CD74AC175 QUADRUPLE D-TYPE FLIP-FLOP WITH CLEAR

SCHS347 - APRIL 2003

- AC Types Feature 1.5-V to 5.5-V Operation and Balanced Noise Immunity at 30% of the Supply Voltage
- Buffered Inputs
- Contains Four Flip-Flops With Double-Rail Outputs
- Speed of Bipolar F, AS, and S, With Significantly Reduced Power Consumption
- Balanced Propagation Delays
- ±24-mA Output Drive Current
 - Fanout to 15 F Devices
- SCR-Latchup-Resistant CMOS Process and Circuit Design
- Exceeds 2-kV ESD Protection Per MIL-STD-883, Method 3015
- Applications Include:
 - Buffer/Storage Registers
 - Shift Registers
 - Pattern Generators

M PACKAGE (TOP VIEW) CLR [16 V_{CC} 1Q [2 15 4Q 1<u>Q</u> ∏ 3 14 ¶ 4Q 13**∏** 4D 1D 4 2D Π 5 12 3D 11 3Q $2\overline{Q}$ 6 10 T 3Q 2Q [GND [8 9 CLK

description/ordering information

This positive-edge-triggered D-type flip-flop has a direct clear ($\overline{\text{CLR}}$) input. The CD74AC175 features complementary outputs from each flip-flop.

Information at the data (D) inputs meeting the setup time requirements is transferred to the outputs on the positive-going edge of the clock (CLK) pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going edge of CLK. When CLK is at either the high or low level, the D input has no effect at the output.

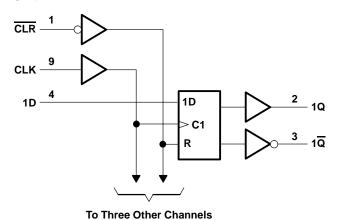
ORDERING INFORMATION

TA	PACKA	GEŤ	ORDERABLE PART NUMBER	TOP-SIDE MARKING
–55°C to 125°C	SOIC – M	Tube	CD74AC175M	AC175M
-55 C to 125 C	SOIC - IVI	Tape and reel	CD74AC175M96	AC175W

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE (each flip-flop)

INPUTS			OUTPUTS		
CLR	CLK	D	Q	Q	
L	Х	Χ	L	Н	
Н	\uparrow	Н	Н	L	
Н	\uparrow	L	L	Н	
Н	L	Χ	Q ₀	\overline{Q}_0	



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCHS347 - APRIL 2003

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 6 V
Input clamp current, I_{IK} ($V_I < 0 \text{ V or } V_I > V_{CC}$) (see Note 1)	±20 mA
Output clamp current, I_{OK} ($V_O < 0 \text{ V or } V_O > V_{CC}$) (see Note 1)	±50 mA
Continuous output current, I_O ($V_O > 0$ V or $V_O < V_{CC}$)	±50 mA
Continuous current through V _{CC} or GND	±200 mA
Package thermal impedance, θ _{JA} (see Note 2)	
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

			T _A = 25°C		–55°(125		–40°(85°		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
Vcc	Supply voltage		1.5	5.5	1.5	5.5	1.5	5.5	V
		V _{CC} = 1.5 V	1.2		1.2		1.2		
٧ıH	High-level input voltage	V _{CC} = 3 V	2.1		2.1		2.1		V
		V _{CC} = 5.5 V	3.85		3.85		3.85		
	/ _{IL} Low-level input voltage	V _{CC} = 1.5 V		0.3		0.3		0.3	
V_{IL}		V _{CC} = 3 V		0.9		0.9		0.9	V
		V _{CC} = 5.5 V		1.65		1.65		1.65	
\vee_{I}	Input voltage		0	VCC	0	VCC	0	VCC	V
۷o	Output voltage		0	VCC	0	VCC	0	VCC	V
loh	High-level output current	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		-24		-24		-24	mA
loL	Low-level output current	V _{CC} = 4.5 V to 5.5 V		24		24		24	mA
Δt/Δν	$V_{CC} = 1.5 \text{ V to } 3 \text{ V}$	V _{CC} = 1.5 V to 3 V		50		50		50	ns/V
ΔυΔν	Input transition rise or fall rate	V _{CC} = 3.6 V to 5.5 V		20		20		20	113/V

