in the receive buffer by checking the RXCn Flag, before reading
the buffer and returning the value.

19.8.2 Receiving Frames with 9 Data Bits

If 9-bit characters are used (UCSZn=7) the ninth bit must be read from the RXB8n bit in UCSRnB before
reading the low bits from the UDRn. This rule applies to the FEn, DORn and UPEn Status Flags as well. Read
status from UCSRNA, then data from UDRn. Reading the UDRn I/O location will change the state of the receive
buffer FIFO and consequently the TXB8n, FEn, DORn and UPEn bits, which all are stored in the FIFO, will
change.

The following code example shows a simple USART receive function that handles both nine bit characters and
the status bits.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 177

Atmel-8272G-AVR-01/2015

Assembly Code Example ()

USART Receive:
; Wait for data to be received

sbis UCSRnA, RXCn

rjmp USART Receive

; Get status and 9th bit, then data from buffer
in r1l8, UCSRnA

in rl7, UCSRnB

in rl6, UDRn

; If error, return -1

andi rl8, (1<<FEn) | (1<<DORn) | (1<<UPEnN)
breq USART ReceiveNoError

1di rl7, HIGH(-1)

1di rl6, LOW(-1)

USART ReceiveNoError:
; Filter the 9th bit, then return

lsr rl7
andi rl7, 0xO01
ret

C Code Example ("

unsigned int USART Receive(wvoid)
{
unsigned char status, resh, resl;
/* Wait for data to be received */
while (! (UCSRnA & (1<<RXCn)))
/* Get status and 9th bit, then data */
/* from buffer */
status = UCSRnA;
resh UCSRnB;
resl = UDRn;
/* If error, return -1 */
if (status & (1<<FEn) | (1<<DORn) | (1<<UPEn))
return -1;
/* Filter the 9th bit, then return */
resh = (resh >> 1) & 0x01;
return ((resh << 8) | resl);

Note: 1. See “About code examples” on page 9.

The receive function example reads all the 1/0 Registers into the Register File before any computation is done.
This gives an optimal receive buffer utilization since the buffer location read will be free to accept new data as
early as possible.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 178

Atmel-8272G-AVR-01/2015

19.8.3

19.8.4

19.8.5

Receive Compete Flag and Interrupt
The USART Receiver has one flag that indicates the Receiver state.

The Receive Complete (RXCn) Flag indicates if there are unread data present in the receive buffer. This flag is
one when unread data exist in the receive buffer, and zero when the receive buffer is empty (i.e., does not
contain any unread data). If the Receiver is disabled (RXENn = 0), the receive buffer will be flushed and
consequently the RXCn bit will become zero.

When the Receive Complete Interrupt Enable (RXCIEn) in UCSRnNB is set, the USART Receive Complete
interrupt will be executed as long as the RXCn Flag is set (provided that global interrupts are enabled). When
interrupt-driven data reception is used, the receive complete routine must read the received data from UDRn in
order to clear the RXCn Flag, otherwise a new interrupt will occur once the interrupt routine terminates.

Receiver Error Flags

The USART Receiver has three Error Flags: Frame Error (FEn), Data OverRun (DORn) and Parity Error
(UPEN). All can be accessed by reading UCSRnA. Common for the Error Flags is that they are located in the
receive buffer together with the frame for which they indicate the error status. Due to the buffering of the Error
Flags, the UCSRNnA must be read before the receive buffer (UDRn), since reading the UDRn /O location
changes the buffer read location. Another equality for the Error Flags is that they can not be altered by software
doing a write to the flag location. However, all flags must be set to zero when the UCSRnA is written for upward
compatibility of future USART implementations. None of the Error Flags can generate interrupts.

The Frame Error (FEn) Flag indicates the state of the first stop bit of the next readable frame stored in the
receive buffer. The FEn Flag is zero when the stop bit was correctly read (as one), and the FEn Flag will be one
when the stop bit was incorrect (zero). This flag can be used for detecting out-of-sync conditions, detecting
break conditions and protocol handling. The FEn Flag is not affected by the setting of the USBSn bit in UCSRnC
since the Receiver ignores all, except for the first, stop bits. For compatibility with future devices, always set this
bit to zero when writing to UCSRnA.

The Data OverRun (DORnN) Flag indicates data loss due to a receiver buffer full condition. A Data OverRun
occurs when the receive buffer is full (two characters), it is a new character waiting in the Receive Shift Register,
and a new start bit is detected. If the DORn Flag is set there was one or more serial frame lost between the
frame last read from UDRnN, and the next frame read from UDRn. For compatibility with future devices, always
write this bit to zero when writing to UCSRnA. The DORn Flag is cleared when the frame received was
successfully moved from the Shift Register to the receive buffer.

The Parity Error (UPEN) Flag indicates that the next frame in the receive buffer had a Parity Error when
received. If Parity Check is not enabled the UPEn bit will always be read zero. For compatibility with future
devices, always set this bit to zero when writing to UCSRnA. For more details see "Parity Bit Calculation” on
page 172 and "Parity Checker” on page 179.

Parity Checker

The Parity Checker is active when the high USART Parity mode (UPMn1) bit is set. Type of Parity Check to be
performed (odd or even) is selected by the UPMnO bit. When enabled, the Parity Checker calculates the parity
of the data bits in incoming frames and compares the result with the parity bit from the serial frame. The result of
the check is stored in the receive buffer together with the received data and stop bits. The Parity Error (UPEN)

Flag can then be read by software to check if the frame had a Parity Error.

The UPERn bit is set if the next character that can be read from the receive buffer had a Parity Error when
received and the Parity Checking was enabled at that point (UPMn1 = 1). This bit is valid until the receive buffer
(UDRnN) is read.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 179

Atmel-8272G-AVR-01/2015

19.8.6 Disabling the Receiver

In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing receptions will
therefore be lost. When disabled (that is, the RXENn is set to zero) the Receiver will no longer override the
normal function of the RxDn port pin. The Receiver buffer FIFO will be flushed when the Receiver is disabled.
Remaining data in the buffer will be lost

19.8.7 Flushing the Receive Buffer

The receiver buffer FIFO will be flushed when the Receiver is disabled, that is, the buffer will be emptied of its

contents. Unread data will be lost. If the buffer has to be flushed during normal operation, due to for instance an
error condition, read the UDRn 1/O location until the RXCn Flag is cleared. The following code example shows
how to flush the receive buffer.

Assembly Code Example

USART Flush:

sbis UCSRnA, RXCn
ret

in rl6, UDRn
rjmp USART Flush

C Code Example

void USART Flush(void)
{

unsigned char dummy;
while (UCSRnA & (1<<RXCn)) dummy = UDRn;

Note: 1. See “About code examples” on page 9.

19.9 Asynchronous Data Reception

The USART includes a clock recovery and a data recovery unit for handling asynchronous data reception. The
clock recovery logic is used for synchronizing the internally generated baud rate clock to the incoming
asynchronous serial frames at the RxDn pin. The data recovery logic samples and low pass filters each
incoming bit, thereby improving the noise immunity of the Receiver. The asynchronous reception operational
range depends on the accuracy of the internal baud rate clock, the rate of the incoming frames, and the frame
size in number of bits.

19.9.1 Asynchronous Clock Recovery

The clock recovery logic synchronizes internal clock to the incoming serial frames. Figure 19-5 illustrates the
sampling process of the start bit of an incoming frame. The sample rate is 16 times the baud rate for Normal
mode, and eight times the baud rate for Double Speed mode. The horizontal arrows illustrate the
synchronization variation due to the sampling process. Note the larger time variation when using the Double
Speed mode (U2Xn = 1) of operation. Samples denoted zero are samples done when the RxDn line is idle (that
is, no communication activity).

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 180

Atmel-8272G-AVR-01/2015

19.9.2

Atmel

Figure 19-5. Start bit sampling.

RxD START BIT O

Sample

(U2x =0) o o 1 2 3
0 2

Sample
(U2x =1)

When the clock recovery logic detects a high (idle) to low (start) transition on the RxDn line, the start bit
detection sequence is initiated. Let sample 1 denote the first zero-sample as shown in the figure. The clock
recovery logic then uses samples 8, 9, and 10 for Normal mode, and samples 4, 5, and 6 for Double Speed
mode (indicated with sample numbers inside boxes on the figure), to decide if a valid start bit is received. If two
or more of these three samples have logical high levels (the majority wins), the start bit is rejected as a noise
spike and the Receiver starts looking for the next high to low-transition. If however, a valid start bit is detected,
the clock recovery logic is synchronized and the data recovery can begin. The synchronization process is
repeated for each start bit.

Asynchronous Data Recovery

When the receiver clock is synchronized to the start bit, the data recovery can begin. The data recovery unit
uses a state machine that has 16 states for each bit in Normal mode and eight states for each bit in Double
Speed mode. Figure 19-6 shows the sampling of the data bits and the parity bit. Each of the samples is given a
number that is equal to the state of the recovery unit.

Figure 19-6. Sampling of Data and Parity bit.
RxD >< BITn X
Sample T T T T
(U2X = 0) 12 7 [9J1w0]1m 12 13 14 15 16 1

Sample |<—T—>|

(U2x = 1) 1

N — O —

.
!

~N —

o

The decision of the logic level of the received bit is taken by doing a majority voting of the logic value to the three
samples in the center of the received bit. The center samples are emphasized on the figure by having the
sample number inside boxes. The majority voting process is done as follows: If two or all three samples have
high levels, the received bit is registered to be a logic 1. If two or all three samples have low levels, the received
bit is registered to be a logic 0. This majority voting process acts as a low pass filter for the incoming signal on
the RxDn pin. The recovery process is then repeated until a complete frame is received. Including the first stop
bit. Note that the Receiver only uses the first stop bit of a frame.

Figure 19-7 on page 181 shows the sampling of the stop bit and the earliest possible beginning of the start bit of
the next frame.

Figure 19-7. Stop Bit Sampling and Next Start Bit Sampling.

RxD STOP1 (A ®) ©

1 !
bbb

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)]

Atmel-8272G-AVR-01/2015

Sample
(U2X =0) 1 2

Sample
(U2x =1) 1

181

19.9.3

The same majority voting is done to the stop bit as done for the other bits in the frame. If the stop bit is
registered to have a logic 0 value, the Frame Error (FEn) Flag will be set.

A new high to low transition indicating the start bit of a new frame can come right after the last of the bits used
for majority voting. For Normal Speed mode, the first low level sample can be at point marked (A) in Figure 19-7
on page 181. For Double Speed mode the first low level must be delayed to (B). (C) marks a stop bit of full
length. The early start bit detection influences the operational range of the Receiver.

Asynchronous Operational Range

The operational range of the Receiver is dependent on the mismatch between the received bit rate and the
internally generated baud rate. If the Transmitter is sending frames at too fast or too slow bit rates, or the
internally generated baud rate of the Receiver does not have a similar (see Table 19-2 on page 183) base
frequency, the Receiver will not be able to synchronize the frames to the start bit.

The following equations can be used to calculate the ratio of the incoming data rate and internal receiver baud
rate.

R _ (D+1S R _ (D+2)S
slow — §-1+D-S+8p fast — (D+1)S+S,,

DSum of character size and parity size (D = 5 to 10 bit).

SSamples per bit. S = 16 for Normal Speed mode and S = 8 for Double Speed
mode.

S¢First sample number used for majority voting. Sg = 8 for normal speed and Sg = 4
for Double Speed mode.

SyMiddle sample number used for majority voting. Sy, = 9 for normal speed and
Sy = 5 for Double Speed mode.

Rqiow is the ratio of the slowest incoming data rate that can be accepted in relation to the
receiver baud rate. Rq, is the ratio of the fastest incoming data rate that can be
accepted in relation to the receiver baud rate.

Table 19-2 on page 183 and Table 19-3 on page 183 list the maximum receiver baud rate error that can be
tolerated. Note that Normal Speed mode has higher toleration of baud rate variations.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 182

Atmel-8272G-AVR-01/2015

19.10

Table 19-2. Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode (U2Xn = 0).

D Maximum total error Recommended max.
(Data+Parity Bit) Rqiow [%6] R¢ast [%] [%] receiver error [%]
5 93.20 106.67 +6.67/-6.8 13.0
6 94.12 105.79 +5.79/-5.88 2.5
7 94.81 105.11 +5.11/-5.19 2.0
8 95.36 104.58 +4.58/-4.54 2.0
9 95.81 104.14 +4.14/-4.19 1.5
10 96.17 103.78 +3.78/-3.83 +1.5

Table 19-3. Recommended Maximum Receiver Baud Rate Error for Double Speed Mode (U2Xn = 1).

Maximum total error Recommended max.
(Data+Parity Bit) Reiow [%] Re.st [%6] [%] receiver error [%]
5 94.12 105.66 +5.66/-5.88 2.5
6 94.92 104.92 +4.92/-5.08 2.0
7 95.52 104,35 +4.35/-4.48 +1.5
8 96.00 103.90 +3.90/-4.00 +1.5
9 96.39 103.53 +3.53/-3.61 +1.5
10 96.70 103.23 +3.23/-3.30 +1.0

The recommendations of the maximum receiver baud rate error was made under the assumption that the
Receiver and Transmitter equally divides the maximum total error.

There are two possible sources for the receivers baud rate error. The Receiver’s system clock (XTAL) will
always have some minor instability over the supply voltage range and the temperature range. When using a
crystal to generate the system clock, this is rarely a problem, but for a resonator the system clock may differ
more than 2% depending of the resonators tolerance. The second source for the error is more controllable. The
baud rate generator can not always do an exact division of the system frequency to get the baud rate wanted. In
this case an UBRR value that gives an acceptable low error can be used if possible.

Multi-processor Communication mode

Setting the Multi-processor Communication mode (MPCMn) bit in UCSRNA enables a filtering function of
incoming frames received by the USART Receiver. Frames that do not contain address information will be
ignored and not put into the receive buffer. This effectively reduces the number of incoming frames that has to
be handled by the CPU, in a system with multiple MCUs that communicate via the same serial bus. The
Transmitter is unaffected by the MPCMn setting, but has to be used differently when it is a part of a system
utilizing the Multi-processor Communication mode.

If the Receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop bit indicates if the frame
contains data or address information. If the Receiver is set up for frames with nine data bits, then the ninth bit
(RXB8n) is used for identifying address and data frames. When the frame type bit (the first stop or the ninth bit)
is one, the frame contains an address. When the frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several slave MCUs to receive data from a master MCU.
This is done by first decoding an address frame to find out which MCU has been addressed. If a particular slave
MCU has been addressed, it will receive the following data frames as normal, while the other slave MCUs will
ignore the received frames until another address frame is received.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 183

Atmel-8272G-AVR-01/2015

19.10.1 Using MPCMn

For an MCU to act as a master MCU, it can use a 9-bit character frame format (UCSZn = 7). The ninth bit
(TXB8n) must be set when an address frame (TXB8n = 1) or cleared when a data frame (TXB = 0) is being
transmitted. The slave MCUs must in this case be set to use a 9-bit character frame format.

