USBFS Bootloader Datasheet BootLdrusBFse v 3.00

CYPRESS

PERFORM

Copyright © 2010-2015 Cypress Semiconductor Corporation. All Rights Reserved.

CY7C64215, CY8C24794, CY8C24894-24LTXI, CY8C24994, CYS8CLEDO4, CYS8CTMA120-100BVXI,
CYBCTMA120-56LFXI, CYS8CTMA120-56LTXI, CYBCTMG120-56LFXI, CYBCTMG120-56LTXI, CYS8CTST120,

PSoC® Blocks

Resources Digital Analog CT Analog SC

CYRF89235, CY8C24493, CY7C69xxx

HID support 0 0 0 5871
Without HID support 0 0 0 5300
USB-UART support 0 0 0 6 380

CY7C643xx, CY8C20396/396A/496/496A-24LQXI, CY8C20646/646A/666/666A-24LTXI, CYBC20xX6AS,
CY8C20XX6L, CYBCTMG200-48LTXI, CYSBCTMG201-48LTXI, CYSCTMG200A-48LTXI, CYSBCTMG201A-48LTXI,
CY8CTST200-48LTXI, CYS8CTST200A-48LTXI, CYONS2000, CYONS2100, CYONS2110, CYONS2010,

CYONSFN2162-LBXC, CYONSTB2010-LBXC

HID support 0 0 0 6 024
Without HID support 0 0 0 5450
Note

Features and Overview

Cypress Semiconductor Corporation * 198 Champion Court San Jose, CA 95134-1709

Flexible memory map

Device reprogramming without engineering tools

Product resident reprogrammability

Communication interface integrated to minimize code overhead
Field deployment of firmware upgrades

USB Full Speed device interface driver

Support for interrupt and control transfer types

Setup wizard for easy and accurate descriptor generation
Runtime support for descriptor set selection

Optional USB string descriptors

Optional USB HID class support

Optional USB-UART (CDC) class support

Document Number: 001-64851 Rev. *F

API Memory (Bytes)
External 1/0)

Expect an expansion of Flash and RAM when adding additional interfaces, HID classes, and other
USB extensions. When the bootloader is in actual operation, it uses a large amount of RAM to
download program data but frees it upon exit. Since operation of the bootloader precludes applica-
tion operation, this RAM requirement is essentially invisible. ROM/Flash usage includes a com-
plete USB interface. Additional code used for the bootloader function is only 2 kilobytes above the
normal requirement of about 1.9 kilobytes of code used by USB itself.

408-943-2600
Revised March 12, 2015

USBFS Bootloader

The USB Bootloader User Module implements a bootloader that can reprogram the PSoC device over the
USB interface. The PSoC device already gives an in-system serial programming interface (ISSP) that
allows downloading new code into the device. However, the bootloader allows a code update to occur
through an industry standard communication interface, such as USB. This user module can be useful for
any device that has to be reprogrammed in the field. The bootloading information can be sent through a
Cypress USB Bootloader Host interface.

The USB bootloader supports a fully functional device reprogramming ability with built in error detection
and an industry standard communication interface.

Multiple USB device descriptors are coresident in the system to allow commanding a running device to
self reconfigure and reprogram. Core USB functions are maintained during the reconfiguration to support
host communication, while program data is being transferred and stored. At the end of the reconfiguration
process the device resets itself, verifies the new program, and automatically executes it.

Figure 1. USBFS Bootloader Block Diagram

ViGC

T e 24 Ohm
uUsB
D+ 4/\/\/\/7@,
= GND 24 Ohm

CYaC24x04

CYTCE4215

Simple USB Application

Quick Start

1. Review this user module datasheet. A successful implementation of a bootloader project requires an
understanding of this information.

2. Add the user module to a project.

Place the user module, selecting either a HID, NON-HID, or USB-UART(CDC) class application.

4. Right-click on the user module icon. Select Boot Loader Tools. Select Get Files. When this step is

completed, the boot.tpl, custom.lkp, HTLinkOpts.lkp, and flashsecurity.example files must be in the
project root directory.

g

Document Number: 001-64851 Rev. *F Page 2 of 72

= CYPRESS USBFS Bootloader

PERFORM

. If HID or NON-HID class application is selected in step 3:

Right-click on the user module icon. Select Device: Application USB Setup Wizard... Verify
that there is at least one string in the Strings area. At least one string must be present by default,
if not, add a one character string.

For NON-HID application, skip the following setup and press OK.
- Click the Import HID Report Template operation.
- Select the 3 button mouse template.
- Click the Apply operation on the right side of the template.
- Edit the Interface Class: select HID Class in the Interface Attributes properties.
- Edit the HID class descriptor: select the 3 button mouse for the HID Report field.
- Click OK to save the USB descriptor information.
. If USB-UART application is selected in step 3:

Right click on the user module icon. Select Device: Application USB Setup Wizard... Configure
the CDC properties and click OK.

5. Right-click on the user module icon. Select Device: BootLoader USB Setup Wizard... It is not
necessary to make any modifications. Select OK.

6. Generate source code and compile the project.

7. Review the output file <project>.mp and <project>.hex to see how the project is built.

8. After creating a project that compiles without errors, go to the Sample Firmware Code section. Modify

and adapt the code given in the sample.

Functional Description
The BootLdrUSBFSe User Module gives:

B A USB full speed Chapter 9 compliant device framework.
B A low level driver for the control endpoint that decodes and dispatches requests from the USB host.
B A Setup Wizard to enable easy USB descriptor construction.

You have the option of constructing an HID based device, a generic USB Device or USB-UART device.
Make your choice when you place the BootLdrUSBFSe User Module. To change your choice after initial
selection, delete the existing instance of the BootLdrUSBFSe User Module and then add a new instance.

The bootloader portion of the user module gives a method to organize the memory map and major code
functional blocks into areas that are compatible with device reprogramming. The memory organization of
the project is considerably different from that of a conventional PSoC Designer™ project. Modifications to
the memory map are necessary to meet the minimum device functionality requirements while the device
application is being reprogrammed. Effectively, a project incorporating a bootloader contains two
independent programs supporting different functions. A map of the memory is shown in Figure 2.

After a project incorporating a bootloader is deployed, the memory locations highlighted in gray are never
reprogrammed. The application start address may be altered in the parameters window.

In addition to the parameters that are adjusted within the user module, two other important features are
given. A built in set of tools can be accessed by right-clicking on the bootloader icon in the device manager

Document Number: 001-64851 Rev. *F Page 3 of 72

USBFS Bootloader

view. Additionally, a host application (including source code) is given along with instructions on how to set
it up and use it on a system to demonstrate bootloader capability.

Further information about USB, including specifications, resources examples, and forums regarding use of
USB are available at www.usb.org.

Figure 2. USBFS Bootloader Memory Organization

BootLdrUSBFSe Memory Organization

MBC Interrupt Vectors MBC Interrupt Vectors
(128 bytes) {128 bytes)
Relocatable Interrupt Vectors Relocatable Interrupt Vectors
(128 bytes) (128 bytes)
Checksum Block Checksum Block
{1 Block) {1 Block)
Bootloader Code Bootloader Code

+— App Start —pe

Application Code Application Code

A— App End—»

Standard Memory Map
T v Wal Customer Reserved Blocks

Custom Memory Map

Maon-upgradable (protection = W)
Field Reprogrammable (protection = R)

Theory of Operation

Creating a project with a bootloader requires several nonstandard modifications to the PSoC Designer
standard model. To facilitate this, the Bootloader User Module gives customized files and specialized tools
to assist you in bootloader project development. The special tools are accessed by switching to the Device
Editor view and right clicking the BootLdrUSBFSe User Module icon. In addition to the tools and files given
as part of the user module, a host application example is also given with the user module installation that
can demonstrate basic capability of the bootloader. This PC based application and source code for

Microsoft Visual Studio® 2005 is contained in a .zip file in the installation directory of PSoC Programmer 3.
[Install path]\Cypress\Programmenr\3.xx\Bootloaders\BootLoaderUSBFS\Bootloader_Host PSoC1\...

Using this application requires installation and limited customization of a generic USB driver capable of
supporting the host demonstration application. This file is supplied as part of the installation and may be
registered upon initial operation of a bootloader device. Use windows manual installation method to

specify the location of the driver contained in the “\USB driver” directory of the location specified earlier.

Document Number: 001-64851 Rev. *F Page 4 of 72

http://www.usb.org

= CYPRESS USBFS Bootloader

PERFORM

The included driver.inf file must be modified to correctly specify the VID and PID of your chosen
bootloader device. Note that this change must be made in two locations within the driver.inf file: one
location is near the top of the file and the second is near the bottom.

USBFS Bootloader Memory Organization

PSoC Designer uses standardized files, built in data about the part family, and attributes of specific
devices to create compilable projects and correct API definitions. A project with a bootloader requires a
memory map that is considerably different from that of a standard PSoC Designer project. Selection of the
memory areas represents a core design decision that is maintained throughout the life of the design. A
project without the requirements of a bootloader simply allows the compiler and linker to allocate RAM and
ROM. However, a bootloader must group RAM and ROM in specific areas so that the program does not
crash while a new application is being loaded.

In the memory layout shown in Figure 2, there are six key areas of ROM that are managed:

B The first area is the first 128 bytes of ROM. This area contains critical interrupt vectors and restart vec-
tors. Since it is nearly impossible to control read access to this area by any operating device, they are
never erased and reprogrammed. The first 128 bytes of ROM must not be modified and cannot be
placed in any other location.

B The second area is the relocatable interrupt table. This table may consist of one or two blocks depend-
ing on the architecture of the device. This area contains interrupt and general purpose vectors to give
a jump table for interrupts or code entries that may be altered when a new application is loaded using
the bootloader. For example, this area contains the application start address. The bootloader can use
this address to start the new application after the checksum is validated at power up. After the applica-
tion and bootloader is deployed this area may be rewritten, but its location must not be modified. The
characteristics of this area are similar to the checksum area described later in this section.

B The third area of ROM defined is the checksum area. This area contains important data that the boot-
loader software uses to download and verify the foreground application. The checksum area contains
the start address and size in blocks of the foreground application. The first two bytes of the checksum
block are a checksum of the checksum block itself, and the last two bytes are the checksum of the run-
time application. The structure of the checksum block contains space for you to define your own data,
in addition to that used by the bootloader. This structure is exposed as a C-structure definition, and
may be modified as long as data used by the bootloader utility is not changed or repositioned within
the block.

B The fourth of memory to be defined is the area containing the bootloader code itself. After the project
or device containing the bootloader is deployed, this area is not reprogrammable and cannot be field
upgraded.

B The fifth area is reserved for customer’s data. This may contain configuration data that must persist
through an upgrade via bootload. This area is optional.

B The sixth memory area is the application area. The application area contains application image. The
starting address of this area is adjustable. The “Application_Start_Block” parameter (in properties win-
dow) allows users to set the application starting address accordingly. This area should occupy all
remaining memory.

If your application has some code that must be always operational, including during a bootload process,
the design of the Bootloader User Module can allow sufficient customization to accommodate this. This is
accomplished by adding the code to the bootloader ROM area using the assembler AREA directive. Any
RAM used by your code during the bootload process must be added to the RAM area defined for the
bootloader.

Document Number: 001-64851 Rev. *F Page 5 of 72

= CYPRESS USBFS Bootloader

PERFORM

Definition of Memory Areas in the User Module Parameters

The “Application_Start_Block” parameter of the BootLdrUSBFSe User Module enables you to customize
where major program elements are placed in ROM. The defaults in the user module give a working initial
setup. Use these settings until a complete project is successfully compiled. After compiling a project, you
can look at the program memory map and .hex output file to determine how to optimize your program
structure. If you reconfigure the parameters and accidentally create memory area conflicts, it may be
difficult to determine the correct locations without a valid memory map to look at.

