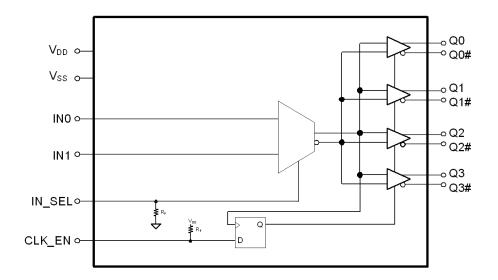


1:4 LVCMOS to LVPECL Fanout Buffer with Selectable Clock Input

Features


- Select one of two low-voltage complementary metal oxide semiconductor (LVCMOS) inputs to distribute to four low-voltage positive emitter-coupled logic (LVPECL) output pairs
- 30-ps maximum output-to-output skew
- 480-ps maximum propagation delay
- 0.15-ps maximum additive RMS phase jitter at 156.25 MHz (12-kHz to 20-MHz offset)
- Up to 250 MHz operation
- Synchronous clock enable function
- 20-Pin thin shrunk small outline package (TSSOP) package
- 2.5-V or 3.3-V operating voltage [1]
- Commercial and industrial operating temperature range

Functional Description

The CY2CP1504 is an ultra-low noise, low-skew, low-propagation delay 1:4 LVCMOS to LVPECL fanout buffer targeted to meet the requirements of high-speed clock distribution applications. The CY2CP1504 can select between two separate LVCMOS input clocks using the IN_SEL pin. The synchronous clock enable function ensures glitch-free output transitions during enable and disable periods. The device has a fully differential internal architecture that is optimized to achieve low additive jitter and low skew at operating frequencies of up to 250 MHz.

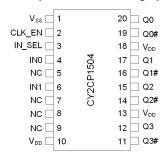
For a complete list of related documentation, click here.

Logic Block Diagram

Note

1. Input AC-coupling capacitors are required for voltage-translation applications.

Contents


Pin Configurations	3
Pin Definitions	3
Absolute Maximum Ratings	4
Operating Conditions	4
DC Electrical Specifications	
AC Electrical Specifications	
Ordering Information	
Ordering Code Definitions	
Package Diagram	

Acronyms	11
Document Conventions	11
Units of Measure	11
Document History Page	12
Sales, Solutions, and Legal Information	14
Worldwide Sales and Design Support	14
Products	14
PSoC Solutions	14

Pin Configurations

Figure 1. 20-pin TSSOP Package pinout

Pin Definitions

Pin No.	Pin Name	Pin Type	Description
1	V _{SS}	Power	Ground
2	CLK_EN	Input	Synchronous clock enable. LVCMOS/low-voltage transistor-transistor logic (LVTTL). When CLK_EN = Low, Q(0:3) outputs are held low and Q(0:3)# outputs are held high
3	IN_SEL	Input	Input clock select pin. LVCMOS/LVTTL; When IN_SEL = Low, input IN0 is active When IN_SEL = High, input IN1 is active
4	IN0	Input	LVCMOS input clock. Active when IN_SEL = Low
5, 7, 8, 9	NC		No connection
6	IN1	Input	LVCMOS input clock. Active when IN_SEL = High
10, 13, 18	V_{DD}	Power	Power supply
11, 14, 16, 19	Q(0:3)#	Output	LVPECL complementary output clocks
12, 15, 17, 20	Q(0:3)	Output	LVPECL output clocks

Absolute Maximum Ratings

Parameter	Description	Condition	Min	Max	Unit
V_{DD}	Supply voltage	Nonfunctional	-0.5	4.6	V
V _{IN} ^[2]	Input voltage, relative to V _{SS}	Nonfunctional	-0.5	lesser of 4.0 or V _{DD} + 0.4	V
V _{OUT} ^[2]	DC output or I/O voltage, relative to V _{SS}	Nonfunctional	-0.5	lesser of 4.0 or V _{DD} + 0.4	V
T _S	Storage temperature	Nonfunctional	-55	150	°C
ESD _{HBM}	Electrostatic discharge (ESD) protection (Human body model)	JEDEC STD 22-A114-B	2000	_	V
L _U	Latch up			ceeds JEDEC 3 IC latch up	
UL-94	Flammability rating	At 1/8 in		V-0	
MSL	Moisture sensitivity level			3	

Operating Conditions

Parameter	Description	Condition	Min	Max	Unit
V_{DD}	Supply voltage	2.5-V supply	2.375	2.625	V
		3.3-V supply	3.135	3.465	V
T _A	Ambient operating temperature	Commercial	0	70	°C
		Industrial	-40	85	°C
t _{PU}	Power ramp time	Power-up time for V _{DD} to reach minimum specified voltage (power ramp must be monotonic)	0.05	500	ms

Document Number: 001-56313 Rev. *I

Note
2. The voltage on any I/O pin cannot exceed the power pin during power up. Power supply sequencing is not required.