The following procedure should be used to exchange data in Multi-processor Communication mode:

1. All Slave MCUs are in Multi-processor Communication mode (MPCMn in UCSRnNA is set).

2. The Master MCU sends an address frame, and all slaves receive and read this frame. In the Slave MCUs,
the RXCn Flag in UCSRnA will be set as normal.

3. Each Slave MCU reads the UDRn Register and determines if it has been selected. If so, it clears the
MPCMn bit in UCSRNA, otherwise it waits for the next address byte and keeps the MPCMn setting.

4. The addressed MCU will receive all data frames until a new address frame is received. The other Slave
MCUs, which still have the MPCMn bit set, will ignore the data frames.

5. When the last data frame is received by the addressed MCU, the addressed MCU sets the MPCMn bit
and waits for a new address frame from master. The process then repeats from 2.

Using any of the 5- to 8-bit character frame formats is possible, but impractical since the Receiver must change
between using n and n+1 character frame formats. This makes full-duplex operation difficult since the
Transmitter and Receiver uses the same character size setting. If 5- to 8-bit character frames are used, the
Transmitter must be set to use two stop bit (USBSn = 1) since the first stop bit is used for indicating the frame
type.

Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCMn bit. The MPCMn bit shares
the same 1I/O location as the TXCn Flag and this might accidentally be cleared when using SBI or CBI
instructions.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 184

Atmel-8272G-AVR-01/2015

19.11 Register description

19.11.1 UDRn - USART I/O Data Register n

Bit 7 6 5 4 3 2 1 0
RXB[7:0] UDRn (Read)
TXB[7:0] UDRn (Write)
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers share the same 1/0
address referred to as USART Data Register or UDRn. The Transmit Data Buffer Register (TXB) will be the
destination for data written to the UDRn Register location. Reading the UDRn Register location will return the
contents of the Receive Data Buffer Register (RXB).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the Transmitter and set to zero by the
Receiver.

The transmit buffer can only be written when the UDREn Flag in the UCSRnA Register is set. Data written to
UDRnN when the UDRERN Flag is not set, will be ignored by the USART Transmitter. When data is written to the
transmit buffer, and the Transmitter is enabled, the Transmitter will load the data into the Transmit Shift Register
when the Shift Register is empty. Then the data will be serially transmitted on the TxDn pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the receive buffer is
accessed. Due to this behavior of the receive buffer, do not use Read-Modify-Write instructions (SBI and CBI)
on this location. Be careful when using bit test instructions (SBIC and SBIS), since these also will change the
state of the FIFO.

19.11.2 UCSRNA - USART Control and Status Register A

Bit 7 6 5 4 3 2 1 0

| Rxcn | TXCn | UDREn | FEn | DORn | UPEn U2Xn MPCMn | UCSRnA
Read/Write R R/W R R R R R/W R/W
Initial Value 0 0 1 0 0 0 0 0

¢ Bit 7 — RXCn: USART Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when the receive buffer is empty
(that is, does not contain any unread data). If the Receiver is disabled, the receive buffer will be flushed and
consequently the RXCn bit will become zero. The RXCn Flag can be used to generate a Receive Complete
interrupt (see description of the RXCIEn bit).

¢ Bit 6 — TXCn: USART Transmit Complete

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and there are no
new data currently present in the transmit buffer (UDRn). The TXCn Flag bit is automatically cleared when a
transmit complete interrupt is executed, or it can be cleared by writing a one to its bit location. The TXCn Flag
can generate a Transmit Complete interrupt (see description of the TXCIEn bit).

¢ Bit 5 - UDREn: USART Data Register Empty

The UDRER Flag indicates if the transmit buffer (UDRn) is ready to receive new data. If UDREn is one, the
buffer is empty, and therefore ready to be written. The UDREnN Flag can generate a Data Register Empty
interrupt (see description of the UDRIEN bit).UDRERn is set after a reset to indicate that the Transmitter is ready.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 185

Atmel-8272G-AVR-01/2015

¢ Bit4 - FEn: Frame Error

This bit is set if the next character in the receive buffer had a Frame Error when received. l.e., when the first stop
bit of the next character in the receive buffer is zero. This bit is valid until the receive buffer (UDRn) is read. The
FEn bit is zero when the stop bit of received data is one. Always set this bit to zero when writing to UCSRnA.

* Bit 3 - DORnN: Data OverRun

This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the receive buffer is full
(two characters), it is a new character waiting in the Receive Shift Register, and a new start bit is detected. This
bit is valid until the receive buffer (UDRnN) is read. Always set this bit to zero when writing to UCSRnA.

¢ Bit 2 - UPEn: USART Parity Error

This bit is set if the next character in the receive buffer had a Parity Error when received and the Parity Checking
was enabled at that point (UPMn1 = 1). This bit is valid until the receive buffer (UDRn) is read. Always set this
bit to zero when writing to UCSRNA.

¢ Bit 1 — U2Xn: Double the USART Transmission Speed
This bit only has effect for the asynchronous operation. Write this bit to zero when using synchronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effectively doubling the transfer
rate for asynchronous communication.

¢ Bit 0 — MPCMn: Multi-processor Communication Mode

This bit enables the Multi-processor Communication mode. When the MPCMn bit is written to one, all the
incoming frames received by the USART Receiver that do not contain address information will be ignored. The
Transmitter is unaffected by the MPCMn setting. For more detailed information see "Multi-processor
Communication mode” on page 183.

19.11.3 UCSRnB - USART Control and Status Register n B

Bit 7 6 5 4 3 2 1 0
| RXCIEn | TXCIEn | UDRIEn | RXENn | TXENn | UCSZn2 RXB8n | TXB8n | UCSRnB

Read/Write R/W R/W R/W R/W R/W R/W R R/W

Initial Value 0 0 0 0 0 0 0 0

* Bit 7 - RXCIEn: RX Complete Interrupt Enable n

Writing this bit to one enables interrupt on the RXCn Flag. A USART Receive Complete interrupt will be
generated only if the RXCIEn bit is written to one, the Global Interrupt Flag in SREG is written to one and the
RXCn bit in UCSRNA is set.

¢ Bit 6 — TXCIEn: TX Complete Interrupt Enable n

Writing this bit to one enables interrupt on the TXCn Flag. A USART Transmit Complete interrupt will be
generated only if the TXCIEn bit is written to one, the Global Interrupt Flag in SREG is written to one and the
TXCn bit in UCSRNA is set.

¢ Bit 5 — UDRIEn: USART Data Register Empty Interrupt Enable n

Writing this bit to one enables interrupt on the UDREN Flag. A Data Register Empty interrupt will be generated
only if the UDRIEn bit is written to one, the Global Interrupt Flag in SREG is written to one and the UDREn bit in
UCSRnNA is set.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 186

Atmel-8272G-AVR-01/2015

¢ Bit 4 — RXENn: Receiver Enable n

Writing this bit to one enables the USART Receiver. The Receiver will override normal port operation for the
RxDn pin when enabled. Disabling the Receiver will flush the receive buffer invalidating the FEn, DORn, and
UPEn Flags.

¢ Bit 3 — TXENn: Transmitter Enable n

Writing this bit to one enables the USART Transmitter. The Transmitter will override normal port operation for
the TxDn pin when enabled. The disabling of the Transmitter (writing TXENn to zero) will not become effective
until ongoing and pending transmissions are completed, i.e., when the Transmit Shift Register and Transmit
Buffer Register do not contain data to be transmitted. When disabled, the Transmitter will no longer override the
TxDn port.

e Bit 2 - UCSZn2: Character Size n

The UCSZn2 bits combined with the UCSZn1:0 bit in UCSRNC sets the number of data bits (Character SiZe) in
a frame the Receiver and Transmitter use.

¢ Bit 1 — RXB8n: Receive Data Bit 8 n

RXB8n is the ninth data bit of the received character when operating with serial frames with nine data bits. Must
be read before reading the low bits from UDRn.

¢ Bit 0 — TXB8n: Transmit Data Bit 8 n

TXB8n is the ninth data bit in the character to be transmitted when operating with serial frames with nine data
bits. Must be written before writing the low bits to UDRn.

19.11.4 UCSRNC - USART Control and Status Register n C

Bit 7 6 5 4 3 2 1 0
| UMSELn1 | UMSELn0 | UPMn1 | UPMn0 | USBSn | UCSZn1 | UCSZn0 | UCPOLn | UCSRnC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 1 1 0

¢ Bits 7:6 —- UMSELN1:0 USART Mode Select

These bits select the mode of operation of the USARTn as shown in Table 19-4.
Table 19-4. UMSELDnN bits settings.

UMSELN1 UMSELNO Mode
0 0 Asynchronous USART
0 1 Synchronous USART
1 0 (Reserved)
1 1 Master SPI (MSPIM)(")

Note: 1. See’USART in SPI mode” on page 194 for full description of the Master SPI Mode (MSPIM) operation

* Bits 5:4 — UPMn1:0: Parity Mode

These bits enable and set type of parity generation and check. If enabled, the Transmitter will automatically
generate and send the parity of the transmitted data bits within each frame. The Receiver will generate a parity
value for the incoming data and compare it to the UPMn setting. If a mismatch is detected, the UPEn Flag in
UCSRnNA will be set.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 187

Atmel-8272G-AVR-01/2015

Table 19-5. UPMn bits settings.

UPMn1 UPMnO Parity Mode
0 0 Disabled
0 1 Reserved
1 0 Enabled, Even Parity
1 1 Enabled, Odd Parity

¢ Bit 3 - USBSn: Stop Bit Select

This bit selects the number of stop bits to be inserted by the Transmitter. The Receiver ignores this setting.
Table 19-6. USBS bit settings.

USBSn Stop bit(s)

0 1-bit
1 2-bit

¢ Bit 2:1 —UCSZn1:0: Character Size

The UCSZn1:0 bits combined with the UCSZn2 bit in UCSRNB sets the number of data bits (Character SiZe) in
a frame the Receiver and Transmitter use.
Table 19-7. UCSZn bits settings.

UCSZn2 UCcszZn1 UCSZno0 Character Size
0 0 0 5-bit
0 0 1 6-bit
0 1 0 7-bit
0 1 1 8-bit
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Reserved
1 1 1 9-bit

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 188

Atmel-8272G-AVR-01/2015

e Bit 0 —- UCPOLN: Clock Polarity

This bit is used for synchronous mode only. Write this bit to zero when asynchronous mode is used. The
UCPOLn bit sets the relationship between data output change and data input sample, and the synchronous
clock (XCKn).

Table 19-8. UCPOLnN bit settings.

Transmitted data changed (output of Received data sampled (input on RxDn
UCPOLN TxDn pin) pin)
0 Rising XCKn Edge Falling XCKn Edge
1 Falling XCKn Edge Rising XCKn Edge

19.11.5 UBRRnL and UBRRnH - USART Baud Rate Registers

Bit 15 14 13 12 11 10 9 8
= | = | = | = | UBRR[11:8] UBRRnH
UBRR[7:0] UBRRnL
7 6 5 4 3 2 1 0
Read/Write R R R R R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

¢ Bit 15:12 — Reserved

These bits are reserved for future use. For compatibility with future devices, these bit must be written to zero
when UBRRH is written.

¢ Bit 11:0 - UBRR11:0: USART Baud Rate Register

This is a 12-bit register which contains the USART baud rate. The UBRRH contains the four most significant
bits, and the UBRRL contains the eight least significant bits of the USART baud rate. Ongoing transmissions by
the Transmitter and Receiver will be corrupted if the baud rate is changed. Writing UBRRL will trigger an
immediate update of the baud rate prescaler.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 189

Atmel-8272G-AVR-01/2015

19.12 Examples of Baud Rate Setting

For standard crystal and resonator frequencies, the most commonly used baud rates for asynchronous
operation can be generated by using the UBRR settings in Table 19-9 to Table 19-12. UBRR values which yield
an actual baud rate differing less than 0.5% from the target baud rate, are bold in the table. Higher error ratings
are acceptable, but the Receiver will have less noise resistance when the error ratings are high, especially for
large serial frames (see "Asynchronous Operational Range” on page 182). The error values are calculated
using the following equation:

BaudRateosest Match B
BaudRate

Error[%] = (1) « 100%

Table 19-9. Examples of UBRRn settings for commonly used oscillator frequencies.

f.cc = 1.0000MHz f.o. = 1.8432MHz f.o. = 2.0000MHz
U2Xn=0 U2Xn =1 U2Xn=0 U2Xn =1 U2Xn =0 U2Xn =1

2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%
4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%
9600 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%
14.4k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%
19.2k 2 8.5% 6 -7.0% 5 0.0% 1 0.0% 6 -7.0% 12 0.2%
28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%
38.4k 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%
57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%
76.8k - - 1 -18.6% 1 -25.0% 2 0.0% 1 -18.6% 2 8.5%
115.2k - - 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%
230.4k - - - - - - 0 0.0% - - - -
250k - - - - - - - - - - 0 0.0%
Max. (1) 62.5kbps 125kbps 115.2kbps 230.4kbps 125kbps 250kbps

1. UBRR =0, Error = 0.0%.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 190

Atmel-8272G-AVR-01/2015

Table 19-10. Examples of UBRRn settings for commonly used oscillator frequencies. (Continued)

2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%
4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%
9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%
14.4k 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 31 0.0% 63 0.0%
19.2k 1 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%
28.8k 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 15 0.0% 31 0.0%
38.4k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 11 0.0% 23 0.0%
57.6k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%
76.8k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 1 0.0%
115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%
230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%
250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%
0.5M - - 0 -7.8% - - 0 0.0% 0 -7.8% 1 -7.8%
1M - - - - - - — — — - 0 -7.8%
Max. () 230.4kbps 460.8kbps 250kbps 0.5Mbps 460.8kbps 921.6kbps
1. UBRR =0, Error = 0.0%.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 191

