

PRODUCTS

Semiconductor IC

BA33B00FP

PAGE

1/14

STRUCTURE

Silicon Monolithic integrated circuit

TYPE

構

造

シリコンモノリシック集積回路

TYPE

2 Channel Low-dropout Voltage Regulator

製品名

基準電圧電源

PRODUCT SERIES

BA33B00FP

形

名

PHYSICAL DIMENSION

fig-1(PLASTIC MOLD)

外 形 図

図-1(プラスチックモールド)

BLOCK DIAGRAM

fig-2

ブロック図

図-2

使用上の注意

ì

応用回路例は推奨すべきものと確信しておりますが、ご使用にあたっては更に特性のご確認を十分に願います。

外付回路定数を変更してご使用になる時は、静特性のみならず遇渡特性も含め外付部品及び当社!Cのバラツキ等を考慮して十分なマージンを見て決定してく ださい。

また、特許権に関しましては当社では十分な確認は出来でおりませんので御了承ください。

本製品は、一般的な電子機器への使用を意図しています。

極めて高度な信頼性が要求され、その製品の故障や誤動作が直接人命に関わるような機器・装置へのご使用を検討される際は、事前に弊社営業窓口までご相談 顕います。

本仕様に掲載しております応用回路等は製品の特性及び性能を引き出す上で正確かつ信頼できるものと確信しております。ただしその使用に起因する回路上及び工業所有権に関する諸問題につきましては当社は一切その責任を負いません。

Application example

The application circuit is recommended for use. Make sure to confirm the adequacy of the characteristics.

When using the circuit with changes to the external circuit constants, make sure to leave an adequate margin for external components including static and transitional characteristics as well as dispersion of the IC.

Note that ROHM cannot provide adequate confirmation of patents.

The product described in this specification is designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys).

Should you intend to use this product with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

ROHM assumes no responsibility for use of any circuits described herein, conveys no license under any patent or other right, and makes no representations that the circuits are free from patent infringement.

DESIGN	l
(平)	
02.5.27	
松	
I -~-	l

CHECK

12.5.21

DATE: 102/05/27

В

SPECIFICATION No. :

TSZ02201-BA33B00FP-1-3

REV.

ROHM CO., LTD.

Semiconductor IC

TYPE BA33B00FP PAGE

2/14

FEATURES

1. Adjustable pin : Channel 2

機 能 可変出力 : Channel 2

します。

2. Voltage regulator is built-in and recommendable for every device with regulators.

3. 3 V (1 A) と 可変出力 (500 m A) の2出力の安定化電源を内 蔵しており、あらゆる電源セットの設計に最適です。

- 3. Output Voltage precision $\pm 2\%$ 出力精度 ±2%
- 4. Output consist of PNP power transistor and low-dropout voltage. PNP出力で低飽和電圧型の為、低消費設計に最適です。
- 5. Built-in over output current protection circuit prevents IC from being damaged short. 出力電流制限回路を内蔵している為、出力短絡などによる1C破壊を防止
- 6. Built-in Thermal Shut Down Circuit for protection thermal break down. ICを過負荷状態などによる熱破壊から防ぐ為、温度保護回路を内蔵して おります。
- 7. Employment of T0252-5. TO252-5 パッケージ採用。

ROHM CO., LTD.

REV. :

SPECIFICATION No. :

<u>TSZ02201-BA33B00FP-1-3</u>

Absolute Maximum Ratings(Ta=25°C)

絶対最大定格(Ta=25℃)

Parameter	Symbol	Limits	Unit
項目	記号	定格	単位
Supply voltage 印加電圧	Vcc	18	>
Power dissipation 許容損失	Pd	1000 ※	m W
Operating temperature range 動作温度範囲	Topr	-40 ~+ 85	ດື
Storage temperature range 保存温度範囲	Tstg	−55 ~+ 150	°C