DC Electrical Specifications

(V_{DD} = 3.3 V \pm 5% or 2.5 V \pm 5%; T_A = 0 °C to 70 °C (Commercial) or –40 °C to 85 °C (Industrial))

Parameter	Description	Condition	Min	Max	Unit
I _{DD}	Operating supply current	All LVPECL outputs floating (internal I _{DD})	_	61	mA
V _{IH1}	Input high voltage, All inputs	V _{DD} = 3.3 V	2.0	V _{DD} + 0.3	V
V _{IL1}	Input low voltage, All inputs	V _{DD} = 3.3 V	-0.3	0.8	V
V _{IH2}	Input high voltage, All inputs	V _{DD} = 2.5 V	1.7	V _{DD} + 0.3	V
V _{IL2}	Input low voltage, All inputs	V _{DD} = 2.5 V	-0.3	0.7	V
I _{IH}	Input high current, All inputs	Input = V _{DD} ^[3]	_	150	μΑ
I _{IL}	Input low current, All inputs	Input = V _{SS} ^[3]	-150	_	μΑ
V _{OH}	LVPECL output high voltage	Terminated with 50 Ω to V_{DD} – 2.0 ^[4]	V _{DD} – 1.20	V _{DD} – 0.70	V
V _{OL}	LVPECL output low voltage	Terminated with 50 Ω to V_{DD} – 2.0 ^[4]	V _{DD} – 2.0	V _{DD} – 1.63	V
R _P	Internal pull-up/pull-down resistance	CLK_EN has pull-up only IN_SEL has pull-down only	60	165	kΩ
C _{IN}	Input capacitance	Measured at 10 MHz; per pin	_	3	pF

^{3.} Positive current flows into the input pin, negative current flows out of the input pin.4. Refer to Figure 2 on page 7.

AC Electrical Specifications

(V_{DD} = 3.3 V \pm 5% or 2.5 V \pm 5%; T_A = 0 °C to 70 °C (Commercial) or –40 °C to 85°C (Industrial))

Parameter	Description	Condition	Min	Тур	Max	Unit
F _{IN}	Input frequency		DC	_	250	MHz
F _{OUT}	Output frequency	F _{OUT} = F _{IN}	DC	_	250	MHz
V_{PP}	LVPECL differential output	Fout = DC to 150 MHz	600	_	_	mV
	voltage peak- to-peak, single-ended. Terminated with 50 Ω to $V_{DD} - 2.0^{[4]}$	Fout = >150 MHz to 250 MHz	400	_	_	mV
t _{PD} ^[5]	Propagation delay input to output pair	Input rise/fall time < 1.5 ns (20% to 80%)	-	_	480	ps
t _{ODC} ^[6]	Output duty cycle	Rail-to-rail input swing, 50% input DTCY measured at Vdd/2	45	_	55	%
t _{SK1} ^[7]	Output-to-output skew	Any output to any output, with same load conditions at DUT	_	_	30	ps
t _{SK1 D} [7]	Device-to-device output skew	Any output to any output between two or more devices. Devices must have the same input and have the same output load.	-	_	150	ps
PN _{ADD}	Additive RMS phase noise 156.25-MHz Input	Offset = 1 kHz	_	_	-120	dBc/ Hz
	Rise/fall time < 150 ps (20% to 80%) V _{ID} > 400 mV	Offset = 10 kHz	_	_	-130	dBc/ Hz
	V _{ID} 100 IIIV	Offset = 100 kHz	_	_	-135	dBc/ Hz
		Offset = 1 MHz	-	_	-150	dBc/ Hz
		Offset = 10 MHz	_	_	-150	dBc/ Hz
		Offset = 20 MHz	_	_	-150	dBc/ Hz
t _{JIT} ^[8]	Additive RMS phase jitter (Random)	156.25 MHz sinewave, 12 kHz to 20 MHz offset; input swing = 2.2V, V _{bias} = V _{DD} /2	-	_	0.15	ps
t _R , t _F ^[9]	Output rise/fall time	50% duty cycle at input, 20% to 80% of full swing (V _{OL} to V _{OH}) Input rise/fall time < 1.5 ns (20% to 80%)	-	-	300	ps
t _{SOD}	Time from clock edge to outputs disabled	Synchronous clock enable (CLK_EN) switched Low	-	_	700	ps
t _{SOE}	Time from clock edge to outputs enabled	Synchronous clock enable (CLK_EN) switched high	-	_	700	ps

Notes

- Refer to Figure 3 on page 7.
 Refer to Figure 4 on page 7.
 Refer to Figure 5 on page 7.
 Refer to Figure 6 on page 8.
 Refer to Figure 7 on page 8.