Atmel-8272G-AVR-01/2015

Table 19-11. Examples of UBRRn settings for commonly used oscillator frequencies. (Continued)

f,c = 8.0000MHz foc = 11.0592MHz f.o. = 14.7456MHz
U2Xn=0 U2Xn =1 U2Xn=0 U2Xn =1 U2Xn =0 U2Xn =1
2400 207 0.2% 416 -0.1% 287 0.0% 575 0.0% 383 0.0% 767 0.0%
4800 103 0.2% 207 0.2% 143 0.0% 287 0.0% 191 0.0% 383 0.0%
9600 51 0.2% 103 0.2% 71 0.0% 143 0.0% 95 0.0% 191 0.0%
14.4k 34 -0.8% 68 0.6% 47 0.0% 95 0.0% 63 0.0% 127 0.0%
19.2k 25 0.2% 51 0.2% 35 0.0% 71 0.0% 47 0.0% 95 0.0%
28.8k 16 2.1% 34 -0.8% 23 0.0% 47 0.0% 31 0.0% 63 0.0%
38.4k 12 0.2% 25 0.2% 17 0.0% 35 0.0% 23 0.0% 47 0.0%
57.6k 8 -3.5% 16 2.1% 11 0.0% 23 0.0% 15 0.0% 31 0.0%
76.8k 6 -7.0% 12 0.2% 8 0.0% 17 0.0% 1 0.0% 23 0.0%
115.2k 3 8.5% 8 -3.5% 5 0.0% 1 0.0% 7 0.0% 15 0.0%
230.4k 1 8.5% 3 8.5% 2 0.0% 5 0.0% 3 0.0% 7 0.0%
250k 1 0.0% 3 0.0% 2 -7.8% 5 -7.8% 3 -7.8% 6 5.3%
0.5M 0 0.0% 1 0.0% - - 2 -7.8% 1 -7.8% 3 -7.8%
1M - - 0 0.0% - - - - 0 -7.8% 1 -7.8%
Max. () 0.5Mbps 1Mbps 691.2kbps 1.3824Mbps 921.6kbps 1.8432Mbps
1. UBRR =0, Error = 0.0%.
Atmel ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 192

Atmel-8272G-AVR-01/2015

Table 19-12. Examples of UBRRn settings for commonly used oscillator frequencies. (Continued)

fsc = 16.0000MHz fosc = 18.4320MHz fosc = 20.0000MHz
U2Xn=0 U2Xn =1 U2Xn=0 U2Xn =1 U2Xn =0 U2Xn =1

2400 416 -0.1% 832 0.0% 479 0.0% 959 0.0% 520 0.0% 1041 0.0%
4800 207 0.2% 416 0.1% 239 0.0% 479 0.0% 259 0.2% 520 0.0%
9600 103 0.2% 207 0.2% 119 0.0% 239 0.0% 129 0.2% 259 0.2%
14.4k 68 0.6% 138 -0.1% 79 0.0% 159 0.0% 86 -0.2% 173 -0.2%
19.2k 51 0.2% 103 0.2% 59 0.0% 19 0.0% 64 0.2% 129 0.2%
28.8k 34 -0.8% 68 0.6% 39 0.0% 79 0.0% 42 0.9% 86 -0.2%
38.4k 25 0.2% 51 0.2% 29 0.0% 59 0.0% 32 -1.4% 64 0.2%
57.6k 16 2.1% 34 -0.8% 19 0.0% 39 0.0% 21 -1.4% 42 0.9%
76.8k 12 0.2% 25 0.2% 14 0.0% 29 0.0% 15 1.7% 32 -1.4%
115.2k 8 -3.5% 16 2.1% 9 0.0% 19 0.0% 10 -1.4% 21 -1.4%
230.4k 3 8.5% 8 -3.5% 4 0.0% 9 0.0% 4 8.5% 10 -1.4%
250k 3 0.0% 7 0.0% 4 -7.8% 8 2.4% 4 0.0% 9 0.0%
0.5M 1 0.0% 3 0.0% - - 4 -7.8% - - 4 0.0%
1M 0 0.0% 1 0.0% - - - - - -~ -~ -~
Max. (1) 1Mbps 2Mbps 1.152Mbps 2.304Mbps 1.25Mbps 2.5Mbps

1. UBRR =0, Error = 0.0%.

Atmel ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 193

Atmel-8272G-AVR-01/2015

20. USART in SPI mode
20.1 Features
* Full duplex, three-wire synchronous data transfer
* Master Operation
* Supports all four SPI modes of operation (Mode 0, 1, 2, and 3)
» LSB first or MSB first data transfer (configurable data order)
* Queued operation (double buffered)
* High resolution baud rate generator
* High speed operation (fXCKmax = fCK/2)
* Flexible interrupt generation
20.2 Overview
The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) can be set to a master
SPI compliant mode of operation.
Setting both UMSELN1:0 bits to one enables the USART in MSPIM logic. In this mode of operation the SPI
master control logic takes direct control over the USART resources. These resources include the transmitter
and receiver shift register and buffers, and the baud rate generator. The parity generator and checker, the data
and clock recovery logic, and the RX and TX control logic is disabled. The USART RX and TX control logic is
replaced by a common SPI transfer control logic. However, the pin control logic and interrupt generation logic is
identical in both modes of operation.
The I/O register locations are the same in both modes. However, some of the functionality of the control
registers changes when using MSPIM.
20.3 Clock Generation
The Clock Generation logic generates the base clock for the Transmitter and Receiver. For USART MSPIM
mode of operation only internal clock generation (i.e. master operation) is supported. The Data Direction
Register for the XCKn pin (DDR_XCKn) must therefore be set to one (i.e. as output) for the USART in MSPIM to
operate correctly. Preferably the DDR_XCKn should be set up before the USART in MSPIM is enabled (i.e.
TXENnN and RXENRN bit set to one).
The internal clock generation used in MSPIM mode is identical to the USART synchronous master mode. The
baud rate or UBRRn setting can therefore be calculated using the same equations, see Table 20-1:
Table 20-1. Equations for calculating baud rate register setting.
Equation for calculating baud Equation for calculating UBRRn
Operating mode rate value
Synchronous Master BAUD = Josc _ Josc__
mode 2(UBRRn+ 1) UBRRn = 50705
Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps).
BAUDBaud rate (in bits per second, bps).
foscSystem oscillator clock frequency.
UBRRNContents of the UBRRnH and UBRRnL registers, (0-4095).
/lt L ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 194
m e Atmel-8272G-AVR-01/2015

20.4

SPI Data Modes and Timing

There are four combinations of XCKn (SCK) phase and polarity with respect to serial data, which are
determined by control bits UCPHAN and UCPOLnN. The data transfer timing diagrams are shown in Figure 20-1.
Data bits are shifted out and latched in on opposite edges of the XCKn signal, ensuring sufficient time for data
signals to stabilize. The UCPOLNn and UCPHAR functionality is summarized in Table 20-2. Note that changing
the setting of any of these bits will corrupt all ongoing communication for both the Receiver and Transmitter.

Table 20-2.

UCPOLN

0

UCPOLN and UCPHAnN functionality.

UCPHAN

0

0

SPI mode

Leading edge
Sample (Rising)

Trailing edge
Setup (Falling)

0

1

1

Setup (Rising)

Sample (Falling)

1

0

2

Sample (Falling)

Setup (Rising)

1

1

3

Setup (Falling)

Sample (Rising)

20.5

20.5.1

Atmel

Figure 20-1. UCPHAN and UCPOLn data transfer timing diagrams.

UCPOL=0 UCPOL=1

XCK L L L XCK L L
Data setup (TXD) :X:X:X:)C Data setup (TXD) :X:X:X:X:
L L

1

UCPHA

Data sample (RXD) Data sample (RXD)

=0

XCK RN XCK RN

Data setup (TXD) 4X_X_X__X Data setup (TXD) 4X_X_X__X
Data sample (RXD) T T T T Data sample (RXD) T T T T

UCPHA

Frame Formats

A serial frame for the MSPIM is defined to be one character of eight data bits. The USART in MSPIM mode has
two valid frame formats:

e 8-bit data with MSB first

e 8-bit data with LSB first
A frame starts with the least or most significant data bit. Then the next data bits, up to a total of eight, are

succeeding, ending with the most or least significant bit accordingly. When a complete frame is transmitted, a
new frame can directly follow it, or the communication line can be set to an idle (high) state.

The UDORDnN bit in UCSRNC sets the frame format used by the USART in MSPIM mode. The Receiver and
Transmitter use the same setting. Note that changing the setting of any of these bits will corrupt all ongoing
communication for both the Receiver and Transmitter.

16-bit data transfer can be achieved by writing two data bytes to UDRn. A UART transmit complete interrupt will
then signal that the 16-bit value has been shifted out.

USART MSPIM Initialization

The USART in MSPIM mode has to be initialized before any communication can take place. The initialization
process normally consists of setting the baud rate, setting master mode of operation (by setting DDR_XCKn to
one), setting frame format and enabling the Transmitter and the Receiver. Only the transmitter can operate

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 195

Atmel-8272G-AVR-01/2015

independently. For interrupt driven USART operation, the Global Interrupt Flag should be cleared (and thus

interrupts globally disabled) when doing the initialization.

Note: To ensure immediate initialization of the XCKn output the baud-rate register (UBRRn) must be zero at the time the
transmitter is enabled. Contrary to the normal mode USART operation the UBRRn must then be written to the
desired value after the transmitter is enabled, but before the first transmission is started. Setting UBRRn to zero
before enabling the transmitter is not necessary if the initialization is done immediately after a reset since UBRRn is
reset to zero.

Before doing a re-initialization with changed baud rate, data mode, or frame format, be sure that there is no

ongoing transmissions during the period the registers are changed. The TXCn Flag can be used to check that

the Transmitter has completed all transfers, and the RXCn Flag can be used to check that there are no unread
data in the receive buffer. Note that the TXCn Flag must be cleared before each transmission (before UDRn is
written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C function that are equal
in functionality. The examples assume polling (no interrupts enabled). The baud rate is given as a function
parameter. For the assembly code, the baud rate parameter is assumed to be stored in the r17:r16 registers.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 196

Atmel-8272G-AVR-01/2015

Assembly Code Example (V)

USART_Init:
clr rl8
out UBRRnH,rl8
out UBRRnL,rl8

; Setting the XCKn port pin as output, enables master
mode.

sbi XCKn DDR, XCKn

; Set MSPI mode of operation and SPI data mode O.

1di ri1s8,
(1<<UMSELnl) | (1<<UMSELnOQO) | (0O<<UCPHAnN) | (0<<UCPOLn)

out UCSRnC,rl8

; Enable receiver and transmitter.

1di r18, (1<<RXENn) | (1<<TXENn)

out UCSRnB, rl8

; Set baud rate.

; IMPORTANT: The Baud Rate must be set after the
transmitter is enabled!

out UBRRnH, rl7

out UBRRnL, rl8

ret

C Code Example'"

void USART_Init (unsigned int baud)
{

UBRRn = 0;

/* Setting the XCKn port pin as output, enables master
mode. */

XCKn DDR |= (1<<XCKn) ;

/* Set MSPI mode of operation and SPI data mode 0. */

UCSRnC =

(1<<UMSELnl) | (1<<UMSELnNO) | (O<<UCPHAnN) | (0<<UCPOLnN) ;

/* Enable receiver and transmitter. */

UCSRnB = (1<<RXENn) | (1<<TXENn) ;

/* Set baud rate. */

/* IMPORTANT: The Baud Rate must be set after the
transmitter is enabled */

UBRRn = baud;

Note: 1. See “About code examples” on page 9.

20.6 Data Transfer

Using the USART in MSPI mode requires the Transmitter to be enabled, that is, the TXENn bit in the UCSRnB
register is set to one. When the Transmitter is enabled, the normal port operation of the TxDn pin is overridden
and given the function as the Transmitter's serial output. Enabling the receiver is optional and is done by setting
the RXENR bit in the UCSRNB register to one. When the receiver is enabled, the normal pin operation of the

RxDn pin is overridden and given the function as the Receiver's serial input. The XCKn will in both cases be
used as the transfer clock.

After initialization the USART is ready for doing data transfers. A data transfer is initiated by writing to the UDRn
1/0 location. This is the case for both sending and receiving data since the transmitter controls the transfer

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 197

Atmel-8272G-AVR-01/2015

clock. The data written to UDRn is moved from the transmit buffer to the shift register when the shift register is

ready to send a new frame.

Note: To keep the input buffer in sync with the number of data bytes transmitted, the UDRn register must be read once for
each byte transmitted. The input buffer operation is identical to normal USART mode, i.e. if an overflow occurs the
character last received will be lost, not the first data in the buffer. This means that if four bytes are transferred, byte
1 first, then byte 2, 3, and 4, and the UDRn is not read before all transfers are completed, then byte 3 to be received
will be lost, and not byte 1.

The following code examples show a simple USART in MSPIM mode transfer function based on polling of the

Data Register Empty (UDREN) Flag and the Receive Complete (RXCn) Flag. The USART has to be initialized

before the function can be used. For the assembly code, the data to be sent is assumed to be stored in Register

R16 and the data received will be available in the same register (R16) after the function returns.

The function simply waits for the transmit buffer to be empty by checking the UDREnN Flag, before loading it with
new data to be transmitted. The function then waits for data to be present in the receive buffer by checking the
RXCn Flag, before reading the buffer and returning the value.

Assembly Code Example (V)

USART MSPIM Transfer:
; Wait for empty transmit buffer
sbis UCSRnA, UDREnN
rjmp USART MSPIM Transfer
; Put data (rle) into buffer, sends the data
out UDRn,rlé6
; Wait for data to be received
USART MSPIM Wait RXCn:
sbis UCSRnA, RXCn
rjmp USART MSPIM Wait RXCn
; Get and return received data from buffer
in rl6, UDRn
ret

C Code Example ("

unsigned char USART Receive(void)
{
/* Wait for empty transmit buffer */
while (! (UCSRnA & (1<<UDREn))):;
/* Put data into buffer, sends the data */
UDRn = data;
/* Wait for data to be received */
while (! (UCSRnA & (1<<RXCn)));
/* Get and return received data from buffer */
return UDRn;

Note: 1. See “About code examples” on page 9.

20.6.1 Transmitter and Receiver Flags and Interrupts

The RXCn, TXCn, and UDRERN flags and corresponding interrupts in USART in MSPIM mode are identical in
function to the normal USART operation. However, the receiver error status flags (FE, DOR, and PE) are not in
use and is always read as zero.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 198

Atmel-8272G-AVR-01/2015

20.6.2 Disabling the Transmitter or Receiver

The disabling of the transmitter or receiver in USART in MSPIM mode is identical in function to the normal
USART operation.

20.7 AVR USART MSPIM vs. AVR SPI
The USART in MSPIM mode is fully compatible with the AVR SPI regarding:
e Master mode timing diagram.
e The UCPOLN bit functionality is identical to the SPI CPOL bit
e The UCPHAN bit functionality is identical to the SPI CPHA bit
e The UDORDRN bit functionality is identical to the SPI DORD bit
However, since the USART in MSPIM mode reuses the USART resources, the use of the USART in MSPIM
mode is somewhat different compared to the SPI. In addition to differences of the control register bits, and that
only master operation is supported by the USART in MSPIM mode, the following features differ between the two
modules:
e The USART in MSPIM mode includes (double) buffering of the transmitter. The SPI has no buffer
e The USART in MSPIM mode receiver includes an additional buffer level
e The SPI WCOL (Write Collision) bit is not included in USART in MSPIM mode
e The SPI double speed mode (SPI2X) bit is not included. However, the same effect is achieved by setting
UBRRn accordingly
e Interrupt timing is not compatible
e Pin control differs due to the master only operation of the USART in MSPIM mode
A comparison of the USART in MSPIM mode and the SPI pins is shown in Table 20-3 on page 199.
Table 20-3. Comparison of USART in MSPIM mode and SPI pins.
USART_MSPIM SPI Comment
TxDn MOSI Master Out only
RxDn MISO Master In only
XCKn SCK (Functionally identical)
(N/A) SS Not supported by USART in MSPIM
/lt m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 199

Atmel-8272G-AVR-01/2015

20.8 Register description
The following section describes the registers used for SPI operation using the USART.
20.8.1 UDRn — USART MSPIM I/O Data Register
The function and bit description of the USART data register (UDRnN) in MSPI mode is identical to normal USART
operation. See “UDRn — USART I/O Data Register n” on page 185.
20.8.2 UCSRNA - USART MSPIM Control and Status Register n A
Bit 7 6 5 4 3 2 1 0
| rxcn TXCn UDREn - - | ucsrna
Read/Write R/W R/W R/W
Initial Value 0 0 0 0 0 1 1 0
¢ Bit 7 - RXCn: USART Receive Complete
This flag bit is set when there are unread data in the receive buffer and cleared when the receive buffer is empty
(that is, does not contain any unread data). If the Receiver is disabled, the receive buffer will be flushed and
consequently the RXCn bit will become zero. The RXCn Flag can be used to generate a Receive Complete
interrupt (see description of the RXCIEn bit).
¢ Bit 6 — TXCn: USART Transmit Complete
This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and there are no
new data currently present in the transmit buffer (UDRn). The TXCn Flag bit is automatically cleared when a
transmit complete interrupt is executed, or it can be cleared by writing a one to its bit location. The TXCn Flag
can generate a Transmit Complete interrupt (see description of the TXCIEn bit).
¢ Bit 5 - UDREn: USART Data Register Empty
The UDRER Flag indicates if the transmit buffer (UDRn) is ready to receive new data. If UDREn is one, the
buffer is empty, and therefore ready to be written. The UDREN Flag can generate a Data Register Empty
interrupt (see description of the UDRIE bit). UDRER is set after a reset to indicate that the Transmitter is ready.
* Bit 4:0 — Reserved in MSPI mode
When in MSPI mode, these bits are reserved for future use. For compatibility with future devices, these bits
must be written to zero when UCSRNA is written.
20.8.3 UCSRnNB - USART MSPIM Control and Status Register n B
Bit 7 6 5 4 3 2 1 0
| RXCIEn | TXCIEn [UDRIE | RXENn | TXENn = = - | ucsrnB
Read/Write RIW RIW RIW RIW RIW R
Initial Value 0 0 0 0 0 1 1 0
* Bit 7 - RXCIEn: RX Complete Interrupt Enable
Writing this bit to one enables interrupt on the RXCn Flag. A USART Receive Complete interrupt will be
generated only if the RXCIEn bit is written to one, the Global Interrupt Flag in SREG is written to one and the
RXCn bit in UCSRNA is set.
/lt m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 200

Atmel-8272G-AVR-01/2015

20.8.4

¢ Bit 6 — TXCIEn: TX Complete Interrupt Enable

Writing this bit to one enables interrupt on the TXCn Flag. A USART Transmit Complete interrupt will be
generated only if the TXCIEn bit is written to one, the Global Interrupt Flag in SREG is written to one and the
TXCn bit in UCSRNA is set.

¢ Bit 5 — UDRIE: USART Data Register Empty Interrupt Enable

Writing this bit to one enables interrupt on the UDREnN Flag. A Data Register Empty interrupt will be generated
only if the UDRIE bit is written to one, the Global Interrupt Flag in SREG is written to one and the UDREn bit in
UCSRnA is set.

¢ Bit 4 — RXENn: Receiver Enable

Writing this bit to one enables the USART Receiver in MSPIM mode. The Receiver will override normal port
operation for the RxDn pin when enabled. Disabling the Receiver will flush the receive buffer. Only enabling the
receiver in MSPI mode (i.e. setting RXENn=1 and TXENn=0) has no meaning since it is the transmitter that
controls the transfer clock and since only master mode is supported.

¢ Bit 3 — TXENn: Transmitter Enable

Writing this bit to one enables the USART Transmitter. The Transmitter will override normal port operation for
the TxDn pin when enabled. The disabling of the Transmitter (writing TXENn to zero) will not become effective
until ongoing and pending transmissions are completed, that is, when the Transmit Shift Register and Transmit
Buffer Register do not contain data to be transmitted. When disabled, the Transmitter will no longer override the
TxDn port.

¢ Bit 2:0 — Reserved in MSPI mode

When in MSPI mode, these bits are reserved for future use. For compatibility with future devices, these bits
must be written to zero when UCSRnNB is written.

UCSRNC — USART MSPIM Control and Status Register n C

Bit 7 6 5 4 3 2 1 0
| umsELn1 UMSELn0 | - | | - | UDORDn | UCPHAn | UCPOLn | ucsRnc

Read/Write R/W R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 1 1 0

e Bit 7:6 —- UMSELN1:0: USART Mode Select

These bits select the mode of operation of the USART as shown in Table 20-4. See "UCSRnC — USART Control
and Status Register n C” on page 187 for full description of the normal USART operation. The MSPIM is
enabled when both UMSELn bits are set to one. The UDORDn, UCPHAnN, and UCPOLnN can be set in the same
write operation where the MSPIM is enabled.

Table 20-4. UMSELN bits settings.

UMSELN1 UMSELNO Mode
0 0 Asynchronous USART
0 1 Synchronous USART
1 0 (Reserved)
1 1 Master SPI (MSPIM)
/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 201

Atmel-8272G-AVR-01/2015

¢ Bit 5:3 — Reserved in MSPI mode

When in MSPI mode, these bits are reserved for future use. For compatibility with future devices, these bits
must be written to zero when UCSRNC is written.

¢ Bit 2 - UDORDNnN: Data Order

When set to one the LSB of the data word is transmitted first. When set to zero the MSB of the data word is
transmitted first. Refer to "Frame Formats” on page 195 for details.

¢ Bit 1 — UCPHAN: Clock Phase

The UCPHAN bit setting determine if data is sampled on the leasing edge (first) or tailing (last) edge of XCKn.
Refer to "SP| Data Modes and Timing” on page 195 for details.

¢ Bit 0 - UCPOLN: Clock Polarity

The UCPOLN bit sets the polarity of the XCKn clock. The combination of the UCPOLn and UCPHAR bit settings
determine the timing of the data transfer. Refer to "SP| Data Modes and Timing” on page 195 for details.

20.8.5 UBRRnNL and UBRRnH -USART MSPIM Baud Rate Registers
The function and bit description of the baud rate registers in MSPI mode is identical to normal USART operation.
See "UBRRnNL and UBRRnH — USART Baud Rate Registers” on page 189.

At m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 202

Atmel-8272G-AVR-01/2015

21. Two-wire Serial Interface
21.1 Features
* Simple yet powerful and flexible communication interface, only two bus lines needed
* Both Master and Slave operation supported
* Device can operate as transmitter or receiver
» 7-bit address space allows up to 128 different Slave addresses
* Multi-master arbitration support
* Up to 400kHz data transfer speed
* Slew-rate limited output drivers
* Noise suppression circuitry rejects spikes on bus lines
* Fully programmable Slave address with General Call support
* Address recognition causes wake-up when AVR is in Sleep mode
21.2 Two-wire Serial Interface bus definition
The Two-wire Serial Interface (TWI) is ideally suited for typical microcontroller applications. The TWI protocol
allows the systems designer to interconnect up to 128 different devices using only two bi-directional bus lines,
one for clock (SCL) and one for data (SDA). The only external hardware needed to implement the bus is a single
pull-up resistor for each of the TWI bus lines. All devices connected to the bus have individual addresses, and
mechanisms for resolving bus contention are inherent in the TWI protocol.
Figure 21-1. TWI bus interconnection.
VCC
Device 1 Device 2 Device 3 | Device n R1 R2
SDA = >
SCL = >
21.2.1 TWI Terminology
The following definitions are frequently encountered in this section.
Table 21-1. TWI terminology.
Term Description
The device that initiates and terminates a transmission. The Master also generates the
Master
SCL clock.
Slave The device addressed by a Master.
Transmitter The device placing data on the bus.
Receiver The device reading data from the bus.
/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 203

Atmel-8272G-AVR-01/2015

The Power Reduction TWI bit, PRTWI bit in "PRRO — Power Reduction Register 0” on page 48 must be written
to zero to enable the two-wire Serial Interface.

21.2.2 Electrical Interconnection

As depicted in Figure 21-1, both bus lines are connected to the positive supply voltage through pull-up resistors.
The bus drivers of all TWI-compliant devices are open-drain or open-collector. This implements a wired-AND
function which is essential to the operation of the interface. A low level on a TWI bus line is generated when one
or more TWI devices output a zero. A high level is output when all TWI devices trim-state their outputs, allowing
the pull-up resistors to pull the line high. Note that all AVR devices connected to the TWI bus must be powered
in order to allow any bus operation.

The number of devices that can be connected to the bus is only limited by the bus capacitance limit of 400pF
and the 7-bit slave address space. A detailed specification of the electrical characteristics of the TWI is given in
"SPI timing characteristics” on page 327. Two different sets of specifications are presented there, one relevant
for bus speeds below 100kHz, and one valid for bus speeds up to 400kHz.

21.3 Data Transfer and Frame Format

21.3.1 Transferring Bits

Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. The level of the data line
must be stable when the clock line is high. The only exception to this rule is for generating start and stop
conditions.

Figure 21-2. Data validity.

SDA

SCL

Data Stable Data Stable

Data Change

21.3.2 START and STOP Conditions

The Master initiates and terminates a data transmission. The transmission is initiated when the Master issues a
START condition on the bus, and it is terminated when the Master issues a STOP condition. Between a START
and a STOP condition, the bus is considered busy, and no other master should try to seize control of the bus. A
special case occurs when a new START condition is issued between a START and STOP condition. This is
referred to as a REPEATED START condition, and is used when the Master wishes to initiate a new transfer
without relinquishing control of the bus. After a REPEATED START, the bus is considered busy until the next
STOP. This is identical to the START behavior, and therefore START is used to describe both START and
REPEATED START for the remainder of this datasheet, unless otherwise noted. As depicted below, START
and STOP conditions are signalled by changing the level of the SDA line when the SCL line is high.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 204

Atmel-8272G-AVR-01/2015

Figure 21-3. START, REPEATED START and STOP conditions.

SDA

——

A A AW

START STOP START REPEATED START STOP

21.3.3 Address Packet Format

All address packets transmitted on the TWI bus are 9 bits long, consisting of 7 address bits, one READ/WRITE
control bit and an acknowledge bit. If the READ/WRITE bit is set, a read operation is to be performed, otherwise
a write operation should be performed. When a Slave recognizes that it is being addressed, it should
acknowledge by pulling SDA low in the ninth SCL (ACK) cycle. If the addressed Slave is busy, or for some other
reason can not service the Master’s request, the SDA line should be left high in the ACK clock cycle. The Master
can then transmit a STOP condition, or a REPEATED START condition to initiate a new transmission. An
address packet consisting of a slave address and a READ or a WRITE bit is called SLA+R or SLA+W,
respectively.

The MSB of the address byte is transmitted first. Slave addresses can freely be allocated by the designer, but
the address 0000 000 is reserved for a general call.

When a general call is issued, all slaves should respond by pulling the SDA line low in the ACK cycle. A general
call is used when a Master wishes to transmit the same message to several slaves in the system. When the
general call address followed by a Write bit is transmitted on the bus, all slaves set up to acknowledge the
general call will pull the SDA line low in the ack cycle. The following data packets will then be received by all the
slaves that acknowledged the general call. Note that transmitting the general call address followed by a Read bit
is meaningless, as this would cause contention if several slaves started transmitting different data.

All addresses of the format 1111 xxx should be reserved for future purposes.

Figure 21-4. Address packet format.

Addr MSB ’ Addr LSB R/W ACK
XX
WAVAVAN

START

21.3.4 Data Packet Format

All data packets transmitted on the TWI bus are nine bits long, consisting of one data byte and an acknowledge
bit. During a data transfer, the Master generates the clock and the START and STOP conditions, while the
Receiver is responsible for acknowledging the reception. An Acknowledge (ACK) is signalled by the Receiver
pulling the SDA line low during the ninth SCL cycle. If the Receiver leaves the SDA line high, a NACK is
signalled. When the Receiver has received the last byte, or for some reason cannot receive any more bytes, it

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 205

Atmel-8272G-AVR-01/2015

should inform the Transmitter by sending a NACK after the final byte. The MSB of the data byte is transmitted
first.

Figure 21-5. Data packet format.

Data MSB DataLSB ACK

rogegee O X

SDA from
Transmitter N\ |

o
SDA from /o) i
Receiver /| !
| |
| |
SCL from | |
Master ! % o
| |
| ! 2 / 8 9 | STOP, REPEATED
SLA+R/W ; Data Byte ; START or Next
! ! Data Byte

21.3.5 Combining Address and Data Packets into a Transmission

A transmission basically consists of a START condition, a SLA+R/W, one or more data packets and a STOP
condition. An empty message, consisting of a START followed by a STOP condition, is illegal. Note that the
Wired-ANDing of the SCL line can be used to implement handshaking between the Master and the Slave. The
Slave can extend the SCL low period by pulling the SCL line low. This is useful if the clock speed set up by the
Master is too fast for the Slave, or the Slave needs extra time for processing between the data transmissions.
The Slave extending the SCL low period will not affect the SCL high period, which is determined by the Master.
As a consequence, the Slave can reduce the TWI data transfer speed by prolonging the SCL duty cycle.