Bootloader Utility

The Bootloader User Module gives a complete utility that coexists with a your foreground application.
When the device is started or reset, the bootloader utility is always invoked. Once invoked at system
startup the bootloader validates the foreground application by calculating a checksum on the foreground
application ROM area. The calculated checksum is compared to the one stored in the checksum block
(which is created with the application). If the two checksums are equal, the bootloader utility allows the
foreground application to execute. If the two checksums are not equal, the bootloader enters a wait loop
and waits for a host application to download a valid application. It also enables its own USB subsystem to
allow the host to transmit data. When the host system observes this interface is enabled, it may choose to
execute its own set of applications. Although a default USB descriptor is given that runs successfully with
the examples given, you may choose to alter any of the parameters on the host or PSoC device. Source
code for VisualStudio 2005 is included for the host application. An example application and source code is
given in the installation directory for PSoC Programmer 3.

[Install path]\Cypress\Programmenr\3.xx\Bootloaders\BootLoaderUSBFS\Bootloader_Host PSoC1\...

Bootloader Tools

Several tools are available from the shortcut menu and are accessed by right clicking on the user module
icon.

Special versions of boot.tpl, custom.lkp and HTLinkOpts.lkp can be placed in the project or removed. From
the main menu select Tools > Restore Default Boot files. If you remove the USBFSe Bootloader User
Module, the option to restore the default boot files moves to the File menu in PSoC Designer.

Generate Checksum — After your project builds correctly you can use the bootloader tools to create and
autovalidate checksums. Upon entry into the bootloader tools selection screen, project code is generated
and a complete compile of the entire project is executed. Then a checksum calculation is performed on the
resulting hex file which is compared to a checksum stored by the user module. If the checksums do not
match, a message is displayed. You can recalculate and store a new checksum if you wish. If build or
compile errors occur in the automated generate and build invoked by the Bootloader Tools, and no hex file
is successfully created, an error is reported but no error debug information is displayed in the build dialog
of PSoC Designer. Error reporting is suppressed when the generate and build is invoked from the
automation interface. To debug build errors it is necessary to use the conventional build and generate
process external to the bootloader tools menu.

Generate dld file — This tool item derives a download file from the hex project output file. This file contains
only the hex blocks that are reprogrammed by the bootloader including the checksum block. The Host
Demonstration application is capable of reading this file and downloading it to a working project
incorporating a bootloader. This download file can be deployed to a field application to upgrade a PSoC
device.

The did download file is generated by Bootloader User Module tool and listed in “Output Files” in
Workspace Explorer.

Document Number: 001-64851 Rev. *F Page 6 of 72

= CYPRESS USBFS Bootloader

PERFORM

Notes about Checksum Semiautomatic Generation

After your project is built and compiled without errors, the application checksum must be generated. The
application checksum is created using one of the utilities available by right-clicking on the Bootloader User
Module Icon in the Device Editor view and selecting Bootloader Tools. An application checksum
(previously calculated or default) is stored as a hidden user module parameter. When the Bootloader Tools
menu page is invoked, any previous checksum is validated against the one calculated on the current
output\<prj_name>.hex file. Necessarily, the checksum cannot be generated before a successful compile.
After a checksum is created, it must be integrated into the compiled files. This requires a second compile.

Pay attention to the following:

The device will enter the application after startup if it is programmed after the "Re-build Project with Valid
Checksum" operation with the correct application checksum. No ‘Generate’ operation is allowed between
"Re-build Project with Valid Checksum" and programming.

The device will enter the bootloader after startup if it is programmed with incorrect application checksum
after Generate, or without the "Re-build Project with Valid Checksum" operations.

Note The user module uses checksums to verify the integrity of the .hex code. The checksums are cal-
culated by the "Re-build Project with Valid Checksum" operation and cleared by Generate opera-
tion. Therefore, it is not recommended to program the device after the Build operation when
neither the Generate operation nor the “Re-build Project with Valid Checksum” operation
was executed before it.

The following situations are possible:

1. Generate was executed

2. Application code was changed
3. Build was performed

4. Device was programmed

If these occur, then the device will always enter the bootloader after programming.

The other possible situations are:

1. "Re-build Project with Valid Checksum" was executed
2. Application code was changed

3. Build (without Generate) was performed

4. Device was programmed

If these occur, then the device will always enter the application after programming. If the application code
is not correct, a new application code can be downloaded by the bootloader through the Acquisition
Window only.

Special Files Given

You can access several important files by opening the Bootloader Tools menu and selecting Get Files. A
device specific boot.tpl file is placed in the main project directory along with files called custom.lkp
(ImageCraft), HTLinkOpts.lkp (Hi Tech) and a predefined flashsecurity.txt file. Each file is briefly described
here (the original versions of these files are placed in the project backup directory):

Boot.tpl — This file contains a relocatable and nonrelocatable definition of interrupt vector tables and
device specific boot setup that is specified in a relocatable area of ROM rather than the fixed location
specified in the standard boot.tpl file.

Document Number: 001-64851 Rev. *F Page 7 of 72

= CYPRESS USBFS Bootloader

PERFORM

Custom.lkp — When source generation takes place, the custom.lkp file is populated with autogenerated
ROM areas for major code blocks as defined in the user module parameters. Do not modify the code
blocks in the custom.lkp file, named:

B -bSSCParmBlk — Contains specified critical RAM used during flash operations.

-bBootloader

-bBLChecksum

-bUserAPP — Changes to any of the last three lines result in an error dialog indicating the inability of
the project to detect the correct custom.lkp file.

During code generation, each of the last three lines of the custom.lkp file are rewritten under control of the
code generation software. Changes made within or below the last three lines either cause an error or are
simply lost. You can make changes to the rest of the custom.lkp file. To debug the memory allocation of
the project, you can comment out all three lines mentioned earlier by inserting a semicolon in the first
space. This allows the linker to place code automatically and may be helpful in determining application
code size requirements.

HTLinkOpts.lkp — When source generation takes place, the HTLinkOpts.lkp file is populated with auto-
generated ROM areas for major code blocks as defined in the user module parameters. Do not modify the
code blocks in the HTLinkOpts.Ikp file.

-L-ACODE... & -L-AROM... Lines contain data providing overall ROM size

-L-PPD_startup... contains linker directives to locate bootloader specific ROM areas

-L-P

-L-Pbss0= Changes to any of the last several lines result in an error dialog indicating the inability of the
project to detect the correct HTLinkOpts.lkp file.

During code generation, several of the last lines of the HTLinkOpts.lkp file are rewritten under control of
the code generation software. Changes made within or below the last three lines either cause an error or
are simply lost.

Flashsecurity.example — This is a default file that is laid out according to the default memory map specified
by the default user module parameters. For final project creation, you may have to manually modify this
file according the final memory map and application size for the deployed device and firmware. Note that
this file is NOT directly used by PSoC Designer. If for some reason the project is updated or tagged for out
of data files, the flashsecurity file is not overwritten. You can edit and rename the given file
flashsecurity.example.

Flashsecurity.txt — This is a default file given by PSoC Designer. The data in this file is added to the .hex
file and instructs the device how to manage access to the internal ROM memory. If memory blocks are
protected from write access, the bootloader does not work. Since read and write protection is built into the
programmed PSoC, this file must be correctly configured before the first deployment of the bootloader.

USB Descriptors

The standard USBFS User Module incorporates a tool to develop the USB descriptor used in the runtime
application. The Bootloader adds an additional tool to allow development or modification of the default
USB_Bootloader descriptor. These two descriptors are stored in different areas of ROM. The descriptor for
the foreground application may be upgraded with the application. The USB_Bootloader descriptor is part
of the bootloader ROM area and cannot be upgraded in the field. To maintain core functionality, key USB
code is also placed in the bootloader ROM area. This is to overcome the problem of executing code that is
being rewritten (which is not a good programming practice).

Document Number: 001-64851 Rev. *F Page 8 of 72

= CYPRESS USBFS Bootloader

PERFORM

USB Compliance for Self Powered Devices

In the USB Compliance Checklist there is a question that reads, “Is the device’s pull up active only when
VBUS is high?”

The question lists Section 7.1.5 in the Universal Serial Bus Specification Revision 2.0 as a reference. This
section reads, in part, “The voltage source on the pull up resistor must be derived from or controlled by the
power supplied on the USB cable such that when VBUS is removed, the pull up resistor does not supply
current on the data line to which it is attached.”

If the device that you are creating is self powered, you must connect a GPIO pin to VBUS through a
resistive network and write firmware to monitor the status of the GPI1O. The application Note “Monitoring
the EZ-USB FX2LP VBUS” AN15813, explains the necessary hardware and software components
required. Use the USB 10 Control Register 1 (USBIO_CR1) to control the pull up resistor on the D+ line.

Bootloader VID and PID

For final deployment of a USB device, a Vendor ID and Product ID must be assigned. These are assigned
by the USB standards organization upon request by USB developers. For development purposes, any VID
and PID that does not conflict with existing VIDs and PIDs on a host may be used to debug a project.
However, for the purposes of project release or deployment, you must not use VIDs and PIDs assigned to
Cypress.

Block Entry of Parameters

All memory parameters are entered in the bootloader in blocks numbered from 0x00 through OxFF for
most devices. Although this is not the most convenient format to enter memory addressees, it prevents
accidental assignment of partial block addresses to different sections of the memory map. The PSoC
devices in question are only capable of storing 64 byte flash blocks (128 byte for the 20x45) and this is a
simple way to maintain the boundaries between different sections of the project code correctly.

Host Application Debugging

An application with a bootloader built in may be difficult to debug. Because of this there are additional
adjustments that can be made within the bootloader user module files. These are contained in the file
BootLdrUSBFSe_Bt loader.inc. There is a section containing the following equates:

; Boot Timeout constant. The timeout is based on an 8Hz Sleep interval.
; So for a timeout of 1 second, this value has to be 8

BOOT TIMEOUT: EQU 200 ; set to zero to make timeout infinite,
; default is 200 (dec) = ~25 seconds
CHECKSUM ON CKSUMBLK: EQU 1 ; set to 1: Apply a checksum to the checksum block

; (adds compile steps and code to verify)
; set to 0: remove verification of checksum on Checksum block

The BOOT_TIMEOUT equate allows you to lengthen, shorten, or make infinite code that timeouts if no
communication is received from a host after a user command calls the bootloader. This may be useful
when developing or debugging the host application.

The second equate controls the use of the checksum inside the checksum block. If this equate is set to 0,
no verification is done on the checksum contained inside the checksum block. A checksum verification is
still performed on the entire user application area as defined in the user module parameters.

Timing
The BootLdrUSBFSe User Module supports USB 2.0 full speed operation.

Document Number: 001-64851 Rev. *F Page 9 of 72

http://www.cypress.com/?rID=12961

= CYPRESS USBFS Bootloader

PERFORM

USBFS Setup Wizard

The BootLdrUSBFSe User Module does not use the PSoC Designer parameter grid display for
personalization USB descriptors. Instead, it uses Wizards to define the USB descriptors for the application
and bootloader. From the descriptors, the wizard personalizes the user module.

This wizard facilitates the construction of the USB descriptors and integrates the information generated
into the driver firmware used for device enumeration. The BootLdrUSBFSe User Module does not function
without first running the application and bootloader wizards, selecting the appropriate attributes, and
generating code.

Using Blocks Instead of Addresses

Any Bootloader needs to write to Flash, and PSoC can only write to flash “Block” by “Block”. So for
bootloader applications it is more useful to think of memory as a group of “Blocks” to be written.

To translate from Blocks to absolute addresses multiply: Abs_addr = block_number X Block Size. Block_0
starts at addr 0, Block_n starts at address n x Block_size. All blocks are delimited in hex for the bootloader
parameters so a hex address can be obtained by multiplying by 0x40 (64-byte blocks) or 0x80 (128-byte
blocks).

Hex output files contain an absolute address for each line. Regardless of the block size of the device in
question (0x40/0x80), the hex output file breaks the code into lines of 64(d)/0x40 bytes per line. Therefore,
for a 6 4byte block device each line represents a block of code. For a 128 byte block device, two lines from
the hex file go into a block (since block O starts at address 0, 128 byte blocks must be ALWAYS
considered to have an “even” half representing the lower (address) half and an “odd” half representing the
upper (address) half).

See a hex file and become familiar with the flash block size for the part that you are working with.

Common Problems

This section discusses the common issues that occur when creating bootloader projects, and gives advice
on how to work around them.

