

LED Drivers for LCD Backlights

Backlight LED Drivers for Small LCD Panels (Charge Pump Type)

2011.06 - Rev.B

Description

This LSI is a 4 white LED driver for small LCD backlight. At the charge pump type, the number of external devices is minimized.

Features

- 1) 4 parallel LED driver is mounted.
- 2) The LED current can be controlled via an external resistance.
- 3) Maximum current is 120mA (30mA x 4).
- 4) LED1 to LED4 can be turned on or off via an external control pin.
- 5) The relative current accuracy among LEDs (LED1 to LED4) is 3%.
- 6) Automatically transition to each mode (x1.0, x1.5, x2.0).
- 7) High efficiency (90% or more at maximum) is achieved.
- 8) Various protection functions such as output voltage protection function, current overload limiter and thermal shutdown circuit are mounted.

Applications

This driver provides for:

- Backlight using white LED
- Auxiliary lights for mobile phone cameras and simplified flash

●Lineup

ii ioap		
Parameter	BD1604MUV	BD1604MVV
Number of LED channels	4ch	4ch
Maximum current	120mA	120mA
Package	VQFN016V3030 3.00mm×3.00mm	SQFN016V4040 4.00mm×4.00mm

●Absolute Maximum Rating (Ta=25°C)

Parameter		Symbol	Ratings	Unit
Power supply voltage		Vmax	7	V
Allowable loss	BD1604MUV	D4	700 * ¹	\/
	BD1604MVV	Pd	780 * ²	mW
Operating temperature range		Topr	-30~85	°C
Storage temperature range		Tstr	−55~150	°C

^{*1} When a glass epoxy substrate (70mm×70mm×1.6mm) has been mounted, this loss will decrease 5.6mW/°C if Ta is higher than or equal to 25°C.

Recommended Operation Range

Parameter	Symbol	Limits	Unit	Condition
Operating supply voltage	VBAT	2.7~5.5	V	VBAT voltage

When a glass epoxy substrate (70mm×70mm×1.6mm) has been mounted, this loss will decrease 6.24mW/°C if Ta is higher than or equal to 25°C.

Electrical Characteristics

Unless otherwise specified, Ta is 25°C and VBAT is 3.6V.

Parameter	Symbol		Limits			Condition		
Farameter	Symbol	Min.	Тур.	Max.	Unit	Condition		
[Circuit current]								
Circuit current 0	IQ0	-	0.1	1	μΑ	EN=0V		
Circuit current 1.0	IQ1.0	-	1.0	2.0	mA	x1.0 Mode, lout = 0mA		
Circuit current 1.5	IQ1.5	-	2.3	3.3	mA	x1.5 Mode, lout = 0mA		
Circuit current 2.0	IQ2.0	-	2.5	3.5	mA	X2.0 Mode, lout = 0mA		

Unless otherwise specified, Ta is 25°C and VBAT is 3.6V.

Dorometer	Cumbal	Limits			Lloit	Condition			
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition			
[Current driver]	[Current driver]								
LED maximum current	ILEDmax	-	-	30	mA				
LED current accuracy	ILEDdiff	-	0.5	5.0	%	ILED=10mA			
LED current matching	ILEDmatch	-	0.5	3.0	%	ILED=10mA *1)			
LED pin control voltage	VLED	0.08	0.10	0.20	٧	Minimum voltage at LED1~LED4 pins			
ISET voltage	ISET	0.5	0.6	0.7	V				
Oscillation frequency	Fosc	0.8	1.0	1.2	MHz				
Over current limiter	lov	-	600	900	mA				
LED current limiter	ILEDOV	40	60	100	mA				

^{*1)} LED current matching = (ILEDmax-ILEDmin)/(ILEDmax+ILEDmin)*100

ILEDmax : Maximum value of LED1-4 current ILEDmin : Minimum value of LED1-4 current

Unless otherwise specified, Ta is 25°C and VBAT is 5.5V.

Parameter	Symbol	Limits			Unit	Condition		
Falametei	Symbol	Min.	Тур.	Max.	Offic	Condition		
[Control Signal etc.]								
Input 'H' voltage	VIH	1.4	-	-	V	EN,SEL0,SEL1,SEL2		
Input 'L' voltage	VIL	-	-	0.4	V	EN,SEL0,SEL1,SEL2		
Input 'H' current1	liH1	-	18.3	30	μA	EN=5.5V		
Input 'H' current2	liH2	-	0	1	μA	SEL0,SEL1,SEL2=5.5V		
Input 'L' current	Iı∟	-1	0	-	μA	EN,SEL0,SEL1,SEL2=0V		

Unless otherwise specified, Ta is 25°C and VBAT is 3.6V.