Figure 21-6 on page 206 shows a typical data transmission. Note that several data bytes can be transmitted
between the SLA+R/W and the STOP condition, depending on the software protocol implemented by the
application software.

Figure 21-6. Typical data transmission.

i Addr MSB AddrLSB R/W ACK Data MSB DataLSB ACK i

START SLA+R/W Data Byte STOP

21.4 Multi-master Bus Systems, Arbitration and Synchronization

The TWI protocol allows bus systems with several masters. Special concerns have been taken in order to
ensure that transmissions will proceed as normal, even if two or more masters initiate a transmission at the
same time. Two problems arise in multi-master systems:

e An algorithm must be implemented allowing only one of the masters to complete the transmission. All
other masters should cease transmission when they discover that they have lost the selection process.
This selection process is called arbitration. When a contending master discovers that it has lost the

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 206

Atmel-8272G-AVR-01/2015

arbitration process, it should immediately switch to Slave mode to check whether it is being addressed by
the winning master. The fact that multiple masters have started transmission at the same time should not
be detectable to the slaves, that is the data being transferred on the bus must not be corrupted

e Different masters may use different SCL frequencies. A scheme must be devised to synchronize the serial
clocks from all masters, in order to let the transmission proceed in a lockstep fashion. This will facilitate
the arbitration process

The wired-ANDing of the bus lines is used to solve both these problems. The serial clocks from all masters will
be wired-ANDed, yielding a combined clock with a high period equal to the one from the Master with the
shortest high period. The low period of the combined clock is equal to the low period of the Master with the
longest low period. Note that all masters listen to the SCL line, effectively starting to count their SCL high and
low time-out periods when the combined SCL line goes high or low, respectively.

Figure 21-7. SCL synchronization between multiple masters.

low high
I I I I
! ! ! !
! |~ x J
SCL from ! (I ! !
Master A ‘ L/ | |
! !
I I
SCL from L \ | | N o
Master B \ \ | } } I
[| I
I I } } I
! I | !
SCL Bus | L ‘ |
Line | /| | \
[| ‘ I
I I I
\ By, } } TBhigh }
\ Masters Start \ Masters Start
Counting Low Period Counting High Period

Arbitration is carried out by all masters continuously monitoring the SDA line after outputting data. If the value
read from the SDA line does not match the value the Master had output, it has lost the arbitration. Note that a
Master can only lose arbitration when it outputs a high SDA value while another Master outputs a low value. The
losing Master should immediately go to Slave mode, checking if it is being addressed by the winning Master.
The SDA line should be left high, but losing masters are allowed to generate a clock signal until the end of the
current data or address packet. Arbitration will continue until only one Master remains, and this may take many
bits. If several masters are trying to address the same Slave, arbitration will continue into the data packet.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 207

Atmel-8272G-AVR-01/2015

Figure 21-8. Arbitration between two masters.

START Master A Loses

|| \ rbitration, SDA,# SDA
SDA from

Master A . _

SDA from
Master B \ / \ / \

|| |
Synchronized
|| |

Note that arbitration is not allowed between:

e A REPEATED START condition and a data bit

e A STOP condition and a data bit

e A REPEATED START and a STOP condition
It is the user software’s responsibility to ensure that these illegal arbitration conditions never occur. This implies
that in multi-master systems, all data transfers must use the same composition of SLA+R/W and data packets.

In other words: All transmissions must contain the same number of data packets, otherwise the result of the
arbitration is undefined.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 208

Atmel-8272G-AVR-01/2015

21.5 Overview of the TWI Module

21.5.1 SCL and SDA pins

These pins interface the AVR TWI with the rest of the MCU system. The output drivers contain a slew-rate

21.5.2

The TWI module is comprised of several submodules, as shown in Figure 21-9. All registers drawn in a thick line

are accessible through the AVR data bus.

Figure 21-9.

Overview of the TWI module.

SCL

Slew-rate
Control

Spike
Filter

A

SDA
Slew-rate Spike
Control Filter

J

/

Bus Interface Unit

START / STOP
Control

Spike Suppression

Bit Rate Generator

Prescaler

Arbitration detection

Address/Data Shift
Register (TWDR)

Ack

Bit Rate Register
(TWBR)

J
A

Address Match Unit

Address Register
(TWAR)

A
/

Control Unit

Address Comparator

Status Register
(TWSR)

Control Register
(TWCR)

State Machine and

Status control

TWI Unit

limiter in order to conform to the TWI specification. The input stages contain a spike suppression unit removing
spikes shorter than 50ns. Note that the internal pull-ups in the AVR pads can be enabled by setting the PORT
bits corresponding to the SCL and SDA pins, as explained in the I/O Port section. The internal pull-ups can in
some systems eliminate the need for external ones.

Bit Rate Generator unit

This unit controls the period of SCL when operating in a Master mode. The SCL period is controlled by settings
in the TWI Bit Rate Register (TWBR) and the Prescaler bits in the TWI Status Register (TWSR). Slave operation
does not depend on Bit Rate or Prescaler settings, but the CPU clock frequency in the Slave must be at least 16
times higher than the SCL frequency. Note that slaves may prolong the SCL low period, thereby reducing the

average TWI bus clock period. The SCL frequency is generated according to the following equation:

Atmel

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)]

Atmel-8272G-AVR-01/2015

209

2153

2154

21.5.5

CPU Clock frequency
16+ 2(TWBR) - 47 ""S

SCL frequency =

e TWBR = Value of the TWI Bit Rate Register
e TWPS = Value of the prescaler bits in the TWI Status Register

Note: Pull-up resistor values should be selected according to the SCL frequency and the capacitive bus line load. See
two-wire Serial Bus Requirements in Table 28-16 on page 328 for value of pull-up resistor.

Bus Interface unit

This unit contains the Data and Address Shift Register (TWDR), a START/STOP Controller and Arbitration
detection hardware. The TWDR contains the address or data bytes to be transmitted, or the address or data
bytes received. In addition to the 8-bit TWDR, the Bus Interface Unit also contains a register containing the
(N)ACK bit to be transmitted or received. This (N)ACK Register is not directly accessible by the application
software. However, when receiving, it can be set or cleared by manipulating the TWI Control Register (TWCR).
When in Transmitter mode, the value of the received (N)ACK bit can be determined by the value in the TWSR.

The START/STOP Controller is responsible for generation and detection of START, REPEATED START, and
STOP conditions. The START/STOP controller is able to detect START and STOP conditions even when the
AVR MCU is in one of the sleep modes, enabling the MCU to wake up if addressed by a Master.

If the TWI has initiated a transmission as Master, the Arbitration Detection hardware continuously monitors the
transmission trying to determine if arbitration is in process. If the TWI has lost an arbitration, the Control Unit is
informed. Correct action can then be taken and appropriate status codes generated.

Address Match unit

The Address Match unit checks if received address bytes match the seven-bit address in the TWI Address
Register (TWAR). If the TWI General Call Recognition Enable (TWGCE) bit in the TWAR is written to one, all
incoming address bits will also be compared against the General Call address. Upon an address match, the
Control Unit is informed, allowing correct action to be taken. The TWI may or may not acknowledge its address,
depending on settings in the TWCR. The Address Match unit is able to compare addresses even when the AVR
MCU is in sleep mode, enabling the MCU to wake up if addressed by a Master.

Control unit

The Control unit monitors the TWI bus and generates responses corresponding to settings in the TWI Control
Register (TWCR). When an event requiring the attention of the application occurs on the TWI bus, the TWI
Interrupt Flag (TWINT) is asserted. In the next clock cycle, the TWI Status Register (TWSR) is updated with a
status code identifying the event. The TWSR only contains relevant status information when the TWI Interrupt
Flag is asserted. At all other times, the TWSR contains a special status code indicating that no relevant status
information is available. As long as the TWINT Flag is set, the SCL line is held low. This allows the application
software to complete its tasks before allowing the TWI transmission to continue.

The TWINT Flag is set in the following situations:

After the TWI has transmitted a START/REPEATED START condition

After the TWI has transmitted SLA+R/W

After the TWI has transmitted an address byte

After the TWI has lost arbitration

After the TWI has been addressed by own slave address or general call

After the TWI has received a data byte

After a STOP or REPEATED START has been received while still addressed as a Slave
When a bus error has occurred due to an illegal START or STOP condition

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 210

Atmel-8272G-AVR-01/2015

21.6 Using the TWI

The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events, like reception of a
byte or transmission of a START condition. Because the TWI is interrupt-based, the application software is free
to carry on other operations during a TWI byte transfer. Note that the TWI Interrupt Enable (TWIE) bit in TWCR
together with the Global Interrupt Enable bit in SREG allow the application to decide whether or not assertion of
the TWINT Flag should generate an interrupt request. If the TWIE bit is cleared, the application must poll the
TWINT Flag in order to detect actions on the TWI bus.

When the TWINT Flag is asserted, the TWI has finished an operation and awaits application response. In this
case, the TWI Status Register (TWSR) contains a value indicating the current state of the TWI bus. The
application software can then decide how the TWI should behave in the next TWI bus cycle by manipulating the
TWCR and TWDR Registers.

Figure 21-10 is a simple example of how the application can interface to the TWI hardware. In this example, a
Master wishes to transmit a single data byte to a Slave. This description is quite abstract, a more detailed
explanation follows later in this section. A simple code example implementing the desired behavior is also
presented.

Figure 21-10. Interfacing the application to the TWI in a typical transmission.

Atmel

1. Applicati 3. Check TWSR to see if START was 5. Check TWSR to see if SLA+W was 7. Check TWSR t if dat t
c writés ﬁ’g_}ﬁgg to sent. Application loads SLA+W into sent and ACK received. - hec and ACOKSreeecleiv: da was sen
S c initiate TWDR, and loads appropriate control Application loads data into TWDR, and Aoplication loads approl rialte control
_S % . signals into TWCR, makin sure that loads appropriate control signals into PP pprop
52 transmission of TWINT is written to one. TWCR. makin that TWINT i signals to send STOP into TWCR,
2 START . - i ’ ng sure tha s making sure that TWINT is written to one
< and TWSTA is written to zero. written to one
Y ’—‘ ’—‘
TWIbus | START SLA+W A Data A STOP ‘
Indicates
2. TWINT set. 4 TWINT set. 6. TWINT set. . TWINT set
Status code indicates

Status code indicates
START condition sent

Status code indicates

SLA+W sent, ACK data sent, ACK received

received

TWI
Hardware
Action

The first step in a TWI transmission is to transmit a START condition. This is done by writing a specific
value into TWCR, instructing the TWI hardware to transmit a START condition. Which value to write is
described later on. However, it is important that the TWINT bit is set in the value written. Writing a one to
TWINT clears the flag. The TWI will not start any operation as long as the TWINT bit in TWCR is set.
Immediately after the application has cleared TWINT, the TWI will initiate transmission of the START
condition.

When the START condition has been transmitted, the TWINT Flag in TWCR is set, and TWSR is updated
with a status code indicating that the START condition has successfully been sent.

The application software should now examine the value of TWSR, to make sure that the START condition
was successfully transmitted. If TWSR indicates otherwise, the application software might take some
special action, like calling an error routine. Assuming that the status code is as expected, the application
must load SLA+W into TWDR. Remember that TWDR is used both for address and data. After TWDR has
been loaded with the desired SLA+W, a specific value must be written to TWCR, instructing the TWI
hardware to transmit the SLA+W present in TWDR. Which value to write is described later on. However, it
is important that the TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI
will not start any operation as long as the TWINT bit in TWCR is set. Immediately after the application has
cleared TWINT, the TWI will initiate transmission of the address packet.

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 21

Atmel-8272G-AVR-01/2015

4. When the address packet has been transmitted, the TWINT Flag in TWCR is set, and TWSR is updated
with a status code indicating that the address packet has successfully been sent. The status code will also
reflect whether a Slave acknowledged the packet or not.

5. The application software should now examine the value of TWSR, to make sure that the address packet
was successfully transmitted, and that the value of the ACK bit was as expected. If TWSR indicates
otherwise, the application software might take some special action, like calling an error routine. Assuming
that the status code is as expected, the application must load a data packet into TWDR. Subsequently, a
specific value must be written to TWCR, instructing the TWI hardware to transmit the data packet present
in TWDR. Which value to write is described later on. However, it is important that the TWINT bit is set in
the value written. Writing a one to TWINT clears the flag. The TWI will not start any operation as long as
the TWINT bit in TWCR is set. Immediately after the application has cleared TWINT, the TWI will initiate
transmission of the data packet.

6. When the data packet has been transmitted, the TWINT Flag in TWCR is set, and TWSR is updated with
a status code indicating that the data packet has successfully been sent. The status code will also reflect
whether a Slave acknowledged the packet or not.

7. The application software should now examine the value of TWSR, to make sure that the data packet was
successfully transmitted, and that the value of the ACK bit was as expected. If TWSR indicates otherwise,
the application software might take some special action, like calling an error routine. Assuming that the
status code is as expected, the application must write a specific value to TWCR, instructing the TWI
hardware to transmit a STOP condition. Which value to write is described later on. However, it is important
that the TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will not start
any operation as long as the TWINT bit in TWCR is set. Immediately after the application has cleared
TWINT, the TWI will initiate transmission of the STOP condition. Note that TWINT is NOT set after a
STOP condition has been sent.

Even though this example is simple, it shows the principles involved in all TWI transmissions. These can be
summarized as follows:

e When the TWI has finished an operation and expects application response, the TWINT Flag is set. The
SCL line is pulled low until TWINT is cleared

e When the TWINT Flag is set, the user must update all TWI Registers with the value relevant for the next
TWI bus cycle. As an example, TWDR must be loaded with the value to be transmitted in the next bus
cycle

e After all TWI Register updates and other pending application software tasks have been completed, TWCR
is written. When writing TWCR, the TWINT bit should be set. Writing a one to TWINT clears the flag. The
TWI will then commence executing whatever operation was specified by the TWCR setting

In the following an assembly and C implementation of the example is given. Note that the code below assumes
that several definitions have been made, for example by using include-files.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 212

Atmel-8272G-AVR-01/2015

Assembly code example

Table 21-2. Assembly code and C code examples

C example

Comments

1di

rlo,
(1<<TWINT) | (1<<TWSTA)
|

(1<<TWEN)
out
TWCR, rlo6

TWCR =
(1<<TWINT) | (1<<TWSTA

)|
(1<<TWEN)

Send START condition

waitl:

in

rl6, TWCR
sbrs

rl6, TWINT
rjmp
waitl

while (! (TWCR &
(1<<TWINT)))

Wait for TWINT Flag set. This
indicates that the START
condition has been transmitted

in

rl6, TWSR
andi

rle, OxF8
cpi

rl6, START
brne
ERROR

if ((TWSR & OxF8) !=
START)

ERROR () ;

Check value of TWI Status
Register. Mask prescaler bits. If
status different from START go to
ERROR

1di

rl6e, SLA W

out

TWDR, rlé6

1di

rl6, (L<<TWINT) |
(1<<TWEN)

out

TWCR, rlé6

TWDR SLA W;
TWCR = (1<<TWINT) |
(1<<TWEN) ;

Load SLA_W into TWDR
Register. Clear TWINT bit in
TWCR to start transmission of
address

wait2:

in

rl6, TWCR
sbrs

rl6, TWINT
rjmp
wait2

while (! (TWCR &
(1<<TWINT)))

Wait for TWINT Flag set. This
indicates that the SLA+W has
been transmitted, and
ACK/NACK has been received.

