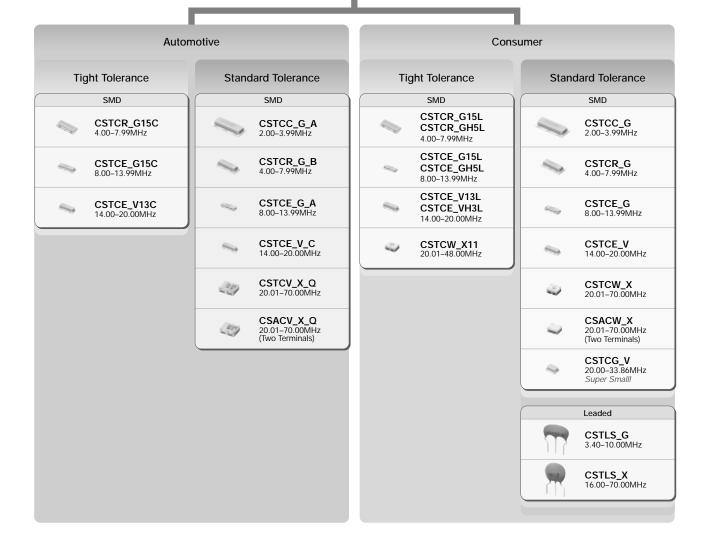
EU RoHS Compliant

- · All the products in this catalog comply with EU RoHS.
- EU RoHS is "the European Directive 2002/95/EC on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment."
- For more details, please refer to our website 'Murata's Approach for EU RoHS' (http://www.murata.com/info/rohs.html).

CONTENTS

 ${\sf CERALOCK}^{\circledcirc}, {\sf CERALOCK(R)} \ and \ "{\sf CERALOCK"} \ in this catalog \ are the trademarks of Murata Manufacturing Co., Ltd.$


1

Selection Guide2
Part Numbering 3
1 MHz Chip Type -Tight Frequency Tolerance for Automotive-
● Application Circuits Utilization — 6
2 MHz Chip Type -Standard Frequency Tolerance for Automotive-
● Application Circuits Utilization — 11
Notice for Automotive
Packaging for Automotive 17
3 MHz Chip Type -Tight Frequency Tolerance for General Usage-
● Application Circuits Utilization — 22
4 MHz Chip Type -Standard Frequency Tolerance for General Usage- 23
● Application Circuits Utilization — 28
MHz Lead Type -Standard Frequency Tolerance for General Usage-
Application Circuits Utilization — 32
Notice for General Usage
● MHz Chip Type ————————————————————————————————————
● MHz Lead Type ————————————————————————————————————
Packaging for General Usage
● MHz Chip Type ————————————————————————————————————
● MHz Lead Type ————————————————————————————————————

Selection Guide

Applications

Notice: "CERALOCK® for consumer" and "CERALOCK® for automotive" is different in the specification of Operating Temperature Range, Environmental Characteristics, Physical Characteristics and so on. Please choose either "for consumer" or "for automotive" according to the required specification.

Part Numbering

CERALOCK® (MHz)

Product ID

Product ID	
cs	Ceramic Resonators

2Frequency/Capacitance

Code	Frequency/Capacitance
Α	MHz with No capacitance built-in
Т	MHz with Built-in Capacitance

3Structure/Size

Code	Structure/Size
LS	Round Lead Type
СС	Cap Chip Type
CR/CE/CG	Small-cap Chip Type
CV	Monolithic Chip Type
CW	Small Monolithic Chip Type

4 Nominal Center Frequency

Expressed by four-digit alphanumerics. The unit is in hertz (Hz). Decimal point is expressed by capital letter " \mathbf{M} ".

6 Design

Code	Design
G□□	Thickness Shear mode
T/V□□	Thickness Expander mode
X□□	Thickness Expander mode (3rd overtone)

^{□□} indicates initial frequency tolerance and load capacity.

6Initial Frequency Tolerance

Code	Design
5	±0.5%
3	±0.3%
2	±0.2%
1	±0.1%
Н	±0.07%

Doad Capacity

Code	Design
1	5/6pF
2	10pF
3	15pF
4	22pF
5	30/33/39pF
6	47pF

8 Individual Specification

Code	Individual Specification
***	Three-digit alphanumerics express "Individual Specification".

With standard products, "8 Individual Specification" is omitted.

Packaging

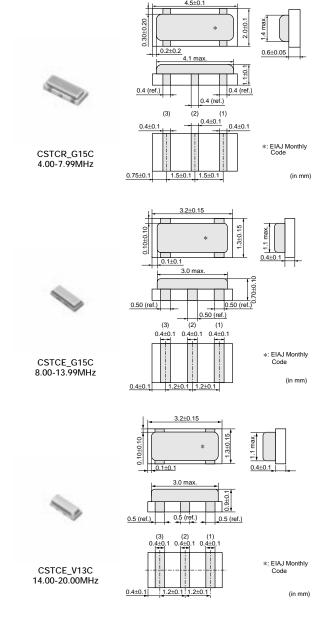
Code	Packaging
-B0	Bulk
-A0	Radial Taping H ₀ =18mm
-R0	Plastic Taping ø=180mm
-R1	Plastic Taping ø=330mm

Radial taping is applied to lead type and plastic taping to chip type.

Ceramic Resonators (CERALOCK®)

MHz Chip Type -Tight Frequency Tolerance for Automotive-

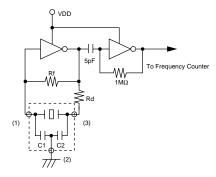
Chip type CERALOCK(R) with built-in load capacitors provides high accuracy in an extremely small package. MURATA's frequency adjustment and package technology expertise has enabled the development of the chip CERALOCK(R) with built-in load capacitors.


This diverse series owes its development to MURATA's original mass production techniques and high reliability, and has achieved importance in the worldwide automotive market.

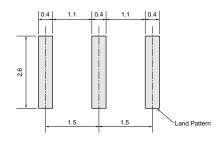
■ Features

- 1. The series are high accuracy resonators whose total tolerance is available for less than +-3,000ppm.
- 2. The series has high reliability and is available for a wide temperature range.
- Oscillation circuits do not require external load capacitors.
- 4. The series is available for a wide frequency range.
- The resonators are extremely small and have a low profile.
- 6. No adjustment is necessary for oscillation circuits.

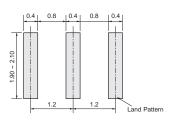
■ Applications


- 1. Cluster panel and Control panel
- Safety control (Anti-lock Brake System, Electronic Stability Control, Airbag, etc.)
- 3. Engine ECU, Electronic Power Steering, Immobilizer, etc.
- Car Air conditioner, Power Window, Remote Keyless Entry system, etc.
- 5. Intelligent Transportation System (Lane Keeping System, Millimeter wave radar, etc.)
- 6. Battery control for hybrid cars

Part Number	Oscillating Frequency (MHz)	Initial Tolerance	Temperature Stability (%)	Temperature Range (°C)
CSTCR_G15C	4.00 to 7.99	±0.1%	±0.13	-40 to 125
CSTCE_G15C	8.00 to 13.99	±0.1%	±0.13	-40 to 125
CSTCE_V13C	14.00 to 20.00	±0.1%	±0.13	-40 to 125

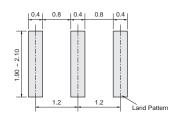

Irregular or stop oscillation may occur under unmatched circuit conditions. Please check the actual conditions prior to use.

■ Oscillation Frequency Measuring Circuit

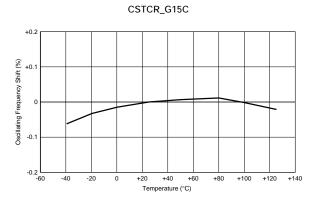


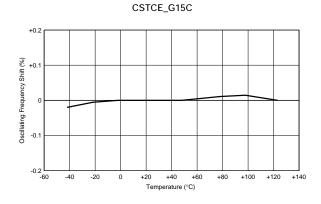
■ Standard Land Pattern Dimensions

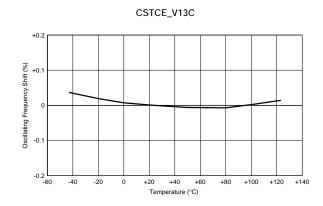
CSTCR_G15C (* This Land Pattern is not common to CSTCR_G.)


CSTCE_G15C

nm)

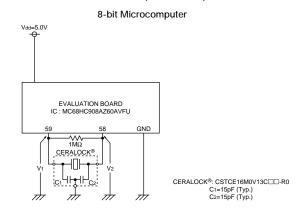

(in mm)


CSTCE_V13C (* This Land Pattern is not common to CSTCE_V.)

