1	Molecular and transmission characteristics of primary passaged ovine scrapie
2	isolates in conventional and ovine PrP transgenic mice
3	
4	Alana M. Thackray ¹ , Lee Hopkins ¹ , John Spiropoulos ²
5	and Raymond Bujdoso¹*
6	
7	¹ Centre for Veterinary Science, Department of Veterinary Medicine
8	University of Cambridge, Madingley Road, Cambridge, CB3 OES, UK
9	² Neuropathology Unit, Department of Pathology, Veterinary Laboratories
10 11	Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
12	*Corresponding author
13	(Tel: 44-1223-337655; Fax 44-1223-337610; email: rb202@cam.ac.uk)
14	
15	Running title: Molecular and transmission characteristics of ovine prions
16	Word count: abstract – 250; total text – 7,090
17	Strains / polymorphism / transmissible spongiform encephalopathies /
18	conformational / transgenic mice / immunoassay
19	

ABSTRACT

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

A more complete assessment of ovine prion strain diversity will be achieved by complementing biological strain typing in conventional and ovine PrP transgenic mice with a biochemical analysis of the resultant PrPSc. This will provide a correlation between ovine prion strain phenotype and the molecular nature of different PrP conformers associated with particular prion strains. Here, we have compared the molecular and transmission characteristics of ovine ARQ/ARQ and VRQ/VRQ scrapie isolates following primary passage in tg338 (VRQ) and tg59 (ARQ) ovine PrP transgenic mice and the conventional mouse lines C57BL/6, RIII (both *Prnp*^a) and VM (*Prnp*^b). Our data show that these different genotypes of scrapie isolates display similar incubation periods of >350 days in conventional and tg59 mice. Facilitated transmission of sheep scrapie isolates occurred in ta338 mice with incubation times for VRQ/VRQ inocula reduced to 64 days, and to ≤210 days for ARQ/ARQ samples. Distinct genotype-specific lesion profiles were seen in the brains of conventional and ta59 prion-diseased mice, which was accompanied by the accumulation of more conformationally stable PrPSc, following inoculation with ARQ/ARQ compared to VRQ/VRQ scrapie isolates. In contrast, the lesion profiles, quantities and stability of PrPSc induced by the same inocula in tg338 mice were more similar than in the other mouse lines. Our data show that primary transmission of different genotypes of ovine prions is associated with the formation of different conformers of PrPSc with distinct molecular properties and provides the basis of a molecular approach to identify the true diversity of ovine prion strains.

INTRODUCTION

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

43

Prion diseases, such as scrapie of sheep, BSE of cattle and vCJD of humans are transmissible neurodegenerative disorders of the central nervous system. During the course of these diseases, host PrPC is converted into an abnormal isomer PrPSc. The protein-only hypothesis postulates that the transmissible agent comprises principally proteinaceous material (55). In this model, the infectious agent, or prion, is regarded as synonymous with PrPSc, which is also responsible for the conformational change in PrPC. However, different isolates of the prion agent obtained from individuals of the same species exhibit strain variation, reminiscent of strains of other conventional infectious agents, such as viruses. Different prion strains isolated upon serial passage through mice produce different disease phenotypes including incubation periods and lesion distributions (11, 13, 27, 32). These disease phenotypes, a feature of both the strain of the infectious prion agent and genetically encoded factors in the host, are typically stable on repeated passage through individuals of the same species. The strain-specific information of prions is therefore independent of the host from which they were originally derived. The phenomenon of prion strain variation has been a challenge to the protein-only hypothesis for prion diseases. Consequently, an alternative, less favoured, hypothesis is that the infectious prion agent carries a genome, and is a virus (18) or virino (31, 71) and suggests that the information that dictates prion strain diversity encoded by a molecule is independent of PrPSc.

Scrapie disease of sheep has been reported to exhibit a significant diversity of prion strains. The identification of ovine prion strains has typically involved serial passage of scrapie isolates in a panel of conventional mice including C57BL/6 and RIII (*Prnp*^a) and VM (*Prnp*^b) lines, and sometimes C57BL x VM F1 (10). This procedure has reportedly identified at least 14 scrapie prion strains and has enabled the BSE agent to be distinguished from scrapie (10-12). Significant drawbacks of this conventional approach to ovine scrapie prion strain typing are the large numbers of mice required, long incubation periods and the low efficiency of transmission in certain cases. Not all isolates of scrapie cause the appearance of clinical signs of prion disease in conventional mice (13)(and our own unpublished data). Approximately 20% of classical scrapie, and all atypical scrapie cases to date fail to transmit to the standard prion strain typing mouse lines. Even successful transmissions of classical scrapie samples may be characterized by low attack rates. The failure to see the onset of terminal disease may arise as a consequence of low dose of infectivity in the original prion inoculum or represent "adaptation" or "selection" of prions crossing the species barrier into a new host (30, 38-40). The absence of terminal disease in mice inoculated with different ovine prion strains is problematic for conventional strain typing as no incubation time can be recorded and neuropathology may not be evident. Efficient transmission of prions from different species has been achieved in mice that express a PrP transgene homologous to the host from which the prion isolates were obtained (9, 17, 24). Facilitated transmission of ovine scrapie strains to mice transgenic for either ovine ARQ (26) or VRQ PrP (69) has also been described. Mice transgenic for ovine VRQ PrP (tg338 mice) show enhanced susceptibility, in terms of reduced incubation times to terminal disease, compared to conventional

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

mice after inoculation with prion inoculum from field cases of classical scrapie (43, 69). In addition, atypical strains of scrapie, which do not induce terminal prion disease in conventional mice, do induce terminal disease in *tg338* mice. Significantly, different scrapie isolates induced terminal disease in *tg338* mice with different incubation times and with distinct neuropathologies, which allows the potential for single-passage scrapie prion strain typing (6, 43). These features of ovine PrP transgenic mice highlight their potential utility in developing more rapid systems of ovine prion strain typing.

The qualitative features of different prion strains, which include clinical signs, lesion profile, brain distribution of PrPSc and western blot pattern of PrPSc do not presently explain or correlate with their quantitative traits such as incubation time and dose response. Safar et al (59) have successfully used a conformation-dependent immunoassay (CDI) to correlate conformational characteristics of PrPSc and its rate of accumulation with incubation time in eight prion strains propagated in Syrian hamsters. Each prion strain was found to produce a substantial fraction of protease-sensitive PrPSc, determined by CDI measurement of PrPSc before and after limited Proteinase K (PK) digestion. A significant correlation was found between the level of protease-sensitive PrPSc and the incubation time of the prion strain (59). This implies that different incubation times of various prion strains may arise as a consequence of distinct rates of PrPSc clearance rather than rate of PrPSc formation. This in turn suggests that different prion strains exhibit different conformational stability of PrPSc, which appears to be the case (53, 54). Determination of the conformational stability of an extensive panel of synthetic and naturally occurring prions passaged in mice

showed that the concentration of guanidine hydrochloride (GdnHCl) required to induce half-maximal denaturation correlated positively with their incubation time (44). These studies have begun to address the correlation of the biological properties of different prion strains with the biochemical properties of PrPSc.

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

114

115

116

117

In order to obtain a more complete understanding of the diversity of ovine prion strains it will be important to supplement the biological strain typing of scrapie isolates in mice with different PrP genotypes with a biochemical analysis of the resultant PrPSc. This will lead to a correlation between prion strain phenotype and the molecular nature of different PrP conformers associated with particular prion strains. Strain typing ovine scrapie isolates in wild type mice may lead to the generation of new prion strains as the original prions undergo "adaptation" or "selection" as a consequence of the infectious agent crossing the species barrier into a new host (1, 22). This may mean that lesion profiles at first passage in conventional mice do not reveal properties of the infectious prion agent as they exist in the original host. This should be circumvented if ovine scrapie isolates are passaged in ovine PrP transgenic mice. In order to address this we have for the first time compared the primary transmission characteristics of ovine ARQ/ARQ and VRQ/VRQ scrapie isolates in conventional and ovine PrP transgenic mice in order to investigate the biochemical and biophysical characteristics of PrPSc that originate from sheep prion isolates in hosts of different PrP genotypes. Our data show that although ARQ and VRQ homozygous scrapie isolates show similar incubation periods in conventional mice and ovine ARQ PrP transgenic mice, the quantity and nature

of deposited PrPSc shows significant variation. In contrast, these differences are not evident following transmission of the same inocula in ovine VRQ PrP transgenic mice. Our data show that primary transmission of different genotypes of ovine prions is associated with the formation of different conformers of PrPSc with distinct molecular properties and provide the basis of a molecular approach to identify the true diversity of ovine prion strains.

MATERIALS AND METHODS

Mice

Breeding colonies of the conventional mouse lines C57BL/6, RIII, VM and the ovine PrP transgenic mouse lines *tg59* (25) and *tg338* (69) were maintained at the VLA, Weybridge. All regulated procedures involving experimental animals were carried out under Project and Personal licence authority issued in accordance with The Animals (Scientific Procedures) Act 1986.

Inoculation of mice with ovine scrapie prion inoculum

Approximately 2g of cerebral cortex brain material from confirmed positive cases of ARQ/ARQ (n=2, SE1848/0007 and SE1848/0008) and VRQ/VRQ (n=2; SE1848/0005 and SE1848/0006) sheep with scrapie were homogenized and subsequently diluted in normal saline to produce a 10% wt/vol homogenate. Each scrapie isolate was from a different farm. Following confirmation of sterility by aerobic culture, each scrapie isolate was injected into 20 C57BL/6, RIII, VM, *tg59* and *tg338* mice by combined intra-cranial (20µI) and intra-peritoneal (100µI) routes. Mice were monitored for the development of clinical signs of mouse prion disease and were euthanized at the time of appearance of terminal signs of disease.