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCHS347 - APRIL 2003

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		Vcc	T _A = 25°C		–55°(125		–40°C to 85°C		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
			1.5 V	1.4		1.4		1.4		
		I _{OH} = -50 μA	3 V	2.9		2.9		2.9		
			4.5 V	4.4		4.4		4.4		
Voн	$V_I = V_{IH}$ or V_{IL}	$I_{OH} = -4 \text{ mA}$	3 V	2.58		2.4		2.48		V
		$I_{OH} = -24 \text{ mA}$	4.5 V	3.94		3.7		3.8		
		$I_{OH} = -50 \text{ mA}^{\dagger}$	5.5 V			3.85				
		$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V					3.85		
			1.5 V		0.1		0.1		0.1	0.1
		$I_{OL} = 50 \mu\text{A}$	3 V		0.1		0.1		0.1	
			4.5 V		0.1		0.1		0.1	
VOL	$V_I = V_{IH}$ or V_{IL}	I _{OL} = 12 mA	3 V		0.36		0.5		0.44	V
		I _{OL} = 24 mA	4.5 V		0.36		0.5		0.44	
		$I_{OL} = 50 \text{ mA}^{\dagger}$	5.5 V				1.65			
		$I_{OL} = 75 \text{ mA}^{\dagger}$	5.5 V						1.65	
lį	V _I = V _{CC} or GND		5.5 V		±0.1		±1		±1	μΑ
Icc	$V_I = V_{CC}$ or GND,	IO = 0	5.5 V		8		160		80	μΑ
C _i					10		10		10	pF

[†] Test one output at a time, not exceeding 1-second duration. Measurement is made by forcing indicated current and measuring voltage to minimize power dissipation. Test verifies a minimum 50-Ω transmission-line drive capability at 85°C and 75-Ω transmission-line drive capability at 125°C.

timing requirements over recommended operating free-air temperature range, V_{CC} = 1.5 V (unless otherwise noted)

			–55° 125		–40°C to 85°C		UNIT
			MIN	MAX	MIN	MAX	
fclock	Clock frequency			8		9	MHz
	Pulse duration	CLR low	50		44		
t _W		CLK high or low	63		55		ns
t _{su}	Setup time before CLK↑	Data	2		2		ns
th	Hold time, data after CLK↑		2		2		ns
t _{rec}	Recovery time, before CLK↑	<u>CLR</u> ↑	1		1		ns

CD74AC175 QUADRUPLE D-TYPE FLIP-FLOP WITH CLEAR

SCHS347 - APRIL 2003

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted)

			-55° 125		–40°C to 85°C		UNIT
			MIN	MAX	MIN	MAX	
fclock	Clock frequency			71		81	MHz
	w Pulse duration	CLR low	5.6		4.9		
۱W		CLK high or low	7		6.1		ns
t _{su}	Setup time before CLK↑	Data	2		2		ns
th	Hold time, data after CLK↑		2		2		ns
t _{rec}	Recovery time, before CLK↑	CLR↑	1		1		ns

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted)

			−55° 125		–40°0 85°		UNIT
			MIN	100	MAX		
fclock	Clock frequency			100		114	MHz
	W Pulse duration	CLR low	4		3.5		no
t _W		CLK high or low	5		4.4		ns
t _{su}	Setup time before CLK↑	Data	2		2		ns
t _h	Hold time, data after CLK↑		2		2		ns
t _{rec}	Recovery time, before CLK↑	CLR↑	1		1		ns

switching characteristics over recommended operating free-air temperature range, V_{CC} = 1.5 V, C_L = 50 pF (unless otherwise noted) (see Figure 1)

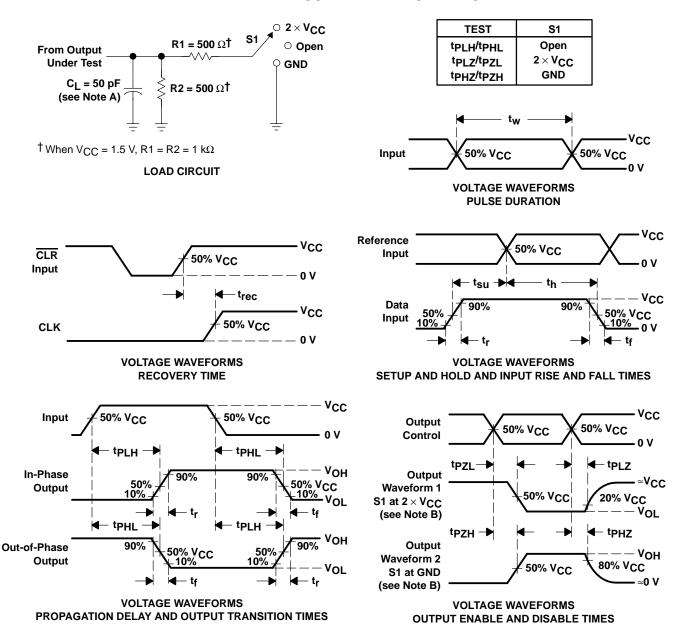
PARAMETER	FROM	FROM TO (INPUT) (OUTPUT)	–55°(125		–40°(85°	UNIT		
	(111 01)	(6611 61)	MIN	MAX	MIN	MAX		
f _{max}			8		9		MHz	
^t PLH	CLK	Any O		153		139	20	
^t PHL	CLK	Any Q		153		139	ns	
^t PLH	CLR	Any O		153		139	nc	
tphL	CLR	Any Q	Ally Q	OLIN Ally Q	153		139	ns