Updating Bootloader Projects, Service Pack Upgrades, and Compilers

Changes to the PSoC Developer environment should be avoided when using a bootloader application.
This includes not updating PSoC Designer, the Bootloader User Module, and the compiler.

To understand the reasons for this, keep in mind that initially the bootloader and application are compiled
together, but after a bootloadable system is deployed, only the application section is reprogrammed. A
new or revised application must be compiled with the identical version of the Bootloader User Module so
that the new application matches the bootloader from the original deployment. Ideally, all versions of the
elements in the development environment are compatible. However, in the case of a bootloader, it is
essential to maintain compatibility. By not changing the development environment compatibility risks can
be eliminated.

The USB based bootloader exposes its USB subsystem to the application as APIs. This is done to reduce
code size. Exposure of these functions is done through a redirected call table. The implication of this
strategy is that the application makes indirect calls to specific addresses within the bootloader. Because
the bootloader and application are compiled together, any change to the bootloader doesn't cause a
change to addresses of the USB API functions.

Although multiple compilers are supported by PSoC Designer, do not assume that a bootloader compiled
under one compiler is compatible with an application compiled under another. One critical difference

Document Number: 001-64851 Rev. *F Page 10 of 72

= CYPRESS USBFS Bootloader

PERFORM

regards assumptions about RAM allocation. The implementation of RAM paging may be different from one
compiler to another. An added difficulty is that because a bootloader and application are compiled
together, it is not possible to debug a bootloader/application pair that had mismatches in the development
tools used.

Internal Use of the Watchdog Timer

Coordination with the watchdog timer is linked to the global parameter WATCHDOG_ENABLE, contained
in the file globalparams.inc. If your project uses a watchdog timer, it conditionally compiles code linked to
the global parameter, and automatically sets the watchdog during bootload checksum and download
operations. CPU clock speed affects how fast the watchdog timer is updated. A practical minimum setting
for the watchdog timer is approximately 0.125 seconds.

Improper Settings in Flashsecurity.txt

The default settings for this file are set when the project is created. An example configuration is given in
the file “Flashsecurity.example”. Flashsecurity.example is given with the BootLoader Tools - Get Files user
module menu item. The map must allow flash write at all the locations that are eventually bootloaded. One
strategy is to make all blocks writeable. Another strategy is to take a moment to layout your memory map
now and edit this file accordingly. No matter which strategy is chosen, taking action at the beginning of the
project is quicker than debugging it later. It is your responsibility to write protect the areas of code used by
the bootloader executable. Failure to correctly map flash security can be a contributing factor in a broken
system and an extremely difficult debug task.

For development and debugging purposes, a flash security of 'U' (unprotected) is recommended for the
application area. For final production, a flash security setting of 'R' (read protected) is recommended on
the application area to prevent external reads and writes from occurring.

Incorrect Relocatable Code Start Address (Linker Parameter ImageCraft Compiler Only)

Since the memory map for a bootloader project is considerably different than that for a conventional
project, the relocatable code start address is adapted when Bootloader Tools window is invoked. This
parameter can be viewed (changed) in the Relocate code start address filed in the Project > Settings >
Linker tab. This value is obtained by multiplying the parameters:

ApplicationCode_Start_Block X block size = Relocatable Code Start Address.

Note When unplacing the Bootloader UM, the Relocatable Code Start Address does not reset to its orig-
inal value. The user needs to change it back manually to save ROM space.

Power Stability

Power noise, glitches, brownout, slow power ramp, and poor connections can cause difficult to diagnose
problems with flash programming. Program execution is rapid in comparison to power ramps, and in some
cases, a part may still have changing power levels when flash programming is taking place. One example
is some sort of status write to flash at power up. Evaluate your use model and the potential for changing
power supply conditions during flash operations. Poor power stability may contribute to nonfunctional parts
and may cause poor flash retention.

Application or Interrupts Not Completely Stopped During Bootload Process

The application that is to be replaced by a new bootloaded application must be completely terminated
before a bootload operation can take place. It is especially important to turn application interrupts off.
When the bootload process takes place, interrupt vector addresses are changed to zero before they are

Document Number: 001-64851 Rev. *F Page 11 of 72

USBFS Bootloader

rewritten to their new address. Running interrupts cause random resets (through a vector to 0) if they are
not disabled. Note that this does NOT apply to the specific communication interrupts used by the
bootloader.

There are two USB interfaces: one is used by the application and the other is used by the bootloader. A
method to explicitly shut down the USB application interface and turn on the bootloader interface should
be implemented, which also includes a complete shutdown of the running application. The example code
given later in this datasheet contains an example of this procedure.

Downloading a New File Causes the Device to Stop Working

It is possible to construct applications with no facility to enter the bootloader utility. It is easy to do this
unintentionally. For example, a main() function with a simple while(1); loop never returns and enters the
bootloader. As a result, it cannot be reprogrammed after it begins executing (as long as it has a correct
checksum). There are multiple strategies to address this problem, but no default method is included in this
user module. A few suggestions are:

1. Apply a reset condition that allows a period of time when the bootloader is enabled when the device
first powers up. By setting timeout parameters, the device can be configured to enter the bootloader
upon reset and exit to the foreground application when the timeout expires.

2. Set atest at some point in the code that causes the device to enter the bootloader. This can be a switch
closure or holding a port pin low/high.

3. Using built in USB capabilities such as feature reports or a spare endpoint, define USB communication
that can be sent to the device to instruct it to enter bootload mode. When this command is sent, the
device drops off the USB bus briefly, and when it returns it should enumerate as a bootloader.

4. Use the watchdog timer to reset the device if it is not serviced regularly. This can be combined with one
of the above strategies to allow a WDT interrupt to initiate a bootloadable state. Upon reset from a
watchdog timer, monitor a status bit associated with the watchdog timer to determine if this is the
cause of the reset condition. See the Technical Reference Manual for additional information.

5. Two projects have been developed and the bootloader in each project is different in some subtle way.
Keep in mind that “bootloading” implies that programming part of a device is taking place. This implies
that the implementation of the bootloader for each of two mutually reprogrammable applications must
be identical. All bootloader parameters and relocatable code start addresses should be identical (this
is different from first application block). Debug strategies for this problem include comparison of the
two hex files in question paying particular attention to the areas of hex code used by the bootloader.
Another method is to compare the <project>.Ist files. The bootloader makes use of some redirect vec-
tors to allow certain application address parameters to change. All of these jump vectors must match
for an application and a bootloader. After a bootloader is deployed to a field application, there is no
way to alter the code within it. A future application must still ‘agree’ about where mutually used jump
vectors are stored.

Parameters and Resources

The BootLdrUSBFSe User Module consists of a bootloader utility integrated with a fully functional USBFS
User Module.

Parameters defined for the bootloader enable you to define where the major program areas are located
when the program is compiled and linked.
Renaming User Modules

Renaming the user module may require specific action on your part, because this user module requires a
wizard to fill out and/or overwrite source files. Wizard generated variable names inside wizard generated

Document Number: 001-64851 Rev. *F Page 12 of 72

USBFS Bootloader

files may not be updated in all cases. You must open each wizard and select "OK" or "APPLY" to force the
regeneration of internal variable names. If compile errors still occur because variable names are not
updated, remove the problem file from the project, reopen the wizard, select "OK" or "APPLY", and rebuild
the project. The file is replaced with the corrected variable names.

Default Parameters

Default parameters are for informational purposes only. Defaults in your project may be tailored to the
block size of the part in use, or may have been adjusted to give adequate sizes of code areas. After a
project compiles and has been tested a developer may choose to adjust block sizes to optimize memory

use.

Figure 3.

ApplicationCode_Start_Block
BootLoaderkey

Foced Pulse Width
Flash_Program_Temperature_deg_C
ICE_Debug_FLASH_DISABLE
Bootload_when_CKSUM_fails
Acquisition¥Window

Figure 4.

ApplicationCode_Start_Block
BootLoaderkey

Foced Pulse Width
Flash_Program_Temperature_deg_C
ICE_Debug_FLASH_DISABLE
Bootload_when_CKSUM_fails

Default Parameters for a Device with 0x80 (128 bytes) Blocks for HID Support Option

(x2C

0001 020304050607
EMABLE

-20C
Flash_WRITE_ENAELE
EMABLE_{deploymert)
10

Default Parameters for a Device with 0x40 (64 bytes) Blocks for HID Support Option

=57

0001 020304050607
ENABLE

-20C
Fash_WRITE_EMNABLE
EMABLE_{deployment)

Acquisition¥Window 10

ApplicationCode_Start_Block

This is the first block of code assigned to the user application. This code is bootloadable. This param-
eter is also used by the Bootloader Tools to determine what blocks of code to process for a .dld file
and what blocks of code to calculate checksums on. This variable is propagated into the checksum
block for use when the bootloader utility automatically verifies the application checksum.

BootLoaderKey
This is the key value prepended to the transactions sent to the bootloader application. The key repre-
sents an extra verification step to ensure the bootloader upgrade utility is not started accidentally.
The default value "0001020304050607".

Fixed Pulse Width

Enable this option to use a fixed pulse width based on the “Flash_Program_Temperature_deg_C”.
Disable this option to set program temperature at run time by calling the “BL_SetTemp(BYTE bTemp)”
function.

Flash_Program_Temperature_deg_C

This is the typical programming temperature expected when the device is reprogrammed. Program-
ming the device at a different temperature than that specified in this parameter may adversely effect
program retention.

Document Number: 001-64851 Rev. *F Page 13 of 72

= CYPRESS USBFS Bootloader

PERFORM

Matching the program temperature parameter to the actual temperature during bootload impacts
memory retention and maximum number of write cycles. PSoC implements a stronger flash write at
colder temperatures. Bootloading at significantly lower temperatures than the parameter setting may
reduce memory retention. For this reason, take precautions to ensure that the bootloader is never
operated more than 20C from the value in this parameter. Refer to the Cypress device specification
for more information.

ICE_Debug_Flash_ENABLE

This parameter is used to overcome an anomaly in the debug behavior of the ICE when executing an
SSC while the USB resource is turned on and operating. Whenever an SSC operation is called (and
it is during a flash write), the USB SIE is disabled. Disabling flash write allows an application to be
completely tested without actually writing code to flash.

The default value is "Flash Write DISABLE".

Bootload_when_CKSUM_fails

Normally if the application checksum is incorrect at reset time the bootloader becomes active and
waits for a new application to be bootloaded. During code development with an ICE or debugger it
may be inconvenient to take the extra step of correcting the checksum after each compile. This
feature allows you to run and debug an application without considering bootloader operations. The
checksum feature should be re-enabled for application field deployment.

AcquisitionWindow

This variable is the length of time that the PSoC device waits at startup for the Enter Bootloader
command, before proceeding to the application code. This duration is measured in ms. The range is
from 0 to 255 ticks (125 ms per tick).

Application Programming Interface

The Application Programming Interface (API) routines in this section allow programmatic control of the
BootLdrUSBFSe User Module. The following sections describe descriptor generation and integration. The
sections also list the basic and device specific API functions. As a developer you need a basic
understanding of the USB protocol and familiarity with the USB 2.0 specification, especially Chapter 9,
USB Device Framework.

The BootLdrUSBFSe User Module supports control, interrupt, bulk, and isochronous transfers. Some or a
group of functions, such as LoadInEP and EnableOutEP, are designed for use with bulk and interrupt
endpoints. Other functions, such as BL_USBFS_LoadInISOCEP, are designed for use with isochronous
endpoints. Refer to the Technical Reference Manual (TRM) for more information on how to do these
transfer types.

Note

The API routines for the USB user modules are not re-entrant. Because they depend on internal global
variables in RAM, executing these routines from an interrupt is not supported by the API support supplied
with this user module. If this is a requirement for a design, contact the local Cypress Field Application
Engineer.

For Large Memory Model devices, it is also the caller's responsibility to preserve any value in the
CUR_PP, IDX_PP, MVR_PP, and MVW_PP registers. Even though some of these registers may not be
modified now, there is no guarantee that will remain the case in future releases.

Document Number: 001-64851 Rev. *F Page 14 of 72

USBFS Bootloader

Bootloader APIs

The Bootloader contains a very limited set of APls, because the main purpose of the Bootloader is to
completely remove and replace the user application.

ENTER_BOOTLOADER()

Description:

Enters the bootloader application and returns after timeout (if a timeout is defined) if no bootloader
host begins to talk to the device. A generic parameter is defined that resides at a fixed address for the
life of the deployed part. This function can also be implemented by a direct call to the known hex
address of this function.

This function executes a |jmp to the GenericBootloaderEntry and resides at 0x7C.

C Prototype:
void ENTER BOOTLOADER (void)

Assembly:
lcall ENTER BOOTLOADER ; Call the Start Function

Alternately:
GenericHardDefinition: equ (0x7C)
lcall GenericHardDefinition ; Call the Start Function
Parameters:

None

BL_SetTemp (for devices with 64-byte Flash Block only)

Description:

This function is used to dynamically update the bootloader with the latest die temperature measure-
ment. In this case, the application obtains a die temperature measurement and passes it to the boot-
loader using this function. Then, when a bootload event occurs, the bootloader programs the flash
optimally based on the temperature passed to it using this function.

It is recommended that you periodically measure (or otherwise determine) the device's die tempera-
ture during run time. Every time the die temperature is measured, it should be passed to the boot-
loader using this function. The bootloader uses the die temperature passed to it to optimally vary the
flash programming erase and write periods during a bootload. This optimizes the flash's retention and
endurance. As a result, the time it takes to execute a bootload varies depending on the temperature
value passed to the bootloader.

The die temperature can be measured using a user module that measures the device's on-chip
temperature sensor. Or, by reading or measuring the temperature from some other external device or
temperature sensor.

This function rewrites the Die Temperature value that is set by the
"Flash_Program_Temperature_Deg C" user module parameter.

C Prototype:
void BL_SetTemp (CHAR cTemp) ;

Document Number: 001-64851 Rev. *F Page 15 of 72

e
CYPRESS USBFS Bootloader

PERFORM

Assembler:

mov A, cTemp
lcall BL SetTemp
Example Code:

void main (void)

{

CHAR cDieTemp = -20; // Allocate avariable to hold the die temperature
// Use -20C as the default value

// Measure die temperature here and copy to cDieTemp variable
BL SetTemp (cDieTemp); // Update Bootloader with real die temperature
ENTER_BOOTLOADER(); // Run the BootLoader

}

Parameters:
cTemp: Die Temperature in Celsius degrees.

Return Value:
None

Side Effects:

The A and X registers may be modified by this or future implementations of this function. This is true
for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary, it is
the calling function's responsibility to preserve the values across calls to fastcall16 functions.

USBFS APIs

The BootLdrUSBFSe User Module supports control, interrupt, bulk, and isochronous transfers. Some
functions, or groups of functions, such as BL_USBFS_LoadInEP and BL_USBFS_EnableOutEP, are
designed for use with bulk and interrupt endpoints. Other functions, such as BL_USBFS_LoadInISOCEP,
are designed for use with Isochronous endpoints. See the Technical Reference Manual (TRM) for more
information on how to do these transfer types.

The following table lists the USBFS supplied API functions:

Function Description
void BL_USBFS_Start(BYTE bDevice, BYTE Activate the user module for use with the device and specific
bMode) voltage mode.
void BL_USBFS_Stop(void) Disable user module.
BYTE BL_USBFS_bCheckActivity(void) Checks and clears the USB bus activity flag. Returns 1 if the

USB was active since the last check, otherwise returns 0.

void BL_USBFS_SetPowerStatus(BYTE Sets the device to self powered or bus powered
bPowerStatus)
BYTE BL_USBFS_bGetConfiguration(void) Returns the currently assigned configuration. Returns 0 if the

device is not configured.

Document Number: 001-64851 Rev. *F Page 16 of 72

CYPRESS

PERFORM

Function

BYTE BL_USBFS_bGetEPState(BYTE
bEPNumber)

BYTE BL_USBFS_bGetEPAckState(BYTE
bEPNumber)

BYTE BL_USBFS_wGetEPCount(BYTE
bEPNumber)

void BL_USBFS_LoadInEP(BYTE bEPNumber,
BYTE *pData, WORD wLength, BYTE bToggle)

void BL_USBFS_LoadInISOCEP(BYTE
bEPNumber, BYTE *pData, WORD wLength,
BYTE bToggle)

BYTE BL_USBFS_bReadOutEP(BYTE
bEPNumber, BYTE *pData, WORD wLength)

void BL_USBFS_EnableOutEP(BYTE
bEPNumber)

void BL_USBFS_EnableOutISOCEP(BYTE
bEPNumber)

void BL_USBFS_DisableOutEP(BYTE
bEPNumber)

BL_USBFS_Force(BYTE bState)

Human Interface Device (HID) Class Support API:

Document Number: 001-64851 Rev. *F

USBFS Bootloader

Description

Returns the current state of the specified USBFS endpoint.
2=NO_EVENT_ALLOWED

1 = EVENT PENDING

0 =NO_EVENT_PENDING

Identifies whether ACK was set by returning a nonzero value.

Returns the current byte count from the specified USBFS
endpoint.

Loads and enables the specified USBFS endpoint for an IN
transfer.

Reads the specified number of bytes from the endpoint RAM
and places it in the RAM array pointed to by pSrc. The function
returns the number of bytes sent by the host.

Enables the specified USB endpoint to accept OUT transfers.

Disables the specified USB endpoint to NAK OUT transfers.

Forces a J, K, or SEO State on the USB D+/D- pins. Normally
used for remote wakeup.
bState Parameters are:

USB_FORCE_SEO 0xCO
USB_FORCE_J 0xA0
USB_FORCE_K 0x80

USB_FORCE_NONE 0x00

Note. When using this API Function and GPIO pins from Port
1 (P1.2-P1.7), the application uses the Port_1_Data_SHADE
shadow register to ensure consistent data handling. From
assembly language, access the Port_1_Data_ SHADE RAM
location directly. From C language, include an extern
reference:

extern BYTE Port 1 Data SHADE;

Page 17 of 72

CYPRESS USBFS Bootloader

PERFORM

Function Description
BYTE BL_USBFS_UpdateHIDTimer(BYTE Updates the HID Report timer for the specified interface and
binterface) returns 1 if the timer expired and 0 if not. If the timer expired, it
reloads the timer.
BYTE BL_USBFS_bGetProtocol(BYTE Returns the protocol for the specified interface.
binterface)

BL_USBFS_Start (user defined application device)

Description:

Performs all required initialization for USBFS User Module. Either the foreground USB device or the
bootloader specific USB device may be started using this command. Only one USB device configu-
ration may be active at any time. To start the bootloader device set the value of bDevice to -1 (OxFF).

C Prototype:
void BL_USBFS Start (BYTE bDevice, BYTE bMode)

Assembly:

mov A, OxFF ; The bootloader device descriptor

mov A, O ; Select application device descriptor
mov X, USB 5V_OPERATION ; Select the Voltage level

lcall BL USBFS Start ; Call the Start Function

Parameters:

Register A: Contains the device number from the desired device descriptor set entered with the
USBFS Setup Wizard.

Register X: Contains the operating voltage at which the chip runs. This determines whether the
voltage regulator is enabled for 5V operation or the if pass through mode is used for 3.3V operation.
Symbolic names are given in C and assembly, and their associated values are listed in the following

table:
Mask Value Description
USB_3V_OPERATION 0x02 Disable voltage regulator and pass-through vcce for pull up
USB_5V_OPERATION 0x03 Enable voltage regulator and use regulator for pull up

Return Value:
None

Side Effects:

The A and X registers may be modified by this or future implementations of this function. Currently
only the IDX_PP and the CUR_PP page pointer registers are modified.

BL_USBFS_Stop

Description:
Performs all necessary shutdown task required for the USBFS User Module.

Document Number: 001-64851 Rev. *F Page 18 of 72

oz
CYPRESS USBFS Bootloader

PERFORM

C Prototype:
void BL USBFS_ Stop(void)

Assembly:
lcall BL USBFS Stop

Parameters:
None

Return Value:
None

Side Effects:

The A and X registers may be modified by this or future implementations of this function. Currently
only the CUR_PP page pointer register is modified.

BL_USBFS_bCheckActivity
Description:
Checks for USBFS Bus Activity.

C Prototype:
BYTE BL USBFS bCheckActivity(void)

Assembly:
lcall BL _USBFS bCheckActivity

Parameters:
None

Return Value:
Returns 1 in A if the USB was active since the last check, otherwise returns 0.

Side Effects:
The A and X registers may be modified by this or future implementations of this function.

BL _USBFS_bGetConfiguration

Description:
Gets the current configuration of the USB device.

C Prototype:
BYTE BL_USBFS bGetConfiguration(void)

Assembly:
lcall BL _USBFS bGetConfiguration

Parameters:
None

Return Value:
Returns the currently assigned configuration in A. Returns 0 if the device is not configured.

Document Number: 001-64851 Rev. *F Page 19 of 72

USBFS Bootloader

Side Effects:

The A and X registers may be modified by this or future implementations of this function. This is true
for all RAM page pointer registers in the large memory model. When necessary, it is the responsibility
of the calling function to preserve the values across calls to fastcall16 functions. Currently only the
CUR _PP page pointer register is modified.

BL_USBFS_bGetEPState

Description:

Gets the endpoint state for the specified endpoint. The endpoint state describes, from the perspective
of the foreground application, the endpoint status. The endpoint has one of three states, two of the
states mean different things for IN and OUT endpoints. The following table outlines the possible states
and their meaning for IN and OUT endpoints.

C Prototype:
BYTE BL USBFS bGetEPState (BYTE bEPNumber)

Assembly:
mov A, 1 ; Select endpoint 1
lcall BL USBFS bGetEPState
Parameters:
Register A contains the endpoint number.

Return Value:

Returns the current state of the specified USBFS endpoint. Symbolic names given in C and assembly,
and their associated values are listed in the following table. Use these constants whenever you write
code to change the state of the endpoints such as ISR code to handle data sent or received.

State Value Description
NO_EVENT_PENDING 0x00 Indicates that the endpoint is awaiting SIE action.
EVENT_PENDING 0x01 Indicates that the endpoint is awaiting CPU action.
NO_EVENT_ALLOWED 0x02 Indicates that the endpoint is locked from access.

IN. BUFFER_FULL 0x00 The IN endpoint is loaded and the mode is set to ACK IN.
IN_ BUFFER_EMPTY 0x01 An IN transaction occurred and more data can be loaded.
OUT_BUFFER_EMPTY 0x00 The OUT endpoint is set to ACK OUT and is waiting for data.
OUT_BUFFER_FULL 0x01 An OUT transaction has occurred and data can be read.

Side Effects:

The A and X registers may be modified by this or future implementations of this function. This is true
for all RAM page pointer registers in the large memory model. When necessary, it is the responsibility
of the calling function to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP page pointer register is modified.

Document Number: 001-64851 Rev. *F Page 20 of 72

USBFS Bootloader

BL _USBFS_bGetEPAckState

Description:
Determines whether or not an ACK transaction occurred on this endpoint by reading the ACK bit in
the control register of the endpoint. This function does not clear the ACK bit.

C Prototype:

BYTE BL USBFS bGetEPAckState (BYTE bEPNumber)

Assembly:
mov A, 1 ; Select endpoint 1
lcall BL USBFS bGetEPAckState
Parameters:
Register A contains the endpoint number.

Return Value:
If an ACKed transaction occurred then this function returns a non-zero value. Otherwise, a zero is
returned.

Side Effects:

The A and X registers may be modified by this or future implementations of this function. This is true
for all RAM page pointer registers in the large memory model. When necessary, it is the responsibility
of the calling function to preserve the values across calls to fastcall16 functions.

BL_USBFS_wGetEPCount

Description:

This functions returns the value of the endpoint count register. The Serial Interface Engine (SIE)
includes two bytes of checksum data in the count. This function subtracts two from the count before
returning the value. Call this function only for OUT endpoints after a call to USB_GetEPState returns
EVENT_PENDING.

C Prototype:

WORD BL_ USBFS_ wGetEPCount (BYTEbEPNumber)

Assembly:

mov A, 1 ; Select endpoint 1
lcall BL USBFS wGetEPCount

Parameters:
Register A contains the endpoint number.

Return Value:
Returns the current byte count from the specified USBFS endpoint in A and X.

Side Effects:

The A and X registers may be modified by this or future implementations of this function. This is true
for all RAM page pointer registers in the large memory model. When necessary, it is the responsibility
of the calling function to preserve the values across calls to fastcall16 functions.

Document Number: 001-64851 Rev. *F Page 21 of 72

USBFS Bootloader

BL_USBFS_LoadInEP

Description:

Loads and enables the specified USB endpoint for an IN interrupt or bulk transfer (.._LoadInEP) and
isochronous transfer (... LoadInISOCEP).

C Prototype:

void BL USBFS LoadInEP (BYTE bEPNumber, BYTE * pData, WORD wLength, BYTE bToggle)
void BL USBFS LoadInISOCEP (BYTE bEPNumber, BYTE * pData, WORD wLength, BYTE bToggle)

Assembly:

mov A, USBFS TOGGLE
push A

mov A, O

push A

mov A, 32

push A

mov A, >pData

push A

mov A, <pData

push A

mov A, 1

push A

lcall BL USBFS LoadInEP

Parameters:

bEPNumber — The endpoint Number between one and four.

pData — A pointer to a data array. Data for the endpoint is loaded from the data array specified by
pData.

wLength — The number of bytes to transfer from the array as a result of an IN request. Valid values
are between 0 and 256.

bToggle — A flag indicating whether or not the Data Toggle bit is toggled before setting it in the count
register. For IN transactions toggle the data bit after every successful data transmission. This makes
certain that the same packet is not repeated or lost. Symbolic names for the flag are given in C and

assembly:
Mask Value Description
USB_NO_TOGGLE 0x00 The Data Toggle does not change
USB_TOGGLE 0x01 The Data bit is toggled before transmission

Return Value:
None

Side Effects:

The A and X registers may be modified by this or future implementations of this function. This is true
for all RAM page pointer registers in the large memory model. When necessary, it is the responsibility
of the calling function to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

Document Number: 001-64851 Rev. *F Page 22 of 72

USBFS Bootloader

BL_USBFS_bReadOutEP

Description:

Moves the specified number of bytes from endpoint RAM to data RAM. The number of bytes actually
transferred from endpoint RAM to data RAM is the lesser of the actual number of bytes sent by the
host and the number of bytes requested by the wCount argument.

C Prototype:
BYTE BL USBFS bReadOutEP (BYTE bEPNumber, BYTE * pData, WORD wLength)

Assembly:

mov A, O

push A

mov A, 32
push A

mov A, >pData
push A

mov A, <pData
push A

mov A, 1

push A

lcall BL USBFS bReadOutEP

Parameters:
bEPNumber — The endpoint Number between one and four.
pData — The endpoint space is loaded from a data array specified by this pointer.

wLength — The number of bytes to transfer from the array and then send as a result of an IN request.
Valid values are between 0 and 256. The function moves less than that if the number of bytes sent by
the host are less requested.

Return Value:
Returns the number of bytes sent by the host to the USB device. This can be more or less than the
number of bytes requested.

Side Effects:

The A and X registers may be modified by this or future implementations of this function. This is true
for all RAM page pointer registers in the large memory model. When necessary, it is the responsibility
of the calling function to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

BL USBFS _EnableOutEP

Description:
Enables the specified endpoint for OUT Bulk or Interrupt transfers (..._EnableOutEP) and Isochro-
nous transfers (... _EnableOutiISOCEP). Do not call these functions for IN endpoints.

C Prototype:

void BL USBFS EnableOutEP (BYTE bEPNumber)
void BL USBFS EnableOutISOCEP (BYTE bEPNumber)

Assembly:

mov A, 1

Document Number: 001-64851 Rev. *F Page 23 of 72

USBFS Bootloader

lcall BL USBFS EnableOutEP

Parameters:
Register A contains the endpoint number.

Return Value:
None

Side Effects:

The A and X registers may be modified by this or future implementations of this function. Currently
only the IDX_PP page pointer register is modified.

BL_USBFS_Disable OuteEP

Description:
Disables the specified USBFS OUT endpoint. Do not call this function for IN endpoints.

C Prototype:
void BL USBFS DisableOutEP (BYTE bEPNumber)

Assembly:
mov A, 1 ; Select endpoint 1
lcall BL USBFS DisableOutEP
Parameters:
Register A contains the endpoint number.

Return Value:
None

Side Effects:

The A and X registers may be modified by this or future implementations of this function. This is true
for all RAM page pointer registers in the large memory model. When necessary, it is the responsibility
of the calling function to preserve the values across calls to fastcall16 functions.

BL _USBFS_Force

Description:

Forces a USB J, K, or SEO state on the D+/D- lines. This function gives the necessary mechanism for
a USB device application to perform USB remote wakeup functionality. For more information, refer to
the USB 2.0 Specification for details on Suspend and Resume functionality.

C Prototype:
void BL_USBFS Force (BYTE bState)

Assembly:

mov A, BL USB FORCE K
lcall BL USBFS Force
Parameters:

bState is byte indicating which among four bus states to enable. Symbolic names are given in C and
assembly code, and their associated values are listed in the following table:

Document Number: 001-64851 Rev. *F Page 24 of 72

CYPRESS USBFS Bootloader

PERFORM

State Value Description
USB_FORCE_SEO 0xCO0 Force a Single Ended 0 onto the D+/D- lines
USB_FORCE_J 0xA0 Force a J State onto the D+/D- lines
USB_FORCE_K 0x80 Force a K State onto the D+/D- lines
USB_FORCE_NONE 0x00 Return bus to SIE control

Return Value:
None

Side Effects:

The A and X registers may be modified by this or future implementations of this function. This is true
for all RAM page pointer registers in the large memory model. When necessary, it is the responsibility
of the calling function to preserve the values across calls to fastcall16 functions.

BL USBFS UpdateHIDTimer

Description:
Updates the HID Report Idle timer and returns the expiry status. Reloads the timer if it expires.

C Prototype:
BYTE BL USBFS UpdateHIDTimer (BYTE bInterface)

Assembly:

mov A, 1 ; Select interface 1
lcall BL USBFS UpdateHIDTimer

Parameters:
Register A contains the interface number.

Return Value:

The state of the HID timer is returned in A. Symbolic names are given in C and assembly code, and
their associated values are listed in the following table:

State Value Description
USB_IDLE_TIMER_EXPIRED 0x01 The timer expired.
USB_IDLE_TIMER_RUNNING 0x02 The timer is running.
USB_IDLE_TIMER_IDEFINITE 0x00 Returned if the report is sent when data or state

changes.

Side Effects:
The A and X registers may be modified by this or future implementations of this function.

Document Number: 001-64851 Rev. *F Page 25 of 72

USBFS Bootloader

BL USBFS_bGetProtocol

Description:
Returns the HID protocol value for the selected interface.

C Prototype:
BYTE BL USBFS bGetProtocol (BYTE bInterface)

Assembly:
mov A, 1 ; Select interface 1
lcall BL USBFS bGetProtocol
Parameters:
binterface contains the interface number.

Return Value:
Register A contains the protocol value.

Side Effects:

The A and X registers may be modified by this or future implementations of this function. This is true
for all RAM page pointer registers in the large memory model. When necessary, it is the responsibility
of the calling function to preserve the values across calls to fastcall16 functions.

BL_USBFS_SetPowerStatus

Description:

Sets the current power status. Set the power status to one for self powered or zero for bus powered.
The device replies to USB GET_STATUS requests based on this value. This allows the device to
properly report its status for USB Chapter 9 compliance. Devices may change their power source from
self powered to bus powered at any time and report their current power source as part of the device
status. Call this function any time your device changes from self powered to bus powered or vice
versa, and set the status appropriately.

C Prototype:
void BL USBFS SetPowerStatus (BYTE bPowerStaus);

Assembly:

mov A, 1 ; Select self powered
lcall BL USBFS SetPowerStatus

Parameters:

bPowerStatus contains the desired power status, one for self powered or zero for bus powered.
Symbolic names are given in C and assembly code, and their associated values are listed in the
following table:

Document Number: 001-64851 Rev. *F Page 26 of 72

= CYPRESS USBFS Bootloader

PERFORM

State Value Description
USB_DEVICE_STATUS BUS POWERED 0x00 Set the device to bus powered.
USB_DEVICE_STATUS SELF_POWERED 0x01 Set the device to self powered.

Return Value:
None

Side Effects:

The A and X registers may be modified by this or future implementations of this function. This is true
for all RAM page pointer registers in the Large Memory Model. When necessary, it is the responsibility
of the calling function to preserve the values across calls to fastcall16 functions.

USB-UART APIs

Many embedded applications use the RS-232 interface to communicate with external systems such as
PCs, especially when debugging. But in the PC world, the RS-232 COM port is about to disappear from
most new computers, leaving USB as the replacement for serial communication. The simplest way to
migrate a device to USB is to emulate RS-232 over the USB bus. The primary advantage of this method is
that PC applications use the USB connection as an RS-232 COM connection, making it very simple to
debug. This method uses a standard Windows® driver that is included with all versions Microsoft®
Windows from Windows 98SE.

The USB Communication Device Class (CDC) specification defines many communication models,
including an abstract control model for serial emulation over USB in Section 3.6.2.1. See the CDC
specification version 1.1 for details. The Microsoft Windows USB modem driver, usbser.sys, conforms to
this specification.

When a new device connects to a Windows PC the first time, Windows asks you to give a driver. An INF
file is required to install drivers. Microsoft Windows does not give a standard INF file for the usbser.sys
driver. In order to install a device that emulates RS-232 over USB, you must supply an INF file that maps
the attached device to the Microsoft CDC drivers. The necessary INF file for USBUART projects is
generated automatically and is located in the project LIB folder. After supplying the INF file, the driver
allows the USB device to be enumerated as a COM port.

The settings in a terminal application (baud rate, data bits, parity, stop bits, and flow control) do not affect
the performance of data transmissions because it is a USB device and the USB protocol is used to control
data flow. However, the terminal settings with the exception of flow control can be retrieved with specific
API calls to use with an RS-232 device if needed. The flow control setting cannot be retrieved because it is
not supported by Microsoft's CDC driver, usbser.sys.

Use the following API calls to retrieve specific settings:

B BL UART_dwGetDTERate
BL_UART_bGetCharFormat
BL_UART_bGetParityType
BL_UART_bGetDataBits
BL_UART_bGetLineControlBitmap

Document Number: 001-64851 Rev. *F Page 27 of 72

e
CYPRESS USBFS Bootloader

PERFORM

Sending Packets of Length 64 Bytes or More

In this user module, the USB endpoint buffer size is set to 64 bytes for incoming and outgoing data. It
means that all write and read APIs are limited to work with 64 byte buffer length.

In addition, a limitation exists for sending exactly 64 bytes of data. The PC side driver accepts a packet as
fully received, if the payload size is less than 64 or transfers a zero-length packet. If all 64 bytes are
received, the PC driver assumes that it has not received all the data and immediately asks for the next
packet. The following code gives the successful transfer of data to PC immediately after function call:

while (!BL _UART bTxIsReady());
BL UART Write(pData, 61); //Length is less than 64 data appear on
//terminal application after this function is executed.

The following code is an example that shows how to send exactly 64 bytes of data:

while (!BL UART bTxIsReady());

BL UART Write(pData, 64); //Length is equal to 64

while (!BL UART bTxIsReady());

BL UART Write(pData, 0); //No actual data transfer, but zero-length packet
// indicates PC driver that data is completely received.

// 64 bytes of data appears on terminal application

// after this function is executed.

Note that sending a 64 byte length packet with the following zero-length packet is faster than sending two
packets of 32 bytes. This happens because a full 64 bytes-length packet forces the driver to continue the
transfer.

The following code is an example that shows 150 bytes transfer:

while (!BL_UART bTxIsReady());

BL UART Write(pData, 64); //Length is equal to 64

while (!BL_UART bTxIsReady());

BL UART Write (pData, 64); //Length is equal to 64. 128 bytes is transferred to
// PC. No data appears on terminal application at the

// moment

while (!BL_UART bTxIsReady());

BL UART Write(pData, 2); //Two bytes transferred. Full 130 bytes-length packet
//appears on terminal application after this function

// 1s executed.

The following table lists the USB-UART supplied API functions:

Function Description

BOOL BL_UART _Init(void) Initialize the USB-UART module. Returns a nonzero value if the
USB-UART is successfully initialized.

void BL_UART_Write(BYTE * pData, BYTE Sends bLength bytes from pData array to the PC.
bLength)

void BL_UART_CWrite(const BYTE * pData, Sends bLength bytes from constant (ROM) pData array to the PC.
BYTE bLength)

void BL_UART _PutString(BYTE * pStr) Sends a NULL terminated string pStr to the PC.
void BL_UART_CPutString(const BYTE * pStr) Sends a constant (ROM) NULL terminated string pStr to the PC.

Document Number: 001-64851 Rev. *F Page 28 of 72

Crpgss
Function
void BL_UART_PutChar(BYTE bChar)
void BL_UART_PutCRLF(void)
void BL_UART_PutSHexByte(BYTE bValue)
void BL_UART_PutSHexInt(INT iValue)
BYTE BL_UART_bGetRxCount(void)
BYTE BL_UART_bTxIsReady(void)

BYTE BL_UART_Read(BYTE * pData, BYTE
bLength)

void BL_UART_ReadAll(BYTE * pData)

WORD BL_UART_ReadChar(void)

DWORD *BL_UART_dwGetDTERate(
DWORD * dwDTERate)

BYTE BL_UART_bGetCharFormat(void)
BYTE BL_UART_bGetParityType(void)

BYTE BL_UART_bGetDataBits(void)

BYTE BL_UART _bGetLineControlBitmap(void)
void BL_UART _SendStateNotify(BYTE bState)

BL_UART _Init

Description:

USBFS Bootloader

Description
Sends one character to the PC
Sends a carriage return (0x0D) and a line feed (0x0A) to the PC.
Sends a two character hex representation of bValue to the PC.
Sends a four character hex representation of iValue to the PC.
Returns the current byte count ready for read.
Returns a nonzero value if USBUART is ready to send data.

Reads the specified number of bytes from the RX buffer and
places it in the RAM array specified by pData. The function returns
the number of bytes remaining in RX buffer and operation status.

Reads all available data from the RX buffer and places it in the
RAM array specified by pData.

Returns one byte from the RX buffer in the LSB of the return
value. The function also returns the operations status and number
of bytes remaining in the RX buffer in the MSB of the return value.

Returns the data terminal rate set for this port in bits per second.

Returns the number of stop bits.

Returns the parity type.

Returns the number of data bits.

Returns the DTE and RTS signal state.

Sends natification about the current UART state to the PC.

Try to initialize the USB-UART device and set up communication with the PC.

C Prototype:
BOOL BL UART Init(void)

Assembly:
lcall BL UART Init

Parameters:
None

Return Value:

Returns a nonzero value in the accumulator if the device initializes successfully. Returns a 0 if initial-
ization failed. The user module can operate only after successful initialization.

Document Number: 001-64851 Rev. *F Page 29 of 72

USBFS Bootloader

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and CUR_PP page pointer registers is modified.

BL_UART_Write

Description:

Sends bLength characters from the location specified by (RAM) pointer pData to the PC. Refer to
Sending Packets of Length 64 Bytes and More when sending large packets.

C Prototype:
void BL UART Write (BYTE * pData, BYTE bLength)

Assembly:

mov A, 20 ; Load array count

push A

mov A, >pData ; Load MSB part of pointer to RAM string
push A

mov A, <pData ; Load LSB part of pointer to RAM string
push A

lcall BL UART Write ; Make call to function

add SP,253 ; Reset stack pointer to original position
Parameters:

pData is a pointer to a data array. The maximum length of the data array is 64 bytes.
bLength is the number of bytes to be transferred from the array and sent to the PC. Valid values are
between 0 and 64.
Return Value:
None

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

BL_UART_CWrite

Description:
Sends bLength characters from the location specified by (ROM) pointer pData to the PC. Refer to
Sending Packets of Length 64 Bytes and More when sending large packets.

C Prototype:

void BL UART CWrite(const BYTE * pData, BYTE bLength)

Assembly:
mov A, 20 ; Load array count
push A

Document Number: 001-64851 Rev. *F Page 30 of 72

USBFS Bootloader

mov A, >pData ; Load MSB part of pointer to ROM string
push A

mov A,<pData ; Load LSB part of pointer to ROM string
push A

lcall BL UART CWrite ; Make call to function

add SP, 253 ; Reset stack pointer to original position
Parameters:

pData is a pointer to a data array in ROM. Maximum length of the data array is 64 bytes.
bLength is the number of bytes to be transferred from the array and sent to the PC. Valid values are
between 0 and 64.
Return Value:
None

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

BL_UART_PutString

Description:

Sends a null terminated (RAM) string to the PC. Refer to Sending Packets of Length 64 Bytes and
More when sending large packets.

C Prototype:
void BL UART PutString(BYTE * pStr)

Assembler:

mov A, >pStr Load MSB part of pointer to RAM based null
terminated string
Load LSB part of pointer to RAM based null
terminated string

lcall BL UART PutString ; Call function to send string out

mov X,<pStr

Ne Ne Ne o~

Parameters:

pStr: Pointer to the string to be sent to PC. The MSB is passed in the Accumulator and the LSB is
passed in the X register. The maximum string length is 64 bytes including the terminating null char-
acter.

Return Value:

None

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

Document Number: 001-64851 Rev. *F Page 31 of 72

USBFS Bootloader

BL_UART_CPutString

Description:

Sends a null terminated (ROM) string to the PC. Refer to Sending Packets of Length 64 Bytes and
More when sending large packets.

C Prototype:
void BL UART CPutString(const BYTE * pStr)

Assembler:

mov A, >pStr Load MSB part of pointer to ROM based null
terminated string
Load LSB part of pointer to ROM based null
terminated string

lcall BL UART PutString ; Call function to send string out

mov X,<pStr

Ne Ne Ne o N

Parameters:
pStr: Pointer to the string to be sent to the PC. The MSB is passed in the Accumulator and the LSB
is passed in the X register. The maximum string length is 64 bytes including the terminating null char-
acter.

Return Value:

None

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

BL_UART_PutChar

Description:
Writes a single character to the PC.

C Prototype:
void BL_UART PutChar (BYTE bChar)

Assembler:

mov A,0x33 ; Load ASCII character "3" in A

lcall BL _UART PutChar ; Call function to send single character to PC
Parameters:

bChar: Character to be sent to the PC. Data is passed in the Accumulator.

Return Value:
None

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

Document Number: 001-64851 Rev. *F Page 32 of 72

USBFS Bootloader

BL_UART_PutCRLF

Description:
Sends a carriage return (0x0D) and line feed (0x0A) to the PC.

C Prototype:
void BL_UART PutCRLF (void)

Assembler:
lcall BL UART PutCRLF ; Send a carriage return and line feed out

Parameters:
None

Return Value:
None

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

BL_UART_PutSHexByte
Description:
Sends a two byte ASCII Hex representation of the data to the PC.

C Prototype:
void BL UART PutSHexByte (BYTE bValue)

Assembler:
mov A, 0x33 ; Load data to be sent
lcall BL UART PutSHexByte ; Call function to output hex representation of
; data. The output for this wvalue would be "33".
Parameters:
bValue: Byte to be converted to an ASCII string (hex representation). Data is passed in the Accumu-
lator.

Return Value:
None

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

Document Number: 001-64851 Rev. *F Page 33 of 72

USBFS Bootloader

BL_UART_PutSHexInt
Description:
Sends a four byte ASCII hex representation of the data to the PC.

C Prototype:
void BL_UART PutSHexInt (INT iValue)

Assembler:
mov A, 0x34 ; Load LSB in A
mov X,0x12 ; Load MSB in X

lcall BL_UART PutSHexInt ; Call function to output hex representation of data.
; The output for this value would be "1234".

Parameters:
iValue: Integer to be converted to ASCII string (hex representation). The MSB is passed in the X
register and the LSB is passed in Accumulator.

Return Value:
None

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

BL_UART_bGetRxCount

Description:
This function returns the number of bytes that were received from the PC and are waiting in the RX
buffer.

C Prototype:

BYTE BL UART bGetRxCount (void)

Assembly:
lcall BL_UART bGetRxCount

Parameters:
None

Return Value:
Returns the current byte count in A.

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP page pointer register are modified.

Document Number: 001-64851 Rev. *F Page 34 of 72

USBFS Bootloader

BL_UART_bTxIsReady

Description:
Returns a nonzero value if the TX buffer is ready to send more data. Otherwise it returns zero.

C Prototype:
BYTE BL UART bTxIsReady (void)

Assembly:
lcall BL UART bTxIsReady

Parameters:
None

Return Value:
If TX buffer can accept data then this function returns a nonzero value. Otherwise a zero is returned.

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions.

BL_UART_Read

Description:

Reads bLength bytes of received data from the RX Buffer and places it in a data array specified by
pData.

C Prototype:
BYTE BL UART Read(BYTE * pData, BYTE bLength)

Assembly:

mov A, 25 ; Load count

push A

mov A, >pData ; Load MSB part of pointer to RAM array
push A

mov A, <pData ; Load LSB part of pointer to RAM array
push A

lcall BL _UART Read

Parameters:
pData is a pointer to a data array. Maximum length of the data array is 64 bytes.
bLength is the number of bytes to be read to the array. Valid values are between 0 and 64.

Return Value:

Returns the number of bytes remaining in the RX buffer using bit 0..6 of the Accumulator and the MSb
(bit 7) of the Accumulator indicates an error condition. Error conditions usually occur when you
request more bytes than are available in the buffer. The data from the RX buffer is placed in the data
array specified by pData.

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the large memory model. When necessary, it is the calling

Document Number: 001-64851 Rev. *F Page 35 of 72

USBFS Bootloader

function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

BL_UART_ReadAll
Description:
Reads all bytes of received data from the RX buffer and places it in a data array specified by pData.

C Prototype:
void BL_UART ReadAll (BYTE * pData)

Assembly:
mov A,>pData ; Load MSB part of pointer to RAM buffer
mov X, <pData ; Load LSB part of pointer to RAM buffer

lcall BL_UART ReadAll

Parameters:
pData is a pointer to a data array. The MSB is passed in the Accumulator and the LSB is passed in
the X register. The maximum size of the data array is 64 bytes.

Return Value:
None

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

BL_UART_ReadChar

Description:
Reads one byte of received data from the RX Buffer.

C Prototype:
WORD BL _UART ReadChar (void)

Assembly:
lcall BL UART ReadChar

Parameters:
None

Return Value:

The MSB of the returned value (Accumulator) contains the number of bytes remaining in the RX buffer
using bits 0..6. Bit 7 indicates error status. Bit 7 is set to one if the buffer is empty when the function
is called. The LSB of the returned value (X) contains a character from buffer.

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

Document Number: 001-64851 Rev. *F Page 36 of 72

USBFS Bootloader

BL_UART_dwGetDTERate

Description:

Returns the data terminal rate set for this port in bits per second. Pass the function a pointer to a
DWORD. The function returns the DTE rate in the location referenced by the pointer.

C Prototype:
DWORD * BL UART dwGetDTERate (DWORD * dwDTERate)

Assembly:
mov A,>dwDTERate ; Load MSB part of pointer
mov X,<dwDTERate ; Load LSB part of pointer

lcall BL UART dwGetDTERate

Parameters:
dwDTERate: A pointer to where the DTE rate is stored when the function returns.

Return Value:
Stores the DTE rate DWORD value in the location referenced by the pointer it was passed, and then
returns a pointer to that location.

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
IDX_PP and the CUR_PP page pointer registers are modified.

BL_UART_bGetCharFormat

Description:
Returns the number of stop bits.

