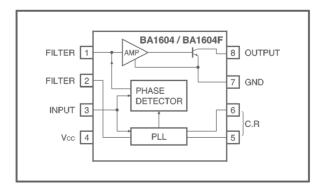
PLL tone decoder IC BA1604 / BA1604F

The BA1604 and BA1604F are tone decoder ICs that enable the frequency to be selected in precise detail, using a PLL system. These ICs are configured of a PLL circuit, a detection circuit, a voltage comparator circuit and an output logic drive circuit.

When the input signal is within the transmission range of the circuit, PLL is synchronized (locked) to the input signal. At this point, the output voltage of the decoder drops, and the change turns on the transistors for the voltage comparator and output logic drive circuits. A load of up to 100mA can be driven. The center frequency (f₀) of the decoder is set by the mobile oscillation frequency of the current control oscillator. This frequency is determined by selecting a CR connected to Pins 5 and 6.


ApplicationsTelephonesData communication systems

Remote control systems

Features

- 1) The detection bandwidth can be varied independently between 0 and 14%.
- The output circuit can withstand a load current of up to 100mA, and is directly coupled to the logic circuit.
- 3) The center frequency offers a high level of stability.
- High out-of-band signal and noise rejection capability.
- 5) Frequency can be changed over a range of 20:1 using an external resistor.
- Compatible with EXAR XR-567 and Signetics NE567.

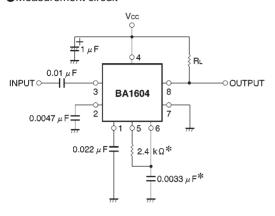
Block diagram

● Absolute maximum ratings (Ta=25°C)

Parameter		Symbol	Limits	Unit
Power supply voltage		Vcc	9	٧
Power dissipation	BA1604	Pd	300*1	m)\//
	BA1604F	Pa	350* ²	mW
Operating temperature		Topr	−10~ +75	°C
Storage temperature		Tstg	−55∼ +125	°C

^{*1} Reduced by 3 mW for each increase in Ta of 1°C over 25°C.

■Recommended operating conditions (Ta=25°C)


Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	4.75	6.0	9.0	٧

●Electrical characteristics (unless otherwise noted, Ta=25°C, Vcc=5V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Quiescent current 1	lq - 1	_	6.0	10	mA	R _L =20kΩ, detector OFF
Quiescent current 2	lQ - 2	_	10	15	mA	R _L =20kΩ, detector ON
Output voltage	Vоит	_	_	15	٧	_
Input voltage	VIN	-10	_	Vcc+0.5	٧	_
Frequency stability	∆ fот	_	±60	_	ppm / ℃	_
Frequency stability	Δfov	_	0.5	2.0	%/V	_
Maximum detection bandwidth	W _{Max} .	10	14	18	% of fo	fo=100kHz
Maximum detection bandwidth skew	Δ W _{Max} .	_	_	3	% of fo	_
Change in maximum detection bandwidth	ΔWt	_	±0.1	_	%/℃	V _{IN} =300mV _{rms}
Change in maximum detection bandwidth	ΔWv	_	±2	_	%/V	V _{IN} =300mV _{rms}
Input resistance	Rin	_	20	_	kΩ	_
Minimum input voltage at detector ON	Don	_	20	25	mV _{rms}	IL=100mA, fi=fo
Maximum input voltage at detector OFF	Doff	10	15	_	mVrms	IL=100mA, fi=fo
2-signal selection ratio	VIR	_	6	_	dB	In-band/out-of-band signals
Minimum input signal-to-wide-band noise ratio	R	_	6	_	dB	Bn=140kHz
Output saturation voltage 1	Vsat - 1	_	0.2	0.4	٧	IL=30mA, V _{IN} =25mV _{rms}
Output saturation voltage 2	Vsat - 2	_	0.6	1.0	٧	IL=100mA, VIN=25mVrms
Output leakage current	lL .	_	0.01	25	μΑ	_
Maximum ON-OFF cycle	Тмах.	_	fo/ 20	_	_	_
Output rise time	tн	_	150	_	ns	RL=50 Ω
Output fall time	t∟	_	30	_	ns	RL=50 Ω

^{*2} Reduced by 3.5 mW for each increase in Ta of 1°C over 25°C.

Measurement circuit

* Fine adjustment should be done until fo = 100 kHz

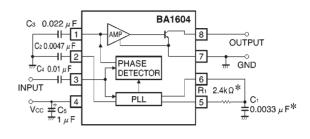
Fia. 1

Attached components

(1) C₁ and R₁: Setting f₀

The center frequency (f_0) is determined by the resistor R_1 between Pins 5 and 6, and the capacitor C_1 between Pin 6 and the ground. The constants at this point are determined as follows:

$$f_0 = \frac{1}{C_1 R_1}$$
 (kHz) (C: μ F, R: $k\Omega$)


A rectangular-wave voltage is output at Pin 5; the peak-to-peak amplitude is between $V_{\rm CC}$ and 1.4 V, and the average DC value is $V_{\rm CC}/$ 2. This pin can drive a load resistance of up to $1k\Omega.$ (The recommended value for $R_1,$ however, is from $2k\Omega$ to $20k\Omega.)$

A 1V peak-to-peak exponential function triangular wave with an average DC voltage level of $V_{\rm CC}/2$ is output at Pin 6. Since loading this pin adversely affects both the duty cycle and the temperature stability of the oscillator, it must only be connected to a high-impedance load.

(2) C2: Loop filter

Connected between Pin 2 and the ground, C_2 functions as a low pass filter for the PLL circuit, and the time constant is determined by $T_2 = R_2C_2$ (R_2 is the internal impedance for Pin 2, at $10~k\Omega$). The value of C_2 also determines the detection bandwidth. The voltage at Pin 2 varies linearly at 20mV / % of f_0 over the range $0.95~f_0$ to $1.05~f_0$.

Application example

* C₁ and R₁ should be adjusted until fo = 100 kHz

Fig. 2

(3) C₃: Output filter

Capacitor C_3 , connected between Pin 1 and the ground, is used as a low pass filter to suppress out-of-band signals. The time constant T_3 is determined by $T_3 = R_3C_3$ (R_3 is the internal impedance for Pin 1, at 4.7k Ω).

To prevent false detection of spurious signals, it is recommended that $C_3 \ge 2 \times C_2$. If C_3 is made too large, however, this will increase the time required for voltage changes at Pin 1 to reach the threshold of the phase detector, thus slowing the response time.

(4) C₄: Input coupling capacitor

(5) C₅: Power supply filter capacitor

•Input and output pins

(1) Input: Pin 3

The input signal is applied through a coupling capacitor to Pin 3. Internal circuits set this pin to a DC potential of 2V with respect to the ground. The input impedance is approximately $20k\Omega$.

(2) Output: Pin 8

The output logic section has an internal power transistor with its collector connected to Pin 8. The load is connected between Pin 8 and $V_{\rm CC}$. The transistor saturates when an in-band input signal is received, dropping the potential at Pin 8 to less than 1V (0.6V Typ.). The output can also drive a load connected to a separate supply voltage of up to 20V.

Operation notes

When setting the central frequency, which is determined by the capacitor and resistor connected to pins 5 and 6 of this IC, it is recommended to connect a variable resistor between pins 5 and 6 and align the central frequency of each component in order to prevent shifting of the central frequency caused by fluctuations in the IC, capacitor, or resistor.

Electrical characteristic curves

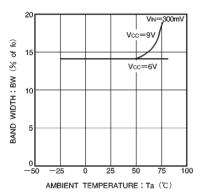


Fig. 3 Detection bandwidth vs. ambient temperature

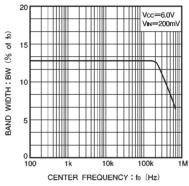


Fig. 4 Detection bandwidth vs. frequency

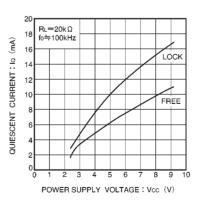


Fig. 7 Quiescent current vs. power supply voltage

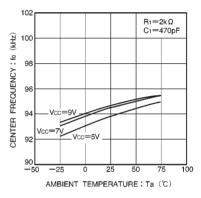


Fig. 5 Center frequency vs. ambient temperature

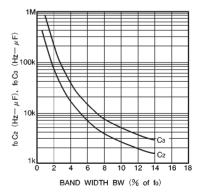


Fig. 8 Detection bandwidth based on C₂ and C₃

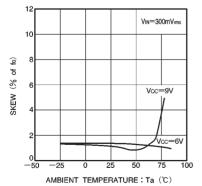


Fig. 6 Detection bandwidth skew vs. ambient temperature

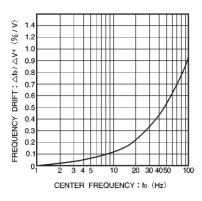


Fig. 9 Center frequency fluctuation based on power supply voltage vs. center frequency

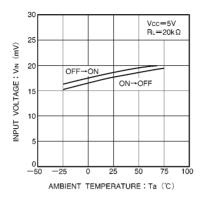
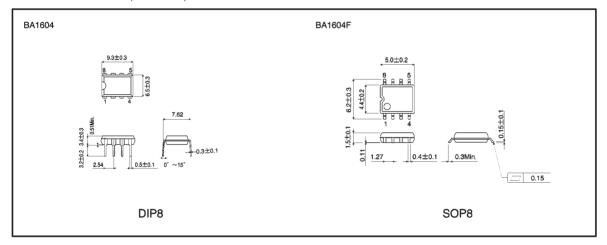



Fig. 10 Detector input sensitivity vs. ambient temperature

External dimensions (Units: mm)

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.
 Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

