
Features
• High Performance, Low Power AVR® 8-Bit Microcontroller
• Advanced RISC Architecture

– 123 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation

• High Endurance Non-volatile Memory Segments
– 4K/8K Bytes of In-System Self-Programmable Flash Program Memory
– 64/64 Bytes EEPROM
– 256/512 Bytes Internal SRAM
– Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
– Data Retention: 20 years at 85°C / 100 years at 25°C
– Programming Lock for Software Security

• Peripheral Features
– One 8-bit Timer/Counter with Separate Prescaler and Compare Mode
– One 16-bit Timer/Counter with Prescaler, and Compare and Capture Modes
– 6- or 8-channel 10-bit ADC
– Master/Slave SPI Serial Interface
– Byte-oriented 2-wire Serial Interface (Philips I2C Compatible)
– Programmable Watchdog Timer with Separate On-Chip Oscillator
– On-Chip Analog Comparator
– Interrupt and Wake-up on Pin Change

• Special Microcontroller Features
– debugWIRE On-Chip Debug System
– In-System Programmable via SPI Port
– Power-On Reset and Programmable Brown-Out Detection
– Internal Calibrated Oscillator
– External and Internal Interrupt Sources
– Three Sleep Modes: Idle, ADC Noise Reduction and Power-Down
– On-Chip Temperature Sensor

• I/O and Packages
– 24 Programmable I/O Lines:

• 28-pin PDIP
• 28-pad QFN

– 28 Programmable I/O Lines:
• 32-lead TQFP
• 32-pad QFN
• 32-ball UFBGA

• Operating Voltage:
– 1.8 – 5.5V

• Temperature Range:
– -40°C to +85°C

• Speed Grade:
– 0 – 4 MHz @ 1.8 – 5.5V
– 0 – 8 MHz @ 2.7 – 5.5V
– 0 – 12 MHz @ 4.5 – 5.5V

• Low Power Consumption
– Active Mode: 1 MHz, 1.8V: 240 µA
– Power-Down Mode: 0.1 µA at 1.8V

8-bit
Microcontroller
with 4/8K Bytes
In-System
Programmable
Flash

ATtiny48/88

Rev. 8008H–AVR–04/11

2
8008H–AVR–04/11

ATtiny48/88

1. Pin Configurations

Figure 1-1. Pinout of ATtiny48/88

1
2
3
4
5
6
7
8

24
23
22
21
20
19
18
17

(PCINT19/INT1) PD3
(PCINT20/T0) PD4

(PCINT26) PA2
VCC
GND

(PCINT27) PA3
(PCINT6/CLKI) PB6

(PCINT7) PB7

PC1 (ADC1/PCINT9)
PC0 (ADC0/PCINT8)
PA1 (ADC7/PCINT25)
GND
PC7 (PCINT15)
PA0 (ADC6/PCINT24)
AVCC
PB5 (SCK/PCINT5)

32 31 30 29 28 27 26 25

9 10 11 12 13 14 15 16

(P
C

IN
T

21
/T

1)
 P

D
5

(P
C

IN
T

22
/A

IN
0)

 P
D

6
(P

C
IN

T
23

/A
IN

1)
 P

D
7

(P
C

IN
T

0/
C

LK
O

/IC
P

1)
 P

B
0

(P
C

IN
T

1/
O

C
1A

)
P

B
1

(P
C

IN
T

2/
S

S
/O

C
1B

)
P

B
2

(P
C

IN
T

3/
M

O
S

I)
 P

B
3

(P
C

IN
T

4/
M

IS
O

)
P

B
4

P
D

2
(I

N
T

0/
P

C
IN

T
18

)
P

D
1

(P
C

IN
T

17
)

P
D

0
(P

C
IN

T
16

)
P

C
6

(R
E

S
E

T
/P

C
IN

T
14

)
P

C
5

(A
D

C
5/

S
C

L/
P

C
IN

T
13

)
P

C
4

(A
D

C
4/

S
D

A
/P

C
IN

T
12

)
P

C
3

(A
D

C
3/

P
C

IN
T

11
)

P
C

2
(A

D
C

2/
P

C
IN

T
10

)

TQFP Top View

1
2
3
4
5
6
7
8
9
10
11
12
13
14

28
27
26
25
24
23
22
21
20
19
18
17
16
15

(PCINT14/RESET) PC6
(PCINT16) PD0
(PCINT17) PD1

(PCINT18/INT0) PD2
(PCINT19/INT1) PD3

(PCINT20/T0) PD4
VCC
GND

(PCINT6/CLKI) PB6
(PCINT7) PB7

(PCINT21/T1) PD5
(PCINT22/AIN0) PD6
(PCINT23/AIN1) PD7

(PCINT0/CLKO/ICP1) PB0

PC5 (ADC5/SCL/PCINT13)
PC4 (ADC4/SDA/PCINT12)
PC3 (ADC3/PCINT11)
PC2 (ADC2/PCINT10)
PC1 (ADC1/PCINT9)
PC0 (ADC0/PCINT8)
GND
PC7 (PCINT15)
AVCC
PB5 (SCK/PCINT5)
PB4 (MISO/PCINT4)
PB3 (MOSI/PCINT3)
PB2 (SS/OC1B/PCINT2)
PB1 (OC1A/PCINT1)

PDIP

1
2
3
4
5
6
7
8

24
23
22
21
20
19
18
17

32 31 30 29 28 27 26 25

9 10 11 12 13 14 15 16

32 QFN Top View

(PCINT19/INT1) PD3
(PCINT20/T0) PD4

(PCINT26) PA2
VCC
GND

(PCINT27) PA3
(PCINT6/CLKI) PB6

(PCINT7) PB7

PC1 (ADC1/PCINT9)
PC0 (ADC0/PCINT8)
PA1 (ADC7/PCINT25)
GND
PC7 (PCINT15)
PA0 (ADC6/PCINT24)
AVCC
PB5 (SCK/PCINT5)

(P
C

IN
T

21
/T

1)
 P

D
5

(P
C

IN
T

22
/A

IN
0)

 P
D

6
(P

C
IN

T
23

/A
IN

1)
 P

D
7

(P
C

IN
T

0/
C

LK
O

/IC
P

1)
 P

B
0

(P
C

IN
T

1/
O

C
1A

)
P

B
1

(P
C

IN
T

2/
S

S
/O

C
1B

)
P

B
2

(P
C

IN
T

3/
M

O
S

I)
 P

B
3

(P
C

IN
T

4/
M

IS
O

)
P

B
4

P
D

2
(I

N
T

0/
P

C
IN

T
18

)
P

D
1

(P
C

IN
T

17
)

P
D

0
(P

C
IN

T
16

)
P

C
6

(R
E

S
E

T
/P

C
IN

T
14

)
P

C
5

(A
D

C
5/

S
C

L/
P

C
IN

T
13

)
P

C
4

(A
D

C
4/

S
D

A
/P

C
IN

T
12

)
P

C
3

(A
D

C
3/

P
C

IN
T

11
)

P
C

2
(A

D
C

2/
P

C
IN

T
10

)

NOTE: Bottom pad should be soldered to ground.

1
2
3
4
5
6
7

21
20
19
18
17
16
15

28 27 26 25 24 23 22

8 9 10 11 12 13 14

28 QFN Top View

(PCINT19/INT1) PD3
(PCINT20/T0) PD4

VCC
GND

(PCINT6/CLKI) PB6
(PCINT7) PB7

(PCINT21/T1) PD5

(P
C

IN
T

22
/A

IN
0)

 P
D

6
(P

C
IN

T
23

/A
IN

1)
 P

D
7

(P
C

IN
T

0/
C

LK
O

/IC
P

1)
 P

B
0

(P
C

IN
T

1/
O

C
1A

)
P

B
1

(P
C

IN
T

2/
S

S
/O

C
1B

)
P

B
2

(P
C

IN
T

3/
/M

O
S

I)
 P

B
3

(P
C

IN
T

4/
M

IS
O

)
P

B
4

P
D

2
(I

N
T

0/
P

C
IN

T
18

)
P

D
1

(P
C

IN
T

17
)

P
D

0
(P

C
IN

T
16

)
P

C
6

(R
E

S
E

T
/P

C
IN

T
14

)
P

C
5

(A
D

C
5/

S
C

L/
P

C
IN

T
13

)
P

C
4

(A
D

C
4/

S
D

A
/P

C
IN

T
12

)
P

C
3

(A
D

C
3/

P
C

IN
T

11
)

PC2 (ADC2/PCINT10)
PC1 (ADC1/PCINT9)
PC0 (ADC0/PCINT8)
GND
PC7 (PCI NT15)
AVCC
PB5 (SCK/PCINT5)

NOTE: Bottom pad should be soldered to ground.

Table 1-1. 32 UFBGA Top View. See page 288.

1 2 3 4 5 6

A PD2 PD1 PC6 PC4 PC2 PC1

B PD3 PD4 PD0 PC5 PC3 PC0

C GND PA2 PA1 GND

D VCC PA3 PC7 PA0

E PB6 PD6 PB0 PB2 AVCC PB5

F PB7 PD5 PD7 PB1 PB3 PB4

3
8008H–AVR–04/11

ATtiny48/88

1.1 Pin Descriptions

1.1.1 VCC
Digital supply voltage.

1.1.2 AVCC
AVCC is the supply voltage pin for the A/D converter and a selection of I/O pins. This pin should
be externally connected to VCC even if the ADC is not used. If the ADC is used, it is recom-
mended this pin is connected to VCC through a low-pass filter, as described in “Analog Noise
Canceling Techniques” on page 172.

The following pins receive their supply voltage from AVCC: PC7, PC[5:0] and (in 32-lead pack-
ages) PA[1:0]. All other I/O pins take their supply voltage from VCC.

1.1.3 GND
Ground.

1.1.4 Port A (PA3:0)
Port A is a 4-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
PA[3:0] output buffers have symmetrical drive characteristics with both sink and source capabil-
ity. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors
are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the
clock is not running.

This port is available in 32-lead TQFP, 32-pad QFN and 32-ball UFBGA packages, only.

1.1.5 Port B (PB7:0)
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both sink and source capability.
As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are
activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock
is not running.

Depending on the clock selection fuse settings, PB6 can be used as input to the internal clock
operating circuit.

The various special features of Port B are elaborated in “Alternate Functions of Port B” on page
69.

1.1.6 Port C (PC7, PC5:0)
Port C is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
PC7 and PC[5:0] output buffers have symmetrical drive characteristics with both sink and source
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

1.1.7 PC6/RESET
If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical char-
acteristics of PC6 differ from those of the other pins of Port C.

If the RSTDISBL Fuse is unprogrammed, PC6 is used as a reset input. A low level on this pin for
longer than the minimum pulse width will generate a reset, even if the clock is not running. The

4
8008H–AVR–04/11

ATtiny48/88

minimum pulse length is given in Table 22-3 on page 209. Shorter pulses are not guaranteed to
generate a reset.

The various special features of Port C are elaborated in “Alternate Functions of Port C” on page
72.

1.1.8 Port D (PD7:0)
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
PD[7:4] output buffers have symmetrical drive characteristics with both sink and source capabil-
ities, while the PD[3:0] output buffers have high sink capabilities. As inputs, Port D pins that are
externally pulled low will source current if the pull-up resistors are activated. The Port D pins are
tri-stated when a reset condition becomes active, even if the clock is not running.

The various special features of Port D are elaborated in “Alternate Functions of Port D” on page
75.

5
8008H–AVR–04/11

ATtiny48/88

2. Overview
The ATtiny48/88 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC
architecture. By executing powerful instructions in a single clock cycle, the ATtiny48/88 achieves
throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power con-
sumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than con-
ventional CISC microcontrollers.

PORT C (8)PORT B (8)PORT D (8)

16bit T/C 18bit T/C 0 A/D Conv.

Internal
Bandgap

Analog
Comp.

SPI TWI

SRAMFlash

EEPROM

Watchdog
Oscillator

Watchdog
Timer

Oscillator
Circuits /

Clock
Generation

Power
Supervision

POR / BOD &
RESET

VC
C

G
N

D

Program
Logic

debugWIRE

2

D
AT

AB
U

S

PA[0:3] (in TQFP and MLF)PC[0:7]PB[0:7]PD[0:7]

6

RESET

CLKI

CPU

PORT A (4)

6
8008H–AVR–04/11

ATtiny48/88

The ATtiny48/88 provides the following features:

• 4/8K bytes of In-System Programmable Flash

• 64/64 bytes EEPROM

• 256/512 bytes SRAM

• 24 general purpose I/O lines

– 28 in 32-lead TQFP, 32-pad QFN, and 32-ball UFBGA packages

• 32 general purpose working registers

• Two flexible Timer/Counters with compare modes

• Internal and external interrupts

• A byte-oriented, 2-wire serial interface

• An SPI serial port

• A 6-channel, 10-bit ADC

– 8 in 32-lead TQFP, 32-pad QFN, and 32-ball UFBGA packages

• A programmable Watchdog Timer with internal oscillator

• Three software selectable power saving modes.

The device includes the following modes for saving power:

• Idle mode: stops the CPU while allowing the timer/counter, ADC, analog comparator, SPI,
TWI, and interrupt system to continue functioning

• ADC Noise Reduction mode: minimizes switching noise during ADC conversions by stopping
the CPU and all I/O modules except the ADC

• Power-down mode: registers keep their contents and all chip functions are disabled until the
next interrupt or hardware reset

The device is manufactured using Atmel’s high density non-volatile memory technology. The
On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI
serial interface, by a conventional non-volatile memory programmer, or by an on-chip boot pro-
gram running on the AVR core. The boot program can use any interface to download the
application program in the Flash memory. By combining an 8-bit RISC CPU with In-System Self-
Programmable Flash on a monolithic chip, the Atmel ATtiny48/88 is a powerful microcontroller
that provides a highly flexible and cost effective solution to many embedded control applications.

The ATtiny48/88 AVR is supported by a full suite of program and system development tools
including: C compilers, macro assemblers, program debugger/simulators and evaluation kits.

2.2 Comparison Between ATtiny48 and ATtiny88
The ATtiny48 and ATtiny88 differ only in memory sizes, as summarised in Table 2-1, below.

Table 2-1. Memory Size Summary

Device Flash EEPROM RAM

ATtiny48 4K Bytes 64 Bytes 256 Bytes

ATtiny88 8K Bytes 64 Bytes 512 Bytes

7
8008H–AVR–04/11

ATtiny48/88

3. General Information

3.1 Resources
A comprehensive set of development tools, application notes and datasheets are available for
download at http://www.atmel.com/avr.

3.2 About Code Examples
This documentation contains simple code examples that briefly show how to use various parts of
the device. These code examples assume that the part specific header file is included before
compilation. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen-
tation for more details.

For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

3.3 Capacitive Touch Sensing
Atmel QTouch Library provides a simple to use solution for touch sensitive interfaces on Atmel
AVR microcontrollers. The QTouch Library includes support for QTouch® and QMatrix® acquisi-
tion methods.

Touch sensing is easily added to any application by linking the QTouch Library and using the
Application Programming Interface (API) of the library to define the touch channels and sensors.
The application then calls the API to retrieve channel information and determine the state of the
touch sensor.

The QTouch Library is free and can be downloaded from the Atmel website. For more informa-
tion and details of implementation, refer to the QTouch Library User Guide – also available from
the Atmel website.

3.4 Data Retention
Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C or 100 years at 25°C.

3.5 Disclaimer
Typical values contained in this datasheet are based on simulations and characterization of
other AVR microcontrollers manufactured on the same process technology.

8
8008H–AVR–04/11

ATtiny48/88

4. AVR CPU Core

4.1 Introduction
This section discusses the AVR core architecture in general. The main function of the CPU core
is to ensure correct program execution. The CPU must therefore be able to access memories,
perform calculations, control peripherals, and handle interrupts.

4.2 Architectural Overview

Figure 4-1. Block Diagram of the AVR Architecture

In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with
separate memories and buses for program and data. Instructions in the program memory are
executed with a single level pipelining. While one instruction is being executed, the next instruc-
tion is pre-fetched from the program memory. This concept enables instructions to be executed
in every clock cycle. The program memory is In-System Reprogrammable Flash memory.

Flash
Program
Memory

Instruction
Register

Instruction
Decoder

Program
Counter

Control Lines

32 x 8
General
Purpose

Registrers

ALU

Status
and Control

I/O Lines

EEPROM

Data Bus 8-bit

Data
SRAM

D
ire

ct
 A

dd
re

ss
in

g

In
di

re
ct

 A
dd

re
ss

in
g

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

I/O Module 2

I/O Module1

I/O Module n

9
8008H–AVR–04/11

ATtiny48/88

The fast-access Register File contains 32 x 8-bit general purpose working registers with a single
clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typ-
ical ALU operation, two operands are output from the Register File, the operation is executed,
and the result is stored back in the Register File – in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data
Space addressing – enabling efficient address calculations. One of the these address pointers
can also be used as an address pointer for look up tables in Flash program memory. These
added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and
a register. Single register operations can also be executed in the ALU. After an arithmetic opera-
tion, the Status Register is updated to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, capable of
directly addressing the whole address space. Most AVR instructions have a single 16-bit word
format but 32-bit wide instructions also exist. The actual instruction set varies, as some devices
only implement a part of the instruction set.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the
Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack
size is only limited by the total SRAM size and the usage of the SRAM. All user programs must
initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack
Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed
through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional Global
Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the
Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector posi-
tion. The lower the Interrupt Vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Regis-
ters, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as the Data
Space locations following those of the Register File, 0x20 – 0x5F. In addition, the ATtiny48/88
has Extended I/O space from 0x60 – 0xFF in SRAM where only the ST/STS/STD and
LD/LDS/LDD instructions can be used.

4.3 ALU – Arithmetic Logic Unit
The high-performance AVR ALU operates in direct connection with all the 32 general purpose
working registers. Within a single clock cycle, arithmetic operations between general purpose
registers or between a register and an immediate are executed. The ALU operations are divided
into three main categories – arithmetic, logical, and bit-functions. Some implementations of the
architecture also provide a powerful multiplier supporting both signed/unsigned multiplication
and fractional format. See external document “AVR Instruction Set” and “Instruction Set Sum-
mary” on page 281 section for more information.

4.4 Status Register
The Status Register contains information about the result of the most recently executed arithme-
tic instruction. This information can be used for altering program flow in order to perform
conditional operations. Note that the Status Register is updated after all ALU operations, as

10
8008H–AVR–04/11

ATtiny48/88

specified in the Instruction Set Reference. This will in many cases remove the need for using the
dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored
when returning from an interrupt. This must be handled by software.

4.5 General Purpose Register File
The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve
the required performance and flexibility, the following input/output schemes are supported by the
Register File:

• One 8-bit output operand and one 8-bit result input

• Two 8-bit output operands and one 8-bit result input

• Two 8-bit output operands and one 16-bit result input

• One 16-bit output operand and one 16-bit result input

Figure 4-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 4-2. General Purpose Working Registers

Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.

7 0 Addr. Special Function

R0 0x00

R1 0x01

R2 0x02

R3 0x03

… ...

R12 0x0C

R13 0x0D

R14 0x0E

R15 0x0F

R16 0x10

R17 0x11

… ...

R26 0x1A X-register Low Byte

R27 0x1B X-register High Byte

R28 0x1C Y-register Low Byte

R29 0x1D Y-register High Byte

R30 0x1E Z-register Low Byte

R31 0x1F Z-register High Byte

11
8008H–AVR–04/11

ATtiny48/88

As shown in Figure 4-2, each register is also assigned a data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically imple-
mented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file.

4.5.1 The X-register, Y-register, and Z-register
The registers R26:R31 have some added functions to their general purpose usage. These regis-
ters are 16-bit address pointers for indirect addressing of the data space. The three indirect
address registers X, Y, and Z are defined as described in Figure 4-3.

Figure 4-3. The X-, Y-, and Z-registers

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the instruction set reference for details).

4.6 Stack Pointer
The stack is mainly used for storing temporary data, local variables and return addresses after
interrupts and subroutine calls. The Stack Pointer registers (SPH and SPL) always point to the
top of the stack. Note that the stack grows from higher memory locations to lower memory loca-
tions. This means that the PUSH instructions decreases and the POP instruction increases the
stack pointer value.

The stack pointer points to the area of data memory where subroutine and interrupt stacks are
located. This stack space must be defined by the program before any subroutine calls are exe-
cuted or interrupts are enabled.

The pointer is decremented by one when data is put on the stack with the PUSH instruction, and
incremented by one when data is fetched with the POP instruction. It is decremented by two
when the return address is put on the stack by a subroutine call or a jump to an interrupt service
routine, and incremented by two when data is fetched by a return from subroutine (the RET
instruction) or a return from interrupt service routine (the RETI instruction).

The AVR stack pointer is typically implemented as two 8-bit registers in the I/O register file. The
width of the stack pointer and the number of bits implemented is device dependent. In some

15 0

X-register 7 XH 0 7 XL 0

R27 R26

15 0

Y-register 7 YH 0 7 YL 0

R29 R28

15 0

Z-register 7 ZH 0 7 ZL 0

R31 R30

12
8008H–AVR–04/11

ATtiny48/88

AVR devices all data memory can be addressed using SPL, only. In this case, the SPH register
is not implemented.

The stack pointer must be set to point above the I/O register areas, the minimum value being the
lowest address of SRAM. See Table 5-2 on page 18.

4.7 Instruction Execution Timing
This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the
chip. No internal clock division is used.

Figure 4-4 shows the parallel instruction fetches and instruction executions enabled by the Har-
vard architecture and the fast-access Register File concept. This is the basic pipelining concept
to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,
functions per clocks, and functions per power-unit.

Figure 4-4. The Parallel Instruction Fetches and Instruction Executions

Figure 4-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU
operation using two register operands is executed, and the result is stored back to the destina-
tion register.

Figure 4-5. Single Cycle ALU Operation

4.8 Reset and Interrupt Handling
The AVR provides several different interrupt sources. These interrupts and the separate Reset
Vector each have a separate program vector in the program memory space. All interrupts are
assigned individual enable bits which must be written logic one together with the Global Interrupt
Enable bit in the Status Register in order to enable the interrupt. Depending on the Program
Counter value, interrupts may be automatically disabled when Lock Bits LB2 or LB1 are pro-

clk

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch

T1 T2 T3 T4

CPU

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

T1 T2 T3 T4

clkCPU

13
8008H–AVR–04/11

ATtiny48/88

grammed. This feature improves software security. See the section “Lock Bits, Fuse Bits and
Device Signature” on page 188 for details.

The lowest addresses in the program memory space are by default defined as the Reset and
Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 52. The list also
determines the priority levels of the different interrupts. The lower the address the higher is the
priority level. RESET has the highest priority, and next is INT0 – the External Interrupt Request
0. Refer to “Interrupts” on page 52 for more information.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are dis-
abled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled
interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a
Return from Interrupt instruction – RETI – is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the
Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vec-
tor in order to execute the interrupt handling routine, and hardware clears the corresponding
Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s)
to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is
cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is
cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt
Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the
Global Interrupt Enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These
interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the
interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one
more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor
restored when returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled.
No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the

14
8008H–AVR–04/11

ATtiny48/88

CLI instruction. The following example shows how this can be used to avoid interrupts during the
timed EEPROM write sequence.

Note: See “About Code Examples” on page 7.

When using the SEI instruction to enable interrupts, the instruction following SEI will be exe-
cuted before any pending interrupts, as shown in this example.

Note: See “About Code Examples” on page 7.

4.8.1 Interrupt Response Time
The interrupt execution response for all the enabled AVR interrupts is four clock cycles mini-
mum. After four clock cycles the program vector address for the actual interrupt handling routine
is executed. During this four clock cycle period, the Program Counter is pushed onto the Stack.
The vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If
an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed
before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt
execution response time is increased by four clock cycles. This increase comes in addition to the
start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock
cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack Pointer is
incremented by two, and the I-bit in SREG is set.

Assembly Code Example

in r16, SREG ; store SREG value

cli ; disable interrupts during timed sequence

sbi EECR, EEMPE ; start EEPROM write

sbi EECR, EEPE

out SREG, r16 ; restore SREG value (I-bit)

C Code Example

char cSREG;

cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */

_CLI();

EECR |= (1<<EEMPE); /* start EEPROM write */

EECR |= (1<<EEPE);

SREG = cSREG; /* restore SREG value (I-bit) */

Assembly Code Example

sei ; set Global Interrupt Enable

sleep; enter sleep, waiting for interrupt

; note: will enter sleep before any pending interrupt(s)

C Code Example

__enable_interrupt(); /* set Global Interrupt Enable */

__sleep(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */

15
8008H–AVR–04/11

ATtiny48/88

4.9 Register Description

4.9.1 SPH and SPL — Stack Pointer Registers

• Bits 9:0 – SP[10:0]: Stack Pointer
The Stack Pointer register points to the top of the stack, which is implemented growing from
higher memory locations to lower memory locations. Hence, a stack PUSH command decreases
the Stack Pointer.

The stack space in the data SRAM must be defined by the program before any subroutine calls
are executed or interrupts are enabled.

4.9.2 SREG – Status Register

• Bit 7 – I: Global Interrupt Enable
The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual inter-
rupt enable control is then performed in separate control registers. If the Global Interrupt Enable
Register is cleared, none of the interrupts are enabled independent of the individual interrupt
enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by
the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by
the application with the SEI and CLI instructions, as described in the instruction set reference.

• Bit 6 – T: Bit Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or desti-
nation for the operated bit. A bit from a register in the Register File can be copied into T by the
BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the
BLD instruction.

• Bit 5 – H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful
in BCD arithmetic. See the “Instruction Set Description” for detailed information.

• Bit 4 – S: Sign Bit, S = N ⊕ V
The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement
Overflow Flag V. See the “Instruction Set Description” for detailed information.

Initial Value 0 0 0 0 0 0 RAMEND RAMEND

Read/Write R R R R R R R/W R/W

Bit 15 14 13 12 11 10 9 8

0x3E (0x5E) – – – – – – SP9 SP8 SPH

0x3D (0x5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

Bit 7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND

Bit 7 6 5 4 3 2 1 0

0x3F (0x5F) I T H S V N Z C SREG

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

16
8008H–AVR–04/11

ATtiny48/88

• Bit 3 – V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the
“Instruction Set Description” for detailed information.

• Bit 2 – N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

• Bit 1 – Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction
Set Description” for detailed information.

• Bit 0 – C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.

17
8008H–AVR–04/11

ATtiny48/88

5. Memories
The AVR architecture makes a distinction between program memory and data memory, locating
each memory type in a separate address space. Executable code is located in non-volatile pro-
gram memory (Flash), whereas data can be placed in either volatile (SRAM) or non-volatile
memory (EEPROM). See Figure 5-1, below.

Figure 5-1. Memory Overview.

All memory spaces are linear and regular.

5.1 Program Memory (Flash)
ATtiny48/88 contains 4/8K byte of on-chip, in-system reprogrammable Flash memory for pro-
gram storage. Flash memories are non-volatile, i.e. they retain stored information even when not
powered.

Since all AVR instructions are 16 or 32 bits wide, the Flash is organized as 4096/8192 x 16 bits.
The Program Counter (PC) is 11/12 bits wide, thus capable of addressing all 4096/8192 loca-
tions of program memory, as illustrated in Table 5-1, below.

Constant tables can be allocated within the entire address space of program memory. See
instructions LPM (Load Program Memory), and SPM (Store Program Memory) in “Instruction Set
Summary” on page 281. Flash program memory can also be programmed from an external
device, as described in “External Programming” on page 191.

Timing diagrams for instruction fetch and execution are presented in “Instruction Execution Tim-
ing” on page 12.

The Flash memory has a minimum endurance of 10,000 write/erase cycles.

GENERAL PURPOSE
REGISTER FILE

I/O REGISTER FILE

EXTENDED
I/O REGISTER FILE

DATA MEMORY

DATA MEMORY

PROGRAM MEMORY

FLASH SRAM EEPROM

Table 5-1. Size of Program Memory (Flash).

Device Flash Size Address Range

ATtiny48 4KB 0x0000 – 0x07FF

ATtiny88 8KB 0x0000 – 0x0FFF

18
8008H–AVR–04/11

ATtiny48/88

5.2 Data Memory (SRAM) and Register Files
Table 5-2 shows how the data memory and register files of ATtiny48/88 are organized. These
memory areas are volatile, i.e. they do not retain information when power is removed.

Note: 1. Also known as data address. This mode of addressing covers the entire data memory and reg-
ister area. The address is contained in a 16-bit area of two-word instructions.

2. Also known as direct I/O address. This mode of addressing covers part of the register area,
only. It is used by instructions where the address is embedded in the instruction word.

The 512/768 memory locations include the general purpose register file, I/O register file,
extended I/O register file, and the internal data memory.

For compatibility with future devices, reserved bits should be written to zero, if accessed.
Reserved I/O memory addresses should never be written.

5.2.1 General Purpose Register File
The first 32 locations are reserved for the general purpose register file. These registers are
described in detail in “General Purpose Register File” on page 10.

5.2.2 I/O Register File
Following the general purpose register file, the next 64 locations are reserved for I/O registers.
Registers in this area are used mainly for communicating with I/O and peripheral units of the
device. Data can be transferred between I/O space and the general purpose register file using
instructions such as IN, OUT, LD, ST, and derivatives.

All I/O registers in this area can be accessed with the instructions IN and OUT. These I/O spe-
cific instructions address the first location in the I/O register area as 0x00 and the last as 0x3F.

The low 32 registers (address range 0x00...0x1F) are accessible by some bit-specific instruc-
tions. In these registers, bits are easily set and cleared using SBI and CBI, while bit-conditional
branches are readily constructed using instructions SBIC, SBIS, SBRC, and SBRS.

Registers in this area may also be accessed with instructions LD/LDD/LDI/LDS and
ST/STD/STS. These instructions treat the entire volatile memory as one data space and, there-
fore, address I/O registers starting at 0x20.

See “Instruction Set Summary” on page 281.

Table 5-2. Layout of Data Memory and Register Area.

Device Memory Area Size Long Address (1) Short Address (2)

ATtiny48

General purpose register file 32B 0x0000 – 0x001F n/a

I/O register file 64B 0x0020 – 0x005F 0x00 – 0x3F

Extended I/O register file 160B 0x0060 – 0x00FF n/a

Data SRAM 256B 0x0100 – 0x01FF n/a

ATtiny88

General purpose register file 32B 0x0000 – 0x001F n/a

I/O register file 64B 0x0020 – 0x005F 0x00 – 0x3F

Extended I/O register file 160B 0x0060 – 0x00FF n/a

Data SRAM 512B 0x0100 – 0x02FF n/a

19
8008H–AVR–04/11

ATtiny48/88

ATtiny48/88 also contains three general purpose I/O registers that can be used for storing any
information. See GPIOR0, GPIOR1 and GPIOR2 in “Register Summary” on page 277. These
general purpose I/O registers are particularly useful for storing global variables and status flags,
since they are accessible to bit-specific instructions such as SBI, CBI, SBIC, SBIS, SBRC, and
SBRS.

5.2.3 Extended I/O Register File
Following the standard I/O register file, the next 160 locations are reserved for extended I/O reg-
isters. ATtiny48/88 is a complex microcontroller with more peripheral units than can be
addressed with the IN and OUT instructions. Registers in the extended I/O area must be
accessed using instructions LD/LDD/LDI/LDS and ST/STD/STS. See “Instruction Set Summary”
on page 281.

See “Register Summary” on page 277 for a list of I/O registers.

5.2.4 Data Memory (SRAM)
Following the general purpose register file and the I/O register files, the remaining 256/512 loca-
tions are reserved for the internal data SRAM.

There are five addressing modes available:

• Direct. This mode of addressing reaches the entire data space.

• Indirect.

• Indirect with Displacement. This mode of addressing reaches 63 address locations from the
base address given by the Y- or Z-register.

• Indirect with Pre-decrement. In this mode the address register is automatically decremented
before access. Address pointer registers (X, Y, and Z) are located in the general purpose
register file, in registers R26 to R31. See “General Purpose Register File” on page 10.

• Indirect with Post-increment. In this mode the address register is automatically incremented
after access. Address pointer registers (X, Y, and Z) are located in the general purpose
register file, in registers R26 to R31. See “General Purpose Register File” on page 10.

All addressing modes can be used on the entire volatile memory, including the general purpose
register file, the I/O register files and the data memory.

Internal SRAM is accessed in two clkCPU cycles, as illustrated in Figure 5-2, below.

20
8008H–AVR–04/11

ATtiny48/88

Figure 5-2. On-chip Data SRAM Access Cycles

5.3 Data Memory (EEPROM)
ATtiny48/88 contains 64 bytes of non-volatile data memory. This EEPROM is organized as a
separate data space, in which single bytes can be read and written. All access registers are
located in the I/O space.

The EEPROM memory layout is summarised in Table 5-3, below.

The internal 8MHz oscillator is used to time EEPROM operations. The frequency of the oscillator
must be within the requirements described in “OSCCAL – Oscillator Calibration Register” on
page 34.

When powered by heavily filtered supplies, the supply voltage, VCC, is likely to rise or fall slowly
on power-up and power-down. Slow rise and fall times may put the device in a state where it is
running at supply voltages lower than specified. To avoid problems in situations like this, see
“Preventing EEPROM Corruption” on page 22.

The EEPROM has a minimum endurance of 100,000 write/erase cycles.

5.3.1 Programming Methods
There are two methods for EEPROM programming:

• Atomic byte programming. This is the simple mode of programming, where target locations
are erased and written in a single operation. In this mode of operation the target is
guaranteed to always be erased before writing but programmin times are longer.

• Split byte programming. It is possible to split the erase and write cycle in two different
operations. This is useful when short access times are required, for example when supply
voltage is falling. In order to take advantage of this method target locations must be erased

clk

WR

RD

Data

Data

Address Address valid

T1 T2 T3

Compute Address

R
ea

d
W

rit
e

CPU

Memory Access Instruction Next Instruction

Table 5-3. Size of Non-Volatile Data Memory (EEPROM).

Device EEPROM Size Address Range

ATtiny48/88 64B 0x00 – 0x3F

21
8008H–AVR–04/11

ATtiny48/88

before writing to them. This can be done at times when the system allows time-critical
operations, typically at start-up and initialisation.

The programming method is selected using the EEPROM Programming Mode bits (EEPM1 and
EEPM0) in EEPROM Control Register (EECR). See Table 5-4 on page 26. Write and erase
times are given in the same table.

Since EEPROM programming takes some time the application must wait for one operation to
complete before starting the next. This can be done by either polling the EEPROM Program
Enable bit (EEPE) in EEPROM Control Register (EECR), or via the EEPROM Ready Interrupt.
The EEPROM interrupt is controlled by the EEPROM Ready Interrupt Enable (EERIE) bit in
EECR.

5.3.2 Read
To read an EEPROM memory location follow the procedure below:

• Poll the EEPROM Program Enable bit (EEPE) in EEPROM Control Register (EECR) to make
sure no other EEPROM operations are in process. If set, wait to clear.

• Write target address to EEPROM Address Registers (EEARH/EEARL).

• Start the read operation by setting the EEPROM Read Enable bit (EERE) in the EEPROM
Control Register (EECR). During the read operation, the CPU is halted for four clock cycles
before executing the next instruction.

• Read data from the EEPROM Data Register (EEDR).

5.3.3 Erase
In order to prevent unintentional EEPROM writes, a specific procedure must be followed to
erase memory locations. To erase an EEPROM memory location follow the procedure below:

• Poll the EEPROM Program Enable bit (EEPE) in EEPROM Control Register (EECR) to make
sure no other EEPROM operations are in process. If set, wait to clear.

• Set mode of programming to erase by writing EEPROM Programming Mode bits (EEPM0
and EEPM1) in EEPROM Control Register (EECR).

• Write target address to EEPROM Address Registers (EEARH/EEARL).

• Enable erase by setting EEPROM Master Program Enable (EEMPE) in EEPROM Control
Register (EECR). Within four clock cycles, start the erase operation by setting the EEPROM
Program Enable bit (EEPE) in the EEPROM Control Register (EECR). During the erase
operation, the CPU is halted for two clock cycles before executing the next instruction.

The EEPE bit remains set until the erase operation has completed. While the device is busy pro-
gramming, it is not possible to perform any other EEPROM operations.

5.3.4 Write
In order to prevent unintentional EEPROM writes, a specific procedure must be followed to write
to memory locations.

Before writing data to EEPROM the target location must be erased. This can be done either in
the same operation or as part of a split operation. Writing to an unerased EEPROM location will
result in corrupted data.

22
8008H–AVR–04/11

ATtiny48/88

To write an EEPROM memory location follow the procedure below:

• Poll the EEPROM Program Enable bit (EEPE) in EEPROM Control Register (EECR) to make
sure no other EEPROM operations are in process. If set, wait to clear.

• Set mode of programming by writing EEPROM Programming Mode bits (EEPM0 and
EEPM1) in EEPROM Control Register (EECR). Alternatively, data can be written in one
operation or the write procedure can be split up in erase, only, and write, only.

• Write target address to EEPROM Address Registers (EEARH/EEARL).

• Write target data to EEPROM Data Register (EEDR).

• Enable write by setting EEPROM Master Program Enable (EEMPE) in EEPROM Control
Register (EECR). Within four clock cycles, start the write operation by setting the EEPROM
Program Enable bit (EEPE) in the EEPROM Control Register (EECR). During the write
operation, the CPU is halted for two clock cycles before executing the next instruction.

The EEPE bit remains set until the write operation has completed. While the device is busy with
programming, it is not possible to do any other EEPROM operations.

5.3.5 Preventing EEPROM Corruption
During periods of low VCC, the EEPROM data can be corrupted because the supply voltage is
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.

At low supply voltages data in EEPROM can be corrupted in two ways:

• The supply voltage is too low to maintain proper operation of an otherwise legitimate
EEPROM program sequence.

• The supply voltage is too low for the CPU and instructions may be executed incorrectly.

EEPROM data corruption is avoided by keeping the device in reset during periods of insufficient
power supply voltage. This is easily done by enabling the internal Brown-Out Detector (BOD). If
BOD detection levels are not sufficient for the design, an external reset circuit for low VCC can be
used.

Provided that supply voltage is sufficient, an EEPROM write operation will be completed even
when a reset occurs.

23
8008H–AVR–04/11

ATtiny48/88

5.3.6 Program Examples
The following code examples show one assembly and one C function for erase, write, or atomic
write of the EEPROM. The examples assume that interrupts are controlled (e.g., by disabling
interrupts globally) so that no interrupts occur during execution of these functions.

Note: See “About Code Examples” on page 7.

Note: See “About Code Examples” on page 7.

Assembly Code Example

EEPROM_write:

; Wait for completion of previous write

sbic EECR, EEPE

rjmp EEPROM_write

; Set Programming mode

ldi r16, (0<<EEPM1)|(0<<EEPM0)

out EECR, r16

; Set up address (r18:r17) in address registers

out EEARH, r18

out EEARL, r17

; Write data (r19) to data register

out EEDR, r19

; Write logical one to EEMPE

sbi EECR, EEMPE

; Start eeprom write by setting EEPE

sbi EECR, EEPE

ret

C Code Example

void EEPROM_write(unsigned int ucAddress, unsigned char ucData)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEPE))

;

/* Set Programming mode */

EECR = (0<<EEPM1)|(0<<EEPM0)

/* Set up address and data registers */

EEAR = ucAddress;

EEDR = ucData;

/* Write logical one to EEMPE */

EECR |= (1<<EEMPE);

/* Start eeprom write by setting EEPE */

EECR |= (1<<EEPE);

}

24
8008H–AVR–04/11

ATtiny48/88

The next code examples show assembly and C functions for reading the EEPROM. The exam-
ples assume that interrupts are controlled so that no interrupts will occur during execution of
these functions.

Note: See “About Code Examples” on page 7.

Note: See “About Code Examples” on page 7.

Assembly Code Example

EEPROM_read:

; Wait for completion of previous write

sbic EECR, EEPE

rjmp EEPROM_read

; Set up address (r18:r17) in address registers

out EEARH, r18

out EEARL, r17

; Start eeprom read by writing EERE

sbi EECR, EERE

; Read data from data register

in r16, EEDR

ret

C Code Example

unsigned char EEPROM_read(unsigned int ucAddress)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEPE))

;

/* Set up address register */

EEAR = ucAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from data register */

return EEDR;

}

25
8008H–AVR–04/11

ATtiny48/88

5.4 Register Description

5.4.1 EEARH and EEARL – EEPROM Address Register

• Bits 15:6 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bits 5:0 – EEAR[5:0]: EEPROM Address
The EEPROM Address Registers – EEARH and EEARL specify the EEPROM address in the
64/64 bytes EEPROM space. The EEPROM data bytes are addressed linearly between 0 and
63/63. The initial value of EEAR is undefined. A proper value must be written before the
EEPROM may be accessed.

5.4.2 EEDR – EEPROM Data Register

• Bits 7:0 – EEDR[7:0]: EEPROM Data
For the EEPROM write operation, the EEDR Register contains the data to be written to the
EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the
EEDR contains the data read out from the EEPROM at the address given by EEAR.

5.4.3 EECR – EEPROM Control Register

• Bits 7:6 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bits 5:4 – EEPM[1:0]: EEPROM Programming Mode Bits
EEPROM programming mode bits define the action that will be triggered when EEPE is written.
Data can be programmed in a single atomic operation, where the previous value is automatically

Bit 15 14 13 12 11 10 9 8

– – – – – – – – EEARH

0x21 (0x41) – – EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 X X X X X X

Bit 7 6 5 4 3 2 1 0

0x20 (0x40) MSB LSB EEDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1F (0x3F) – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE EECR

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 X X 0 0 X 0

26
8008H–AVR–04/11

ATtiny48/88

erased before the new value is programmed, or Erase and Write can be split in two different
operations. The programming times for the different modes are shown in Table 5-4.

When EEPE is set any write to EEPMn will be ignored.

During reset, the EEPMn bits will be reset to 0b00 unless the EEPROM is busy programming.

• Bit 3 – EERIE: EEPROM Ready Interrupt Enable
Writing this bit to one enables the EEPROM Ready Interrupt. Provided the I-bit in SREG is set,
the EEPROM Ready Interrupt is triggered when non-volatile memory is ready for programming.

Writing this bit to zero disables the EEPROM Ready Interrupt.

• Bit 2 – EEMPE: EEPROM Master Write Enable
The EEMPE bit determines whether writing EEPE to one will have effect or not.

When EEMPE is set and EEPE written within four clock cycles the EEPROM at the selected
address will be programmed. Hardware clears the EEMPE bit to zero after four clock cycles.

If EEMPE is zero the EEPE bit will have no effect.

• Bit 1 – EEPE: EEPROM Write Enable
The EEPROM Write Enable Signal EEPE is the write strobe to the EEPROM. When address
and data are correctly set up, the EEPE bit must be written to one to write the value into the
EEPROM. The EEMPE bit must be written to one before a logical one is written to EEPE, other-
wise no EEPROM write takes place. The following procedure should be followed when writing
the EEPROM (the order of steps 3 and 4 is not essential):

1. Wait until EEPE becomes zero.

2. Wait until SELFPRGEN in SPMCSR becomes zero.

3. Write new EEPROM address to EEAR (optional).

4. Write new EEPROM data to EEDR (optional).

5. Write a logical one to the EEMPE bit while writing a zero to EEPE in EECR.

6. Within four clock cycles after setting EEMPE, write a logical one to EEPE.

The EEPROM can not be programmed during a CPU write to the Flash memory. The software
must check that the Flash programming is completed before initiating a new EEPROM write. If
the Flash is never being updated by the CPU, step 2 can be omitted.

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is
interrupting another EEPROM access, the EEAR or EEDR Register will be modified, causing the

Table 5-4. EEPROM Programming Mode Bits and Programming Times

EEPM1 EEPM0 Programming Time Operation

0 0 3.4 ms Atomic (erase and write in one operation)

0 1 1.8 ms Erase, only

1 0 1.8 ms Write, only

1 1 – Reserved

27
8008H–AVR–04/11

ATtiny48/88

interrupted EEPROM access to fail. It is recommended to have the Global Interrupt Flag cleared
during all the steps to avoid these problems.

When the write access time has elapsed, the EEPE bit is cleared by hardware. The user soft-
ware can poll this bit and wait for a zero before writing the next byte. When EEPE has been set,
the CPU is halted for two cycles before the next instruction is executed.

• Bit 0 – EERE: EEPROM Read Enable
This is the read strobe of the EEPROM. When the target address has been set up in the EEAR,
the EERE bit must be written to one to trigger the EEPROM read operation.

EEPROM read access takes one instruction, and the requested data is available immediately.
When the EEPROM is read, the CPU is halted for four cycles before the next instruction is
executed.

The user should poll the EEPE bit before starting the read operation. If a write operation is in
progress, it not possible to read the EEPROM, or to change the address register (EEAR).

5.4.4 GPIOR2 – General Purpose I/O Register 2

This register may be used freely for storing any kind of data.

5.4.5 GPIOR1 – General Purpose I/O Register 1

This register may be used freely for storing any kind of data.

5.4.6 GPIOR0 – General Purpose I/O Register 0

This register may be used freely for storing any kind of data.

Bit 7 6 5 4 3 2 1 0

0x2B (0x4B) MSB LSB GPIOR2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x2A (0x4A) MSB LSB GPIOR1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1E (0x3E) MSB LSB GPIOR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

28
8008H–AVR–04/11

ATtiny48/88

6. Clock System
Figure 6-1 presents the principal clock systems in the AVR and their distribution. All of the clocks
need not be active at a given time. In order to reduce power consumption, the clocks to modules
not being used can be halted by using different sleep modes, as described in “Power Manage-
ment and Sleep Modes” on page 36. The clock systems are detailed below.

Figure 6-1. Clock Distribution

6.1 Clock Subsystems
The clock subsystems are detailed in the sections below.

6.1.1 CPU Clock – clkCPU

The CPU clock is routed to parts of the system concerned with operation of the AVR core.
Examples of such modules are the General Purpose Register File, the Status Register and the
data memory holding the Stack Pointer. Halting the CPU clock inhibits the core from performing
general operations and calculations.

6.1.2 I/O Clock – clkI/O

The I/O clock is used by the majority of the I/O modules such as Timer/Counters, the Serial
Peripheral Interface and the External Interrupt module. Note, that some external interrupts are
detected by asynchronous logic, meaning they are recognized even if the I/O clock is halted.
Also note that the start condition detection of the Two-Wire Interface module is asynchronous,
meaning TWI address recognition works in all sleep modes (even when clkI/O is halted).

CLOCK CONTROL UNIT

GENERAL
I/O MODULES

CPU
CORE

WATCHDOG
TIMER

RESET
LOGIC

CLOCK
PRESCALER

RAM

CLOCK
SWITCH

CALIBRATED
OSCILLATOR

clk TWIHS

SOURCE CLOCK

clk ADC clk FLASH

WATCHDOG
CLOCK

clk CPU

WATCHDOG
OSCILLATOR

EXTERNAL
CLOCK

FLASH AND
EEPROMTWI ADC

clk I/O

29
8008H–AVR–04/11

ATtiny48/88

6.1.3 Flash Clock – clkFLASH

The Flash clock controls operation of the Flash interface. The Flash clock is usually active simul-
taneously with the CPU clock.

6.1.4 Analog to Digital Converter Clock – clkADC

The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks
in order to reduce noise generated by digital circuitry. This gives more accurate ADC conversion
results.

6.1.5 High-Speed Two-Wire Interface Clock – clkTWIHS

The TWI clock controls the operation of the Two-Wire Interface module, when operated in high-
speed mode. In practice, this clock is identical to the source clock of the device. See “Bit Rate
Generator Unit” on page 135.

6.2 Clock Sources
The device can use any of the following sources for the system clock:

• External Clock (see page 29)

• Calibrated Internal 8MHz Oscillator (see page 30)

• Internal 128 kHz Oscillator (see page 31)

The clock source is selected using CKSEL fuses. See Table 6-1.

Notes: 1. For all fuses “1” means unprogrammed while “0” means programmed.

2. The device is shipped with this option selected.

3. If 8 MHz frequency exceeds the specification of the device (depends on VCC), the CKDIV8 fuse
can be programmed in order to divide the internal frequency by 8.

For more information on fuse bits, see “Fuse Bits” on page 189.

6.2.1 External Clock
To drive the device from an external clock source, CLKI should be driven as shown in Figure 6-2
on page 30.

Table 6-1. Device Clocking Options

 CKSEL[1:0] (1) Device Clocking Option Frequency

00 External Clock 0 – 12 MHz

01 Reserved –

10 (2) Calibrated Internal 8MHz Oscillator 8.0 MHz (3)

11 Internal 128 kHz Oscillator 128 kHz

30
8008H–AVR–04/11

ATtiny48/88

Figure 6-2. External Clock Drive Configuration

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in
Table 6-2.

When applying an external clock, it is required to avoid sudden changes in the applied clock fre-
quency to ensure stable operation of the MCU. A variation in frequency of more than 2% from
one clock cycle to the next can lead to unpredictable behavior. If changes of more than 2% is
required, ensure that the MCU is kept in Reset during the changes.

Note that the System Clock Prescaler can be used to implement run-time changes of the internal
clock frequency while still ensuring stable operation. Refer to “System Clock Prescaler” on page
31 for details.

6.2.2 Calibrated Internal 8MHz Oscillator
By default, the Internal Oscillator provides an approximate 8.0 MHz clock. Though voltage and
temperature dependent, this clock can be very accurately calibrated by the user. See Table 22-1
on page 208 for more details. The device is shipped with the CKDIV8 Fuse programmed. See
“System Clock Prescaler” on page 31 for more details.

When selected, this oscillator operates with no external components. During reset, hardware
loads the pre-programmed calibration value into the OSCCAL Register and thereby automati-
cally calibrates the oscillator. The accuracy of this calibration is shown as Factory calibration in
Table 22-1 on page 208.

By changing the OSCCAL register from SW, see “OSCCAL – Oscillator Calibration Register” on
page 34, it is possible to get a higher calibration accuracy than by using the factory calibration.
The accuracy of this calibration is shown as User calibration in Table 22-1 on page 208.

Table 6-2. Start-up Times for the External Clock Selection

SUT[1:0] Power Conditions
Start-up Time

from Power-down
Additional Delay

from Reset (VCC = 5.0V)

00 BOD enabled 6 CK 14CK

01 Fast rising power 6 CK 14CK + 4 ms

10 Slowly rising power 6 CK 14CK + 64 ms

11 Reserved

EXTERNAL
CLOCK
SIGNAL

CLKI

GND

31
8008H–AVR–04/11

ATtiny48/88

When this oscillator is used as the chip clock, the Watchdog oscillator will still be used for the
Watchdog Timer and for the Reset Time-out. For more information on the pre-programmed cali-
bration value, see the section “Calibration Byte” on page 190.

When this oscillator is selected, start-up times are determined by the SUT Fuses as shown in
the table below.

Note: 1. If the RSTDISBL fuse is programmed, this start-up time will be increased to 14CK + 4 ms to
ensure programming mode can be entered.

2. The device is shipped with this option selected.

6.2.3 Internal 128 kHz Oscillator
The 128 kHz internal oscillator is a low power oscillator providing a clock of 128 kHz. The fre-
quency depends on supply voltage, temperature and patch variations. This clock may be
selected as the system clock by programming the CKSEL Fuses to “11”.

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in
Table 6-4.

Note: 1. If the RSTDISBL fuse is programmed, this start-up time will be increased to 14CK + 4 ms to
ensure programming mode can be entered.

6.2.4 Default Clock Source
The device is shipped with internal oscillator at 8.0 MHz and with the fuse CKDIV8 programmed,
resulting in 1.0 MHz system clock. The startup time is set to maximum and time-out period
enabled (CKSEL = 0b10, SUT = 0b10, CKDIV8 = 0). The default setting ensures that all users
can make their desired clock source setting using any available programming interface.

6.3 System Clock Prescaler
The ATtiny48/88 has a system clock prescaler, and the system clock can be divided by setting
the “CLKPR – Clock Prescale Register” on page 34. This feature can be used to decrease the
system clock frequency and the power consumption when the requirement for processing power

Table 6-3. Start-up Times for the Internal Calibrated Oscillator Clock Selection

SUT[1:0] Power Conditions
Start-up Time

from Power-down
Additional Delay

from Reset (VCC = 5.0V)

00 BOD enabled 6 CK 14CK (1)

01 Fast rising power 6 CK 14CK + 4 ms

10 (2) Slowly rising power 6 CK 14CK + 64 ms

11 Reserved

Table 6-4. Start-up Times for the 128 kHz Internal Oscillator

SUT[1:0] Power Conditions
Start-up Time

from Power-down
Additional Delay

from Reset

00 BOD enabled 6 CK 14CK(1)

01 Fast rising power 6 CK 14CK + 4 ms

10 Slowly rising power 6 CK 14CK + 64 ms

11 Reserved

32
8008H–AVR–04/11

ATtiny48/88

is low. This can be used with all clock source options, and it will affect the clock frequency of the
CPU and all synchronous peripherals. clkI/O, clkADC, clkCPU, and clkFLASH are divided by a factor
as shown in Table 6-6 on page 35.

6.3.1 Switching Prescaler Setting
When switching between prescaler settings, the System Clock Prescaler ensures that no
glitches occur in the clock system. It also ensures that no intermediate frequency is higher than
neither the clock frequency corresponding to the previous setting, nor the clock frequency corre-
sponding to the new setting.

The ripple counter that implements the prescaler runs at the frequency of the undivided clock,
which may be faster than the CPU's clock frequency. Hence, it is not possible to determine the
state of the prescaler – even if it were readable, and the exact time it takes to switch from one
clock division to the other cannot be exactly predicted.

From the time the CLKPS values are written, it takes between T1 + T2 and T1 + 2 * T2 before
the new clock frequency is active. In this interval, 2 active clock edges are produced. Here, T1 is
the previous clock period, and T2 is the period corresponding to the new prescaler setting.

To avoid unintentional changes of clock frequency, a special write procedure must befollowed to
change the CLKPS bits:

1. Write the Clock Prescaler Change Enable (CLKPCE) bit to one and all other bitsin
CLKPR to zero.

2. Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE.

Interrupts must be disabled when changing prescaler setting to make sure the write procedure is
not interrupted.

6.4 Clock Output Buffer
The device can output the system clock on the CLKO pin. To enable the output, the CKOUT
Fuse has to be programmed. This mode is suitable when the chip clock is used to drive other cir-
cuits on the system. The clock also will be output during reset, and the normal operation of I/O
pin will be overridden when the fuse is programmed. Any clock source, including the internal
oscillator, can be selected when the clock is output on CLKO. If the System Clock Prescaler is
used, it is the divided system clock that is output.

6.5 Clock Startup Sequence
Any clock source needs a sufficient VCC to start oscillating and a minimum number of oscillating
cycles before it can be considered stable.

To ensure sufficient VCC, the device issues an internal reset with a time-out delay (tTOUT) after
the device reset is released by all other reset sources. “System Control and Reset” on page 42
describes the start conditions for the internal reset. The delay (tTOUT) is timed from the Watchdog
oscillator and the number of cycles in the delay is set by the SUTx and CKSELx fuse bits. The
selectable delays are shown in Table 6-5. The frequency of the Watchdog oscillator is voltage

33
8008H–AVR–04/11

ATtiny48/88

and temperature dependent, as shown in “Watchdog Oscillator Frequency vs. VCC” on page
245 and “Watchdog Oscillator Frequency vs. Temperature” on page 246.

The main purpose of the delay is to keep the AVR in reset until it is supplied with minimum VCC.
The delay will not monitor the actual voltage and it will be required to select a delay longer than
the VCC rise time. If this is not possible, an internal or external Brown-out Detection circuit should
be used. A BOD circuit will ensure sufficient VCC before it releases the reset, and the time-out
delay can be disabled. Disabling the time-out delay without utilizing a Brown-out Detection circuit
is not recommended.

The oscillator is required to oscillate for a minimum number of cycles before the clock is consid-
ered stable. An internal ripple counter monitors the oscillator output clock, and keeps the internal
reset active for a given number of clock cycles. The reset is then released and the device will
start to execute.

The start-up sequence for the clock includes both the time-out delay and the start-up time when
the device starts up from reset. When starting up from Power-down mode, VCC is assumed to be
at a sufficient level and only the start-up time is included.

Table 6-5. Length of Startup Sequence.

CKSEL[1:0] SUT[1:0] Number of WDT Cycles Typical Time-out

00
10
11

00 0 0 ms

01 4K (4,096) 4 ms

10 8K (8,192) 64 ms

11 Reserved Reserved

01 XX Reserved Reserved

34
8008H–AVR–04/11

ATtiny48/88

6.6 Register Description

6.6.1 OSCCAL – Oscillator Calibration Register

The Oscillator Calibration Register is used to trim the internal oscillator to remove process varia-
tions from the oscillator frequency. A pre-programmed calibration value is automatically written
to this register during chip reset, giving the factory calibrated frequency as specified in Table 22-
1 on page 208.

The application software can write to the OSCCAL register to change the oscillator frequency.
The oscillator can be calibrated to frequencies as specified in Table 22-1 on page 208. Calibra-
tion outside the given range is not guaranteed.

Note that this oscillator is used to time EEPROM and Flash write accesses, and the write times
will be affected accordingly. If the EEPROM or Flash are written, do not calibrate to more than
8.8 MHz. Otherwise, the EEPROM or Flash write may fail.

All register bits are in use for frequency . A setting of 0x00 gives the lowest frequency and a set-
ting of 0xFF gives the highest frequency.

6.6.2 CLKPR – Clock Prescale Register

• Bit 7 – CLKPCE: Clock Prescaler Change Enable
The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE
bit is only updated when the other bits in CLKPR are simultaneously written to zero. CLKPCE is
cleared by hardware four cycles after it is written or when CLKPS bits are written. Rewriting the
CLKPCE bit within this time-out period does neither extend the time-out period, nor clear the
CLKPCE bit.

• Bits 6:4 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bits 3:0 – CLKPS[3:0]: Clock Prescaler Select Bits 3 - 0
These bits define the division factor between the selected clock source and the internal system
clock. These bits can be written run-time to vary the clock frequency to suit the application
requirements. As the divider divides the master clock input to the MCU, the speed of all synchro-
nous peripherals is reduced when a division factor is used. The division factors are given in
Table 6-6.

