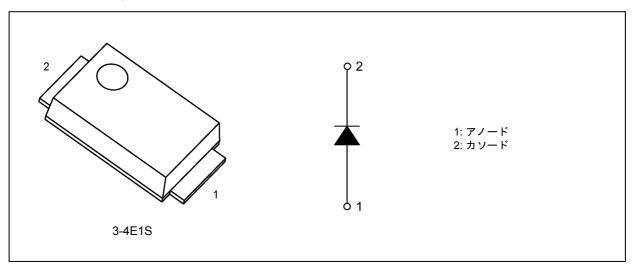
ショットキバリアダイオード

CMS15I40A


1. 用途

- ・ スイッチングレギュレータの二次側整流用
- ・ 携帯機器のバッテリー逆流防止用

2. 特長

- (1) ピーク順電圧: V_{FM} = 0.49 V(最大)@ I_F = 1.5 A
- (2) 平均順電流: I_{F(AV)} = 1.5 A
- (3) 繰り返しピーク逆電圧: V_{RRM} = 40 V
- (4) 小型薄型パッケージなので、高密度実装に適しています。 東芝呼称名"M-FLATTM"

3. 外観と内部回路構成図

4. 絶対最大定格 (注) (特に指定のない限り, Ta = 25℃)

項目	記号	注記	定格	単位
繰り返しピーク逆電圧	V_{RRM}	_	40	V
平均順電流	I _{F(AV)}	(注1)	1.5	Α
非繰り返しピーク順電流	I _{FSM}	(注2)	25	
接合温度	Tj	_	150	°C
保存温度	T _{stg}	_	-55 ~ 150	

注: 本製品の使用条件 (使用温度/電流/電圧等) が絶対最大定格以内での使用においても, 高負荷 (高温および大電流/高電圧印加, 多大な温度変化等) で連続して使用される場合は, 信頼性が著しく低下するおそれがあります。 弊社半導体信頼性ハンドブック (取り扱い上のご注意とお願いおよびディレーティングの考え方と方法) および個別信頼性情報 (信頼性試験レポート, 推定故障率等) をご確認の上, 適切な信頼性設計をお願いします。

注1: T_ℓ = 126°C 矩形波通電時(α=180°), V_R = 20 V

注2: f=50Hz 正弦半波波形

5. 熱抵抗特性

項目	記号	注記	測定条件	最大	単位
熱抵抗 (接合-周囲間)	R _{th(j-a)}	_	セラミック基板実装 (はんだランドサイズ2 mm×2 mm)	60	°C/W
		_	ガラス・エポキシ基板実装 (はんだランドサイズ6 mm × 6 mm)	135	
熱抵抗 (接合-リード間)	R _{th(j-ℓ)}	_	接合―カソード側リード間	16	

6. 電気的特性 (特に指定のない限り, Ta = 25℃)

項目	記号	注記	測定条件	最小	標準	最大	単位
ピーク順電圧	$V_{FM(1)}$		I _{FM} = 0.1 A (パルス測定)		0.26	_	V
	$V_{FM(2)}$		I _{FM} = 1.0 A (パルス測定)		0.37		
	$V_{FM(3)}$		I _{FM} = 1.5 A (パルス測定)		0.41	0.49	
繰り返しピーク逆電流	I _{RRM(1)}	_	V _{RRM} = 5 V (パルス測定)	_	8	_	μΑ
	I _{RRM(2)}		V _{RRM} = 40 V (パルス測定)		17	100	
接合容量	Cj	_	V _R = 10 V, f = 1.0 MHz	_	62	_	pF