C Prototype:
BYTE BL UART bGetCharFormat (void)

Assembly:
lcall BL UART bGetCharFormat

Parameters:
None

Return Value:

Returns number of stop bits in Accumulator. Symbolic names given in C and assembly, and their
associated values are listed in the following table.

Mask Value Description
USBUART_1_STOPBITS 0x00 1 stop bit
USBUART_1_5_STOPBITS 0x01 1.5 stop bits
USBUART_2_STOPBITS 0x02 2 stop bits

Document Number: 001-64851 Rev. *F Page 37 of 72

USBFS Bootloader

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
CUR _PP page pointer registers are modified.

BL_UART_bGetParityType
Description:

Returns the parity type.

C Prototype:
BYTE BL UART bGetParityType (void)

Assembly:
lcall BL UART bGetParityType

Parameters:
None

Return Value:

Returns the parity type in Accumulator. Symbolic names given in C and assembly, and their associ-
ated values are listed in the following table.

Mask Value Description
USBUART_PARITY_NONE 0x00 No parity
USBUART_PARITY_ODD 0x01 Parity odd
USBUART_PARITY_EVEN 0x02 Parity even
USBUART_PARITY_MARK 0x03 Mark parity
USBUART_PARITY_SPACE 0x04 Space parity

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
CUR_PP page pointer registers are modified.

BL_UART_bGetDataBits
Description:

Returns the number of data bits.

C Prototype:
BYTE BL UART bGetDataBits (void)

Assembly:
lcall BL UART bGetDataBits

Document Number: 001-64851 Rev. *F Page 38 of 72

USBFS Bootloader

Parameters:

None

Return Value:
Returns the number of data bits in the Accumulator. The number can be 5, 6, 7, 8 or 16.

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
CUR_PP page pointer registers are modified.

BL_UART_bGetLineControlBitmap

Description:
Returns a bitmap with the state of the RS-232 style control signal.

C Prototype:
BYTE BL UART bGetLineControlBitmap (void)

Assembly:
lcall BL UART bGetLineControlBitmap

Parameters:
None

Return Value:

Returns a bitmap with the state of the control signal in the Accumulator. Each bit of the bitmap can be
treated individually. Bits D7..D2 are reserved. Symbolic names are given in C and assembly, and their
associated values are listed in the following table.

Mask Value Description
USBUART_RTS 0x02 RTS (1 — activate carrier; 0 — deactivate carrier)
USBUART_DTR 0x01 DTR (1 — present; 0 — not present)

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
CUR_PP page pointer registers are modified.

BL_UART_SendStateNotify

Description:
Sends notification to the PC about the UART status.

Note The Microsoft usbser.sys driver does not support these signals.

Document Number: 001-64851 Rev. *F Page 39 of 72

USBFS Bootloader

C Prototype:

void BL UART SendStateNotify (BYTE bState)

Assembly:

mov A, (USBUART DCD + USBUART DSR)
lcall BL UART SendStateNotify
Parameters:

bState bitmap with the state of the control signal in Accumulator. Each of the bits in the bitmap can
be treated individually. Symbolic names given in C and Assembly, and their associated values are
listed in the following table:

Mask Value Description
USBUART_DCD 0x01 RS-232 DCD signal
USBUART_DSR 0x02 RS-232 DSR signal
USBUART_BREAK 0x04 State of the break detection mechanism
USBUART_RING 0x08 State of the ring detection signal.
USBUART_FRAMING_ERR 0x10 A framing error has occurred.
USBUART_PARITY_ERR 0x20 A parity error has occurred.
USBUART_OVERRUN 0x40 Received data has been discarded due to an overrun.

Return Value:
None

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the large memory model. When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions. Currently only the
CUR_PP and IDX_PP page pointer registers are modified.

Sample Firmware Source Code

HID Device

1. Create a new project with a base part supported by the BootLdrUSBFSe User Module (such as
CY8C24894).

2. In the User Module Catalog click Protocols. Add the BootLdrUSBFSe User Module by double clicking
the BootLdrUSBFSe icon or right clicking and choosing Place.

3. Select the Human Interface Device (HID) radio button and click OK.

4. Configure the BootLdrUSBFSe User Module as shown in the following figure. Defaults may be differ-
ent, but still work for the given sample code.

Document Number: 001-64851 Rev. *F Page 40 of 72

USBFS Bootloader

ApplicationCode_Start_Block (57

BootLoaderkey 0001 020304050607
Fixed Pulse Width ENABLE
Flash_Program_Tempersture_deg_C -20C
ICE_Debug_FLASH_DISABLE Flash_WRITE_EMAELE
Bootload_when_CKSUM_fails EMNABLE_{deployment)
AcquisitionWindow 10

5. Ensure the correct pin is configured as a pull down to recognize the switch closure to enter the boot-
loader. The example depends on a button that you can press. This button pulls Port1_7 high and
causes the program to re-enumerate as a bootloader. On some devices, the setting may be "pull
down", and on other devices the correct setting may be "open-drain-low". You may need to consider
the exact configuration of the test hardware used as a target for this example, and consult the relevant
technical reference manual to correctly configure this project.

F1[E] Part_1_E, 5tdCPU, High 2 Analog, Dizablelnt, Marmal, 0

= P17 Part_1_7, StdCPU, Pull Diown, Disablelnt, Mormal, O
Mame Port_1_7
Port F1[7]
Select StdCPU

Pul Diown [

|rterrpt Dizablelnt
Analoghdl=Buz Mormal
Imitiah alue 1]

P20 Port_2 0, 5tdCPU, High 2 Analog, Dizablelnt, Marmal, 0

6. Right click on the user module icon. Select Boot Loader Tools. Select Get Files. When finished, the
boot.tpl, custom.lkp, HTLinkOpts.lkp, and flashsecurity.example files must be in the project root direc-
tory.

7. Right click on the user module icon. Select Device: Application USB Setup Wizard...

. Click the Import HID Report Template operation and change the name to Import HID Report
Template (italics) to show that it is a label.

. Select the 3 button mouse template.

. Click the Apply operation on the right side of the template.

. Select the Add String operation to add Manufacturer and Product strings.

. Edit the device attributes: Vendor ID, Product ID, and select strings.

. Edit the interface attributes: select HID for the Class field.

. Edit the HID class descriptor: select the 3 button mouse for the HID Report field.
. Click OK to save the USB descriptor information.

For details see the following table.

8. Right-click on the user module icon. Select Device: BootLoader USB Setup Wizard... Enter the
correct VID (Vendor ID) and PID (Product ID) into the wizard. Note that the VID and PID for the appli-
cation and the bootloader cannot be identical. Because the included Host PC example project has a
VID of 04b4 and a PID of E006 (Cypress owned IDs) you may used it for local debug, but cannot be
released for production. Click OK to save the USB BootLoader descriptor information.

Document Number: 001-64851 Rev. *F Page 41 of 72

USBFS Bootloader

9. Modify the flashsecurity.txt file to make the application, checksum, and relocatable interrupt vector
areas writeable. The example flashsecurity.txt file shown in the following figure is an example. Some
devices look slightly different, but all follow the same basic pattern.

; 0 40 30 <0 100 140 180 1C0 200 240 230 ZC0 300 340 380 320 (+) Base Address

¥y ¥y v v 0w ¥w ¥ w ¥ w o w o w o w W w; Base Address 0
¥y ¥y ¥y ¥y 4y ¥ ¥ ¥ w ¥ w o w o w w O w w; Base Address 400
¥y ¥y ¥y ¥y 4y ¥ ¥ ¥ w ¥ w o w o w w O w w; Base Address 500
¥y ¥y ¥y ¥y 4y ¥ ¥ ¥ w ¥ w o w o w w O w w; Base Address COO
¥ ¥ ¥ ¥ Y W W W W W W W W W W W Base ALddress 1000
¥y ¥y ¥y vy vy ¥ U U U U U U uw uw o U; Base Address 1400
T v v vy U U U U U T U T T T U; Base Address 1800
T v v vy U U U U U T U T T T U; Base Address 1C00
T v v vy U U U U U T U T T T U; Base Address 2000
T v v vy U U U U U T U T T T U; Base Address 2400
T v v vy U U U U U T U T T T U; Base Address 2800
T v v vy U U U U U T U T T T U; Base Address ZC00
T v v vy U U U U U T U T T T U; Base Address 3000
T v v vy U U U U U T U T T T U; Base Address 3400
T v v vy U U U U U T U T T T U; Base Address 3800
T v v vy U U U U U T U T T T U; Base Address 3C00

; End 16K parts

10. Generate the Application.

11. Copy the Sample code and paste it.

12. Do a Rebuild all.

Descriptor Data

USB user module descriptor root Device name

Device descriptor Device

Device attributes

Vendor ID Use company VID

Product ID Use product PID

Device release (bcdDevice) 0000

Device class Defined in interface descriptor

Subclass No subclass

Manufacturer string My company

Product string My mouse

Serial number string No string

Configuration descriptor Configuration

Configuration attributes

Configuration string No string

Document Number: 001-64851 Rev. *F Page 42 of 72

Crpgss
Descriptor

Max power

Device power

Remote wakeup

Interface descriptor

Interface attributes

Interface string

Class

Subclass

HID class descriptor

Descriptor type

Country code

HID report

Endpoint descriptor

Endpoint attributes

Endpoint number

Direction

Transfer type

Interval

Max packet size

String/LANGID

String descriptors

LANGID

String

String

Descriptor

HID report descriptor root

HID report descriptor

Example code

USBFS Bootloader

Data
100
Bus powered
Disabled

Interface

No string
HID

No subclass

Report
Not supported
3-button mouse

ENDPOINT_NAME

INT
10

USBFS

My company

My mouse

USBFS
USBFS

The code illustrated here shows you how to use the BootLdrUSBFSe User Module in a simple HID
application. When connected to a PC host, the device enumerates as a 3 button mouse. When the code is
run the mouse cursor move in a square. This code illustrates how the BootLdrUSBFSe Setup Wizard

configures the user module.
//

Document Number: 001-64851 Rev. *F

Page 43 of 72

//em
//

#inc
#inc

sign
sign

#def
#def
#def

// M
#def
#def
#def
#def

#def
#def
#def

BYTE
BYTE

BYTE
BYTE

void

{

PERFORM

ulate a mouse that causes the cursor to move in a square

lude <m8c.h> // part specific constants and macros

lude "PSoCAPI.h" // PSoC API definitions for all User Modules
ed char bXInc = 0; // X-Step Size

ed char bYInc = 0; // Y-Step Size

ine USB_INIT 0 // Initialized state

ine USB UNCONFIG 1 // Unconfigured state

ine USB_CONFIG 2 // Configured state

ouse movemet states

ine MOUSE DOWN 0

ine MOUSE LEFT 1

ine MOUSE UP 2

ine MOUSE RIGHT 3

ine POSMASK 0x03 // Mouse position state mask

ine BOX SIZE 32 // Transfers per side of the box

ine bCursorStep 4 // Step size

bConfigState = 0; // Configuration state

bDirState = 0; // Mouse diretion state

abMouseDatal[3] = {0,0,0}; // Endpoint 1, mouse packet array
boxLoop = 0; // Box loop counter

main (void)
M8C EnableGInt; //Enable Global Interrupts

USBFS Bootloader

BL USBFS Start (0, USB 5V _OPERATION); //Start USB Operation using device 0

PRT1DR = 0;
while (1) // Main loop

if (PRTIDR & 0x80)
{
BL USBFS Stop();
while (PRT1DR & 0x80) ;
ENTER BOOTLOADER () ;

switch (bConfigState) // Check state

{

case USB_INIT: // Initialize state
bConfigState = USB UNCONFIG;
break;

case USB_UNCONFIG: // Unconfigured state
if (BL _USBFS bGetConfiguration() != 0)
{ // Check if configuration set

bConfigState = USB_CONFIG;
// Load a dummy mouse packet

BL_USBFS_LoadInEP (1, abMouseData, 3, USB_NO TOGGLE) ;

Document Number: 001-64851 Rev. *F

Page 44 of 72

USBFS Bootloader

break;
case USB CONFIG: // Configured state time to move the mouse
if (BL USBFS bGetEPAckState (1) != 0)
{
boxLoop++;
if (boxLoop > BOX SIZE)
{ // Change mouse direction every 32 packets

boxLoop = 0;
bDirState++; // Advance box state
bDirState &= POSMASK;
}
switch (bDirState) // Determine current direction state

{

case MOUSE DOWN: // Down
bXInc = 0;
bYInc = bCursorStep;
break;
case MOUSE LEFT: // Left
bXInc = -bCursorStep;
bYInc = 0;
break;
case MOUSE UP: // up
bXInc = 0;
bYInc = -bCursorStep;
break;
case MOUSE RIGHT: // Right
bXInc = bCursorStep;
bYInc = 0;
break;
}
abMouseData[l] = bXInc; // Load the packet array
abMouseData[2] = b¥YInc;
abMouseData[0] = 0; // No buttons pressed
BL USBFS LoadInEP(l, abMouseData, 3, USB TOGGLE); // Load and toggle
Endpointl
} // End if Endpoint ready
break;
} // End Switch
} // End While

Here is Sample Code for the BootLdrUSBFSe User Module written in Assembly.