Atmel

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)]

213

Atmel-8272G-AVR-01/2015

Table 21-2. Assembly code and C code examples

Assembly code example C example Comments

in

rl6, TWSR

andi

rle, OxF8

cpi

rl6, MT SLA ACK
brne

ERROR

if ((TWSR & OxF8) !=
MT SLA ACK)

ERROR () ;

Check value of TWI Status
Register. Mask prescaler bits. If
status different from
MT_SLA_ACK go to ERROR

1di

rl6, DATA

out

TWDR, rl6

1di

rl6, (L<<TWINT) |
(1<<TWEN)

out

TWCR, rl6

TWDR DATA;
TWCR = (1<<TWINT) |
(1<<TWEN) ;

Load DATA into TWDR Register.
Clear TWINT bitin TWCR to start
transmission of data

wait3:

in

rl6, TWCR
sbrs

rl6, TWINT
rjmp
wait3

while (! (TWCR &
(1<<TWINT)))

Wait for TWINT Flag set. This
indicates that the DATA has been
transmitted, and ACK/NACK has
been received.

in

rl6, TWSR

andi

rle, OxF8

cpi

rl6, MT DATA ACK
brne

ERROR

if ((TWSR & OxF8) !=
MT DATA ACK)

ERROR() ;

Check value of TWI Status
Register. Mask prescaler bits. If
status different from
MT_DATA_ACK go to ERROR

1di
rlo,
(1<<TWINT) | (1<<TWEN) |

(1<<TWSTO)
out
TWCR, rlé6

TWCR =
(I<<TWINT) | (1<<TWEN)
|

(1<<TWSTO) ;

Transmit STOP condition

Atmel

21.7 Transmission modes

The TWI can operate in one of four major modes. These are named Master Transmitter (MT), Master Receiver
(MR), Slave Transmitter (ST) and Slave Receiver (SR). Several of these modes can be used in the same
application. As an example, the TWI can use MT mode to write data into a TWI EEPROM, MR mode to read the
data back from the EEPROM. If other masters are present in the system, some of these might transmit data to
the TWI, and then SR mode would be used. It is the application software that decides which modes are legal.

The following sections describe each of these modes. Possible status codes are described along with figures
detailing data transmission in each of the modes. These figures contain the following abbreviations:

S:START condition

Rs:REPEATED START condition

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 214

Atmel-8272G-AVR-01/2015

21.71

R:Read bit (high level at SDA)

W:Write bit (low level at SDA)
A:Acknowledge bit (low level at SDA)
A:Not acknowledge bit (high level at SDA)
Data: 8-bit data byte

P:STOP condition

SLA:Slave Address

In Figure 21-12 on page 217 to Figure 21-18 on page 225, circles are used to indicate that the TWINT Flag is
set. The numbers in the circles show the status code held in TWSR, with the prescaler bits masked to zero. At
these points, actions must be taken by the application to continue or complete the TWI transfer. The TWI
transfer is suspended until the TWINT Flag is cleared by software.

When the TWINT Flag is set, the status code in TWSR is used to determine the appropriate software action. For
each status code, the required software action and details of the following serial transfer are given in Table 21-3
on page 216 to Table 21-6 on page 224. Note that the prescaler bits are masked to zero in these tables.

Master Transmitter mode

In the Master Transmitter mode, a number of data bytes are transmitted to a Slave Receiver (see Figure 21-11
on page 215). In order to enter a Master mode, a START condition must be transmitted. The format of the
following address packet determines whether Master Transmitter or Master Receiver mode is to be entered. If
SLA+W is transmitted, MT mode is entered, if SLA+R is transmitted, MR mode is entered. All the status codes
mentioned in this section assume that the prescaler bits are zero or are masked to zero.

Figure 21-11. Data transfer in Master Transmitter mode.

cc

Device 1 Device 2 . .
MASTER SLAVE Device 3 | Device n R1 R2
TRANSMITTER RECEIVER

SDA

SCL

A START condition is sent by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 1 0 X 1 0 X

TWEN must be set to enable the two-wire Serial Interface, TWSTA must be written to one to transmit a START
condition and TWINT must be written to one to clear the TWINT Flag. The TWI will then test the two-wire Serial
Bus and generate a START condition as soon as the bus becomes free. After a START condition has been
transmitted, the TWINT Flag is set by hardware, and the status code in TWSR will be 0x08 (see Table 21-3 on
page 216). In order to enter MT mode, SLA+W must be transmitted. This is done by writing SLA+W to TWDR.
Thereafter the TWINT bit should be cleared (by writing it to one) to continue the transfer. This is accomplished
by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 0 X 1 0 X

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 215

Atmel-8272G-AVR-01/2015

When SLA+W have been transmitted and an acknowledgement bit has been received, TWINT is set again and
a number of status codes in TWSR are possible. Possible status codes in Master mode are 0x18, 0x20, or 0x38.
The appropriate action to be taken for each of these status codes is detailed in Table 21-3 on page 216.

When SLA+W has been successfully transmitted, a data packet should be transmitted. This is done by writing
the data byte to TWDR. TWDR must only be written when TWINT is high. If not, the access will be discarded,
and the Write Collision bit (TWWC) will be set in the TWCR Register. After updating TWDR, the TWINT bit
should be cleared (by writing it to one) to continue the transfer. This is accomplished by writing the following

value

TWCR

value

to TWCR:

TWINT

TWEA

TWSTA TWSTO TWWC TWEN

- TWIE

1 X

0 0 X 1

0 X

This scheme is repeated until the last byte has been sent and the transfer is ended by generating a STOP
condition or a repeated START condition. A STOP condition is generated by writing the following value to

TWCR:
TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 1 X 1 0 X
A REPEATED START condition is generated by writing the following value to TWCR:
TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 1 0 X 1 0 X

After a repeated START condition (state 0x10) the two-wire Serial Interface can access the same Slave again,
or a new Slave without transmitting a STOP condition. Repeated START enables the Master to switch between
Slaves, Master Transmitter mode and Master Receiver mode without losing control of the bus.

Table 21-3. Status codes for Master Transmitter mode.
Status Code Application Software Response
(TWSR) Status of the two-wire Serial | 1600 TWDR To TWCR
Prescaler Bits Bus and two-wire Serial Inter-
are 0 face Hardware STA STO TV_\IUN TVXE Next Action Taken by TWI Hardware
0x08 A START condition has been | Load SLA+W 0 0 1 X SLA+W will be transmitted;
transmitted ACK or NOT ACK will be received
0x10 A repeated START condition | Load SLA+W or 0 0 1 X SLA+W will be transmitted;
has been transmitted ACK or NOT ACK will be received
Load SLA+R 0 0 1 X SLA+R will be transmitted;
Logic will switch to Master Receiver mode
0x18 SLA+W has been transmitted; Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK wiill
ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
0x20 SLA+W has been transmitted; Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
NOT ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

Atmel

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)]

216

Atmel-8272G-AVR-01/2015

Table 21-3. Status codes for Master Transmitter mode.
0x28 Data byte has been transmit- | Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
ted; be received
ACK has been received No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
0x30 Data byte has been transmit- | Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
ted; be received
NOT ACK has been received No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
0x38 Arbitration lost in SLA+W or | No TWDR action or 0 0 1 X two-wire Serial Bus will be released and not addressed
data bytes Slave mode entered
No TWDR action 1 0 1 X A START condition will be transmitted when the bus
becomes free
Figure 21-12. Formats and states in the Master Transmitter mode.
MT
Successfull T T
transmission S SLA ' w A DATA A P
to a slave ! - -
receiver
$08 $18 $28
Next transfer !
started with a Rs SLA . W
repeated start
condition
Not acknowledge R
received after the A P |
slave address
N knowled MR
ot acknowledge
received after a data A P |

Atmel

byte

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

Other master Other master
AorA | continues | AorA | continues
$38 $38
A | Other master

continues

To corresponding
states in slave mode

[]
[1]

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)]

From master to slave

From slave to master

[=

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-Wire Serial Bus. The
prescaler bits are zero or masked to zero

217

Atmel-8272G-AVR-01/2015

21.7.2 Master Receiver mode

In the Master Receiver mode, a number of data bytes are received from a Slave Transmitter (Slave see Figure
21-13 on page 218). In order to enter a Master mode, a START condition must be transmitted. The format of the
following address packet determines whether Master Transmitter or Master Receiver mode is to be entered. If

SLA+W is transmitted, MT mode is entered, if SLA+R is transmitted, MR mode is entered. All the status codes

mentioned in this section assume that the prescaler bits are zero or are masked to zero.

Figure 21-13. Data transfer in Master Receiver mode.

VCC
Device 1 Device 2 .
MASTER SLAVE Device3 | Device n Eﬂ E%
RECEIVER TRANSMITTER
i A
SDA y
scL v
A START condition is sent by writing the following value to TWCR:
TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN = TWIE
value 1 X 1 0 X 1 0 X

TWEN must be written to one to enable the two-wire Serial Interface, TWSTA must be written to one to transmit
a START condition and TWINT must be set to clear the TWINT Flag. The TWI will then test the two-wire Serial
Bus and generate a START condition as soon as the bus becomes free. After a START condition has been
transmitted, the TWINT Flag is set by hardware, and the status code in TWSR will be 0x08 (See Table 21-3 on
page 216). In order to enter MR mode, SLA+R must be transmitted. This is done by writing SLA+R to TWDR.
Thereafter the TWINT bit should be cleared (by writing it to one) to continue the transfer. This is accomplished
by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 0 X 1 0 X

When SLA+R have been transmitted and an acknowledgement bit has been received, TWINT is set again and a
number of status codes in TWSR are possible. Possible status codes in Master mode are 0x38, 0x40, or 0x48.
The appropriate action to be taken for each of these status codes is detailed in Table 21-4 on page 219.
Received data can be read from the TWDR Register when the TWINT Flag is set high by hardware. This
scheme is repeated until the last byte has been received. After the last byte has been received, the MR should
inform the ST by sending a NACK after the last received data byte. The transfer is ended by generating a STOP
condition or a repeated START condition. A STOP condition is generated by writing the following value to

TWCR:
TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 1 X 1 0 X

A REPEATED START condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 1 0 X 1 0 X
/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 218

Atmel-8272G-AVR-01/2015

After a repeated START condition (state 0x10) the two-wire Serial Interface can access the same Slave again,
or a new Slave without transmitting a STOP condition. Repeated START enables the Master to switch between
Slaves, Master Transmitter mode and Master Receiver mode without losing control over the bus.

Table 21-4. Status codes for Master Receiver mode.
Status Code Application Software Response
(TWSR) Status of the two-wire Serial To TWCR
Prescaler Bits Bus and two-wire Serial Inter- | 1o/60m TWDR
are 0 face Hardware STA STO TV_VI_|N TVXE Next Action Taken by TWI Hardware
0x08 A START condition has been | Load SLA+R 0 0 1 X SLA+R will be transmitted
transmitted ACK or NOT ACK will be received
0x10 A repeated START condition | Load SLA+R or 0 0 1 X SLA+R will be transmitted
has been transmitted ACK or NOT ACK will be received
Load SLA+W 0 0 1 X SLA+W will be transmitted
Logic will switch to Master Transmitter mode
0x38 Arbitration lost in SLA+R or | No TWDR action or 0 0 1 X two-wire Serial Bus will be released and not addressed
NOT ACK bit Slave mode will be entered
No TWDR action 1 0 1 X A START condition will be transmitted when the bus
becomes free
0x40 SLA+R has been transmitted; No TWDR action or 0 0 1 0 Data byte will be received and NOT ACK will be
ACK has been received returned
No TWDR action 0 0 1 1 Data byte will be received and ACK will be returned
0x48 SLA+R has been transmitted; No TWDR action or 1 0 1 X Repeated START will be transmitted
NOT ACK has been received No TWDR action or 0 1 1 X STOP condition will be transmitted and TWSTO Flag
will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
0x50 Data byte has been received; Read data byte or 0 0 1 0 Data byte will be received and NOT ACK will be
ACK has been returned returned
Read data byte 0 0 1 1 Data byte will be received and ACK will be returned
0x58 Data byte has been received; Read data byte or 1 0 1 X Repeated START will be transmitted
NOT ACK has been returned Read data byte or 0 1 1 X STOP condition will be transmitted and TWSTO Flag
will be reset
Read data byte 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

Atmel

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)]

219

Atmel-8272G-AVR-01/2015

Figure 21-14. Formats and states in the Master Receiver mode.
MR

Successfull

reception S | SLA . R A | DATA A | DATA | A B |
from a slave —
receiver
$08 $40 @ $58
Next transfer j
started with a Rs | SLA . R
repeated start
condition
Not acknowledge W
received after the A P
slave address
$48
MT
Arbitration lost in slave Other master Other master
address or data byte AorA | continues A continues
$38

Arbitration lost and
addressed as slave

Other master
continues

To i
states in slave mode

L]
]

From master to slave |

From slave to master

21.7.3 Slave Receiver mode

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-Wire Serial Bus. The
prescaler bits are zero or masked to zero

In the Slave Receiver mode, a number of data bytes are received from a Master Transmitter (see Figure 21-15).
All the status codes mentioned in this section assume that the prescaler bits are zero or are masked to zero.