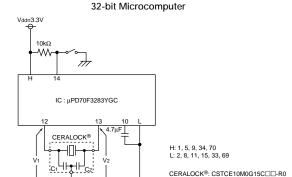


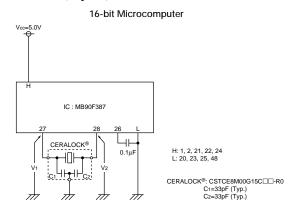
(in mm)

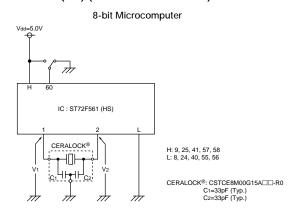
lacktriangle Oscillation Frequency Temperature Stability



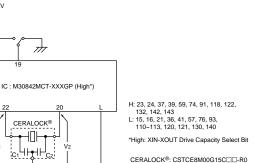
Application Circuits Utilization


■ TMP92CD54IF (Toshiba)


■ MC68HC908AZ60AVFU (Freescale)


■ μPD70F3283YGC (Renesas)

■ MB90F387 (Fujitsu)


■ ST72F561 (HS) (ST Microelectronics)

16-bit Microcomputer

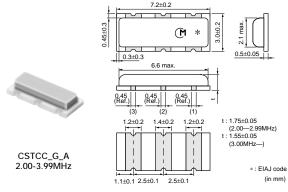
■ M30842MCT-XXXGP (Renesas)

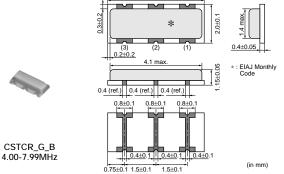
Vcc=5.0V

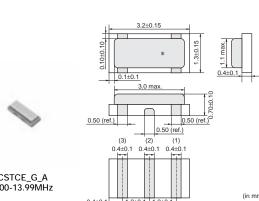
Ceramic Resonators (CERALOCK®)

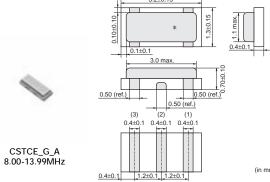
MHz Chip Type -Standard Frequency Tolerance for Automotive-

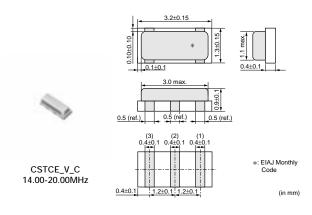
Chip type CERALOCK(R) with built-in load capacitors provides high accuracy in an extremely small package. MURATA's frequency adjustment and package technology expertise has enabled the development of the chip CERALOCK(R) with built-in load capacitors.

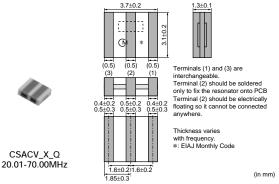

This diverse series owes its development to MURATA's original mass production techniques and high reliability, and has achieved importance in the worldwide automotive market.

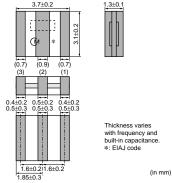

■ Features


- 1. The series has high reliability and is available for a wide temperature range.
- 2. Oscillation circuits do not require external load capacitors.
- 3. The series is available in a wide frequency range.
- 4. The resonators are extremely small and have a low
- 5. No adjustment is necessary for oscillation circuits.

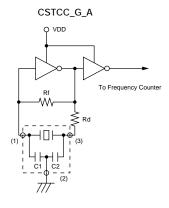

Applications

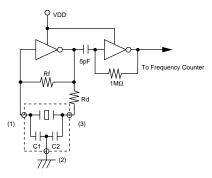

- 1. Cluster panel and Control panel
- 2. Safety control (Anti-lock Brake System, Electronic Stability Control, Airbag, etc.)
- 3. Engine ECU, Electronic Power Steering, Immobilizer,
- 4. Car Air conditioner, Power Window, Remote Keyless Entry system, etc.
- 5. Electronic Toll Collection system, Car Navigation,

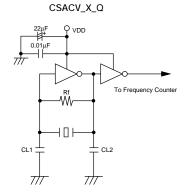




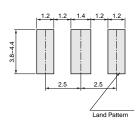
Continued on the following page.

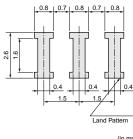

CSTCV_X_Q 20.01-70.00MHz


Part Number	Oscillating Frequency (MHz)	Initial Tolerance	Temperature Stability (%)	Temperature Range (°C)
CSTCC_G_A	2.00 to 3.99	±0.5%	±0.4 [-0.6% to +0.3%:Built-in Capacitance 47pF type within Freq.2.00 to 3.49MHz]	-40 to 125
CSTCR_G_B	4.00 to 7.99	±0.5%	±0.15	-40 to 125
CSTCE_G_A	8.00 to 13.99	±0.5%	±0.2	-40 to 125
CSTCE_V_C	14.00 to 20.00	±0.5%	±0.15	-40 to 125
CSACV_X_Q	20.01 to 70.00	±0.5%	±0.3	-40 to 125
CSTCV_X_Q	20.01 to 70.00	±0.5%	±0.3	-40 to 125

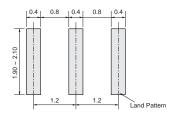

Irregular or stop oscillation may occur under unmatched circuit conditions. Please check the actual conditions prior to use.

■ Oscillation Frequency Measuring Circuit


CSTCE_G_A/CSTCE_V_C/CSTCR_G_B/CSTCV_X_Q


■ Standard Land Pattern Dimensions

CSTCC_G_A

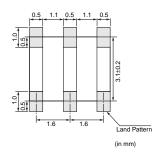

(in mm)

CSTCR_G_B

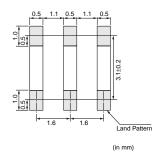


(in mm)

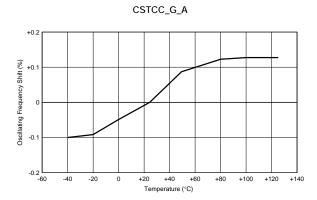
CSTCE_G_A

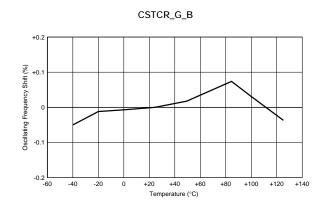


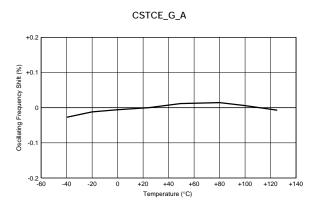
CSTCE_V_C
(* This Land Pattern is not common to CSTCE_V.)

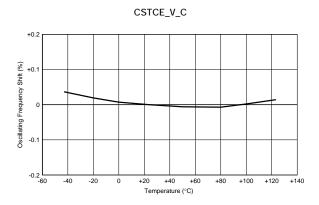


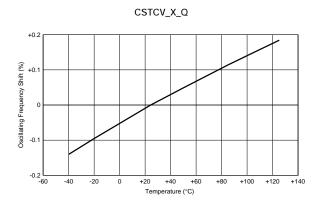
(in mm)


CSTCV_X_Q

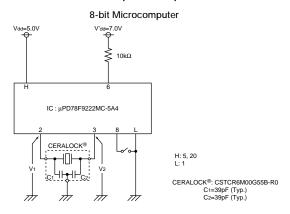


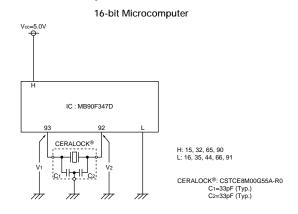

CSACV_X_Q



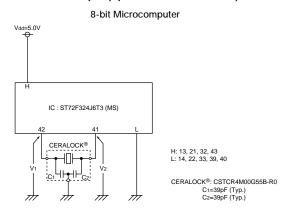

■ Oscillation Frequency Temperature Stability

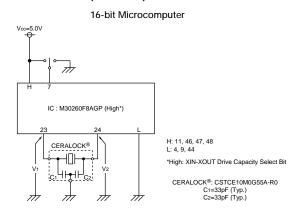


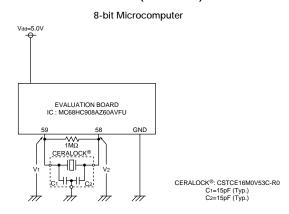


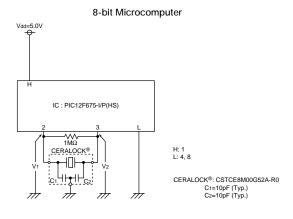


Application Circuits Utilization


■ µPD78F9222MC-5A4 (Renesas)


■ MB90F347D (Fujitsu)


■ ST72F324J6T3 (MS) (ST Microelectronics)


■ M30260F8AGP (Renesas)

■ MC68HC908AZ60AVFU (Freescale)

■ PIC12F675-I/P (HS) (Microchip)

■ Soldering and Mounting (CSTCC/CSTCR/CSTCE_V/CSTCE_G Series)

1. Soldering

(1) Re-flow soldering

Please mount component on a circuit board by re-flow soldering. Flow soldering is not acceptable.