Histopathology and Immunohistochemistry

Brains from prion inoculated mice were isolated, a rostrolateral portion removed and stored frozen, and the remainder fixed in 10% formol saline. Haematoxylin and eosin stained sections at 5 coronal levels were examined for vacuolar pathology, to

determine lesion severity and distribution as described by Fraser and Dickinson (33). Incubation time for terminal prion disease was calculated as the time from inoculation to euthanazia at terminal prion disease. Attack rate for each mouse line was calculated as the number of mice diagnosed positive divided by the number surviving after, and including, the first positive diagnosis for each inoculum in a particular mouse line. This avoids underestimation of the attack rate due to loss of mice as a result of inter-current deaths early in the study. Incubation time for attack rate was calculated as the time from inoculation to death or euthanazia (for whatever reason) for prion-diseased-positive mice. Brain sections from prion-inoculated mice were immunostained for PrP using rabbit anti-bovine PrP antiserum Rb486 as previously described (37). At least 3 mouse brains were examined from each line of mice. For each mouse, the patterns of disease-associated PrP deposition were recorded and the presence of plaques noted.

Anti-PrP monoclonal antibodies

The anti-PrP monoclonal antibodies used here have been described in detail elsewhere. Monoclonal antibody V24 recognizes an undefined epitope in the C-terminal region of PrP (67). Monoclonal antibody 683 recognizes the core sequence PVDQY (amino acid residues 168-172, ovine PrP numbering) (67). Monoclonal antibody 6H4 reacts with the epitope DYEDRYYRE (amino acid residues 144 - 152, human PrP numbering) (41) and was a generous gift from Prionics AG, Zürich, Switzerland. Monoclonal antibody P4 reacts with the core sequence WGQGGSH (amino acid residues 93 - 99, ovine PrP numbering) (68) and was purchased from R-

Biopharm, Darmstadt, Germany. Monoclonal antibodies were biotinylated as described in detail previously (64).

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

192

191

Conformation-dependent immunoassay (CDI)

Murine sagittal-cut half-brain homogenates were prepared by two cycles of homogenization in PBS (pH 7.4) in a Bio-Rad TeSeE Precess 24 homogenizer and individual samples diluted to 10% in PBS supplemented with 1 mM 4-(2-Aminoethyl)benzenesulfonyl fluoride (AEBSF) diluted in distilled water. Samples were centrifuged at 100 x g for 1 min at 20 °C to remove gross debris and the supernatants were retained. A final concentration of 2% sarkosyl in PBS (pH 7.4) was added to all samples and incubated for 10 min at 37 °C with shaking prior to treatment ± sodium phosphotungstic acid (NaPTA) at a final concentration of 0.4% diluted in PBS (pH 7.4) for 1 h at 37 °C with shaking. Samples were centrifuged at 21,000 x q for 30 min at 10 °C, the supernatants were discarded and the pellets were re-suspended in 200 μ I 0.1% sarkosyl in PBS (pH 7.4) and 200 μ I 250 mM EDTA in water (pH 8.0). Samples were thoroughly mixed and then centrifuged at 21,000 x q for 15 min at 10 °C. The supernatants were discarded and the pellets re-suspended in 0 M or 6 M GdnHCl. All 6 M GdnHCl samples were then heated to 80 °C for 5 min, cooled to 20 °C and then diluted as required. Capture antibody diluted in coating buffer (0.01 M PBS [pH 7.4] containing 0.1% sodium azide) was routinely coated at 0.5 μ g/well in triplicate in Nunc Maxisorp 96-well flat-bottomed plates overnight at 4 °C. The remainder of the CDI protocol was carried out as described in detail previously (64). Plates were finally incubated for 5 min at 20 °C with shaking and the fluorescence,

measured as counts per second (cps), was determined in a Victor time-resolved fluorimeter (PerkinElmer).

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

215

214

Western blot detection of PrPSc

100% ovine brain homogenates were diluted to 10% in Prionics Check Western homogenization buffer prior to treatment with various concentrations of PK (Roche). Murine sagittal-cut half-brain homogenates were prepared by two cycles of homogenization in Prionics Check Western homogenization buffer in a Bio-Rad TeSeE Precess 24 homogenizer. Brain homogenates were diluted to 10% in the same buffer prior to treatment with PK at various concentrations for ovine scrapie samples (see Figure 1) or at a final concentration of 32 µg/ml for C57Bl/6, RIII and VM homogenates and 64 μ g/ml for tg59 and tg338 homogenates. Digestion was terminated with the addition of 1 mM AEBSF and samples were electrophorezed by 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) minigel under reducing conditions and subsequently transferred onto a nitrocellulose membrane by semi dry blotting. Membranes were blocked overnight at 4 °C with TBS-T (10 mM Tris/HCl [pH 7.8], 100 mM NaCl, 0.05% Tween 20) containing 5% (wt/vol) non-fat milk and subsequently washed three times with TBS-T. Membranes were incubated with either purified anti-PrP monoclonal antibody 683 used at 5 μ g/ml (for detection of murine PrP) or P4 (R-Biopharm, Darmstadt, Germany) used at 1 μg/ml (for the detection of ovine PrP) for 2 h at 20 °C. The membranes were washed five times with TBS-T followed by incubation with goat anti-mouse IgG-horseradish peroxidase (Sigma) at 1:2000 for 2 h at 20 °C and a further five washes with TBS-T. All of the antibody dilutions were prepared in 1% non-fat milk in TBS-T and the

duration of each wash step was 5 min. PrP bands were detected by enhanced chemiluminescence (Amersham Biosciences).

Conformational stability western blot

Murine sagittal-cut half-brain homogenates were prepared by two cycles of homogenization in PBS (pH 7.4) in a Bio-Rad TeSeE Precess 24 homogenizer. Brain homogenates were diluted to 10% in PBS (pH 7.4) prior to treatment with GdnHCl (0-2 M final concentration) for 30 min at 20 °C. The GdnHCl was diluted to a final concentration of 0.1 M with PBS (pH 7.4), prior to incubation with PK at a final concentration of 32 μ g/ml for C57BL/6, RIII and VM homogenates or 64 μ g/ml for tg59 or tg338 homogenates for 30 min at 37 °C. The reaction was terminated by the addition of 1 mM AEBSF, centrifuged at 16,160 x g and the pelleted material subsequently analyzed by SDS-PAGE and western blot. PrP bands were detected by enhanced chemiluminescence (Amersham Biosciences).

Statistical analysis

Statistical analyses of the data were performed using one-way ANOVA with Tukey HSD (honestly significant difference) for *post hoc* analysis or the two-tailed Student *t* test (unpaired samples) using the Prism 4 software package (GraphPad, San Diego, USA).

RESULTS

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

258

Transmission of ovine scrapie isolates to conventional and ovine PrP

transgenic mice

Over several years numerous isolates of scrapie have been passaged as primary transmissions to a panel of conventional mice in order to determine strain diversity. Here we have compared primary transmission of sheep scrapie isolates in conventional and ovine PrP transgenic mice in order to determine whether the latter may contribute to the assessment of ovine prion strain diversity. The ovine ARQ/ARQ and VRQ/VRQ scrapie isolates used were from scrapie-positive sheep that showed typical vacuolar pathology in the medulla oblongata of the brain stem and that were positive for disease-associated PrP as judged by immunohistochemistry or western blot through routine statutory surveillance. Figure 1 shows a western blot analysis of representative ARQ and VRQ homozygous scrapie isolates, with or without PK digestion, probed with monoclonal antibody P4. The upper panel of Figure 1 shows that the PK-resistant core of PrPSc, PrP27-30, was present in both ARQ and VRQ homozygous ovine scrapie isolates at all concentrations of proteolytic enzyme tested. The lower panel of Figure 1 shows that both genotypes of scrapie isolate were characterized by a predominance of di-glycosylated PrP27-30. Although not formally quantified, it was apparent that the homozygous VRQ scrapie isolates exhibited more PrP27-30 compared to that seen in homozygous ARQ samples, which correlated with the greater level of total PrP in these samples.

The molecular and transmission characteristics of the various ARQ/ARQ and VRQ/VRQ scrapie isolates were determined following primary passage in C57BL/6, RIII (both *Prnp*^a), VM (*Prnp*^b), tg59 (ovine ARQ) and tg338 (ovine VRQ) mice. Following inoculation, animals from each of the various mouse lines developed prion disease, usually, but not always, accompanied by the appearance of typical clinical signs of this condition. Clinical signs of prion disease were least evident in prioninoculated tg59 mice. Table 1 shows the mean incubation time for the onset of terminal prion disease and the mean incubation time for attack rate. As shown in Table 1 most of the scrapie isolates produced similar incubation periods for the onset of terminal prion disease in the ovine ARQ PrP transgenic mouse line tg59 and the conventional mouse lines, although there were exceptions. Furthermore, all of the inocula produced significantly accelerated incubation periods following inoculation into tg338 mice, which are transgenic for ovine VRQ PrP. Tg338 mice succumbed to terminal prion disease with very short incubation periods following inoculation with VRQ/VRQ scrapie isolates, approximately 64 days in both cases, which was significantly shorter than that seen for the same samples in C57BL/6 (p<0.001), RIII (p<0.001), or VM (p<0.001), mice. In a similar manner, tg338 mice succumbed to terminal prion disease after relatively short incubation periods following inoculation with ARQ/ARQ scrapie isolates, 155 and 210 days, which was significantly shorter than that seen for the same samples in C57BL/6 (p<0.001), RIII (p<0.001) or VM (p<0.001) mice. Furthermore, the incubation times for the VRQ/VRQ scrapie isolates in ta338 mice were significantly shorter than that seen for the ARQ/ARQ isolates in the same mouse line (p≤0.01 in both cases). Despite similarities and differences in incubation periods for terminal prion disease, efficient attack rates were seen for all

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

inocula in all of the mouse lines. The attack rate range in RIII mice was 93 - 100%; in VM mice 67 - 100%; in C57BL/6 and tg59 mice was 100% in all four groups, and in tg338 mice the range was 92 - 100%.

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

305

306

307

All prion-inoculated mice were evaluated according to pre-determined protocols established from the study of prion disease in wild type mouse lines (28). Clinical signs of terminal prion disease were clearly evident in C57BL/6, RIII, VM and tg338 mice, which all showed a clear demarcation between early clinical disease and signs of terminal prion disease. With respect to prion-inoculated tg59 mice, these animals showed signs of prion disease that persisted over a long period of time and did not show the same signs of terminal prion disease, as did all of the other mouse lines. Tg59 prion-inoculated mice did however show a much more subtle form of terminal prion disease. However, based on PrPSc accumulation assessed by western blot or immunohistochemistry and spongiform changes assessed by histopathology, the majority of prion-inoculated tg59 mice were sacrificed or died around the recorded incubation time for terminal prion disease for this line of mice. This is reflected by the fact that the incubation period for attack rate was similar to that for the incubation period to terminal disease in *tg59* mice. A similar correlation was seen between incubation period for attack rate and incubation period to terminal disease in all of the other mouse lines as shown by the data in Table 1. As a consequence, we consider that prion-inoculated *tq59* mice were culled or died at the terminal stage of prion disease, although they were not initially scored as such according to the criteria of clinical signs described by Dickinson et al, 1968 (28).