Figure 21-15. Data transfer in Slave Receiver mode.

cc
Device 1 Device 2) .
SLAVE MASTER Device 3 | Device n R1 R2
RECEIVER TRANSMITTER
A A
SDA Y
scL]

To initiate the Slave Receiver mode, TWAR and TWCR must be initialized as follows:

TWAR

value

Atmel

TWA6

‘ TWAS5 \

TWA4 \ TWA3

TWA2 | TWA1 ‘ TWAO TWGCE

Device’s Own Slave Address

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)]

220

Atmel-8272G-AVR-01/2015

The upper seven bits are the address to which the two-wire Serial Interface will respond when addressed by a
Master. If the LSB is set, the TWI will respond to the general call address (0x00), otherwise it will ignore the
general call address.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 0 1 0 0 0 1 0 X

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable the
acknowledgement of the device’s own slave address or the general call address. TWSTA and TWSTO must be
written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own slave address (or
the general call address if enabled) followed by the data direction bit. If the direction bit is “0” (write), the TWI will
operate in SR mode, otherwise ST mode is entered. After its own slave address and the write bit have been
received, the TWINT Flag is set and a valid status code can be read from TWSR. The status code is used to
determine the appropriate software action. The appropriate action to be taken for each status code is detailed in
Table 21-5 on page 222. The Slave Receiver mode may also be entered if arbitration is lost while the TWI is in
the Master mode (see states 0x68 and 0x78).

If the TWEA bit is reset during a transfer, the TWI will return a “Not Acknowledge” (“1”) to SDA after the next
received data byte. This can be used to indicate that the Slave is not able to receive any more bytes. While
TWEA is zero, the TWI does not acknowledge its own slave address. However, the two-wire Serial Bus is still
monitored and address recognition may resume at any time by setting TWEA. This implies that the TWEA bit
may be used to temporarily isolate the TWI from the two-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA bit is set, the
interface can still acknowledge its own slave address or the general call address by using the two-wire Serial
Bus clock as a clock source. The part will then wake up from sleep and the TWI will hold the SCL clock low
during the wake up and until the TWINT Flag is cleared (by writing it to one). Further data reception will be
carried out as normal, with the AVR clocks running as normal. Observe that if the AVR is set up with a long start-
up time, the SCL line may be held low for a long time, blocking other data transmissions.

Note that the two-wire Serial Interface Data Register — TWDR does not reflect the last byte present on the bus
when waking up from these Sleep modes.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 221

Atmel-8272G-AVR-01/2015

Table 21-5.

Status codes for Slave Receiver mode.

Status Code

Application Software Response

(TWSR) Status of the two-wire Serial Bus To TWCR
Prescaler Bits and two-wire Serial Interface Tolfrom TWDR
are 0 Hardware STA STO TV_I\UN TVXE Next Action Taken by TWI Hardware
0x60 Own SLA+W has been received; No TWDR action or X 0 1 0 Data byte will be received and NOT ACK will be
ACK has been returned returned
No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
0x68 Arbitration lost in SLA+R/W as | No TWDR action or X 0 1 0 Data byte will be received and NOT ACK will be
Master; own SLA+W has been returned
received; ACK has been returned | No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
0x70 General call address has been No TWDR action or X 0 1 0 Data byte will be received and NOT ACK will be
received; ACK has been returned returned
No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
0x78 Arbitration lost in SLA+R/W as | No TWDR action or X 0 1 0 Data byte will be received and NOT ACK will be
Master; General call address has returned
been received; ACK has been No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
returned
0x80 Previously addressed with own | Read data byte or X 0 1 0 Data byte will be received and NOT ACK will be
SLA+W; data has been received; returned
ACK has been returned Read data byte X 0 1 1 Data byte will be received and ACK will be returned
0x88 Previously addressed with own | Read data byte or 0 0 1 0 Switched to the not addressed Slave mode;
SLA+W; data has been received; no recognition of own SLA or GCA
NOT ACK has been returned Read data byte or 0 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Read data byte or 1 0 1 0 Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Read data byte 1 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17;
a START condition will be transmitted when the bus
becomes free
0x90 Previously addressed with Read data byte or X 0 1 0 Data byte will be received and NOT ACK will be
general call; data has been re- returned
ceived; ACK has been returned Read data byte X 0 1 1 Data byte will be received and ACK will be returned
0x98 Previously addressed with Read data byte or 0 0 1 0 Switched to the not addressed Slave mode;
general call; data has been no recognition of own SLA or GCA
received; NOT ACK has been Read data byte or 0 0 1 1 Switched to the not addressed Slave mode;
returned own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Read data byte or 1 0 1 0 Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Read data byte 1 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17;
a START condition will be transmitted when the bus
becomes free
0xA0 A STOP condition or repeated | No action 0 0 1 0 Switched to the not addressed Slave mode;
START condition has been no recognition of own SLA or GCA
received while still addressed as 0 0 1 1 Switched to the not addressed Slave mode;
Slave own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
1 0 1 0 Switched to the not addressed Slave mode;
no recognition of own SLA or GCA,;
a START condition will be transmitted when the bus
becomes free
1 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17;
a START condition will be transmitted when the bus
becomes free

Atmel

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)]

222

Atmel-8272G-AVR-01/2015

Figure 21-16. Formats and states in the Slave Receiver mode.

R tis f the - T T
ovo adiross andomeor | S SLA W A DATA | A | DATA A | PorS |

more data bytes. All are
acknowledged
$60 $80 $ $A0

80
Last data byte received
is not acknowledged A
$88
A

On

Arbitration lost as master
and addressed as slave A

Reception of the general call T
addre’;s and one%r more data General Call A DATA | A | DATA | PorS |

bytes I

$90 $90) (A0
Last data byte received is [
not acknowledged A

$98

Arbitration lost as master and
addressed as slave by general call A

$78

Any number of data bytes
From master to slave DATA | A Y v

and their associated acknowledge bits

I:I From slave to master @ This number (contained in TWSR) corresponds

to a defined state of the Two-Wire Serial Bus. The
prescaler bits are zero or masked to zero

21.7.4 Slave Transmitter mode

In the Slave Transmitter mode, a number of data bytes are transmitted to a Master Receiver (see Figure 21-17).
All the status codes mentioned in this section assume that the prescaler bits are zero or are masked to zero.

Figure 21-17. Data transfer in Slave Transmitter mode.

Vee
Device 1 Device 2) .
SLAVE MASTER Device 3 | Device n R1 R2
TRANSMITTER RECEIVER
A A
SDA v
scL Y
/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 223

Atmel-8272G-AVR-01/2015

To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:

TWAR TWA6 \ TWA5 \ TWA4 \ TWA3 | TWA2 | TWA1 \ TWAO TWGCE

value Device’s Own Slave Address

The upper seven bits are the address to which the two-wire Serial Interface will respond when addressed by a
Master. If the LSB is set, the TWI will respond to the general call address (0x00), otherwise it will ignore the
general call address.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 0 1 0 0 0 1 0 X

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable the
acknowledgement of the device’s own slave address or the general call address. TWSTA and TWSTO must be
written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own slave address (or
the general call address if enabled) followed by the data direction bit. If the direction bit is “1” (read), the TWI will
operate in ST mode, otherwise SR mode is entered. After its own slave address and the write bit have been
received, the TWINT Flag is set and a valid status code can be read from TWSR. The status code is used to
determine the appropriate software action. The appropriate action to be taken for each status code is detailed in
Table 21-6 on page 224. The Slave Transmitter mode may also be entered if arbitration is lost while the TWI is
in the Master mode (see state 0xB0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of the transfer. State 0xCO
or state OxC8 will be entered, depending on whether the Master Receiver transmits a NACK or ACK after the
final byte. The TWI is switched to the not addressed Slave mode, and will ignore the Master if it continues the
transfer. Thus the Master Receiver receives all “1” as serial data. State 0xC8 is entered if the Master demands
additional data bytes (by transmitting ACK), even though the Slave has transmitted the last byte (TWEA zero
and expecting NACK from the Master).

While TWEA is zero, the TWI does not respond to its own slave address. However, the two-wire Serial Bus is
still monitored and address recognition may resume at any time by setting TWEA. This implies that the TWEA
bit may be used to temporarily isolate the TWI from the two-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA bit is set, the
interface can still acknowledge its own slave address or the general call address by using the two-wire Serial
Bus clock as a clock source. The part will then wake up from sleep and the TWI will hold the SCL clock will low
during the wake up and until the TWINT Flag is cleared (by writing it to one). Further data transmission will be
carried out as normal, with the AVR clocks running as normal. Observe that if the AVR is set up with a long start-
up time, the SCL line may be held low for a long time, blocking other data transmissions.

Note that the two-wire Serial Interface Data Register — TWDR does not reflect the last byte present on the bus
when waking up from these sleep modes.

Table 21-6. Status codes for Slave Transmitter mode.

Status Code Application Software Response
(TWSR) Status of the two-wire Serial Bus To TWCR
Prescaler and two-wire Serial Interface Tolfrom TWDR
Bits Hardware STA STO TWIN TWE Next Action Taken by TWI Hardware
are 0 T A
0xA8 Own SLA+R has been received; Load data byte or X 0 1 0 Last data byte will be transmitted and NOT ACK should
ACK has been returned be received
Load data byte X 0 1 1 Data byte will be transmitted and ACK should be re-
ceived
0xB0O Arbitration lost in SLA+R/W as | Load data byte or X 0 1 0 Last data byte will be transmitted and NOT ACK should
Master; own SLA+R has been be received
received; ACK has been returned | Load data byte X 0 1 1 Data byte will be transmitted and ACK should be re-
ceived

Atmel

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 224

Atmel-8272G-AVR-01/2015

Table 21-6.

Status codes for Slave Transmitter mode.

0xB8

Data byte in TWDR has been
transmitted; ACK has been
received

Load data byte or

Load data byte

Last data byte will be transmitted and NOT ACK should
be received

Data byte will be transmitted and ACK should be re-
ceived

0xCOo

Data byte in TWDR has been
transmitted; NOT ACK has been
received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1”

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA;

a START condition will be transmitted when the bus
becomes free

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “17;

a START condition will be transmitted when the bus
becomes free

0xC8

Last data byte in TWDR has been
transmitted (TWEA = “0”); ACK
has been received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1”

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA;

a START condition will be transmitted when the bus
becomes free

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “17;

a START condition will be transmitted when the bus
becomes free

Figure 21-18. Formats and states in the Slave Transmitter mode.

Reception of the own

'
slave address and one or S | SLA ' R DATA A | PorS |
more data bytes
Arbitration lost as master
and addressed as slave
Last data byte transmitted. - _. -
Switched to not addressed A | All 1's | Pors |
slave (TWEA ='0) -T -
$C8
- Any number of data bytes
From master to slave DATA

[]
]

21.7.5 Miscellaneous States

Atmel

From slave to master

and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-Wire Serial Bus. The
prescaler bits are zero or masked to zero

There are two status codes that do not correspond to a defined TWI state, see Table 21-7.

Status O0xF8 indicates that no relevant information is available because the TWINT Flag is not set. This occurs

between other states, and when the TWI is not involved in a serial transfer.

Status 0x00 indicates that a bus error has occurred during a two-wire Serial Bus transfer. A bus error occurs
when a START or STOP condition occurs at an illegal position in the format frame. Examples of such illegal
positions are during the serial transfer of an address byte, a data byte, or an acknowledge bit. When a bus error
occurs, TWINT is set. To recover from a bus error, the TWSTO Flag must set and TWINT must be cleared by

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 225

Atmel-8272G-AVR-01/2015

writing a logic one to it. This causes the TWI to enter the not addressed Slave mode and to clear the TWSTO

Flag (no other bits in TWCR are affected). The SDA and SCL lines are released, and no STOP condition is

transmitted.

Table 21-7. Miscellaneous states.

(TWSR)

are 0

Status Code Application Software Response

Prescaler Bits Bus and two-wire Serial Inter- | 1o/60m TWDR

Status of the two-wire Serial To TWCR

face Hardware STA STO TV_VI_|N TVXE Next Action Taken by TWI Hardware

OxF8

No relevant state information | No TWDR action No TWCR action Wait or proceed current transfer
available; TWINT = “0”

0x00

Bus error due to an illegal | No TWDR action 0 1 1 X Only the internal hardware is affected, no STOP condi-
START or STOP condition tion is sent on the bus. In all cases, the bus is released
and TWSTO is cleared.

21.7.6

21.8

Combining several TWI modes

In some cases, several TWI modes must be combined in order to complete the desired action. Consider for
example reading data from a serial EEPROM. Typically, such a transfer involves the following steps:

1. The transfer must be initiated.
2. The EEPROM must be instructed what location should be read.
3. The reading must be performed.
4. The transfer must be finished.

Note that data is transmitted both from Master to Slave and vice versa. The Master must instruct the Slave what
location it wants to read, requiring the use of the MT mode. Subsequently, data must be read from the Slave,
implying the use of the MR mode. Thus, the transfer direction must be changed. The Master must keep control
of the bus during all these steps, and the steps should be carried out as an atomical operation. If this principle is
violated in a multimaster system, another Master can alter the data pointer in the EEPROM between steps 2
and 3, and the Master will read the wrong data location. Such a change in transfer direction is accomplished by
transmitting a REPEATED START between the transmission of the address byte and reception of the data.
After a REPEATED START, the Master keeps ownership of the bus. The following figure shows the flow in this
transfer.

Figure 21-19. Combining several TWI modes to access a serial EEPROM.

Master Transmitter Master Receiver

— T

S SLA+W A ADDRESS A | Rs SLA+R A DATA Al P

S = START Rs = REPEATED START P = STOP

Transmitted from master to slave Transmitted from slave to master

Multi-master Systems and Arbitration

If multiple masters are connected to the same bus, transmissions may be initiated simultaneously by one or
more of them. The TWI standard ensures that such situations are handled in such a way that one of the masters
will be allowed to proceed with the transfer, and that no data will be lost in the process. An example of an
arbitration situation is depicted below, where two masters are trying to transmit data to a Slave Receiver.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 226

Atmel-8272G-AVR-01/2015

Figure 21-20. An Arbitration example.

Vee
Device 1 Device 2 Device 3 .
MASTER MASTER SLAVE | eeueenns Device n R1 R2
TRANSMITTER TRANSMITTER RECEIVER
Iy A
SDA «—7VY Y >
SCL Y Y >

Several different scenarios may arise during arbitration, as described below:

e Two or more masters are performing identical communication with the same Slave. In this case, neither
the Slave nor any of the masters will know about the bus contention

e Two or more masters are accessing the same Slave with different data or direction bit. In this case,
arbitration will occur, either in the READ/WRITE bit or in the data bits. The masters trying to output a one
on SDA while another Master outputs a zero will lose the arbitration. Losing masters will switch to not
addressed Slave mode or wait until the bus is free and transmit a new START condition, depending on
application software action

e Two or more masters are accessing different slaves. In this case, arbitration will occur in the SLA bits.
Masters trying to output a one on SDA while another Master outputs a zero will lose the arbitration.
Masters losing arbitration in SLA will switch to Slave mode to check if they are being addressed by the
winning Master. If addressed, they will switch to SR or ST mode, depending on the value of the
READ/WRITE bit. If they are not being addressed, they will switch to not addressed Slave mode or wait
until the bus is free and transmit a new START condition, depending on application software action

This is summarized in Figure 21-21. Possible status values are given in circles.