7. 現品表示

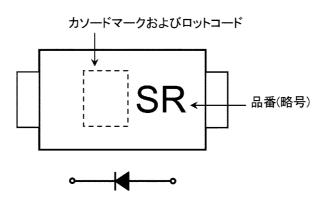


図 7.1 現品表示

略号	品番
SR	CMS15I40A

8. 使用上の注意

(1) ショットキバリアダイオードは、他のダイオードに比べ逆方向漏れ電流が大きく使用する温度・電圧により、 熱暴走を生じ破壊に至る場合があります。

順方向損失,逆方向損失を十分考慮し,放熱設計および安全設計の上ご使用ください。

(2) 絶対最大定格は絶対最大定格発表であり、一瞬たりともこれを超えてはなりません。

従いまして, ご使用にあたりマージンを考慮して, ご設計をお願いします。

目安としまして

V_{RRM}: (1) の注意事項をご参照の上ご使用ください。

また、 V_{RRM} は低温状態で約0.1%の温度特性を有しておりますので低温時の使用に際し併せてご考慮ください。

 $I_{F(AV)}$: 定格の80%以下でかつ接合部温度 (T_i) が最悪条件下で120 C以下。

本素子の場合, $T_{a(max)}$ - $I_{F(AV)}$ 曲線に対してのマージンをご考慮ください。

I_{FSM}: 繰り返し定格ではありませんので、製品寿命中ほとんど印加されない異常時の定格としてご使用ください。

 T_j : 信頼性を高める意味でディレーティングしてご使用ください。 120° C以下でご使用されることを推奨いたします。

- (3) 熱抵抗特性(接合部・周囲間)は素子の実装,取り付け状態によって変わります。 ご使用の際の放熱板,基板,参考パッド寸法等をご考慮の上,適用できる熱抵抗値を選択してください。
- (4) その他ご使用に際しては弊社最新の「ダイオード中小型編」データブックまたはホームページをご確認ください。

9. 参考パッド寸法

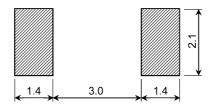


図 9.1 参考パッド寸法 (Unit: mm)

10. 特性図 (注)

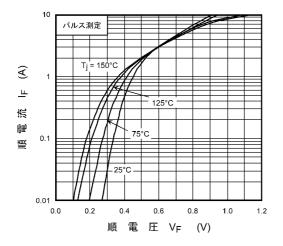


図 10.1 I_F - V_F

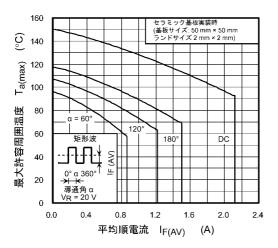


図 10.3 T_{a(max)} - I_{F(AV)}

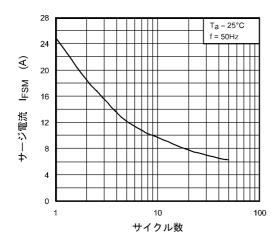


図 10.5 サージ電流

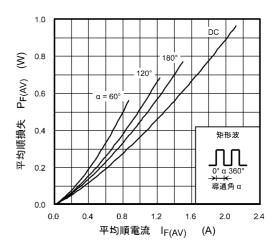


図 10.2 P_{F(AV)} - I_{F(AV)}

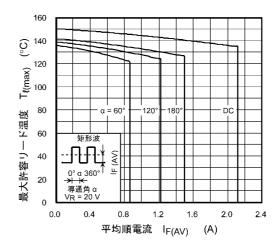


図 10.4 T_{{(max)} - I_{F(AV)}

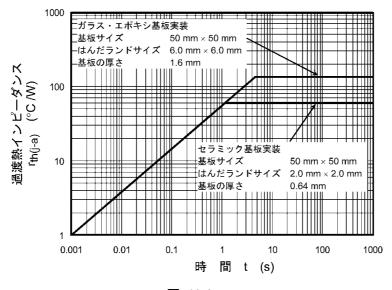
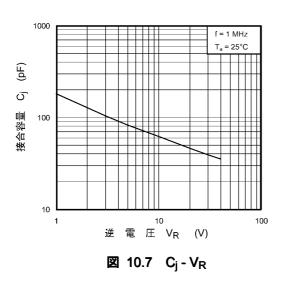
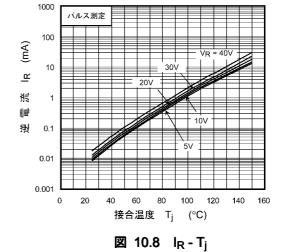
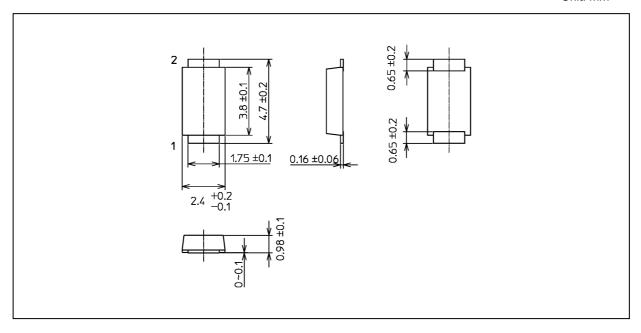




図 10.6 r_{th(j-a)} - t



注: 特性図の値は、特に指定のない限り保証値ではなく参考値です。

外形寸法図
Unit: mm

質量: 0.023 g (typ.)