Lesion profiles of primary passaged scrapie isolates

The brains of mice inoculated with the various scrapie isolates were subjected to neuropathological analysis at terminal prion disease to determine the resultant lesion profile. The data in Figure 2 show the average lesion profile for each scrapie inoculum passaged in conventional or ovine PrP transgenic mice. While the different genotypes of scrapie inocula induced different lesion profiles in each mouse line, the vacuolation patterns were similar between replicate scrapie samples, although this was less so for ARQ/ARQ inocula, especially in ta59 mice. The greatest degree of similarity between grey matter lesion profiles induced by ARQ/ARQ and VRQ/VRQ inocula was seen in tg338 mice, Figure 2(e) and 2(j), respectively, where the most apparent difference in pathology score was seen in the thalamic region. In RIII mice. ARQ/ARQ scrapie inocula induced peak pathology scores in the medulla, hypothalamus and septal brain regions with one profile corresponding closely and another with an alternative 1, 4, 7 grey matter pathology score seen for other ARQ inocula upon primary passage in *Prnp*^a mice (5). The 1, 4, 7 grey matter lesion profile for ARQ/ARQ inocula passaged in RIII mice was also seen following inoculation of the same samples into *tg338* mice.

346

347

348

349

350

351

352

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

Genotypic differences in PrPSc distribution in prion-diseased mouse brains Distinct morphological patterns of PrPSc deposition were evident in the brains of mice that had succumbed to terminal prion disease and differences were evident between PrPSc distribution induced by ARQ/ARQ and VRQ/VRQ scrapie inocula in some lines of mice. A summary of the ovine scrapie-induced PrPSc profile in the various mouse lines is shown in Table 2 and representative photographs are shown

in Figure 3. In C57BL/6 mice inoculated with VRQ homozygous scrapie material, widespread particulate PrPSc staining was observed in all coronal sections of the brain examined (frontal cortex, thalamic section, midbrain, medulla and cerebellum). A similar distribution of particulate PrPSc staining was seen in C57BL/6 mice inoculated with ARQ homozygous scrapie material but in addition, amyloid plagues and PrPSc aggregates were also present, most commonly in the thalamus. Similar patterns of PrPSc deposition were also seen in the brains of RIII, VM and ta59 mice inoculated with either ARQ or VRQ homozygous scrapie isolates, although in ta59 mice inoculated with VRQ homozygous inocula, the particulate deposition of PrPSc was notably absent in the cerebellar cortex. In contrast to the results seen with all of the other mouse lines, inoculation of tg338 mice with VRQ/VRQ or ARQ/ARQ scrapie inocula resulted in similar depositions of PrPSc, evident as fine particulate deposits in the hippocampus, thalamus, hypothalamus, midbrain and medulla but not the cortical grey matter of the cerebral and cerebellar cortex or the cerebellar white matter. Significantly, the brains of *tg338* mice inoculated with either genotype of sheep scrapie inocula were characterized by a general absence of amyloid plaques and PrPSc aggregates, commonly seen in all of the other lines of mice that had received the same inocula. There was a low level of intra-neuronal PrPSc deposition in all five mouse lines inoculated with either genotype of scrapie inocula.

372

373

374

375

376

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

Quantitation of PrPSc in terminal prion-diseased mouse brains

The distinct patterns of PrPSc deposition in mice inoculated with ARQ/ARQ or VRQ/VRQ scrapie isolates was suggestive of quantitative differences in total PrPSc and its subtypes in the brains of these animals. This was investigated by measuring

the level of PrPSc in terminal diseased prion-infected mouse brains using a CDI capable of recognition of PK-sensitive and -resistant disease-associated PrP (63). The capture-detector CDI used anti-PrP monoclonal antibody V24 for capture and monoclonal antibody 6H4 for detection of PrP. In order to quantify diseaseassociated PrP in the brains of mice with terminal prion disease, PrPSc was extracted by sarkosyl, in the absence or presence of NaPTA precipitation. Native (0 M GdnHCl-treated) and denatured (6 M GdnHCl-treated) PrPSc was subsequently quantified by the CDI. Figure 4 shows that significant levels of PrPSc were present in terminal prion-diseased brains of mice inoculated with ARQ or VRQ homozygous scrapie isolates. This was evidenced by the increase in fluorescence counts for sarkosyl-extracted PrPSc treated with 6 M GdnHCl compared to that obtained in the absence of denaturant. In contrast, the level of fluorescence counts for both denatured and native samples obtained from control mice was similar. This reflects the exposure of previously buried epitopes within PrPSc that were no longer accessible in denatured PrPC and confirmed the presence of disease-associated PrP in scrapie isolate-inoculated mice. The level of PrPSc that accumulated in C57BL/6, RIII, VM and tg59 mice following inoculation with ARQ/ARQ scrapie inocula was significantly greater than that which accumulated after inoculation with VRQ/VRQ inocula (p<0.001). In contrast, this trend was reversed in tg338 mice where the level of PrPSc induced by VRQ homozygous scrapie isolates was higher than that induced by ARQ samples, although the differences were not always statistically significant. Similar trends with elevated levels were seen in all mice when PrPSc was quantified following extraction with NaPTA precipitation (data not shown). These qualitative

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

differences in PrPSc levels measured by CDI correlated with the level of PrPSc described by immunohistochemistry of brain sections from scrapie-inoculated mice.

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

400

401

Molecular profile of ARQ- and VRQ-induced PrPSc and PrP27-30

Different subtypes of PrPSc, distinguished by properties such as PK-resistant fragment length and glycoform ratio, have been associated with different prion strains or with different phenotypes of prion disease in the same species (7, 8, 24, 43, 51, 52, 54, 62). In order to investigate the molecular profile of PrP that arose as a consequence of the primary passage of either ARQ or VRQ homozygous sheep scrapie isolates, mouse brains isolated at terminal prion disease were homogenized and treated with or without PK prior to western blot analysis with anti-PrP monoclonal antibodies. Figure 5 shows that brain homogenates from scrapie-inoculated mice at terminal prion disease contained significant levels of PK-resistant PrPSc in the form of PrP27-30. Brain tissue from scrapie-infected C57BL/6 (Figure 5a), RIII (Figure 5b) and VM mice (data not shown) inoculated with ARQ/ARQ scrapie isolates contained significantly higher levels of total PrP and displayed more PrP27-30 compared to that seen following inoculation with VRQ/VRQ inocula, although the different scrapie isolates were associated with similar incubation times to terminal prion disease in these mice. In contrast, brain tissue from terminal prion-diseased *tg59* (Figure 5c) and tg338 (Figure 5d) mice inoculated with either ARQ or VRQ sheep scrapie isolates contained similar levels of total PrP and displayed similar levels of PrP27-30. PrPSc induced by either ARQ/ARQ or VRQ/VRQ sheep scrapie isolates was subjected to a titration of PK enzyme in order to determine the susceptibility of PrP27-30 to proteolytic digestion. Despite the significantly different levels of PrP2730 generated by PK cleavage of PrPSc in C57BL/6 mouse brains following inoculation with ARQ and VRQ homozygous scrapie isolates, this material showed equal resistance to PK digestion over a wide range of enzyme concentrations (1 – $1000 \,\mu \text{g/ml}$) (data not shown). Similar results were seen when the same titration of PK was used to treat tg59 and tg338 prion-infected mouse brain homogenates (data not shown).

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

424

425

426

427

428

429

Difference in conformational stability of ARQ- and VRQ-induced PrPSc Prion strains have been characterized by the relative stability of their associated PrPSc, measured by resistance to proteolysis following exposure to GdnHCl (44, 53, 54, 64). Exposure of PrPSc to increasing concentrations of GdnHCl leads to a transition from the native to denatured state, measured as loss of resistance to protease digestion. We have used this approach here to examine the relative stability of PrPSc induced by ARQ and VRQ homozygous scrapie inocula following primary passage in conventional and ovine PrP transgenic mice. Accordingly, aliquots of terminal prion-diseased mouse brain homogenate were incubated with increasing amounts of GdnHCl for 30 min followed by limited proteolysis with PK. The samples were subsequently analyzed by western blot with anti-PrP monoclonal antibody to detect PrP27-30, the protease resistant core of PrPSc. Figure 6 shows that the amount of PrP27-30 detected in PK-treated ARQ- and VRQ-inoculated C57BL/6 mouse brains remained constant following treatment with up to 1.6 M GdnHCl. Exposure to increasing amounts of GdnHCl had little effect on the level of PrP27-30 detected in ARQ-inoculated mice (Figure 6a) but caused an increase in the proteolytic sensitivity of VRQ-induced PrPSc as evidenced by the reduction in PrP27-

30 levels on the western blot (Figure 6b). VRQ-induced PrPSc was completely
denatured by treatment with >1.6 M GdnHCl (Figure 6b) as evidenced by its
complete proteolysis at these concentrations of denaturant. In contrast, significant
amounts of PrP27-30 were still evident following treatment of ARQ-induced PrPSc
with concentrations of GdnHCl >1.6 M (Figure 6a). These data indicate that VRQ-
induced PrPSc in the brains of C57BL/6 mice was more unstable than its ARQ-
induced counterpart. Similar trends were seen in tg59 mice (Figure 6c and 6d), RIII
and VM mice (data not shown). In contrast, the amount of PrP27-30 detected in PK-
treated ARQ- and VRQ-inoculated tg338 mouse brains remained constant following
treatment with up to 2.0 M GdnHCl, which indicated a similar stability for PrPSc
induced by different genotypes of scrapie inocula in this particular mouse line (Figure
6e and 6f, respectively). Replicate ARQ and VRQ homozygous sheep scrapie inocula
showed similar trends in the stability of denaturant-induced PrPSc following
transmission in each of the mouse lines tested (n=3 mouse brains analyzed from
each mouse line in which the inoculum was passaged). These data show that the
similar levels of PrPSc induced by ARQ/ARQ and VRQ/VRQ scrapie inocula in tg338
possessed similar denaturant-induced stability, whereas the converse was seen for
PrPSc induced by the same inocula in C57BL/6, RIII, VM and tg59 mice.

