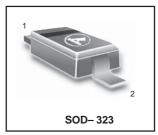


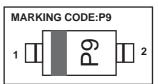
UHF variable capacitance diode

FEATURES

- · Excellent linearity
- · Excellent matching to 1% DMA
- · Very small plastic SMD package
- C28: 2.1 pF; ratio 9
- · Low series resistance.

APPLICATIONS


- Electronic tuning in UHF television tuners
- · VCO.


DESCRIPTION

The BB149 is a variable capacitance diode, fabricated in planar technology, and encapsulated in the SOD323 very small plastic SMD package.

The excellent matching performance is achieved by gliding matching and a direct matching assembly procedure. The unmatched type, BB159 has the same specification.

1 O 2 CATHODE ANODE

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	
V_R	continuous reverse voltage	-	30	V	
I _F	continuous forward current	-	20	mA	
T_{stg}	storage temperature	- 55	+150	℃	
T _j	operating junction temperature	-55	+125	℃	

ELECTRICAL CHARACTERISTICS

 $T_j = 25$ °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
lr	reverse current	VR = 30 V; see Fig.2		10	nA
		$V_R = 30 \text{ V}; T_j = 85 \text{ °C}; \text{ see Fig.2}$	-	200	nA
ľs	diode series resistance	f = 470 MHz; note 1	-	0.75	Ω
Cd	diode capacitance	V _R = 0.5 V; f = 1 MHz; see Figs 1 and 3	18	19.5	рF
		V _R = 28 V;f = 1 MHz; see Figs 1 and 3	1.9	2.25	pF
Cd(1V)	capacitance ratio	f = 1 MHz	8.2	10	
Cd (28V)					
Cd(19V)	capacitance ratio	f = 1 MHz	1.2	_	
Cd (28V)					
ΔCd	capacitance matching	VR = 0.5 to 28 V; in a sequence of 4 diodes	_	1	%
Cd		(gliding)			
		VR= 0.5 to 28 V; in a sequence of 15 diodes	_	2	%
		(gliding)			

Note

1. VR is the value at which Cd = 9 pF.

BB 149

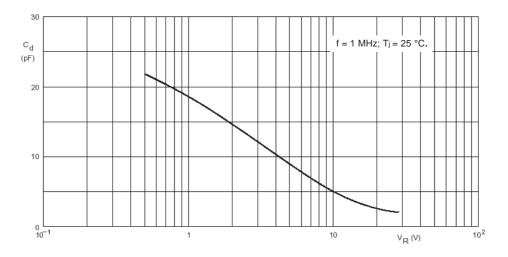


Fig.1 Diode capacitance as a function of reverse voltage; typical values.

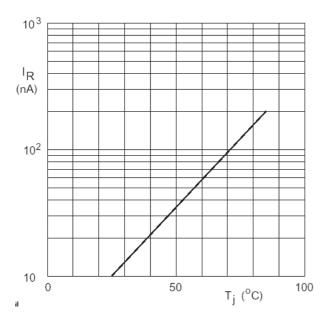


Fig.2 Reverse current as a function of junction temperature; maximum values.

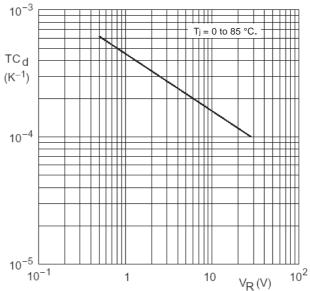


Fig.3 Temperature coefficient of diode capacitance as a function of reverse voltage; typical values.