The CKDIV8 Fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed,
the CLKPS bits will be reset to 0b0000. If CKDIV8 is programmed, CLKPS bits are reset to
0b0011, giving a division factor of 8 at start up. This feature should be used if the selected clock
source has a higher frequency than the maximum frequency of the device at the present operat-
ing conditions. Note that any value can be written to the CLKPS bits regardless of the CKDIV8
Fuse setting. The Application software must ensure that a sufficient division factor is chosen if

Bit 7 6 5 4 3 2 1 0

(0x66) CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value

Bit 7 6 5 4 3 2 1 0

(0x61) CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 CLKPR

Read/Write R/W R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description

35
8008H–AVR–04/11

ATtiny48/88

the selected clock source has a higher frequency than the maximum frequency of the device at
the present operating conditions. The device is shipped with the CKDIV8 Fuse programmed.

Table 6-6. Clock Prescaler Select

CLKPS3 CLKPS2 CLKPS1 CLKPS0 Clock Division Factor

0 0 0 0 1

0 0 0 1 2

0 0 1 0 4

0 0 1 1 8

0 1 0 0 16

0 1 0 1 32

0 1 1 0 64

0 1 1 1 128

1 0 0 0 256

1 0 0 1 Reserved

1 0 1 0 Reserved

1 0 1 1 Reserved

1 1 0 0 Reserved

1 1 0 1 Reserved

1 1 1 0 Reserved

1 1 1 1 Reserved

36
8008H–AVR–04/11

ATtiny48/88

7. Power Management and Sleep Modes
Sleep modes enable the application to shut down unused modules in the MCU, thereby saving
power. The AVR provides various sleep modes allowing the user to tailor the power consump-
tion to the application’s requirements.

When enabled, the Brown-out Detector (BOD) actively monitors the power supply voltage during
the sleep periods. To further save power, it is possible to disable the BOD in some sleep modes.
See “Software BOD Disable” on page 37 for more details.

7.1 Sleep Modes
Figure 6-1 on page 28 presents the different clock systems in the ATtiny48/88, and their distribu-
tion. The figure is helpful in selecting an appropriate sleep mode. Table 7-1 shows the different
sleep modes, their wake up sources and the BOD disable ability.

Notes: 1. For INT1 and INT0, only level interrupt

To enter any of the sleep modes, the SE bit in SMCR must be written to logic one and a SLEEP
instruction must be executed. The SM1, and SM0 bits in the SMCR Register select which sleep
mode (Idle, ADC Noise Reduction, or Power-down) will be activated by the SLEEP instruction.
See Table 7-2 on page 39 for a summary.

If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU
is then halted for four cycles in addition to the start-up time, executes the interrupt routine, and
resumes execution from the instruction following SLEEP. The contents of the Register File and
SRAM are unaltered when the device wakes up from sleep. If a reset occurs during sleep mode,
the MCU wakes up and executes from the Reset Vector.

Note that if a level triggered interrupt is used for wake-up the changed level must be held for
some time to wake up the MCU (and for the MCU to enter the interrupt service routine). See
“External Interrupts” on page 53 for details.

7.1.1 Idle Mode
When the SM[1:0] bits are written to 00, the SLEEP instruction makes the MCU enter Idle mode,
stopping the CPU but allowing the SPI, Analog Comparator, ADC, 2-wire Serial Interface,
Timer/Counters, Watchdog, and the interrupt system to continue operating. This sleep mode
basically halts clkCPU and clkFLASH, while allowing the other clocks to run.

Table 7-1. Active Clock Domains and Wake-up Sources in the Different Sleep Modes

Sleep Mode

Active Clock Domain Oscillator Wake-up Source
cl

k C
P

U

cl
k F

LA
S

H

cl
k I

O

cl
k A

D
C

M
ai

n
C

lo
ck

S

ou
rc

e
E

na
bl

ed

IN
T

1,
 IN

T
0

an
d

P
in

 C
ha

ng
e

T
W

I A
dd

re
ss

M

at
ch

E
E

P
R

O
M

R
ea

dy

A
D

C

W
D

T

O
th

er
 I/

O

Idle X X X X X X X X X

ADC Noise Reduction X X X(1) X X X X

Power-down X(1) X X

37
8008H–AVR–04/11

ATtiny48/88

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal
ones like the SPI interrupts. If wake-up from the Analog Comparator interrupt is not required, the
Analog Comparator can be powered down by setting the ACD bit in the Analog Comparator
Control and Status Register – ACSR. This will reduce power consumption in Idle mode. If the
ADC is enabled, a conversion starts automatically when this mode is entered.

7.1.2 ADC Noise Reduction Mode
When the SM[1:0] bits are written to 01, the SLEEP instruction makes the MCU enter ADC
Noise Reduction mode, stopping the CPU but allowing the ADC, the external interrupts, the 2-
wire Serial Interface address watch and the Watchdog to continue operating (if enabled). This
sleep mode basically halts clkI/O, clkCPU, and clkFLASH, while allowing the other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If
the ADC is enabled, a conversion starts automatically when this mode is entered. Apart from the
ADC Conversion Complete interrupt, only an External Reset, a Watchdog System Reset, a
Watchdog Interrupt, a Brown-out Reset, a 2-wire Serial Interface address match, an EEPROM
ready interrupt, an external level interrupt on INT0 or INT1 or a pin change interrupt can wake up
the MCU from ADC Noise Reduction mode.

7.1.3 Power-Down Mode
When the SM[1:0] bits are written to 10, the SLEEP instruction makes the MCU enter Power-
down mode. In this mode, the external oscillator is stopped, while the external interrupts, the 2-
wire Serial Interface address watch, and the Watchdog continue operating (if enabled). Only an
External Reset, a Watchdog System Reset, a Watchdog Interrupt, a Brown-out Reset, a 2-wire
Serial Interface address match, an external level interrupt on INT0 or INT1, or a pin change
interrupt can wake up the MCU. This sleep mode basically halts all generated clocks, allowing
operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. Refer to “External Interrupts” on page 53
for details.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs
until the wake-up becomes effective. This allows the clock to restart and become stable after
having been stopped. The wake-up period is defined by the same CKSEL Fuses that define the
Reset Time-out period, as described in “Clock Sources” on page 29.

7.2 Software BOD Disable

When the Brown-out Detector (BOD) is enabled by BODLEVEL fuses (see Table 20-4 on page
189), the BOD is actively monitoring the power supply voltage during a sleep period. To save
power, it is possible for software to disable the BOD in Power-down mode. The sleep mode
power consumption will then be at the same level as when BOD is globally disabled by fuses. If
disabled by software, the BOD is turned off immediately after entering the sleep mode and auto-
matically turned on upon wake-up. This ensures safe operation in case the VCC level has
dropped during the sleep period.

When the BOD has been disabled the wake-up time from sleep mode will be the same as the
wake-up time from RESET. This is in order to ensure the BOD is working correctly before the
MCU continues executing code.

BOD disable is controlled by bit 6, BODS (BOD Sleep) in the control register MCUCR, see
“MCUCR – MCU Control Register” on page 40. Writing this bit to one turns off the BOD in

38
8008H–AVR–04/11

ATtiny48/88

Power-down mode, while a zero in this bit keeps BOD active. The default setting is zero, i.e.
BOD active.

Writing to the BODS bit is controlled by a timed sequence and an enable bit, see “MCUCR –
MCU Control Register” on page 40.

7.3 Minimizing Power Consumption
There are several issues to consider when trying to minimize the power consumption in an AVR
controlled system. In general, sleep modes should be used as much as possible, and the sleep
mode should be selected so that as few as possible of the device’s functions are operating. All
functions not needed should be disabled. In particular, the following modules may need special
consideration when trying to achieve the lowest possible power consumption.

7.3.1 Analog to Digital Converter
If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be dis-
abled before entering any sleep mode. When the ADC is turned off and on again, the next
conversion will be an extended conversion. Refer to “ADC – Analog to Digital Converter” on
page 164 for details on ADC operation.

7.3.2 Analog Comparator
When entering Idle mode, the Analog Comparator should be disabled if not used. When entering
ADC Noise Reduction mode, the Analog Comparator should be disabled. In other sleep modes,
the Analog Comparator is automatically disabled. However, if the Analog Comparator is set up
to use the Internal Voltage Reference as input, the Analog Comparator should be disabled in all
sleep modes. Otherwise, the Internal Voltage Reference will be enabled, independent of sleep
mode. Refer to “Analog Comparator” on page 161 for details on how to configure the Analog
Comparator.

7.3.3 Brown-Out Detector
If the Brown-out Detector is not needed by the application, this module should be turned off. If
the Brown-out Detector is enabled by the BODLEVEL Fuses, it will be enabled in all sleep
modes, and hence, always consume power. In the deeper sleep modes, this will contribute sig-
nificantly to the total current consumption. Refer to “Brown-Out Detection” on page 44 for details
on how to configure the Brown-out Detector.

7.3.4 Internal Voltage Reference
The Internal Voltage Reference will be enabled when needed by the Brown-out Detection, the
Analog Comparator or the ADC. If these modules are disabled as described in the sections
above, the internal voltage reference will be disabled and it will not be consuming power. When
turned on again, the user must allow the reference to start up before the output is used. If the
reference is kept on in sleep mode, the output can be used immediately. Refer to “Internal Volt-
age Reference” on page 45 for details on the start-up time.

7.3.5 Watchdog Timer
If the Watchdog Timer is not needed in the application, the module should be turned off. If the
Watchdog Timer is enabled, it will be enabled in all sleep modes and hence always consume
power. In the deeper sleep modes, this will contribute significantly to the total current consump-
tion. Refer to “Watchdog Timer” on page 46 for details on how to configure the Watchdog Timer.

39
8008H–AVR–04/11

ATtiny48/88

7.3.6 Port Pins
When entering a sleep mode, all port pins should be configured to use minimum power. The
most important is then to ensure that no pins drive resistive loads. In sleep modes where both
the I/O clock (clkI/O) and the ADC clock (clkADC) are stopped, the input buffers of the device will
be disabled. This ensures that no power is consumed by the input logic when not needed. In
some cases, the input logic is needed for detecting wake-up conditions, and it will then be
enabled. Refer to the section “Digital Input Enable and Sleep Modes” on page 65 for details on
which pins are enabled. If the input buffer is enabled and the input signal is left floating or have
an analog signal level close to VCC/2, the input buffer will use excessive power.

For analog input pins, the digital input buffer should be disabled at all times. An analog signal
level close to VCC/2 on an input pin can cause significant current even in active mode. Digital
input buffers can be disabled by writing to the Digital Input Disable Registers (DIDR1 and
DIDR0). Refer to “DIDR1 – Digital Input Disable Register 1” on page 163 and “DIDR0 – Digital
Input Disable Register 0” on page 180 for details.

7.3.7 On-chip Debug System
If the On-chip debug system is enabled by the DWEN Fuse and the chip enters sleep mode, the
main clock source is enabled and hence always consumes power. In the deeper sleep modes,
this will contribute significantly to the total current consumption.

7.4 Register Description

7.4.1 SMCR – Sleep Mode Control Register
The Sleep Mode Control Register contains control bits for power management.

• Bits 7:3 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bits 2:1 – SM[1:0]: Sleep Mode Select Bits 1 and 0
These bits select between the available sleep modes as shown in Table 7-2.

• Bit 0 – SE: Sleep Enable
The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP
instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s
purpose, it is recommended to write the Sleep Enable (SE) bit to one just before the execution of
the SLEEP instruction and to clear it immediately after waking up.

Bit 7 6 5 4 3 2 1 0

0x33 (0x53) – – – – – SM1 SM0 SE SMCR

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 7-2. Sleep Mode Select

SM1 SM0 Sleep Mode

0 0 Idle

0 1 ADC Noise Reduction

1 0 Power-down

1 1 Reserved

40
8008H–AVR–04/11

ATtiny48/88

7.4.2 MCUCR – MCU Control Register

• Bits 7, 3:0 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bit 6 – BODS: BOD Sleep
The BODS bit must be written to logic one in order to turn off BOD during sleep, see Table 7-2
on page 39. Writing to the BODS bit is controlled by a timed sequence and an enable bit,
BODSE in MCUCR. To disable BOD in relevant sleep modes, both BODS and BODSE must first
be set to one. Then, to set the BODS bit, BODS must be set to one and BODSE must be set to
zero within four clock cycles.

The BODS bit is active three clock cycles after it is set. A sleep instruction must be executed
while BODS is active in order to turn off the BOD for the actual sleep mode. The BODS bit is
automatically cleared after three clock cycles.

• Bit 5 – BODSE: BOD Sleep Enable
BODSE enables setting of BODS control bit, as explained in BODS bit description. BOD disable
is controlled by a timed sequence.

7.4.3 PRR – Power Reduction Register
The Power Reduction Register (PRR) provides a method to stop the clock to individual peripher-
als to reduce power consumption. The current state of the peripheral is frozen and the I/O
registers can not be read or written. Resources used by the peripheral when stopping the clock
will remain occupied, hence the peripheral should in most cases be disabled before stopping the
clock. Waking up a module, which is done by clearing the bit in PRR, puts the module in the
same state as before shutdown.

Module shutdown can be used in Idle mode and Active mode to significantly reduce the overall
power consumption. In all other sleep modes, the clock is already stopped.

• Bit 7 – PRTWI: Power Reduction TWI
Writing a logic one to this bit shuts down the TWI by stopping the clock to the module. When
waking up the TWI again, the TWI should be re initialized to ensure proper operation.

• Bits 6, 4, 1 – Res: Reserved

These bits are reserved and will always read zero.

• Bit 5 – PRTIM0: Power Reduction Timer/Counter0
Writing a logic one to this bit shuts down the Timer/Counter0 module. When the Timer/Counter0
is enabled, operation will continue like before the shutdown.

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) – BODS BODSE PUD – – – – MCUCR

Read/Write R R/W R/W R/W R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x64) PRTWI – PRTIM0 – PRTIM1 PRSPI – PRADC PRR

Read/Write R/W R R/W R R/W R/W R R/W

Initial Value 0 0 0 0 0 0 0 0

41
8008H–AVR–04/11

ATtiny48/88

• Bit 3 – PRTIM1: Power Reduction Timer/Counter1
Writing a logic one to this bit shuts down the Timer/Counter1 module. When the Timer/Counter1
is enabled, operation will continue like before the shutdown.

• Bit 2 – PRSPI: Power Reduction Serial Peripheral Interface
If using debugWIRE On-chip Debug System, this bit should not be written to one.

Writing a logic one to this bit shuts down the Serial Peripheral Interface by stopping the clock to
the module. When waking up the SPI again, the SPI should be re initialized to ensure proper
operation.

• Bit 0 – PRADC: Power Reduction ADC
Writing a logic one to this bit shuts down the ADC. The ADC must be disabled before shut down.
The analog comparator cannot be used when the ADC is shut down.

42
8008H–AVR–04/11

ATtiny48/88

8. System Control and Reset

8.1 Resetting the AVR
During reset, all I/O Registers are set to their initial values, and the program starts execution
from the Reset Vector. The instruction placed at the Reset Vector must be an RJMP – Relative
Jump – instruction to the reset handling routine. If the program never enables an interrupt
source, the Interrupt Vectors are not used, and regular program code can be placed at these
locations. The circuit diagram in Figure 8-1 shows the reset circuit. Table 22-3 on page 209
shows the electrical parameters of the reset circuitry.

Figure 8-1. Reset Logic

The I/O ports of the AVR are immediately reset to their initial state when a reset source goes
active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal
reset. This allows the power to reach a stable level before normal operation starts. The time-out
period of the delay counter is defined by the user through the SUT and CKSEL Fuses. The dif-
ferent selections for the delay period are presented in “Clock Sources” on page 29.

MCU Status
Register (MCUSR)

Brown-out
Reset CircuitBODLEVEL [2:0]

Delay Counters

CKSEL[1:0]

CK
TIMEOUT

W
D

RF

BO
RF

EX
TR

F

PO
RF

DATA BUS

Clock
Generator

SPIKE
FILTER

Pull-up Resistor

Watchdog
Oscillator

SUT[1:0]

Power-on Reset
Circuit

43
8008H–AVR–04/11

ATtiny48/88

8.2 Reset Sources
The ATtiny48/88 has four sources of reset:

• Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset
threshold (VPOT), or when the supply voltage falls rapidly.

• External Reset. The MCU is reset when a low level is present on the RESET pin for longer
than the required pulse length.

• Watchdog System Reset. The MCU is reset when the Watchdog Timer period expires and
the Watchdog System Reset mode is enabled.

• Brown-out Reset. The MCU is reset when the supply voltage VCC is below the Brown-out
Reset threshold (VBOT) and the Brown-out Detector is enabled.

8.2.1 Power-on Reset
A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detection level
is defined in Table 22-3 on page 209. The POR is activated whenever VCC is below the detection
level. The POR circuit can be used to trigger the start-up Reset, as well as to detect a failure in
supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the
Power-on Reset threshold voltage invokes the delay counter, which determines how long the
device is kept in RESET after VCC rise. The RESET signal is activated again, without any delay,
when VCC decreases below the detection level.

Figure 8-2. MCU Start-up, RESET Tied to VCC

Figure 8-3. MCU Start-up, RESET Extended Externally

V

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST

CC

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST

VCC

44
8008H–AVR–04/11

ATtiny48/88

8.2.2 External Reset
An External Reset is generated by a low level on the RESET pin. Reset pulses longer than the
minimum pulse width (see Table 22-3 on page 209) will generate a reset, even if the clock is not
running. Shorter pulses are not guaranteed to generate a reset. When the applied signal
reaches the Reset Threshold Voltage – VRST – on its positive edge, the delay counter starts the
MCU after the Time-out period – tTOUT – has expired. The External Reset can be disabled by the
RSTDISBL fuse, see Table 20-4 on page 189.

Figure 8-4. External Reset During Operation

8.2.3 Brown-Out Detection
ATtiny48/88 has an On-chip Brown-out Detection (BOD) circuit for monitoring the VCC level dur-
ing operation by comparing it to a fixed trigger level. The trigger level for the BOD can be
selected by the BODLEVEL Fuses. The trigger level has a hysteresis to ensure spike free
Brown-out Detection. The hysteresis on the detection level should be interpreted as VBOT+ =
VBOT + VHYST/2 and VBOT- = VBOT - VHYST/2. When the BOD is enabled, and VCC decreases to a
value below the trigger level (VBOT- in Figure 8-5), the Brown-out Reset is immediately activated.
When VCC increases above the trigger level (VBOT+ in Figure 8-5), the delay counter starts the
MCU after the Time-out period tTOUT has expired.

The BOD circuit will only detect a drop in VCC if the voltage stays below the trigger level for lon-
ger than tBOD given in “System and Reset Characterizations” on page 209.

Figure 8-5. Brown-out Reset During Operation

CC

VCC

RESET

TIME-OUT

INTERNAL
RESET

VBOT-
VBOT+

tTOUT

45
8008H–AVR–04/11

ATtiny48/88

8.2.4 Watchdog Reset
When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On
the falling edge of this pulse, the delay timer starts counting the Time-out period tTOUT. Refer to
page 46 for details on operation of the Watchdog Timer.

Figure 8-6. Watchdog System Reset During Operation

8.3 Internal Voltage Reference
ATtiny48/88 features an internal bandgap reference. This reference is used for Brown-out
Detection, and it can be used as an input to the Analog Comparator or the ADC.

8.3.1 Voltage Reference Enable Signals and Start-up Time
The voltage reference has a start-up time that may influence the way it should be used. The
start-up time is given in “System and Reset Characterizations” on page 209. To save power, the
reference is not always turned on. The reference is on during the following situations:

1. When the BOD is enabled (by programming the BODLEVEL[2:0] Fuses).

2. When the internal reference is connected to the Analog Comparator (by setting the
ACBG bit in ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user
must always allow the reference to start up before the output from the Analog Comparator or
ADC is used. To reduce power consumption in Power-down mode, the user can avoid the three
conditions above to ensure that the reference is turned off before entering Power-down mode.

CK

CC

46
8008H–AVR–04/11

ATtiny48/88

8.4 Watchdog Timer
ATtiny48/88 has an Enhanced Watchdog Timer (WDT). The WDT is a timer counting cycles of a
separate on-chip 128 kHz oscillator. The WDT gives an interrupt or a system reset when the
counter reaches a given time-out value. In normal operation mode, it is required that the system
uses the WDR - Watchdog Timer Reset - instruction to restart the counter before the time-out
value is reached. If the system doesn't restart the counter, an interrupt or system reset will be
issued.

Figure 8-7. Watchdog Timer

In Interrupt mode, the WDT gives an interrupt when the timer expires. This interrupt can be used
to wake the device from sleep-modes, and also as a general system timer. One example is to
limit the maximum time allowed for certain operations, giving an interrupt when the operation
has run longer than expected. In System Reset mode, the WDT gives a reset when the timer
expires. This is typically used to prevent system hang-up in case of runaway code. The third
mode, Interrupt and System Reset mode, combines the other two modes by first giving an inter-
rupt and then switch to System Reset mode. This mode will for instance allow a safe shutdown
by saving critical parameters before a system reset.

The Watchdog always on (WDTON) fuse, if programmed, will force the Watchdog Timer to Sys-
tem Reset mode. With the fuse programmed the System Reset mode bit (WDE) and Interrupt
mode bit (WDIE) are locked to 1 and 0 respectively. To further ensure program security, altera-
tions to the Watchdog set-up must follow timed sequences. The sequence for clearing WDE and
changing time-out configuration is as follows:

1. In the same operation, write a logic one to the Watchdog change enable bit (WDCE) and
WDE. A logic one must be written to WDE regardless of the previous value of the WDE
bit.

2. Within the next four clock cycles, write the WDE and Watchdog prescaler bits (WDP) as
desired, but with the WDCE bit cleared. This must be done in one operation.

128kHz
OSCILLATOR

O
S

C
/2

K
O

S
C

/4
K

O
S

C
/8

K
O

S
C

/1
6K

O
S

C
/3

2K
O

S
C

/6
4K

O
S

C
/1

28
K

O
S

C
/2

56
K

O
S

C
/5

12
K

O
S

C
/1

02
4K

WDP0
WDP1
WDP2
WDP3

WATCHDOG
RESET

WDE

WDIF

WDIE

MCU RESET

INTERRUPT

47
8008H–AVR–04/11

ATtiny48/88

The following code example shows one assembly and one C function for turning off the Watch-
dog Timer. The example assumes that interrupts are controlled (e.g. by disabling interrupts
globally) so that no interrupts will occur during the execution of these functions.

Note: 1. See ”About Code Examples” on page 7.

Note: If the Watchdog is accidentally enabled, for example by a runaway pointer or Brown-out
condition, the device will be reset and the Watchdog Timer will stay enabled. If the code is not
set up to handle the Watchdog, this might lead to an eternal loop of time-out resets. To avoid this

Assembly Code Example(1)

WDT_off:

; Turn off global interrupt

cli

; Reset Watchdog Timer

wdr

; Clear WDRF in MCUSR

in r16, MCUSR

andi r16, (0xff & (0<<WDRF))

out MCUSR, r16

; Write logical one to WDCE and WDE

; Keep old prescaler setting to prevent unintentional time-out

lds r16, WDTCSR

ori r16, (1<<WDCE) | (1<<WDE)

sts WDTCSR, r16

; Turn off WDT

ldi r16, (0<<WDE)

sts WDTCSR, r16

; Turn on global interrupt

sei

ret

C Code Example(1)

void WDT_off(void)

{

__disable_interrupt();

__watchdog_reset();

/* Clear WDRF in MCUSR */

MCUSR &= ~(1<<WDRF);

/* Write logical one to WDCE and WDE */

/* Keep old prescaler setting to prevent unintentional time-out */

WDTCSR |= (1<<WDCE) | (1<<WDE);

/* Turn off WDT */

WDTCSR = 0x00;

__enable_interrupt();

}

48
8008H–AVR–04/11

ATtiny48/88

situation, the application software should always clear the Watchdog System Reset Flag
(WDRF) and the WDE control bit in the initialization routine, even if the Watchdog is not in use.

The following code example shows one assembly and one C function for changing the time-out
value of the Watchdog Timer.

Note: 1. See ”About Code Examples” on page 7.

Note: The Watchdog Timer should be reset before any change of the WDP bits, since a change
in the WDP bits can result in a time-out when switching to a shorter time-out period.

Assembly Code Example(1)

WDT_Prescaler_Change:

; Turn off global interrupt

cli

; Reset Watchdog Timer

wdr

; Start timed sequence

lds r16, WDTCSR

ori r16, (1<<WDCE) | (1<<WDE)

sts WDTCSR, r16

; -- Got four cycles to set the new values from here -

; Set new prescaler(time-out) value = 64K cycles (~0.5 s)

ldi r16, (1<<WDE) | (1<<WDP2) | (1<<WDP0)

sts WDTCSR, r16

; -- Finished setting new values, used 2 cycles -

; Turn on global interrupt

sei

ret

C Code Example(1)

void WDT_Prescaler_Change(void)

{

__disable_interrupt();

__watchdog_reset();

/* Start timed sequence */

WDTCSR |= (1<<WDCE) | (1<<WDE);

/* Set new prescaler(time-out) value = 64K cycles (~0.5 s) */

WDTCSR = (1<<WDE) | (1<<WDP2) | (1<<WDP0);

__enable_interrupt();

}

49
8008H–AVR–04/11

ATtiny48/88

8.5 Register Description

8.5.1 MCUSR – MCU Status Register
The MCU Status Register provides information on which reset source caused an MCU reset.

• Bits 7:4 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bit 3 – WDRF: Watchdog System Reset Flag
This bit is set if a Watchdog System Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

• Bit 2 – BORF: Brown-out Reset Flag
This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

• Bit 1 – EXTRF: External Reset Flag
This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

• Bit 0 – PORF: Power-on Reset Flag
This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.

To make use of the Reset Flags to identify a reset condition, the user should read and then
Reset the MCUSR as early as possible in the program. If the register is cleared before another
reset occurs, the source of the reset can be found by examining the Reset Flags.

8.5.2 WDTCSR – Watchdog Timer Control Register

• Bit 7 – WDIF: Watchdog Interrupt Flag
This bit is set when a time-out occurs in the Watchdog Timer and the Watchdog Timer is config-
ured for interrupt. WDIF is cleared by hardware when executing the corresponding interrupt
handling vector. Alternatively, WDIF is cleared by writing a logic one to the flag. When the I-bit in
SREG and WDIE are set, the Watchdog Time-out Interrupt is executed.

• Bit 6 – WDIE: Watchdog Interrupt Enable
When this bit is written to one and the I-bit in the Status Register is set, the Watchdog Interrupt is
enabled. If WDE is cleared in combination with this setting, the Watchdog Timer is in Interrupt
Mode, and the corresponding interrupt is executed if time-out in the Watchdog Timer occurs.

If WDE is set, the Watchdog Timer is in Interrupt and System Reset Mode. The first time-out in
the Watchdog Timer will set WDIF. Executing the corresponding interrupt vector will clear WDIE
and WDIF automatically by hardware (the Watchdog goes to System Reset Mode). This is use-

Bit 7 6 5 4 3 2 1 0

0x34 (0x54) – – – – WDRF BORF EXTRF PORF MCUSR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description

Bit 7 6 5 4 3 2 1 0

(0x60) WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 WDTCSR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 X 0 0 0

50
8008H–AVR–04/11

ATtiny48/88

ful for keeping the Watchdog Timer security while using the interrupt. To stay in Interrupt and
System Reset Mode, WDIE must be set after each interrupt. This should however not be done
within the interrupt service routine itself, as this might compromise the safety-function of the
Watchdog System Reset mode. If the interrupt is not executed before the next time-out, a Sys-
tem Reset will be applied.

• Bit 4 – WDCE: Watchdog Change Enable
This bit is used in timed sequences for changing WDE and prescaler bits. To clear the WDE bit,
and/or change the prescaler bits, WDCE must be set.

Once written to one, hardware will clear WDCE after four clock cycles.

• Bit 3 – WDE: Watchdog System Reset Enable
WDE is overridden by WDRF in MCUSR. This means that WDE is always set when WDRF is
set. To clear WDE, WDRF must be cleared first. This feature ensures multiple resets during con-
ditions causing failure, and a safe start-up after the failure.

• Bits 5, 2:0 – WDP[3:0]: Watchdog Timer Prescaler Bits 3, 2, 1 and 0
The WDP[3:0] bits determine the Watchdog Timer prescaling when the Watchdog Timer is run-
ning. The different prescaling values and their corresponding time-out periods are shown in
Table 8-2 on page 50.

Table 8-1. Watchdog Timer Configuration

WDTON WDE WDIE Mode Action on Time-out

0 0 0 Stopped None

0 0 1 Interrupt Mode Interrupt

0 1 0 System Reset Mode Reset

0 1 1 Interrupt & System Reset Mode
Interrupt, then go to
System Reset Mode

1 X X System Reset Mode Reset

Table 8-2. Watchdog Timer Prescale Select

WDP3 WDP2 WDP1 WDP0
Number of

WDT Oscillator Cycles
Typical Time-out at

VCC = 5.0V

0 0 0 0 2K (2048) cycles 16 ms

0 0 0 1 4K (4096) cycles 32 ms

0 0 1 0 8K (8192) cycles 64 ms

0 0 1 1 16K (16384) cycles 0.125 s

0 1 0 0 32K (32768) cycles 0.25 s

0 1 0 1 64K (65536) cycles 0.5 s

0 1 1 0 128K (131072) cycles 1.0 s

0 1 1 1 256K (262144) cycles 2.0 s

1 0 0 0 512K (524288) cycles 4.0 s

1 0 0 1 1024K (1048576) cycles 8.0 s

51
8008H–AVR–04/11

ATtiny48/88

Notes: 1. If selected, one of the valid settings below 0b1010 will be used.

1 0 1 0

Reserved (1)

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Table 8-2. Watchdog Timer Prescale Select (Continued)

WDP3 WDP2 WDP1 WDP0
Number of

WDT Oscillator Cycles
Typical Time-out at

VCC = 5.0V

52
8008H–AVR–04/11

ATtiny48/88

9. Interrupts
This section describes the specifics of interrupt handling in ATtiny48/88. For a general explana-
tion of the AVR interrupt handling, refer to “Reset and Interrupt Handling” on page 12.

9.1 Interrupt Vectors

In case the program never enables an interrupt source, the Interrupt Vectors will not be used
and, consequently, regular program code can be placed at these locations.

Table 9-1. Reset and Interrupt Vectors in ATtiny48/88

Vector
No.

Program
Address Source Interrupt Definition

1 0x000 RESET External/Power-on/Brown-out/Watchdog Reset

2 0x001 INT0 External Interrupt Request 0

3 0x002 INT1 External Interrupt Request 1

4 0x003 PCINT0 Pin Change Interrupt Request 0

5 0x004 PCINT1 Pin Change Interrupt Request 1

6 0x005 PCINT2 Pin Change Interrupt Request 2

7 0x006 PCINT3 Pin Change Interrupt Request 3

8 0x007 WDT Watchdog Time-out Interrupt

9 0x008 TIMER1_CAPT Timer/Counter1 Capture Event

10 0x009 TIMER1_COMPA Timer/Counter1 Compare Match A

11 0x00A TIMER1_COMPB Timer/Counter1 Compare Match B

12 0x00B TIMER1_OVF Timer/Counter1 Overflow

13 0x00C TIMER0_COMPA Timer/Counter0 Compare Match A

14 0x00D TIMER0_COMPB Timer/Counter0 Compare Match B

15 0x00E TIMER0_OVF Timer/Counter0 Overflow

16 0x00F SPI_STC SPI Serial Transfer Complete

17 0x010 ADC ADC Conversion Complete

18 0x011 EE_RDY EEPROM Ready

19 0x012 ANA_COMP Analog Comparator

20 0x013 TWI 2-wire Serial Interface

53
8008H–AVR–04/11

ATtiny48/88

A typical and general setup for interrupt vector addresses in ATtiny48/88 is shown in the pro-
gram example below.

Note: See “About Code Examples” on page 7.

9.2 External Interrupts
The External Interrupts are triggered by the INT0 and INT1 pins or any of the PCINT[27:0] pins.
Observe that, if enabled, the interrupts will trigger even if the INT0 and INT1 or PCINT[27:0] pins
are configured as outputs. This feature provides a way of generating a software interrupt, as
follows.

• Pin Change Interrupt PCI3 triggers if a pin in PCINT[27:24] is toggled while enabled

• Pin Change Interrupt PCI2 triggers if a pin in PCINT[23:16] is toggled while enabled

• Pin Change Interrupt PCI1 triggers if a pin in PCINT[15:8] is toggled while enabled

• Pin Change Interrupt PCI0 triggers if a pin in PCINT[7:0] is toggled while enabled

The PCMSK3, PCMSK2, PCMSK1 and PCMSK0 registers control which pins contribute to the
pin change interrupts. Pin change interrupts on PCINT[27:0] are detected asynchronously. This

Assembly Code Example

.org 0x0000 ;Set address of next statement

rjmp RESET ; Address 0x0000

rjmp INT0_ISR ; Address 0x0001

rjmp INT1_ISR ; Address 0x0002

rjmp PCINT0_ISR ; Address 0x0003

rjmp PCINT1_ISR ; Address 0x0004

rjmp PCINT2_ISR ; Address 0x0005

rjmp PCINT3_ISR ; Address 0x0006

rjmp WDT_ISR ; Address 0x0007

rjmp TIM1_CAPT_ISR ; Address 0x0008

rjmp TIM1_COMPA_ISR ; Address 0x0009

rjmp TIM1_COMPB_ISR ; Address 0x000A

rjmp TIM1_OVF_ISR ; Address 0x000B

rjmp TIM0_COMPA_ISR ; Address 0x000C

rjmp TIM0_COMPB_ISR ; Address 0x000D

rjmp TIM0_OVF_ISR ; Address 0x000E

rjmp SPI_STC_ISR ; Address 0x000F

rjmp ADC_ISR ; Address 0x0010

rjmp EE_RDY_ISR ; Address 0x0011

rjmp ANA_COMP_ISR ; Address 0x0012

rjmp TWI_ISR ; Address 0x0013

RESET: ; Main program start

<instr> ; Address 0x0038

...

54
8008H–AVR–04/11

ATtiny48/88

means that these interrupts can be used for waking the part also from sleep modes other than
Idle mode.

The INT0 and INT1 interrupts can be triggered by a falling or rising edge, or a low level. This is
configured as described in “EICRA – External Interrupt Control Register A” on page 55. When
INT0 or INT1 interrupts are enabled and are configured as level triggered, the interrupts will trig-
ger as long as the corresponding pin is held low. Note that recognition of falling or rising edge
interrupts on INT0 or INT1 requires the presence of an I/O clock, described in “I/O Clock –
clkI/O” on page 28.

9.2.1 Pin Change Interrupt Timing
An example of timing of a pin change interrupt is shown in Figure 9-1.

Figure 9-1. Timing of pin change interrupts

9.2.2 Low Level Interrupt
Low level interrupts on INT0 and INT1 are detected asynchronously. This means that the inter-
rupt sources can be used for waking the part also from sleep modes other than Idle (the I/O
clock is halted in all sleep modes except Idle mode).

Note that if a level triggered interrupt is used for wake-up from Power-down, the required level
must be held long enough for the MCU to complete the wake-up to trigger the level interrupt. If
the level disappears before the end of the Start-up Time, the MCU will still wake up, but no inter-

clk

PCINT(0)

pin_lat

pin_sync

pcint_in_(0)

pcint_syn

pcint_setflag

PCIF

PCINT(0)

pin_sync
pcint_syn

pin_lat
D Q

LE

pcint_setflag
PCIF

clk

clk
PCINT(0) in PCMSK(x)

pcint_in_(0) 0

x

55
8008H–AVR–04/11

ATtiny48/88

rupt will be generated. The start-up time is defined by the SUT and CKSEL Fuses as described
in Table 6-5 on page 33.

If the low level on the interrupt pin is removed before the device has woken up then program
execution will not be diverted to the interrupt service routine but continue from the instruction fol-
lowing the SLEEP command.

9.3 Register Description

9.3.1 EICRA – External Interrupt Control Register A
The External Interrupt Control Register A contains control bits for interrupt sense control.

• Bits 7:4 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bits 3:2 – ISC1[1:0]: Interrupt Sense Control 1 Bit 1 and Bit 0
The External Interrupt 1 is activated by the external pin INT1 if the SREG I-flag and the corre-
sponding interrupt mask are set. The level and edges on the external INT1 pin that activate the
interrupt are defined in Table 9-2. The value on the INT1 pin is sampled before detecting edges.
If edge or toggle interrupt is selected, pulses that last longer than one clock period will generate
an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level interrupt is
selected, the low level must be held until the completion of the currently executing instruction to
generate an interrupt.

• Bits 1:0 – ISC0[1:0]: Interrupt Sense Control 0 Bit 1 and Bit 0
The External Interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the corre-
sponding interrupt mask are set. The level and edges on the external INT0 pin that activate the
interrupt are defined in Table 9-3. The value on the INT0 pin is sampled before detecting edges.
If edge or toggle interrupt is selected, pulses that last longer than one clock period will generate
an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level interrupt is

Bit 7 6 5 4 3 2 1 0

(0x69) – – – – ISC11 ISC10 ISC01 ISC00 EICRA

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 9-2. Interrupt 1 Sense Control

ISC11 ISC10 Description

0 0 The low level of INT1 generates an interrupt request.

0 1 Any logical change on INT1 generates an interrupt request.

1 0 The falling edge of INT1 generates an interrupt request.

1 1 The rising edge of INT1 generates an interrupt request.

56
8008H–AVR–04/11

ATtiny48/88

selected, the low level must be held until the completion of the currently executing instruction to
generate an interrupt.

9.3.2 EIMSK – External Interrupt Mask Register

• Bits 7:2 – Res: Reserved Bits
These bits are unused in ATtiny48/88, and will always read as zero.

• Bit 1 – INT1: External Interrupt Request 1 Enable
When the INT1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the exter-
nal pin interrupt is enabled. The Interrupt Sense Control bits (ISC11 and ISC10) in the External
Interrupt Control Register A (EICRA) define whether the external interrupt is activated on rising
and/or falling edge of the INT1 pin or level sensed. Activity on the pin will cause an interrupt
request even if INT1 is configured as an output. The corresponding interrupt of External Interrupt
Request 1 is executed from the INT1 Interrupt Vector.

• Bit 0 – INT0: External Interrupt Request 0 Enable
When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the exter-
nal pin interrupt is enabled. The Interrupt Sense Control bits (ISC01 and ISC00) in the External
Interrupt Control Register A (EICRA) define whether the external interrupt is activated on rising
and/or falling edge of the INT0 pin or level sensed. Activity on the pin will cause an interrupt
request even if INT0 is configured as an output. The corresponding interrupt of External Interrupt
Request 0 is executed from the INT0 Interrupt Vector.

9.3.3 EIFR – External Interrupt Flag Register

• Bits 7:2 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bit 1 – INTF1: External Interrupt Flag 1
When an edge or logic change on the INT1 pin triggers an interrupt request, INTF1 becomes set
(one). If the I-bit in SREG and the INT1 bit in EIMSK are set (one), the MCU will jump to the cor-

Table 9-3. Interrupt 0 Sense Control

ISC01 ISC00 Description

0 0 The low level of INT0 generates an interrupt request.

0 1 Any logical change on INT0 generates an interrupt request.

1 0 The falling edge of INT0 generates an interrupt request.

1 1 The rising edge of INT0 generates an interrupt request.

Bit 7 6 5 4 3 2 1 0

0x1D (0x3D) – – – – – – INT1 INT0 EIMSK

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1C (0x3C) – – – – – – INTF1 INTF0 EIFR

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

57
8008H–AVR–04/11

ATtiny48/88

responding Interrupt Vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared
when INT1 is configured as a level interrupt.

• Bit 0 – INTF0: External Interrupt Flag 0
When an edge or logic change on the INT0 pin triggers an interrupt request, INTF0 becomes set
(one). If the I-bit in SREG and the INT0 bit in EIMSK are set (one), the MCU will jump to the cor-
responding Interrupt Vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared
when INT0 is configured as a level interrupt.

9.3.4 PCICR – Pin Change Interrupt Control Register

• Bits 7:4 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bit 3 – PCIE3: Pin Change Interrupt Enable 3
When the PCIE3 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 3 is enabled. Any change on any enabled PCINT[27:24] pin will cause an inter-
rupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI3
Interrupt Vector. PCINT[27:24] pins are enabled individually by the PCMSK3 Register.

• Bit 2 – PCIE2: Pin Change Interrupt Enable 2
When the PCIE2 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 2 is enabled. Any change on any enabled PCINT[23:16] pin will cause an inter-
rupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI2
Interrupt Vector. PCINT[23:16] pins are enabled individually by the PCMSK2 Register.

• Bit 1 – PCIE1: Pin Change Interrupt Enable 1
When the PCIE1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 1 is enabled. Any change on any enabled PCINT[15:8] pin will cause an inter-
rupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI1
Interrupt Vector. PCINT[15:8] pins are enabled individually by the PCMSK1 Register.

• Bit 0 – PCIE0: Pin Change Interrupt Enable 0
When the PCIE0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 0 is enabled. Any change on any enabled PCINT[7:0] pin will cause an inter-
rupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI0
Interrupt Vector. PCINT[7:0] pins are enabled individually by the PCMSK0 Register.

Bit 7 6 5 4 3 2 1 0

(0x68) – – – – PCIE3 PCIE2 PCIE1 PCIE0 PCICR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

58
8008H–AVR–04/11

ATtiny48/88

9.3.5 PCIFR – Pin Change Interrupt Flag Register

• Bits 7:4 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bit 3 – PCIF3: Pin Change Interrupt Flag 3
When a logic change on any PCINT[27:24] pin triggers an interrupt request, PCIF3 becomes set
(one). If the I-bit in SREG and the PCIE3 bit in PCICR are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

• Bit 2 – PCIF2: Pin Change Interrupt Flag 2
When a logic change on any PCINT[23:16] pin triggers an interrupt request, PCIF2 becomes set
(one). If the I-bit in SREG and the PCIE2 bit in PCICR are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

• Bit 1 – PCIF1: Pin Change Interrupt Flag 1
When a logic change on any PCINT[15:8] pin triggers an interrupt request, PCIF1 becomes set
(one). If the I-bit in SREG and the PCIE1 bit in PCICR are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

• Bit 0 – PCIF0: Pin Change Interrupt Flag 0
When a logic change on any PCINT[7:0] pin triggers an interrupt request, PCIF0 becomes set
(one). If the I-bit in SREG and the PCIE0 bit in PCICR are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

9.3.6 PCMSK3 – Pin Change Mask Register 3

• Bits 7:4 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bits 3:0 – PCINT[27:24]: Pin Change Enable Mask 27:24
Each PCINT[27:24] bit selects whether pin change interrupt is enabled on the corresponding I/O
pin. If PCINT[27:24] is set and the PCIE3 bit in PCICR is set, pin change interrupt is enabled on
the corresponding I/O pin. If PCINT[27:24] is cleared, pin change interrupt on the corresponding
I/O pin is disabled.

Bit 7 6 5 4 3 2 1 0

0x1B (0x3B) – – – – PCIF3 PCIF2 PCIF1 PCIF0 PCIFR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6A) – – – – PCINT27 PCINT26 PCINT25 PCINT24 PCMSK3

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

59
8008H–AVR–04/11

ATtiny48/88

9.3.7 PCMSK2 – Pin Change Mask Register 2

• Bits 7:0 – PCINT[23:16]: Pin Change Enable Mask 23:16
Each PCINT[23:16] bit selects whether pin change interrupt is enabled on the corresponding I/O
pin. If PCINT[23:16] is set and the PCIE2 bit in PCICR is set, pin change interrupt is enabled on
the corresponding I/O pin. If PCINT[23:16] is cleared, pin change interrupt on the corresponding
I/O pin is disabled.

9.3.8 PCMSK1 – Pin Change Mask Register 1

• Bits 7:0 – PCINT[15:8]: Pin Change Enable Mask 15:8
Each PCINT[15:8] bit selects whether pin change interrupt is enabled on the corresponding I/O
pin. If PCINT[15:8] is set and the PCIE1 bit in PCICR is set, pin change interrupt is enabled on
the corresponding I/O pin. If PCINT[15:8] is cleared, pin change interrupt on the corresponding
I/O pin is disabled.

9.3.9 PCMSK0 – Pin Change Mask Register 0

• Bits 7:0 – PCINT[7:0]: Pin Change Enable Mask 7:0
Each PCINT[7:0] bit selects whether pin change interrupt is enabled on the corresponding I/O
pin. If PCINT[7:0] is set and the PCIE0 bit in PCICR is set, pin change interrupt is enabled on the
corresponding I/O pin. If PCINT[7:0] is cleared, pin change interrupt on the corresponding I/O
pin is disabled.

Bit 7 6 5 4 3 2 1 0

(0x6D) PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 PCMSK2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6C) PCINT15 PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 PCMSK1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6B) PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 PCMSK0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

60
8008H–AVR–04/11

ATtiny48/88

10. I/O-Ports

10.1 Introduction
All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports.
This means that the direction of one port pin can be changed without unintentionally changing
the direction of any other pin with the SBI and CBI instructions. The same applies when chang-
ing drive value (if configured as output) or enabling/disabling of pull-up resistors (if configured as
input). The pin driver is strong enough to drive LED displays directly. All port pins have individu-
ally selectable pull-up resistors with a supply-voltage invariant resistance. All I/O pins have
protection diodes to both VCC and Ground as indicated in Figure 10-1. Refer to “Electrical Char-
acteristics” on page 206 for a complete list of parameters.

Figure 10-1. I/O Pin Equivalent Schematic

All registers and bit references in this section are written in general form. A lower case “x” repre-
sents the numbering letter for the port, and a lower case “n” represents the bit number. However,
when using the register or bit defines in a program, the precise form must be used. For example,
PORTB3 for bit no. 3 in Port B, here documented generally as PORTxn. The physical I/O Regis-
ters and bit locations are listed in “Register Description” on page 77.

Three I/O memory address locations are allocated for each port, one each for the Data Register
– PORTx, Data Direction Register – DDRx, and the Port Input Pins – PINx. The Port Input Pins
I/O location is read only, while the Data Register and the Data Direction Register are read/write.
However, writing a logic one to a bit in the PINx Register, will result in a toggle in the correspond-
ing bit in the Data Register. In addition, the Pull-up Disable – PUD bit in MCUCR disables the
pull-up function for all pins in all ports when set.

Using the I/O port as General Digital I/O is described in “Ports as General Digital I/O” on page
61. Most port pins are multiplexed with alternate functions for the peripheral features on the
device. How each alternate function interferes with the port pin is described in “Alternate Port
Functions” on page 65. Refer to the individual module sections for a full description of the alter-
nate functions.

Note that enabling the alternate function of some of the port pins does not affect the use of the
other pins in the port as general digital I/O.

Logic

Rpu

See Figure
"General Digital I/O" for

Details

Pxn

61
8008H–AVR–04/11

ATtiny48/88

10.2 Ports as General Digital I/O
The ports are bi-directional I/O ports with optional internal pull-ups. Figure 10-2 shows a func-
tional description of one I/O-port pin, here generically called Pxn.

Figure 10-2. General Digital I/O(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O,
SLEEP, and PUD are common to all ports.

10.2.1 Configuring the Pin
Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in “Register
Description” on page 77, the DDxn bits are accessed at the DDRx I/O address, the PORTxn bits
at the PORTx I/O address, and the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one,
Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input
pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is
activated. To switch the pull-up resistor off, PORTxn has to be written logic zero or the pin has to
be configured as an output pin. The port pins are tri-stated when reset condition becomes active,
even if no clocks are running.

clk

RPx

RRx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER
RPx: READ PORTx PIN

PUD: PULLUP DISABLE

clkI/O: I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

RESET

RESET

Q

QD

Q

Q D

CLR

PORTxn

Q

Q D

CLR

DDxn

PINxn

D
AT

A
 B

U
S

SLEEP

SLEEP: SLEEP CONTROL

Pxn

I/O

WPx

0

1

WRx

WPx: WRITE PINx REGISTER

62
8008H–AVR–04/11

ATtiny48/88

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven
high (one). If PORTxn is written logic zero when the pin is configured as an output pin, the port
pin is driven low (zero).

10.2.2 Toggling the Pin
Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn.
Note that the SBI instruction can be used to toggle one single bit in a port.

10.2.3 Break-Before-Make Switching
In the Break-Before-Make mode when switching the DDRxn bit from input to output an immedi-
ate tri-state period lasting one system clock cycle is introduced as indicated in Figure 10-3. For
example, if the system clock is 4 MHz and the DDRxn is written to make an output, the immedi-
ate tri-state period of 250 ns is introduced, before the value of PORTxn is seen on the port pin.
To avoid glitches it is recommended that the maximum DDRxn toggle frequency is two system
clock cycles. The Break-Before-Make is a port-wise mode and it is activated by the port-wise
BBMx enable bits. For details on BBMx bits, see “PORTCR – Port Control Register” on page 77.
When switching the DDRxn bit from output to input there is no immediate tri-state period
introduced.

Figure 10-3. Break Before Make, switching between input and output

10.2.4 Switching Between Input and Output
When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn}
= 0b11), an intermediate state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output
low ({DDxn, PORTxn} = 0b10) must occur. Normally, the pull-up enabled state is fully accept-
able, as a high-impedant environment will not notice the difference between a strong high driver
and a pull-up. If this is not the case, the PUD bit in the MCUCR Register can be set to disable all
pull-ups in all ports.

Switching between input with pull-up and output low generates the same problem. The user
must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn}
= 0b11) as an intermediate step.

out DDRx, r16 nop

0x02 0x01

SYSTEM CLK

INSTRUCTIONS

DDRx

intermediate tri-state cycle

out DDRx, r17

0x55PORTx

0x01

intermediate tri-state cycle

Px0

Px1

tri-state

tri-statetri-state

0x01R17

0x02R16

63
8008H–AVR–04/11

ATtiny48/88

Table 10-1 summarizes the control signals for the pin value.

Note: 1. Or port-wise PUDx bit in PORTCR register.

10.2.5 Reading the Pin Value
Independent of the setting of Data Direction bit DDxn, the port pin can be read through the
PINxn Register bit. As shown in Figure 10-2, the PINxn Register bit and the preceding latch con-
stitute a synchronizer. This is needed to avoid metastability if the physical pin changes value
near the edge of the internal clock, but it also introduces a delay. Figure 10-4 shows a timing dia-
gram of the synchronization when reading an externally applied pin value. The maximum and
minimum propagation delays are denoted tpd,max and tpd,min respectively.

Figure 10-4. Synchronization when Reading an Externally Applied Pin value

Consider the clock period starting shortly after the first falling edge of the system clock. The latch
is closed when the clock is low, and goes transparent when the clock is high, as indicated by the
shaded region of the “SYNC LATCH” signal. The signal value is latched when the system clock
goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As indi-
cated by the two arrows tpd,max and tpd,min, a single signal transition on the pin will be delayed
between ½ and 1½ system clock period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as indi-
cated in Figure 10-5. The out instruction sets the “SYNC LATCH” signal at the positive edge of
the clock. In this case, the delay tpd through the synchronizer is 1 system clock period.

Table 10-1. Port Pin Configurations

DDxn PORTxn
PUD

(in MCUCR) (1) I/O Pull-up Comment

0 0 X Input No Tri-state (Hi-Z)

0 1 0 Input Yes Pxn will source current if ext. pulled low.

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Output Low (Sink)

1 1 X Output No Output High (Source)

XXX in r17, PINx

0x00 0xFF

INSTRUCTIONS

SYNC LATCH

PINxn

r17

XXX

SYSTEM CLK

tpd, max

tpd, min

64
8008H–AVR–04/11

ATtiny48/88

Figure 10-5. Synchronization when Reading a Software Assigned Pin Value

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define
the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin
values are read back again, but as previously discussed, a nop instruction is included to be able
to read back the value recently assigned to some of the pins.

Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-
ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3
as low and redefining bits 0 and 1 as strong high drivers.

Assembly Code Example(1)

...

; Define pull-ups and set outputs high

; Define directions for port pins

ldi r16,(1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0)

ldi r17,(1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)

out PORTB,r16

out DDRB,r17

; Insert nop for synchronization

nop

; Read port pins

in r16,PINB

...

out PORTx, r16 nop in r17, PINx

0xFF

0x00 0xFF

SYSTEM CLK

r16

INSTRUCTIONS

SYNC LATCH

PINxn

r17
tpd

65
8008H–AVR–04/11

ATtiny48/88

10.2.6 Digital Input Enable and Sleep Modes
As shown in Figure 10-2, the digital input signal can be clamped to ground at the input of the
Schmitt Trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep Controller in
Power-down mode to avoid high power consumption if some input signals are left floating, or
have an analog signal level close to VCC/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt
request is not enabled, SLEEP is active also for these pins. SLEEP is also overridden by various
other alternate functions as described in “Alternate Port Functions” on page 65.

If a logic high level (“one”) is present on an asynchronous external interrupt pin configured as
“Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the external interrupt
is not enabled, the corresponding External Interrupt Flag will be set when resuming from the
above mentioned Sleep mode, as the clamping in these sleep mode produces the requested
logic change.

10.2.7 Unconnected Pins
If some pins are unused, it is recommended to ensure that these pins have a defined level. Even
though most of the digital inputs are disabled in the deep sleep modes as described above, float-
ing inputs should be avoided to reduce current consumption in all other modes where the digital
inputs are enabled (Reset, Active mode and Idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal pull-up.
In this case, the pull-up will be disabled during reset. If low power consumption during reset is
important, it is recommended to use an external pull-up or pull-down. Connecting unused pins
directly to VCC or GND is not recommended, since this may cause excessive currents if the pin is
accidentally configured as an output.

10.3 Alternate Port Functions
Most port pins have alternate functions in addition to being general digital I/Os. Figure 10-6
shows how the port pin control signals from the simplified Figure 10-2 can be overridden by
alternate functions. The overriding signals may not be present in all port pins, but the figure
serves as a generic description applicable to all port pins in the AVR microcontroller family.

C Code Example

unsigned char i;

...

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0);

DDRB = (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0);

/* Insert nop for synchronization*/

__no_operation();

/* Read port pins */

i = PINB;

...

66
8008H–AVR–04/11

ATtiny48/88

Figure 10-6. Alternate Port Functions(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O,
SLEEP, and PUD are common to all ports. All other signals are unique for each pin.

clk

RPx

RRx
WRx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER

RPx: READ PORTx PIN

PUD: PULLUP DISABLE

clkI/O: I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

SET

CLR

0

1

0

1

0

1

DIxn

AIOxn

DIEOExn

PVOVxn

PVOExn

DDOVxn

DDOExn

PUOExn

PUOVxn

PUOExn: Pxn PULL-UP OVERRIDE ENABLE
PUOVxn: Pxn PULL-UP OVERRIDE VALUE
DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE
DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE
PVOExn: Pxn PORT VALUE OVERRIDE ENABLE
PVOVxn: Pxn PORT VALUE OVERRIDE VALUE

DIxn: DIGITAL INPUT PIN n ON PORTx
AIOxn: ANALOG INPUT/OUTPUT PIN n ON PORTx

RESET

RESET

Q

Q D

CLR

Q

Q D

CLR

Q

QD

CLR

PINxn

PORTxn

DDxn

D
AT

A
 B

U
S

0

1
DIEOVxn

SLEEP

DIEOExn: Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE
DIEOVxn: Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE
SLEEP: SLEEP CONTROL

Pxn

I/O

0

1

PTOExn

PTOExn: Pxn, PORT TOGGLE OVERRIDE ENABLE

WPx: WRITE PINx

WPx

67
8008H–AVR–04/11

ATtiny48/88

Table 10-2 summarizes the function of the overriding signals. The pin and port indexes from Fig-
ure 10-6 are not shown in the succeeding tables. The overriding signals are generated internally
in the modules having the alternate function.

The following subsections shortly describe the alternate functions for each port, and relate the
overriding signals to the alternate function. Refer to the alternate function description for further
details.

Table 10-2. Generic Description of Overriding Signals for Alternate Functions

Signal Name Full Name Description

PUOE
Pull-up Override
Enable

If this signal is set, the pull-up enable is controlled by the PUOV
signal. If this signal is cleared, the pull-up is enabled when
{DDxn, PORTxn, PUD} = 0b010.

PUOV
Pull-up Override
Value

If PUOE is set, the pull-up is enabled/disabled when PUOV is
set/cleared, regardless of the setting of the DDxn, PORTxn,
and PUD Register bits.

DDOE
Data Direction
Override Enable

If this signal is set, the Output Driver Enable is controlled by the
DDOV signal. If this signal is cleared, the Output driver is
enabled by the DDxn Register bit.

DDOV
Data Direction
Override Value

If DDOE is set, the Output Driver is enabled/disabled when
DDOV is set/cleared, regardless of the setting of the DDxn
Register bit.

PVOE
Port Value
Override Enable

If this signal is set and the Output Driver is enabled, the port
value is controlled by the PVOV signal. If PVOE is cleared, and
the Output Driver is enabled, the port Value is controlled by the
PORTxn Register bit.

PVOV
Port Value
Override Value

If PVOE is set, the port value is set to PVOV, regardless of the
setting of the PORTxn Register bit.

PTOE
Port Toggle
Override Enable

If PTOE is set, the PORTxn Register bit is inverted.

DIEOE
Digital Input
Enable Override
Enable

If this bit is set, the Digital Input Enable is controlled by the
DIEOV signal. If this signal is cleared, the Digital Input Enable
is determined by MCU state (Normal mode, sleep mode).

DIEOV
Digital Input
Enable Override
Value

If DIEOE is set, the Digital Input is enabled/disabled when
DIEOV is set/cleared, regardless of the MCU state (Normal
mode, sleep mode).

DI Digital Input

This is the Digital Input to alternate functions. In the figure, the
signal is connected to the output of the Schmitt Trigger but
before the synchronizer. Unless the Digital Input is used as a
clock source, the module with the alternate function will use its
own synchronizer.

AIO
Analog
Input/Output

This is the Analog Input/output to/from alternate functions. The
signal is connected directly to the pad, and can be used bi-
directionally.

68
8008H–AVR–04/11

ATtiny48/88

10.3.1 Alternate Functions of Port A
The Port A pins with alternate functions are shown in Table 10-3.

The alternate pin configuration is as follows:

• PCINT27 – Port A, Bit 3
PCINT27: Pin Change Interrupt source 27.

• PCINT26 – Port A, Bit 2
PCINT26: Pin Change Interrupt source 26.

• ADC7/PCINT25 – Port A, Bit 1

ADC7: PA1 can be used as ADC input Channel 7.

PCINT25: Pin Change Interrupt source 25.

• ADC6/PCINT24 – Port A, Bit 0
ADC6: PA0 can be used as ADC input Channel 6.

PCINT24: Pin Change Interrupt source 24.

Table 10-4 relate the alternate functions of Port A to the overriding signals shown in Figure 10-6
on page 66.

Table 10-3. Port A Pins Alternate Functions

Port Pin Alternate Function

PA3 PCINT27 (Pin Change Interrupt 27)

PA2 PCINT26 (Pin Change Interrupt 26)

PA1
ADC7 (ADC Input Channel 7)

PCINT25 (Pin Change Interrupt 25)

PA0
ADC6 (ADC Input Channel 6)

PCINT24 (Pin Change Interrupt 24)

Table 10-4. Overriding Signals for Alternate Functions in PA[3:0]

Signal Name PA3/PCINT27 PA2/PCINT26 PA1/ADC7/PCINT25 PA0/ADC6/PCINT24

PUOE 0 0 0 0

PUO 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

DIEOE
PCINT27 •
PCIE3

PCINT26 •
PCIE3

PCINT25 • PCIE3 +
ADC7D

PCINT24 • PCIE3 +
ADC6D

DIEOV 1 1 1 1

DI PCINT27 INPUT PCINT26 INPUT PCINT25 INPUT PCINT24 INPUT

AIO – – ADC7 INPUT ADC6 INPUT

69
8008H–AVR–04/11

ATtiny48/88

10.3.2 Alternate Functions of Port B
The Port B pins with alternate functions are shown in Table 10-5.

The alternate pin configuration is as follows:

• PCINT7 – Port B, Bit 7
PCINT7: Pin Change Interrupt source 7. The PB7 pin can serve as an external interrupt source.

If PB7 is used as a clock pin, DDB7, PORTB7 and PINB7 will all read 0.

• CLKI/PCINT6 – Port B, Bit 6
CLKI: External clock input. When used as a clock pin, the pin can not be used as an I/O pin.

PCINT6: Pin Change Interrupt source 6. The PB6 pin can serve as an external interrupt source.

If PB6 is used as a clock pin, DDB6, PORTB6 and PINB6 will all read 0.

• SCK/PCINT5 – Port B, Bit 5
SCK: Master Clock output, Slave Clock input pin for SPI channel. When the SPI is enabled as a
Slave, this pin is configured as an input regardless of the setting of DDB5. When the SPI is
enabled as a Master, the data direction of this pin is controlled by DDB5. When the pin is forced
by the SPI to be an input, the pull-up can still be controlled by the PORTB5 bit.

PCINT5: Pin Change Interrupt source 5. The PB5 pin can serve as an external interrupt source.

• MISO/PCINT4 – Port B, Bit 4
MISO: Master Data input, Slave Data output pin for SPI channel. When the SPI is enabled as a
Master, this pin is configured as an input regardless of the setting of DDB4. When the SPI is
enabled as a Slave, the data direction of this pin is controlled by DDB4. When the pin is forced
by the SPI to be an input, the pull-up can still be controlled by the PORTB4 bit.

Table 10-5. Port B Pins Alternate Functions

Port Pin Alternate Functions

PB7 PCINT7 (Pin Change Interrupt 7)

PB6
CLKI (External clock input)
PCINT6 (Pin Change Interrupt 6)

PB5
SCK (SPI Bus Master clock Input)
PCINT5 (Pin Change Interrupt 5)

PB4
MISO (SPI Bus Master Input/Slave Output)
PCINT4 (Pin Change Interrupt 4)

PB3
MOSI (SPI Bus Master Output/Slave Input)
PCINT3 (Pin Change Interrupt 3)

PB2
SS (SPI Bus Master Slave select)
OC1B (Timer/Counter1 Output Compare Match B Output)
PCINT2 (Pin Change Interrupt 2)

PB1
OC1A (Timer/Counter1 Output Compare Match A Output)
PCINT1 (Pin Change Interrupt 1)

PB0
ICP1 (Timer/Counter1 Input Capture Input)
CLKO (Divided System Clock Output)
PCINT0 (Pin Change Interrupt 0)

70
8008H–AVR–04/11

ATtiny48/88

PCINT4: Pin Change Interrupt source 4. The PB4 pin can serve as an external interrupt source.

• MOSI/PCINT3 – Port B, Bit 3
MOSI: SPI Master Data output, Slave Data input for SPI channel. When the SPI is enabled as a
Slave, this pin is configured as an input regardless of the setting of DDB3. When the SPI is
enabled as a Master, the data direction of this pin is controlled by DDB3. When the pin is forced
by the SPI to be an input, the pull-up can still be controlled by the PORTB3 bit.

PCINT3: Pin Change Interrupt source 3. The PB3 pin can serve as an external interrupt source.

• SS/OC1B/PCINT2 – Port B, Bit 2
SS: Slave Select input. When the SPI is enabled as a Slave, this pin is configured as an input
regardless of the setting of DDB2. As a Slave, the SPI is activated when this pin is driven low.
When the SPI is enabled as a Master, the data direction of this pin is controlled by DDB2. When
the pin is forced by the SPI to be an input, the pull-up can still be controlled by the PORTB2 bit.

OC1B, Output Compare Match output: The PB2 pin can serve as an external output for the
Timer/Counter1 Compare Match B. The PB2 pin has to be configured as an output (DDB2 set
(one)) to serve this function. The OC1B pin is also the output pin for the PWM mode timer
function.

PCINT2: Pin Change Interrupt source 2. The PB2 pin can serve as an external interrupt source.

• OC1A/PCINT1 – Port B, Bit 1
OC1A, Output Compare Match output: The PB1 pin can serve as an external output for the
Timer/Counter1 Compare Match A. The PB1 pin has to be configured as an output (DDB1 set
(one)) to serve this function. The OC1A pin is also the output pin for the PWM mode timer
function.

PCINT1: Pin Change Interrupt source 1. The PB1 pin can serve as an external interrupt source.

• ICP1/CLKO/PCINT0 – Port B, Bit 0
ICP1, Input Capture Pin: The PB0 pin can act as an Input Capture Pin for Timer/Counter1.

CLKO, Divided System Clock: The divided system clock can be output on the PB0 pin. The
divided system clock will be output if the CKOUT Fuse is programmed, regardless of the
PORTB0 and DDB0 settings. It will also be output during reset.

PCINT0: Pin Change Interrupt source 0. The PB0 pin can serve as an external interrupt source.

Table 10-6 and Table 10-7 relate the alternate functions of Port B to the overriding signals
shown in Figure 10-6 on page 66. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute the
MISO signal, while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE INPUT.

71
8008H–AVR–04/11

ATtiny48/88

Notes: 1. INTOSC means that one of the internal oscillators are selected (by the CKSEL fuses), EXTCK
means that external clock is selected (by the CKSEL fuses).

Table 10-6. Overriding Signals for Alternate Functions in PB[7:4]

Signal
Name

PB7/
PCINT7(1)

PB6/CLKI/
PCINT6(1)

PB5/SCK/
PCINT5

PB4/MISO/
PCINT4

PUOE 0 INTOSC SPE • MSTR SPE • MSTR

PUOV 0 0 PORTB5 • PUD PORTB4 • PUD

DDOE 0 INTOSC SPE • MSTR SPE • MSTR

DDOV 0 0 0 0

PVOE 0 0 SPE • MSTR SPE • MSTR

PVOV 0 0 SCK OUTPUT
SPI SLAVE
OUTPUT

DIEOE PCINT7 • PCIE0
INTOSC + PCINT6 •
PCIE0

PCINT5 • PCIE0 PCINT4 • PCIE0

DIEOV 1 INTOSC 1 1

DI PCINT7 INPUT PCINT6 INPUT
PCINT5 INPUT
SCK INPUT

PCINT4 INPUT
SPI MSTR INPUT

AIO – Clock Input – –

Table 10-7. Overriding Signals for Alternate Functions in PB[3:0]

Signal
Name

PB3/MOSI/
PCINT3

PB2/SS/OC1B/
PCINT2

PB1/OC1A/
PCINT1

PB0/ICP1/
PCINT0

PUOE SPE • MSTR SPE • MSTR 0 0

PUOV PORTB3 • PUD PORTB2 • PUD 0 0

DDOE SPE • MSTR SPE • MSTR 0 0

DDOV 0 0 0 0

PVOE SPE • MSTR OC1B ENABLE OC1A ENABLE 0

PVOV SPI MSTR OUTPUT OC1B OC1A 0

DIEOE PCINT3 • PCIE0 PCINT2 • PCIE0 PCINT1 • PCIE0 PCINT0 • PCIE0

DIEOV 1 1 1 1

DI
PCINT3 INPUT
SPI SLAVE INPUT

PCINT2 INPUT
SPI SS

PCINT1 INPUT
PCINT0 INPUT
ICP1 INPUT

AIO – – – –

72
8008H–AVR–04/11

ATtiny48/88

10.3.3 Alternate Functions of Port C
The Port C pins with alternate functions are shown in Table 10-8.

The alternate pin configuration is as follows:

• PCINT15 – Port C, Bit 7
PCINT15: Pin Change Interrupt source 15. The PC7 pin can serve as an external interrupt
source.

• RESET/PCINT14 – Port C, Bit 6
RESET, Reset pin: When the RSTDISBL Fuse is programmed, this pin functions as a normal I/O
pin, and the part will have to rely on Power-on Reset and Brown-out Reset as its reset sources.
When the RSTDISBL Fuse is unprogrammed, the reset circuitry is connected to the pin, and the
pin can not be used as an I/O pin.

If PC6 is used as a reset pin, DDC6, PORTC6 and PINC6 will all read 0.

PCINT14: Pin Change Interrupt source 14. The PC6 pin can serve as an external interrupt
source.

• SCL/ADC5/PCINT13 – Port C, Bit 5
SCL, 2-wire Serial Interface Clock: When the TWEN bit in TWCR is set (one) to enable the 2-
wire Serial Interface, pin PC5 is disconnected from the port and becomes the Serial Clock I/O
pin for the 2-wire Serial Interface. In this mode, there is a spike filter on the pin to suppress
spikes shorter than 50 ns on the input signal, and the pin is driven by an open drain driver with
slew-rate limitation.

PC5 can also be used as ADC input Channel 5. Note that ADC input channel 5 uses digital
power.

Table 10-8. Port C Pins Alternate Functions

Port Pin Alternate Function

PC7 PCINT15 (Pin Change Interrupt 15)

PC6
RESET (Reset pin)
PCINT14 (Pin Change Interrupt 14)

PC5
ADC5 (ADC Input Channel 5)
SCL (2-wire Serial Bus Clock Line)
PCINT13 (Pin Change Interrupt 13)

PC4
ADC4 (ADC Input Channel 4)
SDA (2-wire Serial Bus Data Input/Output Line)
PCINT12 (Pin Change Interrupt 12)

PC3
ADC3 (ADC Input Channel 3)
PCINT11 (Pin Change Interrupt 11)

PC2
ADC2 (ADC Input Channel 2)
PCINT10 (Pin Change Interrupt 10)

PC1
ADC1 (ADC Input Channel 1)
PCINT9 (Pin Change Interrupt 9)

PC0
ADC0 (ADC Input Channel 0)
PCINT8 (Pin Change Interrupt 8)

73
8008H–AVR–04/11

ATtiny48/88

PCINT13: Pin Change Interrupt source 13. The PC5 pin can serve as an external interrupt
source.

• SDA/ADC4/PCINT12 – Port C, Bit 4
SDA, 2-wire Serial Interface Data: When the TWEN bit in TWCR is set (one) to enable the 2-wire
Serial Interface, pin PC4 is disconnected from the port and becomes the Serial Data I/O pin for
the 2-wire Serial Interface. In this mode, there is a spike filter on the pin to suppress spikes
shorter than 50 ns on the input signal, and the pin is driven by an open drain driver with slew-
rate limitation.

PC4 can also be used as ADC input Channel 4. Note that ADC input channel 4 uses digital
power.

PCINT12: Pin Change Interrupt source 12. The PC4 pin can serve as an external interrupt
source.

• ADC3/PCINT11 – Port C, Bit 3
PC3 can also be used as ADC input Channel 3. Note that ADC input channel 3 uses analog
power.

PCINT11: Pin Change Interrupt source 11. The PC3 pin can serve as an external interrupt
source.

• ADC2/PCINT10 – Port C, Bit 2
PC2 can also be used as ADC input Channel 2. Note that ADC input channel 2 uses analog
power.

PCINT10: Pin Change Interrupt source 10. The PC2 pin can serve as an external interrupt
source.

• ADC1/PCINT9 – Port C, Bit 1
PC1 can also be used as ADC input Channel 1. Note that ADC input channel 1 uses analog
power.

PCINT9: Pin Change Interrupt source 9. The PC1 pin can serve as an external interrupt source.

• ADC0/PCINT8 – Port C, Bit 0
PC0 can also be used as ADC input Channel 0. Note that ADC input channel 0 uses analog
power.

PCINT8: Pin Change Interrupt source 8. The PC0 pin can serve as an external interrupt source.

74
8008H–AVR–04/11

ATtiny48/88

Table 10-9 and Table 10-10 relate the alternate functions of Port C to the overriding signals
shown in Figure 10-6 on page 66.

Note: 1. When enabled, the 2-wire Serial Interface enables slew-rate controls on the output pins PC4
and PC5. This is not shown in the figure. In addition, spike filters are connected between the
AIO outputs shown in the port figure and the digital logic of the TWI module.

Table 10-9. Overriding Signals for Alternate Functions in PC[6:4](1)

Signal
Name PC7/PCINT15

PC6/RESET/
PCINT14

PC5/SCL/ADC5/
PCINT13

PC4/SDA/ADC4/
PCINT12

PUOE 0 RSTDISBL TWEN TWEN

PUOV 0 1 PORTC5 • PUD PORTC4 • PUD

DDOE 0 RSTDISBL TWEN TWEN

DDOV 0 0 SCL_OUT SDA_OUT

PVOE 0 0 TWEN TWEN

PVOV 0 0 0 0

DIEOE PCINT15 • PCIE1
RSTDISBL +
PCINT14 • PCIE1

PCINT13 • PCIE1 +
ADC5D

PCINT12 • PCIE1 +
ADC4D

DIEOV 1 RSTDISBL PCINT13 • PCIE1 PCINT12 • PCIE1

DI PCINT15 INPUT PCINT14 INPUT PCINT13 INPUT PCINT12 INPUT

AIO - RESET INPUT
ADC5 INPUT / SCL
INPUT

ADC4 INPUT / SDA
INPUT

Table 10-10. Overriding Signals for Alternate Functions in PC[3:0]

Signal
Name

PC3/ADC3/
PCINT11

PC2/ADC2/
PCINT10

PC1/ADC1/
PCINT9

PC0/ADC0/
PCINT8

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

DIEOE
PCINT11 • PCIE1 +
ADC3D

PCINT10 • PCIE1 +
ADC2D

PCINT9 • PCIE1 +
ADC1D

PCINT8 • PCIE1 +
ADC0D

DIEOV PCINT11 • PCIE1 PCINT10 • PCIE1 PCINT9 • PCIE1 PCINT8 • PCIE1

DI PCINT11 INPUT PCINT10 INPUT PCINT9 INPUT PCINT8 INPUT

AIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADC0 INPUT

75
8008H–AVR–04/11

ATtiny48/88

10.3.4 Alternate Functions of Port D
The Port D pins with alternate functions are shown in Table 10-11.

The alternate pin configuration is as follows:

• AIN1/PCINT23 – Port D, Bit 7
AIN1: Analog Comparator Negative Input. Configure the port pin as input with the internal pull-up
switched off to avoid the digital port function from interfering with the function of the Analog
Comparator.

PCINT23: Pin Change Interrupt source 23. The PD7 pin can serve as an external interrupt
source.

• AIN0/PCINT22 – Port D, Bit 6
AIN0: Analog Comparator Positive Input. Configure the port pin as input with the internal pull-up
switched off to avoid the digital port function from interfering with the function of the Analog
Comparator.

PCINT22: Pin Change Interrupt source 22. The PD6 pin can serve as an external interrupt
source.

• T1/PCINT21 – Port D, Bit 5
T1: Timer/Counter1 counter source.

PCINT21: Pin Change Interrupt source 21. The PD5 pin can serve as an external interrupt
source.

• T0/PCINT20 – Port D, Bit 4
T0: Timer/Counter0 counter source.

PCINT20: Pin Change Interrupt source 20. The PD4 pin can serve as an external interrupt
source.

Table 10-11. Port D Pins Alternate Functions

Port Pin Alternate Function

PD7
AIN1 (Analog Comparator Negative Input)
PCINT23 (Pin Change Interrupt 23)

PD6
AIN0 (Analog Comparator Positive Input)
PCINT22 (Pin Change Interrupt 22)

PD5
T1 (Timer/Counter 1 External Counter Input)
PCINT21 (Pin Change Interrupt 21)

PD4
T0 (Timer/Counter 0 External Counter Input)
PCINT20 (Pin Change Interrupt 20)

PD3
INT1 (External Interrupt 1 Input)
PCINT19 (Pin Change Interrupt 19)

PD2
INT0 (External Interrupt 0 Input)
PCINT18 (Pin Change Interrupt 18)

PD1 PCINT17 (Pin Change Interrupt 17)

PD0 PCINT16 (Pin Change Interrupt 16)

76
8008H–AVR–04/11

ATtiny48/88

• INT1/PCINT19 – Port D, Bit 3
INT1, External Interrupt source 1: The PD3 pin can serve as an external interrupt source.

PCINT19: Pin Change Interrupt source 19. The PD3 pin can serve as an external interrupt
source.

• INT0/PCINT18 – Port D, Bit 2
INT0, External Interrupt source 0: The PD2 pin can serve as an external interrupt source.

PCINT18: Pin Change Interrupt source 18. The PD2 pin can serve as an external interrupt
source.

• PCINT17 – Port D, Bit 1

PCINT17: Pin Change Interrupt source 17. The PD1 pin can serve as an external interrupt
source.

• PCINT16 – Port D, Bit 0
PCINT16: Pin Change Interrupt source 16. The PD0 pin can serve as an external interrupt
source.

Table 10-12 and Table 10-13 relate the alternate functions of Port D to the overriding signals
shown in Figure 10-6 on page 66.

Table 10-12. Overriding Signals for Alternate Functions PD[7:4]

Signal
Name PD7/AIN1/PCINT23 PD6/AIN0/PCINT22 PD5/T1/PCINT21 PD4/T0/PCINT20

PUOE 0 0 0 0

PUO 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

DIEOE PCINT23 • PCIE2 PCINT22 • PCIE2 PCINT21 • PCIE2 PCINT20 • PCIE2

DIEOV 1 1 1 1

DI PCINT23 INPUT PCINT22 INPUT
PCINT21 INPUT
T1 INPUT

PCINT20 INPUT
T0 INPUT

AIO AIN1 INPUT AIN0 INPUT – –

77
8008H–AVR–04/11

ATtiny48/88

10.4 Register Description

10.4.1 MCUCR – MCU Control Register

• Bit 4 – PUD: Pull-up Disable
When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and
PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See “Con-
figuring the Pin” on page 61 for more details about this feature.

10.4.2 PORTCR – Port Control Register

• Bits 7:4 – BBMx: Break-Before-Make Mode Enable
When these bits are written to one, the port-wise Break-Before-Make mode is activated. The
intermediate tri-state cycle is then inserted when writing DDRxn to make an output. For further
information, see “Break-Before-Make Switching” on page 62.

• Bits 3:0 – PUDx: Port-Wise Pull-up Disable
When these bits are written to one, the port-wise pull-ups in the defined I/O ports are disabled
even if the DDxn and PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn}
= 0b01). The Port-Wise Pull-up Disable bits are ORed with the global Pull-up Disable bit (PUD)

Table 10-13. Overriding Signals for Alternate Functions in PD[3:0]

Signal
Name PD3/INT1/PCINT19 PD2/INT0/PCINT18 PD1/PCINT17 PD0/PCINT16

PUOE 0 0 0 0

PUO 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

DIEOE
INT1 ENABLE +
PCINT19 • PCIE2

INT0 ENABLE +
PCINT18 • PCIE1

PCINT17 • PCIE2 PCINT16 • PCIE2

DIEOV 1 1 1 1

DI
PCINT19 INPUT
INT1 INPUT

PCINT18 INPUT
INT0 INPUT

PCINT17 INPUT PCINT16 INPUT

AIO – – – –

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) – BPDS BPDSE PUD – – – – MCUCR

Read/Write R R/W R/W R/W R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x12 (0x32) BBMD BBMC BBMB BBMA PUDD PUDC PUDB PUDA PORTCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

78
8008H–AVR–04/11

ATtiny48/88

from the MCUCR register. See “Configuring the Pin” on page 61 for more details about this
feature.

10.4.3 PORTA – The Port A Data Register

10.4.4 DDRA – The Port A Data Direction Register

10.4.5 PINA – The Port A Input Pins

10.4.6 PORTB – The Port B Data Register

10.4.7 DDRB – The Port B Data Direction Register

10.4.8 PINB – The Port B Input Pins

10.4.9 PORTC – The Port C Data Register

10.4.10 DDRC – The Port C Data Direction Register

Bit 7 6 5 4 3 2 1 0

0x0E (0x2E) - - - - PORTA3 PORTA2 PORTA1 PORTA0 PORTA
Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x0D (0x2D) - - - - DDA3 DDA2 DDA1 DDA0 DDRA
Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x0C (0x2C) - - - - PINA3 PINA2 PINA1 PINA0 PINA
Read/Write R R R R R R R R

Initial Value 0 0 0 0 N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

0x05 (0x25) PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 PORTB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x04 (0x24) DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 DDRB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x03 (0x23) PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 PINB
Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

0x08 (0x28) PORTC6 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 PORTC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x07 (0x27) DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 DDRC
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

79
8008H–AVR–04/11

ATtiny48/88

10.4.11 PINC – The Port C Input Pins

10.4.12 PORTD – The Port D Data Register

10.4.13 DDRD – The Port D Data Direction Register

10.4.14 PIND – The Port D Input Pins

Bit 7 6 5 4 3 2 1 0

0x06 (0x26) PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 PINC
Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

0x0B (0x2B) PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 PORTD
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x0A (0x2A) DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 DDRD
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x09 (0x29) PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 PIND
Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

80
8008H–AVR–04/11

ATtiny48/88

11. 8-bit Timer/Counter0

11.1 Features
• Two Independent Output Compare Units
• Clear Timer on Compare Match (Auto Reload)
• Three Independent Interrupt Sources (TOV0, OCF0A, and OCF0B)

11.2 Overview
Timer/Counter0 is a general purpose 8-bit Timer/Counter module, with two independent Output
Compare Units. It allows accurate program execution timing (event management). A simplified
block diagram of the 8-bit Timer/Counter is shown in Figure 11-1. For the actual placement of
I/O pins, refer to “Pinout of ATtiny48/88” on page 2. CPU accessible I/O Registers, including I/O
bits and I/O pins, are shown in bold. The device-specific I/O Register and bit locations are listed
in the “8-bit Timer/Counter Register Description” on page 85.

The PRTIM0 bit in “PRR – Power Reduction Register” on page 40 must be written to zero to
enable Timer/Counter0 module.

Figure 11-1. 8-bit Timer/Counter Block Diagram

11.2.1 Definitions
Many register and bit references in this section are written in general form, where a lower case
“n” replaces the Timer/Counter number (in this case 0) and a lower case “x” replaces the Output
Compare Unit (in this case Compare Unit A or Compare Unit B). However, when using the regis-

Clock Select

Timer/Counter

DA
TA

 B
U

S

OCRnA

OCRnB

=

=

TCNTn
=

Fixed
TOP

Value

Control Logic

TOP

Count

Clear
TOVn
(Int.Req.)

OCnA (Int. Req.)

OCnB (Int. Req.)

TCCRnA

TnEdge
Detector

(From Prescaler)

clkTn

81
8008H–AVR–04/11

ATtiny48/88

ter or bit defines in a program, the precise form must be used, i.e., TCNT0 for accessing
Timer/Counter0 counter value and so on.

The definitions in Table 11-1 are used extensively throughout the document.

11.2.2 Registers
The Timer/Counter (TCNT0) and Output Compare Registers (OCR0A and OCR0B) are 8-bit
registers. Interrupt request (abbreviated to Int.Req. in the figure) signals are all visible in the
Timer Interrupt Flag Register (TIFR0). All interrupts are individually masked with the Timer Inter-
rupt Mask Register (TIMSK0). TIFR0 and TIMSK0 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the T0 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment its value. The Timer/Counter is inactive when no clock source is selected. The
output from the Clock Select logic is referred to as the timer clock (clkT0).

The Output Compare Registers (OCR0A and OCR0B) are compared with the Timer/Counter
value at all times. The compare match event will also set the Compare Flag (OCF0A or OCF0B)
which can be used to generate an Output Compare interrupt request.

11.3 Timer/Counter Clock Sources
The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CS0[2:0]) bits
located in the Timer/Counter Control Register (TCCR0A). For details on clock sources and pres-
caler, see “Timer/Counter0 and Timer/Counter1 Prescalers” on page 117.

11.4 Counter Unit
The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure
11-2 shows a block diagram of the counter and its surroundings.

Figure 11-2. Counter Unit Block Diagram

Table 11-1. Definitions

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value 0xFF
(MAX) or the value stored in the OCR0A Register. The assignment is depen-
dent on the mode of operation.

DATA BUS

TCNTn Control Logic

count

TOVn
(Int.Req.)

Clock Select

top

Tn
Edge

Detector

(From Prescaler)

clkTn
clear

82
8008H–AVR–04/11

ATtiny48/88

Signal description (internal signals):

count Increment or decrement TCNT0 by 1.

clear Clear TCNT0 (set all bits to zero).

clkTn Timer/Counter clock, referred to as clkT0 in the following.

top Signalize that TCNT0 has reached maximum value.

Depending of the mode of operation used, the counter is cleared or incremented at each timer
clock (clkT0). clkT0 can be generated from an external or internal clock source, selected by the
Clock Select bits (CS0[2:0]). When no clock source is selected (CS0[2:0] = 0) the timer is
stopped. However, the TCNT0 value can be accessed by the CPU, regardless of whether clkT0

is present or not. A CPU write overrides (has priority over) all counter clear or count operations.

The counting sequence is determined by the setting of the Clear Timer on Compare Match bit
(CTC0) located in the Timer/Counter Control Register (TCCR0A). For more details about
advanced counting sequences, see “Modes of Operation” on page 83.

The Timer/Counter Overflow Flag (TOV0) is set according to the mode of operation selected by
the CTC0 bit. TOV0 can be used for generating a CPU interrupt.

11.5 Output Compare Unit
The 8-bit comparator continuously compares TCNT0 with the Output Compare Registers
(OCR0A and OCR0B). Whenever TCNT0 equals OCR0A or OCR0B, the comparator signals a
match. A match will set the Output Compare Flag (OCF0A or OCF0B) at the next timer clock
cycle. If the corresponding interrupt is enabled, the Output Compare Flag generates an Output
Compare interrupt. The Output Compare Flag is automatically cleared when the interrupt is exe-
cuted. Alternatively, the flag can be cleared by software by writing a logical one to its I/O bit
location.

Figure 11-3 shows a block diagram of the Output Compare unit.

Figure 11-3. Output Compare Unit, Block Diagram

11.5.1 Compare Match Blocking by TCNT0 Write
All CPU write operations to the TCNT0 Register will block any compare match that occur in the
next timer clock cycle, even when the timer is stopped. This feature allows OCR0x to be initial-

OCFnx (Int.Req.)

= (8-bit Comparator)

OCRnx

DATA BUS

TCNTn

83
8008H–AVR–04/11

ATtiny48/88

ized to the same value as TCNT0 without triggering an interrupt when the Timer/Counter clock is
enabled.

11.5.2 Using the Output Compare Unit
Since writing TCNT0 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT0 when using the Output Compare Unit,
independently of whether the Timer/Counter is running or not. If the value written to TCNT0
equals the OCR0x value, the compare match will be missed, resulting in incorrect waveform
generation.

11.6 Modes of Operation
The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is
defined by the CTC0 bit.

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 84.

11.6.1 Normal Mode
The simplest mode of operation is the Normal mode (CTC0 = 0). In this mode the counting direc-
tion is always up (incrementing), and no counter clear is performed. The counter simply overruns
when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bottom (0x00).
In normal operation the Timer/Counter Overflow Flag (TOV0) will be set in the same timer clock
cycle as the TCNT0 becomes zero. The TOV0 Flag in this case behaves like a ninth bit, except
that it is only set, not cleared. However, combined with the timer overflow interrupt that automat-
ically clears the TOV0 Flag, the timer resolution can be increased by software. There are no
special cases to consider in the Normal mode, a new counter value can be written anytime.

The Output Compare unit can be used to generate interrupts at some given time.

11.6.2 Clear Timer on Compare Match (CTC) Mode
In Clear Timer on Compare or CTC mode (CTC0 = 1), the OCR0A Register is used to manipu-
late the counter resolution. In CTC mode the counter is cleared to zero when the counter value
(TCNT0) matches the OCR0A. The OCR0A defines the top value for the counter, hence also its
resolution. This mode allows greater control of the compare match output frequency. It also sim-
plifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 11-4. The counter value (TCNT0)
increases until a compare match occurs between TCNT0 and OCR0A, and then counter
(TCNT0) is cleared.

Figure 11-4. CTC Mode, Timing Diagram

TCNTn

OCnx Interrupt Flag Set

1 4Period 2 3

84
8008H–AVR–04/11

ATtiny48/88

An interrupt can be generated each time the counter value reaches the TOP value by using the
OCF0A Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating
the TOP value. However, changing TOP to a value close to BOTTOM when the counter is run-
ning with none or a low prescaler value must be done with care since the CTC mode does not
have the double buffering feature. If the new value written to OCR0A is lower than the current
value of TCNT0, the counter will miss the compare match. The counter will then have to count to
its maximum value (0xFF) and wrap around starting at 0x00 before the compare match can
occur.

As for the Normal mode of operation, the TOV0 Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x00.

11.7 Timer/Counter Timing Diagrams
The Timer/Counter is a synchronous design and the timer clock (clkT0) is therefore shown as a
clock enable signal in the following figures. The figures include information on when interrupt
flags are set. Figure 11-5 contains timing data for basic Timer/Counter operation. The figure
shows the count sequence close to the MAX value in all modes.

Figure 11-5. Timer/Counter Timing Diagram, no Prescaling

Figure 11-6 shows the same timing data, but with the prescaler enabled.

Figure 11-6. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 11-7 shows the setting of OCF0B in all modes and OCF0A in all modes except CTC
mode.

clkTn
(clkI/O/1)

TOVn

clkI/O

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

TOVn

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

85
8008H–AVR–04/11

ATtiny48/88

Figure 11-7. Timer/Counter Timing Diagram, Setting of OCF0x, with Prescaler (fclk_I/O/8)

Figure 11-8 shows the setting of OCF0A and the clearing of TCNT0 in CTC mode where OCR0A
is TOP.

Figure 11-8. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Pres-
caler (fclk_I/O/8)

11.8 8-bit Timer/Counter Register Description

11.8.1 TCCR0A – Timer/Counter Control Register A

• Bits 7:4 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bit 3 – CTC0: Clear Timer on Compare Match Mode
This bit control the counting sequence of the counter, the source for maximum (TOP) counter
value, see Table 11-2. Modes of operation supported by the Timer/Counter unit are: Normal
mode (counter), Clear Timer on Compare Match (CTC) mode (see “Modes of Operation” on
page 83).

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clkI/O

clkTn
(clkI/O/8)

OCFnx

OCRnx

TCNTn
(CTC)

TOP

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

Bit 7 6 5 4 3 2 1 0

0x25 (0x45) – – – – CTC0 CS02 CS01 CS00 TCCR0A

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

86
8008H–AVR–04/11

ATtiny48/88

Notes: 1. MAX = 0xFF

• Bits 2:0 – CS0[2:0]: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter.

If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

11.8.2 TCNT0 – Timer/Counter Register

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNT0 Register blocks (removes) the Compare
Match on the following timer clock. Modifying the counter (TCNT0) while the counter is running,
introduces a risk of missing a Compare Match between TCNT0 and the OCR0x Registers.

11.8.3 OCR0A – Output Compare Register A

The Output Compare Register A contains an 8-bit value that is continuously compared with the
counter value (TCNT0). A match can be used to generate an Output Compare interrupt.

Table 11-2. CTC Mode Bit Description

Mode CTC0
Timer/Counter
Mode of Operation TOP

Update of
OCRx at

TOV Flag
Set on(1)

0 0 Normal 0xFF Immediate MAX

1 1 CTC OCRA Immediate MAX

Table 11-3. Clock Select Bit Description

CS02 CS01 CS00 Description

0 0 0 No clock source (Timer/Counter stopped)

0 0 1 clkI/O (No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on T0 pin. Clock on falling edge.

1 1 1 External clock source on T0 pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

0x26 (0x46) TCNT0[7:0] TCNT0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x27 (0x47) OCR0A[7:0] OCR0A

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

87
8008H–AVR–04/11

ATtiny48/88

11.8.4 OCR0B – Output Compare Register B

The Output Compare Register B contains an 8-bit value that is continuously compared with the
counter value (TCNT0). A match can be used to generate an Output Compare interrupt.

11.8.5 TIMSK0 – Timer/Counter Interrupt Mask Register

• Bits 7:3 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bit 2 – OCIE0B: Timer/Counter Output Compare Match B Interrupt Enable
When the OCIE0B bit is written to one, and the I-bit in the Status Register is set, the
Timer/Counter Compare Match B interrupt is enabled. The corresponding interrupt is executed if
a Compare Match in Timer/Counter occurs, i.e., when the OCF0B bit is set in the Timer/Counter
Interrupt Flag Register – TIFR0.

• Bit 1 – OCIE0A: Timer/Counter0 Output Compare Match A Interrupt Enable
When the OCIE0A bit is written to one, and the I-bit in the Status Register is set, the
Timer/Counter0 Compare Match A interrupt is enabled. The corresponding interrupt is executed
if a Compare Match in Timer/Counter0 occurs, i.e., when the OCF0A bit is set in the
Timer/Counter 0 Interrupt Flag Register – TIFR0.

• Bit 0 – TOIE0: Timer/Counter0 Overflow Interrupt Enable
When the TOIE0 bit is written to one, and the I-bit in the Status Register is set, the
Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter0 occurs, i.e., when the TOV0 bit is set in the Timer/Counter 0 Inter-
rupt Flag Register – TIFR0.

11.8.6 TIFR0 – Timer/Counter 0 Interrupt Flag Register

• Bits 7:3 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bit 2 – OCF0B: Timer/Counter 0 Output Compare B Match Flag
The OCF0B bit is set when a Compare Match occurs between the Timer/Counter and the data in
OCR0B – Output Compare Register0 B. OCF0B is cleared by hardware when executing the cor-
responding interrupt handling vector. Alternatively, OCF0B is cleared by writing a logic one to
the flag. When the I-bit in SREG, OCIE0B (Timer/Counter Compare B Match Interrupt Enable),
and OCF0B are set, the Timer/Counter Compare Match Interrupt is executed.

Bit 7 6 5 4 3 2 1 0

0x28 (0x48) OCR0B[7:0] OCR0B

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6E) – – – – – OCIE0B OCIE0A TOIE0 TIMSK0

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x15 (0x35) – – – – – OCF0B OCF0A TOV0 TIFR0

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

88
8008H–AVR–04/11

ATtiny48/88

• Bit 1 – OCF0A: Timer/Counter 0 Output Compare A Match Flag
The OCF0A bit is set when a Compare Match occurs between the Timer/Counter0 and the data
in OCR0A – Output Compare Register0. OCF0A is cleared by hardware when executing the cor-
responding interrupt handling vector. Alternatively, OCF0A is cleared by writing a logic one to
the flag. When the I-bit in SREG, OCIE0A (Timer/Counter0 Compare Match Interrupt Enable),
and OCF0A are set, the Timer/Counter0 Compare Match Interrupt is executed.

• Bit 0 – TOV0: Timer/Counter0 Overflow Flag
The bit TOV0 is set when an overflow occurs in Timer/Counter0. TOV0 is cleared by hardware
when executing the corresponding interrupt handling vector. Alternatively, TOV0 is cleared by
writing a logic one to the flag. When the SREG I-bit, TOIE0 (Timer/Counter0 Overflow Interrupt
Enable), and TOV0 are set, the Timer/Counter0 Overflow interrupt is executed.

See Table 11-2, “CTC Mode Bit Description” on page 86.

89
8008H–AVR–04/11

ATtiny48/88

12. 16-bit Timer/Counter1 with PWM

12.1 Features
• True 16-bit Design (i.e., Allows 16-bit PWM)
• Two independent Output Compare Units
• Double Buffered Output Compare Registers
• One Input Capture Unit
• Input Capture Noise Canceler
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Variable PWM Period
• Frequency Generator
• External Event Counter
• Four independent interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1)

12.2 Overview
Most register and bit references in this section are written in general form, where a lower case
“n” replaces the Timer/Counter number, and a lower case “x” replaces the Output Compare unit
channel. However, when using the register or bit defines in a program, the precise form must be
used, i.e., TCNT1 for accessing Timer/Counter1 counter value and so on.

The 16-bit Timer/Counter unit allows accurate program execution timing (event management),
wave generation, and signal timing measurement. A simplified block diagram of the 16-bit
Timer/Counter is shown in Figure 12-1.

Figure 12-1. 16-bit Timer/Counter Block Diagram(1)

Note: 1. Refer to Figure 1-1 on page 2, Table 10-5 on page 69 and Table 10-11 on page 75 for
Timer/Counter1 pin placement and description.

Clock Select

Timer/Counter

D
AT

A
 B

U
S

OCRnA

OCRnB

ICRn

=

=

TCNTn

Waveform
Generation

Waveform
Generation

OCnA

OCnB

Noise
Canceler

ICPn

=

Fixed
TOP

Values

Edge
Detector

Control Logic

= 0

TOP BOTTOM

Count

Clear

Direction

TOVn
(Int.Req.)

OCnA
(Int.Req.)

OCnB
(Int.Req.)

ICFn (Int.Req.)

TCCRnA TCCRnB

(From Analog
Comparator Ouput)

Tn
Edge

Detector

(From Prescaler)

clkTn

90
8008H–AVR–04/11

ATtiny48/88

For actual placement of I/O pins, refer to “Pinout of ATtiny48/88” on page 2. CPU accessible I/O
Registers, including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register
and bit locations are listed in the “Register Description” on page 110.

The PRTIM1 bit in “PRR – Power Reduction Register” on page 40 must be written to zero to
enable Timer/Counter1 module.

12.2.1 Registers
The Timer/Counter (TCNT1), Output Compare Registers (OCR1A/B), and Input Capture Regis-
ter (ICR1) are all 16-bit registers. Special procedures must be followed when accessing the 16-
bit registers. These procedures are described in the section “Accessing 16-bit Registers” on
page 91. The Timer/Counter Control Registers (TCCR1A/B) are 8-bit registers and have no CPU
access restrictions. Interrupt requests (abbreviated to Int.Req. in the figure) signals are all visible
in the Timer Interrupt Flag Register (TIFR1). All interrupts are individually masked with the Timer
Interrupt Mask Register (TIMSK1). TIFR1 and TIMSK1 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the T1 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the Clock Select logic is referred to as the timer clock (clkT1).

The double buffered Output Compare Registers (OCR1A/B) are compared with the Timer/Coun-
ter value at all time. The result of the compare can be used by the Waveform Generator to
generate a PWM or variable frequency output on the Output Compare pin (OC1A/B). See “Out-
put Compare Units” on page 97.. The compare match event will also set the Compare Match
Flag (OCF1A/B) which can be used to generate an Output Compare interrupt request.

The Input Capture Register can capture the Timer/Counter value at a given external (edge trig-
gered) event on either the Input Capture pin (ICP1) or on the Analog Comparator pins (See
“Analog Comparator” on page 161.) The Input Capture unit includes a digital filtering unit (Noise
Canceler) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined
by either the OCR1A Register, the ICR1 Register, or by a set of fixed values. When using
OCR1A as TOP value in a PWM mode, the OCR1A Register can not be used for generating a
PWM output. However, the TOP value will in this case be double buffered allowing the TOP
value to be changed in run time. If a fixed TOP value is required, the ICR1 Register can be used
as an alternative, freeing the OCR1A to be used as PWM output.

12.2.2 Definitions
The following definitions are used extensively throughout the section:

Table 12-1.

BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.

MAX The counter reaches its MAXimum when it becomes 0xFFFF (decimal 65535).

TOP

The counter reaches the TOP when it becomes equal to the highest value in the count
sequence. The TOP value can be assigned to be one of the fixed values: 0x00FF, 0x01FF,
or 0x03FF, or to the value stored in the OCR1A or ICR1 Register. The assignment is
dependent of the mode of operation.

91
8008H–AVR–04/11

ATtiny48/88

12.3 Accessing 16-bit Registers
The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR CPU via
the 8-bit data bus. The 16-bit register must be byte accessed using two read or write operations.
Each 16-bit timer has a single 8-bit register for temporary storing of the high byte of the 16-bit
access. The same temporary register is shared between all 16-bit registers within each 16-bit
timer. Accessing the low byte triggers the 16-bit read or write operation. When the low byte of a
16-bit register is written by the CPU, the high byte stored in the temporary register, and the low
byte written are both copied into the 16-bit register in the same clock cycle. When the low byte of
a 16-bit register is read by the CPU, the high byte of the 16-bit register is copied into the tempo-
rary register in the same clock cycle as the low byte is read.

Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCR1A/B 16-
bit registers does not involve using the temporary register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low
byte must be read before the high byte.

The following code examples show how to access the 16-bit Timer Registers assuming that no
interrupts updates the temporary register. The same principle can be used directly for accessing
the OCR1A/B and ICR1 Registers. Note that when using “C”, the compiler handles the 16-bit
access.

Note: 1. See ”About Code Examples” on page 7.
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

Assembly Code Examples(1)

...

; Set TCNT1 to 0x01FF
ldi r17,0x01

ldi r16,0xFF

out TCNT1H,r17
out TCNT1L,r16
; Read TCNT1 into r17:r16
in r16,TCNT1L
in r17,TCNT1H
...

C Code Examples(1)

unsigned int i;

...

/* Set TCNT1 to 0x01FF */
TCNT1 = 0x1FF;
/* Read TCNT1 into i */
i = TCNT1;
...

92
8008H–AVR–04/11

ATtiny48/88

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt
occurs between the two instructions accessing the 16-bit register, and the interrupt code
updates the temporary register by accessing the same or any other of the 16-bit Timer Regis-
ters, then the result of the access outside the interrupt will be corrupted. Therefore, when both
the main code and the interrupt code update the temporary register, the main code must disable
the interrupts during the 16-bit access.

The following code examples show how to do an atomic read of the TCNT1 Register contents.
Reading any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

Note: 1. See ”About Code Examples” on page 7.
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

Assembly Code Example(1)

TIM16_ReadTCNT1:
; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Read TCNT1 into r17:r16
in r16,TCNT1L
in r17,TCNT1H
; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

unsigned int TIM16_ReadTCNT1(void)
{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();

/* Read TCNT1 into i */
i = TCNT1;
/* Restore global interrupt flag */

SREG = sreg;

return i;

}

93
8008H–AVR–04/11

ATtiny48/88

The following code examples show how to do an atomic write of the TCNT1 Register contents.
Writing any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

Note: 1. See ”About Code Examples” on page 7.
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example requires that the r17:r16 register pair contains the value to be writ-
ten to TCNT1.

12.3.1 Reusing the Temporary High Byte Register
If writing to more than one 16-bit register where the high byte is the same for all registers written,
then the high byte only needs to be written once. However, note that the same rule of atomic
operation described previously also applies in this case.

12.4 Timer/Counter Clock Sources
The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CS1[2:0]) bits

Assembly Code Example(1)

TIM16_WriteTCNT1:
; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Set TCNT1 to r17:r16
out TCNT1H,r17
out TCNT1L,r16
; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

void TIM16_WriteTCNT1(unsigned int i)
{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();

/* Set TCNT1 to i */
TCNT1 = i;
/* Restore global interrupt flag */

SREG = sreg;

}

94
8008H–AVR–04/11

ATtiny48/88

located in the Timer/Counter Control Register B (TCCR1B). For details on clock sources and
prescaler, see “Timer/Counter0 and Timer/Counter1 Prescalers” on page 117.

12.5 Counter Unit
The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit.
Figure 12-2 shows a block diagram of the counter and its surroundings.

Figure 12-2. Counter Unit Block Diagram

Signal description (internal signals):

Count Increment or decrement TCNT1 by 1.

Direction Select between increment and decrement.

Clear Clear TCNT1 (set all bits to zero).

clkT1 Timer/Counter clock.

TOP Signalize that TCNT1 has reached maximum value.

BOTTOM Signalize that TCNT1 has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNT1H) con-
taining the upper eight bits of the counter, and Counter Low (TCNT1L) containing the lower eight
bits. The TCNT1H Register can only be indirectly accessed by the CPU. When the CPU does an
access to the TCNT1H I/O location, the CPU accesses the high byte temporary register (TEMP).
The temporary register is updated with the TCNT1H value when the TCNT1L is read, and
TCNT1H is updated with the temporary register value when TCNT1L is written. This allows the
CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data bus.
It is important to notice that there are special cases of writing to the TCNT1 Register when the
counter is counting that will give unpredictable results. The special cases are described in the
sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clkT1). The clkT1 can be generated from an external or internal clock source,
selected by the Clock Select bits (CS1[2:0]). When no clock source is selected (CS1[2:0] = 0)
the timer is stopped. However, the TCNT1 value can be accessed by the CPU, independent of
whether clkT1 is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the Waveform Generation mode bits
(WGM1[3:0]) located in the Timer/Counter Control Registers A and B (TCCR1A and TCCR1B).
There are close connections between how the counter behaves (counts) and how waveforms

TEMP (8-bit)

DATA BUS (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)
Control Logic

Count

Clear

Direction

TOVn
(Int.Req.)

Clock Select

TOP BOTTOM

Tn
Edge

Detector

(From Prescaler)

clkTn

95
8008H–AVR–04/11

ATtiny48/88

are generated on the Output Compare outputs OC1x. For more details about advanced counting
sequences and waveform generation, see “Modes of Operation” on page 100.

The Timer/Counter Overflow Flag (TOV1) is set according to the mode of operation selected by
the WGM1[3:0] bits. TOV1 can be used for generating a CPU interrupt.

12.6 Input Capture Unit
The Timer/Counter incorporates an Input Capture unit that can capture external events and give
them a time-stamp indicating time of occurrence. The external signal indicating an event, or mul-
tiple events, can be applied via the ICP1 pin or alternatively, via the analog-comparator unit. The
time-stamps can then be used to calculate frequency, duty-cycle, and other features of the sig-
nal applied. Alternatively the time-stamps can be used for creating a log of the events.

The Input Capture unit is illustrated by the block diagram shown in Figure 12-3. The elements of
the block diagram that are not directly a part of the Input Capture unit are gray shaded. The
small “n” in register and bit names indicates the Timer/Counter number.

Figure 12-3. Input Capture Unit Block Diagram

When a change of the logic level (an event) occurs on the Input Capture pin (ICP1), alternatively
on the Analog Comparator output (ACO), and this change confirms to the setting of the edge
detector, a capture will be triggered. When a capture is triggered, the 16-bit value of the counter
(TCNT1) is written to the Input Capture Register (ICR1). The Input Capture Flag (ICF1) is set at
the same system clock as the TCNT1 value is copied into ICR1 Register. If enabled (ICIE1 = 1),
the Input Capture Flag generates an Input Capture interrupt. The ICF1 Flag is automatically
cleared when the interrupt is executed. Alternatively the ICF1 Flag can be cleared by software
by writing a logical one to its I/O bit location.

ICFn (Int.Req.)

Analog
Comparator

WRITE ICRn (16-bit Register)

ICRnH (8-bit)

Noise
Canceler

ICPn

Edge
Detector

TEMP (8-bit)

DATA BUS (8-bit)

ICRnL (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)

ACIC* ICNC ICESACO*

96
8008H–AVR–04/11

ATtiny48/88

Reading the 16-bit value in the Input Capture Register (ICR1) is done by first reading the low
byte (ICR1L) and then the high byte (ICR1H). When the low byte is read the high byte is copied
into the high byte temporary register (TEMP). When the CPU reads the ICR1H I/O location it will
access the TEMP Register.

The ICR1 Register can only be written when using a Waveform Generation mode that utilizes
the ICR1 Register for defining the counter’s TOP value. In these cases the Waveform Genera-
tion mode (WGM1[3:0]) bits must be set before the TOP value can be written to the ICR1
Register. When writing the ICR1 Register the high byte must be written to the ICR1H I/O location
before the low byte is written to ICR1L.

For more information on how to access the 16-bit registers refer to “Accessing 16-bit Registers”
on page 91.

12.6.1 Input Capture Trigger Source
The main trigger source for the Input Capture unit is the Input Capture pin (ICP1).
Timer/Counter1 can alternatively use the Analog Comparator output as trigger source for the
Input Capture unit. The Analog Comparator is selected as trigger source by setting the Analog
Comparator Input Capture (ACIC) bit in the Analog Comparator Control and Status Register
(ACSR). Be aware that changing trigger source can trigger a capture. The Input Capture Flag
must therefore be cleared after the change.

Both the Input Capture pin (ICP1) and the Analog Comparator output (ACO) inputs are sampled
using the same technique as for the T1 pin (Figure 13-1 on page 117). The edge detector is also
identical. However, when the noise canceler is enabled, additional logic is inserted before the
edge detector, which increases the delay by four system clock cycles. Note that the input of the
noise canceler and edge detector is always enabled unless the Timer/Counter is set in a Wave-
form Generation mode that uses ICR1 to define TOP.

An Input Capture can be triggered by software by controlling the port of the ICP1 pin.

12.6.2 Noise Canceler
The noise canceler improves noise immunity by using a simple digital filtering scheme. The
noise canceler input is monitored over four samples, and all four must be equal for changing the
output that in turn is used by the edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNC1) bit in
Timer/Counter Control Register B (TCCR1B). When enabled the noise canceler introduces addi-
tional four system clock cycles of delay from a change applied to the input, to the update of the
ICR1 Register. The noise canceler uses the system clock and is therefore not affected by the
prescaler.

12.6.3 Using the Input Capture Unit
The main challenge when using the Input Capture unit is to assign enough processor capacity
for handling the incoming events. The time between two events is critical. If the processor has
not read the captured value in the ICR1 Register before the next event occurs, the ICR1 will be
overwritten with a new value. In this case the result of the capture will be incorrect.

When using the Input Capture interrupt, the ICR1 Register should be read as early in the inter-
rupt handler routine as possible. Even though the Input Capture interrupt has relatively high
priority, the maximum interrupt response time is dependent on the maximum number of clock
cycles it takes to handle any of the other interrupt requests.

97
8008H–AVR–04/11

ATtiny48/88

Using the Input Capture unit in any mode of operation when the TOP value (resolution) is
actively changed during operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after
each capture. Changing the edge sensing must be done as early as possible after the ICR1
Register has been read. After a change of the edge, the Input Capture Flag (ICF1) must be
cleared by software (writing a logical one to the I/O bit location). For measuring frequency only,
the clearing of the ICF1 Flag is not required (if an interrupt handler is used).

12.7 Output Compare Units
The 16-bit comparator continuously compares TCNT1 with the Output Compare Register
(OCR1x). If TCNT equals OCR1x the comparator signals a match. A match will set the Output
Compare Flag (OCF1x) at the next timer clock cycle. If enabled (OCIE1x = 1), the Output Com-
pare Flag generates an Output Compare interrupt. The OCF1x Flag is automatically cleared
when the interrupt is executed. Alternatively the OCF1x Flag can be cleared by software by writ-
ing a logical one to its I/O bit location. The Waveform Generator uses the match signal to
generate an output according to operating mode set by the Waveform Generation mode
(WGM1[3:0]) bits and Compare Output mode (COM1x[1:0]) bits. The TOP and BOTTOM signals
are used by the Waveform Generator for handling the special cases of the extreme values in
some modes of operation (See “Modes of Operation” on page 100.)

A special feature of Output Compare unit A allows it to define the Timer/Counter TOP value (i.e.,
counter resolution). In addition to the counter resolution, the TOP value defines the period time
for waveforms generated by the Waveform Generator.

Figure 12-4 shows a block diagram of the Output Compare unit. The small “n” in the register and
bit names indicates the device number (n = 1 for Timer/Counter 1), and the “x” indicates Output
Compare unit (A/B). The elements of the block diagram that are not directly a part of the Output
Compare unit are gray shaded.

Figure 12-4. Output Compare Unit, Block Diagram

OCFnx (Int.Req.)

= (16-bit Comparator)

OCRnx Buffer (16-bit Register)

OCRnxH Buf. (8-bit)

OCnx

TEMP (8-bit)

DATA BUS (8-bit)

OCRnxL Buf. (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)

COMnx[1:0]WGMn[3:0]

OCRnx (16-bit Register)

OCRnxH (8-bit) OCRnxL (8-bit)

Waveform Generator
TOP

BOTTOM

98
8008H–AVR–04/11

ATtiny48/88

The OCR1x Register is double buffered when using any of the twelve Pulse Width Modulation
(PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the
double buffering is disabled. The double buffering synchronizes the update of the OCR1x Com-
pare Register to either TOP or BOTTOM of the counting sequence. The synchronization
prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the out-
put glitch-free.

The OCR1x Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCR1x Buffer Register, and if double buffering is dis-
abled the CPU will access the OCR1x directly. The content of the OCR1x (Buffer or Compare)
Register is only changed by a write operation (the Timer/Counter does not update this register
automatically as the TCNT1 and ICR1 Register). Therefore OCR1x is not read via the high byte
temporary register (TEMP). However, it is a good practice to read the low byte first as when
accessing other 16-bit registers. Writing the OCR1x Registers must be done via the TEMP Reg-
ister since the compare of all 16 bits is done continuously. The high byte (OCR1xH) has to be
written first. When the high byte I/O location is written by the CPU, the TEMP Register will be
updated by the value written. Then when the low byte (OCR1xL) is written to the lower eight bits,
the high byte will be copied into the upper 8-bits of either the OCR1x buffer or OCR1x Compare
Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to “Accessing 16-bit Registers”
on page 91.

12.7.1 Force Output Compare
In non-PWM Waveform Generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC1x) bit. Forcing compare match will not set the
OCF1x Flag or reload/clear the timer, but the OC1x pin will be updated as if a real compare
match had occurred (the COM1[1:0] bits settings define whether the OC1x pin is set, cleared or
toggled).

12.7.2 Compare Match Blocking by TCNT1 Write
All CPU writes to the TCNT1 Register will block any compare match that occurs in the next timer
clock cycle, even when the timer is stopped. This feature allows OCR1x to be initialized to the
same value as TCNT1 without triggering an interrupt when the Timer/Counter clock is enabled.

12.7.3 Using the Output Compare Unit
Since writing TCNT1 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT1 when using any of the Output Compare
channels, independent of whether the Timer/Counter is running or not. If the value written to
TCNT1 equals the OCR1x value, the compare match will be missed, resulting in incorrect wave-
form generation. Do not write the TCNT1 equal to TOP in PWM modes with variable TOP
values. The compare match for the TOP will be ignored and the counter will continue to 0xFFFF.
Similarly, do not write the TCNT1 value equal to BOTTOM when the counter is downcounting.

The setup of the OC1x should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC1x value is to use the Force Output Com-
pare (FOC1x) strobe bits in Normal mode. The OC1x Register keeps its value even when
changing between Waveform Generation modes.

Be aware that the COM1x[1:0] bits are not double buffered together with the compare value.
Changing the COM1x[1:0] bits will take effect immediately.

99
8008H–AVR–04/11

ATtiny48/88

12.8 Compare Match Output Unit
The Compare Output mode (COM1x[1:0]) bits have two functions. The Waveform Generator
uses the COM1x[1:0] bits for defining the Output Compare (OC1x) state at the next compare
match. Secondly the COM1x[1:0] bits control the OC1x pin output source. Figure 12-5 shows a
simplified schematic of the logic affected by the COM1x[1:0] bit setting. The I/O Registers, I/O
bits, and I/O pins in the figure are shown in bold. Only the parts of the general I/O Port Control
Registers (DDR and PORT) that are affected by the COM1x[1:0] bits are shown. When referring
to the OC1x state, the reference is for the internal OC1x Register, not the OC1x pin. If a system
reset occur, the OC1x Register is reset to “0”.

Figure 12-5. Compare Match Output Unit (non-PWM Mode), Schematic

The general I/O port function is overridden by the Output Compare (OC1x) from the Waveform
Generator if either of the COM1x[1:0] bits are set. However, the OC1x pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OC1x pin (DDR_OC1x) must be set as output before the OC1x value is visi-
ble on the pin. The port override function is generally independent of the Waveform Generation
mode, but there are some exceptions. Refer to Table 12-2, Table 12-3 and Table 12-4 for
details.

The design of the Output Compare pin logic allows initialization of the OC1x state before the out-
put is enabled. Note that some COM1x[1:0] bit settings are reserved for certain modes of
operation. See “Register Description” on page 110.

The COM1x[1:0] bits have no effect on the Input Capture unit.

PORT

DDR

D Q

D Q

OCnx
PinOCnx

D Q
Waveform
Generator

COMnx1

COMnx0

0

1

D
AT

A
 B

U
S

FOCnx

clkI/O

100
8008H–AVR–04/11

ATtiny48/88

12.8.1 Compare Output Mode and Waveform Generation
The Waveform Generator uses the COM1x[1:0] bits differently in normal, CTC, and PWM
modes. For all modes, setting the COM1x[1:0] = 0 tells the Waveform Generator that no action
on the OC1x Register is to be performed on the next compare match. For compare output
actions in the non-PWM modes refer to Table 12-2 on page 110. For fast PWM mode refer to
Table 12-3 on page 110, and for phase correct and phase and frequency correct PWM refer to
Table 12-4 on page 111.

A change of the COM1x[1:0] bits state will have effect at the first compare match after the bits
are written. For non-PWM modes, the action can be forced to have immediate effect by using
the FOC1x strobe bits.

12.9 Modes of Operation
The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is
defined by the combination of the Waveform Generation mode (WGM1[3:0]) and Compare Out-
put mode (COM1x[1:0]) bits. The Compare Output mode bits do not affect the counting
sequence, while the Waveform Generation mode bits do. The COM1x[1:0] bits control whether
the PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-
PWM modes the COM1x[1:0] bits control whether the output should be set, cleared or toggle at
a compare match (See “Compare Match Output Unit” on page 99.)

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 107.

12.9.1 Normal Mode
The simplest mode of operation is the Normal mode (WGM1[3:0] = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 16-bit value (MAX = 0xFFFF) and then restarts from the
BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag (TOV1) will be set in
the same timer clock cycle as the TCNT1 becomes zero. The TOV1 Flag in this case behaves
like a 17th bit, except that it is only set, not cleared. However, combined with the timer overflow
interrupt that automatically clears the TOV1 Flag, the timer resolution can be increased by soft-
ware. There are no special cases to consider in the Normal mode, a new counter value can be
written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maximum
interval between the external events must not exceed the resolution of the counter. If the interval
between events are too long, the timer overflow interrupt or the prescaler must be used to
extend the resolution for the capture unit.

The Output Compare units can be used to generate interrupts at some given time. Using the
Output Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

12.9.2 Clear Timer on Compare Match (CTC) Mode
In Clear Timer on Compare or CTC mode (WGM1[3:0] = 4 or 12), the OCR1A or ICR1 Register
are used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when
the counter value (TCNT1) matches either the OCR1A (WGM1[3:0] = 4) or the ICR1
(WGM1[3:0] = 12). The OCR1A or ICR1 define the top value for the counter, hence also its res-
olution. This mode allows greater control of the compare match output frequency. It also
simplifies the operation of counting external events.

101
8008H–AVR–04/11

ATtiny48/88

The timing diagram for the CTC mode is shown in Figure 12-6. The counter value (TCNT1)
increases until a compare match occurs with either OCR1A or ICR1, and then counter (TCNT1)
is cleared.

Figure 12-6. CTC Mode, Timing Diagram

An interrupt can be generated at each time the counter value reaches the TOP value by either
using the OCF1A or ICF1 Flag according to the register used to define the TOP value. If the
interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. How-
ever, changing the TOP to a value close to BOTTOM when the counter is running with none or a
low prescaler value must be done with care since the CTC mode does not have the double buff-
ering feature. If the new value written to OCR1A or ICR1 is lower than the current value of
TCNT1, the counter will miss the compare match. The counter will then have to count to its max-
imum value (0xFFFF) and wrap around starting at 0x0000 before the compare match can occur.
In many cases this feature is not desirable. An alternative will then be to use the fast PWM mode
using OCR1A for defining TOP (WGM1[3:0] = 15) since the OCR1A then will be double buffered.

For generating a waveform output in CTC mode, the OC1A output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COM1A[1:0] = 1). The OC1A value will not be visible on the port pin unless the data direction
for the pin is set to output (DDR_OC1A = 1). The waveform generated will have a maximum fre-
quency of fOC1A = fclk_I/O/2 when OCR1A is set to zero (0x0000). The waveform frequency is
defined by the following equation:

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV1 Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x0000.

12.9.3 Fast PWM Mode
The fast Pulse Width Modulation or fast PWM mode (WGM1[3:0] = 5, 6, 7, 14, or 15) provides a
high frequency PWM waveform generation option. The fast PWM differs from the other PWM
options by its single-slope operation. The counter counts from BOTTOM to TOP then restarts
from BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is set on
the compare match between TCNT1 and OCR1x, and cleared at TOP. In inverting Compare
Output mode output is cleared on compare match and set at TOP. Due to the single-slope oper-

TCNTn

OCnA
(Toggle)

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 4Period 2 3

(COMnA[1:0] = 1)

fOCnA
fclk_I/O

2 N 1 OCRnA+()⋅ ⋅
---=

102
8008H–AVR–04/11

ATtiny48/88

ation, the operating frequency of the fast PWM mode can be twice as high as the phase correct
and phase and frequency correct PWM modes that use dual-slope operation. This high fre-
quency makes the fast PWM mode well suited for power regulation, rectification, and DAC
applications. High frequency allows physically small sized external components (coils, capaci-
tors), hence reduces total system cost.

The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either ICR1 or
OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the max-
imum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can be
calculated by using the following equation:

In fast PWM mode the counter is incremented until the counter value matches either one of the
fixed values 0x00FF, 0x01FF, or 0x03FF (WGM1[3:0] = 5, 6, or 7), the value in ICR1
(WGM1[3:0] = 14), or the value in OCR1A (WGM1[3:0] = 15). The counter is then cleared at the
following timer clock cycle. The timing diagram for the fast PWM mode is shown in Figure 12-7.
The figure shows fast PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1
value is in the timing diagram shown as a histogram for illustrating the single-slope operation.
The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks
on the TCNT1 slopes represent compare matches between OCR1x and TCNT1. The OC1x
Interrupt Flag will be set when a compare match occurs.

Figure 12-7. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches TOP. In addition
the OC1A or ICF1 Flag is set at the same timer clock cycle as TOV1 is set when either OCR1A
or ICR1 is used for defining the TOP value. If one of the interrupts are enabled, the interrupt han-
dler routine can be used for updating the TOP and compare values.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.
Note that when using fixed TOP values the unused bits are masked to zero when any of the
OCR1x Registers are written.

RFPWM
TOP 1+()log

2()log
-----------------------------------=

TCNTn

OCRnx/TOP Update and
TOVn Interrupt Flag Set and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 7Period 2 3 4 5 6 8

OCnx

OCnx

(COMnx[1:0] = 2)

(COMnx[1:0] = 3)

103
8008H–AVR–04/11

ATtiny48/88

The procedure for updating ICR1 differs from updating OCR1A when used for defining the TOP
value. The ICR1 Register is not double buffered. This means that if ICR1 is changed to a low
value when the counter is running with none or a low prescaler value, there is a risk that the new
ICR1 value written is lower than the current value of TCNT1. The result will then be that the
counter will miss the compare match at the TOP value. The counter will then have to count to the
MAX value (0xFFFF) and wrap around starting at 0x0000 before the compare match can occur.
The OCR1A Register however, is double buffered. This feature allows the OCR1A I/O location
to be written anytime. When the OCR1A I/O location is written the value written will be put into
the OCR1A Buffer Register. The OCR1A Compare Register will then be updated with the value
in the Buffer Register at the next timer clock cycle the TCNT1 matches TOP. The update is done
at the same timer clock cycle as the TCNT1 is cleared and the TOV1 Flag is set.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using
ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However,
if the base PWM frequency is actively changed (by changing the TOP value), using the OCR1A
as TOP is clearly a better choice due to its double buffer feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins.
Setting the COM1x[1:0] bits to two will produce a non-inverted PWM and an inverted PWM out-
put can be generated by setting the COM1x[1:0] to three (see Table on page 110). The actual
OC1x value will only be visible on the port pin if the data direction for the port pin is set as output
(DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x Register at
the compare match between OCR1x and TCNT1, and clearing (or setting) the OC1x Register at
the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR1x is set equal to BOTTOM (0x0000) the out-
put will be a narrow spike for each TOP+1 timer clock cycle. Setting the OCR1x equal to TOP
will result in a constant high or low output (depending on the polarity of the output set by the
COM1x[1:0] bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC1A to toggle its logical level on each compare match (COM1A[1:0] = 1). This applies only
if OCR1A is used to define the TOP value (WGM1[3:0] = 15). The waveform generated will have
a maximum frequency of fOC1A = fclk_I/O/2 when OCR1A is set to zero (0x0000). This feature is
similar to the OC1A toggle in CTC mode, except the double buffer feature of the Output Com-
pare unit is enabled in the fast PWM mode.

12.9.4 Phase Correct PWM Mode
The phase correct Pulse Width Modulation or phase correct PWM mode (WGM1[3:0] = 1, 2, 3,
10, or 11) provides a high resolution phase correct PWM waveform generation option. The
phase correct PWM mode is, like the phase and frequency correct PWM mode, based on a dual-
slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from
TOP to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is
cleared on the compare match between TCNT1 and OCR1x while upcounting, and set on the
compare match while downcounting. In inverting Output Compare mode, the operation is

fOCnxPWM
fclk_I/O

N 1 TOP+()⋅
-----------------------------------=

104
8008H–AVR–04/11

ATtiny48/88

inverted. The dual-slope operation has lower maximum operation frequency than single slope
operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes
are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or defined
by either ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to
0x0003), and the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolu-
tion in bits can be calculated by using the following equation:

In phase correct PWM mode the counter is incremented until the counter value matches either
one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGM1[3:0] = 1, 2, or 3), the value in ICR1
(WGM1[3:0] = 10), or the value in OCR1A (WGM1[3:0] = 11). The counter has then reached the
TOP and changes the count direction. The TCNT1 value will be equal to TOP for one timer clock
cycle. The timing diagram for the phase correct PWM mode is shown on Figure 12-8. The figure
shows phase correct PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1
value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The
diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on
the TCNT1 slopes represent compare matches between OCR1x and TCNT1. The OC1x Inter-
rupt Flag will be set when a compare match occurs.

Figure 12-8. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches BOTTOM. When
either OCR1A or ICR1 is used for defining the TOP value, the OC1A or ICF1 Flag is set accord-
ingly at the same timer clock cycle as the OCR1x Registers are updated with the double buffer
value (at TOP). The Interrupt Flags can be used to generate an interrupt each time the counter
reaches the TOP or BOTTOM value.

RPCPWM
TOP 1+()log

2()log
-----------------------------------=

OCRnx/TOP Update and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 2 3 4

TOVn Interrupt Flag Set
(Interrupt on Bottom)

TCNTn

Period

OCnx

OCnx

(COMnx[1:0] = 2)

(COMnx[1:0] = 3)

105
8008H–AVR–04/11

ATtiny48/88

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.
Note that when using fixed TOP values, the unused bits are masked to zero when any of the
OCR1x Registers are written. As the third period shown in Figure 12-8 illustrates, changing the
TOP actively while the Timer/Counter is running in the phase correct mode can result in an
unsymmetrical output. The reason for this can be found in the time of update of the OCR1x Reg-
ister. Since the OCR1x update occurs at TOP, the PWM period starts and ends at TOP. This
implies that the length of the falling slope is determined by the previous TOP value, while the
length of the rising slope is determined by the new TOP value. When these two values differ the
two slopes of the period will differ in length. The difference in length gives the unsymmetrical
result on the output.

It is recommended to use the phase and frequency correct mode instead of the phase correct
mode when changing the TOP value while the Timer/Counter is running. When using a static
TOP value there are practically no differences between the two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the
OC1x pins. Setting the COM1x[1:0] bits to two will produce a non-inverted PWM and an inverted
PWM output can be generated by setting the COM1x[1:0] to three (See Table on page 111).
The actual OC1x value will only be visible on the port pin if the data direction for the port pin is
set as output (DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x
Register at the compare match between OCR1x and TCNT1 when the counter increments, and
clearing (or setting) the OC1x Register at compare match between OCR1x and TCNT1 when
the counter decrements. The PWM frequency for the output when using phase correct PWM can
be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR1x is set equal to BOTTOM the
output will be continuously low and if set equal to TOP the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values. If
OCR1A is used to define the TOP value (WGM1[3:0] = 11) and COM1A[1:0] = 1, the OC1A out-
put will toggle with a 50% duty cycle.

12.9.5 Phase and Frequency Correct PWM Mode
The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM
mode (WGM1[3:0] = 8 or 9) provides a high resolution phase and frequency correct PWM wave-
form generation option. The phase and frequency correct PWM mode is, like the phase correct
PWM mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM
(0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output mode, the
Output Compare (OC1x) is cleared on the compare match between TCNT1 and OCR1x while
upcounting, and set on the compare match while downcounting. In inverting Compare Output
mode, the operation is inverted. The dual-slope operation gives a lower maximum operation fre-
quency compared to the single-slope operation. However, due to the symmetric feature of the
dual-slope PWM modes, these modes are preferred for motor control applications.

fOCnxPCPWM
fclk_I/O

2 N TOP⋅ ⋅
----------------------------=

106
8008H–AVR–04/11

ATtiny48/88

The main difference between the phase correct, and the phase and frequency correct PWM
mode is the time the OCR1x Register is updated by the OCR1x Buffer Register, (see Figure 12-
8 and Figure 12-9).

The PWM resolution for the phase and frequency correct PWM mode can be defined by either
ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and
the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can
be calculated using the following equation:

In phase and frequency correct PWM mode the counter is incremented until the counter value
matches either the value in ICR1 (WGM1[3:0] = 8), or the value in OCR1A (WGM1[3:0] = 9). The
counter has then reached the TOP and changes the count direction. The TCNT1 value will be
equal to TOP for one timer clock cycle. The timing diagram for the phase correct and frequency
correct PWM mode is shown on Figure 12-9. The figure shows phase and frequency correct
PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value is in the timing dia-
gram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-
inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1 slopes repre-
sent compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will be set when a
compare match occurs.

Figure 12-9. Phase and Frequency Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV1) is set at the same timer clock cycle as the OCR1x
Registers are updated with the double buffer value (at BOTTOM). When either OCR1A or ICR1
is used for defining the TOP value, the OC1A or ICF1 Flag set when TCNT1 has reached TOP.
The Interrupt Flags can then be used to generate an interrupt each time the counter reaches the
TOP or BOTTOM value.

RPFCPWM
TOP 1+()log

2()log
-----------------------------------=

OCRnx/TOP Updateand
TOVn Interrupt Flag Set
(Interrupt on Bottom)

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 2 3 4

TCNTn

Period

OCnx

OCnx

(COMnx[1:0] = 2)

(COMnx[1:0] = 3)

107
8008H–AVR–04/11

ATtiny48/88

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.

As Figure 12-9 shows the output generated is, in contrast to the phase correct mode, symmetri-
cal in all periods. Since the OCR1x Registers are updated at BOTTOM, the length of the rising
and the falling slopes will always be equal. This gives symmetrical output pulses and is therefore
frequency correct.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using
ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However,
if the base PWM frequency is actively changed by changing the TOP value, using the OCR1A as
TOP is clearly a better choice due to its double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM wave-
forms on the OC1x pins. Setting the COM1x[1:0] bits to 0b10 will produce a non-inverted PWM
and an inverted PWM output can be generated by setting the COM1x[1:0] to 0b11 (See Table
12-4 on page 111). The actual OC1x value will only be visible on the port pin if the data direction
for the port pin is set as output (DDR_OC1x). The PWM waveform is generated by setting (or
clearing) the OC1x Register at the compare match between OCR1x and TCNT1 when the coun-
ter increments, and clearing (or setting) the OC1x Register at compare match between OCR1x
and TCNT1 when the counter decrements. The PWM frequency for the output when using
phase and frequency correct PWM can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR1x is set equal to BOTTOM the
output will be continuously low and if set equal to TOP the output will be set to high for non-
inverted PWM mode. For inverted PWM the output will have the opposite logic values. If OCR1A
is used to define the TOP value and COM1A[1:0] = 1, the OC1A output will toggle with a 50%
duty cycle.

12.10 Timer/Counter Timing Diagrams
The Timer/Counter is a synchronous design and the timer clock (clkT1) is therefore shown as a
clock enable signal in the following figures. The figures include information on when Interrupt
Flags are set, and when the OCR1x Register is updated with the OCR1x buffer value (only for
modes utilizing double buffering). Figure 12-10 shows a timing diagram for the setting of OCF1x.

fOCnxPFCPWM
fclk_I/O

2 N TOP⋅ ⋅
----------------------------=

108
8008H–AVR–04/11

ATtiny48/88

Figure 12-10. Timer/Counter Timing Diagram, Setting of OCF1x, no Prescaling

Figure 12-11 shows the same timing data, but with the prescaler enabled.

Figure 12-11. Timer/Counter Timing Diagram, Setting of OCF1x, with Prescaler (fclk_I/O/8)

Figure 12-12 shows the count sequence close to TOP in various modes. When using phase and
frequency correct PWM mode the OCR1x Register is updated at BOTTOM. The timing diagrams
will be the same, but TOP should be replaced by BOTTOM, TOP-1 by BOTTOM+1 and so on.
The same renaming applies for modes that set the TOV1 Flag at BOTTOM.

clkTn
(clkI/O/1)

OCFnx

clkI/O

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clkI/O

clkTn
(clkI/O/8)

109
8008H–AVR–04/11

ATtiny48/88

Figure 12-12. Timer/Counter Timing Diagram, no Prescaling

Figure 12-13 shows the same timing data, but with the prescaler enabled.

Figure 12-13. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

TOVn (FPWM)
and ICFn (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clkTn
(clkI/O/1)

clkI/O

TOVn (FPWM)
and ICFn (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

110
8008H–AVR–04/11

ATtiny48/88

12.11 Register Description

12.11.1 TCCR1A – Timer/Counter1 Control Register A

• Bits 7:6 – COM1A[1:0]: Compare Output Mode for Channel A

• Bits 5:4 – COM1B[1:0]: Compare Output Mode for Channel B
The COM1A[1:0] and COM1B[1:0] control the Output Compare pins (OC1A and OC1B respec-
tively) behavior. If one or both of the COM1A[1:0] bits are written to one, the OC1A output
overrides the normal port functionality of the I/O pin it is connected to. If one or both of the
COM1B[1:0] bit are written to one, the OC1B output overrides the normal port functionality of the
I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit correspond-
ing to the OC1A or OC1B pin must be set in order to enable the output driver.

When the OC1A or OC1B is connected to the pin, the function of the COM1x[1:0] bits is depen-
dent of the WGM1[3:0] bits setting. Table 12-2 shows the COM1x[1:0] bit functionality when the
WGM1[3:0] bits are set to a Normal or a CTC mode (non-PWM).

Table 12-3 shows the COM1x[1:0] bit functionality when the WGM1[3:0] bits are set to the fast
PWM mode.

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. In
this case the compare match is ignored, but the set or clear is done at TOP. See “Fast PWM
Mode” on page 101. for more details.

Bit 7 6 5 4 3 2 1 0

(0x80) COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 TCCR1A

Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 12-2. Compare Output Mode, non-PWM

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B disconnected.

0 1 Toggle OC1A/OC1B on Compare Match.

1 0
Clear OC1A/OC1B on Compare Match (Set output to
low level).

1 1
Set OC1A/OC1B on Compare Match (Set output to
high level).

Table 12-3. Compare Output Mode, Fast PWM(1)

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B disconnected.

0 1

WGM1[3:0] = 14 or 15: Toggle OC1A on Compare
Match, OC1B disconnected (normal port operation).
For all other WGM1 settings, normal port operation,
OC1A/OC1B disconnected.

1 0
Clear OC1A/OC1B on Compare Match, set
OC1A/OC1B at TOP

1 1
Set OC1A/OC1B on Compare Match, clear
OC1A/OC1B at TOP

111
8008H–AVR–04/11

ATtiny48/88

Table 12-4 shows the COM1x[1:0] bit functionality when the WGM1[3:0] bits are set to the phase
correct or the phase and frequency correct, PWM mode.

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. See
“Phase Correct PWM Mode” on page 103. for more details.

• Bits 3:2 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bits 1:0 – WGM1[1:0]: Waveform Generation Mode
Combined with the WGM1[3:2] bits found in the TCCR1B Register, these bits control the count-
ing sequence of the counter, the source for maximum (TOP) counter value, and what type of
waveform generation to be used, see Table 12-5.

Table 12-4. Compare Output Mode, Phase Correct and Phase & Frequency Correct PWM(1)

COM1A1
COM1B1

COM1A0
COM1B0 Description

0 0 Normal port operation, OC1A/OC1B disconnected.

0 1
WGM1[3:0] = 8, 9, 10 or 11: Toggle OC1A on Compare Match, OC1B
disconnected (normal port operation). For all other WGM1 settings, normal
port operation, OC1A/OC1B disconnected.

1 0
Clear OC1A/OC1B on Compare Match when up-counting. Set OC1A/OC1B
on Compare Match when downcounting.

1 1
Set OC1A/OC1B on Compare Match when up-counting. Clear OC1A/OC1B
on Compare Match when downcounting.

Table 12-5. Waveform Generation Mode Bit Description

Mode
WGM

13
WGM

12
WGM

11
WGM

10
Timer/Counter
Mode of Operation TOP

Update of
OCR1x at

TOV1 Flag
Set on

0 0 0 0 0 Normal 0xFFFF Immediate MAX

1 0 0 0 1 PWM, Phase Correct, 8-bit 0x00FF TOP BOTTOM

2 0 0 1 0 PWM, Phase Correct, 9-bit 0x01FF TOP BOTTOM

3 0 0 1 1 PWM, Phase Correct, 10-bit 0x03FF TOP BOTTOM

4 0 1 0 0 CTC OCR1A Immediate MAX

5 0 1 0 1 Fast PWM, 8-bit 0x00FF TOP TOP

6 0 1 1 0 Fast PWM, 9-bit 0x01FF TOP TOP

7 0 1 1 1 Fast PWM, 10-bit 0x03FF TOP TOP

8 1 0 0 0 PWM, Phase & Frequency Correct ICR1 BOTTOM BOTTOM

9 1 0 0 1 PWM, Phase & Frequency Correct OCR1A BOTTOM BOTTOM

10 1 0 1 0 PWM, Phase Correct ICR1 TOP BOTTOM

11 1 0 1 1 PWM, Phase Correct OCR1A TOP BOTTOM

12 1 1 0 0 CTC ICR1 Immediate MAX

13 1 1 0 1 (Reserved) – – –

14 1 1 1 0 Fast PWM ICR1 TOP TOP

15 1 1 1 1 Fast PWM OCR1A TOP TOP

112
8008H–AVR–04/11

ATtiny48/88

Modes of operation supported by the Timer/Counter unit are: Normal mode (counter), Clear
Timer on Compare match (CTC) mode, and three types of Pulse Width Modulation (PWM)
modes. (See “Modes of Operation” on page 100.).

12.11.2 TCCR1B – Timer/Counter1 Control Register B

• Bit 7 – ICNC1: Input Capture Noise Canceler
Setting this bit (to one) activates the Input Capture Noise Canceler. When the noise canceler is
activated, the input from the Input Capture pin (ICP1) is filtered. The filter function requires four
successive equal valued samples of the ICP1 pin for changing its output. The Input Capture is
therefore delayed by four oscillator cycles when the noise canceler is enabled.

• Bit 6 – ICES1: Input Capture Edge Select
This bit selects which edge on the Input Capture pin (ICP1) that is used to trigger a capture
event. When the ICES1 bit is written to zero, a falling (negative) edge is used as trigger, and
when the ICES1 bit is written to one, a rising (positive) edge will trigger the capture.

When a capture is triggered according to the ICES1 setting, the counter value is copied into the
Input Capture Register (ICR1). The event will also set the Input Capture Flag (ICF1), and this
can be used to cause an Input Capture Interrupt, if this interrupt is enabled.

When the ICR1 is used as TOP value (see description of the WGM1[3:0] bits located in the
TCCR1A and the TCCR1B Register), the ICP1 is disconnected and consequently the Input Cap-
ture function is disabled.

• Bit 5 – Reserved Bit
This bit is reserved for future use. For ensuring compatibility with future devices, this bit must be
written to zero when TCCR1B is written.

• Bits 4:3 – WGM1[3:2]: Waveform Generation Mode
See TCCR1A Register description.

• Bits 2:0 – CS1[2:0]: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter, see Figure
12-10 and Figure 12-11.

Bit 7 6 5 4 3 2 1 0

(0x81) ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 TCCR1B

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 12-6. Clock Select Bit Description

CS12 CS11 CS10 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkI/O/1 (No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

113
8008H–AVR–04/11

ATtiny48/88

If external pin modes are used for the Timer/Counter1, transitions on the T1 pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

12.11.3 TCCR1C – Timer/Counter1 Control Register C

• Bit 7 – FOC1A: Force Output Compare for Channel A

• Bit 6 – FOC1B: Force Output Compare for Channel B
The FOC1A/FOC1B bits are only active when the WGM1[3:0] bits specifies a non-PWM mode.
However, for ensuring compatibility with future devices, these bits must be set to zero when
TCCR1A is written when operating in a PWM mode. When writing a logical one to the
FOC1A/FOC1B bit, an immediate compare match is forced on the Waveform Generation unit.
The OC1A/OC1B output is changed according to its COM1x[1:0] bits setting. Note that the
FOC1A/FOC1B bits are implemented as strobes. Therefore it is the value present in the
COM1x[1:0] bits that determine the effect of the forced compare.

A FOC1A/FOC1B strobe will not generate any interrupt nor will it clear the timer in Clear Timer
on Compare match (CTC) mode using OCR1A as TOP.

The FOC1A/FOC1B bits are always read as zero.

• Bits 5:0 – Res: Reserved Bits
These bits are reserved and will always read zero.

12.11.4 TCNT1H and TCNT1L – Timer/Counter1

The two Timer/Counter I/O locations (TCNT1H and TCNT1L, combined TCNT1) give direct
access, both for read and for write operations, to the Timer/Counter unit 16-bit counter. To
ensure that both the high and low bytes are read and written simultaneously when the CPU
accesses these registers, the access is performed using an 8-bit temporary High Byte Register
(TEMP). This temporary register is shared by all the other 16-bit registers. See “Accessing 16-bit
Registers” on page 91.

Modifying the counter (TCNT1) while the counter is running introduces a risk of missing a com-
pare match between TCNT1 and one of the OCR1x Registers.

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on T1 pin. Clock on falling edge.

1 1 1 External clock source on T1 pin. Clock on rising edge.

Table 12-6. Clock Select Bit Description (Continued)

CS12 CS11 CS10 Description

Bit 7 6 5 4 3 2 1 0

(0x82) FOC1A FOC1B – – – – – – TCCR1C

Read/Write R/W R/W R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x85) TCNT1[15:8] TCNT1H

(0x84) TCNT1[7:0] TCNT1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

114
8008H–AVR–04/11

ATtiny48/88

Writing to the TCNT1 Register blocks (removes) the compare match on the following timer clock
for all compare units.

12.11.5 OCR1AH and OCR1AL – Output Compare Register 1 A

12.11.6 OCR1BH and OCR1BL – Output Compare Register 1 B

The Output Compare Registers contain a 16-bit value that is continuously compared with the
counter value (TCNT1). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC1x pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and low bytes are
written simultaneously when the CPU writes to these registers, the access is performed using an
8-bit temporary High Byte Register (TEMP). This temporary register is shared by all the other
16-bit registers. See “Accessing 16-bit Registers” on page 91.

12.11.7 ICR1H and ICR1L – Input Capture Register 1

The Input Capture is updated with the counter (TCNT1) value each time an event occurs on the
ICP1 pin (or optionally on the Analog Comparator output for Timer/Counter1). The Input Capture
can be used for defining the counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes are read
simultaneously when the CPU accesses these registers, the access is performed using an 8-bit
temporary High Byte Register (TEMP). This temporary register is shared by all the other 16-bit
registers. See “Accessing 16-bit Registers” on page 91.

12.11.8 TIMSK1 – Timer/Counter1 Interrupt Mask Register

• Bits 7:6 – Res: Reserved Bits
These bits are reserved and will always read zero.

Bit 7 6 5 4 3 2 1 0

(0x89) OCR1A[15:8] OCR1AH

(0x88) OCR1A[7:0] OCR1AL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x8B) OCR1B[15:8] OCR1BH

(0x8A) OCR1B[7:0] OCR1BL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x87) ICR1[15:8] ICR1H

(0x86) ICR1[7:0] ICR1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6F) – – ICIE1 – – OCIE1B OCIE1A TOIE1 TIMSK1

Read/Write R R R/W R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

115
8008H–AVR–04/11

ATtiny48/88

• Bit 5 – ICIE1: Timer/Counter1, Input Capture Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Input Capture interrupt is enabled. The corresponding Interrupt
Vector (see “Interrupts” on page 52) is executed when the ICF1 Flag, located in TIFR1, is set.

• Bits 4:3 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bit 2 – OCIE1B: Timer/Counter1, Output Compare B Match Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare B Match interrupt is enabled. The corresponding
Interrupt Vector (see “Interrupts” on page 52) is executed when the OCF1B Flag, located in
TIFR1, is set.

• Bit 1 – OCIE1A: Timer/Counter1, Output Compare A Match Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare A Match interrupt is enabled. The corresponding
Interrupt Vector (see “Interrupts” on page 52) is executed when the OCF1A Flag, located in
TIFR1, is set.

• Bit 0 – TOIE1: Timer/Counter1, Overflow Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Overflow interrupt is enabled. The corresponding Interrupt Vector
(See “Watchdog Timer” on page 46.) is executed when the TOV1 Flag, located in TIFR1, is set.

12.11.9 TIFR1 – Timer/Counter1 Interrupt Flag Register

• Bits 7:6 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bit 5 – ICF1: Timer/Counter1, Input Capture Flag
This flag is set when a capture event occurs on the ICP1 pin. When the Input Capture Register
(ICR1) is set by the WGM1[3:0] to be used as the TOP value, the ICF1 Flag is set when the
counter reaches the TOP value.

ICF1 is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively,
ICF1 can be cleared by writing a logic one to its bit location.

• Bits 4:3 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bit 2 – OCF1B: Timer/Counter1, Output Compare B Match Flag
This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output
Compare Register B (OCR1B).

Note that a Forced Output Compare (FOC1B) strobe will not set the OCF1B Flag.

Bit 7 6 5 4 3 2 1 0

0x16 (0x36) – – ICF1 – – OCF1B OCF1A TOV1 TIFR1

Read/Write R R R/W R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

116
8008H–AVR–04/11

ATtiny48/88

OCF1B is automatically cleared when the Output Compare Match B Interrupt Vector is exe-
cuted. Alternatively, OCF1B can be cleared by writing a logic one to its bit location.

• Bit 1 – OCF1A: Timer/Counter1, Output Compare A Match Flag
This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output
Compare Register A (OCR1A).

Note that a Forced Output Compare (FOC1A) strobe will not set the OCF1A Flag.

OCF1A is automatically cleared when the Output Compare Match A Interrupt Vector is exe-
cuted. Alternatively, OCF1A can be cleared by writing a logic one to its bit location.

• Bit 0 – TOV1: Timer/Counter1, Overflow Flag
The setting of this flag is dependent of the WGM1[3:0] bits setting. In Normal and CTC modes,
the TOV1 Flag is set when the timer overflows. Refer to Table 12-5 on page 111 for the TOV1
Flag behavior when using another WGM1[3:0] bit setting.

TOV1 is automatically cleared when the Timer/Counter1 Overflow Interrupt Vector is executed.
Alternatively, TOV1 can be cleared by writing a logic one to its bit location.

117
8008H–AVR–04/11

ATtiny48/88

13. Timer/Counter0 and Timer/Counter1 Prescalers
“8-bit Timer/Counter0” on page 80 and “16-bit Timer/Counter1 with PWM” on page 89 share the
same prescaler module, but the Timer/Counters can have different prescaler settings. The
description below applies to both Timer/Counter1 and Timer/Counter0.

13.1 Internal Clock Source
The Timer/Counter can be clocked directly by the system clock (by setting the CSn[2:0] = 1).
This provides the fastest operation, with a maximum Timer/Counter clock frequency equal to
system clock frequency (fCLK_I/O). Alternatively, one of four taps from the prescaler can be used
as a clock source. The prescaled clock has a frequency of either fCLK_I/O/8, fCLK_I/O/64,
fCLK_I/O/256, or fCLK_I/O/1024.

13.2 Prescaler Reset
The prescaler is free running, i.e., operates independently of the Clock Select logic of the
Timer/Counter, and it is shared by Timer/Counter1 and Timer/Counter0. Since the prescaler is
not affected by the Timer/Counter’s clock select, the state of the prescaler will have implications
for situations where a prescaled clock is used. One example of prescaling artifacts occurs when
the timer is enabled and clocked by the prescaler (CSn[2:0] = 0b010, 0b011, 0b100, or 0b101).
The number of system clock cycles from when the timer is enabled to the first count occurs can
be from 1 to N+1 system clock cycles, where N equals the prescaler divisor (8, 64, 256, or
1024).

It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execu-
tion. However, care must be taken if the other Timer/Counter that shares the same prescaler
also uses prescaling. A prescaler reset will affect the prescaler period for all Timer/Counters it is
connected to.

13.3 External Clock Source
An external clock source applied to the T1/T0 pin can be used as Timer/Counter clock
(clkT1/clkT0). The T1/T0 pin is sampled once every system clock cycle by the pin synchronization
logic. The synchronized (sampled) signal is then passed through the edge detector. Figure 13-1
shows a functional equivalent block diagram of the T1/T0 synchronization and edge detector
logic. The registers are clocked at the positive edge of the internal system clock (clkI/O). The latch
is transparent in the high period of the internal system clock.

The edge detector generates one clkT1/clkT0 pulse for each positive (CSn[2:0] = 7) or negative
(CSn[2:0] = 6) edge it detects.

Figure 13-1. T1/T0 Pin Sampling

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles
from an edge has been applied to the T1/T0 pin to the counter is updated.

Tn_sync
(To Clock
Select Logic)

Edge DetectorSynchronization

D QD Q

LE

D QTn

clkI/O

118
8008H–AVR–04/11

ATtiny48/88

Enabling and disabling of the clock input must be done when T1/T0 has been stable for at least
one system clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse is generated.

Each half period of the external clock applied must be longer than one system clock cycle to
ensure correct sampling. The external clock must be guaranteed to have less than half the sys-
tem clock frequency (fExtClk < fclk_I/O/2) given a 50% duty cycle. Since the edge detector uses
sampling, the maximum frequency of an external clock it can detect is half the sampling fre-
quency (Nyquist sampling theorem). However, due to variation of the system clock frequency
and duty cycle caused by oscillator source tolerances, it is recommended that maximum fre-
quency of an external clock source is less than fclk_I/O/2.5.

An external clock source can not be prescaled.

Figure 13-2. Prescaler for Timer/Counter0 and Timer/Counter1(1)

Note: 1. The synchronization logic on the input pins (T1/T0) is shown in Figure 13-1.

13.4 Register Description

13.4.1 GTCCR – General Timer/Counter Control Register

• Bit 7 – TSM: Timer/Counter Synchronization Mode
Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this mode, the
value that is written to the PSRSYNC bit is kept, hence keeping the corresponding prescaler
reset signals asserted. This ensures that the corresponding Timer/Counters are halted and can
be configured to the same value without the risk of one of them advancing during configuration.

PSRSYNC

Clear

clkT1 clkT0

T1

T0

clkI/O

Synchronization

Synchronization

Bit 7 6 5 4 3 2 1 0

0x23 (0x43) TSM – – – – – – PSRSYNC GTCCR

Read/Write R/W R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

119
8008H–AVR–04/11

ATtiny48/88

When the TSM bit is written to zero, the PSRSYNC bit are cleared by hardware, and the
Timer/Counters start counting simultaneously.

• Bits 6:1 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bit 0 – PSRSYNC: Prescaler Reset
When this bit is one, Timer/Counter1 and Timer/Counter0 prescaler will be Reset. This bit is nor-
mally cleared immediately by hardware, except if the TSM bit is set. Note that Timer/Counter1
and Timer/Counter0 share the same prescaler and a reset of this prescaler will affect both
timers.

120
8008H–AVR–04/11

ATtiny48/88

14. SPI – Serial Peripheral Interface

14.1 Features
• Full-duplex, Three-wire Synchronous Data Transfer
• Master or Slave Operation
• LSB First or MSB First Data Transfer
• Seven Programmable Bit Rates
• End of Transmission Interrupt Flag
• Write Collision Flag Protection
• Wake-up from Idle Mode
• Double Speed (CK/2) Master SPI Mode

14.2 Overview
The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the
ATtiny48/88 and peripheral devices or between several AVR devices.

Figure 14-1. SPI Block Diagram(1)

Note: 1. Refer to Figure 1-1 on page 2, and Table 10-5 on page 69 for SPI pin placement.

SP
I2

X

SP
I2

X
SP

IF

SP
IE

SP
E

D
O

RD

D
O

RD

M
ST

R

SP
E

M
ST

R

CP
O

L

CP
H

A

SP
R1

SP
R0

W
CO

L
SP

R1

SP
R0

DIVIDER
/2/4/8/16/32/64/128

XTAL

SELECT

SPI CONTROL

SPI INTERRUPT
REQUEST

INTERNAL
DATA BUS

SPI STATUS REGISTER SPI CONTROL REGISTER

MSB

CLOCK
LOGIC

CLOCK

MSTR

SCK

MISO

MOSI

SS

SPE

PI
N

 C
O

N
TR

O
L

LO
G

ICLSB

S

S

M

S

M

8

8

8

M

READ DATA BUFFER

SPI CLOCK (MASTER)

8 BIT SHIFT REGISTER

121
8008H–AVR–04/11

ATtiny48/88

The PRSPI bit in “PRR – Power Reduction Register” on page 40 must be written to zero to
enable the SPI module.

The interconnection between Master and Slave CPUs with SPI is shown in Figure 14-2. The sys-
tem consists of two shift Registers, and a Master clock generator. The SPI Master initiates the
communication cycle when pulling low the Slave Select SS pin of the desired Slave. Master and
Slave prepare the data to be sent in their respective shift Registers, and the Master generates
the required clock pulses on the SCK line to interchange data. Data is always shifted from Mas-
ter to Slave on the Master Out – Slave In, MOSI, line, and from Slave to Master on the Master In
– Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling
high the Slave Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This
must be handled by user software before communication can start. When this is done, writing a
byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight
bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of
Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an
interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or
signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be
kept in the Buffer Register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long
as the SS pin is driven high. In this state, software may update the contents of the SPI Data
Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin
until the SS pin is driven low. As one byte has been completely shifted, the end of Transmission
Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt
is requested. The Slave may continue to place new data to be sent into SPDR before reading
the incoming data. The last incoming byte will be kept in the Buffer Register for later use.

Figure 14-2. SPI Master-slave Interconnection

The system is single buffered in the transmit direction and double buffered in the receive direc-
tion. This means that bytes to be transmitted cannot be written to the SPI Data Register before
the entire shift cycle is completed. When receiving data, however, a received character must be
read from the SPI Data Register before the next character has been completely shifted in. Oth-
erwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure
correct sampling of the clock signal, the frequency of the SPI clock should never exceed fosc/4.

SHIFT
ENABLE

8 BIT SHIFT REGISTER

SPI
CLOCK GENERATOR

MASTERMSB MISO MISO

MOSI

SCK

SS SS

SCK

MOSI

LSB SLAVEMSB LSB

8 BIT SHIFT REGISTER

122
8008H–AVR–04/11

ATtiny48/88

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden
according to Table 14-1 on page 122. For more details on automatic port overrides, refer to
“Alternate Port Functions” on page 65.

Note: 1. See “Alternate Functions of Port B” on page 69 for a detailed description of how to define the
direction of the user defined SPI pins.

The following code examples show how to initialize the SPI as a Master and how to perform a
simple transmission. DDR_SPI in the examples must be replaced by the actual Data Direction
Register controlling the SPI pins. DD_MOSI, DD_MISO and DD_SCK must be replaced by the
actual data direction bits for these pins. E.g. if MOSI is placed on pin PB5, replace DD_MOSI
with DDB5 and DDR_SPI with DDRB.

Note: 1. See ”About Code Examples” on page 7.

Table 14-1. SPI Pin Overrides(1)

Pin Direction, Master SPI Direction, Slave SPI

MOSI User Defined Input

MISO Input User Defined

SCK User Defined Input

SS User Defined Input

Assembly Code Example(1)

SPI_MasterInit:

; Set MOSI and SCK output, all others input

ldi r17,(1<<DD_MOSI)|(1<<DD_SCK)

out DDR_SPI,r17

; Enable SPI, Master, set clock rate fck/16

ldi r17,(1<<SPE)|(1<<MSTR)|(1<<SPR0)

out SPCR,r17

ret

SPI_MasterTransmit:

; Start transmission of data (r16)

out SPDR,r16

Wait_Transmit:

; Wait for transmission complete

sbis SPSR,SPIF

rjmp Wait_Transmit

ret

123
8008H–AVR–04/11

ATtiny48/88

Note: 1. See ”About Code Examples” on page 7.

The following code examples show how to initialize the SPI as a Slave and how to perform a
simple reception.

Note: 1. See ”About Code Examples” on page 7.

C Code Example(1)

void SPI_MasterInit(void)

{

/* Set MOSI and SCK output, all others input */

DDR_SPI = (1<<DD_MOSI)|(1<<DD_SCK);

/* Enable SPI, Master, set clock rate fck/16 */

SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPR0);

}

void SPI_MasterTransmit(char cData)

{

/* Start transmission */

SPDR = cData;

/* Wait for transmission complete */

while(!(SPSR & (1<<SPIF)))

;

}

Assembly Code Example(1)

SPI_SlaveInit:

; Set MISO output, all others input

ldi r17,(1<<DD_MISO)

out DDR_SPI,r17

; Enable SPI

ldi r17,(1<<SPE)

out SPCR,r17

ret

SPI_SlaveReceive:

; Wait for reception complete

sbis SPSR,SPIF

rjmp SPI_SlaveReceive

; Read received data and return

in r16,SPDR

ret

124
8008H–AVR–04/11

ATtiny48/88

14.3 SS Pin Functionality

14.3.1 Slave Mode
When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When SS is
held low, the SPI is activated, and MISO becomes an output if configured so by the user. All
other pins are inputs. When SS is driven high, all pins are inputs, and the SPI is passive, which
means that it will not receive incoming data. Note that the SPI logic will be reset once the SS pin
is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous
with the master clock generator. When the SS pin is driven high, the SPI slave will immediately
reset the send and receive logic, and drop any partially received data in the Shift Register.

14.3.2 Master Mode
When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the
direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the SPI
system. Typically, the pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If the SS pin
is driven low by peripheral circuitry when the SPI is configured as a Master with the SS pin
defined as an input, the SPI system interprets this as another master selecting the SPI as a
slave and starting to send data to it. To avoid bus contention, the SPI system takes the following
actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a result of
the SPI becoming a Slave, the MOSI and SCK pins become inputs.

2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG
is set, the interrupt routine will be executed.

C Code Example(1)

void SPI_SlaveInit(void)

{

/* Set MISO output, all others input */

DDR_SPI = (1<<DD_MISO);

/* Enable SPI */

SPCR = (1<<SPE);

}

char SPI_SlaveReceive(void)

{

/* Wait for reception complete */

while(!(SPSR & (1<<SPIF)))

;

/* Return Data Register */

return SPDR;

}

125
8008H–AVR–04/11

ATtiny48/88

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a possi-
bility that SS is driven low, the interrupt should always check that the MSTR bit is still set. If the
MSTR bit has been cleared by a slave select, it must be set by the user to re-enable SPI Master
mode.

14.4 Data Modes
There are four combinations of SCK phase and polarity with respect to serial data, which are
determined by control bits CPHA and CPOL. The SPI data transfer formats are shown in Figure
14-3 and Figure 14-4.

Figure 14-3. SPI Transfer Format with CPHA = 0

Figure 14-4. SPI Transfer Format with CPHA = 1

Bit 1
Bit 6

LSB
MSB

SCK (CPOL = 0)
mode 0

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 2

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

MSB first (DORD = 0)
LSB first (DORD = 1)

SCK (CPOL = 0)
mode 1

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 3

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB first (DORD = 0)
LSB first (DORD = 1)

126
8008H–AVR–04/11

ATtiny48/88

Data bits are shifted out and latched in on opposite edges of the SCK signal, ensuring sufficient
time for data signals to stabilize. This is clearly seen by summarizing Table 14-3 on page 126
and Table 14-4 on page 127, as done in Table 14-2 below.

14.5 Register Description

14.5.1 SPCR – SPI Control Register

• Bit 7 – SPIE: SPI Interrupt Enable
This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if
the Global Interrupt Enable bit in SREG is set.

• Bit 6 – SPE: SPI Enable
When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI
operations.

• Bit 5 – DORD: Data Order
When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

• Bit 4 – MSTR: Master/Slave Select
This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic
zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared,
and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable SPI Mas-
ter mode.

• Bit 3 – CPOL: Clock Polarity
When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low
when idle. Refer to Figure 14-3 and Figure 14-4 for an example. The CPOL functionality is sum-
marized below:

Table 14-2. Setting SPI Mode using Control Bits CPOL and CPHA

CPOL CPHA SPI Mode Leading Edge Trailing eDge

0 0 0 Sample (Rising) Setup (Falling)

0 1 1 Setup (Rising) Sample (Falling)

1 0 2 Sample (Falling) Setup (Rising)

1 1 3 Setup (Falling) Sample (Rising)

Bit 7 6 5 4 3 2 1 0

0x2C (0x4C) SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 SPCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 14-3. CPOL Functionality

CPOL Leading Edge Trailing Edge

0 Rising Falling

1 Falling Rising

127
8008H–AVR–04/11

ATtiny48/88

• Bit 2 – CPHA: Clock Phase
The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or
trailing (last) edge of SCK. Refer to Figure 14-3 and Figure 14-4 for an example. The CPOL
functionality is summarized below:

• Bits 1:0 – SPR[1:0]: SPI Clock Rate Select 1 and 0
These two bits control the SCK rate of the device configured as a Master. SPR1 and SPR0 have
no effect on the Slave. The relationship between SCK and the oscillator clock frequency fosc is
shown in the following table:

14.5.2 SPSR – SPI Status Register

• Bit 7 – SPIF: SPI Interrupt Flag
When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if SPIE in
SPCR is set and global interrupts are enabled. If SS is an input and is driven low when the SPI is
in Master mode, this will also set the SPIF Flag. SPIF is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, the SPIF bit is cleared by first reading the
SPI Status Register with SPIF set, then accessing the SPI Data Register (SPDR).

• Bit 6 – WCOL: Write COLlision Flag
The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The
WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register with WCOL set,
and then accessing the SPI Data Register.

• Bits 5:1 – Res: Reserved Bits
These bits are reserved and will always read zero.

Table 14-4. CPHA Functionality

CPHA Leading Edge Trailing Edge

0 Sample Setup

1 Setup Sample

Table 14-5. Relationship Between SCK and the Oscillator Frequency

SPI2X SPR1 SPR0 SCK Frequency

0 0 0 fosc/4

0 0 1 fosc/16

0 1 0 fosc/64

0 1 1 fosc/128

1 0 0 fosc/2

1 0 1 fosc/8

1 1 0 fosc/32

1 1 1 fosc/64

Bit 7 6 5 4 3 2 1 0

0x2D (0x4D) SPIF WCOL – – – – – SPI2X SPSR

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

128
8008H–AVR–04/11

ATtiny48/88

• Bit 0 – SPI2X: Double SPI Speed Bit
When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI
is in Master mode (see Table 14-5). This means that the minimum SCK period will be two CPU
clock periods. When the SPI is configured as Slave, the SPI is only guaranteed to work at fosc/4
or lower.

The SPI interface on the ATtiny48/88 is also used for program memory and EEPROM down-
loading or uploading. See page 200 for serial programming and verification.

14.5.3 SPDR – SPI Data Register

The SPI Data Register is a read/write register used for data transfer between the Register File
and the SPI Shift Register. Writing to the register initiates data transmission. Reading the regis-
ter causes the Shift Register Receive buffer to be read.

Bit 7 6 5 4 3 2 1 0

0x2E (0x4E) MSB LSB SPDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X Undefined

129
8008H–AVR–04/11

ATtiny48/88

15. TWI – Two Wire Interface

15.1 Features
• Phillips I2C compatible
• SMBus compatible (with reservations)
• Simple Yet Powerful and Flexible Communication Interface, only two Bus Lines Needed
• Both Master and Slave Operation Supported
• Device can Operate as Transmitter or Receiver
• 7-bit Address Space Allows up to 128 Different Slave Addresses
• Multi-master Arbitration Support
• Data Transfer Speed Up to 400 kHz in Slave Mode
• Slew-rate Limited Output Drivers
• Noise Suppression Circuitry Rejects Spikes on Bus Lines
• Fully Programmable Slave Address with General Call Support
• Address Recognition Causes Wake-up When AVR is in Sleep Mode

15.2 Overview
The Two Wire Interface (TWI) is a bi-directional, bus communication interface, which uses only
two wires. The TWI is I2C compatible and, with reservations, SMBus compatible (see “Compati-
bility with SMBus” on page 156).

A device connected to the bus must act as a master or slave.The master initiates a data transac-
tion by addressing a slave on the bus, and telling whether it wants to transmit or receive data.
One bus can have several masters, and an arbitration process handles priority if two or more
masters try to transmit at the same time.

15.3 Bus Definitions
The Two-Wire Serial Interface (TWI) is ideally suited for typical microcontroller applications. The
TWI protocol allows the systems designer to interconnect up to 128 different devices using only
two bi-directional bus lines, one for clock (SCL) and one for data (SDA). The only external hard-
ware needed to implement the bus is a single pull-up resistor for each of the TWI bus lines. All
devices connected to the bus have individual addresses, and mechanisms for resolving bus
contention are inherent in the TWI protocol.

Figure 15-1. TWI Bus Interconnection

Device 1 Device 2 Device 3 Device n

SDA

SCL

........ R1 R2

VCC

130
8008H–AVR–04/11

ATtiny48/88

15.3.1 TWI Terminology
The following definitions are frequently encountered in this section.

The PRTWI bit in “PRR – Power Reduction Register” on page 40 must be written to zero to
enable the 2-wire Serial Interface.

15.3.2 Electrical Interconnection
As depicted in Figure 15-1, both bus lines are connected to the positive supply voltage through
pull-up resistors. The bus drivers of all TWI-compliant devices are open-drain or open-collector.
This implements a wired-AND function which is essential to the operation of the interface. A low
level on a TWI bus line is generated when one or more TWI devices output a zero. A high level
is output when all TWI devices tri-state their outputs, allowing the pull-up resistors to pull the line
high. Note that all AVR devices connected to the TWI bus must be powered in order to allow any
bus operation.

The number of devices that can be connected to the bus is only limited by the bus capacitance
limit of 400 pF and the 7-bit slave address space. A detailed specification of the electrical char-
acteristics of the TWI is given in “Two-Wire Serial Interface Characteristics” on page 212. Two
different sets of specifications are presented there, one relevant for bus speeds below 100 kHz,
and one valid for bus speeds up to 400 kHz.

15.4 Data Transfer and Frame Format

15.4.1 Transferring Bits
Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. The level
of the data line must be stable when the clock line is high. The only exception to this rule is for
generating start and stop conditions.

Figure 15-2. Data Validity

Table 15-1. TWI Terminology

Term Description

Master The device that initiates and terminates a transmission and generates the SCL clock.

Slave The device addressed by a Master.

Transmitter The device placing data on the bus.

Receiver The device reading data from the bus.

SDA

SCL

Data Stable Data Stable

Data Change

131
8008H–AVR–04/11

ATtiny48/88

15.4.2 START and STOP Conditions
The Master initiates and terminates a data transmission. The transmission is initiated when the
Master issues a START condition on the bus, and it is terminated when the Master issues a
STOP condition. Between a START and a STOP condition, the bus is considered busy, and no
other master should try to seize control of the bus. A special case occurs when a new START
condition is issued between a START and STOP condition. This is referred to as a REPEATED
START condition, and is used when the Master wishes to initiate a new transfer without relin-
quishing control of the bus. After a REPEATED START, the bus is considered busy until the next
STOP. This is identical to the START behavior, and therefore START is used to describe both
START and REPEATED START for the remainder of this datasheet, unless otherwise noted. As
depicted below, START and STOP conditions are signalled by changing the level of the SDA
line when the SCL line is high.

Figure 15-3. START, REPEATED START and STOP conditions

15.4.3 Address Packet Format
All address packets transmitted on the TWI bus are 9 bits long, consisting of 7 address bits, one
READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is set, a read opera-
tion is to be performed, otherwise a write operation should be performed. When a Slave
recognizes that it is being addressed, it should acknowledge by pulling SDA low in the ninth SCL
(ACK) cycle. If the addressed Slave is busy, or for some other reason can not service the Mas-
ter’s request, the SDA line should be left high in the ACK clock cycle. The Master can then
transmit a STOP condition, or a REPEATED START condition to initiate a new transmission. An
address packet consisting of a slave address and a READ or a WRITE bit is called SLA+R or
SLA+W, respectively.

Figure 15-4. Address Packet Format

SDA

SCL

START STOPREPEATED STARTSTOP START

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK

132
8008H–AVR–04/11

ATtiny48/88

The MSB of the address byte is transmitted first. Slave addresses can freely be allocated by the
designer, but the address 0000 000 is reserved for a general call.

When a general call is issued, all slaves should respond by pulling the SDA line low in the ACK
cycle. A general call is used when a Master wishes to transmit the same message to several
slaves in the system. When the general call address followed by a Write bit is transmitted on the
bus, all slaves set up to acknowledge the general call will pull the SDA line low in the ack cycle.
The following data packets will then be received by all the slaves that acknowledged the general
call. Note that transmitting the general call address followed by a Read bit is meaningless, as
this would cause contention if several slaves started transmitting different data.

All addresses of the format 1111 xxx should be reserved for future purposes.

15.4.4 Data Packet Format
All data packets transmitted on the TWI bus are nine bits long, consisting of one data byte and
an acknowledge bit. During a data transfer, the Master generates the clock and the START and
STOP conditions, while the Receiver is responsible for acknowledging the reception. An
Acknowledge (ACK) is signalled by the Receiver pulling the SDA line low during the ninth SCL
cycle. If the Receiver leaves the SDA line high, a NACK is signalled. When the Receiver has
received the last byte, or for some reason cannot receive any more bytes, it should inform the
Transmitter by sending a NACK after the final byte. The MSB of the data byte is transmitted first.

Figure 15-5. Data Packet Format

15.4.5 Combining Address and Data Packets into a Transmission
A transmission basically consists of a START condition, a SLA+R/W, one or more data packets
and a STOP condition. An empty message, consisting of a START followed by a STOP condi-
tion, is illegal. Note that the Wired-ANDing of the SCL line can be used to implement
handshaking between the Master and the Slave. The Slave can extend the SCL low period by
pulling the SCL line low. This is useful if the clock speed set up by the Master is too fast for the
Slave, or the Slave needs extra time for processing between the data transmissions. The Slave
extending the SCL low period will not affect the SCL high period, which is determined by the
Master. As a consequence, the Slave can reduce the TWI data transfer speed by prolonging the
SCL duty cycle.

Figure 15-6 shows a typical data transmission. Note that several data bytes can be transmitted
between the SLA+R/W and the STOP condition, depending on the software protocol imple-
mented by the application software.

1 2 7 8 9

Data MSB Data LSB ACK

Aggregate
SDA

SDA from
Transmitter

SDA from
Receiver

SCL from
Master

SLA+R/W Data Byte
STOP, REPEATED

START or Next
Data Byte

133
8008H–AVR–04/11

ATtiny48/88

Figure 15-6. Typical Data Transmission

15.5 Multi-master Bus Systems, Arbitration and Synchronization
The TWI protocol allows bus systems with several masters. Special concerns have been taken
in order to ensure that transmissions will proceed as normal, even if two or more masters initiate
a transmission at the same time. Two problems arise in multi-master systems:

• An algorithm must be implemented allowing only one of the masters to complete the
transmission. All other masters should cease transmission when they discover that they have
lost the selection process. This selection process is called arbitration. When a contending
master discovers that it has lost the arbitration process, it should immediately switch to Slave
mode to check whether it is being addressed by the winning master. The fact that multiple
masters have started transmission at the same time should not be detectable to the slaves,
i.e. the data being transferred on the bus must not be corrupted.

• Different masters may use different SCL frequencies. A scheme must be devised to
synchronize the serial clocks from all masters, in order to let the transmission proceed in a
lockstep fashion. This will facilitate the arbitration process.

Figure 15-7. SCL Synchronization Between Multiple Masters

1 2 7 8 9

Data Byte

Data MSB Data LSB ACK

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK

SLA+R/W STOP

TA low TA high

SCL from
Master A

SCL from
Master B

SCL Bus
Line

TBlow TBhigh

Masters Start
Counting Low Period

Masters Start
Counting High Period

134
8008H–AVR–04/11

ATtiny48/88

The wired-ANDing of the bus lines is used to solve both these problems. The serial clocks from
all masters will be wired-ANDed, yielding a combined clock with a high period equal to the one
from the Master with the shortest high period. The low period of the combined clock is equal to
the low period of the Master with the longest low period. Note that all masters listen to the SCL
line, effectively starting to count their SCL high and low time-out periods when the combined
SCL line goes high or low, respectively.

Arbitration is carried out by all masters continuously monitoring the SDA line after outputting
data. If the value read from the SDA line does not match the value the Master had output, it has
lost the arbitration. Note that a Master can only lose arbitration when it outputs a high SDA value
while another Master outputs a low value. The losing Master should immediately go to Slave
mode, checking if it is being addressed by the winning Master. The SDA line should be left high,
but losing masters are allowed to generate a clock signal until the end of the current data or
address packet. Arbitration will continue until only one Master remains, and this may take many
bits. If several masters are trying to address the same Slave, arbitration will continue into the
data packet.

Figure 15-8. Arbitration Between Two Masters

Note that arbitration is not allowed between:

• A REPEATED START condition and a data bit.

• A STOP condition and a data bit.

• A REPEATED START and a STOP condition.

It is the user software’s responsibility to ensure that these illegal arbitration conditions never
occur. This implies that in multi-master systems, all data transfers must use the same composi-
tion of SLA+R/W and data packets. In other words: All transmissions must contain the same
number of data packets, otherwise the result of the arbitration is undefined.

SDA from
Master A

SDA from
Master B

SDA Line

Synchronized
SCL Line

START Master A Loses
Arbitration, SDAA SDA

135
8008H–AVR–04/11

ATtiny48/88

15.6 Overview of the TWI Module
The TWI module is comprised of several submodules, as shown in Figure 15-9. All registers
drawn in a thick line are accessible through the AVR data bus.

Figure 15-9. Overview of the TWI Module

15.6.1 SCL and SDA Pins
These pins interface the AVR TWI with the rest of the MCU system. The output drivers contain a
slew-rate limiter in order to conform to the TWI specification. The input stages contain a spike
suppression unit removing spikes shorter than 50 ns. Note that the internal pull-ups in the AVR
pads can be enabled by setting the PORT bits corresponding to the SCL and SDA pins, as
explained in the I/O Port section. The internal pull-ups can in some systems eliminate the need
for external ones.

15.6.2 Bit Rate Generator Unit
When operating in a Master mode this unit controls the period of SCL. The SCL period is con-
trolled by settings in the TWI Bit Rate Register (TWBR) and the Prescaler bits in the TWI Status
Register (TWSR). Slave operation does not depend on bit rate or prescaler settings, but the
clock frequency in the slave must be at least 16 times higher than the SCL frequency. Note that
slaves may prolong the SCL low period, thereby reducing the average TWI bus clock period.

T
W

I U
ni

t

Address Register
(TWAR)

Address Match Unit

Address Comparator

Control Unit

Control Register
(TWCR)

Status Register
(TWSR)

State Machine and
Status control

SCL

Slew-rate
Control

Spike
Filter

SDA

Slew-rate
Control

Spike
Filter

Bit Rate Generator

Bit Rate Register
(TWBR)

Prescaler

Bus Interface Unit

START / STOP
Control

Arbitration detection Ack

Spike Suppression

Address/Data Shift
Register (TWDR)

136
8008H–AVR–04/11

ATtiny48/88

The TWI can be set to operate in high-speed mode, as described in “TWHSR – TWI High Speed
Register” on page 160. In high-speed mode the TWI uses the system clock, whereas in normal
mode it relies on a prescaled version of the same. Depending on the clock signal used, the SCL
frequency is generated according to one of the following equations.