DISCUSSION

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

466

Different isolates of the transmissible scrapie prion agent can exhibit differences in length of incubation period, lesion profile and PrPSc deposition in the brains of affected hosts in which the isolates have been passaged (11, 13, 27, 32). The concept of prion strains has emerged in order to account for this variation in transmission properties exhibited by different scrapie isolates, during serial passage, when variance due to dose, inoculation route, and most importantly, host and donor PrP genotype are taken into account. Historically, ovine prion strain typing has been carried out by serial passage of scrapie isolates in a panel of conventional mice (11). This strategy has allowed a number of different ovine prion strains to be identified and the discrimination between scrapie and BSE (10, 12). However, the failure of some scrapie isolates to transmit to conventional mice is likely to underestimate the true diversity of ovine scrapie strains. Furthermore, passage of ovine prions across a species or transmission barrier may not reveal properties of the infectious prion agent as they exist in the original host. Both of these issues can potentially be circumvented through the use of mice transgenic for ovine PrP. Although facilitated transmission of ovine prions is seen in ovine PrP transgenic mice (4, 26, 43, 69), the utility of these hosts for ovine prion strain typing has not been fully established. Here we have compared the molecular and transmission characteristics of scrapie isolates of different genotypes in ovine PrP transgenic mice and conventional mice in order to begin to address this issue.

The ARQ and VRQ homozygous scrapie isolates used here showed similar glycoform profiles but distinctly different levels of PrP27-30, and presumably therefore different levels of prion infectivity. Despite this, both genotypes of scrapie isolate showed high primary transmission attack rates in C57BL/6, RIII (both Prnp^a) and VM (*Prnp*^b) mouse lines, and tg59 and tg338 mice, those transgenic for ovine ARQ or VRQ PrP, respectively. Attack rates for the scrapie isolates in the different mouse lines was in the range of 67 - 100%. Other studies have reported a failure of transmission by some ARQ homozygous isolates in C57BL/6 mice (4, 12). Despite the efficient attack rates seen here for both genotypes of scrapie inocula, similarities and differences in prion disease incubation time were seen between the different prion inoculated mouse lines. Both genotypes of scrapie isolate showed similar primary transmission incubation times in C57BL/6, RIII and VM mice. However, significantly shorter incubation times were seen for all of the scrapie isolates in tg338 mice. The accelerated rate of prion disease in tg338 mice may reflect a lower transmission barrier for ovine prion inocula passaged in mice that express ovine PrP compared to that for similar inocula in conventional mouse lines. The fact that a similar level of facilitated transmission was not seen in tg59 mice may indicate differences in the expression level or location of ovine PrP between the two different ovine PrP transgenic mice. Tg338 mice express ovine VRQ PrP under the control of the ovine PrP promoter and tg59 mice express ovine ARQ under the control of the neuron-specific enolase promoter (25, 69). Furthermore, tg338 mice express approximately 5-fold more ovine PrP protein than do ta59 mice (our own unpublished observations). However, while ta338 mice allowed facilitated transmission for both genotypes of scrapie isolates, VRQ/VRQ inocula showed significantly shorter

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

incubation times in this transgenic mouse line than did ARQ/ARQ inocula. Although the relative susceptibility of *tg338* mice for the ARQ or VRQ homozygous inocula used here could not be assessed because of their potential difference in prion infectivity, as indicated by their different levels of PrP27-30, it was clear that rapid transmission of different genotypes of scrapie inocula occurred in *tg338* mice.

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

513

514

515

516

517

Lesion profiles within terminal prion-diseased ovine PrP transgenic and conventional mouse brains were determined in order to assess the spongiform neurodegeneration induced by transmission of the ARQ/ARQ and VRQ/VRQ inocula. Lesion profiles provide a semi-quantitative assessment of neuropathology in different brain regions, and have been used to discriminate between different prion strains (13, 32, 33). The different lesion profiles reported here for ARQ/ARQ and VRQ/VRQ scrapie inocula are indicative of different prion strains, although the generally distinct neuropathologies resulted from primary transmission of different genotypes of ovine prion inocula. Different strains of the infectious prion agent are revealed, or produced, by passage of prions through hosts of different PrP genotypes (58). To account for this, it is proposed that prion strains comprise an ensemble of PrPSc conformations characterized by a dominant conformer for a given PrP amino acid sequence (22). Accordingly, the ability of prions to replicate within a new host of a different PrP primary amino acid sequence will be influenced by the degree of overlap between the allowed repertoires of PrPSc conformations for both donor and host PrP genotype. In this scheme, passage of prions between hosts occurs more readily when the range of PrPSc conformers overlap but less readily when there is little overlap, with the latter situation leading to the emergence of a new dominant PrPSc conformer or

strain. The propagation of prions between species, or more precisely between different PrP genotypes, may therefore be viewed as a function of thermodynamic stability of PrPSc conformation and the kinetics of its formation and clearance (21, 22). Generally, there was good correlation between lesion profiles induced by replicate ARQ/ARQ or VRQ/VRQ inocula in most of the mouse lines. In addition, lesion profiles for ARQ/ARQ inocula in tg338 mice were similar to that seen in RIII mice. However, in tg59 mice somewhat different profiles were obtained during transmission of ARQ/ARQ inocula, which is consistent with selection of different prion strains from the different replicates or the effect of mouse background differences on strain selection. The tg59 mouse line is produced on a C57BL/6J, 129Sv, and OF1 mixed genetic background (26) and individual mouse variation to particular prion strain susceptibility may occur. Variations in individual genetic backgrounds is considered a possible contributing factor in the apparent selection of different human prion strains following transmission of bovine BSE to mice over-expressing human PrP (3). In contrast to the other mouse lines analyzed here, lesion profiles in tg338 mice induced by ARQ/ARQ and VRQ/VRQ inocula were very similar, differing most qualitatively in the thalamic grey matter area. This was despite the fact that total PrPSc levels in tg338 mice measured by CDI following inoculation with ARQ/ARQ or VRQ/VRQ scrapie isolates were fairly similar, whereas in all other mouse lines ARQ/ARQ inocula induced more PrPSc than VRQ/VRQ samples.

557

558

559

560

556

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

We investigated the deposition of PrPSc in the brains of terminal prion-diseased mice by immunohistochemistry. The relatively high levels of total PrPSc in prion-diseased C57BL/6, RIII, VM and *tg59* mouse brains induced by ARQ/ARQ inocula correlated

with the presence of aggregated PrP deposition, which was rarely seen in mice that had received VRQ/VRQ inocula. In cases of natural sheep scrapie, there is a genotype-specific differentiation in the pattern and types of disease-associated PrP deposition in the CNS (45, 60). In addition to the PrP genotype of the host, it has been shown that the nature of the inoculum may also significantly affect the pattern of disease-associated PrP deposition (34). Here we have also observed genotyperelated differences in the deposition of disease-associated PrP during primary transmissions of ovine scrapie inocula in mice. The increased deposition of PrPSc induced by ARQ/ARQ scrapie isolates seen here in conventional and tg59 mice may be the result of an increased efficiency in PrPSc formation in these animals. It is worth noting that ovine and murine PrP show significant amino acid homology. Ovine wild type ARQ and VRQ PrP allelic variants differ only in the A→V polymorphism at amino acid position 136 (ovine PrP numbering) and the equivalent amino acid in both Prnp^a and Prnp^b genotypes of murine PrP (amino acid residue 133, murine PrP numbering) is an alanine residue (72). Identity at amino acid residue 136 of ovine PrP and at the equivalent amino acid residue in murine PrP may predispose to a more efficient conversion and aggregation of PrPC into PrPSc. Alternatively, the increased deposition of PrPSc aggregates in the brains of mice inoculated with ARQ/ARQ scrapie isolates may suggest that the clearance of PrPSc occurred at a slower rate, or with lower efficiency, than in mice inoculated with VRQ/VRQ isolates. One reason to account for this could be that PrPSc induced by ARQ/ARQ scrapie isolates in Prnp^a, Prnp^b and tq59 mice was more resistant to metabolism than PrPSc that accumulated in similar mice inoculated with VRQ/VRQ scrapie material. This appeared to be the case since ARQ/ARQ-induced PrPSc from these mice was found

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

to be more stable than PrPSc induced by VRQ/VRQ inocula. Studies of prion proteins in other biological systems, such as yeast, have suggested that the strain-specific properties correlate with the physical properties of prion protein aggregates, such as frangibility, which may contribute to their metabolic fate (61).

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

585

586

587

588

It has been a long-standing assumption that PrPSc is primarily responsible for spongiform neurodegeneration in prion diseases because of the correlation between its anatomical and temporal accumulation and the ensuing neuropathology. The fact that different levels of PrPSc accumulate in the brains of mice that succumbed to terminal prion disease with similar incubation times suggests that the level of PrPSc measured here does not directly correlate with the extent of pathology or neurotoxicity. Conversion of PrPC to PrPSc is a fundamental feature of prion disease pathogenesis since PrP-/- mice are resistant to prion infection (15, 48). However, the mechanism of neurotoxicity remains to be elucidated (19). While it is established that neurons must express PrPC to be susceptible to toxicity there are several examples of prion disease or experimental transmissions where the levels of PrPSc are low or apparently absent (23, 36, 42, 49, 50). In contrast, high levels of PrPSc may accumulate in the absence of full-blown clinical disease (35, 56, 65, 66). In addition, ablation of neuronal PrPC expression during on-going prion disease in mice can prevent the onset of clinical signs and reverse early spongiform neuropathology (46, 47). An emerging view is that large aggregated forms of PrPSc are relatively inert and innocuous, and smaller, potentially labile, oligomeric species of PrP generated as an intermediate during prion replication constitute the actual neurotoxic agent (2, 14, 20, 35, 70). According to this scheme, a critical level of neurotoxic PrP must

accumulate in order for the prion-infected individual to develop spongiform neurodegeneration. In the context of the protein-only hypothesis, the relatively long incubation times seen for sheep scrapie inocula in conventional mice can be interpreted as the result of an inefficient conversion of PrPC to PrPSc across the sheep – mouse species barrier, with a corresponding slow accumulation of the neurotoxic form of PrP. In contrast, the short incubation times for sheep scrapie inocula in *tg338* mice can be seen to occur as a result of their high level of ovine PrPC expression, leading to an efficient conversion of PrP coupled with fast accumulation of the neurotoxic PrP intermediate.

Although *tg338* mice showed short incubation periods for the onset of terminal prion disease following inoculation with sheep scrapie isolates, these mice displayed a more uniform phenotype with regards to those parameters typically used to distinguish different ovine prion strains. Scrapie-inoculated *tg338* mice showed similar lesion profiles that were accompanied by similar PrPSc depositions following inoculation with either ARQ or VRQ homozygous scrapie isolates, whereas different patterns were seen in similarly inoculated *tg59* and conventional mouse lines. These observations imply that *tg338* mice may reveal a different range of ovine prion strains than do *tg59* mice and that *tg59* mice may more closely resemble conventional mice in the range of ovine prion strains that they can replicate. This difference between *tg338* and *tg59* mice in their potential to distinguish or generate ovine prion strains also correlates with the conformational variation of PrPSc that accumulates in these VRQ and ARQ ovine PrP transgenic mice. PrPSc that accumulated in ARQ *tg59* mice showed different denaturant-induced stability following inoculation with either

ARQ or VRQ homozygous inocula whereas PrPSc that accumulated in similarly inoculated tg338 mice showed similar stability. We, and others, have previously shown that ovine VRQ PrP is more stable than ovine ARQ PrP (16, 29, 57) and this may reflect that ovine PrP with alanine at amino acid residue 136 is more flexible in its ability to adopt different conformations than is ovine PrP with valine at amino acid residue 136. This would in turn suggest that host PrP genotype plays a dominant role in distinguishing or generating ovine prion strains. Differences in prion disease phenotype were observed in the ovine PrP transgenic mouse lines after inoculation with scrapie isolates from sheep of different PrP genotypes. Whether these differences represent stable variations, and hence strain variation, can only be confirmed by further serial passage. If strain differences are confirmed, this would suggest that these transgenic lines may allow for a stable strain phenotype to be observed on first passage. This would be a significant advantage for the use of ovine PrP transgenic animals in ovine prion strain typing. Subsequent serial passage in tq338, tq59 and conventional mice of the different scrapie isolates used here will be required in order to determine the validity of this approach and these studies are currently underway.

650

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

651

652

653

654

655

ACKNOWLEDGEMENTS

This work was supported by funds from Defra. LH is in receipt of a Defra PhD studentship. We thank INRA Jouy-en-Josas for supply of the *tg338* mouse line. We thank Thierry Baron for supply of the *tg59* mouse line. We thank support staff in the Departments of Histology, Neuropathology and the Animal Services Unit of the VLA, Weybridge for their skilled sample preparation and handling.

LEGENDS

Figure 1. Western blot analysis of ARQ/ARQ and VRQ/VRQ ovine scrapie isolates

Homogenates of ARQ/ARQ and VRQ/VRQ ovine scrapie isolates were prepared as described in the Materials and Methods and analyzed by SDS-PAGE and western blot using anti-PrP monoclonal antibody P4 at 1 μ g/ml. Upper panel: Homogenates were treated with or without various concentrations of PK. Lower panel: Tracks 1 – 4: 10% homogenate; track 5: 5% homogenate; track 6: 2.5% homogenate; tracks 1 and 3: no PK; tracks 2, 4 – 6: PK at 32 μ g/ml. Molecular mass markers (kDa) are shown on the left.

Table 1. Primary passage incubation times for sheep scrapie inocula in conventional and ovine PrP transgenic mice

Mice were inoculated with ARQ/ARQ and VRQ/VRQ sheep scrapie isolates by a combined intra-cranial and intra-peritoneal route. Inoculated mice were monitored for clinical signs of mouse prion disease. Mice scored positive for terminal prion disease were those that displayed clinical signs for this condition as described by Dickinson et al, 1968 (28). The majority of prion-inoculated *tg59* mice showed a much more subtle form of terminal prion disease. Mice were euthanized at the point of neurological disease and dysfunction and prion disease confirmed by histopathology, immunohistochemistry for disease-associated PrP or western blot for PK-resistant PrP27-30. The data shown are incubation times for terminal prion disease and attack rate. Incubation time for terminal prion disease was calculated as the time from

inoculation to euthanazia at terminal prion disease \pm SD; figures in parenthesis are numbers of terminal prion diseased mice / total number of mice positive for prion disease, for that group. Incubation time for attack rate was calculated as the time from inoculation to death or euthanazia (for whatever reason) for prion-diseased-positive mice \pm SD; figures in parenthesis are numbers of prion-diseased-positive mice / the number surviving after, and including, the first positive diagnosis, for that group. NA = not available. Statistical analysis of the data was performed by one-way ANOVA together with Tukey HSD (honestly significant difference) for *post hoc* analysis.

- $a = p \le 0.01$ in comparison with VM mice
- $b = p \le 0.05$ in comparison with C57BL/6 mice
- c = p < 0.001 in comparison with C57BL/6 and RIII mice
- d = p < 0.001 in comparison with C57BL/6, RIII and VM mice
- e = p < 0.001 in comparison with *tg338* mice inoculated with the VRQ scrapie isolates
- f = p < 0.001 in comparison with C57BL/6 and VM mice
- g = p < 0.001 in comparison with tg59 mice
- h = p < 0.01 in comparison with tg338 mice inoculated with the VRQ scrapie isolates

Figure 2. Lesion profiles induced by primary transmissions of ovine scrapie

isolates

Prion-infected brains were harvested from mice that had developed terminal prion disease and were subjected to neuropathological examination for the presence and severity of spongiform neurodegeneration. The lesion profiles shown are (a) and (f)

711	C57BL/6; (b) and (g) RIII; (c) and (h) VM; (d) and (i) tg59 and (e) and (j) tg338 mice
712	inoculated with ARQ/ARQ (a) $-$ (e) or VRQ/VRQ (f) $-$ (j) sheep scrapie isolates.
713	Lesion profiles induced by: thick line (a) – (e), SE1848/0007 (ARQ/ARQ); dashed line
714	(a) $-$ (e), SE1848/0008 (ARQ/ARQ); thick line (f) $-$ (j), SE1848/0005 (VRQ/VRQ);
715	dashed line (f) – (j), SE1848/0006 (VRQ/VRQ). The data shown are mean lesion
716	profile scores (n≥3 brains examined) for the following brain areas: grey (G) matter,
717	G1: dorsal medulla nuclei; G2: cerebellar cortex of the folia including the granular
718	layer, adjacent to the fourth ventricle; G3: cortex of the superior colliculus; G4:
719	hypothalamus; G5: thalamus; G6: hippocampus; G7: septal nuclei of the paraterminal
720	body; G8: cerebral cortex (at the level of G4 and G5); G9: cerebral cortex (at the level
721	of G7) or white (W) matter, W1: cerebellar peduncles; W2: white matter in lateral
722	tegmentum; W3: cerebellar peduncle / internal capsule. No data was obtainable for
723	SE1848/0007 in VM mice (c).
724	
725	Table 2. Disease-associated PrP distribution in the brains of mice with terminal
726	prion disease
727	Immunohistochemistry summary of particulate and aggregated PrPSc in the brains of

730

731

728

729

Figure 3. Immunohistochemistry of prion-infected mouse brains

in the majority of mice; -/+: present in a minority of mice.

A and B: PrPSc patterns in the cortex and hippocampus of C57BL/6 mice inoculated

prion-infected mouse brains. +: present in all mice; -: absent in all mice; +/-: present

- vith ovine ARQ/ARQ and VRQ/VRQ 'good' transmitter isolates, respectively.
- Granular deposits were evident in both cases but aggregates and plaques were

observed only in the mice inoculated with ARQ/ARQ isolates. C: PrPSc patterns in the thalamus of tg59 mice inoculated with ARQ/ARQ scrapie isolates showing granular PrPSc deposits and larger aggregates distributed throughout the thalamic region. D: Granular PrPSc patterns in the hypothalamus of *tg59* mice inoculated with ARQ/ARQ scrapie isolates. Large aggregates and plagues were also evident in the ventral thalamus. Plagues were the predominant PrPSc deposits in the ventral thalamus while only rarely were small granular PrPSc deposits observed in the rest of the thalamic region. E: PrPSc patterns in the thalamus of ta59 mice inoculated with VRQ/VRQ isolates showing granular PrPSc. Aggregates and plaques were observed only in the mice inoculated with ARQ/ARQ isolates. F and G: PrPSc patterns in the cortex, hippocampus, thalamus and dorsal hypothalamus of tg338 mice inoculated with ARQ/ARQ and VRQ/VRQ scrapie isolates respectively. Fine granular deposits, not obvious at this magnification, were evident in both cases but aggregates of PrPSc along the corpus calosum were only observed in the mice inoculated with ARQ/ARQ isolates. H: High magnification of the hypothalamus from the same tg338 animal as in picture G to demonstrate PrPSc deposits located in the neuron, glial cells and neuropil. Scale bar: in A-I 500μm; in F 50μm.

752

753

754

755

756

757

758

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

Figure 4. Relative levels of total PrPSc in prion-infected mouse brains measured by CDI

Prion-infected brains were harvested from mice that had developed terminal prion disease and homogenates were prepared in sarkosyl as described in the Materials and Methods. Native (0 M-treated) and denatured (6 M-treated) PrPSc was captured by anti-PrP monoclonal antibody V24 and detected by biotinylated anti-PrP

monoclonal antibody 6H4 followed by Europium-labeled streptavidin. The data shown are the mean time-resolved fluorescence counts per second (cps) \pm SD for each treatment group. (a) C57BL/6; (b) VM; (c) tg59; (d) tg338. White bar: 0 M GdnHCl; Black bar: 6 M GdnHCl. Statistical analysis of the data, with p values shown in the text, was performed using the two-tailed Student t test (unpaired samples).

Figure 5. Western blot detection of PrP

Prion-infected brains were harvested from mice that had developed terminal prion disease and homogenates were prepared as described in the Materials and Methods. Brain homogenates were treated with or without PK and analyzed by SDS-PAGE and western blot with anti-PrP monoclonal antibody 683 for (a) C57BL/6; (b) RIII mouse brains and monoclonal antibody P4 for (c) tg59; (d) tg338 mouse brains. Each track was loaded with 25 μ g of total protein. Molecular mass markers (kDa) are shown on the left.

Figure 6. Conformational stability of ARQ- and VRQ-induced PrPSc

Prion-infected mouse brain homogenates were prepared as described in the Materials and Methods. Brain homogenates were treated with or without GdnHCl at final concentrations as shown followed by incubation in the presence or absence of PK and subsequently analyzed by SDS-PAGE and western blot with anti-PrP monoclonal antibody 683 (a) and (b); or monoclonal antibody P4 (c) - (f). The western blots show PrP from C57BL/6 mice (a) and (b); *tg59* mice (c) and (d); or *tg338* mice (e) and (f). Mice were inoculated with ARQ/ARQ (a), (c) and (e); or VRQ/VRQ (b), (d) and (f) sheep scrapie isolates. Molecular mass markers (kDa) are shown on the left.

REFERENCES

784

795

21:6358-6366.

- Aguzzi, A., M. Heikenwalder, and M. Polymenidou. 2007. Insights into prion
 strains and neurotoxicity. Nat. Rev. Mol. Cell Biol. 8:552-561.
- Anderson, M., O. V. Bocharova, N. Makarava, L. Breydo, V. V. Salnikov, and I. V. Baskakov. 2006. Polymorphism and ultrastructural organization of prion protein amyloid fibrils: an insight from high resolution atomic force microscopy. J. Mol. Biol. **358**:580-596.
- Asante, E. A., J. M. Linehan, M. Desbruslais, S. Joiner, I. Gowland, A. L.
 Wood, J. Welch, A. F. Hill, S. E. Lloyd, J. D. Wadsworth, and J. Collinge.
 2002. BSE prions propagate as either variant CJD-like or sporadic CJD-like
 prion strains in transgenic mice expressing human prion protein. EMBO J.
- Baron, T., C. Crozet, A. G. Biacabe, S. Philippe, J. Verchere, A. Bencsik,
 J. Y. Madec, D. Calavas, and J. Samarut. 2004. Molecular analysis of the
 protease-resistant prion protein in scrapie and bovine spongiform
 encephalopathy transmitted to ovine transgenic and wild-type mice. J. Virol.
 78:6243-6251.
- 801 5. **Beck, K., R. Salis, S. Simonini, and J. Spiropoulos.** 2007. Primary isolation of the scrapie agent in RIII mice: identification of sheep PrP genotype-associated profiles. Prion 2007: European Network of Excellence Neuroprion. 2007; Abstract P02.20.
- 805 6. Beringue, V., A. Bencsik, A. Le Dur, F. Reine, T. L. Lai, N. Chenais, G.
 806 Tilly, A. G. Biacabe, T. Baron, J. L. Vilotte, and H. Laude. 2006. Isolation

- from cattle of a prion strain distinct from that causing bovine spongiform encephalopathy. PLoS Pathog. **2:**e112.
- 809 7. **Bessen, R. A., and R. F. Marsh.** 1992. Biochemical and physical properties 810 of the prion protein from two strains of the transmissible mink encephalopathy 811 agent. J. Virol. **66:**2096-2101.
- 8. **Bessen, R. A., and R. F. Marsh.** 1994. Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy. J. Virol. **68:**7859-7868.
- Browning, S. R., G. L. Mason, T. Seward, M. Green, G. A. Eliason, C.
 Mathiason, M. W. Miller, E. S. Williams, E. Hoover, and G. C. Telling.
 2004. Transmission of prions from mule deer and elk with chronic wasting
 disease to transgenic mice expressing cervid PrP. J. Virol. 78:13345-13350.
- 819 10. **Bruce, M. E.** 1993. Scrapie strain variation and mutation. Br. Med. Bull. 820 49:822-838.
- 821 11. **Bruce, M. E.** 2003. TSE strain variation. Br. Med. Bull. **66:**99-108.
- 822 12. Bruce, M. E., A. Boyle, S. Cousens, I. McConnell, J. Foster, W.
- Goldmann, and H. Fraser. 2002. Strain characterization of natural sheep
 scrapie and comparison with BSE. J. Gen. Virol. 83:695-704.
- 825 13. **Bruce, M. E., and H. Fraser.** 1991. Scrapie strain variation and its implications. Curr. Top. Microbiol. Immunol. **172:**125-138.
- Bucciantini, M., E. Giannoni, F. Chiti, F. Baroni, L. Formigli, J. Zurdo, N.
 Taddei, G. Ramponi, C. M. Dobson, and M. Stefani. 2002. Inherent toxicity
 of aggregates implies a common mechanism for protein misfolding diseases.
 Nature 416:507-511.

831	15.	Bueler, H., A. Aguzzi, A. Sailer, R. A. Greiner, P. Autenried, M. Aguet, and
832		C. Weissmann. 1993. Mice devoid of PrP are resistant to scrapie. Cell
833		73: 1339-1347.

- Bujdoso, R., D. F. Burke, and A. M. Thackray. 2005. Structural differences between allelic variants of the ovine prion protein revealed by molecular dynamics simulations. Proteins **61:**840-849.
- Buschmann, A., E. Pfaff, K. Reifenberg, H. M. Muller, and M. H.
 Groschup. 2000. Detection of cattle-derived BSE prions using transgenic
 mice overexpressing bovine PrP(C). Arch. Virol. Supplement:75-86.
- 840 18. **Chesebro, B.** 1998. BSE and prions: uncertainties about the agent. Science 841 **279:**42-43.
- 842 19. **Chiesa, R., and D. A. Harris.** 2001. Prion diseases: what is the neurotoxic molecule? Neurobiol. Dis. **8:**743-763.
- Chiesa, R., P. Piccardo, E. Quaglio, B. Drisaldi, S. L. Si-Hoe, M. Takao, B.
 Ghetti, and D. A. Harris. 2003. Molecular distinction between pathogenic and
 infectious properties of the prion protein. J. Virol. 77:7611-7622.
- 21. Collinge, J. 1999. Variant Creutzfeldt-Jakob disease. Lancet 354:317-323.
- Collinge, J., and A. R. Clarke. 2007. A general model of prion strains and
 their pathogenicity. Science 318:930-936.
- Collinge, J., M. S. Palmer, K. C. Sidle, I. Gowland, R. Medori, J. Ironside,
 and P. Lantos. 1995. Transmission of fatal familial insomnia to laboratory
 animals. Lancet 346:569-570.

853	24.	Collinge, J., K. C. Sidle, J. Meads, J. Ironside, and A. F. Hill. 1996.
854		Molecular analysis of prion strain variation and the aetiology of 'new variant'
855		CJD. Nature 383: 685-690.
856	25.	Cordier, C., A. Bencsik, S. Philippe, D. Betemps, F. Ronzon, D. Calavas,
857		C. Crozet, and T. Baron. 2006. Transmission and characterization of bovine
858		spongiform encephalopathy sources in two ovine transgenic mouse lines
859		(TgOvPrP4 and TgOvPrP59). J. Gen. Virol. 87: 3763-3771.
860	26.	Crozet, C., F. Flamant, A. Bencsik, D. Aubert, J. Samarut, and T. Baron.
861		2001. Efficient transmission of two different sheep scrapie isolates in
862		transgenic mice expressing the ovine PrP gene. J. Virol. 75: 5328-5334.
863	27.	Dickinson, A. G., and V. M. Meikle. 1971. Host-genotype and agent effects
864		in scrapie incubation: change in allelic interaction with different strains of
865		agent. Mol. Gen. Genet. 112:73-79.
866	28.	Dickinson, A. G., V. M. Meikle, and H. Fraser. 1968. Identification of a gene
867		which controls the incubation period of some strains of scrapie agent in mice.
868		J. Comp. Pathol. 78: 293-299.
869	29.	Eghiaian, F., J. Grosclaude, S. Lesceu, P. Debey, B. Doublet, E. Treguer,
870		H. Rezaei, and M. Knossow. 2004. Insight into the PrPC>PrPSc conversion
871		from the structures of antibody-bound ovine prion scrapie-susceptibility
872		variants. Proc. Natl. Acad. Sci. USA 101:10254-10259.
873	30.	Espinosa, J. C., O. Andreoletti, J. Castilla, M. E. Herva, M. Morales, E.

Alamillo, F. D. San-Segundo, C. Lacroux, S. Lugan, F. J. Salguero, J.

Langeveld, and J. M. Torres. 2007. Sheep-passaged bovine spongiform

874

876		encephalopathy agent exhibits altered pathobiological properties in bovine-PrP
877		transgenic mice. J. Virol. 81:835-843.
878	31.	Farquhar, C. F., R. A. Somerville, and M. E. Bruce. 1998. Straining the
879		prion hypothesis. Nature 391: 345-346.
880	32.	Fraser, H., and A. G. Dickinson. 1973. Scrapie in mice. Agent-strain
881		differences in the distribution and intensity of grey matter vacuolation. J.
882		Comp. Pathol. 83: 29-40.
883	33.	Fraser, H., and A. G. Dickinson. 1968. The sequential development of the
884		brain lesion of scrapie in three strains of mice. J. Comp. Pathol. 78:301-311.
885	34.	Gonzalez, L., S. Martin, I. Begara-McGorum, N. Hunter, F. Houston, M.
886		Simmons, and M. Jeffrey. 2002. Effects of agent strain and host genotype on
887		PrP accumulation in the brain of sheep naturally and experimentally affected
888		with scrapie. J. Comp. Pathol. 126:17-29.
889	35.	Hill, A. F., S. Joiner, J. Linehan, M. Desbruslais, P. L. Lantos, and J.
890		Collinge. 2000. Species-barrier-independent prion replication in apparently
891		resistant species. Proc. Natl. Acad. Sci. USA 97:10248-10253.
892	36.	Hsiao, K. K., M. Scott, D. Foster, D. F. Groth, S. J. DeArmond, and S. B.
893		Prusiner. 1990. Spontaneous neurodegeneration in transgenic mice with
894		mutant prion protein. Science 250:1587-1590.
895	37.	http://www.defra.gov.uk/corporate/vla/science/documents/science-tse-rl-prp-
896		ihc.pdf.
897	38.	Kimberlin, R. H., S. Cole, and C. A. Walker. 1987. Temporary and
898		permanent modifications to a single strain of mouse scrapie on transmission to

rats and hamsters. J. Gen. Virol. 68:1875-1881.