	パッケージ名称	
東芝: 3-4E1S		
通称名: M-FLAT		

製品取り扱い上のお願い

- 本資料に掲載されているハードウェア、ソフトウェアおよびシステム(以下、本製品という)に関する情報等、本資料の掲載内容は、技術の進歩などにより予告なしに変更されることがあります。
- 文書による当社の事前の承諾なしに本資料の転載複製を禁じます。また、文書による当社の事前の承諾を得て本資料を転載複製する場合でも、記載内容に一切変更を加えたり、削除したりしないでください。
- ・ 当社は品質、信頼性の向上に努めていますが、半導体製品は一般に誤作動または故障する場合があります。本製品をご使用頂く場合は、本製品の誤作動や故障により生命・身体・財産が侵害されることのないように、お客様の責任において、お客様のハードウェア・ソフトウェア・システムに必要な安全設計を行うことをお願いします。なお、設計および使用に際しては、本製品に関する最新の情報(本資料、仕様書、データシート、アプリケーションノート、半導体信頼性ハンドブックなど)および本製品が使用される機器の取扱説明書、操作説明書などをご確認の上、これに従ってください。また、上記資料などに記載の製品データ、図、表などに示す技術的な内容、プログラム、アルゴリズムその他応用回路例などの情報を使用する場合は、お客様の製品単独およびシステム全体で十分に評価し、お客様の責任において適用可否を判断してください。
- 本製品は、一般的電子機器 (コンピュータ、パーソナル機器、事務機器、計測機器、産業用ロボット、家電機器など) または本資料に個別に記載されている用途に使用されることが意図されています。本製品は、特別に高い品質・信頼性が要求され、またはその故障や誤作動が生命・身体に危害を及ぼす恐れ、膨大な財産損害を引き起こす恐れ、もしくは社会に深刻な影響を及ぼす恐れのある機器 (以下"特定用途"という)に使用されることは意図されていませんし、保証もされていません。特定用途には原子力関連機器、航空・宇宙機器、医療機器、車載・輸送機器、列車・船舶機器、交通信号機器、燃焼・爆発制御機器、各種安全関連機器、昇降機器、電力機器、金融関連機器などが含まれます。本資料に個別に記載されている場合を除き、本製品を特定用途に使用しないでください。
- 本製品を分解、解析、リバースエンジニアリング、改造、改変、翻案、複製等しないでください。
- 本製品を、国内外の法令、規則及び命令により、製造、使用、販売を禁止されている製品に使用することはできません。
- 本資料に掲載してある技術情報は、製品の代表的動作 · 応用を説明するためのもので、その使用に際して当 社及び第三者の知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。
- 別途、書面による契約またはお客様と当社が合意した仕様書がない限り、当社は、本製品および技術情報に関して、明示的にも黙示的にも一切の保証(機能動作の保証、商品性の保証、特定目的への合致の保証、情報の正確性の保証、第三者の権利の非侵害保証を含むがこれに限らない。)をしておりません。
- 本製品、または本資料に掲載されている技術情報を、大量破壊兵器の開発等の目的、軍事利用の目的、あるいはその他軍事用途の目的で使用しないでください。また、輸出に際しては、「外国為替及び外国貿易法」、「米国輸出管理規則」等、適用ある輸出関連法令を遵守し、それらの定めるところにより必要な手続を行ってください。
- 本製品のRoHS適合性など、詳細につきましては製品個別に必ず弊社営業窓口までお問合せください。本製品のご使用に際しては、特定の物質の含有・使用を規制するRoHS指令等、適用ある環境関連法令を十分調査の上、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、当社は一切の責任を負いかねます。