In normal mode:

In high-speed mode:

...where:

• clkI/O = prescaled system clock, see Figure 6-1 on page 28

• clkTWIHS = system clock, see Figure 6-1 on page 28

• TWBR = value of TWI Bit Rate Register, see “TWBR – TWI Bit Rate Register” on page 156

• TWPS = value of TWI prescaler, see Table 15-7 on page 159

Note: In TWI Master mode TWBR must be 10, or higher .

15.6.3 Bus Interface Unit
This unit contains the Data and Address Shift Register (TWDR), a START/STOP Controller and
Arbitration detection hardware. The TWDR contains the address or data bytes to be transmitted,
or the address or data bytes received. In addition to the 8-bit TWDR, the Bus Interface Unit also
contains a register containing the (N)ACK bit to be transmitted or received. This (N)ACK Regis-
ter is not directly accessible by the application software. However, when receiving, it can be set
or cleared by manipulating the TWI Control Register (TWCR). When in Transmitter mode, the
value of the received (N)ACK bit can be determined by the value in the TWSR.

The START/STOP Controller is responsible for generation and detection of START, REPEATED
START, and STOP conditions. The START/STOP controller is able to detect START and STOP
conditions even when the AVR MCU is in one of the sleep modes, enabling the MCU to wake up
if addressed by a Master.

If the TWI has initiated a transmission as Master, the Arbitration Detection hardware continu-
ously monitors the transmission trying to determine if arbitration is in process. If the TWI has lost
an arbitration, the Control Unit is informed. Correct action can then be taken and appropriate
status codes generated.

15.6.4 Address Match Unit
The Address Match unit checks if received address bytes match the seven-bit address in the
TWI Address Register (TWAR). If the TWI General Call Recognition Enable (TWGCE) bit in the
TWAR is written to one, all incoming address bits will also be compared against the General Call
address. Upon an address match, the Control Unit is informed, allowing correct action to be
taken. The TWI may or may not acknowledge its address, depending on settings in the TWCR.
The Address Match unit is able to compare addresses even when the AVR MCU is in sleep

fSCL
clkI/O

16 2 TWBR× TWPS×()+
--=

fSCL
clkTWIHS

16 2 TWBR× TWPS×()+
--=

137
8008H–AVR–04/11

ATtiny48/88

mode, enabling the MCU to wake up if addressed by a Master. If another interrupt (e.g., INT0)
occurs during TWI Power-down address match and wakes up the CPU, the TWI aborts opera-
tion and return to it’s idle state. If this cause any problems, ensure that TWI Address Match is the
only enabled interrupt when entering Power-down.

15.6.5 Control Unit
The Control unit monitors the TWI bus and generates responses corresponding to settings in the
TWI Control Register (TWCR). When an event requiring the attention of the application occurs
on the TWI bus, the TWI Interrupt Flag (TWINT) is asserted. In the next clock cycle, the TWI Sta-
tus Register (TWSR) is updated with a status code identifying the event. The TWSR only
contains relevant status information when the TWI Interrupt Flag is asserted. At all other times,
the TWSR contains a special status code indicating that no relevant status information is avail-
able. As long as the TWINT Flag is set, the SCL line is held low. This allows the application
software to complete its tasks before allowing the TWI transmission to continue.

The TWINT Flag is set in the following situations:

• After the TWI has transmitted a START/REPEATED START condition.

• After the TWI has transmitted SLA+R/W.

• After the TWI has transmitted an address byte.

• After the TWI has lost arbitration.

• After the TWI has been addressed by own slave address or general call.

• After the TWI has received a data byte.

• After a STOP or REPEATED START has been received while still addressed as a Slave.

• When a bus error has occurred due to an illegal START or STOP condition.

15.7 Using the TWI
The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events, like
reception of a byte or transmission of a START condition. Because the TWI is interrupt-based,
the application software is free to carry on other operations during a TWI byte transfer. Note that
the TWI Interrupt Enable (TWIE) bit in TWCR together with the Global Interrupt Enable bit in
SREG allow the application to decide whether or not assertion of the TWINT Flag should gener-
ate an interrupt request. If the TWIE bit is cleared, the application must poll the TWINT Flag in
order to detect actions on the TWI bus.

When the TWINT Flag is asserted, the TWI has finished an operation and awaits application
response. In this case, the TWI Status Register (TWSR) contains a value indicating the current
state of the TWI bus. The application software can then decide how the TWI should behave in
the next TWI bus cycle by manipulating the TWCR and TWDR Registers.

Figure 15-10 is a simple example of how the application can interface to the TWI hardware. In
this example, a Master wishes to transmit a single data byte to a Slave. This description is quite
abstract, a more detailed explanation follows later in this section. A simple code example imple-
menting the desired behavior is also presented.

138
8008H–AVR–04/11

ATtiny48/88

Figure 15-10. Interfacing the Application to the TWI in a Typical Transmission

1. The first step in a TWI transmission is to transmit a START condition. This is done by
writing a specific value into TWCR, instructing the TWI hardware to transmit a START
condition. Which value to write is described later on. However, it is important that the
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI
will not start any operation as long as the TWINT bit in TWCR is set. Immediately after
the application has cleared TWINT, the TWI will initiate transmission of the START
condition.

2. When the START condition has been transmitted, the TWINT Flag in TWCR is set, and
TWSR is updated with a status code indicating that the START condition has success-
fully been sent.

3. The application software should now examine the value of TWSR, to make sure that the
START condition was successfully transmitted. If TWSR indicates otherwise, the appli-
cation software might take some special action, like calling an error routine. Assuming
that the status code is as expected, the application must load SLA+W into TWDR.
Remember that TWDR is used both for address and data. After TWDR has been
loaded with the desired SLA+W, a specific value must be written to TWCR, instructing
the TWI hardware to transmit the SLA+W present in TWDR. Which value to write is
described later on. However, it is important that the TWINT bit is set in the value written.
Writing a one to TWINT clears the flag. The TWI will not start any operation as long as
the TWINT bit in TWCR is set. Immediately after the application has cleared TWINT,
the TWI will initiate transmission of the address packet.

4. When the address packet has been transmitted, the TWINT Flag in TWCR is set, and
TWSR is updated with a status code indicating that the address packet has success-
fully been sent. The status code will also reflect whether a Slave acknowledged the
packet or not.

5. The application software should now examine the value of TWSR, to make sure that the
address packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some spe-
cial action, like calling an error routine. Assuming that the status code is as expected,
the application must load a data packet into TWDR. Subsequently, a specific value
must be written to TWCR, instructing the TWI hardware to transmit the data packet
present in TWDR. Which value to write is described later on. However, it is important

START SLA+W A Data A STOP

1. Application
writes to TWCR to

initiate
transmission of

START

2. TWINT set.
Status code indicates
START condition sent

4. TWINT set.
Status code indicates

SLA+W sent, ACK
received

6. TWINT set.
Status code indicates

data sent, ACK received

3. Check TWSR to see if START was
sent. Application loads SLA+W into

TWDR, and loads appropriate control
signals into TWCR, makin sure that

TWINT is written to one,
and TWSTA is written to zero.

5. Check TWSR to see if SLA+W was
sent and ACK received.

Application loads data into TWDR, and
loads appropriate control signals into
TWCR, making sure that TWINT is

written to one

7. Check TWSR to see if data was sent
and ACK received.

Application loads appropriate control
signals to send STOP into TWCR,

making sure that TWINT is written to one

TWI bus

Indicates
TWINT set

A
pp

lic
at

io
n

A
ct

io
n

T
W

I
H

ar
dw

ar
e

A
ct

io
n

139
8008H–AVR–04/11

ATtiny48/88

that the TWINT bit is set in the value written. Writing a one to TWINT clears the flag.
The TWI will not start any operation as long as the TWINT bit in TWCR is set. Immedi-
ately after the application has cleared TWINT, the TWI will initiate transmission of the
data packet.

6. When the data packet has been transmitted, the TWINT Flag in TWCR is set, and
TWSR is updated with a status code indicating that the data packet has successfully
been sent. The status code will also reflect whether a Slave acknowledged the packet
or not.

7. The application software should now examine the value of TWSR, to make sure that the
data packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some spe-
cial action, like calling an error routine. Assuming that the status code is as expected,
the application must write a specific value to TWCR, instructing the TWI hardware to
transmit a STOP condition. Which value to write is described later on. However, it is
important that the TWINT bit is set in the value written. Writing a one to TWINT clears
the flag. The TWI will not start any operation as long as the TWINT bit in TWCR is set.
Immediately after the application has cleared TWINT, the TWI will initiate transmission
of the STOP condition. Note that TWINT is NOT set after a STOP condition has been
sent.

Even though this example is simple, it shows the principles involved in all TWI transmissions.
These can be summarized as follows:

• When the TWI has finished an operation and expects application response, the TWINT Flag
is set. The SCL line is pulled low until TWINT is cleared.

• When the TWINT Flag is set, the user must update all TWI Registers with the value relevant
for the next TWI bus cycle. As an example, TWDR must be loaded with the value to be
transmitted in the next bus cycle.

• After all TWI Register updates and other pending application software tasks have been
completed, TWCR is written. When writing TWCR, the TWINT bit should be set. Writing a
one to TWINT clears the flag. The TWI will then commence executing whatever operation
was specified by the TWCR setting.

In the following an assembly and C implementation of the example is given. Note that the code
below assumes that several definitions have been made, for example by using include-files.

Assembly Code Example C Example Comments

1

ldi r16,
(1<<TWINT)|(1<<TWSTA)|

(1<<TWEN)

out TWCR, r16

TWCR = (1<<TWINT)|(1<<TWSTA)|

(1<<TWEN)
Send START condition

2

wait1:

in r16,TWCR

sbrs r16,TWINT

rjmp wait1

while (!(TWCR & (1<<TWINT)))

; Wait for TWINT Flag set. This
indicates that the START
condition has been transmitted

140
8008H–AVR–04/11

ATtiny48/88

15.8 Transmission Modes
The TWI can operate in one of four major modes. These are named Master Transmitter (MT),
Master Receiver (MR), Slave Transmitter (ST) and Slave Receiver (SR). Several of these
modes can be used in the same application. As an example, the TWI can use MT mode to write
data into a TWI EEPROM, MR mode to read the data back from the EEPROM. If other masters
are present in the system, some of these might transmit data to the TWI, and then SR mode
would be used. It is the application software that decides which modes are legal.

3

in r16,TWSR

andi r16, 0xF8

cpi r16, START

brne ERROR

if ((TWSR & 0xF8) != START)

ERROR();
Check value of TWI Status
Register. Mask prescaler bits. If
status different from START go to
ERROR

ldi r16, SLA_W

out TWDR, r16

ldi r16, (1<<TWINT) |
(1<<TWEN)

out TWCR, r16

TWDR = SLA_W;

TWCR = (1<<TWINT) |
(1<<TWEN);

Load SLA_W into TWDR
Register. Clear TWINT bit in
TWCR to start transmission of
address

4

wait2:

in r16,TWCR

sbrs r16,TWINT

rjmp wait2

while (!(TWCR & (1<<TWINT)))

;
Wait for TWINT Flag set. This
indicates that the SLA+W has
been transmitted, and
ACK/NACK has been received.

5

in r16,TWSR

andi r16, 0xF8

cpi r16, MT_SLA_ACK

brne ERROR

if ((TWSR & 0xF8) !=
MT_SLA_ACK)

ERROR();

Check value of TWI Status
Register. Mask prescaler bits. If
status different from
MT_SLA_ACK go to ERROR

ldi r16, DATA

out TWDR, r16

ldi r16, (1<<TWINT) |
(1<<TWEN)

out TWCR, r16

TWDR = DATA;

TWCR = (1<<TWINT) |
(1<<TWEN);

Load DATA into TWDR Register.
Clear TWINT bit in TWCR to
start transmission of data

6

wait3:

in r16,TWCR

sbrs r16,TWINT

rjmp wait3

while (!(TWCR & (1<<TWINT)))

;
Wait for TWINT Flag set. This
indicates that the DATA has been
transmitted, and ACK/NACK has
been received.

7

in r16,TWSR

andi r16, 0xF8

cpi r16, MT_DATA_ACK

brne ERROR

if ((TWSR & 0xF8) !=
MT_DATA_ACK)

ERROR();

Check value of TWI Status
Register. Mask prescaler bits. If
status different from
MT_DATA_ACK go to ERROR

ldi r16,
(1<<TWINT)|(1<<TWEN)|

(1<<TWSTO)

out TWCR, r16

TWCR = (1<<TWINT)|(1<<TWEN)|

(1<<TWSTO);
Transmit STOP condition

Assembly Code Example C Example Comments

141
8008H–AVR–04/11

ATtiny48/88

The following sections describe each of these modes. Possible status codes are described
along with figures detailing data transmission in each of the modes. These figures contain the
following abbreviations:

S: START condition

Rs: REPEATED START condition

R: Read bit (high level at SDA)

W: Write bit (low level at SDA)

A: Acknowledge bit (low level at SDA)

A: Not acknowledge bit (high level at SDA)

Data: 8-bit data byte

P: STOP condition

SLA: Slave Address

In Figure 15-12 to Figure 15-18, circles are used to indicate that the TWINT Flag is set. The
numbers in the circles show the status code held in TWSR, with the prescaler bits masked to
zero. At these points, actions must be taken by the application to continue or complete the TWI
transfer. The TWI transfer is suspended until the TWINT Flag is cleared by software.

When the TWINT Flag is set, the status code in TWSR is used to determine the appropriate soft-
ware action. For each status code, the required software action and details of the following serial
transfer are given in Table 15-2 to Table 15-5. Note that the prescaler bits are masked to zero in
these tables.

15.8.1 Master Transmitter Mode
In the Master Transmitter mode, a number of data bytes are transmitted to a Slave Receiver
(see Figure 15-11). In order to enter a Master mode, a START condition must be transmitted.
The format of the following address packet determines whether Master Transmitter or Master
Receiver mode is to be entered. If SLA+W is transmitted, MT mode is entered, if SLA+R is trans-
mitted, MR mode is entered. All the status codes mentioned in this section assume that the
prescaler bits are zero or are masked to zero.

Figure 15-11. Data Transfer in Master Transmitter Mode

Device 1
MASTER

TRANSMITTER

Device 2
SLAVE

RECEIVER
Device 3 Device n

SDA

SCL

........ R1 R2

VCC

142
8008H–AVR–04/11

ATtiny48/88

A START condition is sent by writing the following value to TWCR:

TWEN must be set to enable the 2-wire Serial Interface, TWSTA must be written to one to trans-
mit a START condition and TWINT must be written to one to clear the TWINT Flag. The TWI will
then test the 2-wire Serial Bus and generate a START condition as soon as the bus becomes
free. After a START condition has been transmitted, the TWINT Flag is set by hardware, and the
status code in TWSR will be 0x08 (see Table 15-2). In order to enter MT mode, SLA+W must be
transmitted. This is done by writing SLA+W to TWDR. Thereafter the TWINT bit should be
cleared (by writing it to one) to continue the transfer. This is accomplished by writing the follow-
ing value to TWCR:

When SLA+W have been transmitted and an acknowledgement bit has been received, TWINT is
set again and a number of status codes in TWSR are possible. Possible status codes in Master
mode are 0x18, 0x20, or 0x38. The appropriate action to be taken for each of these status codes
is detailed in Table 15-2.

When SLA+W has been successfully transmitted, a data packet should be transmitted. This is
done by writing the data byte to TWDR. TWDR must only be written when TWINT is high. If not,
the access will be discarded, and the Write Collision bit (TWWC) will be set in the TWCR Regis-
ter. After updating TWDR, the TWINT bit should be cleared (by writing it to one) to continue the
transfer. This is accomplished by writing the following value to TWCR:

This scheme is repeated until the last byte has been sent and the transfer is ended by generat-
ing a STOP condition or a repeated START condition. A STOP condition is generated by writing
the following value to TWCR:

A REPEATED START condition is generated by writing the following value to TWCR:

After a repeated START condition (state 0x10) the 2-wire Serial Interface can access the same
Slave again, or a new Slave without transmitting a STOP condition. Repeated START enables

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 1 X 1 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 1 X 0 1 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 1 X 1 0 X 1 0 X

143
8008H–AVR–04/11

ATtiny48/88

the Master to switch between Slaves, Master Transmitter mode and Master Receiver mode with-
out losing control of the bus.

Table 15-2. Status codes for Master Transmitter Mode
Status Code
(TWSR)
Prescaler Bits
are 0

Status of the 2-wire Serial Bus
and 2-wire Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware

To/from TWDR To TWCR
STA STO TWIN

T
TWE

A
0x08 A START condition has been

transmitted
Load SLA+W 0 0 1 X SLA+W will be transmitted;

ACK or NOT ACK will be received
0x10 A repeated START condition

has been transmitted
Load SLA+W or

Load SLA+R

0

0

0

0

1

1

X

X

SLA+W will be transmitted;
ACK or NOT ACK will be received
SLA+R will be transmitted;
Logic will switch to Master Receiver mode

0x18 SLA+W has been transmitted;
ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

0x20 SLA+W has been transmitted;
NOT ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

0x28 Data byte has been transmit-
ted;
ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

0x30 Data byte has been transmit-
ted;
NOT ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

0x38 Arbitration lost in SLA+W or
data bytes

No TWDR action or

No TWDR action

0

1

0

0

1

1

X

X

2-wire Serial Bus will be released and not addressed
Slave mode entered
A START condition will be transmitted when the bus
becomes free

144
8008H–AVR–04/11

ATtiny48/88

Figure 15-12. Formats and States in the Master Transmitter Mode

15.8.2 Master Receiver Mode
In the Master Receiver mode, a number of data bytes are received from a Slave Transmitter
(Slave see Figure 15-13). In order to enter a Master mode, a START condition must be transmit-
ted. The format of the following address packet determines whether Master Transmitter or
Master Receiver mode is to be entered. If SLA+W is transmitted, MT mode is entered, if SLA+R
is transmitted, MR mode is entered. All the status codes mentioned in this section assume that
the prescaler bits are zero or are masked to zero.

S SLA W A DATA A P

$08 $18 $28

R SLA W

$10

A P

$20

P

$30

A or A

$38

A

Other master
continues A or A

$38

Other master
continues

R

A

$68

Other master
continues

$78 $B0
To corresponding
states in slave mode

MT

MR

Successfull
transmission
to a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Not acknowledge
received after a data
byte

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

DATA A

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Serial Bus. The
prescaler bits are zero or masked to zero

S

145
8008H–AVR–04/11

ATtiny48/88

Figure 15-13. Data Transfer in Master Receiver Mode

A START condition is sent by writing the following value to TWCR:

TWEN must be written to one to enable the 2-wire Serial Interface, TWSTA must be written to
one to transmit a START condition and TWINT must be set to clear the TWINT Flag. The TWI
will then test the 2-wire Serial Bus and generate a START condition as soon as the bus
becomes free. After a START condition has been transmitted, the TWINT Flag is set by hard-
ware, and the status code in TWSR will be 0x08 (See Table 15-2). In order to enter MR mode,
SLA+R must be transmitted. This is done by writing SLA+R to TWDR. Thereafter the TWINT bit
should be cleared (by writing it to one) to continue the transfer. This is accomplished by writing
the following value to TWCR:

When SLA+R have been transmitted and an acknowledgement bit has been received, TWINT is
set again and a number of status codes in TWSR are possible. Possible status codes in Master
mode are 0x38, 0x40, or 0x48. The appropriate action to be taken for each of these status codes
is detailed in Table 15-3. Received data can be read from the TWDR Register when the TWINT
Flag is set high by hardware. This scheme is repeated until the last byte has been received.
After the last byte has been received, the MR should inform the ST by sending a NACK after the
last received data byte. The transfer is ended by generating a STOP condition or a repeated
START condition. A STOP condition is generated by writing the following value to TWCR:

A REPEATED START condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 1 X 1 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 1 X 0 1 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 1 X 1 0 X 1 0 X

Device 1
MASTER

RECEIVER

Device 2
SLAVE

TRANSMITTER
Device 3 Device n

SDA

SCL

........ R1 R2

VCC

146
8008H–AVR–04/11

ATtiny48/88

After a repeated START condition (state 0x10) the 2-wire Serial Interface can access the same
Slave again, or a new Slave without transmitting a STOP condition. Repeated START enables
the Master to switch between Slaves, Master Transmitter mode and Master Receiver mode with-
out losing control over the bus.

Table 15-3. Status codes for Master Receiver Mode
Status Code
(TWSR)
Prescaler Bits
are 0

Status of the 2-wire Serial Bus
and 2-wire Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR
STA STO TWIN

T
TWE

A
0x08 A START condition has been

transmitted
Load SLA+R 0 0 1 X SLA+R will be transmitted

ACK or NOT ACK will be received
0x10 A repeated START condition

has been transmitted
Load SLA+R or

Load SLA+W

0

0

0

0

1

1

X

X

SLA+R will be transmitted
ACK or NOT ACK will be received
SLA+W will be transmitted
Logic will switch to Master Transmitter mode

0x38 Arbitration lost in SLA+R or
NOT ACK bit

No TWDR action or

No TWDR action

0

1

0

0

1

1

X

X

2-wire Serial Bus will be released and not addressed
Slave mode will be entered
A START condition will be transmitted when the bus
becomes free

0x40 SLA+R has been transmitted;
ACK has been received

No TWDR action or

No TWDR action

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x48 SLA+R has been transmitted;
NOT ACK has been received

No TWDR action or
No TWDR action or

No TWDR action

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and TWSTO Flag
will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

0x50 Data byte has been received;
ACK has been returned

Read data byte or

Read data byte

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x58 Data byte has been received;
NOT ACK has been returned

Read data byte or
Read data byte or

Read data byte

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and TWSTO Flag
will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

147
8008H–AVR–04/11

ATtiny48/88

Figure 15-14. Formats and States in the Master Receiver Mode

15.8.3 Slave Receiver Mode
In the Slave Receiver mode, a number of data bytes are received from a Master Transmitter
(see Figure 15-15). All the status codes mentioned in this section assume that the prescaler bits
are zero or are masked to zero.

Figure 15-15. Data transfer in Slave Receiver mode

S SLA R A DATA A

$08 $40 $50

SLA R

$10

A P

$48

A or A

$38

Other master
continues

$38

Other master
continues

W

A

$68

Other master
continues

$78 $B0
To corresponding
states in slave mode

MR

MT

Successfull
reception
from a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

DATA A

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Serial Bus. The
prescaler bits are zero or masked to zero

PDATA A

$58

A

RS

Device 3 Device n

SDA

SCL

........ R1 R2

VCC

Device 2
MASTER

TRANSMITTER

Device 1
SLAVE

RECEIVER

148
8008H–AVR–04/11

ATtiny48/88

To initiate the Slave Receiver mode, TWAR and TWCR must be initialized as follows:

The upper 7 bits are the address to which the 2-wire Serial Interface will respond when
addressed by a Master. If the LSB is set, the TWI will respond to the general call address (0x00),
otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable
the acknowledgement of the device’s own slave address or the general call address. TWSTA
and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own
slave address (or the general call address if enabled) followed by the data direction bit. If the
direction bit is “0” (write), the TWI will operate in SR mode, otherwise ST mode is entered. After
its own slave address and the write bit have been received, the TWINT Flag is set and a valid
status code can be read from TWSR. The status code is used to determine the appropriate soft-
ware action. The appropriate action to be taken for each status code is detailed in Table 15-4.
The Slave Receiver mode may also be entered if arbitration is lost while the TWI is in the Master
mode (see states 0x68 and 0x78).

If the TWEA bit is reset during a transfer, the TWI will return a “Not Acknowledge” (“1”) to SDA
after the next received data byte. This can be used to indicate that the Slave is not able to
receive any more bytes. While TWEA is zero, the TWI does not acknowledge its own slave
address. However, the 2-wire Serial Bus is still monitored and address recognition may resume
at any time by setting TWEA. This implies that the TWEA bit may be used to temporarily isolate
the TWI from the 2-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA
bit is set, the interface can still acknowledge its own slave address or the general call address by
using the 2-wire Serial Bus clock as a clock source. The part will then wake up from sleep and
the TWI will hold the SCL clock low during the wake up and until the TWINT Flag is cleared (by
writing it to one). Further data reception will be carried out as normal, with the AVR clocks run-
ning as normal. Observe that if the AVR is set up with a long start-up time, the SCL line may be
held low for a long time, blocking other data transmissions.

Note that the 2-wire Serial Interface Data Register – TWDR does not reflect the last byte present
on the bus when waking up from these Sleep modes.

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE
value Device’s Own Slave Address

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 0 1 0 0 0 1 0 X

149
8008H–AVR–04/11

ATtiny48/88

Table 15-4. Status Codes for Slave Receiver Mode
Status Code
(TWSR)
Prescaler Bits
are 0

Status of the 2-wire Serial Bus
and 2-wire Serial Interface Hard-
ware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR
STA STO TWIN

T
TWE

A
0x60 Own SLA+W has been received;

ACK has been returned
No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x68 Arbitration lost in SLA+R/W as
Master; own SLA+W has been
received; ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x70 General call address has been
received; ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x78 Arbitration lost in SLA+R/W as
Master; General call address has
been received; ACK has been
returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x80 Previously addressed with own
SLA+W; data has been received;
ACK has been returned

Read data byte or

Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x88 Previously addressed with own
SLA+W; data has been received;
NOT ACK has been returned

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

0x90 Previously addressed with
general call; data has been re-
ceived; ACK has been returned

Read data byte or

Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x98 Previously addressed with
general call; data has been
received; NOT ACK has been
returned

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

0xA0 A STOP condition or repeated
START condition has been
received while still addressed as
Slave

No action 0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

150
8008H–AVR–04/11

ATtiny48/88

Figure 15-16. Formats and States in the Slave Receiver Mode

15.8.4 Slave Transmitter Mode
In the Slave Transmitter mode, a number of data bytes are transmitted to a Master Receiver
(see Figure 15-17). All the status codes mentioned in this section assume that the prescaler bits
are zero or are masked to zero.

Figure 15-17. Data Transfer in Slave Transmitter Mode

S SLA W A DATA A

$60 $80

$88

A

$68

Reception of the own
slave address and one or
more data bytes. All are
acknowledged

Last data byte received
is not acknowledged

Arbitration lost as master
and addressed as slave

Reception of the general call
address and one or more data
bytes

Last data byte received is
not acknowledged

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Serial Bus. The
prescaler bits are zero or masked to zero

P or SDATA A

$80 $A0

P or SA

A DATA A

$70 $90

$98

A

$78

P or SDATA A

$90 $A0

P or SA

General Call

Arbitration lost as master and
addressed as slave by general call

DATA A

Device 3 Device n

SDA

SCL

........ R1 R2

VCC

Device 2
MASTER

RECEIVER

Device 1
SLAVE

TRANSMITTER

151
8008H–AVR–04/11

ATtiny48/88

To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:

The upper seven bits are the address to which the 2-wire Serial Interface will respond when
addressed by a Master. If the LSB is set, the TWI will respond to the general call address (0x00),
otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable
the acknowledgement of the device’s own slave address or the general call address. TWSTA
and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own
slave address (or the general call address if enabled) followed by the data direction bit. If the
direction bit is “1” (read), the TWI will operate in ST mode, otherwise SR mode is entered. After
its own slave address and the write bit have been received, the TWINT Flag is set and a valid
status code can be read from TWSR. The status code is used to determine the appropriate soft-
ware action. The appropriate action to be taken for each status code is detailed in Table 15-5.
The Slave Transmitter mode may also be entered if arbitration is lost while the TWI is in the
Master mode (see state 0xB0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of the trans-
fer. State 0xC0 or state 0xC8 will be entered, depending on whether the Master Receiver
transmits a NACK or ACK after the final byte. The TWI is switched to the not addressed Slave
mode, and will ignore the Master if it continues the transfer. Thus the Master Receiver receives
all “1” as serial data. State 0xC8 is entered if the Master demands additional data bytes (by
transmitting ACK), even though the Slave has transmitted the last byte (TWEA zero and expect-
ing NACK from the Master).

While TWEA is zero, the TWI does not respond to its own slave address. However, the 2-wire
Serial Bus is still monitored and address recognition may resume at any time by setting TWEA.
This implies that the TWEA bit may be used to temporarily isolate the TWI from the 2-wire Serial
Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA
bit is set, the interface can still acknowledge its own slave address or the general call address by
using the 2-wire Serial Bus clock as a clock source. The part will then wake up from sleep and
the TWI will hold the SCL clock will low during the wake up and until the TWINT Flag is cleared
(by writing it to one). Further data transmission will be carried out as normal, with the AVR clocks
running as normal. Observe that if the AVR is set up with a long start-up time, the SCL line may
be held low for a long time, blocking other data transmissions.

Note that the 2-wire Serial Interface Data Register – TWDR does not reflect the last byte present
on the bus when waking up from these sleep modes.

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE
value Device’s Own Slave Address

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 0 1 0 0 0 1 0 X

152
8008H–AVR–04/11

ATtiny48/88

Table 15-5. Status Codes for Slave Transmitter Mode
Status Code
(TWSR)
Prescaler
Bits
are 0

Status of the 2-wire Serial Bus
and 2-wire Serial Interface Hard-
ware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR
STA STO TWIN

T
TWE

A

0xA8 Own SLA+R has been received;
ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

0xB0 Arbitration lost in SLA+R/W as
Master; own SLA+R has been
received; ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

0xB8 Data byte in TWDR has been
transmitted; ACK has been
received

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

0xC0 Data byte in TWDR has been
transmitted; NOT ACK has been
received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

0xC8 Last data byte in TWDR has been
transmitted (TWEA = “0”); ACK
has been received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

153
8008H–AVR–04/11

ATtiny48/88

Figure 15-18. Formats and States in the Slave Transmitter Mode

15.8.5 Miscellaneous States
There are two status codes that do not correspond to a defined TWI state, see Table 15-6.

Status 0xF8 indicates that no relevant information is available because the TWINT Flag is not
set. This occurs between other states, and when the TWI is not involved in a serial transfer.

Status 0x00 indicates that a bus error has occurred during a 2-wire Serial Bus transfer. A bus
error occurs when a START or STOP condition occurs at an illegal position in the format frame.
Examples of such illegal positions are during the serial transfer of an address byte, a data byte,
or an acknowledge bit. When a bus error occurs, TWINT is set. To recover from a bus error, the
TWSTO Flag must set and TWINT must be cleared by writing a logic one to it. This causes the
TWI to enter the not addressed Slave mode and to clear the TWSTO Flag (no other bits in
TWCR are affected). The SDA and SCL lines are released, and no STOP condition is
transmitted.

S SLA R A DATA A

$A8 $B8

A

$B0

Reception of the own
slave address and one or
more data bytes

Last data byte transmitted.
Switched to not addressed
slave (TWEA = '0')

Arbitration lost as master
and addressed as slave

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Serial Bus. The
prescaler bits are zero or masked to zero

P or SDATA

$C0

DATA A

A

$C8

P or SAll 1's

A

Table 15-6. Miscellaneous States
Status Code
(TWSR)
Prescaler Bits
are 0

Status of the 2-wire Serial Bus
and 2-wire Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR
STA STO TWIN

T
TWE

A
0xF8 No relevant state information

available; TWINT = “0”
No TWDR action No TWCR action Wait or proceed current transfer

0x00 Bus error due to an illegal
START or STOP condition

No TWDR action 0 1 1 X Only the internal hardware is affected, no STOP condi-
tion is sent on the bus. In all cases, the bus is released
and TWSTO is cleared.

154
8008H–AVR–04/11

ATtiny48/88

15.8.6 Combining Several TWI Modes
In some cases, several TWI modes must be combined in order to complete the desired action.
Consider for example reading data from a serial EEPROM. Typically, such a transfer involves
the following steps:

1. The transfer must be initiated.

2. The EEPROM must be instructed what location should be read.

3. The reading must be performed.

4. The transfer must be finished.

Note that data is transmitted both from Master to Slave and vice versa. The Master must instruct
the Slave what location it wants to read, requiring the use of the MT mode. Subsequently, data
must be read from the Slave, implying the use of the MR mode. Thus, the transfer direction must
be changed. The Master must keep control of the bus during all these steps, and the steps
should be carried out as an atomical operation. If this principle is violated in a multi master sys-
tem, another Master can alter the data pointer in the EEPROM between steps 2 and 3, and the
Master will read the wrong data location. Such a change in transfer direction is accomplished by
transmitting a REPEATED START between the transmission of the address byte and reception
of the data. After a REPEATED START, the Master keeps ownership of the bus. The following
figure shows the flow in this transfer.

Figure 15-19. Combining Several TWI Modes to Access a Serial EEPROM

15.9 Multi-master Systems and Arbitration
If multiple masters are connected to the same bus, transmissions may be initiated simultane-
ously by one or more of them. The TWI standard ensures that such situations are handled in
such a way that one of the masters will be allowed to proceed with the transfer, and that no data
will be lost in the process. An example of an arbitration situation is depicted below, where two
masters are trying to transmit data to a Slave Receiver.

Master Transmitter Master Receiver

S = START Rs = REPEATED START P = STOP

Transmitted from master to slave Transmitted from slave to master

S SLA+W A ADDRESS A Rs SLA+R A DATA A P

155
8008H–AVR–04/11

ATtiny48/88

Figure 15-20. An Arbitration Example

Several different scenarios may arise during arbitration, as described below:

• Two or more masters are performing identical communication with the same Slave. In this
case, neither the Slave nor any of the masters will know about the bus contention.

• Two or more masters are accessing the same Slave with different data or direction bit. In this
case, arbitration will occur, either in the READ/WRITE bit or in the data bits. The masters
trying to output a one on SDA while another Master outputs a zero will lose the arbitration.
Losing masters will switch to not addressed Slave mode or wait until the bus is free and
transmit a new START condition, depending on application software action.

• Two or more masters are accessing different slaves. In this case, arbitration will occur in the
SLA bits. Masters trying to output a one on SDA while another Master outputs a zero will lose
the arbitration. Masters losing arbitration in SLA will switch to Slave mode to check if they are
being addressed by the winning Master. If addressed, they will switch to SR or ST mode,
depending on the value of the READ/WRITE bit. If they are not being addressed, they will
switch to not addressed Slave mode or wait until the bus is free and transmit a new START
condition, depending on application software action.

This is summarized in Figure 15-21. Possible status values are given in circles.

Figure 15-21. Possible Status Codes Caused by Arbitration

Device 1
MASTER

TRANSMITTER

Device 2
MASTER

TRANSMITTER

Device 3
SLAVE

RECEIVER
Device n

SDA

SCL

........ R1 R2

VCC

Own
Address / General Call

received

Arbitration lost in SLA

TWI bus will be released and not addressed slave mode will be entered
A START condition will be transmitted when the bus becomes free

No

Arbitration lost in Data

Direction

Yes

Write Data byte will be received and NOT ACK will be returned
Data byte will be received and ACK will be returned

Last data byte will be transmitted and NOT ACK should be received
Data byte will be transmitted and ACK should be received

Read
B0

68/78

38

SLASTART Data STOP

156
8008H–AVR–04/11

ATtiny48/88

15.10 Compatibility with SMBus
As with any other I2C-compliant interface there are known compatibility issues the designer
should be aware of before connecting a TWI device to SMBus devices. For use in SMBus envi-
ronments, the following should be noted:

• All I/O pins of an AVR, including those of the two-wire interface, have protection diodes to
both supply voltage and ground. See Figure 10-1 on page 60. This is in contradiction to the
requirements of the SMBus specifications. As a result, supply voltage mustn’t be removed
from the AVR or the protection diodes will pull the bus lines down. Power down and sleep
modes is not a problem, provided supply voltages remain.

• The data hold time of the TWI is lower than specified for SMBus.

• SMBus has a low speed limit, while I2C hasn’t. As a master in an SMBus environment, the
AVR must make sure bus speed does not drop below specifications, since lower bus speeds
trigger timeouts in SMBus slaves. If the AVR is configured a slave there is a possibility of a
bus lockup, since the TWI module doesn't identify timeouts.

15.11 Register Description

15.11.1 TWBR – TWI Bit Rate Register

• Bits 7:0 – TWI Bit Rate Register
TWBR selects the division factor for the bit rate generator. The bit rate generator is a frequency
divider which generates the SCL clock frequency in the Master modes. See “Bit Rate Generator
Unit” on page 135 for calculating bit rates.

If the TWI operates in Master mode TWBR must be set to 10, or higher.

15.11.2 TWCR – TWI Control Register

The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to initiate a
Master access by applying a START condition to the bus, to generate a Receiver acknowledge,
to generate a stop condition, and to control halting of the bus while the data to be written to the
bus are written to the TWDR. It also indicates a write collision if data is attempted written to
TWDR while the register is inaccessible.

• Bit 7 – TWINT: TWI Interrupt Flag
This bit is set by hardware when the TWI has finished its current job and expects application
software response. If the I-bit in SREG and TWIE in TWCR are set, the MCU will jump to the
TWI Interrupt Vector. While the TWINT Flag is set, the SCL low period is stretched. The TWINT
Flag must be cleared by software by writing a logic one to it. Note that this flag is not automati-
cally cleared by hardware when executing the interrupt routine. Also note that clearing this flag

Bit 7 6 5 4 3 2 1 0

(0xB8) TWBR7 TWBR6 TWBR5 TWBR4 TWBR3 TWBR2 TWBR1 TWBR0 TWBR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xBC) TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE TWCR
Read/Write R/W R/W R/W R/W R R/W R R/W

Initial Value 0 0 0 0 0 0 0 0

157
8008H–AVR–04/11

ATtiny48/88

starts the operation of the TWI, so all accesses to the TWI Address Register (TWAR), TWI Sta-
tus Register (TWSR), and TWI Data Register (TWDR) must be complete before clearing this
flag.

• Bit 6 – TWEA: TWI Enable Acknowledge Bit
The TWEA bit controls the generation of the acknowledge pulse. If the TWEA bit is written to
one, the ACK pulse is generated on the TWI bus if the following conditions are met:

1. The device’s own slave address has been received.

2. A general call has been received, while the TWGCE bit in the TWAR is set.

3. A data byte has been received in Master Receiver or Slave Receiver mode.

By writing the TWEA bit to zero, the device can be virtually disconnected from the 2-wire Serial
Bus temporarily. Address recognition can then be resumed by writing the TWEA bit to one
again.

158
8008H–AVR–04/11

ATtiny48/88

• Bit 5 – TWSTA: TWI START Condition Bit

The application writes the TWSTA bit to one when it desires to become a Master on the 2-wire
Serial Bus. The TWI hardware checks if the bus is available, and generates a START condition
on the bus if it is free. However, if the bus is not free, the TWI waits until a STOP condition is
detected, and then generates a new START condition to claim the bus Master status. TWSTA
must be cleared by software when the START condition has been transmitted.

• Bit 4 – TWSTO: TWI STOP Condition Bit
Writing the TWSTO bit to one in Master mode will generate a STOP condition on the 2-wire
Serial Bus. When the STOP condition is executed on the bus, the TWSTO bit is cleared auto-
matically. In Slave mode, setting the TWSTO bit can be used to recover from an error condition.
This will not generate a STOP condition, but the TWI returns to a well-defined unaddressed
Slave mode and releases the SCL and SDA lines to a high impedance state.

• Bit 3 – TWWC: TWI Write Collision Flag
The TWWC bit is set when attempting to write to the TWI Data Register – TWDR when TWINT is
low. This flag is cleared by writing the TWDR Register when TWINT is high.

• Bit 2 – TWEN: TWI Enable Bit
The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is written to
one, the TWI takes control over the I/O pins connected to the SCL and SDA pins, enabling the
slew-rate limiters and spike filters. If this bit is written to zero, the TWI is switched off and all TWI
transmissions are terminated, regardless of any ongoing operation.

• Bit 1 – Res: Reserved Bit
This bit is reserved and will always read as zero.

• Bit 0 – TWIE: TWI Interrupt Enable
When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will be acti-
vated for as long as the TWINT Flag is high.

15.11.3 TWSR – TWI Status Register

• Bits 7:3 – TWS: TWI Status
These 5 bits reflect the status of the TWI logic and the 2-wire Serial Bus. The different status
codes are described later in this section. Note that the value read from TWSR contains both the
5-bit status value and the 2-bit prescaler value. The application designer should mask the pres-
caler bits to zero when checking the Status bits. This makes status checking independent of
prescaler setting. This approach is used in this datasheet, unless otherwise noted.

• Bit 2 – Res: Reserved Bit
This bit is reserved and will always read as zero.

Bit 7 6 5 4 3 2 1 0

(0xB9) TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0 TWSR
Read/Write R R R R R R R/W R/W

Initial Value 1 1 1 1 1 0 0 0

159
8008H–AVR–04/11

ATtiny48/88

• Bits 1:0 – TWPS: TWI Prescaler Bits
These bits can be read and written, and control the bit rate prescaler.

To calculate bit rates, see “Bit Rate Generator Unit” on page 135. The value of TWPS1:0 is used
in the equation.

15.11.4 TWDR – TWI Data Register

In Transmit mode, TWDR contains the next byte to be transmitted. In Receive mode, the TWDR
contains the last byte received. It is writable while the TWI is not in the process of shifting a byte.
This occurs when the TWI Interrupt Flag (TWINT) is set by hardware. Note that the Data Regis-
ter cannot be initialized by the user before the first interrupt occurs. The data in TWDR remains
stable as long as TWINT is set. While data is shifted out, data on the bus is simultaneously
shifted in. TWDR always contains the last byte present on the bus, except after a wake up from
a sleep mode by the TWI interrupt. In this case, the contents of TWDR is undefined. In the case
of a lost bus arbitration, no data is lost in the transition from Master to Slave. Handling of the
ACK bit is controlled automatically by the TWI logic, the CPU cannot access the ACK bit directly.

• Bits 7:0 – TWD: TWI Data Register
These eight bits constitute the next data byte to be transmitted, or the latest data byte received
on the 2-wire Serial Bus.

15.11.5 TWAR – TWI (Slave) Address Register

The TWAR should be loaded with the 7-bit Slave address (in the seven most significant bits of
TWAR) to which the TWI will respond when programmed as a Slave Transmitter or Receiver,
and not needed in the Master modes. In multi master systems, TWAR must be set in masters
which can be addressed as Slaves by other Masters.

The LSB of TWAR is used to enable recognition of the general call address (0x00). There is an
associated address comparator that looks for the slave address (or general call address if
enabled) in the received serial address. If a match is found, an interrupt request is generated.

• Bits 7:1 – TWA: TWI (Slave) Address Register
These seven bits constitute the slave address of the TWI unit.

Table 15-7. TWI Bit Rate Prescaler

TWPS1 TWPS0 Prescaler Value

0 0 1

0 1 4

1 0 16

1 1 64

Bit 7 6 5 4 3 2 1 0

(0xBB) TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWD0 TWDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1

Bit 7 6 5 4 3 2 1 0

(0xBA) TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE TWAR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 0

160
8008H–AVR–04/11

ATtiny48/88

• Bit 0 – TWGCE: TWI General Call Recognition Enable Bit
If set, this bit enables the recognition of a General Call given over the 2-wire Serial Bus.

15.11.6 TWAMR – TWI (Slave) Address Mask Register

• Bits 7:1 – TWAM: TWI Address Mask
The TWAMR can be loaded with a 7-bit Salve Address mask. Each of the bits in TWAMR can
mask (disable) the corresponding address bits in the TWI Address Register (TWAR). If the mask
bit is set to one then the address match logic ignores the compare between the incoming
address bit and the corresponding bit in TWAR. Figure 15-22 shown the address match logic in
detail.

Figure 15-22. TWI Address Match Logic, Block Diagram

• Bit 0 – Res: Reserved Bit
This bit is reserved and will always read zero.

15.11.7 TWHSR – TWI High Speed Register

• Bits 7:1 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bit 0 – TWHS: TWI High Speed Enable
TWI High Speed mode is enabled by writing this bit to one. In this mode the undivided system
clock is selected as TWI clock. See Figure 6-1 on page 28.

The TWI High Speed mode requires that the high-speed clock, clkTWIHS, is exactly two times
higher than the I/O clock frequency, clkI/O. This means the user must make sure the I/O clock
frequency clkI/O is scaled down by a factor of 2. For example, if the internal 8 MHz oscillator has
been selected as source clock, the user must set the prescaler to scale the system clock (and,
hence, the I/O clock) down to 4 MHz. For more information about clock systems, see “Clock
System” on page 28.

Bit 7 6 5 4 3 2 1 0

(0xBD) TWAM[6:0] – TWAMR
Read/Write R/W R/W R/W R/W R/W R/W R/W R

Initial Value 0 0 0 0 0 0 0 0

Address
Match

Address Bit Comparator 0

Address Bit Comparator 6..1

TWAR0

TWAMR0

Address
Bit 0

Bit 7 6 5 4 3 2 1 0

(0xBE) – – – – – – – TWHS TWHSR
Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

161
8008H–AVR–04/11

ATtiny48/88

16. Analog Comparator
The Analog Comparator compares the input values on the positive pin AIN0 and negative pin
AIN1. When the voltage on the positive pin AIN0 is higher than the voltage on the negative pin
AIN1, the Analog Comparator output, ACO, is set. The comparator’s output can be set to trigger
the Timer/Counter1 Input Capture function. In addition, the comparator can trigger a separate
interrupt, exclusive to the Analog Comparator. The user can select Interrupt triggering on com-
parator output rise, fall or toggle. A block diagram of the comparator and its surrounding logic is
shown in Figure 16-1.

The ADC Power Reduction bit, PRADC, must be disabled in order to use the ADC input multi-
plexer. This is done by clearing the PRADC bit in the Power Reduction Register, PRR. See
“PRR – Power Reduction Register” on page 40 for more details.

Figure 16-1. Analog Comparator Block Diagram(2)

Notes: 1. See Table 16-1 on page 161.
2. Refer to Figure 1-1 on page 2 and Table 10-11 on page 75 for Analog Comparator pin

placement.

16.1 Analog Comparator Multiplexed Input
It is possible to select any of the ADC[7:0] pins to replace the negative input to the Analog Com-
parator. The ADC multiplexer is used to select this input, and consequently, the ADC must be
switched off to utilize this feature. If the Analog Comparator Multiplexer Enable bit (ACME in
ADCSRB) is set and the ADC is switched off (ADEN in ADCSRA is zero), MUX[2:0] in ADMUX
select the input pin to replace the negative input to the Analog Comparator, as shown in Table
16-1. If ACME is cleared or ADEN is set, AIN1 is applied to the negative input to the Analog
Comparator.

ACBG

BANDGAP
REFERENCE

ADC MULTIPLEXER
OUTPUT

ACME
ADEN

(1)

Table 16-1. Analog Comparator Multiplexed Input

ACME ADEN MUX[2:0] Analog Comparator Negative Input

0 x xxx AIN1

1 1 xxx AIN1

1 0 000 ADC0

1 0 001 ADC1

162
8008H–AVR–04/11

ATtiny48/88

16.2 Register Description

16.2.1 ADCSRB – ADC Control and Status Register B

• Bit 6 – ACME: Analog Comparator Multiplexer Enable
When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is zero), the
ADC multiplexer selects the negative input to the Analog Comparator. When this bit is written
logic zero, AIN1 is applied to the negative input of the Analog Comparator. For a detailed
description of this bit, see “Analog Comparator Multiplexed Input” on page 161.

16.2.2 ACSR – Analog Comparator Control and Status Register

• Bit 7 – ACD: Analog Comparator Disable
When this bit is written logic one, the power to the Analog Comparator is switched off. This bit
can be set at any time to turn off the Analog Comparator. This will reduce power consumption in
Active and Idle mode. When changing the ACD bit, the Analog Comparator Interrupt must be
disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt can occur when the bit is
changed.

• Bit 6 – ACBG: Analog Comparator Bandgap Select
When this bit is set, a fixed internal bandgap reference voltage replaces the positive input to the
Analog Comparator. When this bit is cleared, AIN0 is applied to the positive input of the Analog
Comparator. See “Internal Voltage Reference” on page 45.

• Bit 5 – ACO: Analog Comparator Output
The output of the Analog Comparator is synchronized and then directly connected to ACO. The
synchronization introduces a delay of 1 – 2 clock cycles.

1 0 010 ADC2

1 0 011 ADC3

1 0 100 ADC4

1 0 101 ADC5

1 0 110 ADC6

1 0 111 ADC7

Table 16-1. Analog Comparator Multiplexed Input (Continued)

ACME ADEN MUX[2:0] Analog Comparator Negative Input

Bit 7 6 5 4 3 2 1 0

(0x7B) – ACME – – – ADTS2 ADTS1 ADTS0 ADCSRB

Read/Write R R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x30 (0x50) ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 ACSR

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 N/A 0 0 0 0 0

163
8008H–AVR–04/11

ATtiny48/88

• Bit 4 – ACI: Analog Comparator Interrupt Flag
This bit is set by hardware when a comparator output event triggers the interrupt mode defined
by ACIS1 and ACIS0. The Analog Comparator interrupt routine is executed if the ACIE bit is set
and the I-bit in SREG is set. ACI is cleared by hardware when executing the corresponding inter-
rupt handling vector. Alternatively, ACI is cleared by writing a logic one to the flag.

• Bit 3 – ACIE: Analog Comparator Interrupt Enable
When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Analog Com-
parator interrupt is activated. When written logic zero, the interrupt is disabled.

• Bit 2 – ACIC: Analog Comparator Input Capture Enable
When written logic one, this bit enables the input capture function in Timer/Counter1 to be trig-
gered by the Analog Comparator. The comparator output is in this case directly connected to the
input capture front-end logic, making the comparator utilize the noise canceler and edge select
features of the Timer/Counter1 Input Capture interrupt. When written logic zero, no connection
between the Analog Comparator and the input capture function exists. To make the comparator
trigger the Timer/Counter1 Input Capture interrupt, the ICIE1 bit in the Timer Interrupt Mask
Register (TIMSK1) must be set.

• Bits 1:0 – ACIS[1:0]: Analog Comparator Interrupt Mode Select
These bits determine which comparator events that trigger the Analog Comparator interrupt. The
different settings are shown in Table 16-2.

When changing the ACIS1/ACIS0 bits, the Analog Comparator Interrupt must be disabled by
clearing its Interrupt Enable bit in the ACSR Register. Otherwise an interrupt can occur when the
bits are changed.

16.2.3 DIDR1 – Digital Input Disable Register 1

• Bits 7:2 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bits 1:0 – AIN1D, AIN0D: AIN[1:0] Digital Input Disable
When this bit is written logic one, the digital input buffer on the AIN1/0 pin is disabled. The corre-
sponding PIN Register bit will always read as zero when this bit is set. When an analog signal is
applied to the AIN1/0 pin and the digital input from this pin is not needed, this bit should be writ-
ten logic one to reduce power consumption in the digital input buffer.

Table 16-2. ACIS1/ACIS0 Settings

ACIS1 ACIS0 Interrupt Mode

0 0 Comparator Interrupt on Output Toggle.

0 1 Reserved

1 0 Comparator Interrupt on Falling Output Edge.

1 1 Comparator Interrupt on Rising Output Edge.

Bit 7 6 5 4 3 2 1 0

(0x7F) – – – – – – AIN1D AIN0D DIDR1

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

164
8008H–AVR–04/11

ATtiny48/88

17. ADC – Analog to Digital Converter

17.1 Features
• 10-bit Resolution
• 1 LSB Integral Non-linearity
• ± 2 LSB Absolute Accuracy
• 14 µs Conversion Time
• 15 kSPS at Maximum Resolution
• Six Multiplexed Single Ended Input Channels

– Two Additional Input Channels in 32-lead/pad/ball TQFP, QFN, and UFBGA Packages
• Temperature Sensor Input Channel
• Optional Left Adjustment for ADC Result Readout
• 0 – VCC ADC Input Voltage Range
• Selectable 1.1V ADC Reference Voltage
• Free Running or Single Conversion Mode
• Interrupt on ADC Conversion Complete
• Sleep Mode Noise Canceler

17.2 Overview
ATtiny48/88 features a 10-bit, successive approximation Analog-to-Digital Converter (ADC). The
ADC is wired to a nine-channel analog multiplexer, which allows the ADC to measure the volt-
age at six (or eight, in 32-lead/pad/ball packages) single-ended input pins and from one internal,
single-ended voltage channel coming from the internal temperature sensor. Single-ended volt-
age inputs are referred to 0V (GND).

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the ADC is
held at a constant level during conversion. A block diagram of the ADC is shown in Figure 17-1
on page 165.

There is a separate analog supply voltage pin for the ADC, AVCC. The voltage difference
between supply voltage pins VCC and AVCC may not exceed 0.3V. See section “ADC Noise Can-
celer” on page 171 on how to connect the analog suplly voltage pin.

Internal reference voltage of nominally 1.1V is provided on-chip. Alternatively, VCC can be used
as reference voltage.

165
8008H–AVR–04/11

ATtiny48/88

Figure 17-1. Analog to Digital Converter Block Schematic Operation

17.3 Operation
In order to be able to use the ADC the Power Reduction bit, PRADC, in the Power Reduction
Register must be disabled. This is done by clearing the PRADC bit. See “PRR – Power Reduc-
tion Register” on page 40 for more details.

The ADC converts an analog input voltage to a 10-bit digital value through successive approxi-
mation. The minimum value represents GND and the maximum value represents the reference
voltage. The ADC voltage reference may be selected by writing the REFS0 bit in the ADMUX
register. Alternatives are the VCC supply pin and the internal 1.1V voltage reference.

ADC CONVERSION
COMPLETE IRQ

8-BIT DATA BUS

15 0

ADC MULTIPLEXER
SELECT (ADMUX)

ADC CTRL. & STATUS
REGISTER (ADCSRA)

ADC DATA REGISTER
(ADCH/ADCL)

M
U

X
2

A
D

IE

A
D

F
R

A
D

S
C

A
D

E
N

A
D

IF
A

D
IF

M
U

X
1

M
U

X
0

A
D

P
S

0

A
D

P
S

1

A
D

P
S

2

M
U

X
3

CONVERSION LOGIC

10-BIT DAC

+

-

SAMPLE & HOLD
COMPARATOR

INTERNAL 1.1V
REFERENCE

MUX DECODER

AVCC

ADC7

ADC6

ADC5

ADC4

ADC3

ADC2

ADC1

ADC0

R
E

F
S

0

A
D

LA
R

C
H

A
N

N
E

L
S

E
LE

C
T

IO
N

A
D

C
[9

:0
]

ADC MULTIPLEXER
OUTPUT

BANDGAP
REFERENCE

PRESCALER

GND

INPUT
MUX

TEMPERATURE
SENSOR

166
8008H–AVR–04/11

ATtiny48/88

The analog input channel is selected by writing to the MUX bits in ADMUX. Any of the ADC input
pins, as well as GND and a fixed bandgap voltage reference, can be selected as single ended
inputs to the ADC.

The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA. Voltage reference and
input channel selections will not go into effect until ADEN is set. The ADC does not consume
power when ADEN is cleared, so it is recommended to switch off the ADC before entering power
saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and
ADCL. By default, the result is presented right adjusted, but can optionally be presented left
adjusted by setting the ADLAR bit in ADMUX.

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read
ADCH, only. Otherwise, ADCL must be read first, then ADCH, to ensure that the content of the
Data Registers belongs to the same conversion. Once ADCL is read, ADC access to Data Reg-
isters is blocked. This means that if ADCL has been read, and a conversion completes before
ADCH is read, neither register is updated and the result from the conversion is lost. When ADCH
is read, ADC access to the ADCH and ADCL Registers is re-enabled.

The ADC has its own interrupt which can be triggered when a conversion completes. When ADC
access to the Data Registers is prohibited between reading of ADCH and ADCL, the interrupt
will trigger even if the result is lost.

17.4 Starting a Conversion
Make sure the ADC is powered by clearing the ADC Power Reduction bit, PRADC, in the Power
Reduction Register, PRR (see “PRR – Power Reduction Register” on page 40). A single conver-
sion is started by writing a logical one to the ADC Start Conversion bit, ADSC. This bit stays high
as long as the conversion is in progress and will be cleared by hardware when the conversion is
completed. If a different data channel is selected while a conversion is in progress, the ADC will
finish the current conversion before performing the channel change.

Alternatively, a conversion can be triggered automatically by various sources. Auto Triggering is
enabled by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The trigger source is
selected by setting the ADC Trigger Select bits, ADTS in ADCSRB (See description of the ADTS
bits for a list of the trigger sources). When a positive edge occurs on the selected trigger signal,
the ADC prescaler is reset and a conversion is started. This provides a method of starting con-
versions at fixed intervals. If the trigger signal still is set when the conversion completes, a new
conversion will not be started. If another positive edge occurs on the trigger signal during con-
version, the edge will be ignored. Note that an Interrupt Flag will be set even if the specific
interrupt is disabled or the Global Interrupt Enable bit in SREG is cleared. A conversion can thus
be triggered without causing an interrupt. However, the Interrupt Flag must be cleared in order to
trigger a new conversion at the next interrupt event.

167
8008H–AVR–04/11

ATtiny48/88

Figure 17-2. ADC Auto Trigger Logic

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion as soon
as the ongoing conversion has finished. The ADC then operates in Free Running mode, con-
stantly sampling and updating the ADC Data Register. The first conversion must be started by
writing a logical one to the ADSC bit in ADCSRA. In this mode the ADC will perform successive
conversions independently of whether the ADC Interrupt Flag, ADIF is cleared or not.

If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to
one. ADSC can also be used to determine if a conversion is in progress. The ADSC bit will be
read as one during a conversion, independently of how the conversion was started.

17.5 Prescaling and Conversion Timing
By default, the successive approximation circuitry requires an input clock frequency between 50
kHz and 200 kHz to get maximum resolution. If a lower resolution than 10 bits is needed, the
input clock frequency to the ADC can be higher than 200 kHz to get a higher sample rate. It is
not recommended to use a higher input clock frequency than 1MHz.

Figure 17-3. ADC Prescaler

ADSC

ADIF

SOURCE 1

SOURCE n

ADTS[2:0]

CONVERSION
LOGIC

PRESCALER

START CLKADC

.

.

.

. EDGE
DETECTOR

ADATE

7-BIT ADC PRESCALER

ADC CLOCK SOURCE

CK

ADPS0
ADPS1
ADPS2

C
K

/1
28

C
K

/2

C
K

/4

C
K

/8

C
K

/1
6

C
K

/3
2

C
K

/6
4

Reset
ADEN
START

168
8008H–AVR–04/11

ATtiny48/88

The ADC module contains a prescaler, as illustrated in Figure 17-3 on page 167, which gener-
ates an acceptable ADC clock frequency from any CPU frequency above 100 kHz. The
prescaling is set by the ADPS bits in ADCSRA. The prescaler starts counting from the moment
the ADC is switched on by setting the ADEN bit in ADCSRA. The prescaler keeps running for as
long as the ADEN bit is set, and is continuously reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion
starts at the following rising edge of the ADC clock cycle.