Dorometer	Cumbal		Limits		Unit	Condition		
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition		
[Control Signal etc.]								
UVLO detecting voltage	Vuvlo	1.9	2.2	2.5	٧			

● Reference Data (Evaluation under LED V_F=3.2V)

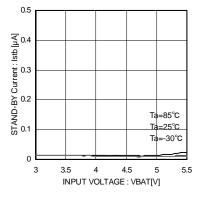


Fig.1 Circuit Current (Standby)

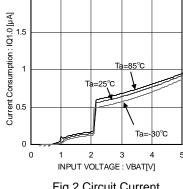


Fig.2 Circuit Current (x1.0 Mode Operation)

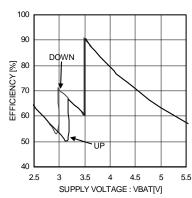


Fig.3 Efficiency Hysteresis (20mA × 4 LEDs)

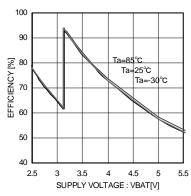


Fig.4 Efficiency (5mA × 4 LEDs)

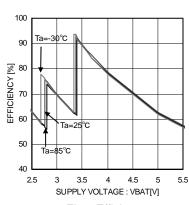


Fig.5 Efficiency (15mA × 4 LEDs)

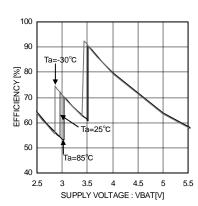


Fig.6 Efficiency (20mA × 4 LEDs)

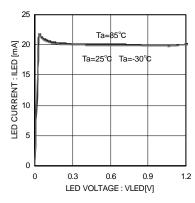


Fig.7 LED Current (20mA) (VBAT=2.7V)

Fig.8 LED Current (20mA) (VBAT=3.6V)

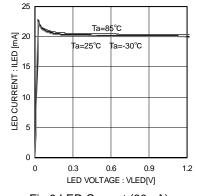


Fig.9 LED Current (20mA) (VBAT=5.5V)

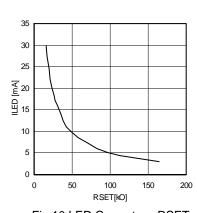


Fig.10 LED Current vs. RSET (Ta=25°C)

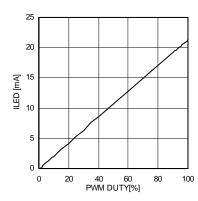


Fig.11 LED Current vs. PWM Duty (Cycle 100Hz)

●Block Diagram, Recommended Circuit Example and Pin Location Diagram

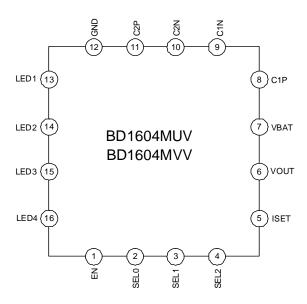


Fig.12 Pin Location Diagram (Top View)

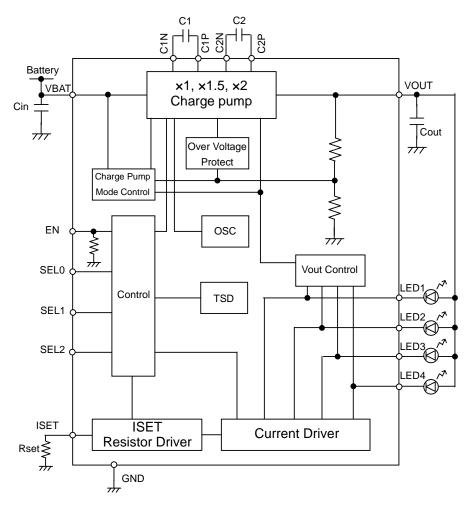


Fig.13 Block Diagram and Recommended Circuit Diagram

[Pin table]			
Pin name	Pin n	Pin circuit	
Finname	BD1604MUV	BD1604MVV	diagram
EN	1	1	F
SEL0	2	2	Е
SEL1	3	3	Е
SEL2	4	4	Е
ISET	5	5	G
VOUT	6	6	С
VBAT	7	7	Н
C1P	8	8	В
C1N	9	9	А
C2N	10	10	А
C2P	11	11	В
GND	12	12	I
LED1	13	13	D
LED2	14	14	D
LED3	15	15	D
LED4	16	16	D

●I/O Equivalence Circuit Diagram

The following shows I/O equivalence circuits.