- 900 39. **Kimberlin, R. H., and C. A. Walker.** 1978. Evidence that the transmission of one source of scrapie agent to hamsters involves separation of agent strains from a mixture. J. Gen. Virol. **39:**487-496.
- 40. Kimberlin, R. H., C. A. Walker, and H. Fraser. 1989. The genomic identity of
 different strains of mouse scrapie is expressed in hamsters and preserved on
 reisolation in mice. J. Gen. Virol. 70:2017-2025.

Korth, C., B. Stierli, P. Streit, M. Moser, O. Schaller, R. Fischer, W.

907 Schulz-Schaeffer, H. Kretzschmar, A. Raeber, U. Braun, F. Ehrensperger,
908 S. Hornemann, R. Glockshuber, R. Riek, M. Billeter, K. Wuthrich, and B.
909 Oesch. 1997. Prion (PrPSc)-specific epitope defined by a monoclonal
910 antibody. Nature 390:74-77.

906

41.

- 42. Lasmezas, C. I., J. P. Deslys, O. Robain, A. Jaegly, V. Beringue, J. M.
 Peyrin, J. G. Fournier, J. J. Hauw, J. Rossier, and D. Dormont. 1997.
 Transmission of the BSE agent to mice in the absence of detectable abnormal
 prion protein. Science 275:402-405.
- Le Dur, A., V. Beringue, O. Andreoletti, F. Reine, T. L. Lai, T. Baron, B.
 Bratberg, J. L. Vilotte, P. Sarradin, S. L. Benestad, and H. Laude. 2005. A
 newly identified type of scrapie agent can naturally infect sheep with resistant
 PrP genotypes. Proc. Natl. Acad. Sci. USA 102:16031-16036.
- Legname, G., H. O. Nguyen, D. Peretz, F. E. Cohen, S. J. DeArmond, and
 S. B. Prusiner. 2006. Continuum of prion protein structures enciphers a
 multitude of prion isolate-specified phenotypes. Proc. Natl. Acad. Sci. USA
 103:19105-19110.

- Ligios, C., G. Dexter, J. Spiropoulos, C. Maestrale, A. Carta, and M. M. 923 45. 924 **Simmons.** 2004. Distribution of vascular amyloid in scrapie-affected sheep with different genotypes. J. Comp. Pathol. 131:271-276. 925 Mallucci, G., A. Dickinson, J. Linehan, P. C. Klohn, S. Brandner, and J. 926 46. 927 **Collinge.** 2003. Depleting neuronal PrP in prion infection prevents disease 928 and reverses spongiosis. Science 302:871-874. Mallucci, G. R., M. D. White, M. Farmer, A. Dickinson, H. Khatun, A. D. 929 47. Powell, S. Brandner, J. G. Jefferys, and J. Collinge. 2007. Targeting 930 cellular prion protein reverses early cognitive deficits and neurophysiological 931 dysfunction in prion-infected mice. Neuron 53:325-335. 932 933 48. Manson, J. C., A. R. Clarke, P. A. McBride, I. McConnell, and J. Hope. 1994. PrP gene dosage determines the timing but not the final intensity or 934 935 distribution of lesions in scrapie pathology. Neurodegeneration 3:331-340. 936 49. Manson, J. C., E. Jamieson, H. Baybutt, N. L. Tuzi, R. Barron, I. 937 McConnell, R. Somerville, J. Ironside, R. Will, M. S. Sy, D. W. Melton, J. 938 Hope, and C. Bostock. 1999. A single amino acid alteration (101L) 939 introduced into murine PrP dramatically alters incubation time of transmissible spongiform encephalopathy. EMBO J. 18:6855-6864. 940 941 50. Medori, R., P. Montagna, H. J. Tritschler, A. LeBlanc, P. Cortelli, P. 942 Tinuper, E. Lugaresi, and P. Gambetti. 1992. Fatal familial insomnia: a 943 second kindred with mutation of prion protein gene at codon 178. Neurology
- 945 51. Monari, L., S. G. Chen, P. Brown, P. Parchi, R. B. Petersen, J. Mikol, F. Gray, P. Cortelli, P. Montagna, B. Ghetti, and et al. 1994. Fatal familial

944

42:669-670.

947		insomnia and familial Creutzfeldt-Jakob disease: different prion proteins
948		determined by a DNA polymorphism. Proc. Natl. Acad. Sci. USA 91:2839-
949		2842.
950	52.	Parchi, P., R. Castellani, S. Capellari, B. Ghetti, K. Young, S. G. Chen, M.
951		Farlow, D. W. Dickson, A. A. Sima, J. Q. Trojanowski, R. B. Petersen, and
952		P. Gambetti. 1996. Molecular basis of phenotypic variability in sporadic
953		Creutzfeldt-Jakob disease. Ann. Neurol. 39:767-778.
954	53.	Peretz, D., M. R. Scott, D. Groth, R. A. Williamson, D. R. Burton, F. E.
955		Cohen, and S. B. Prusiner. 2001. Strain-specified relative conformational
956		stability of the scrapie prion protein. Protein Sci. 10:854-863.
957	54.	Peretz, D., R. A. Williamson, G. Legname, Y. Matsunaga, J. Vergara, D. R.
958		Burton, S. J. DeArmond, S. B. Prusiner, and M. R. Scott. 2002. A change
959		in the conformation of prions accompanies the emergence of a new prion
960		strain. Neuron 34: 921-932.
961	55.	Prusiner , S. B. 1982. Novel proteinaceous infectious particles cause scrapie.
962		Science 216: 136-144.
963	56.	Race, R., A. Raines, G. J. Raymond, B. Caughey, and B. Chesebro. 2001.
964		Long-term subclinical carrier state precedes scrapie replication and adaptation
965		in a resistant species: analogies to bovine spongiform encephalopathy and
966		variant Creutzfeldt-Jakob disease in humans. J. Virol. 75: 10106-10112.
967	57.	Rezaei, H., Y. Choiset, F. Eghiaian, E. Treguer, P. Mentre, P. Debey, J.
968		Grosclaude, and T. Haertle. 2002. Amyloidogenic unfolding intermediates
969		differentiate sheep prion protein variants. J. Mol. Biol. 322:799-814.

- 970 58. **Ridley, R. M., and H. F. Baker.** 1996. To what extent is strain variation 971 evidence for an independent genome in the agent of the transmissible 972 spongiform encephalopathies? Neurodegeneration **5:**219-231.
- Safar, J., H. Wille, V. Itri, D. Groth, H. Serban, M. Torchia, F. E. Cohen,
 and S. B. Prusiner. 1998. Eight prion strains have PrP(Sc) molecules with
 different conformations. Nat. Med. 4:1157-1165.
- 976 60. **Spiropoulos, J., C. Casalone, M. Caramelli, and M. M. Simmons.** 2007.

 977 Immunohistochemistry for PrPSc in natural scrapie reveals patterns which are

 978 associated with the PrP genotype. Neuropathol. Appl. Neurobiol. **33:**398-409.
- 979 61. **Tanaka, M., S. R. Collins, B. H. Toyama, and J. S. Weissman.** 2006. The physical basis of how prion conformations determine strain phenotypes.

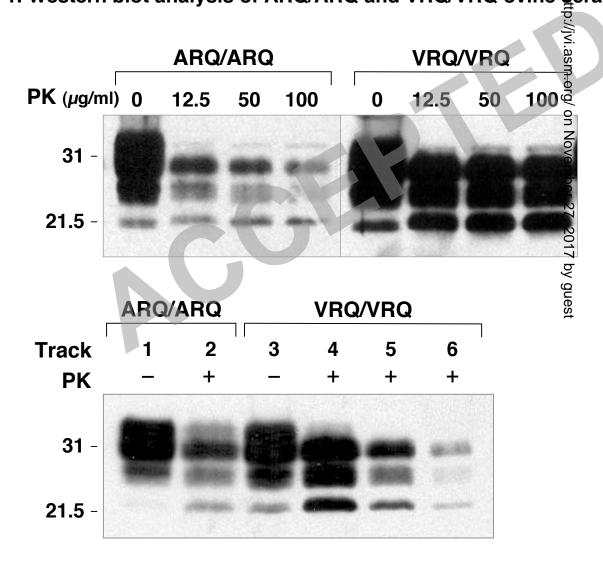
 Nature **442:**585-589.
- 982 62. **Telling, G. C., P. Parchi, S. J. DeArmond, P. Cortelli, P. Montagna, R.**983 **Gabizon, J. Mastrianni, E. Lugaresi, P. Gambetti, and S. B. Prusiner.**984 1996. Evidence for the conformation of the pathologic isoform of the prion
 985 protein enciphering and propagating prion diversity. Science **274:**2079-2082.
- 986 63. **Thackray, A. M., L. Hopkins, and R. Bujdoso.** 2007. Proteinase K-sensitive disease-associated ovine prion protein revealed by conformation-dependent immunoassay. Biochem. J. **401:**475-483.
- 989 64. **Thackray, A. M., L. Hopkins, M. A. Klein, and R. Bujdoso.** 2007. Mouse-990 adapted ovine scrapie prion strains are characterized by different conformers 991 of PrPSc. J. Virol. **81:**12119-12127.