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is switched
on (ADEN in ADCSRA is set) takes 25 ADC clock cycles in order to initialize the analog circuitry,
as shown in Figure 17-4 below.

Figure 17-4. ADC Timing Diagram, First Conversion (Single Conversion Mode)

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal conver-
sion and 13.5 ADC clock cycles after the start of an first conversion. When a conversion is
complete, the result is written to the ADC Data Registers, and ADIF is set. In Single Conversion
mode, ADSC is cleared simultaneously. The software may then set ADSC again, and a new
conversion will be initiated on the first rising ADC clock edge.

Figure 17-5. ADC Timing Diagram, Single Conversion

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

Sample & Hold

ADIF

ADCH

ADCL

Cycle Number

ADEN

1 2 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2

First Conversion
Next
Conversion

3

MUX and REFS
Update

MUX and REFS
Update

Conversion
Complete

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

3

Sample & Hold

MUX and REFS
Update

Conversion
Complete

MUX and REFS
Update

169
8008H–AVR–04/11

ATtiny48/88

When Auto Triggering is used, the prescaler is reset when the trigger event occurs, as shown in
Figure 17-6. This assures a fixed delay from the trigger event to the start of conversion. In this
mode, the sample-and-hold takes place two ADC clock cycles after the rising edge on the trigger
source signal. Three additional CPU clock cycles are used for synchronization logic.

Figure 17-6. ADC Timing Diagram, Auto Triggered Conversion

In Free Running mode, a new conversion will be started immediately after the conversion com-
pletes, while ADSC remains high. See Figure 17-7.

Figure 17-7. ADC Timing Diagram, Free Running Conversion

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

Trigger
Source

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

Conversion
CompletePrescaler

Reset

ADATE

Prescaler
Reset

Sample &
Hold

MUX and REFS
Update

12 13 14

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number
1 2

One Conversion Next Conversion

3 4

Conversion
Complete

Sample & Hold

MUX and REFS
Update

170
8008H–AVR–04/11

ATtiny48/88

For a summary of conversion times, see Table 17-1.

17.6 Changing Channel or Reference Selection
Bits MUXn and REFS0 in the ADMUX Register are single buffered through a temporary register
to which the CPU has random access. This ensures that the channels and reference selection
only takes place at a safe point during the conversion. The channel and reference selection is
continuously updated until a conversion is started. Once the conversion starts, the channel and
reference selection is locked to ensure a sufficient sampling time for the ADC. Continuous
updating resumes in the last ADC clock cycle before the conversion completes (ADIF in ADC-
SRA is set). Note that the conversion starts on the following rising ADC clock edge after ADSC is
written. The user is thus advised not to write new channel or reference selection values to
ADMUX until one ADC clock cycle after ADSC is written.

If Auto Triggering is used, the exact time of the triggering event can be indeterministic. Special
care must be taken when updating the ADMUX Register, in order to control which conversion
will be affected by the new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the
ADMUX Register is changed in this period, the user cannot tell if the next conversion is based
on the old or the new settings. ADMUX can be safely updated in the following ways:

• When ADATE or ADEN is cleared.

• During conversion, minimum one ADC clock cycle after the trigger event.

• After a conversion, before the Interrupt Flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next ADC
conversion.

17.6.1 ADC Input Channels
When changing channel selections, the user should observe the following guidelines to ensure
that the correct channel is selected:

In Single Conversion mode, always select the channel before starting the conversion. The chan-
nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the
simplest method is to wait for the conversion to complete before changing the channel selection.

In Free Running mode, always select the channel before starting the first conversion. The chan-
nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the
simplest method is to wait for the first conversion to complete, and then change the channel

Table 17-1. ADC Conversion Time

Condition
Sample & Hold
(Cycles from Start of Conversion)

Conversion Time
(Cycles)

First conversion 13.5 25

Normal conversions, single ended 1.5 13

Auto Triggered conversions 2 13.5

Free Running conversions 2.5 14

171
8008H–AVR–04/11

ATtiny48/88

selection. Since the next conversion has already started automatically, the next result will reflect
the previous channel selection. Subsequent conversions will reflect the new channel selection.

17.6.2 ADC Voltage Reference
The ADC reference voltage (VREF) indicates the conversion range for the ADC. Single ended
channels that exceed VREF will result in codes close to 0x3FF. VREF can be selected as either
AVCC, or internal 1.1V reference. The internal 1.1V reference is generated from the internal
bandgap reference (VBG) through an internal amplifier.

The first ADC conversion result after switching reference voltage source may be inaccurate, and
the user is advised to discard this result.

17.7 ADC Noise Canceler
The ADC features a noise canceler that enables conversion during sleep mode. This reduces
noise induced from the CPU core and other I/O peripherals. The noise canceler can be used
with ADC Noise Reduction and Idle mode. To make use of this feature, the following procedure
should be used:

• Make sure that the ADC is enabled and is not busy converting. Single Conversion mode must
be selected and the ADC conversion complete interrupt must be enabled.

• Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conversion once the
CPU has been halted.

• If no other interrupts occur before the ADC conversion completes, the ADC interrupt will wake
up the CPU and execute the ADC Conversion Complete interrupt routine. If another interrupt
wakes up the CPU before the ADC conversion is complete, that interrupt will be executed,
and an ADC Conversion Complete interrupt request will be generated when the ADC
conversion completes. The CPU will remain in active mode until a new sleep command is
executed.

Note that the ADC will not automatically be turned off when entering other sleep modes than Idle
mode and ADC Noise Reduction mode. The user is advised to write zero to ADEN before enter-
ing such sleep modes to avoid excessive power consumption.

17.8 Analog Input Circuitry
The analog input circuitry for single ended channels is illustrated in Figure 17-8 An analog
source applied to ADCn is subjected to the pin capacitance and input leakage of that pin, regard-
less of whether that channel is selected as input for the ADC. When the channel is selected, the
source must drive the S/H capacitor through the series resistance (combined resistance in the
input path).

The ADC is optimized for analog signals with an output impedance of approximately 10kΩ or
less. If such a source is used, the sampling time will be negligible. If a source with higher imped-
ance is used, the sampling time will depend on how long time the source needs to charge the
S/H capacitor, which can vary widely. The user is recommended to only use low impedance
sources with slowly varying signals, since this minimizes the required charge transfer to the S/H
capacitor.

In order to avoid distortion from unpredictable signal convolution, signal components higher than
the Nyquist frequency (fADC/2) should not be present. The user is advised to remove high fre-
quency components with a low-pass filter before applying the signals as inputs to the ADC.

172
8008H–AVR–04/11

ATtiny48/88

Figure 17-8. Analog Input Circuitry

Note: The capacitor in the figure depicts the total capacitance, including the sample/hold capacitor and
any stray or parasitic capacitance inside the device. The value given is worst case.

17.9 Analog Noise Canceling Techniques
Digital circuitry inside and outside the device generates EMI which might affect the accuracy of
analog measurements. When conversion accuracy is critical, the noise level can be reduced by
applying the following techniques:

• Keep analog signal paths as short as possible.

• Make sure analog tracks run over the analog ground plane.

• Keep analog tracks well away from high-speed switching digital tracks.

• If any port pin is used as a digital output, it mustn’t switch while a conversion is in progress.

• The analog supply voltage pin (AVCC) should be connected to the digital supply voltage pin
(VCC) via an LC network as shown in Figure 17-9.

Figure 17-9. ADC Power Connections

ADCn

IIH

1..100 kOhm
CS/H= 14 pF

VCC/2

IIL

P
D

0

P
C

6

P
C

5
(A

D
C

5/
S

C
L)

P
C

4
(A

D
C

4/
S

D
A

)

P
C

3
(A

D
C

3)

P
C

2
(A

D
C

2)

PC1 (ADC1)

PC0 (ADC0)

PA1 (ADC7)

GND

PC7

AVCC

PA0 (ADC6)

PB5

10
m

H
A

na
lo

g
G

ro
un

d
P

la
ne

10
0n

F

VCC

173
8008H–AVR–04/11

ATtiny48/88

Where high ADC accuracy is required it is recommended to use ADC Noise Reduction Mode, as
described in Section 17.7 on page 171. This is especially the case when system clock frequency
is above 1 MHz, or when the ADC is used for reading the internal temperature sensor, as
described in Section 17.12 on page 175. A good system design with properly placed, external
bypass capacitors does reduce the need for using ADC Noise Reduction Mode

17.10 ADC Accuracy Definitions
An n-bit single-ended ADC converts a voltage linearly between GND and VREF in 2n steps
(LSBs). The lowest code is read as 0, and the highest code is read as 2n-1.

Several parameters describe the deviation from the ideal behavior:

• Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal transition
(at 0.5 LSB). Ideal value: 0 LSB.

Figure 17-10. Offset Error

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

Offset
Error

174
8008H–AVR–04/11

ATtiny48/88

• Gain error: After adjusting for offset, the gain error is found as the deviation of the last
transition (0x3FE to 0x3FF) compared to the ideal transition (at 1.5 LSB below maximum).
Ideal value: 0 LSB

Figure 17-11. Gain Error

• Integral Non-linearity (INL): After adjusting for offset and gain error, the INL is the maximum
deviation of an actual transition compared to an ideal transition for any code. Ideal value: 0
LSB.

Figure 17-12. Integral Non-linearity (INL)

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

Gain
Error

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

IN
L

175
8008H–AVR–04/11

ATtiny48/88

• Differential Non-linearity (DNL): The maximum deviation of the actual code width (the interval
between two adjacent transitions) from the ideal code width (1 LSB). Ideal value: 0 LSB.

Figure 17-13. Differential Non-linearity (DNL)

• Quantization Error: Due to the quantization of the input voltage into a finite number of codes,
a range of input voltages (1 LSB wide) will code to the same value. Always ±0.5 LSB.

• Absolute accuracy: The maximum deviation of an actual (unadjusted) transition compared to
an ideal transition for any code. This is the compound effect of offset, gain error, differential
error, non-linearity, and quantization error. Ideal value: ±0.5 LSB.

17.11 ADC Conversion Result
After the conversion is complete (ADIF is high), the conversion result can be found in the ADC
Result Registers (ADCL, ADCH).

For single ended conversion, the result is

where VIN is the voltage on the selected input pin and VREF the selected voltage reference (see
Table 17-3 on page 176 and Table 17-4 on page 177). 0x000 represents analog ground, and
0x3FF represents the selected reference voltage minus one LSB.

17.12 Temperature Measurement
The temperature measurement is based on an on-chip temperature sensor that is coupled to a
single-ended ADC8 channel. Selecting the ADC8 channel by writing the MUX[3:0] bits in

Output Code

0x3FF

0x000

0 VREF Input Voltage

DNL

1 LSB

ADC
VIN 1024⋅
VREF

--------------------------=

176
8008H–AVR–04/11

ATtiny48/88

ADMUX register to “1000” enables the temperature sensor. The internal 1.1V voltage reference
must also be selected for the ADC voltage reference source in the temperature sensor measure-
ment. When the temperature sensor is enabled, the ADC converter can be used in single
conversion mode to measure the voltage over the temperature sensor.

The measured voltage has a linear relationship to the temperature as described in Table 17-2
The sensitivity is approximately 1 LSB / °C and the accuracy depends on the method of user cal-
ibration. Typically, the measurement accuracy after a single temperature calibration is ±10°C,
assuming calibration at room temperature. Better accuracies are achieved by using two
temperature points for calibration.

The values described in Table 17-2 are typical values. However, due to process variation the
temperature sensor output voltage varies from one chip to another. To be capable of achieving
more accurate results the temperature measurement can be calibrated in the application soft-
ware. The sofware calibration can be done using the formula:

T = k * [(ADCH << 8) | ADCL] + TOS

where ADCH and ADCL are the ADC data registers, k is the fixed slope coefficient and TOS is the
temperature sensor offset. Typically, k is very close to 1.0 and in single-point calibration the
coefficient may be omitted. Where higher accuracy is required the slope coefficient should be
evaluated based on measurements at two temperatures.

17.13 Register Description

17.13.1 ADMUX – ADC Multiplexer Selection Register

• Bits 7, 4 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bit 6 – REFS0: Reference Selection Bit
This bit select the voltage reference for the ADC, as shown in Table 17-3. If this bit is changed
during a conversion, the change will not go in effect until this conversion is complete (ADIF in
ADCSRA is set).

Table 17-2. Temperature vs. Sensor Output Voltage (Typical Case)

Temperature -40°C +25°C +85°C

ADC 230 LSB 300 LSB 370 LSB

Bit 7 6 5 4 3 2 1 0

(0x7C) – REFS0 ADLAR – MUX3 MUX2 MUX1 MUX0 ADMUX
Read/Write R R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 17-3. Voltage Reference Selections for ADC

REFS0 Voltage Reference Selection

0 Internal 1.1V Voltage Reference

1 AVCC Reference

177
8008H–AVR–04/11

ATtiny48/88

• Bit 5 – ADLAR: ADC Left Adjust Result
The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data Register.
Write one to ADLAR to left adjust the result. Otherwise, the result is right adjusted. Changing the
ADLAR bit will affect the ADC Data Register immediately, regardless of any ongoing conver-
sions. For a complete description of this bit, see “ADCL and ADCH – The ADC Data Register” on
page 179.

• Bits 3:0 – MUX[3:0]: Analog Channel Selection Bits
The value of these bits selects which analog inputs are connected to the ADC. Selecting the sin-
gle-ended channel ADC8 enables the temperature measurement. See Table 17-4 for details. If
these bits are changed during a conversion, the change will not go in effect until this conversion
is complete (ADIF in ADCSRA is set).

Note: 1. See “Temperature Measurement” on page 175.

2. After switching to internal voltage reference the ADC requires a settling time of 1ms before
measurements are stable. Conversions starting before this may not be reliable. The ADC must
be enabled during the settling time.

Table 17-4. Input Channel Selections

MUX[3:0] Single Ended Input

0000 ADC0

0001 ADC1

0010 ADC2

0011 ADC3

0100 ADC4

0101 ADC5

0110 ADC6

0111 ADC7

1000 ADC8 (1)

1001 (reserved)

1010 (reserved)

1011 (reserved)

1100 (reserved)

1101 (reserved)

1110 1.1V (VBG) (2)

1111 0V (GND)

178
8008H–AVR–04/11

ATtiny48/88

17.13.2 ADCSRA – ADC Control and Status Register A

• Bit 7 – ADEN: ADC Enable
Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the
ADC off while a conversion is in progress, will terminate this conversion.

• Bit 6 – ADSC: ADC Start Conversion
In Single Conversion mode, write this bit to one to start each conversion. In Free Running mode,
write this bit to one to start the first conversion. The first conversion after ADSC has been written
after the ADC has been enabled, or if ADSC is written at the same time as the ADC is enabled,
will take 25 ADC clock cycles instead of the normal 13. This first conversion performs initializa-
tion of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is complete,
it returns to zero. Writing zero to this bit has no effect.

• Bit 5 – ADATE: ADC Auto Trigger Enable
When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start a con-
version on a positive edge of the selected trigger signal. The trigger source is selected by setting
the ADC Trigger Select bits, ADTS in ADCSRB.

• Bit 4 – ADIF: ADC Interrupt Flag
This bit is set when an ADC conversion completes and the Data Registers are updated. The
ADC Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in SREG are set.
ADIF is cleared by hardware when executing the corresponding interrupt handling vector. Alter-
natively, ADIF is cleared by writing a logical one to the flag. Beware that if doing a Read-Modify-
Write on ADCSRA, a pending interrupt can be disabled. This also applies if the SBI and CBI
instructions are used.

• Bit 3 – ADIE: ADC Interrupt Enable
When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Complete Inter-
rupt is activated.

• Bits 2:0 – ADPS[2:0]: ADC Prescaler Select Bits
These bits determine the division factor between the system clock frequency and the input clock
to the ADC.

Bit 7 6 5 4 3 2 1 0

(0x7A) ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 17-5. ADC Prescaler Selections

ADPS2 ADPS1 ADPS0 Division Factor

0 0 0 2

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

179
8008H–AVR–04/11

ATtiny48/88

17.13.3 ADCL and ADCH – The ADC Data Register

17.13.3.1 ADLAR = 0

17.13.3.2 ADLAR = 1

• ADC[9:0]: ADC Conversion Result
These bits represent the result from the conversion, as detailed in “ADC Conversion Result” on
page 175.

When an ADC conversion is complete, the result is found in these two registers.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. Consequently, if
the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read
ADCH. Otherwise, ADCL must be read first, then ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is read from
the registers. If ADLAR is set, the result is left adjusted. If ADLAR is cleared (default), the result
is right adjusted.

17.13.4 ADCSRB – ADC Control and Status Register B

• Bits 7, 5:3 – Res: Reserved Bits
These bits are reserved for future use. To ensure compatibility with future devices, these bits
must be written to zero when ADCSRB is written.

1 0 1 32

1 1 0 64

1 1 1 128

Table 17-5. ADC Prescaler Selections (Continued)

ADPS2 ADPS1 ADPS0 Division Factor

Bit 15 14 13 12 11 10 9 8

(0x79) – – – – – – ADC9 ADC8 ADCH

(0x78) ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

(0x79) ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH

(0x78) ADC1 ADC0 – – – – – – ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x7B) – ACME – – – ADTS2 ADTS1 ADTS0 ADCSRB

Read/Write R R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

180
8008H–AVR–04/11

ATtiny48/88

• Bits 2:0 – ADTS[2:0]: ADC Auto Trigger Source
If ADATE in ADCSRA is written to one, the value of these bits selects which source will trigger
an ADC conversion. If ADATE is cleared, the ADTS[2:0] settings will have no effect. A conver-
sion will be triggered by the rising edge of the selected Interrupt Flag. Note that switching from a
trigger source that is cleared to a trigger source that is set, will generate a positive edge on the
trigger signal. If ADEN in ADCSRA is set, this will start a conversion. Switching to Free Running
mode (ADTS[2:0]=0) will not cause a trigger event, even if the ADC Interrupt Flag is set.

17.13.5 DIDR0 – Digital Input Disable Register 0

• Bits 7:0 – ADC7D:ADC0D: ADC[7:0] Digital Input Disable
When this bit is written logic one, the digital input buffer on the corresponding ADC pin is dis-
abled. The corresponding PIN Register bit will always read as zero when this bit is set. When an
analog signal is applied to the ADC[7:0] pin and the digital input from this pin is not needed, this
bit should be written logic one to reduce power consumption in the digital input buffer.

Table 17-6. ADC Auto Trigger Source Selections

ADTS2 ADTS1 ADTS0 Trigger Source

0 0 0 Free Running mode

0 0 1 Analog Comparator

0 1 0 External Interrupt Request 0

0 1 1 Timer/Counter0 Compare Match A

1 0 0 Timer/Counter0 Overflow

1 0 1 Timer/Counter1 Compare Match B

1 1 0 Timer/Counter1 Overflow

1 1 1 Timer/Counter1 Capture Event

Bit 7 6 5 4 3 2 1 0

(0x7E) ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D DIDR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

181
8008H–AVR–04/11

ATtiny48/88

18. debugWIRE On-Chip Debug System

18.1 Features
• Complete Program Flow Control
• Emulates All On-Chip Functions, Both Digital and Analog, except RESET Pin
• Real-time Operation
• Symbolic Debugging Support (Both at C and Assembler Source Level, or for Other HLLs)
• Unlimited Number of Program Break Points (Using Software Break Points)
• Non-intrusive Operation
• Electrical Characteristics Identical to Real Device
• Automatic Configuration System
• High-Speed Operation
• Programming of Non-volatile Memories

18.2 Overview
The debugWIRE On-chip debug system uses a One-wire, bi-directional interface to control the
program flow, execute AVR instructions in the CPU and to program the different non-volatile
memories.

18.3 Physical Interface
When the debugWIRE Enable (DWEN) Fuse is programmed and Lock bits are unprogrammed,
the debugWIRE system within the target device is activated. The RESET port pin is configured
as a wire-AND (open-drain) bi-directional I/O pin with pull-up enabled and becomes the commu-
nication gateway between target and emulator.

Figure 18-1. The debugWIRE Setup

Figure 18-1 shows the schematic of a target MCU, with debugWIRE enabled, and the emulator
connector. The system clock is not affected by debugWIRE and will always be the clock source
selected by the CKSEL Fuses.

dW

GND

dW(RESET)

VCC

1.8 - 5.5V

182
8008H–AVR–04/11

ATtiny48/88

When designing a system where debugWIRE will be used, the following observations must be
made for correct operation:

• Pull-up resistors on the dW/(RESET) line must not be smaller than 10kΩ. The pull-up resistor
is not required for debugWIRE functionality.

• Connecting the RESET pin directly to VCC will not work.

• Capacitors connected to the RESET pin must be disconnected when using debugWire.

• All external reset sources must be disconnected.

18.4 Software Break Points
debugWIRE supports Program memory Break Points by the AVR Break instruction. Setting a
Break Point in AVR Studio® will insert a BREAK instruction in the Program memory. The instruc-
tion replaced by the BREAK instruction will be stored. When program execution is continued, the
stored instruction will be executed before continuing from the Program memory. A break can be
inserted manually by putting the BREAK instruction in the program.

The Flash must be re-programmed each time a Break Point is changed. This is automatically
handled by AVR Studio through the debugWIRE interface. The use of Break Points will therefore
reduce the Flash Data retention. Devices used for debugging purposes should not be shipped to
end customers.

18.5 Limitations of debugWIRE
The debugWIRE communication pin (dW) is physically located on the same pin as External
Reset (RESET). An External Reset source is therefore not supported when the debugWIRE is
enabled.

The debugWIRE system accurately emulates all I/O functions when running at full speed, i.e.,
when the program in the CPU is running. When the CPU is stopped, care must be taken while
accessing some of the I/O Registers via the debugger (AVR Studio).

The debugWIRE interface is asynchronous, which means that the debugger needs to synchro-
nize to the system clock. If the system clock is changed by software (e.g. by writing CLKPS bits)
communication via debugWIRE may fail. Also, clock frequencies below 100 kHz may cause
communication problems.

A programmed DWEN Fuse enables some parts of the clock system to be running in all sleep
modes. This will increase the power consumption while in sleep. Thus, the DWEN Fuse should
be disabled when debugWire is not used.

18.6 Register Description

18.6.1 DWDR – debugWire Data Register

The DWDR Register provides a communication channel from the running program in the MCU
to the debugger. This register is only accessible by the debugWIRE and can therefore not be
used as a general purpose register in the normal operations.

Bit 7 6 5 4 3 2 1 0

0x31 (0x51) DWDR[7:0] DWDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

183
8008H–AVR–04/11

ATtiny48/88

19. Self-Programming the Flash
The device provides a Self-Programming mechanism for downloading and uploading program
code by the MCU itself. The Self-Programming can use any available data interface and associ-
ated protocol to read code and write (program) that code into the Program memory. The SPM
instruction is disabled by default but it can be enabled by programming the SELFPRGEN fuse
(to “0”).

The Program memory is updated in a page by page fashion. Before programming a page with
the data stored in the temporary page buffer, the page must be erased. The temporary page buf-
fer is filled one word at a time using SPM and the buffer can be filled either before the Page
Erase command or between a Page Erase and a Page Write operation:

Alternative 1, fill the buffer before a Page Erase:

• Fill temporary page buffer

• Perform a Page Erase

• Perform a Page Write

Alternative 2, fill the buffer after Page Erase:

• Perform a Page Erase

• Fill temporary page buffer

• Perform a Page Write

If only a part of the page needs to be changed, the rest of the page must be stored (for example
in the temporary page buffer) before the erase, and then be re-written. Alternative 1 provides an
effective Read-Modify-Write feature which allows the user software to first read the page, do the
necessary changes, and then write back the modified data. If alternative 2 is used, it is not pos-
sible to read the old data while loading since the page is already erased. The temporary page
buffer can be accessed in a random sequence. It is essential that the page address used in both
the Page Erase and Page Write operation is addressing the same page.

19.0.1 Performing Page Erase by SPM
To execute Page Erase, set up the address in the Z-pointer, write “00000011” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored.
The page address must be written to PCPAGE in the Z-register. Other bits in the Z-pointer will
be ignored during this operation.

The CPU is halted during the Page Erase operation.

19.0.2 Filling the Temporary Buffer (Page Loading)
To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write
“00000001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The
content of PCWORD in the Z-register is used to address the data in the temporary buffer. The
temporary buffer will auto-erase after a Page Write operation or by writing the CTPB bit in
SPMCSR. It is also erased after a system reset. Note that it is not possible to write more than
one time to each address without erasing the temporary buffer.

If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded will be
lost.

184
8008H–AVR–04/11

ATtiny48/88

19.0.3 Performing a Page Write
To execute Page Write, set up the address in the Z-pointer, write “00000101” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored.
The page address must be written to PCPAGE. Other bits in the Z-pointer must be written to
zero during this operation.

The CPU is halted during the Page Write operation.

19.1 Addressing the Flash During Self-Programming
The Z-pointer is used to address the SPM commands.

Since the Flash is organized in pages (see “Memory Parametrics” on page 191), the Program
Counter can be treated as having two different sections. One section, consisting of the least sig-
nificant bits, is addressing the words within a page, while the most significant bits are addressing
the pages. This is shown in Figure 19-1. Note that the Page Erase and Page Write operations
are addressed independently. Therefore it is of major importance that the software addresses
the same page in both the Page Erase and Page Write operation.

The LPM instruction uses the Z-pointer to store the address. Since this instruction addresses the
Flash byte-by-byte, also the LSB (bit Z0) of the Z-pointer is used.

Figure 19-1. Addressing the Flash During SPM(1)

Note: 1. The different variables used in Figure 19-1 are listed in Table 21-1 on page 191.

Bit 15 14 13 12 11 10 9 8

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0

PROGRAM MEMORY

0115

Z - REGISTER

BIT

0

ZPAGEMSB

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

ZPCMSB

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM
COUNTER

185
8008H–AVR–04/11

ATtiny48/88

19.1.1 EEPROM Write Prevents Writing to SPMCSR
Note that an EEPROM write operation will block all software programming to Flash. Reading the
Fuses and Lock bits from software will also be prevented during the EEPROM write operation. It
is recommended that the user checks the status bit (EEPE) in the EECR Register and verifies
that the bit is cleared before writing to the SPMCSR Register.

19.1.2 Reading the Fuse and Lock Bits from Software
It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the
Z-pointer with 0x0001 and set the RFLB and SELFPRGEN bits in SPMCSR. When an LPM
instruction is executed within three CPU cycles after the RFLB and SELFPRGEN bits are set in
SPMCSR, the value of the Lock bits will be loaded in the destination register. The RFLB and
SELFPRGEN bits will auto-clear upon completion of reading the Lock bits or if no LPM instruc-
tion is executed within three CPU cycles or no SPM instruction is executed within four CPU
cycles. When RFLB and SELFPRGEN are cleared, LPM will work as described in the Instruction
set Manual.

The algorithm for reading the Fuse Low byte is similar to the one described above for reading
the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and set the RFLB and
SELFPRGEN bits in SPMCSR. When an LPM instruction is executed within three cycles after
the RFLB and SELFPRGEN bits are set in the SPMCSR, the value of the Fuse Low byte (FLB)
will be loaded in the destination register as shown below.See Table 20-5 on page 190 for a
detailed description and mapping of the Fuse Low byte.

Similarly, when reading the Fuse High byte (FHB), load 0x0003 in the Z-pointer. When an LPM
instruction is executed within three cycles after the RFLB and SELFPRGEN bits are set in the
SPMCSR, the value of the Fuse High byte will be loaded in the destination register as shown
below. See Table 20-4 on page 189 for detailed description and mapping of the Fuse High byte.

Fuse Extended byte can be read by loading the Z-pointer with 0x0002. When an LPM instruction
is executed within three cycles after the RFLB and SPMEN bits are set in the SPMCSR, the
value of the Fuse Extended Byte (FEB) will be loaded in the destination register as shown
below. See Table 20-3 on page 189 for detailed description and mapping of the Fuse Extended
byte.

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are
unprogrammed, will be read as one.

Bit 7 6 5 4 3 2 1 0

Rd – – – – – – LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0

Bit 7 6 5 4 3 2 1 0

Rd FEB7 FEB6 FEB5 FEB4 FEB3 FEB2 FEB1 FEB0

186
8008H–AVR–04/11

ATtiny48/88

19.1.3 Preventing Flash Corruption
During periods of low VCC, the Flash program can be corrupted because the supply voltage is
too low for the CPU and the Flash to operate properly. These issues are the same as for board
level systems using the Flash, and the same design solutions should be applied.

A Flash program corruption can be caused by two situations when the voltage is too low. First, a
regular write sequence to the Flash requires a minimum voltage to operate correctly. Secondly,
the CPU itself can execute instructions incorrectly, if the supply voltage for executing instructions
is too low.

Flash corruption can easily be avoided by following these design recommendations (one is
sufficient):

1. Keep the AVR RESET active (low) during periods of insufficient power supply voltage.
This can be done by enabling the internal Brown-out Detector (BOD) if the operating
voltage matches the detection level. If not, an external low VCC reset protection circuit
can be used. If a reset occurs while a write operation is in progress, the write operation
will be completed provided that the power supply voltage is sufficient.

2. Keep the AVR core in Power-down sleep mode during periods of low VCC. This will pre-
vent the CPU from attempting to decode and execute instructions, effectively protecting
the SPMCSR Register and thus the Flash from unintentional writes.

19.1.4 Programming Time for Flash when Using SPM
The calibrated oscillator is used to time Flash accesses. Table 19-1 shows the typical program-
ming time for Flash accesses from the CPU.

19.2 Register Description

19.2.1 SPMCSR – Store Program Memory Control and Status Register
The Store Program Memory Control and Status Register contains the control bits needed to con-
trol the Program memory operations.

• Bit 7 – Res: Reserved Bit
This bit is reserved and will always read zero.

• Bit 6 – RWWSB: Read-While-Write Section Busy
This bit is for compatibility with devices supporting Read-While-Write. It will always read as zero
in ATtiny48/88.

Table 19-1. SPM Programming Time

Symbol Min Programming Time Max Programming Time

Flash write (Page Erase, Page Write, and
write Lock bits by SPM)

3.7 ms 4.5 ms

Bit 7 6 5 4 3 2 1 0

0x37 (0x57) – RWWSB – CTPB RFLB PGWRT PGERS SELFPRGEN SPMCSR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

187
8008H–AVR–04/11

ATtiny48/88

• Bit 5 – Res: Reserved Bit
This bit is reserved and will always read zero.

• Bit 4 – CTPB: Clear Temporary Page Buffer
If the CTPB bit is written while filling the temporary page buffer, the temporary page buffer will be
cleared and the data will be lost.

• Bit 3 – RFLB: Read Fuse and Lock Bits
An LPM instruction within three cycles after RFLB and SELFPRGEN are set in the SPMCSR
Register, will read either the Lock bits or the Fuse bits (depending on Z0 in the Z-pointer) into the
destination register. See “Reading the Fuse and Lock Bits from Software” on page 185 for
details.

• Bit 2 – PGWRT: Page Write
If this bit is written to one at the same time as SELFPRGEN, the next SPM instruction within four
clock cycles executes Page Write, with the data stored in the temporary buffer. The page
address is taken from the high part of the Z-pointer. The data in R1 and R0 are ignored. The
PGWRT bit will auto-clear upon completion of a Page Write, or if no SPM instruction is executed
within four clock cycles. The CPU is halted during the entire Page Write operation.

• Bit 1 – PGERS: Page Erase
If this bit is written to one at the same time as SELFPRGEN, the next SPM instruction within four
clock cycles executes Page Erase. The page address is taken from the high part of the Z-
pointer. The data in R1 and R0 are ignored. The PGERS bit will auto-clear upon completion of a
Page Erase, or if no SPM instruction is executed within four clock cycles. The CPU is halted dur-
ing the entire Page Write operation.

• Bit 0 – SELFPRGEN: Self Programming Enable
This bit enables the SPM instruction for the next four clock cycles. If written to one together with
either CTPB, RFLB, PGWRT, or PGERS, the following SPM instruction will have a special
meaning, see description above. If only SELFPRGEN is written, the following SPM instruction
will store the value in R1:R0 in the temporary page buffer addressed by the Z-pointer. The LSB
of the Z-pointer is ignored. The SELFPRGEN bit will auto-clear upon completion of an SPM
instruction, or if no SPM instruction is executed within four clock cycles. During Page Erase and
Page Write, the SELFPRGEN bit remains high until the operation is completed.

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower
five bits will have no effect.

188
8008H–AVR–04/11

ATtiny48/88

20. Lock Bits, Fuse Bits and Device Signature

20.1 Lock Bits
ATtiny48/88 provide the program and data memory lock bits listed in Table 20-1.

Notes: 1. “1” means unprogrammed, “0” means programmed.

Lock bits can be left unprogrammed (“1”) or can be programmed (“0”) to obtain the additional
features listed in Table 20-2.

Notes: 1. Program the Fuse bits before programming the LB1 and LB2.

2. “1” means unprogrammed, “0” means programmed

Lock bits can be erased to “1” with the Chip Erase command, only.

The ATtiny48/88 has no separate Boot Loader section. The SPM instruction is enabled for the
whole Flash if the SELFPRGEN fuse is programmed (“0”), otherwise it is disabled.

Table 20-1. Lock Bit Byte

Lock Bit Byte Bit No Description Default Value (1)

7 – 1 (unprogrammed)

6 – 1 (unprogrammed)

5 – 1 (unprogrammed)

4 – 1 (unprogrammed)

3 – 1 (unprogrammed)

2 – 1 (unprogrammed)

LB2 1 Lock bit 1 (unprogrammed)

LB1 0 Lock bit 1 (unprogrammed)

Table 20-2. Lock Bit Protection Modes(1)(2)

Memory Lock Bits Protection Type

LB Mode LB2 LB1

1 1 1 No memory lock features enabled.

2 1 0
Further programming of Flash and EEPROM is disabled in
parallel and serial programming mode. Fuse bits are locked in
both serial and parallel programming mode (1)

3 0 0
Further reading and programming of Flash and EEPROM is
disabled in parallel and serial programming mode. Fuse bits are
locked in both serial and parallel programming mode (1)

189
8008H–AVR–04/11

ATtiny48/88

20.2 Fuse Bits
The ATtiny48/88 has three Fuse bytes. Table 20-3 – Table 20-5 describe briefly the functionality
of all the fuses and how they are mapped into the Fuse bytes. Note that the fuses are read as
logical zero, “0”, if they are programmed.

Notes: 1. Enables SPM instruction. See “Self-Programming the Flash” on page 183.

Notes: 1. See “Alternate Functions of Port C” on page 72 for description of RSTDISBL Fuse.

2. Programming this fuse bit will change the functionality of the RESET pin and render further
programming via the serial interface impossible. The fuse bit can be unprogrammed using the
parallel programming algorithm (see page 191).

3. The SPIEN Fuse is not accessible in serial programming mode.

4. See “WDTCSR – Watchdog Timer Control Register” on page 49 for details.

5. See Table 22-4 on page 210 for BODLEVEL Fuse decoding.

Table 20-3. Fuse Extended Byte

Fuse Extended Byte Bit No Description Default Value

– 7 – 1

– 6 – 1

– 5 – 1

– 4 – 1

– 3 – 1

– 2 – 1

– 1 – 1

SELFPRGEN (1) 0 Self Programming Enable 1 (unprogrammed)

Table 20-4. Fuse High Byte

Fuse High Byte Bit No Description Default Value

RSTDISBL(1) (2) 7 External Reset Disable 1 (unprogrammed)

DWEN(2) 6 debugWIRE Enable 1 (unprogrammed)

SPIEN(3) 5
Enable Serial Program and Data
Downloading

0 (programmed)
(SPI programming enabled)

WDTON(4) 4 Watchdog Timer Always On 1 (unprogrammed)

EESAVE 3
EEPROM memory preserved
through chip erase

1 (unprogrammed)
(EEPROM not preserved)

BODLEVEL2(5) 2 Brown-out Detector trigger level 1 (unprogrammed)

BODLEVEL1(5) 1 Brown-out Detector trigger level 1 (unprogrammed)

BODLEVEL0(5) 0 Brown-out Detector trigger level 1 (unprogrammed)

190
8008H–AVR–04/11

ATtiny48/88

Note: 1. The default value of SUT[1:0] results in maximum start-up time for the default clock source.
See Table 6-3 on page 31 for details.

2. The default setting of CKSEL[1:0] results in internal oscillator @ 8 MHz. See Table 6-1 on
page 29 for details.

3. The CKOUT Fuse allows the system clock to be output on PORTB0. See “Clock Output Buffer”
on page 32 for details.

4. See “System Clock Prescaler” on page 31 for details.

The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are locked if
Lock bit1 (LB1) is programmed. Program the Fuse bits before programming the Lock bits.

20.2.1 Latching of Fuses
The fuse values are latched when the device enters programming mode and changes of the
fuse values will have no effect until the part leaves Programming mode. This does not apply to
the EESAVE Fuse which will take effect once it is programmed. The fuses are also latched on
Power-up in Normal mode.

20.3 Signature Bytes
All Atmel microcontrollers have a three-byte signature code which identifies the device. This
code can be read in both serial and parallel mode, also when the device is locked. The three
bytes reside in a separate address space. For the ATtiny48/88 the signature bytes are given in
Table 20-6.

20.4 Calibration Byte
The ATtiny48/88 has a byte calibration value for the internal oscillator. This byte resides in the
high byte of address 0x000 in the signature address space. During reset, this byte is automati-
cally written into the OSCCAL Register to ensure correct frequency of the calibrated oscillator.

Table 20-5. Fuse Low Byte

Fuse Low Byte Bit No Description Default Value

CKDIV8(4) 7 Divide clock by 8 0 (programmed)

CKOUT(3) 6 Clock output 1 (unprogrammed)

SUT1 5 Select start-up time 1 (unprogrammed)(1)

SUT0 4 Select start-up time 0 (programmed)(1)

- 3 - 1 (unprogrammed)(2)

- 2 - 1 (unprogrammed)(2)

CKSEL1 1 Select Clock source 1 (unprogrammed)(2)

CKSEL0 0 Select Clock source 0 (programmed)(2)

Table 20-6. Device ID

Part

Signature Bytes Address

0x000 0x001 0x002

ATtiny48 0x1E 0x92 0x09

ATtiny88 0x1E 0x93 0x11

191
8008H–AVR–04/11

ATtiny48/88

21. External Programming
This section describes how to program and verify Flash memory, EEPROM, lock bits, and fuse
bits in ATtiny48/88.

21.1 Memory Parametrics
Flash memory parametrics are summarised in Table 21-1, below.

EEPROM parametrics are summarised in Table 21-2, below.

21.2 Parallel Programming
Parallel programming signals and connections are illustrated in Figure 21-1, below.

Figure 21-1. Parallel Programming Signals

Table 21-1. Flash Parametrics

Device Flash Size Page Size PCWORD
No. of
Pages PCPAGE PCMSB

ATtiny48
2K words
(4K bytes)

32 words PC[4:0] 64 PC[10:5] 10

ATtiny88
4K words
(8K bytes)

32 words PC[4:0] 128 PC[11:5] 11

Table 21-2. EEPROM Parametrics

Device
EEPROM

Size
Page
Size PCWORD

No. of
Pages PCPAGE EEAMSB

ATtiny48 64 bytes 4 bytes EEA[1:0] 16 EEA[5:2] 5

ATtiny88 64 bytes 4 bytes EEA[1:0] 16 EEA[5:2] 5

VCC

GND

CLKI

PD1

PD2

PD3

PD4

PD5

PD6

 PC[1:0]:PB[5:0] DATA

RESET

PD7

+12 V

BS1

XA0

XA1

OE

RDY/BSY

PAGEL

PC2

WR

BS2

AVCC

+4.5 - 5.5V

+4.5 - 5.5V

192
8008H–AVR–04/11

ATtiny48/88

Signals are described in Table 21-3, below. Pins not listed in the table are referenced by pin
names.

Note: VCC - 0.3V < AVCC < VCC + 0.3V, however, AVCC should always be within 4.5 – 5.5V

Pulses are assumed to be at least 250 ns, unless otherwise noted.

The XA1/XA0 pins determine the action executed when the CLKI pin is given a positive pulse.
The bit coding is shown in Table 21-5.

Table 21-3. Pin Name Mapping

Signal Name in
Programming Mode Pin Name I/O Function

RDY/BSY PD1 O
0: Device is busy programming, 1: Device is
ready for new command

OE PD2 I Output Enable (Active low)

WR PD3 I Write Pulse (Active low)

BS1 PD4 I
Byte Select 1 (“0” selects Low byte, “1” selects
High byte)

XA0 PD5 I XTAL Action Bit 0

XA1 PD6 I XTAL Action Bit 1

PAGEL PD7 I
Program memory and EEPROM Data Page
Load

BS2 PC2 I
Byte Select 2 (“0” selects Low byte, “1” selects
2’nd High byte)

DATA {PC[1:0]: PB[5:0]} I/O Bi-directional Data bus (Output when OE is low)

Table 21-4. Pin Values Used to Enter Programming Mode

Pin Symbol Value

PAGEL Prog_enable[3] 0

XA1 Prog_enable[2] 0

XA0 Prog_enable[1] 0

BS1 Prog_enable[0] 0

Table 21-5. XA1 and XA0 Coding

XA1 XA0 Action when CLKI is Pulsed

0 0 Load Flash or EEPROM Address (High or low address byte determined by BS1).

0 1 Load Data (High or Low data byte for Flash determined by BS1).

1 0 Load Command

1 1 No Action, Idle

193
8008H–AVR–04/11

ATtiny48/88

When pulsing WR or OE, the command loaded determines the action executed. The different
Commands are shown in Table 21-6.

21.2.1 Enter Programming Mode
The following algorithm puts the device in Parallel (High-voltage) Programming mode:

1. Set Prog_enable pins listed in Table 21-4 on page 192 to “0000”, RESET pin to 0V and
VCC to 0V.

2. Apply 4.5 – 5.5V between VCC and GND. Ensure that VCC reaches at least 1.8V within
the next 20 µs.

3. Wait 20 – 60 µs, and apply 11.5 – 12.5V to RESET.

4. Keep the Prog_enable pins unchanged for at least 10µs after the High-voltage has
been applied to ensure the Prog_enable Signature has been latched.

5. Wait at least 300 µs before giving any parallel programming commands.

6. Exit Programming mode by power the device down or by bringing RESET pin to 0V.

If the rise time of the VCC is unable to fulfill the requirements listed above, the following alterna-
tive algorithm can be used.

1. Set Prog_enable pins listed in Table 21-4 on page 192 to “0000”, RESET pin to 0V and
VCC to 0V.

2. Apply 4.5 – 5.5V between VCC and GND.

3. Monitor VCC, and as soon as VCC reaches 0.9 – 1.1V, apply 11.5 – 12.5V to RESET.

4. Keep the Prog_enable pins unchanged for at least 10µs after the High-voltage has
been applied to ensure the Prog_enable Signature has been latched.

5. Wait until VCC actually reaches 4.5 -5.5V before giving any parallel programming
commands.

6. Exit Programming mode by power the device down or by bringing RESET pin to 0V.

21.2.2 Considerations for Efficient Programming
The loaded command and address are retained in the device during programming. For efficient
programming, the following should be considered.

Table 21-6. Command Byte Bit Coding

Command Byte Command Executed

1000 0000 Chip Erase

0100 0000 Write Fuse bits

0010 0000 Write Lock bits

0001 0000 Write Flash

0001 0001 Write EEPROM

0000 1000 Read Signature Bytes and Calibration byte

0000 0100 Read Fuse and Lock bits

0000 0010 Read Flash

0000 0011 Read EEPROM

194
8008H–AVR–04/11

ATtiny48/88

• The command needs only be loaded once when writing or reading multiple memory
locations.

• Skip writing the data value 0xFF, that is the contents of the entire EEPROM (unless the
EESAVE Fuse is programmed) and Flash after a Chip Erase.

• Address high byte needs only be loaded before programming or reading a new 256 word
window in Flash or 256 byte EEPROM. This consideration also applies to Signature bytes
reading.

21.2.3 Chip Erase
A Chip Erase must be performed before the Flash and/or EEPROM are reprogrammed. The
Chip Erase command will erase all Flash and EEPROM plus lock bits. If the EESAVE fuse is
programmed, the EEPROM is not erased.

Lock bits are not reset until the program memory has been completely erased. Fuse bits are not
changed.

The Chip Erase command is loaded as follows:

1. Set XA1, XA0 to “10”. This enables command loading

2. Set BS1 to “0”

3. Set DATA to “1000 0000”. This is the command for Chip Erase

4. Give CLKI a positive pulse. This loads the command

5. Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low

6. Wait until RDY/BSY goes high before loading a new command

21.2.4 Programming the Flash
The Flash is organized in pages, see Table 21-1 on page 191. When programming the Flash,
the program data is latched into a page buffer. This allows one page of program data to be pro-
grammed simultaneously. The following procedure describes how to program the entire Flash
memory:

A. Load Command “Write Flash”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “0001 0000”. This is the command for Write Flash.

4. Give CLKI a positive pulse. This loads the command.

B. Load Address Low byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “0”. This selects low address.

3. Set DATA = Address low byte (0x00 – 0xFF).

4. Give CLKI a positive pulse. This loads the address low byte.

C. Load Data Low Byte

1. Set XA1, XA0 to “01”. This enables data loading.

2. Set DATA = Data low byte (0x00 – 0xFF).

195
8008H–AVR–04/11

ATtiny48/88

3. Give CLKI a positive pulse. This loads the data byte.

D. Load Data High Byte

1. Set BS1 to “1”. This selects high data byte.

2. Set XA1, XA0 to “01”. This enables data loading.

3. Set DATA = Data high byte (0x00 – 0xFF).

4. Give CLKI a positive pulse. This loads the data byte.

E. Latch Data

1. Set BS1 to “1”. This selects high data byte.

2. Give PAGEL a positive pulse. This latches the data bytes. (See Figure 21-3 for signal
waveforms)

F. Repeat B through E until the entire buffer is filled or until all data within the page is loaded.

While the lower bits in the address are mapped to words within the page, the higher bits
address the pages within the FLASH. This is illustrated in Figure 21-2 on page 196. Note
that if less than eight bits are required to address words in the page (pagesize < 256), the
most significant bit(s) in the address low byte are used to address the page when performing
a Page Write.

G. Load Address High byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “1”. This selects high address.

3. Set DATA = Address high byte (0x00 – 0xFF).

4. Give CLKI a positive pulse. This loads the address high byte.

H. Program Page

1. Give WR a negative pulse. This starts programming of the entire page of data.
RDY/BSY goes low.

2. Wait until RDY/BSY goes high (See Figure 21-3 for signal waveforms).

I. Repeat B through H until the entire Flash is programmed or until all data has been
programmed.

J. End Page Programming

1. 1. Set XA1, XA0 to “10”. This enables command loading.

2. Set DATA to “0000 0000”. This is the command for No Operation.

3. Give CLKI a positive pulse. This loads the command, and the internal write signals are
reset.

196
8008H–AVR–04/11

ATtiny48/88

Flash page addressing is illustrated in Figure 21-2, below. Symbols used are described in Table

21-1 on page 191.

Figure 21-2. Addressing the Flash Which is Organized in Pages

Flash programming waveforms are illustrated in Figure 21-3, where XX means “don’t care” and
letters refer to the programming steps described earlier.

Figure 21-3. Programming the Flash Waveforms

21.2.5 Programming the EEPROM
The EEPROM is organized in pages, see Table 21-2 on page 191. When programming the
EEPROM, the program data is latched into a page buffer. This allows one page of data to be

PROGRAM MEMORY

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM
COUNTER

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x10 ADDR. LOW ADDR. HIGHDATA
DATA LOW DATA HIGH ADDR. LOW DATA LOW DATA HIGH

XA1

XA0

BS1

CLKI

XX XX XX

A B C D E B C D E G H

F

197
8008H–AVR–04/11

ATtiny48/88

programmed simultaneously. The programming algorithm for the EEPROM data memory is as
follows (refer to “Programming the Flash” on page 194 for details on Command, Address and
Data loading):

• A: Load command “0001 0001”

• G: Load address high byte (0x00 – 0xFF)

• B: Load address low byte (0x00 – 0xFF)

• C: Load data (0x00 – 0xFF)

• E: Latch data (give PAGEL a positive pulse)

• K: Repeat steps B, C, and E until the entire buffer is filled

• L: Program EEPROM page:

– Set BS1 to “0”

– Give WR a negative pulse. This starts programming of the EEPROM page.
RDY/BSY goes low

– Wait until to RDY/BSY goes high before programming the next page (See Figure 21-
4 for signal waveforms)

EEPROM programming waveforms are illustrated in Figure 21-4, where XX means “don’t care”
and letters refer to the programming steps described above.

Figure 21-4. Programming the EEPROM Waveforms

21.2.6 Reading the Flash
The algorithm for reading the Flash memory is as follows (see “Programming the Flash” on page
194 for details on command and address loading):

• A: Load command “0000 0010”

• G: Load address high byte (0x00 – 0xFF)

• B: Load address low byte (0x00 – 0xFF)

• Set OE to “0”, and BS1 to “0”. The Flash word low byte can now be read at DATA

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x11 ADDR. HIGH
DATA

ADDR. LOW DATA ADDR. LOW DATA XX

XA1

XA0

BS1

CLKI

XX

A G B C E B C E L

K

198
8008H–AVR–04/11

ATtiny48/88

• Set BS1 to “1”. The Flash word high byte can now be read at DATA

• Set OE to “1”

21.2.7 Reading the EEPROM
The algorithm for reading the EEPROM memory is as follows (see “Programming the Flash” on
page 194 for details on command and address loading):

• A: Load command “0000 0011”

• G: Load address high byte (0x00 – 0xFF)

• B: Load address low byte (0x00 – 0xFF)

• Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at DATA

• Set OE to “1”

21.2.8 Programming Low Fuse Bits
The algorithm for programming the low fuse bits is as follows (see “Programming the Flash” on
page 194 for details on command and data loading):

• A: Load command “0100 0000”

• C: Load data low byte. Bit n = “0” programs and bit n = “1” erases the fuse bit

• Give WR a negative pulse and wait for RDY/BSY to go high

21.2.9 Programming High Fuse Bits
The algorithm for programming the high fuse bits is as follows (see “Programming the Flash” on
page 194 for details on command and data loading):

• A: Load command “0100 0000”

• C: Load data low byte. Bit n = “0” programs and bit n = “1” erases the fuse bit

• Set BS1 to “1” and BS2 to “0”. This selects high data byte

• Give WR a negative pulse and wait for RDY/BSY to go high

• Set BS1 to “0”. This selects low data byte

21.2.10 Programming Extended Fuse Bits
The algorithm for programming the extended fuse bits is as follows (see “Programming the
Flash” on page 194 for details on command and data loading):

• A: Load command “0100 0000”

• C: Load data low byte. Bit n = “0” programs and bit n = “1” erases the fuse bit

• Set BS1 to “0” and BS2 to “1”. This selects extended data byte

• Give WR a negative pulse and wait for RDY/BSY to go high

• Set BS2 to “0”. This selects low data byte

EEPROM programming waveforms are illustrated in Figure 21-5, where XX means “don’t care”
and letters refer to the programming steps described above.

199
8008H–AVR–04/11

ATtiny48/88

Figure 21-5. Programming the FUSES Waveforms

21.2.11 Programming the Lock Bits
The algorithm for programming the lock bits is as follows (see “Programming the Flash” on page
194 for details on command and data loading):

• A: Load command “0010 0000”

• C: Load data low byte. Bit n = “0” programs the Lock bit. If LB1 and LB2 have been
programmed, it is not possible to program the Lock Bits by any External Programming mode

• Give WR a negative pulse and wait for RDY/BSY to go high

Lock bits can only be cleared by executing Chip Erase.

21.2.12 Reading Fuse and Lock Bits
The algorithm for reading fuse and lock bits is as follows (see “Programming the Flash” on page
194 for details on command loading):

• A: Load command “0000 0100”

• Set OE to “0”, BS2 to “0” and BS1 to “0”. Low fuse bits can now be read at DATA (“0” means
programmed)

• Set OE to “0”, BS2 to “1” and BS1 to “1”. High fuse bits can now be read at DATA (“0” means
programmed)

• Set OE to “0”, BS2 to “1”, and BS1 to “0”. Extended fuse bits can now be read at DATA (“0”
means programmed)

• Set OE to “0”, BS2 to “0” and BS1 to “1”. Lock bits can now be read at DATA (“0” means
programmed)

• Set OE to “1”

Fuse and lock bit mapping is illustrated in Figure 21-6, below.

RDY/BSY

WR

OE

RESET +12V

PAGEL

0x40
DATA

DATA XX

XA1

XA0

BS1

CLKI

A C

0x40 DATA XX

A C

Write Fuse Low byte Write Fuse high byte

0x40 DATA XX

A C

Write Extended Fuse byte

BS2

200
8008H–AVR–04/11

ATtiny48/88

Figure 21-6. Mapping Between BS1, BS2 and the Fuse and Lock Bits During Read

21.2.13 Reading Signature Bytes
The algorithm for reading the signature bytes is as follows (see “Programming the Flash” on
page 194 for details on command and address loading):

1. A: Load command “0000 1000”

2. B: Load address low byte (0x00 – 0x02)

3. Set OE to “0”, and BS1 to “0”. The selected signature byte can now be read at DATA.

4. Set OE to “1”.

21.2.14 Reading the Calibration Byte
The algorithm for reading the calibration byte is as follows (see “Programming the Flash” on
page 194 for details on command and address loading):

1. A: Load command “0000 1000”.

2. B: Load address low byte, 0x00.

3. Set OE to “0”, and BS1 to “1”. The calibration byte can now be read at DATA.

4. Set OE to “1”.

21.3 Serial Programming
Flash and EEPROM memory arrays can both be programmed using the serial SPI bus while
RESET is pulled to GND. The serial interface consists of pins SCK, MOSI (input) and MISO (out-
put). After RESET is set low, the Programming Enable instruction needs to be executed before
program/erase operations can be executed.

Serial programming signals and connections are illustrated in Figure 21-7, below. The pin map-
ping is listed in Table 21-7 on page 202.

Lock Bits 0

1

BS2

Fuse High Byte

0

1

BS1

DATA

Fuse Low Byte 0

1

BS2

Extended Fuse Byte

201
8008H–AVR–04/11

ATtiny48/88

Figure 21-7. Serial Programming and Verify(1)

Notes: 1. If the device is clocked by the internal oscillator, it is no need to connect a clock source to the
CLKI pin.

2. VCC - 0.3V < AVCC < VCC + 0.3V, however, AVCC should always be within 1.8 – 5.5V

When programming the EEPROM, an auto-erase cycle is built into the self-timed programming
operation (in the Serial mode ONLY) and there is no need to first execute the Chip Erase
instruction.

The Chip Erase operation turns the content of every memory location in both the Program and
EEPROM arrays into 0xFF.

Depending on CKSEL fuses, a valid clock must be present. The minimum low and high periods
for the serial clock (SCK) input are defined as follows:

• Minimum low period of serial clock:

– When fck < 12MHz: > 2 CPU clock cycles

– When fck >= 12MHz: 3 CPU clock cycles

• Minimum high period of serial clock:

– When fck < 12MHz: > 2 CPU clock cycles

– When fck >= 12MHz: 3 CPU clock cycles

VCC

GND

CLKI

SCK

MISO

MOSI

RESET

+1.8 - 5.5V

AVCC

+1.8 - 5.5V(2)

202
8008H–AVR–04/11

ATtiny48/88

21.3.1 Pin Mapping
The pin mapping is listed in Table 21-7.

21.3.2 Programming Algorithm
When writing serial data to the ATtiny48/88, data is clocked on the rising edge of SCK. When
reading data from the ATtiny48/88, data is clocked on the falling edge of SCK. See Figure 22-9
on page 217 and Figure 22-10 on page 217 for timing details.

To program and verify the ATtiny48/88 in the serial programming mode, the following sequence
is recommended (See Serial Programming Instruction set in Table 21-8 on page 203):

1. Power-up sequence: apply power between VCC and GND while RESET and SCK are
set to “0”.

– In some systems, the programmer can not guarantee that SCK is held low during
power-up. In this case, RESET must be given a positive pulse after SCK has been
set to '0'. The duration of the pulse must be at least tRST plus two CPU clock cycles.
See Table 22-3 on page 209 for definition of minimum pulse width on RESET pin,
tRST

2. Wait for at least 20 ms and enable serial programming by sending the Programming
Enable serial instruction to pin MOSI.

3. The serial programming instructions will not work if the communication is out of syn-
chronization. When in sync. the second byte (0x53), will echo back when issuing the
third byte of the Programming Enable instruction.

– Whether the echo is correct or not, all four bytes of the instruction must be
transmitted.

– If the 0x53 did not echo back, give RESET a positive pulse and issue a new
Programming Enable command.

4. The Flash is programmed one page at a time. The memory page is loaded one byte at
a time by supplying the 6 LSB of the address and data together with the Load Program
Memory Page instruction.

– To ensure correct loading of the page, the data low byte must be loaded before data
high byte is applied for a given address.

– The Program Memory Page is stored by loading the Write Program Memory Page
instruction with the 7 MSB of the address.

– If polling (RDY/BSY) is not used, the user must wait at least tWD_FLASH before issuing
the next page (See Table 21-9). Accessing the serial programming interface before
the Flash write operation completes can result in incorrect programming.

5. The EEPROM can be programmed one byte or one page at a time.

– A: The EEPROM array is programmed one byte at a time by supplying the address
and data together with the appropriate Write instruction. An EEPROM memory
location is first automatically erased before new data is written. If polling (RDY/BSY)
is not used, the user must wait at least tWD_EEPROM before issuing the next byte (See

Table 21-7. Pin Mapping Serial Programming

Symbol Pins I/O Description

MOSI PB3 I Serial Data in

MISO PB4 O Serial Data out

SCK PB5 I Serial Clock

203
8008H–AVR–04/11

ATtiny48/88

Table 21-9). In a chip erased device, no 0xFFs in the data file(s) need to be
programmed.