Recommendable Flux and Solder

Flux	Please use rosin based flux, but do not use water soluble flux.
Solder	Please use solder (Sn-3.0Ag-0.5Cu) under the following condition. Standard thickness of soldering paste: 0.10 to 0.15mm

Recommendable Soldering Profile

<u> </u>			
Pre-heating	150 to 180°C	60 to 120s	
Heating	220°C min.	30 to 60s	
Peak Temperature	upper limit: 260°C	1s max.	
	lower limit: 245°C	5s max.	

Temperature shall be measured on the surface of component.

(2) Soldering with Iron

Be compelled to mount component by using soldering iron, please do not directly touch the component with soldering iron. The terminals of component or electrical characteristics may be damaged if excess thermal stress is applied.

Recommendable Soldering with Iron

Heating of the soldering iron	350°C max.
Watt	30W max.
Shape of the soldering iron	ø3mm max.
Soldering Time	5s max. at one terminal
Solder	Sn-3.0Ag-0.5Cu

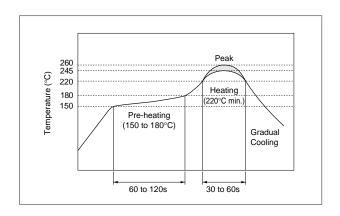
(3) Solder Volume

Please make the solder volume less than the height of the substrate. When exceeding the substrate, the damage of adhesive for sealing between the metal cap and the substrate may occur.

(4) etc.

Do not reuse removed component from a circuit board after soldering.

(5) Condition for Placement Machines


The component is recommended with placement machines with employ optical placement capabilities. The component might be resulted in damage by excessive mechanical force. Please make sure that you have evaluated by using placement machines before going into mass production. Do not use placement machines which utilize mechanical positioning. Please contact Murata for details beforehand.

2. Wash

(1) Cleaning Solvents

HCFC, Isopropanol, Tap water, Demineralized water, Cleanthrough750H, Pine alpha 100S, Techno care FRW

muRata

Continued from the preceding page.

(2) Temperature Difference : dT *1 dT≤60°C (dT=Component-solvent)

*1 ex. In case the component at +90°C immerses into cleaning solvent at +60°C, then dT=30°C.

(3) Conditions

(a) Ultrasonic Wash

1 minute max. in above solvent at +60°C max. (Frequency: 28kHz, Output: 20W/I)

(4) Drying

5 minutes max. by air blow at +80°C max.

(5) Others

- (a) Total washing time should be within 10 minutes.
- (b) The component may be damaged if it is washed with chlorine, petroleum, or alkali cleaning solvent.

3. Coating

Conformal coating of the component is acceptable. However, the resin material, curing temperature, and other process conditions should be evaluated to confirm stable electrical characteristics are maintained.

- (b) Immersion Wash
 - 5 minutes max. in above solvent at +60°C max.
- (c) Shower or Rinse Wash
 - 5 minutes max. in above solvent at +60°C max.

■ Soldering and Mounting (CSTCV/CSACV Series)

1. Soldering

(1) Re-flow soldering

Please mount component on a circuit board by re-flow soldering. Flow soldering is not acceptable.

Recommendable Flux and Solder

Flux	Please use rosin based flux, but do not use water soluble flux.
Solder	Please use solder (Sn-3.0Ag-0.5Cu) under the following condition. Standard thickness of soldering paste: 0.10 to 0.15mm

Recommendable Soldering Profile

Pre-heating	150 to 180°C	60 to 120s	
Heating	220°C min.	30 to 60s	
Peak Temperature	upper limit: 260°C	1s max.	
	lower limit: 245°C	5s max.	

Temperature shall be measured on the surface of component.

(2) Soldering with Iron

Be compelled to mount component by using soldering iron, please do not directly touch the component with soldering iron. The terminals of component or electrical characteristics may be damaged if excess thermal stress is applied.

Recommendable Soldering with Iron

Heating of the soldering iron	350°C max.
Watt	30W max.
Shape of the soldering iron	ø3mm max.
Soldering Time	5s max. at one terminal
Solder	Sn-3.0Ag-0.5Cu

(3) etc.

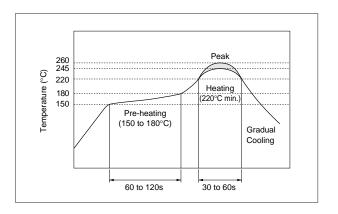
Do not reuse removed component from a circuit board after soldering.

(4) Condition for Placement Machines

The component is recommended with placement machines with employ optical placement capabilities. The component might be resulted in damage by excessive mechanical force. Please make sure that you have evaluated by using placement machines before going into mass production. Do not use placement machines which utilize mechanical positioning. Please contact Murata for details beforehand.

2. Wash

(1) Cleaning Solvents


HCFC, Isopropanol, Tap water, Demineralized water, Cleanthrough 750H, Pine alpha 100S, Techno care FRW

(2) Temperature Difference: dT *1

dT≦60°C (dT=Component-solvent)

*1 ex. In case the component at +90°C immerses into cleaning solvent at +60°C, then dT=30°C.

muRata

Continued from the preceding page.

(3) Conditions

(a) Ultrasonic Wash

1 minute max. in above solvent at +60°C max. (Frequency: 28kHz, Output: 20W/l)

(4) Drying

5 minutes max. by air blow at +80°C max.

(5) Others

- (a) Total washing time should be within 10 minutes.
- (b) The component may be damaged if it is washed with chlorine, petroleum, or alkali cleaning solvent.

3. Coating

Conformal coating of the component is acceptable. However, the resin material, curing temperature, and other process conditions should be evaluated to confirm stable electrical characteristics are maintained.

- (b) Immersion Wash
 - 5 minutes max. in above solvent at +60°C max.
- (c) Shower or Rinse Wash

5 minutes max. in above solvent at +60°C max.

■ Storage and Operating Conditions

1. Product Storage Condition

Please store the products in a room where the temperature/humidity is stable, and avoid such places where there are large temperature changes. Please store the products under the following conditions:

Temperature: -10 to + 40 degrees C Humidity: 15 to 85% R.H.

- 2. Expiration Date on Storage
 - Expiration date (Shelf life) of the products is six months after delivery under the conditions of a sealed and unopened package. Please use the products within six months after delivery. If you store the products for a long time (more than six months), use carefully because the products may be degraded in solderability and/or rusty.
 - Please confirm solderability and characteristics for the products regularly.
- 3. Notice on Product Storage
- (1) Please do not store the products in a chemical atmosphere (Acids, Alkali, Bases, Organic gas, Sulfides and so on), because the characteristics may be reduced in quality, and/or be degraded in the solderability due to the storage in a chemical atmosphere.
- Rating

The component may be damaged if excessive mechanical stress is applied.

■ Handling

"CERALOCK" may stop oscillating or oscillate irregularly under improper circuit conditions.

- (2) Please do not put the products directly on the floor without anything under them to avoid damp and/or dusty places.
- (3) Please do not store the products in places such as: in a damp heated place, in a place where direct sunlight comes in, in a place applying vibrations.
- (4) Please use the products immediately after the package is opened, because the characteristics may be reduced in quality, and/or be degraded in the solderability due to storage under the poor conditions.
- (5) Please do not drop the products to avoid cracking of ceramic elements.
- 4. Others

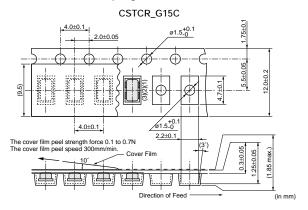
Conformal coating of the component is acceptable. However, the resin material, curing temperature, and other process conditions should be evaluated to confirm that stable electrical characteristics are maintained.

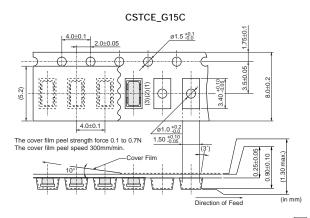
Please be sure to consult with our sales representatives or engineers whenever and prior to using the products.

Packaging for Automotive

■ Minimum Quantity

Part Number	Plastic Tape ø180mm	Plastic Tape ø330mm	Bulk	Dimensions
CSTCC_G_A	2,000	6,000	500	a
CSTCR_G_B	3,000	9,000	500	a
CSTCR_G15C	3,000	9,000	500	a
CSTCE_G_A	3,000	9,000	500	b
CSTCE_G15C	3,000	9,000	500	b
CSTCE_V_C	3,000	9,000	500	b
CSTCE_V13C	3,000	9,000	500	b
CSTCV_X_Q	2,000	6,000	500	а
CSACV_X_Q	2,000	6,000	500	a

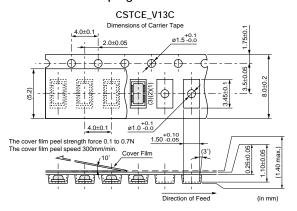

The order quantity should be an integral multiple of the "Minimum Quantity" shown above.

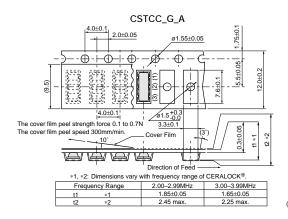

(pcs.)

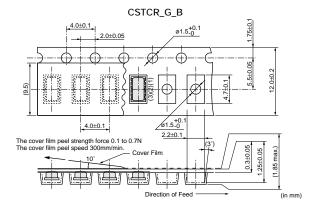
■ Dimensions of Reel

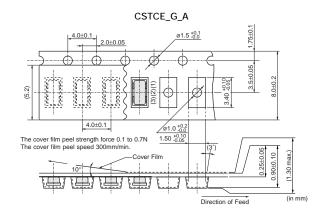
■ Dimensions of Taping

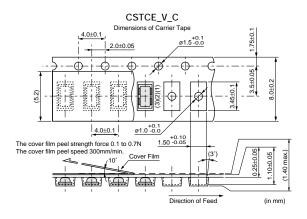
Continued on the following page.

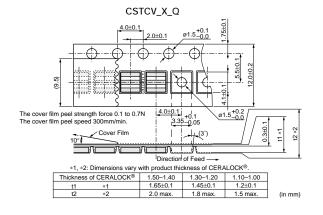


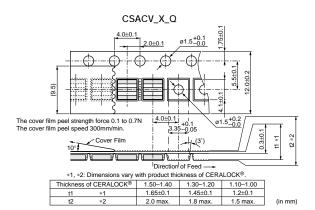



Packaging for Automotive


Continued from the preceding page.

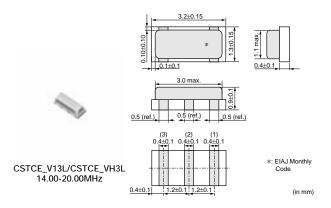

■ Dimensions of Taping

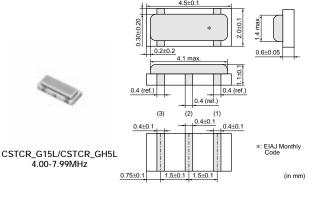


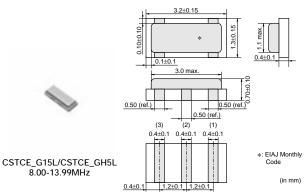


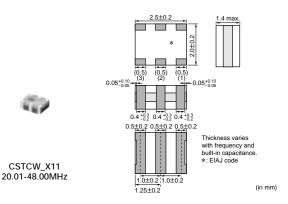
Ceramic Resonators (CERALOCK®)

MHz Chip Type -Tight Frequency Tolerance for General Usage-


Chip type CERALOCK(R) with built-in load capacitors provides high accuracy in an extremely small package. MURATA's frequency adjustment and packaging technology expertise has enabled the development of the chip CERALOCK(R) with built-in load capacitors. High-density mounting is made possible by the small package and the elimination of the need for an external load capacitor.


■ Features

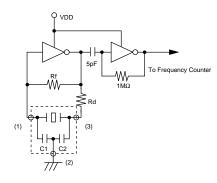

- Oscillation circuits do not require external load capacitors.
- 2. Available in a wide frequency range.
- 3. Extremely small and have a low profile.
- 4. No adjustment is necessary for oscillation circuits.


■ Applications

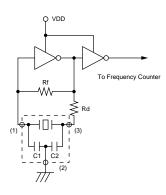
- Clock oscillators for USB (Full-speed) controller ICs
- 2. Audio equipment and musical instruments, etc.
- 3. Other applications for replacement of Crystal Oscillators

Part Number	Oscillating Frequency (MHz)	Initial Tolerance	Temperature Stability (%)	Temperature Range (°C)
CSTCR_G15L	4.00 to 7.99	±0.1%	±0.08	0 to 70
CSTCR_GH5L	4.00 to 7.99	±0.07%	±0.08	0 to 70
CSTCE_G15L	8.00 to 13.99	±0.1%	±0.08	0 to 70
CSTCE_GH5L	8.00 to 13.99	±0.07%	±0.08	0 to 70
CSTCE_V13L	14.00 to 20.00	±0.1%	±0.08	0 to 70
CSTCE_VH3L	14.00 to 20.00	±0.07%	±0.08	0 to 70

muRata

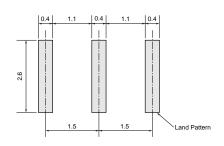

Continued from the	preceding	page

Part Number	Oscillating Frequency (MHz)	Initial Tolerance	Temperature Stability (%)	Temperature Range (°C)
CSTCW_X11	20.01 to 48.00	±0.1%	±0.1	0 to 70

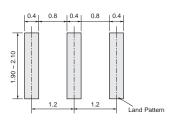

Irregular or stop oscillation may occur under unmatched circuit conditions. Please check the actual conditions prior to use.

■ Oscillation Frequency Measuring Circuit

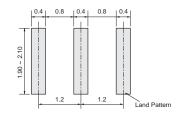
CSTCR_G15L/CSTCR_GH5L/CSTCE_G15L/CSTCE_GH5L/CSTCE_V13L/CSTCE_VH3L

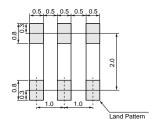


CSTCW_X11



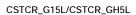
■ Standard Land Pattern Dimensions

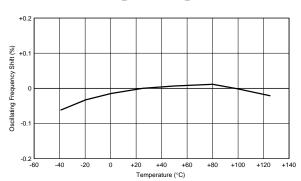

CSTCR_G15L/CSTCR_GH5L (* This Land Pattern is not common to CSTCR_G.)


CSTCE_G15L/CSTCE_GH5L

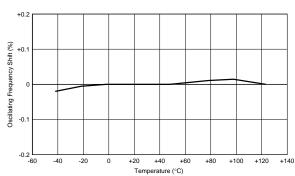
CSTCE_V13L/CSTCE_VH3L (* This Land Pattern is not common to CSTCE_V.)

CSTCW_X11

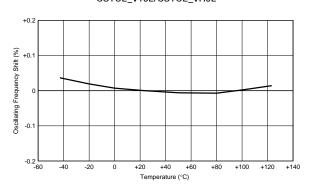


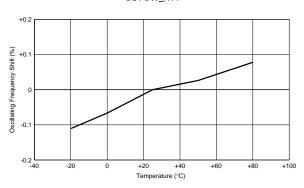

(in mm)

(in mm)


3

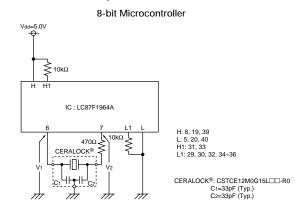
■ Oscillation Frequency Temperature Stability



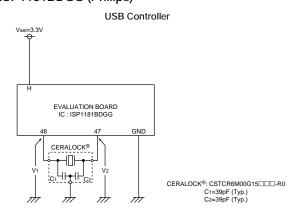

CSTCE_G15L/CSTCE_GH5L

CSTCE_V13L/CSTCE_VH3L

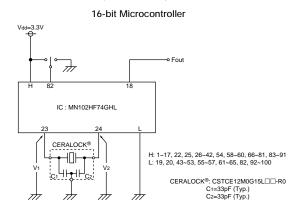
CSTCW_X11

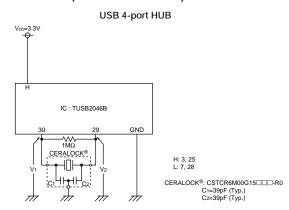


Application Circuits Utilization


■ M66291GP (Renesas)

USB Transceiver Vset=3.3V EVALUATION BOARD IC: M66291GP 14 13 GND CERALOCK®: CSTCR6M00G15□□□-R0 C1=39pF (Typ.) C2=39pF (Typ.)


■ LC87F1964A (Sanyo)


■ ISP1181BDGG (Philips)

■ MN102HF74GHL (Panasonic)

■ TUSB2046B (Texas Instruments)

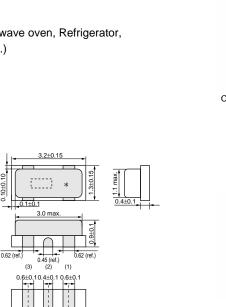
Ceramic Resonators (CERALOCK®)

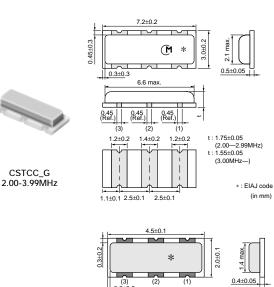
MHz Chip Type -Standard Frequency Tolerance for General Usage-

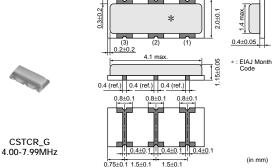
CSTCC G

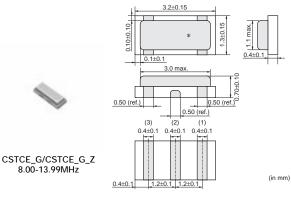
Chip type CERALOCK(R) with built-in load capacitors provides an extremely small package.

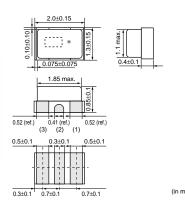
MURATA's package technology expertise has enabled the development of the Chip CERALOCK(R) with built-in load capacitors.


High-density mounting can be realized because of the small package and the elimination of the need for an external load capacitor.

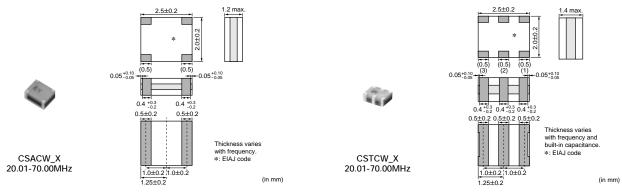

■ Features


- 1. Oscillation circuits do not require external load capacitors.
- 2. Available in a wide frequency range.
- 3. Extremely small and have a low profile.
- 4. No adjustment is necessary for oscillation circuits.


■ Applications


- 1. Clock oscillators for microprocessors
- 2. Small electronic equipment such as handheld phone, digital video camcorder (DVC), digital still camera (DSC), portable audio player, etc.
- 3. Storage media and memory (HDD, Optical storage device, FDD, Flash memory card. etc.)
- 4. Office automation equipment (Mobile PC, Mouse, Keyboard, etc.)
- 5. Audio-visual applications (TV, DVD-HDD recorder, Audio equipment, Remote control, etc.)
- 6. Home appliances (Air conditioner, Microwave oven, Refrigerator, Washing machine, etc.)

Continued on the following page.

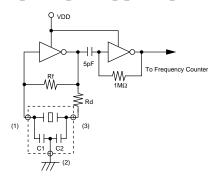


CSTCG_V

20.00-33.86MHz (Ultra Small)

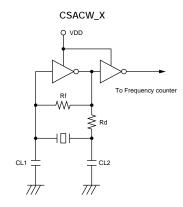
CSTCE_V

14.00-20.00MHz

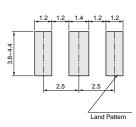


Part Number	Oscillating Frequency (MHz)	Initial Tolerance	Temperature Stability (%)	Temperature Range (°C)
CSTCC_G	2.00 to 3.99	±0.5%	±0.3 [±0.4%:Built-in Capacitance 47pF type within Freq.2.00 to 3.49MHz]	-20 to 80
CSTCR_G	4.00 to 7.99	±0.5%	±0.2	-20 to 80
CSTCE_G	8.00 to 13.99	±0.5%	±0.2	-20 to 80
CSTCE_G_Z	8.00 to 13.99	±0.5%	±0.2	-40 to 125
CSTCE_V	14.00 to 20.00	±0.5%	±0.3	-20 to 80
CSTCG_V	20.00 to 33.86	±0.5%	±0.3	-20 to 80
CSACW_X	20.01 to 70.00	±0.5%	±0.2	-20 to 80
CSTCW_X	20.01 to 70.00	±0.5%	±0.2	-20 to 80

Irregular or stop oscillation may occur under unmatched circuit conditions. Please check the actual conditions prior to use.

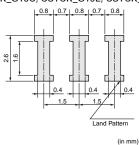

■ Oscillation Frequency Measuring Circuit

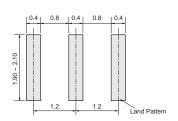
CSTCR_G/CSTCE_G/CSTCE_G_Z/CSTCE_V/CSTCG_V


Q VDD To Frequency Counter

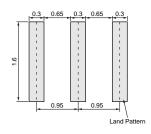
CSTCC_G/CSTCW_X

■ Standard Land Pattern Dimensions

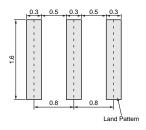

CSTCC_G


(in mm)

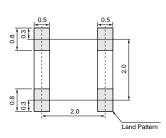
(in mm)


CSTCR_G (* This Land Pattern is not common to CSTCR_G15C, CSTCR_G15L, CSTCR_GH5L.)

CSTCE_G/CSTCE_G_Z

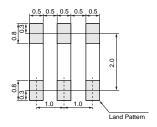


CSTCE_V (* This Land Pattern is not common to CSTCE_V13C, CSTCE_V_C, CSTCE_V13L, CSTCE_VH3L.)

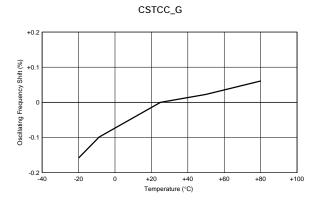


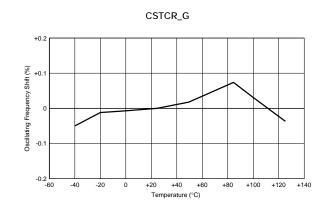
(in mm)

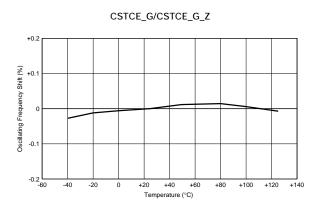
CSTCG_V

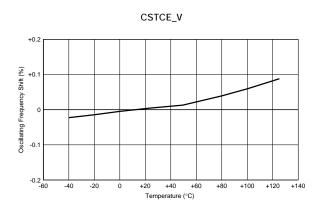


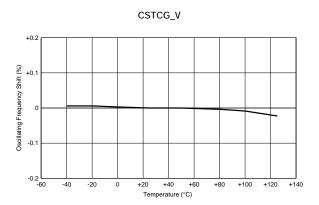
CSACW_X

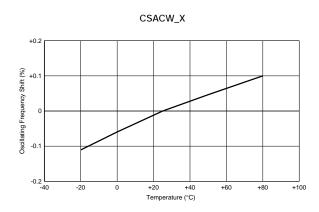

(in mm)

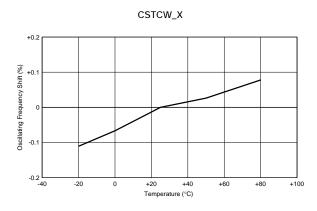

CSTCW_X

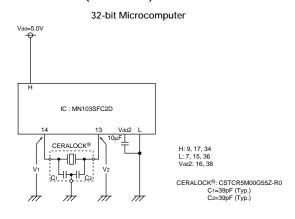



(in mm)

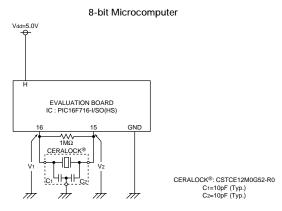

■ Oscillation Frequency Temperature Stability



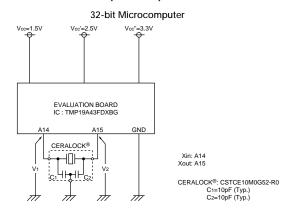




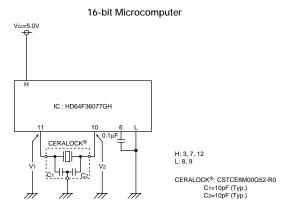
Application Circuits Utilization


■ μPD78F0533GB (Renesas)

8-bit Microcomputer Vdd=5.0V IC : μPD78F0533GB CERALOCK® H: 15, 16, 47 CERALOCK®: CSTCR4M00G55-R0 C1=39pF (Typ.) C2=39pF (Typ.)


