

SAW Duplexer

LTE Band 12 + 17

Series/type: B7931

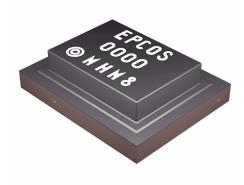
Ordering code: B39741B7931A710

Date: November 12, 2012

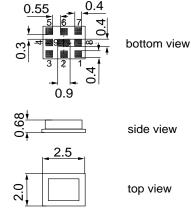
Version: 2.2

EPCOS AG is a TDK Group Company.

[©] EPCOS AG 2015. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.


SAW Duplexer 707.5 / 737.5 MHz

Data sheet


Application

- Low-loss SAW duplexer for mobile telephone LTE Band 12 and 17 systems
- Low insertion attenuation
- Usable passband 17 MHz
- Single-ended to balanced transformation in Antenna-Rx path
- \blacksquare Impedance transformation 50 Ω to 100 Ω in Antenna-Rx path
- Very small size and low height

Features

- Package size 2.5 * 2.0 * 0.68 mm³
- RoHS compatible
- Package for Surface Mount Technology (SMT)
- Ni, Au-plated terminals
- Electrostatic Sensitive Device (ESD)
- Moisture Sensitivity Level 3

Pin configuration

- **3** Tx input
- **1**, 8 Rx output (balanced)
- **6** Antenna
- 2, 4, 5, 7, 9 To be grounded

SAW Duplexer 707.5 / 737.5 MHz

Data sheet

Characteristics

 $T = -20 \,^{\circ}\text{C} \text{ to } +85 \,^{\circ}\text{C}$ Temperature range for specification:

TX terminating impedance:

$$\begin{split} Z_{Tx} &= & 50 \ \Omega \\ Z_{Ant} &= & 50 \ \Omega \ || \ 12nH \\ Z_{Rx} &= & 100 \ \Omega \ (balanced) \end{split}$$
ANT terminating impedance: RX teminating impedance:

Characteristics Tx-Antenna		min.	typ.	max.		
			@ 25 °C			
Center frequency	f _c		707.5		MHz	
Maximum insertion attenuation	α					
699.0 716.0	MHz		1.5	2.5	dB	CTQ ¹⁾
704.0 716.0	MHz		1.5	2.5	dB	CTQ ¹⁾
Amplitude ripple (p-p)	$\Delta \alpha$					
699.0 716.0	MHz		0.6	1.3	dB	
Amplitude ripple (p-p)	$\Delta \alpha_{\text{W-CDMA}}^{2}$					
@f _{Carrier} 701.4 713.6	MHz		0.2	0.6	dB	
Input VSWR (Tx port)						
699.0 716.0	MHz		1.6	2.0		
Output VSWR (Ant Port)						
699.0 716.0	MHz		1.5	2.0		

¹⁾ CTQ: Critical To Quality

²⁾ Attenuation of WCDMA signal ("Powertransferfunction"). Please refer to annotation on page (7).

SAW Duplexer 707.5 / 737.5 MHz

Data sheet SMD

Characteristics

 $T = -20 \,^{\circ}\text{C} \text{ to } +85 \,^{\circ}\text{C}$ Temperature range for specification:

TX terminating impedance:

 $Z_{Tx} = 50 \Omega$ $Z_{Ant} = 50 \Omega$ || 12nH $Z_{Rx} = 100 \Omega$ (balanced) ANT terminating impedance: RX teminating impedance:

Characteristics Tx-Antenna			min.	typ.	max.			
						@ 25 °C		
Absolute attenuation				α				
10.0		470.0	MHz		30	36		dB
470.0		686.0	MHz		35	45		dB
728.0		746.0	MHz		45	53		dB
746.0		776.0	MHz		35	44		dB
776.0		806.0	MHz		30	41		dB
869.0		894.0	MHz		30	41		dB
1398.0		1432.0	MHz		40	58		dB
1559.0		1610.0	MHz		45	50		dB
1710.0		1995.0	MHz		30	42		dB
2110.0		2170.0	MHz		32	41		dB
2400.0		2500.0	MHz		35	38		dB
2796.0		2864.0	MHz		20	36		dB
Absolute mean attenu	uati	on ¹⁾		α_{mean}				
686.0		692.0	MHz		15	27		dB
686.0		692.0	$MHz^{2)}$		25	27		dB
692.0		698.0	MHz		2.5	4.5		dB
692.0		698.0	MHz ²⁾		4.0	4.5		dB

¹⁾ Mean attenuation is the integrated value of attenuation (linear scale) over the specified band

²⁾ At 25°C

SAW Duplexer 707.5 / 737.5 MHz

Data sheet

Characteristics

Temperature range for specification: $T = -20 \,^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$

TX terminating impedance: $Z_{Tx} = 50 \Omega$

ANT terminating impedance: $Z_{Ant}^{1X} = 50 \Omega \parallel 12 nH$ RX teminating impedance: $Z_{Rx} = 100 \Omega$ (balanced)

Characteristics Antenna-F	Rx			min.	typ. @ 25 °C	max.		
Center frequency			f _c		737.5		MHz	
Maximum insertion attenuation	n		α					
729.0	746.0	MHz			2.4	3.0	dB	CTQ1)
734.0	746.0	MHz			2.4	3.0	dB	CTQ ¹⁾
Amplitude ripple (p-p)			Δα					
729.0	746.0	MHz			0.9	1.5	dB	
Input VSWR (Ant port)								
729.0	746.0	MHz			1.8	2.0		
Output VSWR (Rx Port)								
729.0	746.0	MHz			1.6	2.0		
Common mode rejection ratio								
729.0	746.0	MHz		23	30		dB	
Absolute attenuation			α					
10.0	686.0	MHz		45	70		dB	
686.0	716.0	MHz		50	60		dB	
716.0	722.0	MHz		20	38		dB	
776.0	798.0	MHz		36	52		dB	
798.0	806.0	MHz		45	71		dB	
806.0 3	3000.0	MHz		40	60		dB	
3000.0 (6000.0	MHz		25	50		dB	
Absolute mean attenuation ²⁾			α_{mean}					
716.0	722.0	MHz		27	47		dB	
716.0	722.0 I	MHz ³⁾		35	47		dB	
722.0	728.0	MHz		4.0	8		dB	
722.0	728.0 I	MHz ²⁾		7.0	8		dB	

¹⁾ CTQ: Critical to Quality

²⁾ Mean attenuation is the integrated value of attenuation (linear scale) over the specified band

³⁾ At 25°C

SAW Duplexer 707.5 / 737.5 MHz

Data sheet SMD

Characteristics

 $T = -20 \,^{\circ}\text{C} \text{ to } +85 \,^{\circ}\text{C}$ Temperature range for specification:

TX terminating impedance:

 $Z_{Tx} = 50 \Omega$ $Z_{Ant} = 50 \Omega || 12nH$ $Z_{Rx} = 100 \Omega \text{ (balanced)}$ ANT terminating impedance: RX teminating impedance:

Characteristics Tx-Rx		min.	typ.	max.		
			@ 25 °C			
Differential mode isolation	α					
699.0 716.0 N	ИHz	56	60		dB	CTQ ¹⁾
729.0 732.0 N	ИHz	53	66		dB	CTQ ¹⁾
732.0 739.0 N	ИHz	55	61		dB	CTQ ¹⁾
739.0 746.0 N	ИHz	52	55		dB	CTQ ¹⁾
1398.0 1432.0 N	ИHz	30	68		dB	CTQ ¹⁾
2097.0 2148.0 N	ИHz	30	63		dB	CTQ ¹⁾
2796.0 2864.0 N	ИHz	30	60		dB	CTQ1)
Common mode isolation	α					
699.0 716.0 N	ИНz	45	50		dB	CTQ ¹⁾

¹⁾ CTQ: Critical To Quality

Maximum Ratings

Storage temperature range	T _{stq}	-40/+85	°C	
DC voltage	V_{DC}	5	V	
ESD voltage	V_{ESD}	100 ¹⁾	V	machine model, 1 pulse
Input power at Tx Port				
701.5713.5 MHz	P_{in}	28	dBm	】 LTE Up Link Signal
elsewhere	P_{in}	10	dBm	^J 55 °C, 50000h

SAW Duplexer 707.5 / 737.5 MHz

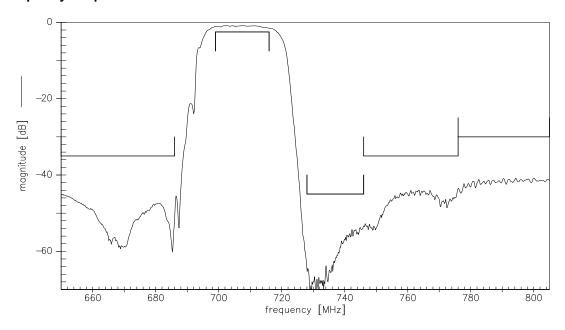
Data sheet

1) According to JESD22-A115A (machine model), 1 negative and 1 positive pulses.

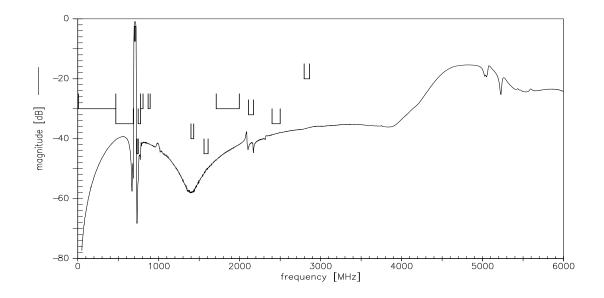
Annotation for characteristics section

Attenuation of WCDMA signal ("Powertransferfunction", $\alpha_{\text{WCDMA}})$ is determined by

$$\int_{\infty}^{\infty} \! \left| S_{ds21}(f) H_{RRC}(f - f_{Carrier}) \right|^2 \! df$$

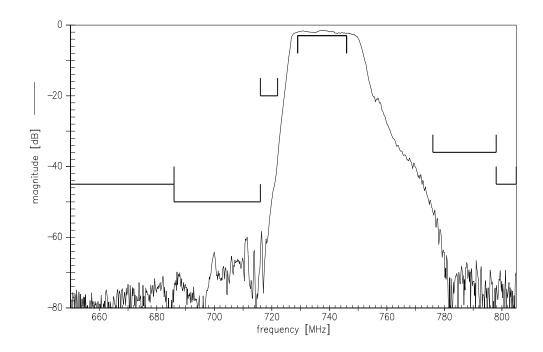

 $f_{Carrier}$ according to 3GPP TS 25.101 (e.g. for UMTS-Passband, $f_{Carrier}$ ranges from 882.4 MHz (lowest Tx channel) to 912.6 MHz (highest Tx channel)). $H_{RRC}(f)$ is the transfer function of the root-raised cosine transmit pulse shaping filter according to 3GPP TS 25.101 with the following normalization:

$$\int_{\infty}^{\infty} \left| H_{RRC}(f) \right|^2 df = 1$$

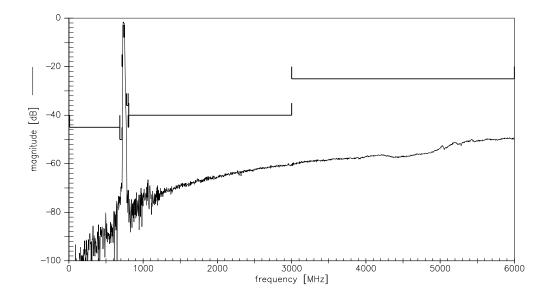


Frequency Response TX-ANT

Frequency Response TX-ANT


SAW Components

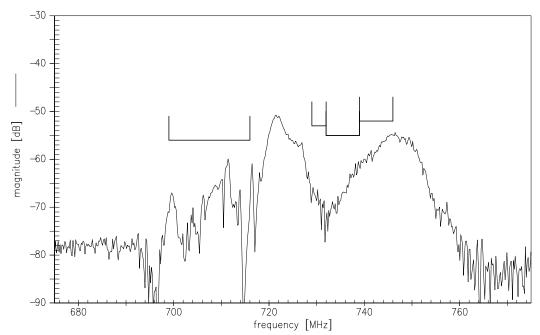
SAW Duplexer


707.5 / 737.5 MHz

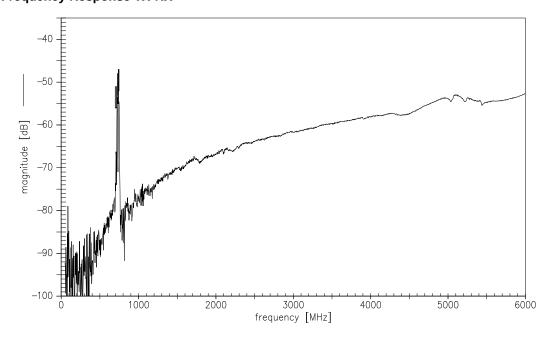
Data sheet

Frequency Response ANT-RX

Frequency Response ANT-RX


SAW Components

SAW Duplexer


707.5 / 737.5 MHz

Data sheet

Frequency Response TX-RX

Frequency Response TX-RX

SAW Components B7931 **SAW Duplexer** 707.5 / 737.5 MHz **Data sheet** S11 VSWR (TX) 3.5 3.0-3.5 -720 frequency [MHz] normal impedance: 50.00 Ω S22 VSWR (ANT) 3.5 3.0 2.0 720 frequency [MHz] normal impedance: 50.00 Ω S33 VSWR (RX) 2.0-1.5 700 720 frequency [MHz] normal impedance: 100.00 $\boldsymbol{\Omega}$

Please read *cautions* and *warnings* and *important* notes at the end of this document.

SAW Components		B7931
SAW Duplexer		707.5 / 737.5 MHz
Data sheet	SMD	

References

Туре	B7931
Ordering code	B39741B7931A710
Marking and package	C61157-A3-A61
Packaging	F61074-V8153-Z000
Date codes	L_1126
S-parameters	B7931_NB.S4P B7931_WB.S4P
Soldering profile	S_6001
RoHS compatible	RoHS-compatible means that products are compatible with the requirements according to Art. 4 (substance restrictions) of Directive 2011/65/EU of the European Parliament and of the Council of June 8 th , 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment ("Directive") with due regard to the application of exemptions as per Annex III of the Directive in certain cases.
Moldability	Before using in overmolding environment, please contact your EPCOS sales office.
Matching coils	See Inductor pdf-catalog http://www.tdk.co.jp/tefe02/coil.htm#aname1 and Data Library for circuit simulation http://www.tdk.co.jp/etvcl/index.htm

For further information please contact your local EPCOS sales office or visit our webpage at $\underline{www.epcos.com}$.

Published by EPCOS AG Systems, Acoustics, Waves Business Group P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2012. This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.

from the foregoing for customer-specific products.

- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating
- 6. Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, BAOKE, Alu-X, CeraDiode, CeraLink, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, FilterCap, FormFit, MiniBlue, MiniCell, MKD, MKK, MLSC, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.