– B: The EEPROM array is programmed one page at a time. The Memory page is
loaded one byte at a time by supplying the 6 LSB of the address and data together
with the Load EEPROM Memory Page instruction. The EEPROM Memory Page is
stored by loading the Write EEPROM Memory Page Instruction with the 7 MSB of
the address. When using EEPROM page access only byte locations loaded with the
Load EEPROM Memory Page instruction is altered. The remaining locations remain
unchanged. If polling (RDY/BSY) is not used, the used must wait at least tWD_EEPROM
before issuing the next byte (See Table 21-9). In a chip erased device, no 0xFF in
the data file(s) need to be programmed.

6. Any memory location can be verified by using the Read instruction which returns the
content at the selected address at serial output MISO.

7. At the end of the programming session, RESET can be set high to commence normal
operation.

8. Power-off sequence (if needed): Set RESET to “1”. Turn VCC power off.

21.3.3 Programming Instruction set
Table 21-8 on page 203 and Figure 21-8 on page 204 describes the Instruction set.

Table 21-8. Serial Programming Instruction Set (Hexadecimal values)

Instruction/Operation

Instruction Format

Byte 1 Byte 2 Byte 3 Byte4

Programming Enable $AC $53 $00 $00

Chip Erase (Program Memory/EEPROM) $AC $80 $00 $00

Poll RDY/BSY $F0 $00 $00 data byte out

Load Instructions

Load Extended Address byte(1) $4D $00 Extended adr $00

Load Program Memory Page, High byte $48 $00 adr LSB high data byte in

Load Program Memory Page, Low byte $40 $00 adr LSB low data byte in

Load EEPROM Memory Page (page access) $C1 $00 0000 000aa data byte in

Read Instructions

Read Program Memory, High byte $28 adr MSB adr LSB high data byte out

Read Program Memory, Low byte $20 adr MSB adr LSB low data byte out

Read EEPROM Memory $A0 0000 00aa aaaa aaaa data byte out

Read Lock bits $58 $00 $00 data byte out

Read Signature Byte $30 $00 0000 000aa data byte out

Read Fuse bits $50 $00 $00 data byte out

Read Fuse High bits $58 $08 $00 data byte out

Read Fuse Extended Bits $50 $08 $00 data byte out

Read Calibration Byte $38 $00 $00 data byte out

Write Instructions

204
8008H–AVR–04/11

ATtiny48/88

Notes: 1. Not all instructions are applicable for all parts.
2. a = address.
3. Bits are programmed ‘0’, unprogrammed ‘1’.
4. To ensure future compatibility, unused Fuses and Lock bits should be unprogrammed (‘1’) .
5. Refer to the correspondig section for Fuse and Lock bits, Calibration and Signature bytes and

Page size.
6. See htt://www.atmel.com/avr for Application Notes regarding programming and programmers.

If the LSB in RDY/BSY data byte out is ‘1’, a programming operation is still pending. Wait until
this bit returns ‘0’ before the next instruction is carried out.

Within the same page, the low data byte must be loaded prior to the high data byte.

After data is loaded to the page buffer, program the EEPROM page, see Figure 21-8 on page
204.

Figure 21-8. Serial Programming Instruction example

Write Program Memory Page $4C adr MSB adr LSB $00

Write EEPROM Memory $C0 0000 00aa aaaa aaaa data byte in

Write EEPROM Memory Page (page access) $C2 0000 00aa aaaa aa00 $00

Write Lock bits $AC $E0 $00 data byte in

Write Fuse bits $AC $A0 $00 data byte in

Write Fuse High bits $AC $A8 $00 data byte in

Write Fuse Extended Bits $AC $A4 $00 data byte in

Table 21-8. Serial Programming Instruction Set (Hexadecimal values) (Continued)

Instruction/Operation

Instruction Format

Byte 1 Byte 2 Byte 3 Byte4

Byte 1 Byte 2 Byte 3 Byte 4

Adr LSB

Bit 15 B 0

Serial Programming Instruction

Program Memory/
EEPROM Memory

Page 0

Page 1

Page 2

Page N-1

Page Buffer

Write Program Memory Page/
Write EEPROM Memory Page

Load Program Memory Page (High/Low Byte)/
Load EEPROM Memory Page (page access)

Byte 1 Byte 2 Byte 3 Byte 4

Bit 15 B 0

Adr MSB

Page Offset

Page Number

Adr MMSSBA AAdrr LLSBB

205
8008H–AVR–04/11

ATtiny48/88

21.4 Programming Time for Flash and EEPROM
Flash and EEPROM wait times are listed in Table 21-9.

Table 21-9. Typical Wait Delay Before Writing the Next Flash or EEPROM Location

Symbol Minimum Wait Delay

tWD_FLASH 4.5 ms

tWD_EEPROM 3.6 ms

tWD_ERASE 9.0 ms

206
8008H–AVR–04/11

ATtiny48/88

22. Electrical Characteristics

22.1 Absolute Maximum Ratings*

22.2 DC Characteristics

Operating Temperature.................................. -55°C to +125°C *NOTICE: Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.

Storage Temperature -65°C to +150°C

Voltage on any Pin except RESET
with respect to Ground -0.5V to VCC+0.5V

Voltage on RESET with respect to Ground......-0.5V to +13.0V

Maximum Operating Voltage .. 6.0V

DC Current per I/O Pin ... 40.0 mA

DC Current VCC and GND Pins 200.0 mA

TA = -40°C to +85°C, VCC = 1.8V to 5.5V (unless otherwise noted)

Symbol Parameter Condition Min Typ (1) Max Units

VIL

Input Low Voltage,
Except RESET pin

VCC = 1.8V – 2.4V -0.5 0.2VCC
(2) V

VCC = 2.4V – 5.5V -0.5 0.3VCC
(2) V

Input Low Voltage,
RESET pin as reset (3) VCC = 1.8V – 5.5V -0.5 0.2VCC

(2) V

VIH

Input High Voltage,
Except RESET pin

VCC = 1.8V – 2.4V 0.7VCC
(4) VCC + 0.5 V

VCC = 2.4V – 5.5V 0.6VCC
(4) VCC + 0.5 V

Input High Voltage,
RESET pin as reset (3) VCC = 1.8V – 5.5V 0.9VCC

(4) VCC + 0.5 V

VOL

Output Low Voltage (5),
Except High Sink I/O pins
and RESET pin as I/O (6)

IOL = 10 mA, VCC = 5V 0.7 V

IOL = 5 mA, VCC = 3V 0.5 V

IOL = 2 mA, VCC = 1.8V 0.4 V

Output Low Voltage
High Sink I/O pins (7)

IOL = 20 mA, VCC = 5V 0.7 V

IOL = 10 mA, VCC = 3V 0.5 V

IOL = 4 mA, VCC = 1.8V 0.4 V

Output Low Voltage (3)

RESET pin as I/O (6)

IOL = 2 mA, VCC = 5V 0.7 V

IOL = 1 mA, VCC = 3V 0.5 V

IOL = 0.4 mA, VCC = 1.8V 0.4 V

VOH

Output High Voltage (8),
Except High Sink I/O pins
and RESET pin as I/O (6)

IOH = -10 mA, VCC = 5V 4.3 V

IOH = -5 mA, VCC = 3V 2.5 V

IOH = -2 mA, VCC = 1.8V 1.4 V

Output HighVoltage
High Sink I/O pins (7)

IOH = -10 mA, VCC = 5V 4.3 V

IOH = -5 mA, VCC = 3V 2.5 V

IOH = -2 mA, VCC = 1.8V 1.4 V

207
8008H–AVR–04/11

ATtiny48/88

Notes: 1. Typical values at 25°C.

2. “Max” means the highest value where the pin is guaranteed to be read as low.

3. These parameters are not tested in production.

4. “Min” means the lowest value where the pin is guaranteed to be read as high.

5. Although each I/O port can sink more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V, 2 mA at VCC = 1.8V)
under steady state conditions (non-transient), the following must be observed:
• The sum of all IOL, for ports A0, A3, B0 – B7, C7, D5 – D7 should not exceed 100 mA.
• The sum of all IOL, for ports A1 – A2, C0 – C6, D0 – D4 should not exceed 100 mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

6. The RESET pin must tolerate high voltages when entering and operating in programming modes and, as a consequence,
has a weak drive strength as compared to regular I/O pins. See Figure 23-34, Figure 23-35, Figure 23-36, Figure 23-37, Fig-
ure 23-38 and Figure 23-39 (starting on page 236).

7. High Sink I/O pins are PD0, PD1, PD2 and PD3.

8. Although each I/O port can source more than the test conditions (10 mA at VCC = 5V, 5mA at VCC = 3V, 2 mA at VCC = 1.8V)
under steady state conditions (non-transient), the following must be observed:
• The sum of all IOH, for ports A2 – A3, B0 – B7, C6, D0 – D7 should not exceed 100 mA.
• The sum of all IOH, for ports A0 – A1, C0 – C5, C7 should not exceed 100 mA.
If IIOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

9. These are test limits, which account for leakage currents of the test environment. Actual device leakage currents are lower.

10. Values are with external clock using methods described in “Minimizing Power Consumption” on page 38. Power reduction is
enabled (PRR = 0xFF) and there is no I/O drive.

11. Measured with Brown-Out Detection (BOD) disabled.

ILIL
Input Leakage
Current I/O Pin

VCC = 5.5V, pin low
(absolute value)

< 0.05 1 (9) µA

ILIH
Input Leakage
Current I/O Pin

VCC = 5.5V, pin high
(absolute value)

< 0.05 1 (9) µA

RPU

Pull-up Resistor, I/O Pin VCC = 5.5V, input low 20 50 kΩ

Pull-up Resistor, Reset Pin VCC = 5.5V, input low 30 60 kΩ

ICC

Supply Current,
Active Mode (10)

f = 1MHz, VCC = 2V 0.2 0.4 mA

f = 4MHz, VCC = 3V 1.4 2.5 mA

f = 8MHz, VCC = 5V 4.5 8 mA

Supply Current,
Idle Mode

f = 1MHz, VCC = 2V 0.03 0.1 mA

f = 4MHz, VCC = 3V 0.25 0.6 mA

f = 8MHz, VCC = 5V 1 2 mA

Supply Current,
Power-down Mode (11)

WDT enabled, VCC = 3V 4 10 µA

WDT disabled, VCC = 3V < 0.2 2 µA

TA = -40°C to +85°C, VCC = 1.8V to 5.5V (unless otherwise noted) (Continued)

Symbol Parameter Condition Min Typ (1) Max Units

208
8008H–AVR–04/11

ATtiny48/88

22.3 Speed
The maximum operating frequency of the device is dependent on supply voltage, VCC . The rela-
tionship between supply voltage and maximum operating frequency is piecewise linear, as
shown in Figure 22-1, the Maximum Frequency vs. VCC curve is linear between 1.8V < VCC <
4.5V.

Figure 22-1. Maximum Operating Frequency vs. Supply Voltage

22.4 Clock Characterizations

22.4.1 Calibrated Internal Oscillator Accuracy
It is possible to manually calibrate the internal oscillator to be more accurate than default factory
calibration. Please note that the oscillator frequency depends on temperature and voltage. Volt-
age and temperature characteristics can be found in Figure 23-55 on page 246, Figure 23-56 on
page 247, Figure 23-112 and Figure 23-113 on page 275.

Notes: 1. Accuracy of oscillator frequency at calibration point (fixed temperature and fixed voltage).

4 MHz

1.8V 5.5V4.5V

12 MHz

2.7V

8 MHz

Table 22-1. Calibration Accuracy of Internal Oscillator

Calibration
Method Target Frequency VCC Temperature

Accuracy at given
Voltage & Temperature(1)

Factory Calibration 8.0 MHz 3V 25°C ±10%

User Calibration
Fixed frequency within:

7.3 – 8.1 MHz
Fixed voltage within:

1.8V – 5.5V
Fixed temperature within:

-40°C to +85°C ±1%

209
8008H–AVR–04/11

ATtiny48/88

22.4.2 External Clock Drive

Figure 22-2. External Clock Drive Waveforms

Note: All DC Characteristics contained in this datasheet are based on simulation and characterization of
other AVR microcontrollers manufactured in the same process technology.

22.5 System and Reset Characterizations

Table 22-2. External Clock Drive

Symbol Parameter

VCC = 1.8-5.5V VCC = 2.7-5.5V VCC = 4.5-5.5V

UnitsMin. Max. Min. Max. Min. Max.

1/tCLCL
Oscillator
Frequency

0 2 0 6 0 12 MHz

tCLCL Clock Period 250 166 83 ns

tCHCX High Time 120 80 40 ns

tCLCX Low Time 120 80 40 ns

tCLCH Rise Time 2.0 1.6 0.5 µs

tCHCL Fall Time 2.0 1.6 0.5 µs

ΔtCLCL

Change in period
from one clock
cycle to the next

2 2 2 %

VIL1

VIH1

Table 22-3. Reset, Brown-out, and Internal Voltage Characteristics (1)

Symbol Parameter Condition Min Typ Max Units

VPOT

Power-on Reset Threshold
Voltage (rising)

TA = -40 to +85°C 1.5 V

Power-on Reset Threshold
Voltage (falling)(2) TA = -40 to +85°C 1.2 V

VRST
RESET Pin Threshold
Voltage

0.2VCC 0.9VCC V

tRST
Minimum pulse width on
RESET Pin

VCC = 1.8V
VCC = 3V
VCC = 5V

2000
700
400

ns

210
8008H–AVR–04/11

ATtiny48/88

Note: 1. Values are guidelines, only

2. The Power-on Reset will not work unless the supply voltage has been below VPOT (falling)

Note: 1. VBOT may be below nominal minimum operating voltage for some devices. For devices where
this is the case, the device is tested down to VCC = VBOT during the production test. This guar-
antees that a Brown-out Reset will occur before VCC drops to a voltage where correct
operation of the microcontroller is no longer guaranteed.

22.6 Analog Comparator Characteristics

Note: All parameters are based on simulation results and are not tested in production

VHYST
Brown-out Detector
Hysteresis

50 mV

tBOD
Min Pulse Width on
Brown-out Reset

2 µs

VBG
Internal bandgap reference
voltage

VCC = 5V
TA = 25°C

1.0 1.1 1.2 V

tBG
Internal bandgap reference
start-up time

VCC = 5V
TA = 25°C

40 70 µs

IBG
Internal bandgap reference
current consumption

VCC = 5V
TA = 25°C

15 µA

Table 22-4. VBOT vs. BODLEVEL Fuse Coding(1)

BODLEVEL[2:0] Fuses Min Typ Max Units

111 BOD Disabled

110 1.7 1.8 2.0

V101 2.5 2.7 2.9

100 4.1 4.3 4.5

0XX Reserved

Table 22-3. Reset, Brown-out, and Internal Voltage Characteristics (1) (Continued)

Symbol Parameter Condition Min Typ Max Units

Table 22-5. Analog Comparator Characteristics, TA = -40°C to +85°C

Symbol Parameter Condition Min Typ Max Units

VAIO Input Offset Voltage VCC = 5V, VIN = VCC / 2 < 10 40 mV

ILAC Input Leakage Current VCC = 5V, VIN = VCC / 2 -50 50 nA

tAPD

Analog Propagation Delay
(from saturation to slight overdrive)

VCC = 2.7V 750

ns
VCC = 4.0V 500

Analog Propagation Delay
(large step change)

VCC = 2.7V 100

VCC = 4.0V 75

tDPD Digital Propagation Delay VCC = 1.8V - 5.5V 1 2 CLK

211
8008H–AVR–04/11

ATtiny48/88

22.7 ADC Characteristics

Note: 1. AVCC absolute min/max: 1.8V/5.5V

Table 22-6. ADC Characteristics , Single Ended Channels. -40°C to +85°C

Symbol Parameter Condition Min Typ Max Units

Resolution 10 Bits

Absolute accuracy (Including
INL, DNL, quantization error,
gain and offset error)

VREF = 4V, VCC = 4V,
ADC clock = 200 kHz

2 LSB

VREF = 4V, VCC = 4V,
ADC clock = 1 MHz

3 LSB

VREF = 4V, VCC = 4V,
ADC clock = 200 kHz

Noise Reduction Mode
1.5 LSB

VREF = 4V, VCC = 4V,
ADC clock = 1 MHz
Noise Reduction Mode

2.5 LSB

Integral Non-Linearity (INL)
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz

1 LSB

Differential Non-Linearity
(DNL)

VREF = 4V, VCC = 4V,
ADC clock = 200 kHz

0.5 LSB

Gain Error
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz

2.5 LSB

Offset Error
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz

1.5 LSB

Conversion Time Free Running Conversion 13 260 µs

Clock Frequency 50 1000 kHz

AVCC Analog Supply Voltage (1) VCC - 0.3 VCC + 0.3 V

VREF Reference Voltage VINT AVCC V

VIN Input Voltage GND VREF V

Input Bandwidth 38.5 kHz

VINT Internal Voltage Reference 1.0 1.1 1.2 V

RREF Reference Input Resistance 32 kΩ

RAIN Analog Input Resistance 100 MΩ

212
8008H–AVR–04/11

ATtiny48/88

22.8 Two-Wire Serial Interface Characteristics
The following data is based on simulations and characterisations. Parameters listed in Table 22-7 are not tested in produc-
tion. Symbols refer to Figure 22-3.

Notes: 1. fCK = CPU clock frequency.

Figure 22-3. Two-Wire Serial Bus Timing

Table 22-7. Two-Wire Serial Interface Characteristics

Symbol Parameter Condition Min Max Unit

VIL Input Low voltage -0.5 0.3 VCC V

VIH Input High voltage 0.7 VCC VCC + 0.5 V

VHYS Hysteresis of Schmitt-trigger inputs
VCC � 2.7V 0.05 VCC

–
V

VCC < 2.7V 0

VOL Output Low voltage 3mA sink current 0 0.4 V

tSP Spikes suppressed by input filter 0 50 ns

fSCL SCL clock frequency (1) fCK > max(16fSCL, 250kHz) 0 400 kHz

tHD:STA Hold time (repeated) START Condition 0.6 – µs

tLOW Low period of SCL clock 1.3 – µs

tHIGH High period of SCL clock 0.6 – µs

tSU:STA Set-up time for repeated START condition 0.6 – µs

tHD:DAT Data hold time 0 0.9 µs

tSU:DAT Data setup time 100 – ns

tSU:STO Setup time for STOP condition 0.6 – µs

tBUF Bus free time between STOP and START condition 1.3 – µs

tSU;STA

tLOW

tHIGH

tLOW

tof

tHD;STA tHD;DAT tSU;DAT
tSU;STO

tBUF

SCL

SDA

tr

213
8008H–AVR–04/11

ATtiny48/88

22.9 SPI Characteristics
See Figure 22-4 and Figure 22-5 for details.

Note: 1. In SPI Programming mode the minimum SCK high/low period is:
- 2 tCLCL for fCK < 12 MHz
- 3 tCLCL for fCK > 12 MHz

2. All DC Characteristics contained in this datasheet are based on simulation and characteriza-
tion of other AVR microcontrollers manufactured in the same process technology.

Table 22-8. SPI Timing Parameters

Description Mode Min Typ Max

1 SCK period Master See Table 14-5

ns

2 SCK high/low Master 50% duty cycle

3 Rise/Fall time Master 3.6

4 Setup Master 10

5 Hold Master 10

6 Out to SCK Master 0.5 • tsck

7 SCK to out Master 10

8 SCK to out high Master 10

9 SS low to out Slave 15

10 SCK period Slave 4 • tck

11 SCK high/low(1) Slave 2 • tck

12 Rise/Fall time Slave 1600

13 Setup Slave 10

14 Hold Slave tck

15 SCK to out Slave 15

16 SCK to SS high Slave 20

17 SS high to tri-state Slave 10

18 SS low to SCK Slave 20

214
8008H–AVR–04/11

ATtiny48/88

Figure 22-4. SPI Interface Timing Requirements (Master Mode)

Figure 22-5. SPI Interface Timing Requirements (Slave Mode)

MOSI
(Data Output)

SCK
(CPOL = 1)

MISO
(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

6 1

2 2

34 5

87

MISO
(Data Output)

SCK
(CPOL = 1)

MOSI
(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

10

11 11

1213 14

1715

9

X

16

215
8008H–AVR–04/11

ATtiny48/88

22.10 Parallel Programming Characteristics

Figure 22-6. Parallel Programming Timing, Including some General Timing Requirements

Figure 22-7. Parallel Programming Timing, Loading Sequence with Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 22-6 (i.e., tDVXH, tXHXL, and tXLDX) also apply to loading operation.

Data & Contol
(DATA, XA0/1, BS1, BS2)

CLKI
tXHXL

tWLWH

tDVXH tXLDX

tPLWL

tWLRH

WR

RDY/BSY

PAGEL tPHPL

tPLBXtBVPH

tXLWL

tWLBX
tBVWL

WLRL

CLKI

PAGEL

tPLXHXLXHt tXLPH

z
ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

LOAD DATA
(LOW BYTE)

LOAD DATA
(HIGH BYTE)

LOAD DATA LOAD ADDRESS
(LOW BYTE)

216
8008H–AVR–04/11

ATtiny48/88

Figure 22-8. Parallel Programming Timing, Reading Sequence (within the Same Page) with Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 22-6 (i.e., tDVXH, tXHXL, and tXLDX) also apply to reading operation.

CLKI

OE

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

READ DATA
(LOW BYTE)

READ DATA
(HIGH BYTE)

LOAD ADDRESS
(LOW BYTE)

tBVDV

tOLDV

tXLOL

tOHDZ

Table 22-9. Parallel Programming Characteristics, TA = 25°C, VCC = 5V

Symbol Parameter Min Typ Max Units

VPP Programming Enable Voltage 11.5 12.5 V

IPP Programming Enable Current 250 µA

tDVXH Data and Control Valid before CLKI High 67 ns

tXLXH CLKI Low to CLKI High 200 ns

tXHXL CLKI Pulse Width High 150 ns

tXLDX Data and Control Hold after CLKI Low 67 ns

tXLWL CLKI Low to WR Low 0 ns

tXLPH CLKI Low to PAGEL high 0 ns

tPLXH PAGEL low to CLKI high 150 ns

tBVPH BS1 Valid before PAGEL High 67 ns

tPHPL PAGEL Pulse Width High 150 ns

tPLBX BS1 Hold after PAGEL Low 67 ns

tWLBX BS2/1 Hold after WR Low 67 ns

tPLWL PAGEL Low to WR Low 67 ns

tBVWL BS1 Valid to WR Low 67 ns

tWLWH WR Pulse Width Low 150 ns

tWLRL WR Low to RDY/BSY Low 0 1 µs

217
8008H–AVR–04/11

ATtiny48/88

Notes: 1. tWLRH is valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock bits
commands.

2. tWLRH_CE is valid for the Chip Erase command.

22.11 Serial Programming Characteristics

Figure 22-9. Serial Programming Timing

Figure 22-10. Serial Programming Waveforms

tWLRH WR Low to RDY/BSY High(1) 3.7 4.5 ms

tWLRH_CE WR Low to RDY/BSY High for Chip Erase(2) 7.5 9 ms

tXLOL CLKI Low to OE Low 0 ns

tBVDV BS1 Valid to DATA valid 0 250 ns

tOLDV OE Low to DATA Valid 250 ns

tOHDZ OE High to DATA Tri-stated 250 ns

Table 22-9. Parallel Programming Characteristics, TA = 25°C, VCC = 5V (Continued)

Symbol Parameter Min Typ Max Units

MOSI

MISO

SCK

tOVSH

tSHSL

tSLSHtSHOX

tSLIV

MSB

MSB

LSB

LSB

SERIAL CLOCK INPUT
(SCK)

SERIAL DATA INPUT
 (MOSI)

(MISO)

SAMPLE

SERIAL DATA OUTPUT

218
8008H–AVR–04/11

ATtiny48/88

Table 22-10. Serial Programming Characteristics, TA = -40°C to +85°C, VCC = 1.8 – 5.5V
(Unless Otherwise Noted)

Symbol Parameter Min Typ Max Units

1/tCLCL Oscillator Frequency (VCC = 2.7V – 5.5V) 0 6 MHz

tCLCL Oscillator Period (VCC = 2.7V – 5.5V) 166 ns

1/tCLCL Oscillator Frequency (VCC = 4.5V – 5.5V) 0 12 MHz

tCLCL Oscillator Period (VCC = 4.5V – 5.5V) 83 ns

tSHSL SCK Pulse Width High 2 tCLCL* ns

tSLSH SCK Pulse Width Low 2 tCLCL* ns

tOVSH MOSI Setup to SCK High tCLCL ns

tSHOX MOSI Hold after SCK High 2 tCLCL ns

219
8008H–AVR–04/11

ATtiny48/88

23. Typical Characteristics
The data contained in this section is largely based on simulations and characterization of similar
devices in the same process and design methods. Thus, the data should be treated as indica-
tions of how the part will behave.

The following charts show typical behavior. These figures are not tested during manufacturing.
All current consumption measurements are performed with all I/O pins configured as inputs and
with internal pull-ups enabled. A sine wave generator with rail-to-rail output is used as clock
source.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating
frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient tempera-
ture. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as CL*VCC*f
where CL = load capacitance, VCC = operating voltage and f = average switching frequency of
I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to
function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timer
enabled and Power-down mode with Watchdog Timer disabled represents the differential cur-
rent drawn by the Watchdog Timer.

23.1 ATtiny48

23.1.1 Current Consumption in Active Mode

Figure 23-1. Active Supply Current vs. Low Frequency (0.1 - 1.0 MHz)
ACTIVE SUPPLY CURRENT vs. LOW FREQUENCY

0.1 - 1.0 MHz

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C
 (

m
A

)

220
8008H–AVR–04/11

ATtiny48/88

Figure 23-2. Active Supply Current vs. Frequency (1 - 12 MHz)

Figure 23-3. Active Supply Current vs. VCC (Internal oscillator, 8 MHz)

ACTIVE SUPPLY CURRENT vs. FREQUENCY

1 - 12 MHz

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12

Frequency (MHz)

I C
C

 (
m

A
)

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

ACTIVE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 8 MHz

85 °C
25 °C

-40 °C

0

1

2

3

4

5

6

7

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C

 (
m

A
)

221
8008H–AVR–04/11

ATtiny48/88

Figure 23-4. Active Supply Current vs. VCC (Internal Oscillator, 1 MHz)

Figure 23-5. Active Supply Current vs. VCC (Internal Oscillator, 128 kHz)

ACTIVE SUPPLY CURRENT vs. VCC
INTERNAL RC OSCILLATOR, 1 MHz

85 °C
25 °C

-40 °C

0

0.2

0.4

0.6

0.8

1

1.2

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

ACTIVE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 128 KHz

85 °C
25 °C

-40 °C

0

0.05

0.1

0.15

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C

 (
m

A
)

222
8008H–AVR–04/11

ATtiny48/88

23.1.2 Current Consumption in Idle Mode

Figure 23-6. Idle Supply Current vs. low Frequency (0.1 - 1.0 MHz)

Figure 23-7. Idle Supply Current vs. Frequency (1 - 12 MHz)

IDLE SUPPLY CURRENT vs. LOW FREQUENCY

0.1 - 1.0 MHz

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C

 (
m

A
)

IDLE SUPPLY CURRENT vs. FREQUENCY

1 -12 MHz

0

0.5

1

1.5

2

0 2 4 6 8 10 12

Frequency (MHz)

I C
C

 (
m

A
)

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

223
8008H–AVR–04/11

ATtiny48/88

Figure 23-8. Idle Supply Current vs. VCC (Internal Oscillator, 8 MHz)

Figure 23-9. Idle Supply Current vs. VCC (Internal Oscilllator, 1 MHz)

IDLE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 8 MHz

85 °C
25 °C

-40 °C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C

 (
m

A
)

IDLE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 1 MHz

85 °C
25 °C

-40 °C

0

0.1

0.2

0.3

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C

 (
m

A
)

224
8008H–AVR–04/11

ATtiny48/88

Figure 23-10. Idle Supply Current vs. VCC (Internal Oscillator, 128 kHz)

23.1.3 Current Consumption in Power-down Mode

Figure 23-11. Power-down Supply Current vs. VCC (Watchdog Timer Disabled)

IDLE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 128 KHz

85 °C
25 °C

-40 °C

0

0.005

0.01

0.015

0.02

0.025

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C

 (
m

A
)

POWER-DOWN SUPPLY CURRENT vs. VCC

WATCHDOG TIMER DISABLED

85 °C

25 °C

-40 °C
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C

 (
uA

)

225
8008H–AVR–04/11

ATtiny48/88

Figure 23-12. Power-down Supply Current vs. VCC (Watchdog Timer Enabled)

23.1.4 Current Consumption in Reset

Figure 23-13. Reset Supply Current vs. Low Frequency (0.1 - 1.0 MHz)

POWER-DOWN SUPPLY CURRENT vs. VCC

WATCHDOG TIMER ENABLED

85 °C

25 °C

-40 °C

0

1

2

3

4

5

6

7

8

9

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C

 (
uA

)

RESET SUPPLY CURRENT vs. LOW FREQUENCY
0.1 - 1.0 MHz

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C

 (
m

A
)

226
8008H–AVR–04/11

ATtiny48/88

Figure 23-14. Reset Supply Current vs. Frequency (1 - 12 MHz)

23.1.5 Current Consumption in Peripheral Units

Figure 23-15. Brownout Detector Current vs. VCC

RESET SUPPLY CURRENT vs. FREQUENCY

1 - 12 MHz

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2 4 6 8 10 12

Frequency (MHz)

I C
C

 (
m

A
)

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

BROWNOUT DETECTOR CURRENT vs. VCC

85 °C
25 °C

-40 °C

0

5

10

15

20

25

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C

 (
uA

)

227
8008H–AVR–04/11

ATtiny48/88

Figure 23-16. ADC Current vs. VCC (AREF = AVCC)

Figure 23-17. Analog Comparator Current vs. VCC

ADC CURRENT vs. VCC

AREF = AVCC

85 °C
25 °C

-40 °C

0

50

100

150

200

250

300

350

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C

 (
uA

)

ANALOG COMPARATOR CURRENT vs. VCC

85 °C
25 °C

-40 °C

0

10

20

30

40

50

60

70

80

90

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

uA
)

228
8008H–AVR–04/11

ATtiny48/88

Figure 23-18. Programming Current vs. VCC

23.1.6 Pull-up Resistors

Figure 23-19. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 1.8V)

PROGRAMMING CURRENT vs. VCC

85 °C

25 °C

-40 °C

0

1

2

3

4

5

6

7

8

9

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
VCC = 1.8V

85 °C

25 °C

-40 °C

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

VOP (V)

I O
P
 (

uA
)

229
8008H–AVR–04/11

ATtiny48/88

Figure 23-20. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 2.7V)

Figure 23-21. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 5V)

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE

VCC = 2.7

85 °C

25 °C

-40 °C

0

10

20

30

40

50

60

70

80

0 0.5 1 1.5 2 2.5 3

VOP (V)

I O
P
 (

uA
)

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
VCC = 5V

85 °C
25 °C

-40 °C

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6

VOP (V)

I O
P
 (

uA
)

230
8008H–AVR–04/11

ATtiny48/88

Figure 23-22. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V)

Figure 23-23. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V)

RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE
VCC = 1.8V

85 °C
25 °C

-40 °C

0

5

10

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

VRESET (V)

I R
E

S
E

T
 (

uA
)

RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE
VCC = 2.7V

85 °C
25 °C

-40 °C

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3

VRESET (V)

I R
E

S
E

T
 (

uA
)

231
8008H–AVR–04/11

ATtiny48/88

Figure 23-24. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V)

23.1.7 Output Driver Strength

Figure 23-25. VOL: High Sink I/O Pin Output Voltage vs. Sink Current (VCC = 1.8V)

RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE

VCC = 5V

85 °C

25 °C

-40 °C

0

20

40

60

80

100

120

0 1 2 3 4 5 6

VRESET (V)

I R
E

S
E

T
 (

uA
)

HIGH SINK I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
VCC = 1.8V

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

IOL (mA)

V
O

L
 (

V
)

85 °C

25 °C

-40 °C

232
8008H–AVR–04/11

ATtiny48/88

Figure 23-26. VOL: High Sink I/O Pin Output Voltage vs. Sink Current (VCC = 3V)

Figure 23-27. VOL: High Sink I/O Pin Output Voltage vs. Sink Current (VCC = 5V)

HIGH SINK I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT

VCC = 3V

85 °C

25 °C

-40 °C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25

IOL (mA)

V
O

L
 (

V
)

HIGH SINK I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT

VCC = 5V

85 °C

25 °C

-40 °C

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25

IOL (mA)

V
O

L
 (

V
)

233
8008H–AVR–04/11

ATtiny48/88

Figure 23-28. VOL: Standard I/O Pin Output Voltage vs. Sink Current (VCC = 1.8V)

Figure 23-29. VOL: Standard I/O Pin Output Voltage vs. Sink Current (VCC = 3V)

STANDARD I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT

VCC = 1.8V

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

IOL (mA)

V
O

L
 (

V
)

85 °C

25 °C

-40 °C

STANDARD I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT

VCC = 3V

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14

IOL (mA)

V
O

L
 (

V
)

85 °C

25 °C

-40 °C

234
8008H–AVR–04/11

ATtiny48/88

Figure 23-30. VOL: Standard I/O Pin Output Voltage vs. Sink Current (VCC = 5V)

Figure 23-31. VOH: Standard I/O Pin Output Voltage vs. Source Current (VCC = 1.8V)

STANDARD I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
VCC = 5V

85 °C

25 °C

-40 °C

0

0,2

0,4

0,6

0,8

1

0 5 10 15 20 25

IOL (mA)

V
O

L
 (

V
)

STANDARD I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
VCC = 1.8V

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5 6

IOH (mA)

V
O

H
 (

V
)

85 °C

25 °C

-40 °C

235
8008H–AVR–04/11

ATtiny48/88

Figure 23-32. VOH: Standard I/O Pin Output Voltage vs. Source Current (VCC = 3V)

Figure 23-33. VOH: Standard I/O Pin Output Voltage vs. Source Current (VCC = 5V)

STANDARD I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT

VCC = 3V

-40 °C

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

3.1

0 5 10 15 20 25

IOH (mA)

V
O

H
 (

V
)

85 °C 25 °C

STANDARD I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT

VCC = 5V

85 °C

25 °C

-40 °C

4

4.2

4.4

4.6

4.8

5

5.2

0 5 10 15 20 25

IOH (mA)

V
O

H
 (

V
)

236
8008H–AVR–04/11

ATtiny48/88

Figure 23-34. VOL: Reset Pin Output Voltage vs. Sink Current (VCC = 1.8V)

Figure 23-35. VOL: Reset Pin Output Voltage vs. Sink Current (VCC = 3V)

RESET I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
VCC = 1.8V

0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4 0.5

IOL (mA)

V
O

L
 (

V
)

85 °C

25 °C

-40 °C

RESET I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT

VCC = 3V

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3

IOL (mA)

V
O

L
 (

V
)

85 °C

25 °C

-40 °C

237
8008H–AVR–04/11

ATtiny48/88

Figure 23-36. VOL: Reset Pin Output Voltage vs. Sink Current (VCC = 5V)

Figure 23-37. VOH: Reset Pin Output Voltage vs. Source Current (VCC = 1.8V)

RESET I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT

VCC = 5V

85 °C

25 °C

-40 °C

0

1

2

3

4

5

6

0 2 4 6 8 10 12

IOL (mA)

V
O

L
 (

V
)

RESET I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT

VCC = 1.8V

-40 °C

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5

IOH (mA)

V
O

H
 (

V
)

25 °C85 °C

238
8008H–AVR–04/11

ATtiny48/88

Figure 23-38. VOH: Reset Pin Output Voltage vs. Source Current (VCC = 3V)

Figure 23-39. VOH: Reset Pin Output Voltage vs. Source Current (VCC = 5V)

RESET I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
VCC = 3V

85 °C
25 °C

-40 °C

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5

IOH (mA)

V
O

H
 (

V
)

RESET I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT

VCC = 5V

85 °C
25 °C

-40 °C

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5

IOH (mA)

V
O

H
 (

V
)

239
8008H–AVR–04/11

ATtiny48/88

23.1.8 Input Threshold and Hysteresis

Figure 23-40. VIH: I/O Pin Input Threshold Voltage vs. VCC (IO Pin Read as ‘1’)

Figure 23-41. VIL: I/O Pin Input Threshold Voltage vs. VCC (IO Pin Read as ‘0’)

I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC

VIH, IO PIN READ AS '1'

85 °C
25 °C

-40 °C

0

0.5

1

1.5

2

2.5

3

3.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
hr

es
ho

ld
 (

V
)

I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC

VIL, IO PIN READ AS '0'

85 °C

25 °C
-40 °C

0

0.5

1

1.5

2

2.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
hr

es
ho

ld
 (

V
)

240
8008H–AVR–04/11

ATtiny48/88

Figure 23-42. VIH-VIL: I/O Pin Input Hysteresis vs. VCC

Figure 23-43. VIH: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as ‘1’)

I/O PIN INPUT HYSTERESIS vs. VCC

85 °C

25 °C

-40 °C

0

0.2

0.4

0.6

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

In
pu

t H
ys

te
re

si
s

(V
)

85 °C
25 °C

-40 °C

RESET PIN AS I/O THRESHOLD VOLTAGE vs. VCC
VIH, RESET READ AS '1'

0

0,5

1

1,5

2

2,5

3

3,5

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

Th
re

sh
ol

d
(V

)

241
8008H–AVR–04/11

ATtiny48/88

Figure 23-44. VIL: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as ‘0’)

Figure 23-45. VIH-VIL: Input Hysteresis vs. VCC (Reset Pin as I/O)

85 °C
25 °C

-40 °C

RESET PIN AS I/O THRESHOLD VOLTAGE vs. VCC
VIL, RESET READ AS '0'

0

0,5

1

1,5

2

2,5

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

Th
re

sh
ol

d
(V

)

85 °C

25 °C

-40 °C

RESET PIN AS IO, INPUT HYSTERESIS vs. VCC
VIL, IO PIN READ AS "0"

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

In
pu

t H
ys

te
re

si
s

(V
)

242
8008H–AVR–04/11

ATtiny48/88

23.1.9 BOD, Bandgap and Reset

Figure 23-46. BOD Threshold vs. Temperature (BOD Level is 4.3V)

Figure 23-47. BOD Threshold vs. Temperature (BOD Level is 2.7V)

BOD THRESHOLDS vs. TEMPERATURE
 BOD LEVEL IS 4.3V

Rising VCC

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.3

4.31

4.32

4.33

4.34

-60 -40 -20 0 20 40 60 80 100

Temperature (C)

T
hr

es
ho

ld
 (

V
)

Falling VCC

BOD THRESHOLDS vs. TEMPERATURE
 BOD LEVEL IS 2.7V

Rising VCC

2.66

2.67

2.68

2.69

2.7

2.71

2.72

2.73

2.74

2.75

2.76

-60 -40 -20 0 20 40 60 80 100

Temperature (C)

T
hr

es
ho

ld
 (

V
)

Falling VCC

243
8008H–AVR–04/11

ATtiny48/88

Figure 23-48. BOD Threshold vs. Temperature (BOD Level is 1.8V)

Figure 23-49. VIH: Reset Input Threshold Voltage vs. VCC (IO Pin Read as ‘1’)

BOD THRESHOLDS vs. TEMPERATURE

 BOD LEVEL IS 1.8V

Rising VCC

1,775

1,78

1,785

1,79

1,795

1,8

1,805

1,81

1,815

1,82

1,825

-60 -40 -20 0 20 40 60 80 100

Temperature (C)

T
hr

es
ho

ld
 (

V
)

Falling VCC

RESET INPUT THRESHOLD VOLTAGE vs. VCC
VIH, IO PIN READ AS '1'

85 °C

25 °C

-40 °C

0

0.5

1

1.5

2

2.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
hr

es
ho

ld
 (

V
)

244
8008H–AVR–04/11

ATtiny48/88

Figure 23-50. VIL: Reset Input Threshold Voltage vs. VCC (IO Pin Read as ‘0’)

Figure 23-51. VIH-VIL: Reset Pin Input Hysteresis vs. VCC

RESET INPUT THRESHOLD VOLTAGE vs. VCC

VIL, IO PIN READ AS '0'

85 °C
25 °C

-40 °C

0

0.5

1

1.5

2

2.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
hr

es
ho

ld
 (

V
)

RESET PIN INPUT HYSTERESIS vs. VCC

85 °C

25 °C

-40 °C

0

0.1

0.2

0.3

0.4

0.5

0.6

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

In
pu

t H
ys

te
re

si
s

(V
)

245
8008H–AVR–04/11

ATtiny48/88

Figure 23-52. Minimum Reset Pulse Width vs. VCC

23.1.10 Internal Oscillator Speed

Figure 23-53. Watchdog Oscillator Frequency vs. VCC

MINIMUM RESET PULSE WIDTH vs. VCC

85 °C
25 °C

-40 °C

0

500

1000

1500

2000

2500

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

P
ul

se
w

id
th

 (
ns

)

WATCHDOG OSCILLATOR FREQUENCY vs. VCC

85 °C

25 °C

-40 °C

104

105

106

107

108

109

110

111

112

113

114

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F
R

C
 (

H
z)

246
8008H–AVR–04/11

ATtiny48/88

Figure 23-54. Watchdog Oscillator Frequency vs. Temperature

Figure 23-55. Calibrated 8 MHz Oscillator Frequency vs. VCC

WATCHDOG OSCILLATOR FREQUENCY vs. TEMPERATURE

5.5 V

4.0 V

3.3 V

2.7 V

1.8 V

104

105

106

107

108

109

110

111

112

113

-60 -40 -20 0 20 40 60 80 100

Temperature

F
R

C
 (

kH
z)

CALIBRATED 8 MHz RC OSCILLATOR FREQUENCY vs. VCC

85 °C
25 °C

-40 °C

7.7

7.8

7.9

8

8.1

8.2

8.3

8.4

8.5

8.6

1.5 1.9 2.3 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5

VCC (V)

F
R

C
 (

M
H

z)

247
8008H–AVR–04/11

ATtiny48/88

Figure 23-56. Calibrated 8 MHz Oscillator Frequency vs. Temperature

Figure 23-57. Calibrated 8 MHz Oscillator Frequency vs. OSCCAL Value

CALIBRATED 8 MHz RC OSCILLATOR FREQUENCY vs. TEMPERATURE

5.5 V

3.0 V

7.7

7.8

7.9

8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

-60 -40 -20 0 20 40 60 80 100

Temperature

F
R

C
 (

M
H

z)

CALIBRATED 8 MHz RC OSCILLATOR FREQUENCY vs. OSCCAL VALUE

85 °C
25 °C

-40 °C

0

2

4

6

8

10

12

14

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

OSCCAL (X1)

F
R

C
 (

M
H

z)

248
8008H–AVR–04/11

ATtiny48/88

23.2 ATtiny88

23.2.1 Current Consumption in Active Mode

Figure 23-58. Active Supply Current vs. Low Frequency (0.1 - 1.0 MHz)

Figure 23-59. Active Supply Current vs. Frequency (1 - 12 MHz)

ACTIVE SUPPLY CURRENT vs. LOW FREQUENCY (ATtiny88)
0.1 - 1.0 MHz

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Frequency (MHz)

I C
C
 (m

A
)

ACTIVE SUPPLY CURRENT vs. FREQUENCY (ATtiny88)
1 - 12 MHz

0

1

2

3

4

5

6

7

8

210186420

Frequency (MHz)

I C
C
 (m

A
)

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

249
8008H–AVR–04/11

ATtiny48/88

Figure 23-60. Active Supply Current vs. VCC (Internal oscillator, 8 MHz)

Figure 23-61. Active Supply Current vs. VCC (Internal Oscillator, 1 MHz)

ACTIVE SUPPLY CURRENT vs. VCC (ATtiny88)
INTERNAL RC OSCILLATOR, 8 MHz

85 °C
25 °C

-40 °C

0

1

2

3

4

5

6

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I C
C
 (m

A
)

85 °C
25 °C

-40 °C

ACTIVE SUPPLY CURRENT vs. VCC (ATtiny88)
INTERNAL RC OSCILLATOR, 1 MHz

0

0,2

0,4

0,6

0,8

1

1,2

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I C
C
 (m

A
)

250
8008H–AVR–04/11

ATtiny48/88

Figure 23-62. Active Supply Current vs. VCC (Internal Oscillator, 128 kHz)

23.2.2 Current Consumption in Idle Mode

Figure 23-63. Idle Supply Current vs. low Frequency (0.1 - 1.0 MHz)

85 °C
25 °C

-40 °C

ACTIVE SUPPLY CURRENT vs. VCC (ATtiny88)
INTERNAL RC OSCILLATOR, 128 KHz

0

0,05

0,1

0,15

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I C
C
 (m

A
)

IDLE SUPPLY CURRENT vs. LOW FREQUENCY (ATtiny88)
0.1 - 1.0 MHz

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Frequency (MHz)

I C
C
 (m

A
)

251
8008H–AVR–04/11

ATtiny48/88

Figure 23-64. Idle Supply Current vs. Frequency (1 - 12 MHz)

Figure 23-65. Idle Supply Current vs. VCC (Internal Oscillator, 8 MHz)

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

IDLE SUPPLY CURRENT vs. FREQUENCY (ATtiny88)
1 - 12 MHz

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

210186420

Frequency (MHz)

I C
C
 (m

A
)

IDLE SUPPLY CURRENT vs. VCC (ATtiny88)
INTERNAL RC OSCILLATOR, 8 MHz

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I C
C
 (m

A
)

85 °C
25 °C

-40 °C

252
8008H–AVR–04/11

ATtiny48/88

Figure 23-66. Idle Supply Current vs. VCC (Internal Oscilllator, 1 MHz)

Figure 23-67. Idle Supply Current vs. VCC (Internal Oscillator, 128 kHz)

85 °C
25 °C

-40 °C

IDLE SUPPLY CURRENT vs. VCC (ATtiny88)
INTERNAL RC OSCILLATOR, 1 MHz

0

0,1

0,2

0,3

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I C
C
 (m

A
)

IDLE SUPPLY CURRENT vs. VCC (ATtiny88)
INTERNAL RC OSCILLATOR, 128 KHz

0

0,005

0,01

0,015

0,02

0,025

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I C
C
 (m

A
)

85 °C
25 °C

-40 °C

253
8008H–AVR–04/11

ATtiny48/88

23.2.3 Current Consumption in Power-down Mode

Figure 23-68. Power-down Supply Current vs. VCC (Watchdog Timer Disabled)

Figure 23-69. Power-down Supply Current vs. VCC (Watchdog Timer Enabled)

85 °C

25 °C

-40 °C

POWER-DOWN SUPPLY CURRENT vs. VCC (ATtiny88)
WATCHDOG TIMER DISABLED

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I C
C
 (u

A
)

85 °C
25 °C

-40 °C

POWER-DOWN SUPPLY CURRENT vs. VCC (ATtiny88)
WATCHDOG TIMER ENABLED

0

1

2

3

4

5

6

7

8

9

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I C
C
 (u

A
)

254
8008H–AVR–04/11

ATtiny48/88

23.2.4 Current Consumption in Reset

Figure 23-70. Reset Supply Current vs. Low Frequency (0.1 - 1.0 MHz)

Figure 23-71. Reset Supply Current vs. Frequency (1 - 12 MHz)

RESET SUPPLY CURRENT vs. LOW FREQUENCY (ATtiny88)
EXCLUDING CURRENT THROUGH THE RESET PULLUP

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Frequency (MHz)

I C
C
 (m

A
)

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

RESET SUPPLY CURRENT vs. FREQUENCY (ATtiny88)
EXCLUDING CURRENT THROUGH THE RESET PULLUP

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

210186420

Frequency (MHz)

I C
C
 (m

A
)

255
8008H–AVR–04/11

ATtiny48/88

23.2.5 Current Consumption in Peripheral Units

Figure 23-72. Brownout Detector Current vs. VCC

Figure 23-73. ADC Current vs. VCC (AREF = AVCC)

BROWNOUT DETECTOR CURRENT vs. VCC (ATtiny88)

85 °C

25 °C
-40 °C

0

5

10

15

20

25

30

1,5 2 2,5 3 3,5 4 4,5 5 5,5
VCC (V)

I C
C
 (u

A
)

85 °C
25 °C

-40 °C

ACTIVE SUPPLY CURRENT WITH ADC AT 50KHz vs. VCC (ATtiny88)

0

50

100

150

200

250

300

350

400

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I C
C
 (u

A
)

256
8008H–AVR–04/11

ATtiny48/88

Figure 23-74. Analog Comparator Current vs. VCC

Figure 23-75. Programming Current vs. VCC

85 °C

25 °C
-40 °C

ANALOG COMPARATOR CURRENT vs. VCC (ATtiny88)

0

10

20

30

40

50

60

70

80

90

100

110

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I C
C
 (u

A
)

PROGRAMMING CURRENT vs. VCC (ATtiny88)

85 °C

25 °C

-40 °C

0

2

4

6

8

10

12

14

16

18

20

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I C
C
 (m

A
)

257
8008H–AVR–04/11

ATtiny48/88

23.2.6 Pull-up Resistors

Figure 23-76. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 1.8V)

Figure 23-77. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 2.7V)

85 °C
25 °C

-40 °C

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE (ATtiny88)
VCC = 1.8V

0

10

20

30

40

50

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2

VOP (V)

I O
P
 (u

A
)

85 °C

25 °C
-40 °C

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE (ATtiny88)
VCC = 2.7V

0

10

20

30

40

50

60

70

80

35,225,115,00

VOP (V)

I O
P
 (u

A
)

258
8008H–AVR–04/11

ATtiny48/88

Figure 23-78. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 5V)

Figure 23-79. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V)

85 °C
25 °C

-40 °C

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE (ATtiny88)
VCC = 5V

0

20

40

60

80

100

120

140

160

6543210

VOP (V)

I O
P
 (u

A
)

85 °C

25 °C
-40 °C

RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE (ATtiny88)
VCC = 1.8V

0

5

10

15

20

25

30

35

40

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2

VRESET (V)

I R
E

S
E

T
(u

A
)

259
8008H–AVR–04/11

ATtiny48/88

Figure 23-80. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V)

Figure 23-81. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V)

85 °C

25 °C
-40 °C

RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE (ATtiny88)
VCC = 2.7V

0

10

20

30

40

50

60

35,225,115,00

VRESET (V)

I R
E

S
E

T
(u

A
)

85 °C

25 °C
-40 °C

RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE (ATtiny88)
VCC = 5V

0

20

40

60

80

100

120

6543210

VRESET (V)

I R
E

S
E

T
(u

A
)

260
8008H–AVR–04/11

ATtiny48/88

23.2.7 Output Driver Strength

Figure 23-82. VOL: High Sink I/O Pin Output Voltage vs. Sink Current (VCC = 1.8V)

Figure 23-83. VOL: High Sink I/O Pin Output Voltage vs. Sink Current (VCC = 3V)

85 °C

25 °C

-40 °C

HIGH SINK I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT (ATtiny88)
VCC = 1.8V

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5 6 7 8 9 10

IOL (mA)

V
O

L (
V

)

85 °C

25 °C

-40 °C

HIGH SINK I/O OUTPUT VOLTAGE vs. SINK CURRENT (ATtiny88)
VCC = 3V

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 2 4 6 8 10 12 14 16 18 20

IOL (mA)

V
O

L (
V

)

261
8008H–AVR–04/11

ATtiny48/88

Figure 23-84. VOL: High Sink I/O Pin Output Voltage vs. Sink Current (VCC = 5V)

Figure 23-85. VOL: Standard I/O Pin Output Voltage vs. Sink Current (VCC = 1.8V)

85 °C

25 °C

-40 °C

HIGH SINK I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT (ATtiny88)
VCC = 5V

0

0,1

0,2

0,3

0,4

0,5

0,6

0 2 4 6 8 10 12 14 16 18 20

IOL (mA)

V
O

L (
V

)

85 °C

25 °C

-40 °C

STANDARD I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT (ATtiny88)
VCC = 1.8V

0

0,2

0,4

0,6

0,8

1

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

IOL (mA)

V
O

L (
V

)

262
8008H–AVR–04/11

ATtiny48/88

Figure 23-86. VOL: Standard I/O Pin Output Voltage vs. Sink Current (VCC = 3V)

Figure 23-87. VOL: Standard I/O Pin Output Voltage vs. Sink Current (VCC = 5V)

85 °C

25 °C

-40 °C

STANDARD I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT (ATtiny88)
VCC = 3V

0

0,2

0,4

0,6

0,8

1

1,2

0 2 4 6 8 10 12 14

IOL (mA)

V
O

L (
V

)

85 °C

25 °C

-40 °C

STANDARD I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT (ATtiny88)
VCC = 5V

0

0,2

0,4

0,6

0,8

1

02510150

IOL (mA)

V
O

L (
V

)

263
8008H–AVR–04/11

ATtiny48/88

Figure 23-88. VOH: Standard I/O Pin Output Voltage vs. Source Current (VCC = 1.8V)

Figure 23-89. VOH: Standard I/O Pin Output Voltage vs. Source Current (VCC = 3V)

85 °C

25 °C

-40 °C

STANDARD I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT (ATtiny88)
VCC = 1.8V

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

6543210

IOH (mA)

V
O

H
 (V

)

85 °C

25 °C

-40 °C

STANDARD I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT (ATtiny88)
VCC = 3V

1,5

1,7

1,9

2,1

2,3

2,5

2,7

2,9

3,1

5202510150

IOH (mA)

V
O

H
 (V

)

264
8008H–AVR–04/11

ATtiny48/88

Figure 23-90. VOH: Standard I/O Pin Output Voltage vs. Source Current (VCC = 5V)

Figure 23-91. VOL: Reset Pin Output Voltage vs. Sink Current (VCC = 1.8V)

STANDARD I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT (ATtiny88)
VCC = 5V

85 °C

25 °C

-40 °C

4

4,2

4,4

4,6

4,8

5

5,2

5202510150

IOH (mA)

V
O

H
 (V

)

85 °C

25 °C

-40 °C

RESET I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT (ATtiny88)
VCC = 1.8V

0

0,1

0,2

0,3

5,04,03,02,01,00

IOL (mA)

V
O

L (
V

)

265
8008H–AVR–04/11

ATtiny48/88

Figure 23-92. VOL: Reset Pin Output Voltage vs. Sink Current (VCC = 3V)

Figure 23-93. VOL: Reset Pin Output Voltage vs. Sink Current (VCC = 5V)

85 °C

25 °C

-40 °C

RESET I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT (ATtiny88)
VCC = 3V

0

0,5

1

1,5

35,225,115,00

IOL (mA)

V
O

L (
V

)

RESET I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT (ATtiny88)
VCC = 5V

85 °C

25 °C

-40 °C

0

1

2

3

4

5

6

7

210186420

IOL (mA)

V
O

L (
V

)

266
8008H–AVR–04/11

ATtiny48/88

Figure 23-94. VOH: Reset Pin Output Voltage vs. Source Current (VCC = 1.8V)

Figure 23-95. VOH: Reset Pin Output Voltage vs. Source Current (VCC = 3V)

85 °C

25 °C

-40 °C

RESET I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT (ATtiny88)
VCC = 1.8V

0

0,5

1

1,5

5,225,115,00

IOH (mA)

V
O

H
 (V

)

RESET I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT (ATtiny88)
VCC = 3V

85 °C

25 °C

-40 °C

0

0,5

1

1,5

2

2,5

3

5,225,115,00

IOH (mA)

V
O

H
 (V

)

267
8008H–AVR–04/11

ATtiny48/88

Figure 23-96. VOH: Reset Pin Output Voltage vs. Source Current (VCC = 5V)

23.2.8 Input Threshold and Hysteresis

Figure 23-97. VIH: I/O Pin Input Threshold Voltage vs. VCC (IO Pin Read as ‘1’)

RESET I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT (ATtiny88)
VCC = 5V

85 °C
25 °C

-40 °C

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5,225,115,00

IOH (mA)

V
O

H
 (V

)

85 °C
25 °C

-40 °C

I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC (ATtiny88)
VIH, IO PIN READ AS '1'

0

0,5

1

1,5

2

2,5

3

3,5

1,5 2 2,5 3 3,5 4 4,5 5 5,5
VCC (V)

Th
re

sh
ol

d
(V

)

268
8008H–AVR–04/11

ATtiny48/88

Figure 23-98. VIL: I/O Pin Input Threshold Voltage vs. VCC (IO Pin Read as ‘0’)

Figure 23-99. VIH-VIL: I/O Pin Input Hysteresis vs. VCC

85 °C
25 °C

-40 °C

I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC (ATtiny88)
VIL, IO PIN READ AS '0'

0

0,5

1

1,5

2

2,5

1,5 2 2,5 3 3,5 4 4,5 5 5,5
VCC (V)

Th
re

sh
ol

d
(V

)

85 °C

25 °C

-40 °C

I/O PIN INPUT HYSTERESIS vs. VCC (ATtiny88)

0

0,2

0,4

0,6

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

In
pu

t H
ys

te
re

si
s

(V
)

269
8008H–AVR–04/11

ATtiny48/88

Figure 23-100.VIH: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as ‘1’)

Figure 23-101.VIL: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as ‘0’)

85 °C
25 °C

-40 °C

RESET PIN AS I/O THRESHOLD VOLTAGE vs. VCC
VIH, RESET READ AS '1'

0

0,5

1

1,5

2

2,5

3

3,5

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

Th
re

sh
ol

d
(V

)

(ATtiny88)

85 °C
25 °C

-40 °C

RESET PIN AS I/O THRESHOLD VOLTAGE vs. VCC
VIL, RESET READ AS '0'

0

0,5

1

1,5

2

2,5

1,5 2 2,5 3 3,5 4 4,5 5 5,5
VCC (V)

Th
re

sh
ol

d
(V

)

(ATtiny88)

270
8008H–AVR–04/11

ATtiny48/88

Figure 23-102.VIH-VIL: Input Hysteresis vs. VCC (Reset Pin as I/O)

23.2.9 BOD, Bandgap and Reset

Figure 23-103.BOD Threshold vs. Temperature (BOD Level is 4.3V)

85 °C

25 °C

-40 °C

RESET PIN AS IO, INPUT HYSTERESIS vs. V (ATtiny88)CC
VIL, IO PIN READ AS "0"

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

In
pu

t H
ys

te
re

si
s

(V
)

BOD THRESHOLDS vs. TEMPERATURE (ATtiny88)
BODLEVEL = 4.3V

Rising

Falling

4,2

4,22

4,24

4,26

4,28

4,3

4,32

4,34

4,36

4,38

4,4

-40 -20 0 20 40 60 80 100

Temperature (C)

Th
re

sh
ol

d
(V

)

VCC

VCC

271
8008H–AVR–04/11

ATtiny48/88

Figure 23-104.BOD Threshold vs. Temperature (BOD Level is 2.7V)

Figure 23-105.BOD Threshold vs. Temperature (BOD Level is 1.8V)

Rising

Falling

VCC

VCC

BOD THRESHOLDS vs. TEMPERATURE (ATtiny88)
BODLEVEL = 2.7V

2,66

2,68

2,7

2,72

2,74

2,76

2,78

-40 -20 0 20 40 60 80 100

Temperature (C)

Th
re

sh
ol

d
(V

)

Rising

Falling

VCC

VCC

BOD THRESHOLDS vs. TEMPERATURE (ATtiny88)
BODLEVEL = 1.8V

1,775

1,78

1,785

1,79

1,795

1,8

1,805

1,81

1,815

1,82

1,825

1,83

-40 -20 0 20 40 60 80 100

Temperature (C)

Th
re

sh
ol

d
(V

)

272
8008H–AVR–04/11

ATtiny48/88

Figure 23-106.VIH: Reset Input Threshold Voltage vs. VCC (IO Pin Read as ‘1’)

Figure 23-107.VIL: Reset Input Threshold Voltage vs. VCC (IO Pin Read as ‘0’)

85 °C

25 °C

-40 °C

RESET INPUT THRESHOLD VOLTAGE vs. VCC (ATtiny88)
VIH, IO PIN READ AS '1'

0

0,5

1

1,5

2

2,5

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

Th
re

sh
ol

d
(V

)

85 °C
25 °C

-40 °C

RESET INPUT THRESHOLD VOLTAGE vs. VCC (ATtiny88)
VIL, IO PIN READ AS '0'

0

0,5

1

1,5

2

2,5

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

Th
re

sh
ol

d
(V

)

273
8008H–AVR–04/11

ATtiny48/88

Figure 23-108.VIH-VIL: Reset Pin Input Hysteresis vs. VCC

Figure 23-109.Minimum Reset Pulse Width vs. VCC

85 °C

25 °C

-40 °C

RESET PIN INPUT HYSTERESIS vs. VCC (ATtiny88)

0

0,1

0,2

0,3

0,4

0,5

0,6

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

In
pu

t H
ys

te
re

si
s

(V
)

85 °C
25 °C

-40 °C

MINIMUM RESET PULSE WIDTH vs. VCC (ATtiny88)

0

500

1000

1500

2000

2500

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

P
ul

se
w

id
th

 (n
s)

274
8008H–AVR–04/11

ATtiny48/88

23.2.10 Internal Oscillator Speed

Figure 23-110.Watchdog Oscillator Frequency vs. VCC

Figure 23-111.Watchdog Oscillator Frequency vs. Temperature

85 °C

25 °C

-40 °C

WATCHDOG OSCILLATOR FREQUENCY vs. OPERATING VOLTAGE (ATtiny88)

104

106

108

110

112

114

116

118

120

122

124

126

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

F R
C
 (H

z)

WATCHDOG OSCILLATOR FREQUENCY vs. TEMPERATURE (ATtiny88)

5.5 V
4.0 V
3.3 V
2.7 V

1.8 V

104

106

108

110

112

114

116

118

120

122

124

-40 -20 0 20 40 60 80 100

Temperature

F R
C
 (k

H
z)

275
8008H–AVR–04/11

ATtiny48/88

Figure 23-112.Calibrated 8 MHz Oscillator Frequency vs. VCC

Figure 23-113.Calibrated 8 MHz Oscillator Frequency vs. Temperature

CALIBRATED 8.0MHz RC OSCILLATOR FREQUENCY vs. VCC (ATtiny88)

85 °C

25 °C

-40 °C

7,7

7,8

7,9

8

8,1

8,2

8,3

8,4

8,5

8,6

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

F R
C
 (M

H
z)

CALIBRATED 8.0MHz RC OSCILLATOR FREQUENCY vs. TEMPERATURE (ATtiny88)

5.5 V

3.0 V

7,7

7,8

7,9

8

8,1

8,2

8,3

8,4

8,5

8,6

8,7

-40 -20 0 20 40 60 80 100

Temperature

F R
C
 (M

H
z)

276
8008H–AVR–04/11

ATtiny48/88

Figure 23-114.Calibrated 8 MHz Oscillator Frequency vs. OSCCAL Value

85 °C
25 °C

-40 °C

CALIBRATED 8.0MHz RC OSCILLATOR FREQUENCY vs. OSCCAL VALUE (ATtiny88)
(Vcc=3V)

0

2

4

6

8

10

12

14

16

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

OSCCAL (X1)

F R
C
 (M

H
z)

277
8008H–AVR–04/11

ATtiny48/88

24. Register Summary
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

(0xFF) Reserved – – – – – – – –

(0xFE) Reserved – – – – – – – –

(0xFD) Reserved – – – – – – – –

(0xFC) Reserved – – – – – – – –

(0xFB) Reserved – – – – – – – –

(0xFA) Reserved – – – – – – – –

(0xF9) Reserved – – – – – – – –

(0xF8) Reserved – – – – – – – –

(0xF7) Reserved – – – – – – – –

(0xF6) Reserved – – – – – – – –

(0xF5) Reserved – – – – – – – –

(0xF4) Reserved – – – – – – – –

(0xF3) Reserved – – – – – – – –

(0xF2) Reserved – – – – – – – –

(0xF1) Reserved – – – – – – – –

(0xF0) Reserved – – – – – – – –

(0xEF) Reserved – – – – – – – –

(0xEE) Reserved – – – – – – – –

(0xED) Reserved – – – – – – – –

(0xEC) Reserved – – – – – – – –

(0xEB) Reserved – – – – – – – –

(0xEA) Reserved – – – – – – – –

(0xE9) Reserved – – – – – – – –

(0xE8) Reserved – – – – – – – –

(0xE7) Reserved – – – – – – – –

(0xE6) Reserved – – – – – – – –

(0xE5) Reserved – – – – – – – –

(0xE4) Reserved – – – – – – – –

(0xE3) Reserved – – – – – – – –

(0xE2) Reserved – – – – – – – –

(0xE1) Reserved – – – – – – – –

(0xE0) Reserved – – – – – – – –

(0xDF) Reserved – – – – – – – –

(0xDE) Reserved – – – – – – – –

(0xDD) Reserved – – – – – – – –

(0xDC) Reserved – – – – – – – –

(0xDB) Reserved – – – – – – – –

(0xDA) Reserved – – – – – – – –

(0xD9) Reserved – – – – – – – –

(0xD8) Reserved – – – – – – – –

(0xD7) Reserved – – – – – – – –

(0xD6) Reserved – – – – – – – –

(0xD5) Reserved – – – – – – – –

(0xD4) Reserved – – – – – – – –

(0xD3) Reserved – – – – – – – –

(0xD2) Reserved – – – – – – – –

(0xD1) Reserved – – – – – – – –

(0xD0) Reserved – – – – – – – –

(0xCF) Reserved – – – – – – – –

(0xCE) Reserved – – – – – – – –

(0xCD) Reserved – – – – – – – –

(0xCC) Reserved – – – – – – – –

(0xCB) Reserved – – – – – – – –

(0xCA) Reserved – – – – – – – –

(0xC9) Reserved – – – – – – – –

(0xC8) Reserved – – – – – – – –

(0xC7) Reserved – – – – – – – –

(0xC6) Reserved – – – – – – – –

(0xC5) Reserved – – – – – – – –

(0xC4) Reserved – – – – – – – –

(0xC3) Reserved – – – – – – – –

(0xC2) Reserved – – – – – – – –

(0xC1) Reserved – – – – – – – –

(0xC0) Reserved – – – – – – – –

(0xBF) Reserved – – – – – – – –

278
8008H–AVR–04/11

ATtiny48/88

(0xBE) TWHSR – – – – – – – TWHS 160

(0xBD) TWAMR TWAM6 TWAM5 TWAM4 TWAM3 TWAM2 TWAM1 TWAM0 – 160

(0xBC) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE 156

(0xBB) TWDR 2-wire Serial Interface Data Register 159

(0xBA) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 159

(0xB9) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0 158

(0xB8) TWBR 2-wire Serial Interface Bit Rate Register 156

(0xB7) Reserved – – – – – – – –

(0xB6) Reserved – – – – – – – –

(0xB5) Reserved – – – – – – – –

(0xB4) Reserved – – – – – – – –

(0xB3) Reserved – – – – – – – –

(0xB2) Reserved – – – – – – – –

(0xB1) Reserved – – – – – – – –

(0xB0) Reserved – – – – – – – –

(0xAF) Reserved – – – – – – – –

(0xAE) Reserved – – – – – – – –

(0xAD) Reserved – – – – – – – –

(0xAC) Reserved – – – – – – – –

(0xAB) Reserved – – – – – – – –

(0xAA) Reserved – – – – – – – –

(0xA9) Reserved – – – – – – – –

(0xA8) Reserved – – – – – – – –

(0xA7) Reserved – – – – – – – –

(0xA6) Reserved – – – – – – – –

(0xA5) Reserved – – – – – – – –

(0xA4) Reserved – – – – – – – –

(0xA3) Reserved – – – – – – – –

(0xA2) Reserved – – – – – – – –

(0xA1) Reserved – – – – – – – –

(0xA0) Reserved – – – – – – – –

(0x9F) Reserved – – – – – – – –

(0x9E) Reserved – – – – – – – –

(0x9D) Reserved – – – – – – – –

(0x9C) Reserved – – – – – – – –

(0x9B) Reserved – – – – – – – –

(0x9A) Reserved – – – – – – – –

(0x99) Reserved – – – – – – – –

(0x98) Reserved – – – – – – – –

(0x97) Reserved – – – – – – – –

(0x96) Reserved – – – – – – – –

(0x95) Reserved – – – – – – – –

(0x94) Reserved – – – – – – – –

(0x93) Reserved – – – – – – – –

(0x92) Reserved – – – – – – – –

(0x91) Reserved – – – – – – – –

(0x90) Reserved – – – – – – – –

(0x8F) Reserved – – – – – – – –

(0x8E) Reserved – – – – – – – –

(0x8D) Reserved – – – – – – – –

(0x8C) Reserved – – – – – – – –

(0x8B) OCR1BH Timer/Counter1 – Output Compare Register B High Byte 114

 (0x8A) OCR1BL Timer/Counter1 – Output Compare Register B Low Byte 114

(0x89) OCR1AH Timer/Counter1 – Output Compare Register A High Byte 114

(0x88) OCR1AL Timer/Counter1 – Output Compare Register A Low Byte 114

(0x87) ICR1H Timer/Counter1 – Input Capture Register High Byte 114

(0x86) ICR1L Timer/Counter1 – Input Capture Register Low Byte 114

(0x85) TCNT1H Timer/Counter1 – Counter Register High Byte 113

(0x84) TCNT1L Timer/Counter1 – Counter Register Low Byte 113

(0x83) Reserved – – – – – – – –

(0x82) TCCR1C FOC1A FOC1B – – – – – – 113

(0x81) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 112

(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 110

(0x7F) DIDR1 – – – – – – AIN1D AIN0D 163

(0x7E) DIDR0 ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D 180

(0x7D) Reserved – – – – – – – –

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

279
8008H–AVR–04/11

ATtiny48/88

(0x7C) ADMUX – REFS0 ADLAR – MUX3 MUX2 MUX1 MUX0 176

(0x7B) ADCSRB – ACME – – – ADTS2 ADTS1 ADTS0 162, 179

(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 178

(0x79) ADCH ADC Data Register High byte 179

(0x78) ADCL ADC Data Register Low byte 179

(0x77) Reserved – – – – – – – –

(0x76) Reserved – – – – – – – –

(0x75) Reserved – – – – – – – –

(0x74) Reserved – – – – – – – –

(0x73) Reserved – – – – – – – –

(0x72) Reserved – – – – – – – –

(0x71) Reserved – – – – – – – –

(0x70) Reserved – – – – – – – –

(0x6F) TIMSK1 – – ICIE1 – – OCIE1B OCIE1A TOIE1 114

(0x6E) TIMSK0 – – – – – OCIE0B OCIE0A TOIE0 87

(0x6D) PCMSK2 PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 59

(0x6C) PCMSK1 PCINT15 PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 59

(0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 59

(0x6A) PCMSK3 – – - - PCINT27 PCINT26 PCINT25 PCINT24 59

(0x69) EICRA – – – – ISC11 ISC10 ISC01 ISC00 55

(0x68) PCICR – – – – PCIE3 PCIE2 PCIE1 PCIE0 57

(0x67) Reserved – – – – – – – –

(0x66) OSCCAL Oscillator Calibration Register 34

(0x65) Reserved – – – – – – – –

(0x64) PRR PRTWI – PRTIM0 – PRTIM1 PRSPI – PRADC 40

(0x63) Reserved – – – – – – – –

(0x62) Reserved – – – – – – – –

(0x61) CLKPR CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 34

(0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 49

0x3F (0x5F) SREG I T H S V N Z C 9

0x3E (0x5E) SPH – – – – – – SP9 SP8 11

0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 11

0x3C (0x5C) Reserved – – – – – – – –

0x3B (0x5B) Reserved – – – – – – – –

0x3A (0x5A) Reserved – – – – – – – –

0x39 (0x59) Reserved – – – – – – – –

0x38 (0x58) Reserved – – – – – – – –

0x37 (0x57) SPMCSR – RWWSB – CTPB RFLB PGWRT PGERS SELFPRGEN 186

0x36 (0x56) Reserved – – – – –

0x35 (0x55) MCUCR – BODS BODSE PUD – – – – 40, 77

0x34 (0x54) MCUSR – – – – WDRF BORF EXTRF PORF 49

0x33 (0x53) SMCR – – – – – SM1 SM0 SE 39

0x32 (0x52) Reserved – – – – – – – –

0x31 (0x51) DWDR debugWire Data Register 182

0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 162

0x2F (0x4F) Reserved – – – – – – – –

0x2E (0x4E) SPDR SPI Data Register 128

0x2D (0x4D) SPSR SPIF WCOL – – – – – SPI2X 127

0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 126

0x2B (0x4B) GPIOR2 General Purpose I/O Register 2 27

0x2A (0x4A) GPIOR1 General Purpose I/O Register 1 27

0x29 (0x49) Reserved – – – – – – – –

0x28 (0x48) OCR0B Timer/Counter0 Output Compare Register B 87

0x27 (0x47) OCR0A Timer/Counter0 Output Compare Register A 86

0x26 (0x46) TCNT0 Timer/Counter0 (8-bit) 86

0x25 (0x45) TCCR0A – – – – CTC0 CS02 CS01 CS00 85

0x24 (0x44) Reserved – – – – – – – –

0x23 (0x43) GTCCR TSM – – – – – – PSRSYNC 118

0x22 (0x42) Reserved – – – – – – – –

0x21 (0x41) EEARL EEPROM Address Register Low Byte 25

0x20 (0x40) EEDR EEPROM Data Register 25

0x1F (0x3F) EECR – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE 25

0x1E (0x3E) GPIOR0 General Purpose I/O Register 0 27

0x1D (0x3D) EIMSK – – – – – – INT1 INT0 56

0x1C (0x3C) EIFR – – – – – – INTF1 INTF0 56

0x1B (0x3B) PCIFR – – – – PCIF3 PCIF2 PCIF1 PCIF0 58

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

280
8008H–AVR–04/11

ATtiny48/88

Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.

2. I/O Registers within the address range 0x00 – 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The
CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 – 0x3F must be used. When addressing I/O
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATtiny48/88 is a com-
plex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN
and OUT instructions. For the Extended I/O space from 0x60 – 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.

0x1A (0x3A) Reserved – – – – – – – –

0x19 (0x39) Reserved – – – – – – – –

0x18 (0x38) Reserved – – – – – – – –

0x17 (0x37) Reserved – – – – – – – –

0x16 (0x36) TIFR1 – – ICF1 – – OCF1B OCF1A TOV1 115

0x15 (0x35) TIFR0 – – – – – OCF0B OCF0A TOV0 87

0x14 (0x34) Reserved – – – – – – – –

0x13 (0x33) Reserved – – – – – – – –

0x12 (0x32) PORTCR BBMD BBMC BBMB BBMA PUDD PUDC PUDB PUDA 77

0x11 (0x31) Reserved – – – – – – – –

0x10 (0x30) Reserved – – – – – – – –

0x0F (0x2F) Reserved – – – – – – – –

0x0E (0x2E) PORTA – – – – PORTA3 PORTA2 PORTA1 PORTA0 78

0x0D (0x2D) DDRA – – – – DDA3 DDA2 DDA1 DDA0 78

0x0C (0x2C) PINA – – – – PINA3 PINA2 PINA1 PINA0 78

0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 79

0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 79

0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 79

0x08 (0x28) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 78

0x07 (0x27) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 78

0x06 (0x26) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 79

0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 78

0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 78

0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 78

0x02 (0x22) Reserved – – – – – – – –

0x01 (0x21) Reserved – – – – – – – –

0x00 (0x20) Reserved – – – – – – – –

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

281
8008H–AVR–04/11

ATtiny48/88

25. Instruction Set Summary
Mnemonics Operands Description Operation Flags #Clocks

ARITHMETIC AND LOGIC INSTRUCTIONS

ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1

ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1

ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2

SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1

SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1

SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1

SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1

SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2

AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1

ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1

OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1

ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1

EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1

COM Rd One’s Complement Rd ← 0xFF − Rd Z,C,N,V 1

NEG Rd Two’s Complement Rd ← 0x00 − Rd Z,C,N,V,H 1

SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1

CBR Rd,K Clear Bit(s) in Register Rd ← Rd • (0xFF - K) Z,N,V 1

INC Rd Increment Rd ← Rd + 1 Z,N,V 1

DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1

TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1

CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1

SER Rd Set Register Rd ← 0xFF None 1

BRANCH INSTRUCTIONS

RJMP k Relative Jump PC ← PC + k + 1 None 2

IJMP Indirect Jump to (Z) PC ← Z None 2

RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3

ICALL Indirect Call to (Z) PC ← Z None 3

RET Subroutine Return PC ← STACK None 4

RETI Interrupt Return PC ← STACK I 4

CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1/2/3

CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1

CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1

CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3

SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3

SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3

SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3

BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1/2

BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1/2

BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2

BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2

BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2

BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2

BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2

BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2

BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2

BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1/2

BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1/2

BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1/2

BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1/2

BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1/2

BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1/2

BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1/2

BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1/2

BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2

BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None 1/2

BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None 1/2

BIT AND BIT-TEST INSTRUCTIONS

SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2

CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2

LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1

LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1

ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1

ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1

282
8008H–AVR–04/11

ATtiny48/88

ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1

BSET s Flag Set SREG(s) ← 1 SREG(s) 1

BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1

BST Rr, b Bit Store from Register to T T ← Rr(b) T 1

BLD Rd, b Bit load from T to Register Rd(b) ← T None 1

SEC Set Carry C ← 1 C 1

CLC Clear Carry C ← 0 C 1

SEN Set Negative Flag N ← 1 N 1

CLN Clear Negative Flag N ← 0 N 1

SEZ Set Zero Flag Z ← 1 Z 1

CLZ Clear Zero Flag Z ← 0 Z 1

SEI Global Interrupt Enable I ← 1 I 1

CLI Global Interrupt Disable I ← 0 I 1

SES Set Signed Test Flag S ← 1 S 1

CLS Clear Signed Test Flag S ← 0 S 1

SEV Set Twos Complement Overflow. V ← 1 V 1

CLV Clear Twos Complement Overflow V ← 0 V 1

SET Set T in SREG T ← 1 T 1

CLT Clear T in SREG T ← 0 T 1

SEH Set Half Carry Flag in SREG H ← 1 H 1

CLH Clear Half Carry Flag in SREG H ← 0 H 1

DATA TRANSFER INSTRUCTIONS

MOV Rd, Rr Move Between Registers Rd ← Rr None 1

MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1

LDI Rd, K Load Immediate Rd ← K None 1

LD Rd, X Load Indirect Rd ← (X) None 2

LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2

LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2

LD Rd, Y Load Indirect Rd ← (Y) None 2

LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2

LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2

LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2

LD Rd, Z Load Indirect Rd ← (Z) None 2

LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2

LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2

LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2

LDS Rd, k Load Direct from SRAM Rd ← (k) None 2

ST X, Rr Store Indirect (X) ← Rr None 2

ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2

ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2

ST Y, Rr Store Indirect (Y) ← Rr None 2

ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2

ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2

STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2

ST Z, Rr Store Indirect (Z) ← Rr None 2

ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2

ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2

STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2

STS k, Rr Store Direct to SRAM (k) ← Rr None 2

LPM Load Program Memory R0 ← (Z) None 3

LPM Rd, Z Load Program Memory Rd ← (Z) None 3

LPM Rd, Z+ Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1 None 3

SPM Store Program Memory (Z) ← R1:R0 None -

IN Rd, P In Port Rd ← P None 1

OUT P, Rr Out Port P ← Rr None 1

PUSH Rr Push Register on Stack STACK ← Rr None 2

POP Rd Pop Register from Stack Rd ← STACK None 2

MCU CONTROL INSTRUCTIONS

NOP No Operation None 1

SLEEP Sleep (see specific descr. for Sleep function) None 1

WDR Watchdog Reset (see specific descr. for WDR/timer) None 1

BREAK Break For On-chip Debug Only None N/A

Mnemonics Operands Description Operation Flags #Clocks

283
8008H–AVR–04/11

ATtiny48/88

26. Ordering Information

26.1 ATtiny48

Notes: 1. Code indicators:

– H: NiPdAu lead finish
– U: matte tin

– R: tape & reel

2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazard-
ous Substances (RoHS).

3. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering informa-
tion and minimum quantities.

Speed (MHz) Power Supply Ordering Code(1) Package(2) Operational Range

12 1.8 – 5.5V

ATtiny48-MMU
ATtiny48-MMUR
ATtiny48-MMH
ATtiny48-MMHR
ATtiny48-PU
ATtiny48-AU
ATtiny48-AUR
ATtiny48-CCU
ATtiny48-CCUR
ATtiny48-MU
ATtiny48-MUR

28M1
28M1
28M1
28M1
28P3
32A
32A
32CC1
32CC1
32M1-A
32M1-A

Industrial

(-40°C to +85°C)(3)

Package Type

28M1 28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45 mm, Quad Flat No-Lead (QFN)

28P3 28-lead, 0.300” Wide, Plastic Dual Inline Package (PDIP)

32A 32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)

32CC1 32-ball (6 x 6 Array), 0.50 mm Pitch, 4 x 4 x 0.6 mm, Ultra Thin, Fine-Pitch Ball Grid Array Package (UFBGA)

32M1-A 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm, Quad Flat No-Lead (QFN)

284
8008H–AVR–04/11

ATtiny48/88

26.2 ATtiny88

Notes: 1. Code indicators:

– H: NiPdAu lead finish

– U: matte tin
– R: tape & reel

2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazard-
ous Substances (RoHS).

3. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering informa-
tion and minimum quantities.

Speed (MHz) Power Supply Ordering Code(1) Package(2) Operational Range

12 1.8 – 5.5V

ATtiny88-MMU
ATtiny88-MMUR
ATtiny88-MMH
ATtiny88-MMHR
ATtiny88-PU
ATtiny88-AU
ATtiny88-AUR
ATtiny88-CCU
ATtiny88-CCUR
ATtiny88-MU
ATtiny88-MUR

28M1
28M1
28M1
28M1
28P3
32A
32A
32CC1
32CC1
32M1-A
32M1-A

Industrial

(-40°C to +85°C)(3)

Package Type

28M1 28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45 mm, Quad Flat No-Lead (QFN)

28P3 28-lead, 0.300” Wide, Plastic Dual Inline Package (PDIP)

32A 32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)

32CC1 32-ball (6 x 6 Array), 0.50 mm Pitch, 4 x 4 x 0.6 mm, Ultra Thin, Fine-Pitch Ball Grid Array Package (UFBGA)

32M1-A 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm, Quad Flat No-Lead (QFN)

285
8008H–AVR–04/11

ATtiny48/88

27. Packaging Information

27.1 28M1

TITLE DRAWING NO. GPC REV.
 Package Drawing Contact:
 packagedrawings@atmel.com 28M1ZBV B

28M1, 28-pad, 4 x 4 x 1.0 mm Body, Lead Pitch 0.45 mm,
2.4 x 2.4 mm Exposed Pad, Thermally Enhanced
Plastic Very Thin Quad Flat No Lead Package (VQFN)

10/24/08

SIDE VIEW

Pin 1 ID

BOTTOM VIEW

TOP VIEW

Note: The terminal #1 ID is a Laser-marked Feature.

D

E

e

K

A1

C

 A

D2

E2

y

L

1

2

3

b

1

2

3

0.45 COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

 A 0.80 0.90 1.00

 A1 0.00 0.02 0.05

 b 0.17 0.22 0.27

 C 0.20 REF

 D 3.95 4.00 4.05

 D2 2.35 2.40 2.45

 E 3.95 4.00 4.05

 E2 2.35 2.40 2.45

 e 0.45

 L 0.35 0.40 0.45

 y 0.00 – 0.08

 K 0.20 – –

R 0.20

0.4 Ref
(4x)

286
8008H–AVR–04/11

ATtiny48/88

27.2 28P3

 2325 Orchard Parkway
 San Jose, CA 95131

TITLE DRAWING NO.

R

REV.
28P3, 28-lead (0.300"/7.62 mm Wide) Plastic Dual
Inline Package (PDIP) B28P3

09/28/01

PIN
1

E1

A1

B

REF

E

B1

C

L

SEATING PLANE

A

0º ~ 15º

D

e

eB

B2
(4 PLACES)

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

A – – 4.5724

A1 0.508 – –

D 34.544 – 34.798 Note 1

E 7.620 – 8.255

E1 7.112 – 7.493 Note 1

B 0.381 – 0.533

B1 1.143 – 1.397

B2 0.762 – 1.143

L 3.175 – 3.429

C 0.203 – 0.356

eB – – 10.160

 e 2.540 TYP

 Note: 1. Dimensions D and E1 do not include mold Flash or Protrusion.
Mold Flash or Protrusion shall not exceed 0.25 mm (0.010").

287
8008H–AVR–04/11

ATtiny48/88

27.3 32A

 2325 Orchard Parkway
 San Jose, CA 95131

TITLE DRAWING NO.

R

REV.

32A, 32-lead, 7 x 7 mm Body Size, 1.0 mm Body Thickness,
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)

C32A

2010-10-20

PIN 1 IDENTIFIER

0°~7°

PIN 1

L

C

A1 A2 A

D1

D

e
E1 E

B

Notes:
 1. This package conforms to JEDEC reference MS-026, Variation ABA.
 2. Dimensions D1 and E1 do not include mold protrusion. Allowable
 protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum
 plastic body size dimensions including mold mismatch.
 3. Lead coplanarity is 0.10 mm maximum.

 A – – 1.20

 A1 0.05 – 0.15

 A2 0.95 1.00 1.05

 D 8.75 9.00 9.25

 D1 6.90 7.00 7.10 Note 2

 E 8.75 9.00 9.25

 E1 6.90 7.00 7.10 Note 2

 B 0.30 – 0.45

 C 0.09 – 0.20

 L 0.45 – 0.75

 e 0.80 TYP

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

288
8008H–AVR–04/11

ATtiny48/88

27.4 32CC1

TITLE DRAWING NO.GPC REV.
 Package Drawing Contact:
 packagedrawings@atmel.com BCAG

32CC1, 32-ball (6 x 6 Array), 4 x 4 x 0.6 mm
package, ball pitch 0.50 mm, Ultra Thin,
Fine-Pitch Ball Grid Array (UFBGA)

32CC1

A – – 0.60

A1 0.12 – –

A2 0.38 REF

b 0.25 0.30 0.35 1

b1 0.25 – – 2

D 3.90 4.00 4.10

D1 2.50 BSC

E 3.90 4.00 4.10

E1 2.50 BSC

e 0.50 BSC

07/06/10

b1

COMMON DIMENSIONS
(Unit of Measure = mm)

1 2 3 4 5 6

B
A

C

D

E

F

E

D

e

32-Øb

E

D

B

A

Pin#1 ID

0.08

A1
A

D1

E1

A2

A1 BALL CORNER

1 2 3 4 5 6

F

C
SIDE VIEW

BOTTOM VIEW

TOP VIEW

SYMBOL MIN NOM MAX NOTE

Note1: Dimension “b” is measured at the maximum ball dia. in a plane parallel
 to the seating plane.
 Note2: Dimension “b1” is the solderable surface defined by the opening of the
 solder resist layer.

e

289
8008H–AVR–04/11

ATtiny48/88

27.5 32M1-A

 2325 Orchard Parkway
 San Jose, CA 95131

TITLE DRAWING NO.

R

REV.
32M1-A, 32-pad, 5 x 5 x 1.0 mm Body, Lead Pitch 0.50 mm, E32M1-A

5/25/06

 3.10 mm Exposed Pad, Micro Lead Frame Package (MLF)

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

D1

D

E1 E

eb

A3
A2

A1
 A

D2

E2

0.08 C

L

1

2

3

P

P

0
1

2

3

 A 0.80 0.90 1.00

 A1 – 0.02 0.05

 A2 – 0.65 1.00

 A3 0.20 REF

 b 0.18 0.23 0.30

 D

 D1

 D2 2.95 3.10 3.25

4.90 5.00 5.10

4.70 4.75 4.80

4.70 4.75 4.80

4.90 5.00 5.10

E

 E1

 E2 2.95 3.10 3.25

 e 0.50 BSC

 L 0.30 0.40 0.50

 P – – 0.60

 – – 12o

Note: JEDEC Standard MO-220, Fig. 2 (Anvil Singulation), VHHD-2.

TOP VIEW

SIDE VIEW

BOTTOM VIEW

0

Pin 1 ID

Pin #1 Notch
(0.20 R)

K 0.20 – –

K

K

290
8008H–AVR–04/11

ATtiny48/88

28. Errata

28.1 ATtiny48

28.1.1 Rev. C
No known errata.

28.1.2 Rev. B
Not sampled.

28.1.3 Rev. A
Not sampled.

291
8008H–AVR–04/11

ATtiny48/88

28.2 ATtiny88

28.2.1 Rev. C
No known errata.

28.2.2 Rev. B
No known errata.

28.2.3 Rev. A
Not sampled.

292
8008H–AVR–04/11

ATtiny48/88

29. Datasheet Revision History

29.1 Rev. 8008H - 04/11
1. Updated:

– “Ordering Information” on page 283, added tape & reel code -MMUR

29.2 Rev. 8008G - 04/11
1. Updated:

– “Block Diagram” on page 5

– “Memories” on page 17

– “Clock System” on page 28

– “Lock Bits, Fuse Bits and Device Signature” on page 188

– “External Programming” on page 191

– “Speed” on page 208

– “Two-Wire Serial Interface Characteristics” on page 212

2. Added:

– “Capacitive Touch Sensing” on page 7

– “Register Description” on page 15

– “Overview” on page 129

– “Compatibility with SMBus” on page 156

3. Changed document status from “Preliminary” to “Final”.

29.3 Rev. 8008F - 06/10
1. Updated notes 1 and 10 in table in Section 22.2 “DC Characteristics” on page 206.

2. Updated package drawing in Section 27.4 “32CC1” on page 288.

3. Updated bit syntax throughout the datasheet, e.g. from CS02:0 to CS0[2:0].

29.4 Rev. 8008E - 05/10
1. Section 24. “Register Summary” on page 277, added SPH at address 0x3E.

2. Section 27.1 “28M1” on page 285 updated with correct package drawing.

29.5 Rev. 8008D - 03/10
1. Separated Typical Characteristic plots, added Section 23.2 “ATtiny88” on page 248.

2. Updated:

– Section 1.1 “Pin Descriptions” on page 3, Port D, adjusted texts ‘sink and source’
and ‘high sink’.

– Table 6-3 on page 28 adjusted, to fix TBD.

– Section 6.2.3 “Internal 128 kHz Oscillator” on page 31 adjusted, to fix TBD.

– Section 8.4 “Watchdog Timer” on page 46, updated.

– Section 22.2 “DC Characteristics” on page 206, updated TBD in notes 5 and 8.

3. Added:

293
8008H–AVR–04/11

ATtiny48/88

– UFBGA package (32CC1) in, “Features” on page 1, “Pin Configurations” on page 2,
Section 26. “Ordering Information” on page 283, and Section 27. “Packaging
Information” on page 285

– Addresses in all Register Desc. tables, with cross-references to Register Summary

– Tape and reel in Section 26. “Ordering Information” on page 283

29.6 Rev. 8008C - 03/09
1. Updated sections:

– “Features” on page 1

– “Reset and Interrupt Handling” on page 12

– “EECR – EEPROM Control Register” on page 25

– “Features” on page 129

– “Bit Rate Generator Unit” on page 135

– “TWBR – TWI Bit Rate Register” on page 156

– “TWHSR – TWI High Speed Register” on page 160

– “Analog Comparator” on page 161

– “Overview” on page 164

– “Operation” on page 165

– “Starting a Conversion” on page 166

– “Programming the Lock Bits” on page 199

– “Absolute Maximum Ratings*” on page 206

– “DC Characteristics” on page 206

– “Speed” on page 208

– “Register Summary” on page 277

2. Added sections

– “High-Speed Two-Wire Interface Clock – clkTWIHS” on page 29

– “Analog Comparator Characteristics” on page 210

3. Updated Figure 6-1 on page 28.

4. Updated order codes on page 283 and page 284 to reflect changes in leadframe
composition.

29.7 Rev. 8008B - 06/08
1. Updated introduction of “I/O-Ports” on page 60.

2. Updated “DC Characteristics” on page 206.

3. Added “Typical Characteristics” on page 219.

29.8 Rev. 8008A - 06/08
1. Initial revision.

294
8008H–AVR–04/11

ATtiny48/88

i
8008H–AVR–04/11

ATtiny48/88

Table of Contents

Features ... 1

1 Pin Configurations ... 2

1.1 Pin Descriptions ...3

2 Overview ... 5

2.1 Block Diagram ...5

2.2 Comparison Between ATtiny48 and ATtiny88 ...6

3 General Information ... 7

3.1 Resources ...7

3.2 About Code Examples ...7

3.3 Capacitive Touch Sensing ...7

3.4 Data Retention ...7

3.5 Disclaimer ..7

4 AVR CPU Core .. 8

4.1 Introduction ..8

4.2 Architectural Overview ...8

4.3 ALU – Arithmetic Logic Unit ...9

4.4 Status Register ..9

4.5 General Purpose Register File ..10

4.6 Stack Pointer ...11

4.7 Instruction Execution Timing ...12

4.8 Reset and Interrupt Handling ...12

4.9 Register Description ..15

5 Memories .. 17

5.1 Program Memory (Flash) ...17

5.2 Data Memory (SRAM) and Register Files ...18

5.3 Data Memory (EEPROM) ..20

5.4 Register Description ..25

6 Clock System ... 28

6.1 Clock Subsystems ...28

6.2 Clock Sources ...29

6.3 System Clock Prescaler ..31

6.4 Clock Output Buffer ...32

ii
8008H–AVR–04/11

ATtiny48/88

6.5 Clock Startup Sequence ..32

6.6 Register Description ..34

7 Power Management and Sleep Modes ... 36

7.1 Sleep Modes ..36

7.2 Software BOD Disable ...37

7.3 Minimizing Power Consumption ..38

7.4 Register Description ..39

8 System Control and Reset .. 42

8.1 Resetting the AVR ...42

8.2 Reset Sources ...43

8.3 Internal Voltage Reference ..45

8.4 Watchdog Timer ..46

8.5 Register Description ..49

9 Interrupts .. 52

9.1 Interrupt Vectors ..52

9.2 External Interrupts ...53

9.3 Register Description ..55

10 I/O-Ports .. 60

10.1 Introduction ..60

10.2 Ports as General Digital I/O ...61

10.3 Alternate Port Functions ..65

10.4 Register Description ..77

11 8-bit Timer/Counter0 .. 80

11.1 Features ..80

11.2 Overview ..80

11.3 Timer/Counter Clock Sources ...81

11.4 Counter Unit ..81

11.5 Output Compare Unit ...82

11.6 Modes of Operation ...83

11.7 Timer/Counter Timing Diagrams ...84

11.8 8-bit Timer/Counter Register Description ..85

12 16-bit Timer/Counter1 with PWM .. 89

12.1 Features ..89

12.2 Overview ..89

iii
8008H–AVR–04/11

ATtiny48/88

12.3 Accessing 16-bit Registers ..91

12.4 Timer/Counter Clock Sources ...93

12.5 Counter Unit ..94

12.6 Input Capture Unit ...95

12.7 Output Compare Units ...97

12.8 Compare Match Output Unit ..99

12.9 Modes of Operation ...100

12.10 Timer/Counter Timing Diagrams ...107

12.11 Register Description ..110

13 Timer/Counter0 and Timer/Counter1 Prescalers 117

13.1 Internal Clock Source ..117

13.2 Prescaler Reset ...117

13.3 External Clock Source ...117

13.4 Register Description ..118

14 SPI – Serial Peripheral Interface ... 120

14.1 Features ..120

14.2 Overview ..120

14.3 SS Pin Functionality ..124

14.4 Data Modes ...125

14.5 Register Description ..126

15 TWI – Two Wire Interface .. 129

15.1 Features ..129

15.2 Overview ..129

15.3 Bus Definitions ...129

15.4 Data Transfer and Frame Format ..130

15.5 Multi-master Bus Systems, Arbitration and Synchronization133

15.6 Overview of the TWI Module ...135

15.7 Using the TWI ..137

15.8 Transmission Modes ...140

15.9 Multi-master Systems and Arbitration ..154

15.10 Compatibility with SMBus ..156

15.11 Register Description ..156

16 Analog Comparator ... 161

16.1 Analog Comparator Multiplexed Input ...161

16.2 Register Description ..162

iv
8008H–AVR–04/11

ATtiny48/88

17 ADC – Analog to Digital Converter ... 164

17.1 Features ..164

17.2 Overview ..164

17.3 Operation ...165

17.4 Starting a Conversion ..166

17.5 Prescaling and Conversion Timing ..167

17.6 Changing Channel or Reference Selection ...170

17.7 ADC Noise Canceler ...171

17.8 Analog Input Circuitry ..171

17.9 Analog Noise Canceling Techniques ...172

17.10 ADC Accuracy Definitions ...173

17.11 ADC Conversion Result ...175

17.12 Temperature Measurement ...175

17.13 Register Description ..176

18 debugWIRE On-Chip Debug System .. 181

18.1 Features ..181

18.2 Overview ..181

18.3 Physical Interface ..181

18.4 Software Break Points ...182

18.5 Limitations of debugWIRE ...182

18.6 Register Description ..182

19 Self-Programming the Flash ... 183

19.1 Addressing the Flash During Self-Programming ...184

19.2 Register Description ..186

20 Lock Bits, Fuse Bits and Device Signature 188

20.1 Lock Bits ..188

20.2 Fuse Bits ..189

20.3 Signature Bytes ...190

20.4 Calibration Byte ...190

21 External Programming .. 191

21.1 Memory Parametrics ...191

21.2 Parallel Programming ..191

21.3 Serial Programming ...200

21.4 Programming Time for Flash and EEPROM ...205

v
8008H–AVR–04/11

ATtiny48/88

22 Electrical Characteristics .. 206

22.1 Absolute Maximum Ratings* ...206

22.2 DC Characteristics ...206

22.3 Speed ..208

22.4 Clock Characterizations ...208

22.5 System and Reset Characterizations ..209

22.6 Analog Comparator Characteristics ...210

22.7 ADC Characteristics ..211

22.8 Two-Wire Serial Interface Characteristics ...212

22.9 SPI Characteristics ..213

22.10 Parallel Programming Characteristics ...215

22.11 Serial Programming Characteristics ..217

23 Typical Characteristics .. 219

23.1 ATtiny48 ..219

23.2 ATtiny88 ..248

24 Register Summary ... 277

25 Instruction Set Summary .. 281

26 Ordering Information ... 283

26.1 ATtiny48 ..283

26.2 ATtiny88 ..284

27 Packaging Information .. 285

27.1 28M1 ..285

27.2 28P3 ..286

27.3 32A ..287

27.4 32CC1 ...288

27.5 32M1-A ..289

28 Errata ... 290

28.1 ATtiny48 ..290

28.2 ATtiny88 ..291

29 Datasheet Revision History .. 292

29.1 Rev. 8008H - 04/11 ...292

29.2 Rev. 8008G - 04/11 ...292

29.3 Rev. 8008F - 06/10 ..292

29.4 Rev. 8008E - 05/10 ..292

vi
8008H–AVR–04/11

ATtiny48/88

29.5 Rev. 8008D - 03/10 ...292

29.6 Rev. 8008C - 03/09 ...293

29.7 Rev. 8008B - 06/08 ..293

29.8 Rev. 8008A - 06/08 ..293

Table of Contents... i

vii
8008H–AVR–04/11

ATtiny48/88

8008H–AVR–04/11

© 2011 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others are registered trademarks or trade-
marks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600

Atmel Asia Limited
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
JAPAN
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

Authorized Distribution Brand：

Website：

Welcome to visit www.ameya360.com

Contact Us：

Address：

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd

Minhang District, Shanghai , China

Sales：

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service：

Email service@ameya360.com

Partnership：

 Tel +86 (21) 64016692-8333

Email mkt@ameya360.com

www.ameya360.com
www.rohm.com.cn/web/china
www.sunlordinc.com
www.susumu.sh.cn
www.averlogic.com
www.nxp.com
http://www.ameya360.com/mfrdetail/2Pai_Semiconductor
http://www.ameya360.com/mfrdetail/Ambarella
http://www.ameya360.com/mfrdetail/CanaanTek
http://www.ameya360.com/mfrdetail/Firstohm
http://www.ameya360.com/mfrdetail/GigaDevice
http://www.ameya360.com/mfrdetail/Vanguard_Semiconductor
www.elprotronic.com

	Features
	1. Pin Configurations
	1.1 Pin Descriptions
	1.1.1 VCC
	1.1.2 AVCC
	1.1.3 GND
	1.1.4 Port A (PA3:0)
	1.1.5 Port B (PB7:0)
	1.1.6 Port C (PC7, PC5:0)
	1.1.7 PC6/RESET
	1.1.8 Port D (PD7:0)

	2. Overview
	2.1 Block Diagram
	2.2 Comparison Between ATtiny48 and ATtiny88

	3. General Information
	3.1 Resources
	3.2 About Code Examples
	3.3 Capacitive Touch Sensing
	3.4 Data Retention
	3.5 Disclaimer

	4. AVR CPU Core
	4.1 Introduction
	4.2 Architectural Overview
	4.3 ALU – Arithmetic Logic Unit
	4.4 Status Register
	4.5 General Purpose Register File
	4.5.1 The X-register, Y-register, and Z-register

	4.6 Stack Pointer
	4.7 Instruction Execution Timing
	4.8 Reset and Interrupt Handling
	4.8.1 Interrupt Response Time

	4.9 Register Description
	4.9.1 SPH and SPL — Stack Pointer Registers
	4.9.2 SREG – Status Register

	5. Memories
	5.1 Program Memory (Flash)
	5.2 Data Memory (SRAM) and Register Files
	5.2.1 General Purpose Register File
	5.2.2 I/O Register File
	5.2.3 Extended I/O Register File
	5.2.4 Data Memory (SRAM)

	5.3 Data Memory (EEPROM)
	5.3.1 Programming Methods
	5.3.2 Read
	5.3.3 Erase
	5.3.4 Write
	5.3.5 Preventing EEPROM Corruption
	5.3.6 Program Examples

	5.4 Register Description
	5.4.1 EEARH and EEARL – EEPROM Address Register
	5.4.2 EEDR – EEPROM Data Register
	5.4.3 EECR – EEPROM Control Register
	5.4.4 GPIOR2 – General Purpose I/O Register 2
	5.4.5 GPIOR1 – General Purpose I/O Register 1
	5.4.6 GPIOR0 – General Purpose I/O Register 0

	6. Clock System
	6.1 Clock Subsystems
	6.1.1 CPU Clock – clkCPU
	6.1.2 I/O Clock – clkI/O
	6.1.3 Flash Clock – clkFLASH
	6.1.4 Analog to Digital Converter Clock – clkADC
	6.1.5 High-Speed Two-Wire Interface Clock – clkTWIHS

	6.2 Clock Sources
	6.2.1 External Clock
	6.2.2 Calibrated Internal 8MHz Oscillator
	6.2.3 Internal 128 kHz Oscillator
	6.2.4 Default Clock Source

	6.3 System Clock Prescaler
	6.3.1 Switching Prescaler Setting

	6.4 Clock Output Buffer
	6.5 Clock Startup Sequence
	6.6 Register Description
	6.6.1 OSCCAL – Oscillator Calibration Register
	6.6.2 CLKPR – Clock Prescale Register

	7. Power Management and Sleep Modes
	7.1 Sleep Modes
	7.1.1 Idle Mode
	7.1.2 ADC Noise Reduction Mode
	7.1.3 Power-Down Mode

	7.2 Software BOD Disable
	7.3 Minimizing Power Consumption
	7.3.1 Analog to Digital Converter
	7.3.2 Analog Comparator
	7.3.3 Brown-Out Detector
	7.3.4 Internal Voltage Reference
	7.3.5 Watchdog Timer
	7.3.6 Port Pins
	7.3.7 On-chip Debug System

	7.4 Register Description
	7.4.1 SMCR – Sleep Mode Control Register
	7.4.2 MCUCR – MCU Control Register
	7.4.3 PRR – Power Reduction Register

	8. System Control and Reset
	8.1 Resetting the AVR
	8.2 Reset Sources
	8.2.1 Power-on Reset
	8.2.2 External Reset
	8.2.3 Brown-Out Detection
	8.2.4 Watchdog Reset

	8.3 Internal Voltage Reference
	8.3.1 Voltage Reference Enable Signals and Start-up Time

	8.4 Watchdog Timer
	8.5 Register Description
	8.5.1 MCUSR – MCU Status Register
	8.5.2 WDTCSR – Watchdog Timer Control Register

	9. Interrupts
	9.1 Interrupt Vectors
	9.2 External Interrupts
	9.2.1 Pin Change Interrupt Timing
	9.2.2 Low Level Interrupt

	9.3 Register Description
	9.3.1 EICRA – External Interrupt Control Register A
	9.3.2 EIMSK – External Interrupt Mask Register
	9.3.3 EIFR – External Interrupt Flag Register
	9.3.4 PCICR – Pin Change Interrupt Control Register
	9.3.5 PCIFR – Pin Change Interrupt Flag Register
	9.3.6 PCMSK3 – Pin Change Mask Register 3
	9.3.7 PCMSK2 – Pin Change Mask Register 2
	9.3.8 PCMSK1 – Pin Change Mask Register 1
	9.3.9 PCMSK0 – Pin Change Mask Register 0

	10. I/O-Ports
	10.1 Introduction
	10.2 Ports as General Digital I/O
	10.2.1 Configuring the Pin
	10.2.2 Toggling the Pin
	10.2.3 Break-Before-Make Switching
	10.2.4 Switching Between Input and Output
	10.2.5 Reading the Pin Value
	10.2.6 Digital Input Enable and Sleep Modes
	10.2.7 Unconnected Pins

	10.3 Alternate Port Functions
	10.3.1 Alternate Functions of Port A
	10.3.2 Alternate Functions of Port B
	10.3.3 Alternate Functions of Port C
	10.3.4 Alternate Functions of Port D

	10.4 Register Description
	10.4.1 MCUCR – MCU Control Register
	10.4.2 PORTCR – Port Control Register
	10.4.3 PORTA – The Port A Data Register
	10.4.4 DDRA – The Port A Data Direction Register
	10.4.5 PINA – The Port A Input Pins
	10.4.6 PORTB – The Port B Data Register
	10.4.7 DDRB – The Port B Data Direction Register
	10.4.8 PINB – The Port B Input Pins
	10.4.9 PORTC – The Port C Data Register
	10.4.10 DDRC – The Port C Data Direction Register
	10.4.11 PINC – The Port C Input Pins
	10.4.12 PORTD – The Port D Data Register
	10.4.13 DDRD – The Port D Data Direction Register
	10.4.14 PIND – The Port D Input Pins

	11. 8-bit Timer/Counter0
	11.1 Features
	11.2 Overview
	11.2.1 Definitions
	11.2.2 Registers

	11.3 Timer/Counter Clock Sources
	11.4 Counter Unit
	11.5 Output Compare Unit
	11.5.1 Compare Match Blocking by TCNT0 Write
	11.5.2 Using the Output Compare Unit

	11.6 Modes of Operation
	11.6.1 Normal Mode
	11.6.2 Clear Timer on Compare Match (CTC) Mode

	11.7 Timer/Counter Timing Diagrams
	11.8 8-bit Timer/Counter Register Description
	11.8.1 TCCR0A – Timer/Counter Control Register A
	11.8.2 TCNT0 – Timer/Counter Register
	11.8.3 OCR0A – Output Compare Register A
	11.8.4 OCR0B – Output Compare Register B
	11.8.5 TIMSK0 – Timer/Counter Interrupt Mask Register
	11.8.6 TIFR0 – Timer/Counter 0 Interrupt Flag Register

	12. 16-bit Timer/Counter1 with PWM
	12.1 Features
	12.2 Overview
	12.2.1 Registers
	12.2.2 Definitions

	12.3 Accessing 16-bit Registers
	12.3.1 Reusing the Temporary High Byte Register

	12.4 Timer/Counter Clock Sources
	12.5 Counter Unit
	12.6 Input Capture Unit
	12.6.1 Input Capture Trigger Source
	12.6.2 Noise Canceler
	12.6.3 Using the Input Capture Unit

	12.7 Output Compare Units
	12.7.1 Force Output Compare
	12.7.2 Compare Match Blocking by TCNT1 Write
	12.7.3 Using the Output Compare Unit

	12.8 Compare Match Output Unit
	12.8.1 Compare Output Mode and Waveform Generation

	12.9 Modes of Operation
	12.9.1 Normal Mode
	12.9.2 Clear Timer on Compare Match (CTC) Mode
	12.9.3 Fast PWM Mode
	12.9.4 Phase Correct PWM Mode
	12.9.5 Phase and Frequency Correct PWM Mode

	12.10 Timer/Counter Timing Diagrams
	12.11 Register Description
	12.11.1 TCCR1A – Timer/Counter1 Control Register A
	12.11.2 TCCR1B – Timer/Counter1 Control Register B
	12.11.3 TCCR1C – Timer/Counter1 Control Register C
	12.11.4 TCNT1H and TCNT1L – Timer/Counter1
	12.11.5 OCR1AH and OCR1AL – Output Compare Register 1 A
	12.11.6 OCR1BH and OCR1BL – Output Compare Register 1 B
	12.11.7 ICR1H and ICR1L – Input Capture Register 1
	12.11.8 TIMSK1 – Timer/Counter1 Interrupt Mask Register
	12.11.9 TIFR1 – Timer/Counter1 Interrupt Flag Register

	13. Timer/Counter0 and Timer/Counter1 Prescalers
	13.1 Internal Clock Source
	13.2 Prescaler Reset
	13.3 External Clock Source
	13.4 Register Description
	13.4.1 GTCCR – General Timer/Counter Control Register

	14. SPI – Serial Peripheral Interface
	14.1 Features
	14.2 Overview
	14.3 SS Pin Functionality
	14.3.1 Slave Mode
	14.3.2 Master Mode

	14.4 Data Modes
	14.5 Register Description
	14.5.1 SPCR – SPI Control Register
	14.5.2 SPSR – SPI Status Register
	14.5.3 SPDR – SPI Data Register

	15. TWI – Two Wire Interface
	15.1 Features
	15.2 Overview
	15.3 Bus Definitions
	15.3.1 TWI Terminology
	15.3.2 Electrical Interconnection

	15.4 Data Transfer and Frame Format
	15.4.1 Transferring Bits
	15.4.2 START and STOP Conditions
	15.4.3 Address Packet Format
	15.4.4 Data Packet Format
	15.4.5 Combining Address and Data Packets into a Transmission

	15.5 Multi-master Bus Systems, Arbitration and Synchronization
	15.6 Overview of the TWI Module
	15.6.1 SCL and SDA Pins
	15.6.2 Bit Rate Generator Unit
	15.6.3 Bus Interface Unit
	15.6.4 Address Match Unit
	15.6.5 Control Unit

	15.7 Using the TWI
	15.8 Transmission Modes
	15.8.1 Master Transmitter Mode
	15.8.2 Master Receiver Mode
	15.8.3 Slave Receiver Mode
	15.8.4 Slave Transmitter Mode
	15.8.5 Miscellaneous States
	15.8.6 Combining Several TWI Modes

	15.9 Multi-master Systems and Arbitration
	15.10 Compatibility with SMBus
	15.11 Register Description
	15.11.1 TWBR – TWI Bit Rate Register
	15.11.2 TWCR – TWI Control Register
	15.11.3 TWSR – TWI Status Register
	15.11.4 TWDR – TWI Data Register
	15.11.5 TWAR – TWI (Slave) Address Register
	15.11.6 TWAMR – TWI (Slave) Address Mask Register
	15.11.7 TWHSR – TWI High Speed Register

	16. Analog Comparator
	16.1 Analog Comparator Multiplexed Input
	16.2 Register Description
	16.2.1 ADCSRB – ADC Control and Status Register B
	16.2.2 ACSR – Analog Comparator Control and Status Register
	16.2.3 DIDR1 – Digital Input Disable Register 1

	17. ADC – Analog to Digital Converter
	17.1 Features
	17.2 Overview
	17.3 Operation
	17.4 Starting a Conversion
	17.5 Prescaling and Conversion Timing
	17.6 Changing Channel or Reference Selection
	17.6.1 ADC Input Channels
	17.6.2 ADC Voltage Reference

	17.7 ADC Noise Canceler
	17.8 Analog Input Circuitry
	17.9 Analog Noise Canceling Techniques
	17.10 ADC Accuracy Definitions
	17.11 ADC Conversion Result
	17.12 Temperature Measurement
	17.13 Register Description
	17.13.1 ADMUX – ADC Multiplexer Selection Register
	17.13.2 ADCSRA – ADC Control and Status Register A
	17.13.3 ADCL and ADCH – The ADC Data Register
	17.13.3.1 ADLAR = 0
	17.13.3.2 ADLAR = 1

	17.13.4 ADCSRB – ADC Control and Status Register B
	17.13.5 DIDR0 – Digital Input Disable Register 0

	18. debugWIRE On-Chip Debug System
	18.1 Features
	18.2 Overview
	18.3 Physical Interface
	18.4 Software Break Points
	18.5 Limitations of debugWIRE
	18.6 Register Description
	18.6.1 DWDR – debugWire Data Register

	19. Self-Programming the Flash
	19.0.1 Performing Page Erase by SPM
	19.0.2 Filling the Temporary Buffer (Page Loading)
	19.0.3 Performing a Page Write
	19.1 Addressing the Flash During Self-Programming
	19.1.1 EEPROM Write Prevents Writing to SPMCSR
	19.1.2 Reading the Fuse and Lock Bits from Software
	19.1.3 Preventing Flash Corruption
	19.1.4 Programming Time for Flash when Using SPM

	19.2 Register Description
	19.2.1 SPMCSR – Store Program Memory Control and Status Register

	20. Lock Bits, Fuse Bits and Device Signature
	20.1 Lock Bits
	20.2 Fuse Bits
	20.2.1 Latching of Fuses

	20.3 Signature Bytes
	20.4 Calibration Byte

	21. External Programming
	21.1 Memory Parametrics
	21.2 Parallel Programming
	21.2.1 Enter Programming Mode
	21.2.2 Considerations for Efficient Programming
	21.2.3 Chip Erase
	21.2.4 Programming the Flash
	21.2.5 Programming the EEPROM
	21.2.6 Reading the Flash
	21.2.7 Reading the EEPROM
	21.2.8 Programming Low Fuse Bits
	21.2.9 Programming High Fuse Bits
	21.2.10 Programming Extended Fuse Bits
	21.2.11 Programming the Lock Bits
	21.2.12 Reading Fuse and Lock Bits
	21.2.13 Reading Signature Bytes
	21.2.14 Reading the Calibration Byte

	21.3 Serial Programming
	21.3.1 Pin Mapping
	21.3.2 Programming Algorithm
	21.3.3 Programming Instruction set

	21.4 Programming Time for Flash and EEPROM

	22. Electrical Characteristics
	22.1 Absolute Maximum Ratings*
	22.2 DC Characteristics
	22.3 Speed
	22.4 Clock Characterizations
	22.4.1 Calibrated Internal Oscillator Accuracy
	22.4.2 External Clock Drive

	22.5 System and Reset Characterizations
	22.6 Analog Comparator Characteristics
	22.7 ADC Characteristics
	22.8 Two-Wire Serial Interface Characteristics
	22.9 SPI Characteristics
	22.10 Parallel Programming Characteristics
	22.11 Serial Programming Characteristics

	23. Typical Characteristics
	23.1 ATtiny48
	23.1.1 Current Consumption in Active Mode
	23.1.2 Current Consumption in Idle Mode
	23.1.3 Current Consumption in Power-down Mode
	23.1.4 Current Consumption in Reset
	23.1.5 Current Consumption in Peripheral Units
	23.1.6 Pull-up Resistors
	23.1.7 Output Driver Strength
	23.1.8 Input Threshold and Hysteresis
	23.1.9 BOD, Bandgap and Reset
	23.1.10 Internal Oscillator Speed

	23.2 ATtiny88
	23.2.1 Current Consumption in Active Mode
	23.2.2 Current Consumption in Idle Mode
	23.2.3 Current Consumption in Power-down Mode
	23.2.4 Current Consumption in Reset
	23.2.5 Current Consumption in Peripheral Units
	23.2.6 Pull-up Resistors
	23.2.7 Output Driver Strength
	23.2.8 Input Threshold and Hysteresis
	23.2.9 BOD, Bandgap and Reset
	23.2.10 Internal Oscillator Speed

	24. Register Summary
	25. Instruction Set Summary
	26. Ordering Information
	26.1 ATtiny48
	26.2 ATtiny88

	27. Packaging Information
	27.1 28M1
	27.2 28P3
	27.3 32A
	27.4 32CC1
	27.5 32M1-A

	28. Errata
	28.1 ATtiny48
	28.1.1 Rev. C
	28.1.2 Rev. B
	28.1.3 Rev. A

	28.2 ATtiny88
	28.2.1 Rev. C
	28.2.2 Rev. B
	28.2.3 Rev. A

	29. Datasheet Revision History
	29.1 Rev. 8008H - 04/11
	29.2 Rev. 8008G - 04/11
	29.3 Rev. 8008F - 06/10
	29.4 Rev. 8008E - 05/10
	29.5 Rev. 8008D - 03/10
	29.6 Rev. 8008C - 03/09
	29.7 Rev. 8008B - 06/08
	29.8 Rev. 8008A - 06/08

	Table of Contents