■ MN103SFC2D (Panasonic)

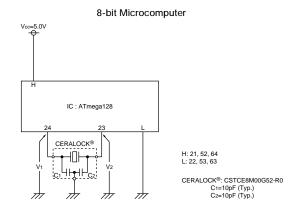
■ PIC16F716-I/SO (Microchip)


■ TMP19A43FDXBG (Toshiba)

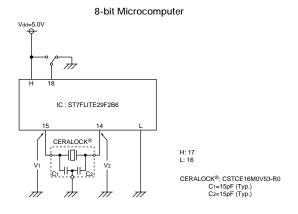
■ MB95F128H (Fujitsu)

■ HD64F36077GH (Renesas)

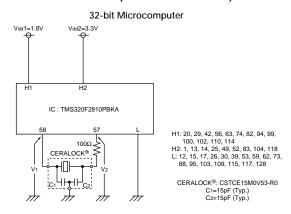
Continued on the following page.


Application Circuits Utilization

Continued from the preceding page.


■ µPD70F3215HYGC (Renesas)

32-bit Microcomputer Vdd=5.0V IC: μPD70F3215HYGC CERALOCK® H: 1, 5, 9, 34, 70 L: 2, 8, 11, 33, 69 CERALOCK®: CSTCR5M00G55-R0 C1=39pF (Typ.) C2=39pF (Typ.)


■ ATmega128 (Atmel)

■ ST7FLITE29F2B6 (ST Microelectronics)

■ TMS320F2810PBKA (Texas Instruments)

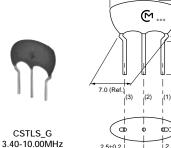
muRata

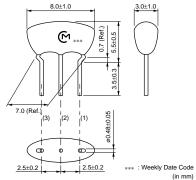
MHz Lead Type -Standard Frequency Tolerance for General Usage-

MURATA's ceramic resonator, CERALOCK(R) with built-in load capacitors, has been widely applied as the most suitable component for clock oscillators in a broad range of microprocessors.

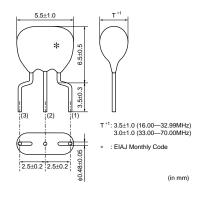
The CSTLS series can be used in the design of oscillation circuits not requiring external load capacitors, enabling both high-density mounting and cost reduction.

■ Features

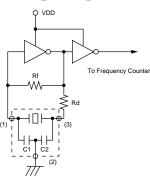

1. Oscillation circuits do not require external load capacitors.

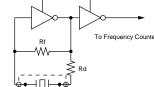

There is some variation in built-in capacitance values applicable to various IC.

- 2. Stable over a wide temperature range.
- 3. Compact, lightweight and exhibit superior shock resistance performance.
- 4. Enable the design of oscillator circuits requiring no adjustment.
- 5. Cost-effective and reliable availability

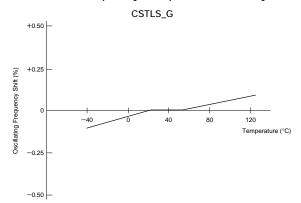

Applications

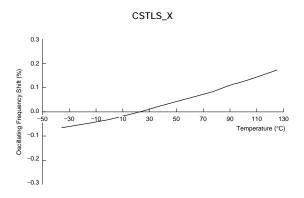
- 1. DTMF generators
- 2. Clock oscillators for microcomputers
- 3. Remote control units
- 4. Automated office equipment




Part Number	Oscillating Frequency (MHz)	Initial Tolerance	Temperature Stability (%)	Temperature Range (°C)
CSTLS_G	3.40 to 10.00	±0.5%	±0.2 [-0.4% to +0.2%:Built-in Capacitance 47pF type]	-20 to 80
CSTLS_X	16.00 to 70.00	±0.5%	±0.2	-20 to 80

Irregular or stop oscillation may occur under unmatched circuit conditions. Please check the actual conditions prior to use. The order quantity should be an integral multiple of the "Minimum Quantity" shown in the packaging page.


■ Oscillation Frequency Measuring Circuit


CSTLS_G/CSTLS_X

■ Oscillation Frequency Temperature Stability

■ M38235G6HP (Renesas)

CERALOCK®

8-bit Microcomputer Vcc=5.0V M38235G6HP

H: 71 L: 30, 73

CERALOCK®: CSTLS8M00G53-B0 C1=15pF (Typ.) C2=15pF (Typ.)

■ LC87F5G32A (Sanyo)

8-bit Microcomputer 510Ω 47000pF 100pF 10kΩ 10kΩ IC: LC87F5G32A 2.2kF CERALOCK® H: 8, 19, 39 L: 5, 20, 40 H': 29, 31, 35 L': 30, 32~34, 36 CERALOCK®: CSTLS5M00G53-B0 C1=15pF (Typ.) C2=15pF (Typ.)

■ Soldering and Mounting (CSTCC Series)

1. Soldering

(1) Re-flow soldering

Please mount component on a circuit board by re-flow soldering. Flow soldering is not acceptable.

Recommendable Flux and Solder

Flux	Please use rosin based flux, but do not use water soluble flux.
Solder	Please use solder (Sn-3.0Ag-0.5Cu) under the following condition. Standard thickness of soldering paste: 0.10 to 0.15mm

Recommendable Soldering Profile

Pre-heating	150 to 180°C	60 to 120s
Heating	220°C min.	30 to 60s
Peak Temperature	upper limit: 260°C	1s max.
	lower limit: 245°C	5s max.

Temperature shall be measured on the surface of component.

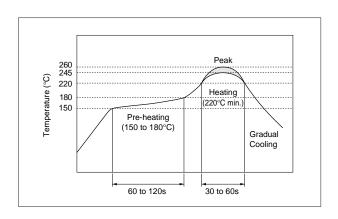
(2) Soldering with Iron

Be compelled to mount component by using soldering iron, please do not directly touch the component with soldering iron. The terminals of component or electrical characteristics may be damaged if excess thermal stress is applied.

Recommendable Soldering with Iron

Heating of the soldering iron	350°C max.
Watt	30W max.
Shape of the soldering iron	ø3mm max.
Soldering Time	5s max. at one terminal
Solder	Sn-3.0Ag-0.5Cu

(3) Solder Volume


Please make the solder volume less than the height of the substrate. When exceeding the substrate, the damage of adhesive for sealing between the metal cap and the substrate may occur.

(4) etc.

Do not reuse removed component from a circuit board after soldering.

(5) Condition for Placement Machines

The component is recommended with placement machines with employ optical placement capabilities. The component might be resulted in damage by excessive mechanical force. Please make sure that you have evaluated by using placement machines before going into mass production. Do not use placement machines which utilize mechanical positioning. Please contact Murata for details beforehand.

Continued on the following page.

Continued from the preceding page.

2. Wash

Some series do not withstand washing. Please check the list at right before use.

(1) Cleaning Solvents

HCFC, Isopropanol, Tap water, Demineralized water, Cleanthrough750H, Pine alpha 100S, Techno care FRW

(2) Temperature Difference : dT *1 dT≤60°C (dT=Component-solvent)

*1 ex. In case the component at +90°C immerses into cleaning solvent at +60°C, then dT=30°C.

(3) Conditions

(a) Ultrasonic Wash

1 minute max. in above solvent at +60°C max. (Frequency: 28kHz, Output: 20W/I)

(4) Drying

5 minutes max. by air blowing at +80°C max.

(5) Others

- (a) Total washing time should be within 10 minutes.
- (b) The component may be damaged if it is washed with chlorine, petroleum, or alkali cleaning solvent.

3. Coating

Conformal coating of the component is acceptable. However, the resin material, curing temperature, and other process conditions should be evaluated to confirm stable electrical characteristics are maintained.

Series	Wash	
CSTCC (2.00 - 3.49MHz)	Not Available	
CSTCC (3.50 - 3.99MHz)	Available	

- (b) Immersion Wash
 - 5 minutes max. in above solvent at +60°C max.
- (c) Shower or Rinse Wash

5 minutes max. in above solvent at +60°C max.

■ Soldering and Mounting (CSTCR/CSTCE_V/CSTCG/CSTCE_G Series)

1. Soldering

(1) Re-flow soldering

Please mount component on a circuit board by re-flow soldering. Flow soldering is not acceptable.

Recommendable Flux and Solder

Flux	Please use rosin based flux, but do not use water soluble flux.
Solder	Please use solder (Sn-3.0Ag-0.5Cu) under the following condition. Standard thickness of soldering paste: 0.10 to 0.15mm

Recommendable Soldering Profile

Pre-heating	150 to 180°C	60 to 120s
Heating	220°C min.	30 to 60s
Peak Temperature	upper limit: 260°C	1s max.
	lower limit: 245°C	5s max.