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	–55° 125		–40°0 85°		UNIT
	(1141 01)	(6611 61)	125°C 85°C MIN MAX MIN MAX 71 81 4.3 17.1 4.4 15.5 4.3 17.1 4.4 15.5				
f _{max}			71		81		MHz
^t PLH	CLK	Any O	4.3	17.1	4.4	15.5	no
t _{PHL}	CLK	CLK Any Q	4.3	17.1	4.4	15.5	ns
^t PLH	CLR	Any Q	4.3	17.1	4.4	15.5	ne
^t PHL	CLR		4.3	17.1	4.4	15.5	ns

CD74AC175 QUADRUPLE D-TYPE FLIP-FLOP WITH CLEAR

SCHS347 - APRIL 2003


switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	–55°C to 125°C		–40°C to 85°C		UNIT
	(111 01)	(6611 61)	MIN MAX MIN MAX 100 114 M 3.1 12.2 3.2 11.1				
f _{max}			100		114		MHz
^t PLH	CLK	Any O	3.1	12.2	3.2	11.1	no
^t PHL	CLK	Any Q	3.1	12.2	3.2	11.1	ns
^t PLH	CLR	Any O	3.1	12.2	3.2	11.1	ne
t _{PHL}	CLR	Any Q	3.1	12.2	3.2	11.1	ns

operating characteristics, V_{CC} = 5 V, T_A = 25°C

	PARAMETER	TYP	UNIT
C _{pd}	Power dissipation capacitance	55	pF

PARAMETER MEASUREMENT INFORMATION

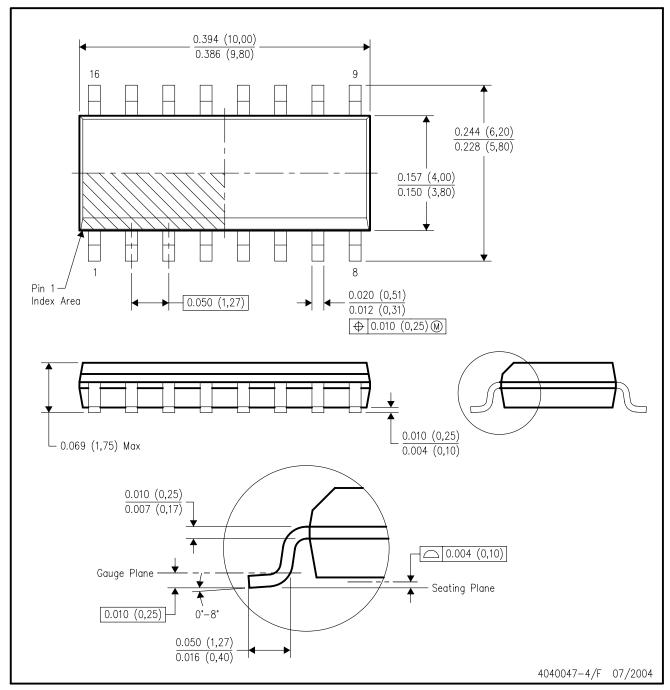

- NOTES: A. C_L includes probe and test-fixture capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \ \Omega$, $t_f = 3 \ ns$, $t_f = 3 \ ns$. Phase relationships between waveforms are arbitrary.
 - D. For clock inputs, f_{max} is measured with the input duty cycle at 50%.
 - E. The outputs are measured one at a time with one input transition per measurement.
 - F. tpLH and tpHL are the same as tpd.
 - G. tpzL and tpzH are the same as ten.
 - H. tpLz and tpHz are the same as t_{dis}.
 - I. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AC.

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless
Data Converters DSP Interface Logic Power Mgmt	dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com	Broadband Digital Control Military Optical Networking Security Telephony Video & Imaging	www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/military www.ti.com/opticalnetwor www.ti.com/security www.ti.com/telephony www.ti.com/video

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated