

MagnetoResistive Current Sensor ($I_{PN} = 10 A$)

Data sheet

The CDS4000 current sensor family is designed for highly dynamic electronic measurement of DC, AC, pulsed and mixed currents with integrated galvanic isolation. The MagnetoResistive technology enables an excellent dynamic response without the hysteresis that is present in iron core based designs.

The system accuracy can be improved by using either the internal or an external reference voltage. This further reduces temperature drift and several sensors can share the same reference voltage. The adjustable overcurrent detection enables a fast response in overload situations to prevent damage to the power units.

The CDS4000 product family offers PCB-mountable THT current sensors from 6 A up to 150 A nominal current for industrial applications.

Product overview CDS4010

Product description	Package	Delivery Type
CDS4010ABC-KA	THT	Tray
CDK4010ABC-KA	Demoboard	Pocketbox

Quick reference guide

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{CC}	Supply voltage	4.75	5	5.25	V
I _{PN}	Primary nominal current (RMS)	-	-	10	Α
I _{PR}	Primary measuring range 1)	-30	-	+30	Α
ε _Σ	Overall accuracy 2)	-	0.8	1.3	% of I _{PN}
f _{co}	Upper cut-off frequency (-1 dB)	200	400	-	kHz
T _{amb}	Ambient temperature 3)	-40	-	+105	°C
Тв	Busbar temperature 3)	-40	-	+105	°C

- 1) For 1 s in a 60 s interval; $R_M = 300 \Omega$.
- 2) Overall accuracy contains ϵ_G , ϵ_{off} and ϵ_{Lin} at V_{CC} = 5 V and T_{amb} = 25 °C.
- 3) Operating condition. Maximum temperature limited to +85°C for UL approval.

Qualification overview

Standard	Name	Status
EN 61800-5-1: 2003	Adjustable speed electrical power drive systems	Approved
IEC 62103	Electronic equipment for use in power installations	Approved
DIN EN 50178	Electronic equipment for use in power installations	Approved
UL508C	Power conversion equipment	Pending

Features

- Based on the Anisotropic Magneto Resistive (AMR) effect
- Galvanic isolation between primary and measurement circuit
- Single 5 V power supply
- Adjustable overcurrent detection

Advantages

- Excellent accuracy
- Low temperature drift
- Very small size
- Highly dynamic response
- External reference possible
- · Low primary inductance
- Negligible hysteresis

Applications

- Solar power converters
- AC variable speed drives
- Converters for DC motor drives
- Uninterruptible power supplies
- Switched mode power supplies
- Power supplies for welding applications
- Laser diodes driver

MagnetoResistive Current Sensor (I_{PN} = 10 A)

Electrical data

 T_{amb} = 25 °C; V_{CC} = 5 V; unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _{PN}	Primary nominal current (RMS)		-	-	10	Α
I _{PR}	Measuring range 1)		-30	-	+30	Α
I _{PM}	Maximum primary peak current (abs) 2)		-	-	100	Α
I _{outN}	Nominal output current (RMS)	$I_P = I_{PN}$	-	2	-	mA
I _{outM}	Maximum output current (abs) 1)	$I_P = 3 \cdot I_{PN}$	-	-	6	mA
R _M	Burden resistor for output signal 3)		100	300	1000	Ω
R _P	Resistance of primary conductor		1.0	1.6	2.2	mΩ
V _{CC}	Supply voltage		4.75	5	5.25	V
ΙQ	Quiescent current	I _P = 0	-	25	30	mA
I _{CN}	Nominal current consumption	$I_P = I_{PN}$	-	50	60	mA
I _{CM}	Maximum current consumption	I _P ≤ I _{PR}	-	100	110	mA
V _{out}	Maximum output voltage range 4)		0.625	-	4.375	V
V _{refout}	Reference voltage output	V _{refin} connected to GND	2.49	2.5	2.51	V
V _{refin}	Reference voltage input		1.5	2.5	2.6	V
G∨	Voltage gain	R _M = 300 Ω	-	60	-	mV/A
Gı	Current gain		-	1/5	-	mA/A
IL	Maximum additional load V _{refout}	ΔV _{refout} ≤ 10 mV	-	-	1	mA

- 1) For 1 s in a 60 s interval; $R_M = 300 \Omega$.
- 2) For 3 ms in a 100 ms interval.
- 3) $R_M > 300 \ \Omega$: reduces I_{PR} but increases G_V .
- 4) Output voltage is scaled by changing $R_{\rm M}$ but not beyond these limits. See Fig.1.

Absolute maximum ratings

In accordance with the absolute maximum rating system (IEC60134).

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply voltage	-0.3	+7	V
I _{PM}	Maximum primary current 5)	-	100	Α
T _{amb}	Ambient temperature	-40	+105	°C
T_{stg}	Storage temperature	-40	+105	°C
T _B	Busbar temperature	-40	+105	°C

⁵⁾ For 3 ms in a 100 ms interval.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Qualifications

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Vı	Isolation test voltage (RMS)	50/60 Hz, 60 s	-	5	-	kV
V _{imp}	Impulse withstand voltage	1.2/50 µs	-	12	-	kV
V_{pde}	Partial discharge extinction voltage		1900	-	-	٧
d _{cp}	Creepage distance		-	15	-	mm
d _{cl}	Clearance distance		-	15	-	mm
CTI	Comparative Tracking Index		-	600	-	-

Data sheet Page 2 of 11 Subject to technical changes March 23rd 2010

MagnetoResistive Current Sensor (I_{PN} = 10 A)

Accuracy

 T_{amb} = 25 °C; V_{CC} = 5 V; unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
$\boldsymbol{\epsilon}_{\scriptscriptstyle \Sigma}$	Overall accuracy 1)	I _P ≤ I _{PN}	-	0.8	1.3	% of I _{PN}
ε _G	Gain error ²⁾	I _P ≤ I _{PN}	-	0.3	0.5	% of I _{PN}
ε _{off}	Offset error ²⁾	I _P = 0	-	0.3	0.5	% of I _{PN}
ε _{Lin}	Linearity error ²⁾	I _P ≤ I _{PN}	-	0.2	0.3	% of I _{PR}
$\epsilon_{Vrefint}$	Internal reference error		-10	0	+10	mV
$\epsilon_{Vrefext}$	External reference error 3)	V _{refin} = 1.5 to 2.6 V	-3	0	+3	mV
ε _{Hys}	Hysteresis ⁴⁾		-	-	-	% of I _{PN}
PSRR	Power supply rejection rate	f _{∆Vcc} < 15 kHz	1	40	30	dB
N	Noise level (RMS)	f < 300 kHz	-	1.7	-	μΑ

 $T_B = (-25...+85)^{\circ}C$; $V_{CC} = 5 V$; unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Tε _G	Maximum temperature induced gain error		-0.5	0	+0.5	% of I _{PN}
Tε _{off}	Maximum temperature induced offset error		-1.5	0	+1.5	% of I _{PN}
Tε _{Lin}	Maximum temperature induced linearity error		-	0	0.1	% of 2·I _{PN}
Tε _{Vrefint}	Maximum temperature induced error of internal reference	I _P ≤ I _{PN}	-0.6	0	+0.6	$\%$ of V_{refout}
Tε _{Vrefext}	Maximum temperature induced error of external reference		-0.05	0	+0.05	% of V _{refout}

 $T_B = (-40...+105)^{\circ}C$; $V_{CC} = 5 V$; unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Tε _G	Maximum temperature induced gain error		-0.5	0	+0.5	% of I _{PN}
Tε _{off}	Maximum temperature induced offset error		-2.0	0	+2.0	% of I _{PN}
Tε _{Lin}	Maximum temperature induced linearity error		-	0	0.1	% of 2·I _{PN}
Tε _{Vrefint}	Maximum temperature induced error of internal reference	I _P ≤ I _{PN}	-0.6	0	+0.6	% of V_{refout}
Tε _{Vrefext}	Maximum temperature induced error of external reference		-0.05	0	+0.05	% of V_{refout}

Notes

- 1) Overall accuracy contains ε_G , ε_{off} and ε_{Lin} .
- 2) Long term stability after 10,000 hours at 85 °C operating temperature: The gain and linearity error is less than $\pm 1.8~\%$ of $I_{PN}.$ The offset error is less than $\pm 2.0~\%$ of $I_{PN}.$
- 3) $\epsilon_{Vrefext} = V_{refin} V_{refout}$
- 4) Residual voltage after 3 \cdot I_{PN} DC. Hysteresis is smaller than noise level N.

MagnetoResistive Current Sensor (I_{PN} = 10 A)

Dynamical data

 T_{amb} = 25 °C; V_{CC} = 5 V; unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _{reac}	Reaction time 1)	10% I _{PN} to 10% I _{out,N}	-	-	0.25	μs
t _{rise}	Rise time 1)	10% I _{out,N} to 90% I _{out,N}	-	-	0.55	μs
t _{resp}	Response time 1)	90% I _{PN} to 90% I _{out,N}	-	-	0.65	μs
f _{co}	Upper cut-off frequency	-1 dB	200	400	-	kHz

¹⁾ $I_P = I_{PN}$ with di/dt of 100 A/µs. See Fig.2.

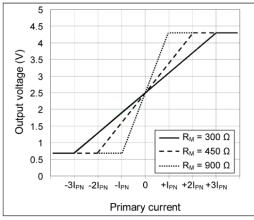


Fig.1: Characteristic of primary current to output voltage according to different R_M. V_{refout} = 2.5 V.

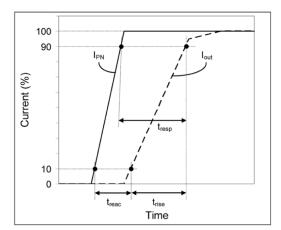


Fig.2: Definition of reaction time (t_{reac}), rise time (t_{rise}) and response time (t_{resp}).

General data

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
T _{amb}	Ambient temperature 2)		-40	-	+105	°C
T _{stg}	Storage temperature 2)		-40	-	+105	°C
T _B	Busbar temperature 2)		-40	-	+105	°C
T _{THT}	Solder temperature	For 7 seconds.	-	-	260	°C
m	Mass CDS4010ABC		-	3.6	-	g

²⁾ Operating condition. Maximum temperature limited to +85°C for UL approval.

Overcurrent detection (OVC) related data

The CDS4010 current sensor offers with OVC a digital comparator output to signal primary current overloads. The output is pulled low when a user defined critical current value is

exceeded. The overcurrent detection is adjustable for both threshold voltage and delay time. The OVC output is an open collector output with internal 10 k Ω pull up resistor.

A maximum of 3 CDS (for 3-Phase-detection) can be connected in parallel as a wired-or signal.

 T_{amb} = 25 °C; V_{CC} = 5 V; unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{OVCH}	Overcurrent output high level		4.5	-	5	V
V _{OVCL}	Overcurrent output low level		0	-	0.7	V
V _{set}	Threshold input		0.625	-	2.5	V
ε _{OVCVset}	Error of OVC Threshold	$R_M = 300 \Omega$, $I_P = I_{PN}$	-3	-	+3	% of $V_{\text{out,N}}$
$\epsilon_{ ext{OVCHys}}$	Switching Hysteresis		1	5	10	mV
R _D	Internal pull up resistance		7	10	13	kΩ
Is	Maximum current sink at OVC output		-	-	2	mA

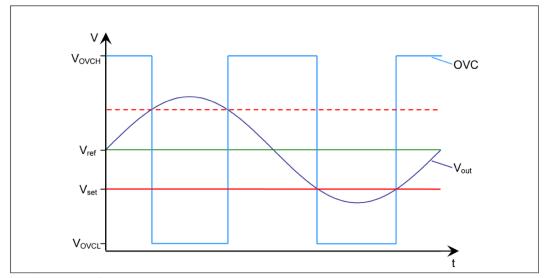


Fig. 3: Response of the overcurrent detection. Positive and negative overcurrents will be detected.

MagnetoResistive Current Sensor ($I_{PN} = 10 A$)

CDS4010 in THT-housing

Pinning

Pin	Symbol	Parameter		
1	V _{refout}	Reference voltage output		
2	Out	Signal output		
3	GND	Ground		
4	V _{cc}	Supply voltage		
5	V _{refin}	External reference voltage input		
6	C _d	Overcurrent delay capacitor input		
7	OVC	Overcurrent detection output		
8	V _{set}	Threshold voltage for overcurrent detection		
9	I _{in}	Primary current input		
10	l _{out}	Primary current output		

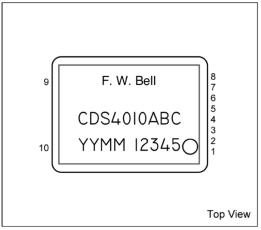


Fig.4: Pinning of CDS4010ABC.

Dimensions

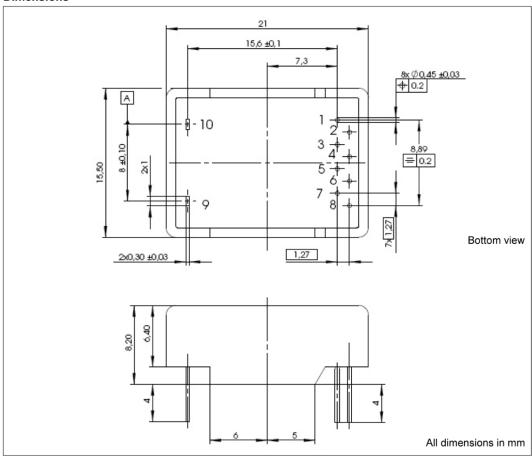


Fig.5: Package outline of THT-housing. Tolerance ± 0.2 mm unless otherwise specified.

Data sheet Page 6 of 11 Subject to technical changes March 23rd 2010

MagnetoResistive Current Sensor (I_{PN} = 10 A)

Application circuit

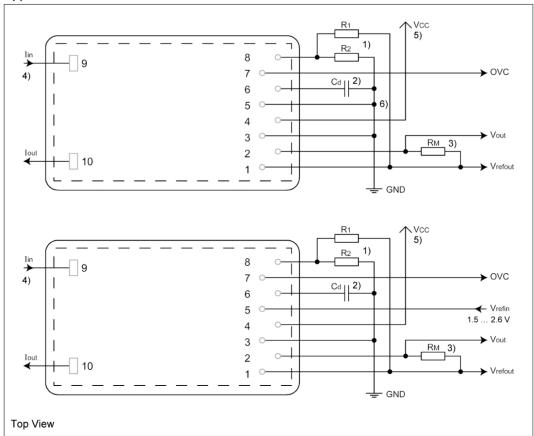


Fig.6: Top: Example of how to use the internal reference voltage. Bottom: Circuit with external reference voltage at V_{refin} (Pin 5).

Notes

1) The overcurrent threshold is set by applying a voltage to pin 8 (V_{set}) according to the formula:

$$V_{set} \ = \ V_{refout} \ - \ I_{OC} \cdot R_M \cdot G_I \qquad \text{Example: } V_{refout} = 2.5 \ V; \ R_M = 300 \ \Omega; \ I_{OC} = 20 \ A \rightarrow V_{set} = \underline{1.3 \ V}$$

In the above Fig.6 the potential divider with R_1 and R_2 on Pin 8 (V_{set}) is used to adjust the threshold for the overcurrent detection. In consideration of internal 60 k Ω in parallel to R1 the divider calculates as follows:

$$\frac{\text{Vset}}{\text{Vrefout}} = \frac{R_2}{\frac{R_1 \cdot 60 \text{ k}\Omega}{R_1 + 60 \text{ k}\Omega} + R_2} \quad \text{with } 1.0 \text{ k}\Omega < (R_1 + R_2) < 7.5 \text{ k}\Omega \text{ and } R_1 \text{ or } R_2 < 1.0 \text{ k}\Omega.$$

2) The overcurrent delay time is adjustable with the capacitor C_d on Pin 6. Without C_d the delay time has its minimum value. The minimum delay time is achieved by not using a capacity C_d (not connected on ground).

$$t_{d}~\approx~0.5~\mu s + \frac{C_{d}~(pF)}{50~pF}~\mu s \qquad \text{or} \quad C_{d} \approx 50~pF \cdot \left(~t_{d}~(\mu s) - 0.5~\mu s~\right). \label{eq:td}$$

3) $R_M > 300 \Omega$: reduces I_{PR} but increases G_V . See Fig.1.

Output voltage depending on primary current as: $V_{out} = V_{refout} + R_M \cdot G_I \cdot I_P$

- 4) V_{out} is positive, if I_P flows from Pin 9 " I_{in} " to Pin10 " I_{out} ".
- 5) V_{CC} should always be buffered with a capacity of at least 100 nF.
- 6) V_{refin} should always be routed on Ground if not used.

Application circuit

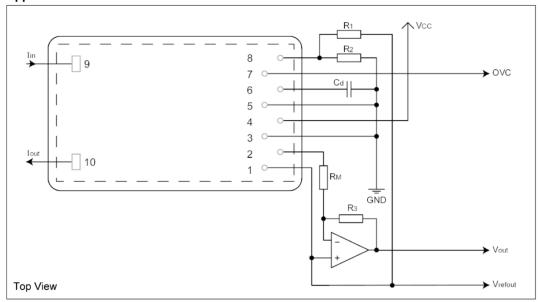


Fig.7: Example of how to use an operational amplifier to adjust the output signal to an A/D converter. With $R_M = 300 \ \Omega$ and $R_3 = 410 \ \Omega$, the output signal is amplified to a full scale output of 4.92 V.

PCB Layout

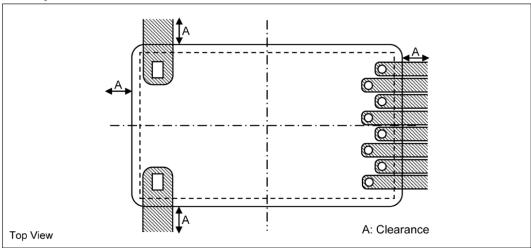


Fig.8: Recommended PCB Layout for the CDS4010 sensor (schematic).

Additional notes for the designer

- The minimum clearance to other magnetic devices (for example: relay, current conductors and permanent magnets) depends on the strength of their magnetic field. Homogeneous fields should be below 1 kA/m and magnetic field gradients should be lower then 4 kA/m². A conductor carrying 1 A produces a magnetic field of 20 A/m and a magnetic field gradient of 2.5 kA/m² at a distance of 8 mm.
- The maximum operating temperature is primarily limited by the busbar temperature. Care must be taken to keep the busbar temperature below 105 °C.
- It is recommended to place multiple CDS4010 sensors with a clearance (A) of at least 10 mm. A smaller distance will only influence the offset. Cross-talk is not relevant. The current paths in the PCB however may not be routed underneath a CDS4000 sensor.

Data sheet Page 8 of 11 Subject to technical changes March 23rd 2010

Typical performance graphs

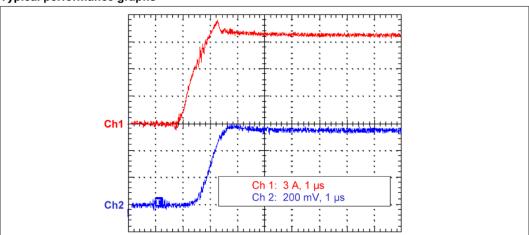


Fig.9: Typical output characteristic due to a current jump from 0 to I_{PN} . Input di/dt \approx 10 A/ μ s.

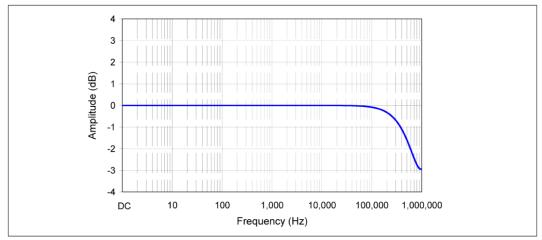


Fig.10: Typical frequency response.

MagnetoResistive Current Sensor (I_{PN} = 10 A)

The CDS4000 product family

The CDS4010 is a member of the CDS4000 product family offering PCB-mountable THT

current sensors from 6 A up to 150 A nominal current for various industrial applications. For each sensor type a Demoboard for evaluation and testing is available.

Product	I _{PN} (A)	I _{PR} (A)	Package	Demoboard	
CDS4006ABC-KA	6	18		(i)	
CDS4010ABC-KA	10	30			
CDS4015ABC-KA	15	45			
CDS4025ABC-KA	25	75			
CDS4050ABC-KA	50	150			
CDS4050ACC-KA	50	150		O	
CDS4100ACC-KA	100	300		10 mm	
CDS4125ACC-KA	125	375	Un.	100 100 100 100 100 100 100 100 100 100	
CDS4150ACC-KA	150	450			

I_{PN}: Nominal primary current (RMS).

 I_{PR} : Measurement range (For 1 s in a 60 s interval; R_M = 300 Ω).

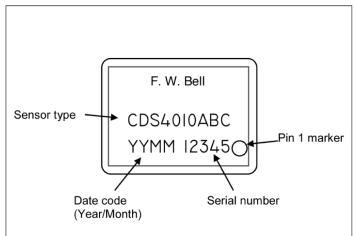


Fig.11: Sensor inscription.

MagnetoResistive Current Sensor ($I_{PN} = 10 A$)

General Information

Product Status

The product is in series production. Note: The status of the product may have changed since this data sheet was published. The latest information is available on the internet at www.sensitec.com.

Right to make changes

Pacific Scientific-OECO reserves the right to make changes, without herein for any of these products notice, in the products, including software, described or contained herein in order to improve design and/or performance. Pacific Scientific-OECO assumes no responsibility or liability for the use of any of these products.

Application information

Applications that are described are for illustrative purposes only. Pacific Scientific-OECO makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Life critical applications

These products are not qualified for use in life support appliances, aeronautical applications or devices or systems where malfunction of these products can reasonably be expected to result in personal injury.

Copyright © 2010

All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written agreement of the copyright owner. The information in this document is subject to change without notice. Please observe that typical values cannot be guaranteed.

Pacific Scientific does not assume any liability for any consequence of its use.