Temperature shall be measured on the surface of component.

(2) Soldering with Iron

Be compelled to mount component by using soldering iron, please do not directly touch the component with soldering iron. The terminals of component or electrical characteristics may be damaged if excess thermal stress is applied.

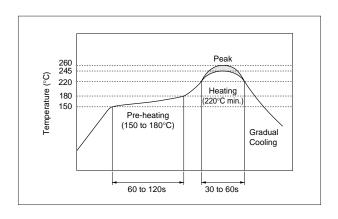
Recommendable Soldering with Iron

Heating of the soldering iron	350°C max.
Watt	30W max.
Shape of the soldering iron	ø3mm max.
Soldering Time	5s max. at one terminal
Solder	Sn-3.0Ag-0.5Cu

(3) Solder Volume

Please make the solder volume less than the height of the substrate. When exceeding the substrate, the damage of adhesive for sealing between the metal cap and the substrate may occur.

(4) etc.


Do not reuse removed component from a circuit board after soldering.

(5) Condition for Placement Machines

The component is recommended with placement machines with employ optical placement capabilities. The component might be resulted in damage by excessive mechanical force. Please make sure that you have evaluated by using placement machines before going into mass production. Do not use placement machines which utilize mechanical positioning. Please contact Murata for details beforehand.

2. Washing / Coating

Conformal coating or washing to the component is not acceptable, because it is not hermetically sealed. Please contact us in case you need washable component.

Continued on the following page.

Continued from the preceding page

■ Soldering and Mounting (CSACW/CSTCW Series)

1. Soldering

(1) Re-flow soldering

Please mount component on a circuit board by re-flow soldering. Flow soldering is not acceptable.

Recommendable Flux and Solder

Flux	Please use rosin based flux, but do not use water soluble flux.
Solder	Please use solder (Sn-3.0Ag-0.5Cu) under the following condition. Standard thickness of soldering paste: 0.10 to 0.15mm

Recommendable Soldering Profile

Pre-heating	150 to 180°C	60 to 120s	
Heating	220°C min.	30 to 60s	
Peak Temperature	upper limit: 260°C	1s max.	
	lower limit: 245°C	5s max.	

Temperature shall be measured on the surface of component.

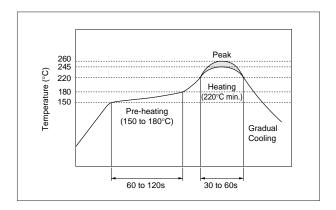
(2) Soldering with Iron

Be compelled to mount component by using soldering iron, please do not directly touch the component with soldering iron. The terminals of component or electrical characteristics may be damaged if excess thermal stress is applied.

Recommendable Soldering with Iron

Heating of the soldering iron	350°C max.
Watt	30W max.
Shape of the soldering iron	ø3mm max.
Soldering Time	5s max. at one terminal
Solder	Sn-3.0Ag-0.5Cu

(3) etc.


Do not reuse removed component from a circuit board after soldering.

(4) Condition for Placement Machines

The component is recommended with placement machines with employ optical placement capabilities. The component might be resulted in damage by excessive mechanical force. Please make sure that you have evaluated by using placement machines before going into mass production. Do not use placement machines which utilize mechanical positioning. Please contact Murata for details beforehand.

2. Washing / Coating

Conformal coating or washing to the component is not acceptable, because it is not hermetically sealed. Please contact us in case you need washable component.

■ Storage and Operating Conditions

Product Storage Condition
 Please store the products in a room where the
 temperature/humidity is stable, and avoid
 such places where there are large temperature
 changes. Please store the products under the
 following conditions:

Temperature: -10 to + 40 degrees C Humidity: 15 to 85% R.H.

- 2. Expiration Date on Storage Expiration date (Shelf life) of the products is six months after delivery under the conditions of a sealed and unopened package. Please use the products within six months after delivery. If you store the products for a long time (more than six months), use carefully because the products may be degraded in solderability and/or rusty. Please confirm solderability and characteristics for the products regularly.
- 3. Notice on Product Storage
- (1) Please do not store the products in a chemical atmosphere (Acids, Alkali, Bases, Organic gas, Sulfides and so on), because the characteristics may be reduced in quality, and/or be degraded in the solderability due to the storage in a chemical atmosphere.
- Rating

The component may be damaged if excessive mechanical stress is applied.

■ Handling

"CERALOCK" may stop oscillating or oscillate irregularly under improper circuit conditions.

- (2) Please do not put the products directly on the floor without anything under them to avoid damp and/or dusty places.
- (3) Please do not store the products in places such as: in a damp heated place, in a place where direct sunlight comes in, in a place applying vibrations.
- (4) Please use the products immediately after the package is opened, because the characteristics may be reduced in quality, and/or be degraded in the solderability due to storage under the poor conditions.
- (5) Please do not drop the products to avoid cracking of ceramic elements.
- 4. Others

Conformal coating or washing of the component is not acceptable because it is not hermetically sealed.

Please be sure to consult with our sales representatives or engineers whenever and prior to using the products.

Notice for General Usage -MHz Lead Type-

■ Soldering and Mounting

The component cannot withstand washing.

Please do not apply excessive mechanical stress to the component and lead terminals during soldering.

■ Storage and Operating Conditions

1. Product Storage Condition

Please store the products in a room where the temperature/humidity is stable, and avoid such places where there are large temperature changes. Please store the products under the following conditions:

Temperature: -10 to + 40 degrees C Humidity: 15 to 85% R.H.

2. Expiration Date on Storage

Expiration date (Shelf life) of the products is six months after delivery under the conditions of a sealed and unopened package. Please use the products within six months after delivery. If you store the products for a long time (more than six months), use carefully because the products may be degraded in solderability and/or rusty. Please confirm solderability and characteristics for the products regularly.

- 3. Notice on Product Storage
- (1) Please do not store the products in a chemical atmosphere (Acids, Alkali, Bases, Organic gas, Sulfides and so on), because the characteristics may be reduced in quality, and/or be degraded in the solderability due to the storage in a chemical atmosphere.

■ Rating

The component may be damaged if excessive mechanical stress is applied.

■ Handling

"CERALOCK" may stop oscillating or oscillate irregularly under improper circuit conditions.

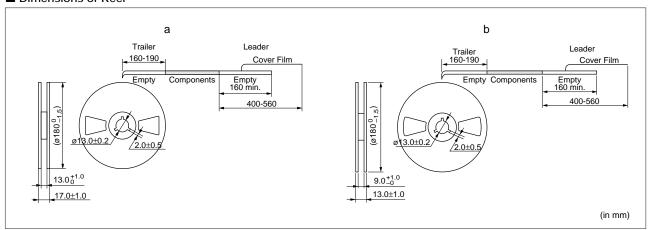
- (2) Please do not put the products directly on the floor without anything under them to avoid damp and/or dusty places.
- (3) Please do not store the products in places such as: in a damp heated place, in a place where direct sunlight comes in, in a place applying vibrations.
- (4) Please use the products immediately after the package is opened, because the characteristics may be reduced in quality, and/or be degraded in the solderability due to storage under the poor conditions.
- (5) Please do not drop the products to avoid cracking of ceramic elements.

4. Others

Conformal coating or washing of the component is not acceptable because it is not hermetically sealed.

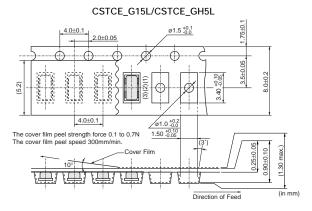
Please be sure to consult with our sales representatives or engineers whenever and prior to using the products.

Packaging for General Usage -MHz Chip Type-


■ Minimum Quantity

Part Number	Plastic Tape ø180mm	Plastic Tape ø330mm	Bulk	Dimensions
CSTCC_G	2,000	6,000	500	а
CSTCR_G	3,000	9,000	500	а
CSTCR_G15L	3,000	9,000	500	а
CSTCR_GH5L	3,000	9,000	500	b
CSTCE_G	3,000	9,000	500	b
CSTCE_G15L	3,000	9,000	500	b
CSTCE_GH5L	3,000	9,000	500	b
CSTCE_V	3,000	9,000	500	b
CSTCE_V13L	3,000	9,000	500	b
CSTCE_VH3L	3,000	9,000	500	b
CSTCG_V	3,000	9,000	500	b
CSTCW_X	3,000	9,000	500	b
CSTCW_X11	3,000	9,000	500	b
CSACW_X	3,000	9,000	500	b

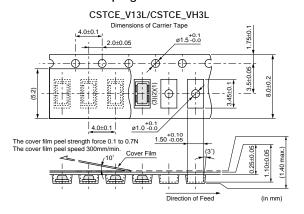
The order quantity should be an integral multiple of the "Minimum Quantity" shown above.