※Drating in done at 8mW/°C for operating above Ta≠25°C Ta≥25°Cの場合(放熱板なし)8mW/°Cで軽減

Recommended Operating Conditions (Do not however exceed Pd.) 推奨動作条件 $(Ta=2.5 \, ^{\circ}C)$

Parameter 項目	Symbol 記号	Win 最小	Max 最大	Unit 単位
Input voltage 入力電圧	Vcc	4.1%	16.0	V
3.3V output current 3.3 V 出力電流	lo 1	_	1	Α
Adjustable Output Voltage 可変出力電圧	Vo 2	Vref	5.0	٧
Adjustable output current 可変出力電流	102	-	500	m A

※ VO2が3.3V以上のときは入力電圧範囲 VCCMIN > VO2+0.8V として下さい。 If VO2 is higher than 3.3V, please establish that minimum input voltage is higher than VO2+0.8V.

NOTE: The product described in this specification is a strategic product (and/or Service) subject to COCOM regulations.

It should not be exported without Authorization from the appropriate government.

本仕様書の記載内容は、外国為替及び外国為替管理法における役務(設計、製造、使用における技術)に該当する恐れがありますので、取り扱いにご注意ください。

ROHM CO., LTD.

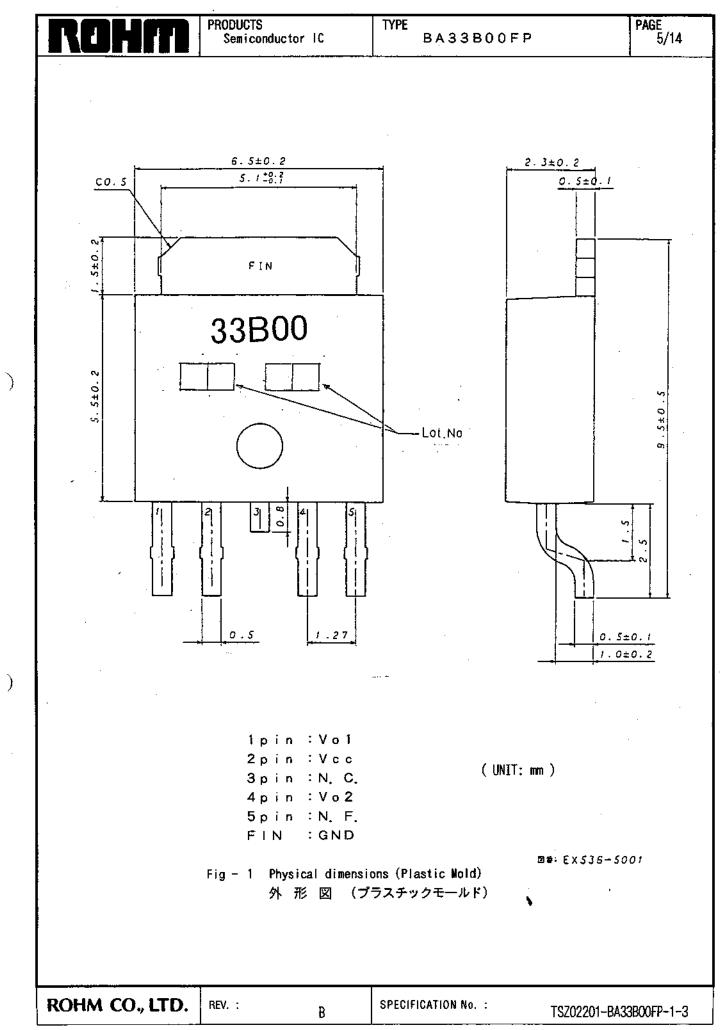
REV. :

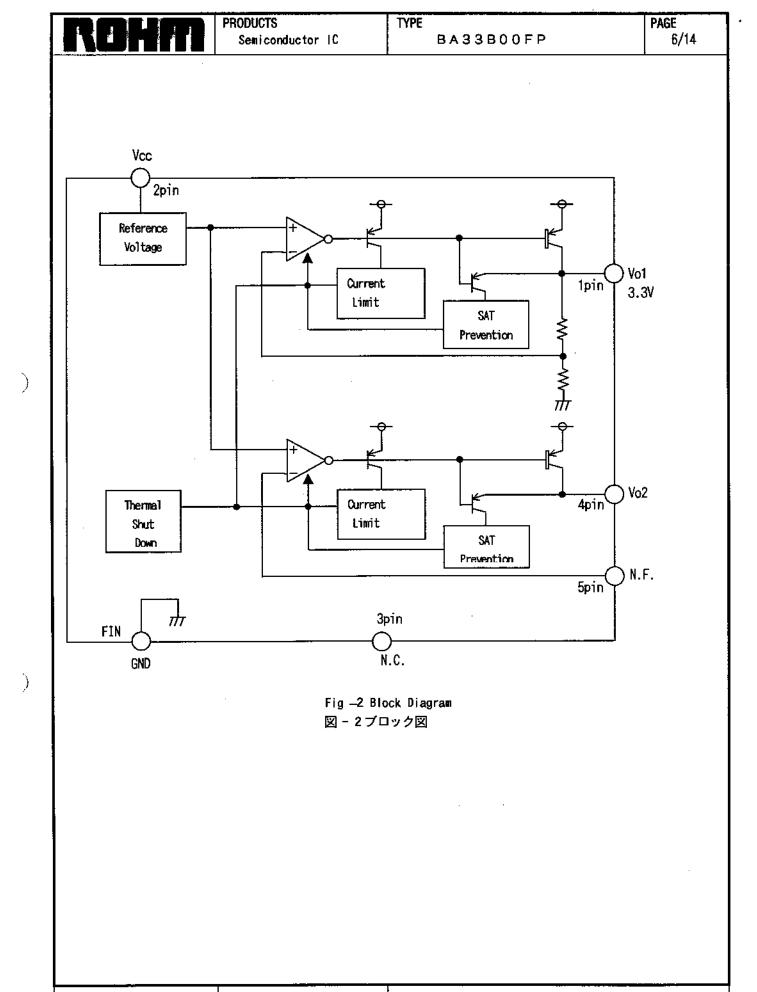
B SPECIFICATION No. :

PAGE 4/14

●ELECTRICAL CHARACTERISTICS(Unless otherwise specified. Ta=25°C, VCC=5V)

電気的特性 (特に指定のない限り Ta=25°C Vcc=5.0V)