992	65.	Thackray, A. M., M. A. Klein, A. Aguzzi, and R. Bujdoso. 2002. Chronic
993		subclinical prion disease induced by low-dose inoculum. J. Virol. 76:2510-
994		2517.
995	66.	Thackray, A. M., M. A. Klein, and R. Bujdoso. 2003. Subclinical prion
996		disease induced by oral inoculation. J. Virol. 77: 7991-7998.
997	67.	Thackray, A. M., S. Yang, E. Wong, T. J. Fitzmaurice, R. J. Morgan-
998		Warren, and R. Bujdoso. 2004. Conformational variation between allelic
999		variants of cell-surface ovine prion protein. Biochem. J. 381: 221-229.
1000	68.	Thuring, C. M., J. H. Erkens, J. G. Jacobs, A. Bossers, L. J. Van Keulen,
1001		G. J. Garssen, F. G. Van Zijderveld, S. J. Ryder, M. H. Groschup, T.
1002		Sweeney, and J. P. Langeveld. 2004. Discrimination between scrapie and
1003		bovine spongiform encephalopathy in sheep by molecular size,
1004		immunoreactivity, and glycoprofile of prion protein. J. Clin. Microbiol. 42:972-
1005		980.
1006	69.	Vilotte, J. L., S. Soulier, R. Essalmani, M. G. Stinnakre, D. Vaiman, L.
1007		Lepourry, J. C. Da Silva, N. Besnard, M. Dawson, A. Buschmann, M.
1008		Groschup, S. Petit, M. F. Madelaine, S. Rakatobe, A. Le Dur, D. Vilette,
1009		and H. Laude. 2001. Markedly increased susceptibility to natural sheep
1010		scrapie of transgenic mice expressing ovine prp. J. Virol. 75: 5977-5984.
1011	70.	Walsh, D. M., I. Klyubin, J. V. Fadeeva, W. K. Cullen, R. Anwyl, M. S.

Wolfe, M. J. Rowan, and D. J. Selkoe. 2002. Naturally secreted oligomers of

amyloid beta protein potently inhibit hippocampal long-term potentiation in

vivo. Nature 416:535-539.


1012

1013

1015	71.	Weissmann, C. 1991. A 'unified theory' of prion propagation. Nature 352: 679-
1016		683.

1017	72.	Wopfner, F., G. Weidenhofer, R. Schneider, A. von Brunn, S. Gilch, T. F.
1018		Schwarz, T. Werner, and H. M. Schatzl. 1999. Analysis of 27 mammalian
1019		and 9 avian PrPs reveals high conservation of flexible regions of the prion
1020		protein. J. Mol. Biol. 289: 1163-1178.

Figure 1. Western blot analysis of ARQ/ARQ and VRQ/VRQ ovine scrapie isolates

	Table 1	. Primary pas	ssage data fo	r sheep scra	m —	
Sample	Incubation time	C57BL/6	RIII	VM	t g59 sm	tg338
ARQ	Terminal disease	468 ± 16 (16/16)	458 ± 6 ° (3/4)	617 ± 8 ^b (3/12)	NA (0/16)	210 ± 197 ^{d, e} (5/14)
SE1848 0007	Attack rate	468 ± 16 (16/16)	450 ± 17 (4/4)	586 ± 54 b (12/14)	470 ± \$6° (16/16)	318 ± 235 ^{e, f, g} (14/14)
ARQ SE1848	Terminal disease	395 ± 50 (14/15)	422 ± 11 (12/14)	565 ± 30 ° (12/17)	392 ± 50 (2/14)	155 ± 4 ^{d, h} (12/12)
0008	Attack rate	387 ± 56 (15/15)	398 ± 52 (14/15)	565 ± 34 ° (17/17)	331 ± 6 1 ° (14/14)	155 ± 4 ^{d, g} (12/13)
VRQ SE1848	Terminal disease	549 ± 43 (15/16)	487 ± 28 ^b (13/15)	551 ± 61 (14/17)	434 ± 0 (1/14)	64 ± 2 ^d (16/16)
0005	Attack rate	548 ± 42 (16/16)	486 ± 28 (15/16)	557 ± 76 (17/19)	440 ± 60^{a} , (14/14)	$64 \pm 2^{d, g}$ (16/16)
VRQ SE1848	Terminal disease	527 ± 49 (13/13)	492 ± 23 (8/10)	524 ± 59 (9/12)	403 ± 0 (1/12)	63 ± 1 ^d (13/15)
0006	Attack rate	527 ± 49 (13/13)	489 ± 24 (10/10)	526 ± 66 (12/18)	460 ± 57 (12/12)	63 ± 1 ^{d, g} (15/15)

Figure 2. Lesion profiles induced by primary transmissions of ovine scrapie isolates

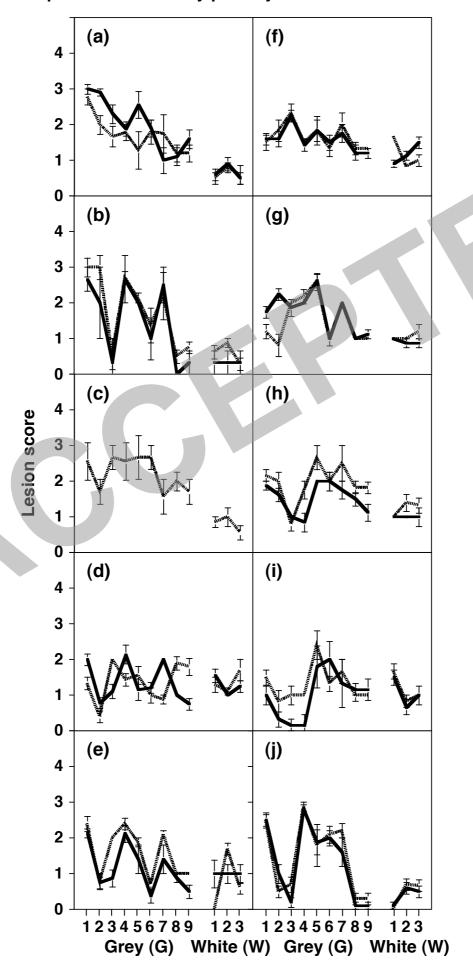


Table 2. Disease-associated PrP distribution in the brains of mice with terminal prion disease

	C57BL/6					VM				tg59								
Coronal	AF	RQ	VF	RQ		ARQ	VF	₹Q		AF	RQ	VF	RQ	- mbe	AF	RQ	VF	RQ
Coronal Section	Part	Agg	Part	Agg	Pa	t Agg	Part	Agg		Part	Agg	Part	Agg	r 27,	Part	Agg	Part	Agg
Frontal	+	+	+	-	+	+	+	-		+	+	+	-	2017	+/-	-/+	-	-/+
Thalamic	+	+	+		+	+	+	-/+		+	+	+	-/+	່ by gເ	+	-/+	+	+/-
Midbrain	+	+	+		+	+	+	-		+	+	+	-	uest	+	-/+	+	-
Medulla	+	-/+	+		+	-/+	+	-		+	-/+	+	-		+	-/+	+	-

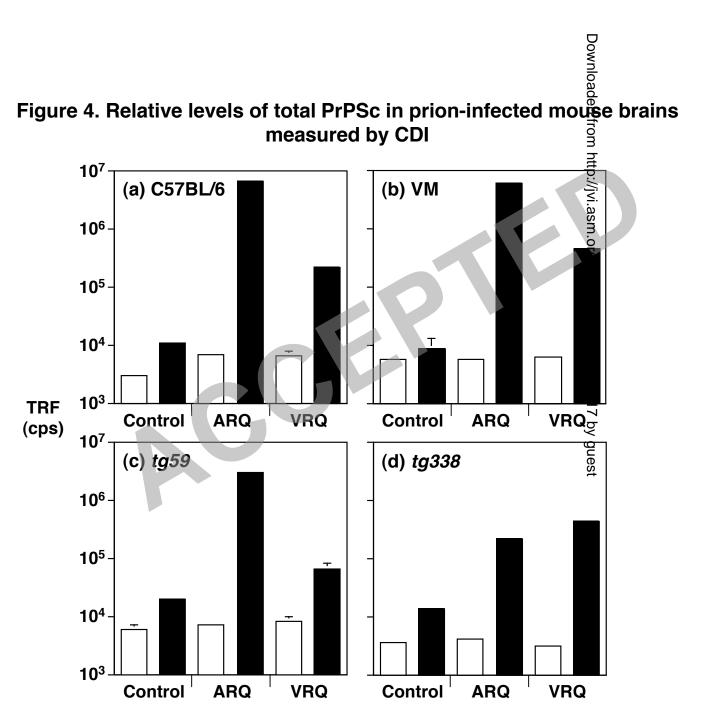
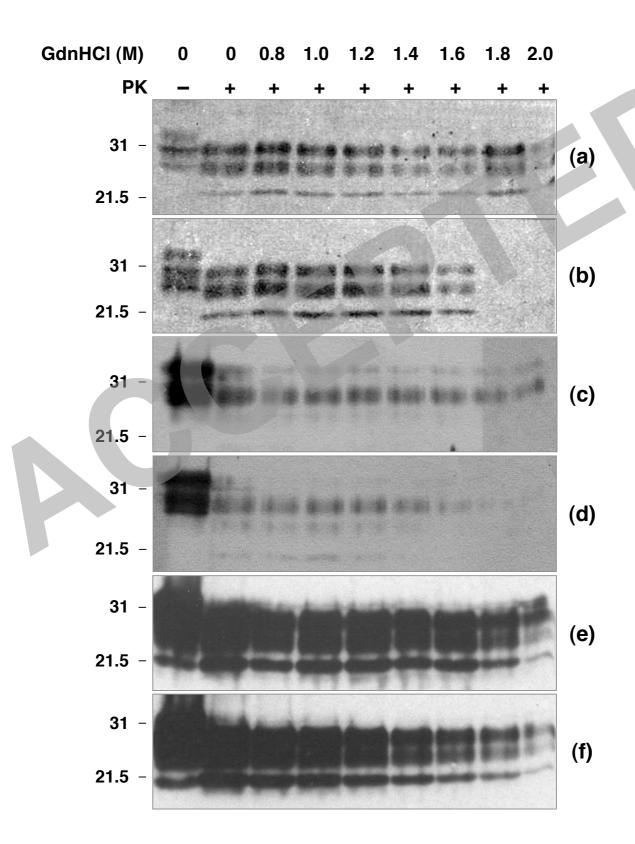



Figure 6. Conformational stability of ARQ- and VRQ-induced PrPSc