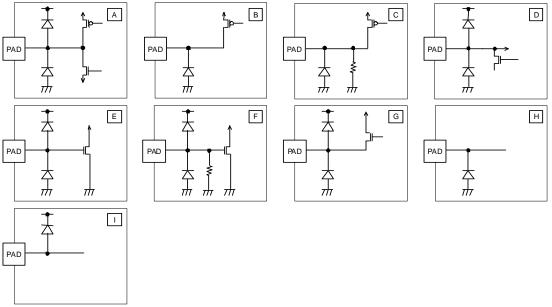


Fig.14 Pin Diagram

Description of Block Operations

1) LED light control and current control

When LED lights are controlled, H- or L-level voltage is applied to respective control pins.

Current control in the BD1604MUV/MVV can take place via a resistance connected to the ISET pin.

ON/OFF control

SEL2	SEL1	SEL0	LED1	LED2	LED3	LED4
0	0	0	OFF	OFF	OFF	ON
0	0	1	OFF	OFF	ON	OFF
0	1	0	OFF	ON	OFF	OFF
0	1	1	ON	OFF	OFF	OFF
1	0	0	OFF	OFF	ON	ON
1	0	1	OFF	ON	ON	ON
1	1	0	ON	ON	ON	ON
1	1	1	OFF	OFF	OFF	OFF

Rset: See the following table. 0: 0V, 1: VBAT

When handling pins, the LED pins must be connected to VBAT so long as LED is always OFF.

Current control

Rset	165kΩ	97.6kΩ	48.7kΩ	32.4kΩ	24.3kΩ	16.2kΩ
ILED	3mA	5mA	10mA	15mA	20mA	30mA

The LED current can be changed by the Rset value.

ILED=480/Rset

The above expression can be used for approximation.

2) Low supply voltage detection circuit (UVLO)

When the IC-applied supply voltage drops, all the circuits including the DC/DC converter are stopped. When supply voltage drops to a detecting voltage, UVLO is activated. When it rises, UVLO is automatically released.

3) Soft start by DC/DC converter startup

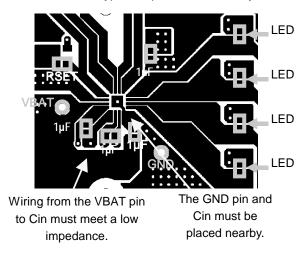
When a DC/DC converter is started, soft start is enabled so that output voltage can be increased gradually to prevent output voltage overshooting.

Application Parts Selection Method

Capacitor (Use the ceramics parts with good frequency and temperature characteristics.)

Symbol	Recommended value	Recommended part	Туре
Cout,Cin,C1,C2	1μF	GRM188B11A105KA61B(MURATA)	Ceramics capacitor

Resistance


Symbol	Recommended value	Recommended part	Set Current Value
	16kΩ		30mA
Rset	ì	MCR006YZPF Series (ROHM)	ì
	240kΩ		2mA

Connect an input bypass capacitor (CIN) between VBAT and GND pin in proximity. In addition, connect an output capacitor between VOUT and GND pins in proximity. Connect a capacitor between C1P and C1N and also a capacitor between C2P and C2N in proximity to the chips. Connect a resistance in proximity to the ISET pin.

When other than these parts are used, the equivalent parts must be used.

Cautions on layout pattern

When designing a layout pattern, lay out wires to a power line in a way that the layout pattern impedance can be minimized and connect a bypass capacitor if necessary.

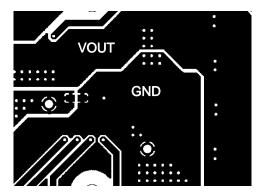


Fig.15 Example of BD1604MUV Layout Pattern (Front, Top View)

Fig.16 Example of BD1604MUV Layout Pattern (Rear, Top View)