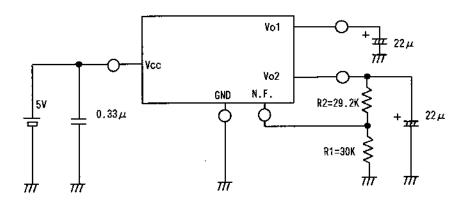

電気的特性(特に指定のない限り	1a=25 C	VCC=5.	.01)				
·		Limits					Te-4
Parameter	Symbol	規格値		Unit	Conditions	Test	
項目	記号	Min	TYP	Max	単位	条件	circuit
		最小	標準	最大			測定回路
Bias Current							
バイアス電流	ib	_	0.8	1.4	m A	lo1=OmA, lo2=OmA	Fig-7
3.3V Output [3, 3 V出力部]		L					<u> </u>
Output Voltage 1							
出力電圧1	Vo1	3.234	3.3	3.366	V	lo1=200=A	Fig-4
Dropout Voltage 1							
最小入出力電圧差 1	∆Vd1	_	0.25	0.5	V	1o1=500mA, Vcc=3.135V	Fig-6
Peak Output Current 1	•			_			
出力電流能力1	lo1	1.0	_	_	Α		Fig-4
Ripple Rejection 1		<u> </u>				f=120Hz,ein=1Vrms	.
リップルリジェクション 1	R.R.1	-	58	_	d B	1o1=200mA, Vcc=9V	Fig-5
Line Regulation 1							
入力安定度 1	Reg. I1	-	30	60	m V	Vcc=4→16V, lo1=200mA	Fig-4
Load Regulation 1							
負荷安定度 1	Reg.L1	-	50	100	mν	lo1≖OmA→1A	Fig-4
Temperature Coefficient Of Output							
Voltage 1	Tcvo1	_	±0.02	_ '	%/°C	lo1=5mA,Tj=0~125°C	Fig-4
出力電圧温度係数1*1						-	
Short Circuit Output Current 1	11		380		_ ^	Vcc=16V	Eig-0
出力短絡電流 1	los1	_	360	_	m A	ACC= 10A	Fig-8
Adjustable Output [可変出力部]							
Reference Voltage	Vref	1.242	1.267	1.292	v	o2=5mA	Fig-4
リファレンス電圧	1161	1.242	1.207	1.232		102-3µM	119-4
Dropout Voltage 2	∆Vd2	_	0.25	0.5	v	lo2=200mA	Fig-6
最小入出力電圧差2	A TUE		0.25	0.5	<u> </u>	102-200BA	1190
Peak Output Current 2	lo2	500			m A		Fig-4
出力電流能力2	104	300					7 19 -
Ripple Rejection 2	R.R.2	_	55	_	dВ	f=120Hz,ein=1Vrms	Fig-5
リップルリジェクション 2	K,K,Z	-	33	_	0 6	1o2=100mA, Vcc=7V	rig-ş
Line Regulation 2	Dc		22	40	\	Ware step to oone	Ft 4
入力安定度 2	Reg. 12	_	20	40	m V	Vcc=6→16V, lo2=200mA	Fig-4
Load Regulation 2	D 10		F 0	100		1-2-0-4 \E00-4	F:- 4
負荷安定度 2	Reg.L2	-	50	100	mV	1o2=0mA→500mA	Fig-4
Temperature Coefficient Of Output			1				
Voltage 2	Tcvo1	-	±0.02	-	%/°C	lo2=5mA,Tj=0~125°C	Fig-4
出力電圧温度係数2 * 1			<u> </u>				
Short Circuit Output Current 2	le-2		200	_		Vcc=16V	Eig-0
出力短絡電流2	los2	L	280		m A	YCC-101	Fig-8


This product is not designed for protection against redioactive rays. 本製品は耐放射線設計はしておりません。

* 1 Designed Guarantee.

設計保証(出荷全数検査は行っておりません。)

ROHM CO., LTD.	REV. :	SPECIFICATION No. :	T\$702201-RA33R00FP-1-3
•	l B		1.37077011264.336441662123



ROHM CO., LTD. REV. : SPECIFICATION No. : В TSZ02201-BA33B00FP-1-3

Fig-3 Thermal derating curve 図-3 許容損失熱軽減特性

○Standard application circuit 標準使用回路例

Setting Output Voltage: Vo2 = VNF*(R1+R2)/R1 出力電圧設定

VNF = 1.267 V (TYP)

R1: Approx. 30kΩ is recommended. R1は30kΩ程度を推奨いたします。

R2: More than $5.5k\Omega$ is recommended.

R2は5.5kΩ以上を推奨いたします.

ROHM CO., LTD.

REV. :

В

SPECIFICATION No. :

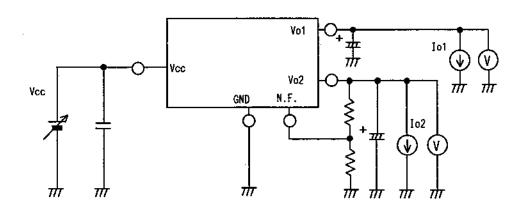


Fig-4 Measuring Circuit for Vo1, Vo2 line regulation, load regulation and peak output current

図-4 出力電圧、入力安定度、負荷安定度、出力電流能力の測定回路

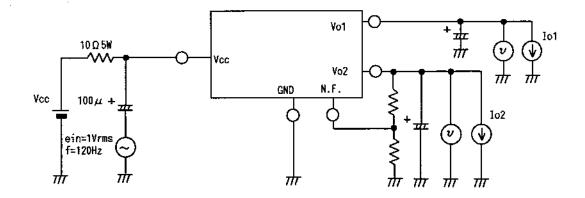


Fig-5 Measuring circuit for ripple rejection 図-5 リップル除去率の測定回路

ROHM CO., LTD.

REV. :

В

SPECIFICATION No. :

TSZ02201-BA33B00FP-1-3

)

Semiconductor IC

TYPE

BA33B00FP

PAGE

9/14

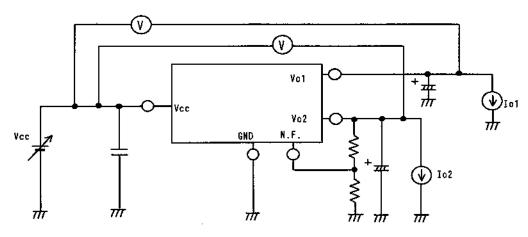


Fig-6 Measuring circuit for dropout voltage 図-6 最小入力電圧差測定回路

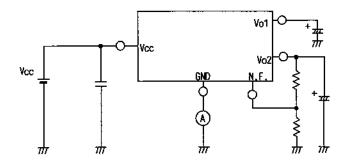


Fig-7 Measuring circuit for bias current バイアス電流測定回図

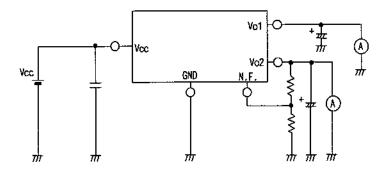


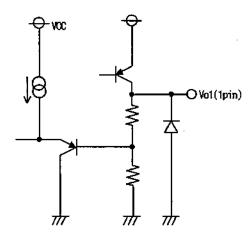
Fig-8 Measuring circuit for short current 図-8 出力短絡電流測定回路

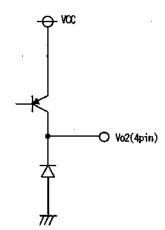
ROHM CO., LTD.

REV. :

В

SPECIFICATION No. :




PRODUCTS Semiconductor IC

BA33B00FP

TYPE

PAGE 10/14

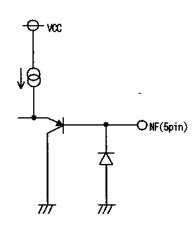


Fig-9 Input-output equation circuit 図-9 入出力等価回路図

ROHM CO., LTD.

REV. :

SPECIFICATION No. :

Semiconductor IC

NOTES FOR USE

使用上の注意

1. Operation supply voltage range

Functional circuit operation is guaranteed within operation ambient temperature, as long as it is within operation supply voltage range. The electrical characteristics standard value can not be guaranteed. However, there is no drastic variation in these values, as long as it is within operation supply voltage range.

動作範囲について

動作範囲であれば、動作周囲温度の範囲で一応の回路機能動作が保証されています。特性値に関しましては、電 気的特性の規格値は保証できませんが、これらの範囲内では特性値の急激な変動はありません。

2. Power dissipation

For the power dissipation, refer to the thermal derating characteristics and the approximation of IC internal power consumption shown in the attached sheet as guidelines. Also, be sure to use this IC within a power dissipation range allowing enough margin.