Figure 21-21. Possible status codes caused by Arbitration.

START SLA Data STOP

Arbitration lost in SLA Arbitration lost in Data

Own
Address / General Call
received

TWI bus will be released and not addressed slave mode will be entered
A START condition will be transmitted when the bus becomes free

(3874

Write 68/78 Jaa byte will be received and NOT ACK will be returned

Direction | Data byte will be received and ACK will be returned

Read Last data byte will be transmitted and NOT ACK should be received
> Vi
@' Data byte will be transmitted and ACK should be received

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 227

Atmel-8272G-AVR-01/2015

21.9 Register description
21.9.1 TWBR - TWI Bit Rate Register
Bit 7 6 5 4 3 2 1 0
(0xB8) | TwBR7 | TWBR6 | TWBR5 | TWBR4 | TWBR3 | TWBR2 | TWBR1 | TWBRO | TWBR
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
» Bits 7:0 — TWI Bit Rate Register
TWBR selects the division factor for the bit rate generator. The bit rate generator is a frequency divider which
generates the SCL clock frequency in the Master modes. See "Bit Rate Generator unit” on page 209 for
calculating bit rates.
21.9.2 TWCR - TWI Control Register
Bit 7 6 5 4 3 2 1 0
(0xBC) | TWINT | TWEA | TWSTA | TWSTO | TWWC TWEN = TWIE | TWCR
Read/Write RIW RIW RIW RIW R RIW R RIW
Initial Value 0 0 0 0 0 0 0 0
The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to initiate a Master access
by applying a START condition to the bus, to generate a Receiver acknowledge, to generate a stop condition,
and to control halting of the bus while the data to be written to the bus are written to the TWDR. It also indicates
a write collision if data is attempted written to TWDR while the register is inaccessible.
e Bit 7 — TWINT: TWI Interrupt Flag
This bit is set by hardware when the TWI has finished its current job and expects application software response.
If the I-bit in SREG and TWIE in TWCR are set, the MCU will jump to the TWI Interrupt Vector. While the TWINT
Flag is set, the SCL low period is stretched. The TWINT Flag must be cleared by software by writing a logic one
to it. Note that this flag is not automatically cleared by hardware when executing the interrupt routine. Also note
that clearing this flag starts the operation of the TWI, so all accesses to the TWI Address Register (TWAR), TWI
Status Register (TWSR), and TWI Data Register (TWDR) must be complete before clearing this flag.
* Bit 6 - TWEA: TWI Enable Acknowledge Bit
The TWEA bit controls the generation of the acknowledge pulse. If the TWEA bit is written to one, the ACK
pulse is generated on the TWI bus if the following conditions are met:
1. The device’s own slave address has been received.
2. A general call has been received, while the TWGCE bit in the TWAR is set.
3. A data byte has been received in Master Receiver or Slave Receiver mode.
By writing the TWEA bit to zero, the device can be virtually disconnected from the two-wire Serial Bus
temporarily. Address recognition can then be resumed by writing the TWEA bit to one again.
¢ Bit 5 - TWSTA: TWI START Condition Bit
The application writes the TWSTA bit to one when it desires to become a Master on the two-wire Serial Bus.
The TWI hardware checks if the bus is available, and generates a START condition on the bus if it is free.
However, if the bus is not free, the TWI waits until a STOP condition is detected, and then generates a new
START condition to claim the bus Master status. TWSTA must be cleared by software when the START
condition has been transmitted.
/lt m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 228

Atmel-8272G-AVR-01/2015

2193

* Bit 4 — TWSTO: TWI STOP Condition Bit

Writing the TWSTO bit to one in Master mode will generate a STOP condition on the two-wire Serial Bus. When
the STOP condition is executed on the bus, the TWSTO bit is cleared automatically. In Slave mode, setting the
TWSTO bit can be used to recover from an error condition. This will not generate a STOP condition, but the TWI
returns to a well-defined unaddressed Slave mode and releases the SCL and SDA lines to a high impedance
state.

* Bit 3 - TWWC: TWI Write Collision Flag

The TWWOC bit is set when attempting to write to the TWI Data Register - TWDR when TWINT is low. This flag
is cleared by writing the TWDR Register when TWINT is high.

* Bit 2 - TWEN: TWI Enable Bit

The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is written to one, the TWI
takes control over the 1/0O pins connected to the SCL and SDA pins, enabling the slew-rate limiters and spike
filters. If this bit is written to zero, the TWI is switched off and all TWI transmissions are terminated, regardless of
any ongoing operation.

* Bit 1 — Reserved
This bit is a reserved bit and will always read as zero.

¢ Bit 0 — TWIE: TWI Interrupt Enable

When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will be activated for as long
as the TWINT Flag is high.

TWSR - TWI Status Register

Bit 7 6 5 4 3 2 1 0

(0xB9) | tws7 | Twse | Twss TWS4 TWS3 = TWPS1 TWPSO | TWSR
Read/Write R R R R R R R/W R/W

Initial Value 1 1 1 1 1 0 0 0

¢ Bits 7:3 — TWS: TWI Status

These 5 bits reflect the status of the TWI logic and the two-wire Serial Bus. The different status codes are
described "Transmission modes” on page 214. Note that the value read from TWSR contains both the 5-bit
status value and the 2-bit prescaler value. The application designer should mask the prescaler bits to zero when
checking the Status bits. This makes status checking independent of prescaler setting. This approach is used in
this datasheet, unless otherwise noted.

* Bit 2 - Reserved
This bit is reserved and will always read as zero.

* Bits 1:0 - TWPS: TWI Prescaler Bits
These bits can be read and written, and control the bit rate prescaler.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 229

Atmel-8272G-AVR-01/2015

Table 21-8. TWI Bit Rate Prescaler.

2194

21.9.5

TWPS1 TWPSO0 Prescaler value
0 0 1

0 1 4

1 0 16

1 1 64

To calculate bit rates, see "Bit Rate Generator unit” on page 209. The value of TWPS1..0 is used in the
equation.

TWDR - TWI Data Register

Bit 7 6 5 4 3 2 1 0

(0xBB) |] two7z | TwD6 | TwD5 TWD4 TWD3 TWD2 TWD1 TWD0 | TWDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1

In Transmit mode, TWDR contains the next byte to be transmitted. In Receive mode, the TWDR contains the
last byte received. It is writable while the TWI is not in the process of shifting a byte. This occurs when the TWI
Interrupt Flag (TWINT) is set by hardware. Note that the Data Register cannot be initialized by the user before
the first interrupt occurs. The data in TWDR remains stable as long as TWINT is set. While data is shifted out,
data on the bus is simultaneously shifted in. TWDR always contains the last byte present on the bus, except
after a wake up from a sleep mode by the TWI interrupt. In this case, the contents of TWDR is undefined. In the
case of a lost bus arbitration, no data is lost in the transition from Master to Slave. Handling of the ACK bit is
controlled automatically by the TWI logic, the CPU cannot access the ACK bit directly.

* Bits 7:0 - TWD: TWI Data Register

These eight bits constitute the next data byte to be transmitted, or the latest data byte received on the two-wire
Serial Bus.

TWAR - TWI (Slave) Address Register

Bit 7 6 5 4 3 2 1 0

(0xBA) | TWA6 | TWA5 | TWA4 | TWA3 TWA2 TWA1 TWAO TWGCE | TWAR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 0

The TWAR should be loaded with the 7-bit Slave address (in the seven most significant bits of TWAR) to which
the TWI will respond when programmed as a Slave Transmitter or Receiver, and not needed in the Master
modes. In multimaster systems, TWAR must be set in masters which can be addressed as Slaves by other
Masters.

The LSB of TWAR is used to enable recognition of the general call address (0x00). There is an associated
address comparator that looks for the slave address (or general call address if enabled) in the received serial
address. If a match is found, an interrupt request is generated.

¢ Bits 7:1 — TWA: TWI (Slave) Address Register
These seven bits constitute the slave address of the TWI unit.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 230

Atmel-8272G-AVR-01/2015

21.9.6

¢ Bit 0 - TWGCE: TWI General Call Recognition Enable Bit
If set, this bit enables the recognition of a General Call given over the two-wire Serial Bus.

TWAMR - TWI (Slave) Address Mask Register

Bit 7 6 5 4 3 2 1 0

(0xBD) | TWAM[6:0] = | Twamr
Read/Write R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

¢ Bits 7:1 — TWAM: TWI Address Mask

The TWAMR can be loaded with a 7-bit Slave Address mask. Each of the bits in TWAMR can mask (disable)
the corresponding address bit in the TWI Address Register (TWAR). If the mask bit is set to one then the
address match logic ignores the compare between the incoming address bit and the corresponding bit in TWAR.
Figure 21-22 shows the address match logic in detail.

Figure 21-22. TWI address match logic, block diagram.

I 1
I 1
X 1
TWARO . |
1

: WD pocess

[J
Address : Match

Bit0

TWAMRO

* Bit 0 — Reserved
This bit is reserved and will always read as zero.

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 231

Atmel-8272G-AVR-01/2015

22,

221

22.2

AC - Analog Comparator

Overview

The Analog Comparator compares the input values on the positive pin AINO and negative pin AIN1. When the
voltage on the positive pin AINO is higher than the voltage on the negative pin AIN1, the Analog Comparator
output, ACO, is set. The comparator’s output can be set to trigger the Timer/Counter1 Input Capture function. In
addition, the comparator can trigger a separate interrupt, exclusive to the Analog Comparator. The user can
select Interrupt triggering on comparator output rise, fall or toggle. A block diagram of the comparator and its
surrounding logic is shown in Figure 22-1.

The Power Reduction ADC bit, PRADC, in "PRRO — Power Reduction Register 0” on page 48 must be disabled
by writing a logical zero to be able to use the ADC input MUX.

Figure 22-1. Analog Comparator block diagram),

BANDGAP
REFERENCE vee

C
ACBG l

ACD —>»
ACIE
AINO]
+ ANALOG

INTERRUPT COMPARATOR
/ SELECT IRQ
T T ACI

ACIS1 ACISO ACIC

A

TO T/C1 CAPTURE
TRIGGER MUX

ADC MULTIPLEXER
OUTPUT®

Pl

Notes: 1. See Table 22-1 on page 232.
2. Refer to Figure 1-1 on page 3 and Table 14-5 on page 80 for Analog Comparator pin placement.

Analog Comparator Multiplexed Input

It is possible to select any of the ADC7..0 pins to replace the negative input to the Analog Comparator. The ADC
multiplexer is used to select this input, and consequently, the ADC must be switched off to utilize this feature. If
the Analog Comparator Multiplexer Enable bit (ACME in ADCSRB) is set and the ADC is switched off (ADEN in
ADCSRA is zero), MUX2..0 in ADMUX select the input pin to replace the negative input to the Analog
Comparator, as shown in Table 22-1 on page 232. If ACME is cleared or ADEN is set, AIN1 is applied to the
negative input to the Analog Comparator.

Table 22-1. Analog Comparator Mulitiplexed input.

ACME ADEN MUX2..0 Analog Comparator negative input
0 X XXX AIN1

1 1 XXX AIN1

1 000 ADCO

0
1 0 001 ADC1
0 010 ADC2

/ItmeL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET)] 232

Atmel-8272G-AVR-01/2015

Table 22-1. Analog Comparator Mulitiplexed input. (Continued)

ACME ADEN MUX2..0 Analog Comparator negative input
1 0 011 ADC3
1 0 100 ADC4
1 0 101 ADC5
1 0 110 ADC6
1 0 111 ADC7
22.3 Register description
22.3.1 ADCSRB - ADC Control and Status Register B
Bit 7 6 5 4 3 2 1 0
(0x7B) | = | ACME | = | = | = ADTS2 ADTS1 ADTS0 | ADCSRB
Read/Write R RIW R R R RIW RIW RW
Initial Value 0 0 0 0 0 0 0 0
* Bit 6 - ACME: Analog Comparator Multiplexer Enable
When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is zero), the ADC multiplexer
selects the negative input to the Analog Comparator. When this bit is written logic zero, AIN1 is applied to the
negative input of the Analog Comparator. For a detailed description of this bit, see "Analog Comparator
Multiplexed Input” on page 232.
22.3.2 ACSR - Analog Comparator Control and Status Register
Bit 7 6 5 4 3 2 1 0
0x30(0x50) | ACD | ACBG | ACO | ACI | ACIE | AcCIC ACIS1 Aciso | Acsr
Read/Write RIW RW R RIW RIW RIW RW RIW
Initial Value 0 0 N/A 0 0 0 0 0
¢ Bit 7 - ACD: Analog Comparator Disable
When this bit is written logic one, the power to the Analog Comparator is switched off. This bit can be set at any
time to turn off the Analog Comparator. This will reduce power consumption in Active and Idle mode. When
changing the ACD bit, the Analog Comparator Interrupt must be disabled by clearing the ACIE bit in ACSR.
Otherwise an interrupt can occur when the bit is changed.
* Bit 6 — ACBG: Analog Comparator Bandgap Select
When this bit is set, a fixed bandgap reference voltage replaces the positive input to the Analog Comparator.
When this bit is cleared, AINO is applied to the positive input of the Analog Comparator. When bandgap
reference is used as input to the Analog Comparator, it will take a certain time for the voltage to stabilize. If not
stabilized, the first conversion may give wrong value. See "Internal VVoltage Reference” on page 54.
¢ Bit 5 - ACO: Analog Comparator Output
The output of the Analog Comparator is synchronized and then directly connected to ACO. The synchronization
introduces a delay of 1 - 2 clock cycles.
¢ Bit 4 — ACI: Analog Comparator Interrupt Flag
This bit is set by hardware when a comparator output event triggers the interrupt mode defined by ACIS1 and
ACISO0. The Analog Comparator interrupt routine is executed if the ACIE bit is set and the I-bit in SREG is set.
/lt m eL ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P [DATASHEET] 233

Atmel-8272G-AVR-01/2015

2233

ACl is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, ACl is
cleared by writing a logic one to the flag.

¢ Bit 3 — ACIE: Analog Comparator Interrupt Enable

When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Analog Comparator interrupt
is activated. When written logic zero, the interrupt is disabled.

¢ Bit 2 - ACIC: Analog Comparator Input Capture Enable

When written logic one, this bit enables the input capture function in Timer/Counter1 to be triggered by the
Analog Comparator. The comparator output is in this case directly connected to the input capture front-end
logic, making the comparator utilize the noise canceler and ed