Figure 2. Output Differential Voltage

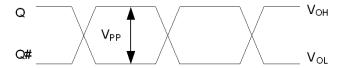


Figure 3. Input to Any Output Pair Propagation Delay

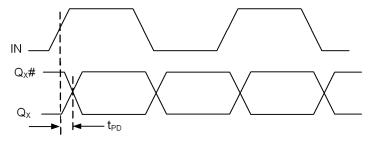


Figure 4. Output Duty Cycle

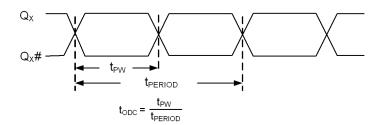


Figure 5. Output-to-Output and Device-to-Device Skew

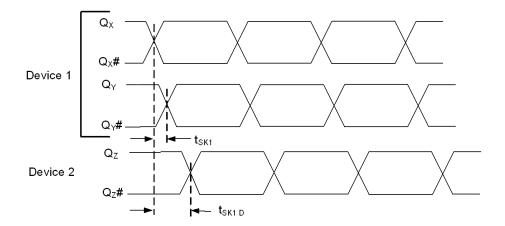
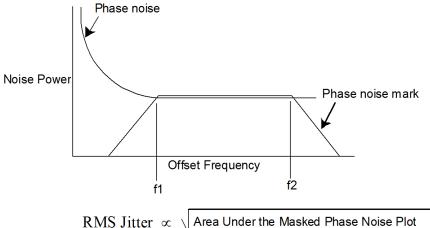



Figure 6. RMS Phase Jitter

 $RMS\ Jitter\ \ \infty\ \ \sqrt{\mbox{Area Under the Masked Phase Noise Plot}}$

Figure 7. Output Rise/Fall Time

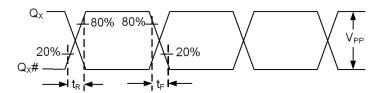
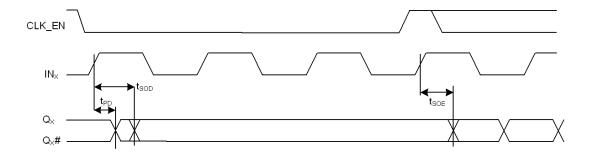
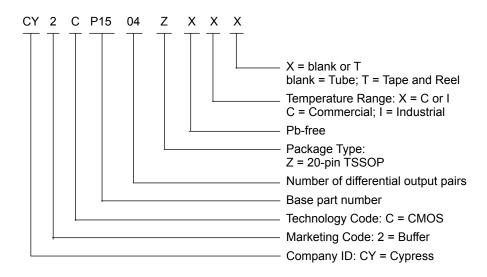



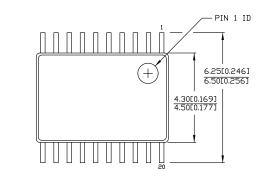
Figure 8. Synchronous Clock Enable Timing



Ordering Information

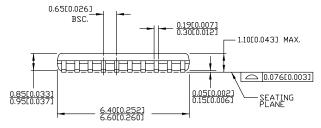
Part Number	Туре	Production Flow	
Pb-free			
CY2CP1504ZXC	20-pin TSSOP	Commercial, 0 °C to 70 °C	
CY2CP1504ZXCT	20-pin TSSOP – Tape and Reel	Commercial, 0 °C to 70 °C	
CY2CP1504ZXI	20-pin TSSOP	Industrial, –40 °C to 85 °C	
CY2CP1504ZXIT	20-pin TSSOP – Tape and Reel	Industrial, –40 °C to 85 °C	

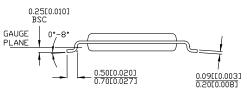
Ordering Code Definitions



Package Diagram

Figure 9. 20-pin TSSOP (4.40 mm Body) Z20.173/ZZ20.173 Package Outline, 51-85118


20 Lead TSSOP 4.40 MM BODY



DIMENSIONS IN MM[INCHES] MIN. MAX.

REFERENCE JEDEC MO-153

	PART #
Z20.173	STANDARD PKG.
ZZ20.173	LEAD FREE PKG.