許容損失Pdについて

許容損失については別紙に熱軽減特性を掲載しておりますので目安として御使用下さい。

万一、許容損失を越える様な御使用をされますと、チップ温度上昇により電流能力の減少など IC 本来の性質を悪 化させることにつながりますので、許容損失内で十分なマージンをもって御使用願います。

3. About oscillation stopper of output and bypass capacitor

Please put into capacitor to stop oscillation between output pin and GND. It has a possibility of oscillation if capacitance is changed due to temperature change, etc and it recommends to use small tantalumelectrolytic capacitor of internal serial resistor(ESR). It recommends degree of $22 \,\mu\text{F}$ capacitance capacitor. If extremely big capacitor (over $1000 \mu F$) is used, it may have a case to occur oscillation of low frequency. Please confirm for the point. And it recommend to put into bypass capacitor with 0.33 µF degree into the nearest position between Input pin and GND.

出力の発振止め及びバイパスコンデンサについて

出力端子と GND 間には発振止めのコンデンサを必ず入れて下さい。温度変化などによりコンデンサの容量が変化しますと 発振の可能性がありますので、タンタル電解コンデンサで内部痕列抵抗(ESR)の小さいものを推奨いたします。

コンデンサの容量は 22μF 程度を推奨しますが極端に大きなコンデンサ(1000μF 以上)を使用しますと低周波の発振を起こ す場合も考えられます。十分な確認をお願いします。

また、入力端子と GND 間のなるべくピンに近い位置に 0.33μF 程度のバイパスコンデンサを入れる事を推奨いたします。

ROHM CO., LTD.

REV. :

SPECIFICATION No. :

В

4. Over-current protection circuit

The over-current protection circuits are built in at the output, according to their respective current outputs and prevent the IC from being damaged when the load is short-circuited or over-current. This protection circuit performs holdback current limiting and is designed allowing a margin not to latched by the current limitation when an over-current flows in the IC instantaneously through a large capacitor. When output is less than 1Vf, it is judged as a short circuit mode and IC does not operate.

過電流保護回路について

出力には過電流保護回路を内蔵しており、負荷/a-ト時の IC 破壊を防止します。

この保護回路は「垂下フの字型」の電流制限で、IC は大容量コンデンサなどにより瞬時に大電流が流れても電流制限 されてラッチしないように余裕をもって設計しております。

ただし、これらの保護回路は突発的な事故による破壊防止に有効なもので連続的な保護回路動作過渡時(たとえ ば、出力をクランプする。)での御使用は避けて下さい。また、能力については温度に対して負の特性を持ってあり ますので熱設計時には御注意下さい。

5. Built-in thermal circuit

A temperature control circuit is built in the IC to prevent the damage due to overheat. Therefore, all the outputs are turned off when the thermal circuit works and are turned on when the temperature goes down to the specified level.

But, built-in the IC a temperature control circuit to protect itself. Except this IC, the other components be designed under 150°C.

サーマル回路内蔵について

熱的破壊防止の為、温度保護回路を内蔵しておりますので、温度保護回路動作時には各出力が OFF 状態となりま すが、一定温度に戻りますと復帰します。

但し、温度保護回路は本来 IC 自身を保護する目的で内蔵しておりますので、温度保護回路動作温度(150°C)未満 での熱設計をお願いします。

6. Grounding

)

For the grounding shown in the application circuit, wire every ground to GND terminal in a short pattern arrangement to avoid electrical disturbance.

アプリケーションにおいて入力(VIN) 及び GND と各出力が通常使用電位と逆になるモードが存在する場合、内部回路を損傷 する可能性がありますので、ダイオード等でパイパス経路を設けることを推奨します。

7.Miscellaneous

This product are produced with struct quality control, but mite be destroyed in using beyond absolute maximum ratings. Open IC destroyed a failure mode cannot be defined(like Short mode, or Open mode). Therefore physical security countermeasure, like fuse, is to be given when a specified mode to be beyond absolute maximum ratings is considered.

本製品におきましては品質管理には十分注意を払っておりますが、印加電圧及び動作温度範囲等の絶対最大定格 を越えた場合、破壊の可能性があります。破壊した場合、ショートモードもしくはオープンモード等、特定出来ませんので絶 対最大定格を越えるような特殊なモードが想定される場合、ヒューズ等、物理的な安全対策を施すよう検討をお願いし ます。

В

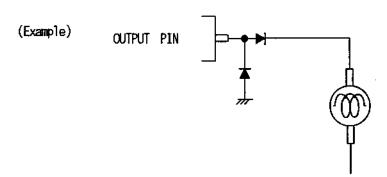
ROHM CO., LTD.