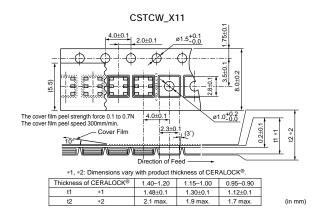

(pcs.)

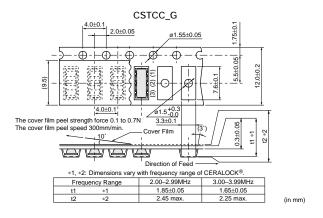
■ Dimensions of Reel

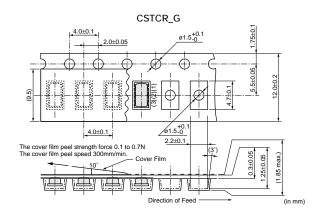
■ Dimensions of Taping

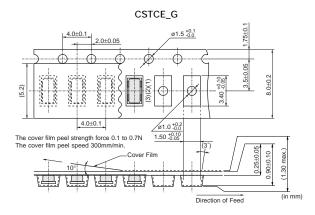
Continued on the following page.

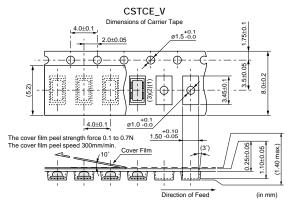


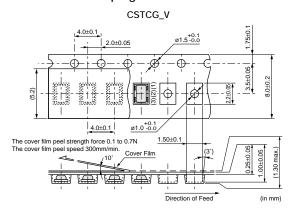


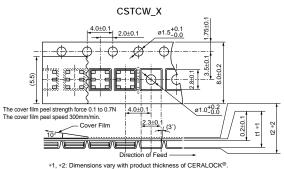

Packaging for General Usage -MHz Chip Type-


Continued from the preceding page


■ Dimensions of Taping




Continued on the following page.

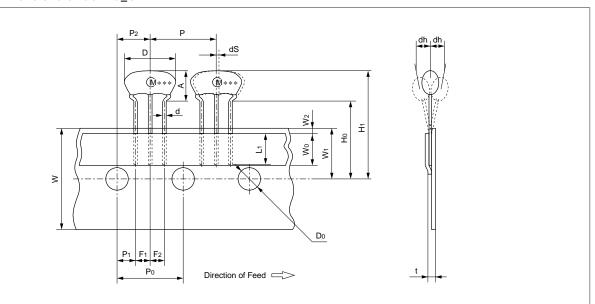

Packaging for General Usage -MHz Chip Type-

Continued from the preceding page.

■ Dimensions of Taping

*1, *2. Dimensions vary with product thickness of CERALOCK*.				
Thickness	of CERALOCK®	1.40-1.20	1.15-1.00	0.95-0.90
t1	*1	1.48±0.1	1.30±0.1	1.12±0.1
t2	*2	2.1 max.	1.9 max.	1.7 max.

Packaging for General Usage -MHz Lead Type-


■ Minimum Quantity

Part Number	Ammo Pack	Bulk
CSTLS_G (3.40 to 10.0MHz)	2,000	500
CSTLS_X (16.00 to 70.00MHz)	2,000	500

The order quantity should be an integral multiple of the "Minimum Quantity" shown above.

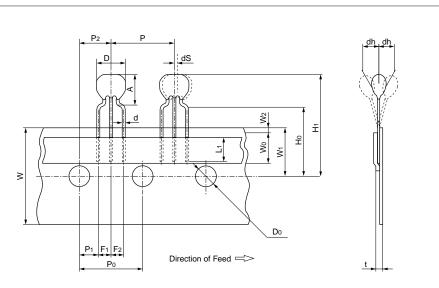
(pcs.)

■ Tape Dimensions of CSTLS_G

Item	Code	Dimensions	Tolerance	Remarks
Width of diameter	D	8.0	±1.0	
Height of resonator	А	5.5	±0.5	
Dimensions of terminal	d	ø0.48	±0.05	
Lead length under the hold down tape	L1	5.0 min.	-	
Pitch of component	Р	12.7	±0.5	Tolerance for Pitches 10xP ₀ =127±1
Pitch of sprocket hole	Po	12.7	±0.2	
Length from sprocket hole center to lead	P1	3.85	±0.5	
Length from sprocket hole center to component center	P ₂	6.35	±0.5	
Lead spacing (I)	F1	2.5	±0.2	
Lead spacing (II)	F2	2.5	±0.2	
Slant forward or backward	dh	0	±1.0	1mm max.
Width of carrier tape	W	18.0	±0.5	
Width of hold down tape	Wo	6.0 min.	-	Hold down tape does not exceed the carrier tape.
Position of sprocket hole	W1	9.0	±0.5	
Gap of hold down tape and carrier tape	W2	0	+0.5 -0	
Distance between the center of sprocket hole and lead stopper	Ho	18.0	±0.5	
Total height of resonator	H1	23.5	±1.0	
Diameter of sprocket hole	D ₀	ø4.0	±0.2	
Total tape thickness	t	0.6	±0.2	
Body tilt	dS	0	±1.0	

Continued on the following page.

(in mm)



42

Packaging for General Usage -MHz Lead Type-

\(\) Continued from the preceding page.

■ Tape Dimensions of CSTLS_X

Item	Code	Dimensions	Tolerance	Remarks
Width of diameter	D	5.5	±1.0	
Height of resonator	Α	6.5	±0.5	
Dimensions of terminal	d	ø0.48	±0.05	
Lead length under the hold down tape	L1	5.0 min.	-	
Pitch of component	Р	12.7	±0.5	Tolerance for Pitches 10xP0=127±1
Pitch of sprocket hole	P0	12.7	±0.2	
Length from sprocket hole center to lead	P1	3.85	±0.5	
Length from sprocket hole center to component center	P2	6.35	±0.5	
Lead spacing (I)	F1	2.5	±0.2	
Lead spacing (II)	F2	2.5	±0.2	
Slant forward or backward	dh	0	±1.0	1mm max.
Width of carrier tape	W	18.0	±0.5	
Width of hold down tape	Wo	6.0 min.	-	Hold down tape does not exceed the carrier tape.
Position of sprocket hole	W1	9.0	±0.5	
Gap of hold down tape and carrier tape	W2	0	+0.5 -0.0	
Distance between the center of sprocket hole and lead stopper	Ho	18.0	±0.5	
Total height of resonator	H1	24.5	±1.0	
Diameter of sprocket hole	D ₀	ø4.0	±0.2	
Total tape thickness	t	0.6	±0.2	
Body tilt	dS	0	±1.0	

(in mm)

⚠ Note:

1. Export Control

No Murata products should be used or sold, through any channels, for use in the design, development, production, utilization, maintenance or operation of, or otherwise contribution to (1) any weapons (Weapons of Mass Destruction [nuclear, chemical or biological weapons or missiles] or conventional weapons) or (2) goods or systems specially designed or intended for military end-use or utilization by military end-users. <For customers in Japan>

For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required for export.

- 2. Please contact our sales representatives or product engineers before using the products in this catalog for the applications listed below, which require especially high reliability for the prevention of defects which might directly damage a third party's life, body or property, or when one of our products is intended for use in applications other than those specified in this catalog.
 - 1 Aircraft equipment
- ② Aerospace equipment Power plant equipment
- ③ Undersea equipment (5) Medical equipment
- (6) Transportation equipment (vehicles, trains, ships, etc.)
- 7 Traffic signal equipment
- (8) Disaster prevention / crime prevention equipment
- Data-processing equipment
- (1) Application of similar complexity and/or reliability requirements to the applications listed above
- 3. Product specifications in this catalog are as of May 2011. They are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or product engineers.
- 4. Please read rating and \triangle CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
- 5. This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please review our product specifications or consult the approval sheet for product specifications before ordering.
- 6. Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or a third party's intellectual property rights and other related rights in consideration of your use of our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.
- 7. No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process.

http://www.murata.com/

1-10-1, Higashi Kotari, Nagaokakyo-shi, Kyoto 617-8555, Japan Phone: 81-75-951-9111

International Division 3-29-12, Shibuya, Shibuya-ku, Tokyo 150-0002, Japan Phone: 81-3-5469-6123 Fax: 81-3-5469-6155 E-mail: intl@murata.co.jp