LED Current Control

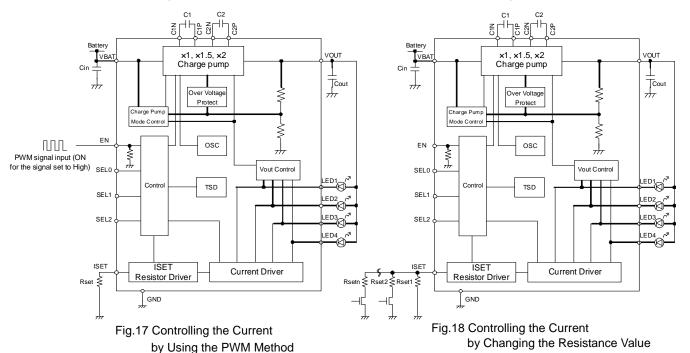
There are two methods for LED current control. One method uses an external PWM signal and another changes the resistance value of RREF (RSET) connected to the IREF (ISET) pin. For details, refer to the respective circuit examples. Don't make the setting of 30mA or more per channel for BD1604MUV/MVV.

1) Controlling the current by using the PWM method

The PWN signal must be input to the EN pin.

PWM signal "H" level: 1.4V or more

PWM signal "L" level: 0.4V or less


When PWM Duty is used in an area of 10% or less, the PWM cycle must be a range from 100Hz to 200Hz. When extremely high-speed PWM control takes place, the linearity of LED current value to PWM duty is lost if the PWM duty is small (for example, 10% or less) or it is large (for example, 90% or more).

2) Controlling the current by changing the SET resistance value Rset-Rset1=Rset2// ... //Restn.

This means that the current can be adjusted more finely by adding the types of resistance values.

ILED=480/Rset [A]

The approximate LED current can be obtained from the above expression. Because the current of 30mA or more per LED is not permitted, make the setting in a way that the Rset resistance value can be maintained to be greater than or equal to $16k\Omega$.

Notes for Use

(1) Absolute Maximum Ratings

An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety measures including the use of fuses, etc.

(2) Operating conditions

These conditions represent a range within which characteristics can be provided approximately as expected. The electrical characteristics are guaranteed under the conditions of each parameter.

(3) Reverse connection of power supply connector

The reverse connection of power supply connector can break down ICs. Take protective measures against the breakdown due to the reverse connection, such as mounting an external diode between the power supply and the IC's power supply terminal.

(4) Power supply line

Design PCB pattern to provide low impedance for the wiring between the power supply and the GND lines. In this regard, for the digital block power supply and the analog block power supply, even though these power supplies has the same level of potential, separate the power supply pattern for the digital block from that for the analog block, thus suppressing the diffraction of digital noises to the analog block power supply resulting from impedance common to the wiring patterns. For the GND line, give consideration to design the patterns in a similar manner.

Furthermore, for all power supply terminals to ICs, mount a capacitor between the power supply and the GND terminal. At the same time, in order to use an electrolytic capacitor, thoroughly check to be sure the characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low temperature, thus determining the constant.

(5) GND voltage

Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure no terminals are at a potential lower than the GND voltage including an actual electric transient.

(6) Short circuit between terminals and erroneous mounting

In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between terminals or between the terminal and the power supply or the GND terminal, the ICs can break down.

(7) Operation in strong electromagnetic field

Be noted that using ICs in the strong electromagnetic field can malfunction them.

(8) Inspection with set PCB

On the inspection with the set PCB, if a capacitor is connected to a low-impedance IC terminal, the IC can suffer stress. Therefore, be sure to discharge from the set PCB by each process. Furthermore, in order to mount or dismount the set PCB to/from the jig for the inspection process, be sure to turn OFF the power supply and then mount the set PCB to the jig. After the completion of the inspection, be sure to turn OFF the power supply and then dismount it from the jig. In addition, for protection against static electricity, establish a ground for the assembly process and pay thorough attention to the transportation and the storage of the set PCB.

(9) Input terminals

In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the input terminal. Therefore, pay thorough attention not to handle the input terminals, such as to apply to the input terminals a voltage lower than the GND respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input terminals when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to the input terminals a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics.

(10) Ground wiring pattern

If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of the small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well.

(11) External capacitor

In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.

(12) Not connecting input terminals

In terms of extremely high impedance of CMOS gate, to open the input terminals causes unstable state. Unstable state occurs from the inside gate voltage of p-channel or n-channel transistor into active. As a result, power supply current may increase. And unstable state can also cause unexpected operation of IC. So unless otherwise specified, input terminals not being used should be connected to the power supply or GND line.

(13) Thermal shutdown circuit (TSD)

When junction temperatures become setting temperature or higher, the thermal shutdown circuit operates and turns a switch OFF. The thermal shutdown circuit, which is aimed at isolating the LSI from thermal runaway as much as possible, is not aimed at the protection or guarantee of the LSI. Therefore, do not continuously use the LSI with this circuit operating or use the LSI assuming its operation.

(14) Thermal design

Perform thermal design in which there are adequate margins by taking into account the permissible dissipation (Pd) in actual states of use.

Thermal Loss

The following conditions must be met for thermal design. (Because the following temperature is only the assured temperature, be sure to consider the margin for design.)

- 1. The ambient temperature Ta must be 85°C.
- 2. The IC loss must be smaller than an allowable loss (Pd).

Power dissipation character

The following shows the power dissipation character.

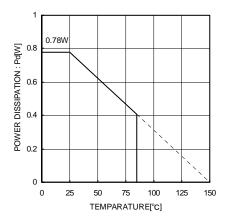


Fig.19 BD1604MVV

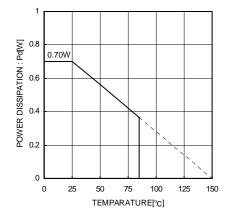
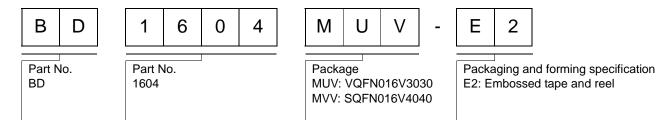
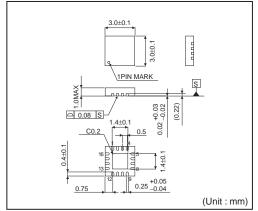
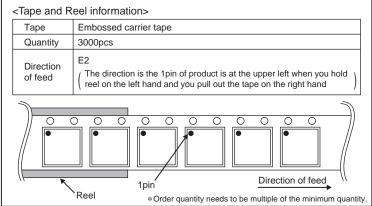
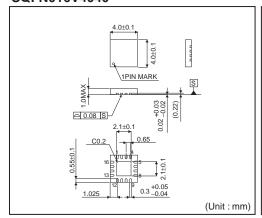



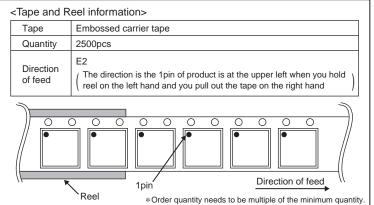
Fig.20 BD1604MUV


Mount board specification Material : Glass epoxy


Size: 70mm x 70mm x 1.6mm

Ordering part number




VQFN016V3030

SQFN016V4040

Notice

Precaution on using ROHM Products

Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.

(Note1) Medical Equipment Classification of the Specific Applications

JÁPAN	USA	EU	CHINA
CLASSI	СГУССШ	CLASS II b	СГУССШ
CLASSIV	CLASSII	CLASSIII	— CLASSⅢ

- 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
 - [a] Installation of protection circuits or other protective devices to improve system safety
 - [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
- 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
 - [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
 - [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
 - [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂
 - [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
 - [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
 - [f] Sealing or coating our Products with resin or other coating materials
 - [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
 - [h] Use of the Products in places subject to dew condensation
- 4. The Products are not subject to radiation-proof design.
- 5. Please verify and confirm characteristics of the final or mounted products in using the Products.
- 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
- 7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature.
- 8. Confirm that operation temperature is within the specified range described in the product specification.
- 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

- 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
- 2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

Precautions Regarding Application Examples and External Circuits

- If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
- You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

- 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
 - [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2
 - [b] the temperature or humidity exceeds those recommended by ROHM
 - the Products are exposed to direct sunshine or condensation
 - [d] the Products are exposed to high Electrostatic
- 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
- 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

QR code printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act, please consult with ROHM representative in case of export.

Precaution Regarding Intellectual Property Rights

- 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable for infringement of any intellectual property rights or other damages arising from use of such information or data.:
- 2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the information contained in this document.

Other Precaution

- 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
- 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
- 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
- The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

Notice - GE © 2014 ROHM Co., Ltd. All rights reserved. Rev.002

General Precaution

- 1. Before you use our Products, you are requested to care fully read this document and fully understand its contents. ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny ROHM's Products against warning, caution or note contained in this document.
- 2. All information contained in this docume nt is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sale s representative.
- 3. The information contained in this doc ument is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.

Rev.001

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ROHM Semiconductor: BD1604MUV-E2