51-85118 *E

Acronyms

Table 1. Acronyms Used in this Document

Acronym	Description
ESD	electrostatic discharge
HBM	human body model
JEDEC	joint electron devices engineering council
LVDS	low-voltage differential signal
LVCMOS	low-voltage complementary metal oxide semiconductor
LVPECL	low-voltage positive emitter-coupled logic
LVTTL	low-voltage transistor-transistor logic
RMS	root mean square
TSSOP	thin shrunk small outline package

Document Conventions

Units of Measure

Table 2. Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
dBc	decibels relative to the carrier
GHz	gigahertz
Hz	hertz
kΩ	kilohm
μΑ	microampere
μF	microfarad
μs	microsecond
mA	milliampere
ms	millisecond
mV	millivolt
MHz	megahertz
ns	nanosecond
Ω	ohm
pF	picofarad
ps	picosecond
V	volt
W	watt

Document History Page

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	2782891	CXQ	10/09/09	New Datasheet
*A	2838916	CXQ	05/01/2010	Changed status from "ADVANCE" to "PRELIMINARY". Changed from 0.34 ps to 0.25 ps maximum additive jitter in "Features" on page 1 and in t_{JIT} in the AC Electrical Specs table on page 5. Added t_{PU} spec to the Operating Conditions table on page 3. Changed max I_{DD} spec in the DC Electrical Specs table on page 4 from 60 m/to 61 mA. Changed V_{OH} in the DC Electrical Specs table on page 4: minimum from V_{DI} - 1.15V to V_{DD} - 1.20V; maximum from V_{DD} - 0.75V to V_{DD} - 0.70V. Removed V_{OD} spec from the DC Electrical Specs table on page 4. Added R_P spec in the DC Electrical Specs table on page 4. Min = 60 k Ω , Max = 140 k Ω . Added a measurement definition for C_{IN} in the DC Electrical Specs table on page 4. Added V_{PP} spec to the AC Electrical Specs table on page 5. V_{PP} min = 600 mV for DC - 150 MHz and min = 400 mV for 150 MHz to 250 MHz. Changed letter case and some names of all the timing parameters in the AC Electrical Specs table on page 5. Lowered all additive phase noise mask specs by 3 dB in the AC Electrical Specs table on page 5. Added condition to t_R and t_F specs in the AC Electrical specs table on page 5 that input rise/fall time must be less than 1.5 ns (20% to 80%). Changed letter case and some names of all the timing parameters in Figure 2, 3, 4, 5 and 7, to be consistent with EROS.
*B	3011766	CXQ	08/20/2010	Changed from 0.25 ps to 0.15 ps maximum additive jitter in "Features" on pag 1 and in $t_{\rm J T}$ in the AC Electrical Specs table on page 6. Added note 2 to describe $l_{\rm IH}$ and $l_{\rm IL}$ specs. Removed reference to data distribution from "Functional Description". Updated phase noise specs for 1 k/10 k/100 k/1 M/10 M/20 MHz offset to -120/-130/-135/-150/-150/-150dBc/Hz, respectively, in the AC Electrical Spectable. Updated package diagram. Added Acronyms and Ordering Code Definition.
*C	3017258	CXQ	08/27/2010	Corrected Output Rise/Fall time diagram.
*D	3100234	CXQ	11/18/2010	Changed V_{IN} and V_{OUT} specs from 4.0V to "lesser of 4.0 or V_{DD} + 0.4" Removed 200mA min LU spec, replaced with "Meets or exceeds JEDEC Specific Specif
*E	3137726	CXQ	01/13/2011	Removed "Preliminary" status heading. Removed resistors from IN0/IN1 in Logic Block Diagram. Added Figure 8 to describe T _{SOE} and T _{SOD} .
*F	3182321	CXQ	02/25/11	Post to external web.
*G	3208968	CXQ	03/29/2011	Changed R_P max from 140 $k\Omega$ to 165 $k\Omega$ and updated R_P in Logic Block Diagram.

Document History Page (continued)

Document Title: CY2CP1504, 1:4 LVCMOS to LVPECL Fanout Buffer with Selectable Clock Input Document Number: 001-56313				
Revision	ECN	Orig. of Change	Submission Date	Description of Change
*H	3878020	PURU	01/21/2013	Updated Package Diagram: spec 51-85118 – Changed revision from *C to *D. Updated in new template.
*	4587249	PURU	12/03/2014	Added related documentation hyperlink in page 1. Updated Figure 9 in Package Diagram (spec 51-85118 *D to *E).

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive cypress.com/go/automotive Clocks & Buffers cypress.com/go/clocks Interface cypress.com/go/interface cypress.com/go/powerpsoc

cypress.com/go/plc
Memory cypress.com/go/memory
Optical & Image Sensing cypress.com/go/image
PSoC cypress.com/go/psoc
Touch Sensing cypress.com/go/touch
USB Controllers cypress.com/go/USB
Wireless/RF cypress.com/go/wireless

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2009-2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.