REV. :

SPECIFICATION No. :

PRODUCTS
Semiconductor IC

BA33BOOFP


PAGE 13/14

8. Mal-function may happen when the device is used in the strong electromagnetic field. 強電磁界中での御使用では、まれに誤動作する可能性がありますのでご注意下さい。

9. Recommended to put DIODE for protection purpose in case of output pin connected with large load of inpedance or reserve current occurred at intial and output off.

出力端子に大きなインダクウンス成分を含む負荷が接続され、起動時及び、出力 OFF 時逆起電力の発生が考えられる場合には、保護ダイオードの挿入をお願いします。

TYPE

10. We are confident in recommending the above application circuit example, but we ask that you carefully check the characteristics of this circuit before using it. If using this circuit after modifying other external circuit constants, be careful to ensure adequate margins for variation between external devices and this IC, including not only static characteristics but also transient characteristics.

This IC is a bi- pola IC which (as shown in Figure 10) has P+ isolation in the P substrate and between the various pins. A P-N junction is formed from this P layer and the N layer of each pin. For example the relation between each potentials is as follows,

(When GND > PinB and GND > PinA, the P-N junction operates as a parasitic diode.)

(When PinB > GND > PinA, the P-N junction operates as a parasitic transistor.)

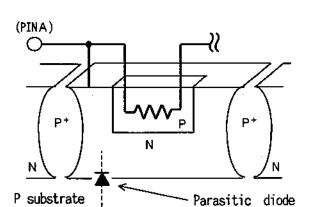
Parasitic diodes can occur inevitably in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits as well as operation faults and physical damage. Accordingly, you must not use methods by which parasitic diodes operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin.

応用回路図の例は推奨すべきものと確信しておりますが、ご使用にあたっては特性の確認を十分にお願いします。 その他外付け回路定数を変更してご使用になる時は静特性のみならず、過渡特性も含め外付け部品及び当社 IC のパラサト等を考慮して十分なマージンを見て決定して下さい。

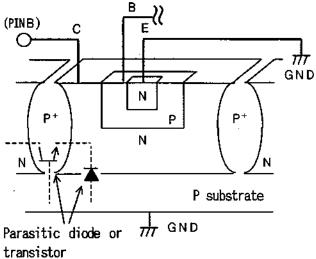
本 IC はパイポーラ IC であり、Fig-10 の様に、P 基板(サ)゙ストレート)と、各素子間に P'アイソレーションを有しています。この P 層と各素子の N 層とで P-N 接合が形成され、電位関係が、

- ·GND>端子A,GND>端子Bの時P-N接合が寄生ダイオードとして、
- ・端子B>GND>端子Aの時P-N接合が寄生トランジスタとして動作します。

寄生素子は、IC の構造上必然的に出来るものです。寄生素子の動作は、回路間の相互干渉を引き起こし、誤動作、ひいては破壊の原因ともなります。


したがって、入力端子にGND(P基板)より低い電圧を印加するなど、寄生素子が動作するような使い方をしないよう 十分に注意して下さい。

ROHM CO., LTD.


REV. :

SPECIFICATION No. :

Resistance

Transistor (NPN)

— Parasitic diode ללו GND

GND

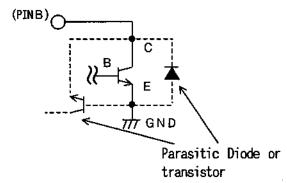


Fig-10 simplified structure of Bipora IC. パイポーラ ICの簡易構造例

ROHM CO., LTD.

REV. :

SPECIFICATION No. :

TSZ02201-BA33B00FP-1-3

)