The assembly code illustrated here shows you how to use the BootLdrUSBFSe User Module in a simple
HID application. When connected to a PC host, the device enumerates as a 3 button mouse. When the
code is run the mouse cursor zigzags from right to left. This code illustrates how the BootLdrUSBFSe
Setup Wizards configures the user module. This project is identical to the project in the USBFS User
Module, except with the addition of a bootloader.

include "m8c.inc" ; part specific constants and macros

Document Number: 001-64851 Rev. *F Page 45 of 72

CYPRESS USBFS Bootloader

PERFORM

include "memory.inc" ; Constants & macros for SMM/LMM and Compiler
include "PSoCAPI.inc" ; PSoC API definitions for all User Modules

export main

area bss(RAM) // inform assembler that variables follow
abMouseData: blk 3 // USBFS data variable
i: blk 1 // count variable

area text (ROM,REL) // inform assembler that program code follows

_main:
M8C EnableGInt
; Start USBFS Operation using device 0
mov X, USB_5V_OPERATION
mov A, 0
lcall BL USBFS Start

; Wait for Device to enumerate
.no_device:

lcall BL _USBFS bGetConfiguration

cmp A, O

jz .no_device

; Enumeration is completed load endpoint 1. Do not toggle the first time

; BL USBFS LoadInEP(l, abMouseData, 3, USB_NO TOGGLE) ;

mov A, USB NO TOGGLE

push A

mov A, 0

push A

mov A, 3

push A

mov A, >abMouseData

push A

mov A, <abMouseData

push A

mov A, 1

push A

lcall BL USBFS LoadInEP

add SP, -6

.endless_loop:

;implement bootloader entry
mov reg[PRT1DR], O ;load reg[PRT1DR] with O
mov A, reg[PRT1DR]
and A, 0x80
jz .Exit BOOTLOAD TEST
lcall BL USBFS Stop
.wait for bit low:
tst reg[PRT1DR], 0x80
jnz .wait for bit low
; once it goes low enter the bootloader
1jmp ENTER BOOTLOADER ;;never returns
halt
.Exit BOOTLOAD TEST:

Document Number: 001-64851 Rev. *F Page 46 of 72

USBFS Bootloader

PERFORM

;77 mouse operations

mov A, 1

lcall BL USBFS bGetEPAckState

cmp A, O

jz .endless_loop

; ACK has occurred, load the endpoint and toggle the data bit
; BL USBFS LoadInEP(l, abMouseData, 3, USB_TOGGLE) ;
mov A, USB TOGGLE

push A

mov A, 0

push A

mov A, 3

push A

mov A, >abMouseData
push A

mov A, <abMouseData

push A

mov A, 1

push A

lcall BL USBFS LoadInEP

add SP, -6

; When our count hits 128
cmp [i], 128
jnz .move left
; Start moving the mouse to the right
mov [abMouseData+1l], 5
jmp .increment i
; When our counts hits 255
.move left:
cmp [1], 255
jnz .increment i
; Start moving the mouse to the left
mov [abMouseData+1l], 251

.increment i:
inc [1]

jmp .endless loop

.terminate:
jmp .terminate

USB-UART (CDC)

1. Create a new project with a base part supported by USBUART options in the BootLdrUSBFSe User
Module (such as CY8C24894).

2. In the Device Editor, click Protocols. Add the BootLdrUSBFSe User Module by double clicking
the BootLdrUSBFSe icon, or right clicking and choosing Select.

3. Select the USB-UART Device (CDC) radio button and click OK.

Document Number: 001-64851 Rev. *F Page 47 of 72

oz
£ CYPRESS USBFS Bootloader

PERFORM

4. Configure the BootLdrUSBFSe User Module as shown in the following figure. Defaults may be differ-
ent, but still work for the given sample code.

ApplicationCode_Start_Block (el

BootLoaderkey 0001 020304050607
Fixed Pulse Width ENABLE
Flash_Program_Tempersture_deg_C -20C
ICE_Debug_FLASH_DISABLE Flash_WRITE_EMNAELE
Bootload_when_CKSUM_fails EMNABLE_(deployment)
AcquistionWWindow 10

5. Ensure the correct pin is configured as a pull down to recognize the switch closure to enter the boot-
loader. The example depends on a button that you can press. This button pulls Port1_7 high and
causes the program to re-enumerate as a bootloader. On some devices, the setting may be "pull
down", and on other devices the correct setting may be "open-drain-low". You may need to consider
the exact configuration of the test hardware used as a target for this example, and consult the relevant
technical reference manual to correctly configure this project.

F1[E] Part_1_E, 5tdCPU, High 2 Analog, Dizablelnt, Marmal, 0

= P17 Part_1_7, StdCPU, Pull Diown, Disablelnt, Mormal, O
Mame Port_1_7
Port F1[7]
Select StdCPU

Pul Diown [

|rterrpt Dizablelnt
Analoghdl=Buz Mormal
Imitiah alue 1]

P20 Port_2 0, 5tdCPU, High 2 Analog, Dizablelnt, Marmal, 0

6. Right click on the user module icon. Select Boot Loader Tools. Select Get Files. When finished, the

boot.tpl, custom.lkp, HTLinkOpts.lkp, and flashsecurity.example files must be in the project root direc-
tory.

7. Right-click on the user module icon. Select Device: Application USB Setup Wizard... Configure
the "Bootloader CDC properties" as shown in the following figure.

Document Number: 001-64851 Rev. *F Page 48 of 72

USBFS Bootloader

Bootloader CDC properties ;lglﬂ

— CDC Parameters

Wendar [0 IFFFF—

Froduct |D: IFFFF—

Yendor String; IE_I,Ipress—
Product String: IDemu:u—
Senial Murnber Type: IManuaI - I
Serial Mumber String; W
Device Power: W

b airnum Power: 100 z

— Contral

(] | Cancel | Help |

Click OK to save the CDC descriptor information.

8. Right click on the user module icon. Select Device: BootLoader USB Setup Wizard... Enter the
correct VID (Vendor ID) and PID (Product ID) into the wizard. Note that the VID and PID for the appli-
cation and the bootloader cannot be identical. Because the included Host PC example project has a
VID of 04b4 and a PID of E006 (Cypress owned IDs) you may used it for local debug, but cannot be
released for production. Click OK to save the USB BootLoader descriptor information.

9. Modify the flashsecurity.txt file to make the application, checksum, and relocatable interrupt vector
areas writeable. The example flashsecurity.txt file shown in the following figure is an example. Some
devices look slightly different, but all follow the same basic pattern.

;0 40 30 <O 100 140 180 1C0 200 240 230 2C0 300 340 330 3C0 (+) Base Address

wow T T u 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) wo: Baze Address 0

wow w w w 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) wo: Base Address 400
wow w w w 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) wo: Base Address 3§00
wow w w w 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) wo: Base Address C0O0
wow W w W w w w w w w w o 1) 1) w o Baze Address 1000
wow w w w 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) wo: Bazse Address 1400
T 0T T T 0))))))) i))) oo Bazse Address 1300
T 0T T T 0))))))) i))) oo Bazse Address 1C00
T 0T T T 0))))))) i))) oo Bazse Address Z000
T 0T T T 0))))))) i))) oo Baze Address 2400
L N N i) i) i) i) i) i) i) i) i) i) LU Base Address 2500
T 0T T T 0))))))) i))) oo Baze Address ZC00
T 0T T T 0))))))) i))) oo Bazse Address 3000
T 0T T T 0))))))) i))) oo Base Address 3400
T 0T T T 0))))))) i))) oo Baze Address 33500
T 0T T T 0))))))) i))) oo Baze Address 3C00

; End 16K parts

Document Number: 001-64851 Rev. *F Page 49 of 72

USBFS Bootloader

10. Generate the Application.
11. Copy the Sample code and paste it.
12. Do a Rebuild all.

Example Code

The following code illustrates how to use the BootLdrUSBFSe — USBUART User Module in a simple
application.

#include <m8c.h> // part specific constants and macros
#include "PSoCAPI.h" // PSoC API definitions for all User Modules
BYTE Len;

BYTE pDatal[32];
void main (void)
{
M8C_EnableGInt; //Enable Global Interrupts
BL USBFS Start (0, USB 5V OPERATION); //Start USBUART Operation usgin device 0
while (!BL _UART Init()); //Wait for Device to initialize
while (1)
{
if (PRT1DR & 0x80)
{
BL_USBFS_Stop () ;
while (PRT1DR & 0x80);
ENTER BOOTLOADER() ;

Len = BL UART bGetRxCount(); //Get count of ready data

if (Len)

{
BL UART ReadAll (pData); //Read all data rom RX
while (!BL_UART bTxIsReady()); //If TX is ready
BL UART Write (pData, Len); //Echo

}
The equivalent code written in Assembly is:

include "m8c.inc" ; part specific constants and macros
include "memory.inc" ; Constants & macros for SMM/LMM and Compiler
include "PSoCAPI.inc" ; PSoC API definitions for all User Modules

AREA bss (RAM, REL)

Len: blk 1
pData: blk 32

export main

AREA text (ROM, REL)

main:
M8C EnableGInt ; Enable Global Interrupts
mov A, O

Document Number: 001-64851 Rev. *F Page 50 of 72

USBFS Bootloader

mov X, USB_5V_OPERATION
lcall BL USBFS Start ; Start USBUART 5V operation
deviceInit: ; Wait for Device to initialize
lcall BL UART Init
cmp A, O
jz devicelInit
mainLoop:
; implement bootloader entry
mov A, reg[PRT1DR]
and A, 0x80
jz contLoop
lcall BL USBFS Stop
wait:
tst reg[PRT1DR], 0x80
jnz wait
1jmp ENTER BOOTLOADER ; never returns
halt

contLoop:
lcall BL UART bGetRxCount
RAM SETPAGE CUR >Len
mov [Len], A ; Get count of ready data
cmp [Len], 0 ; Check if Len is O
jz mainLoop
mov A, >pData ; Load MSB part of pointer to RAM buffer
mov X, <pData ; Load LSB part of pointer to RAM buffer
lcall BL UART ReadAll ; Read all data rom RX

txReady:
lcall BL _UART bTxIsReady ; Check to see if TX is ready
cmp A, O
jz txReady
; Echo data
RAM SETPAGE CUR >Len
mov A, [Len] ; Load array count
push A
mov A, >pData ; Load MSB part of pointer to RAM string
push A
mov A, <pData ; Load LSB part of pointer to RAM string
push A
lcall BL UART Write
add SP, -3 ; Reset stack pointer to original position

jmp mainLoop

Appendix A — USBFS Topics

USB Standard Device Requests

The following section describes the requests supported by the BootLdrUSBFSe User Module. If a request
is not supported the BootLdrUSBFSe User Module normally responds with a STALL, indicating a Request
Error.

Document Number: 001-64851 Rev. *F Page 51 of 72

CYPRESS USBFS Bootloader

PERFORM

USB 2.0
Spec

Standard Device Request BootLdrUSBFSe User Module Support Description Section
CLEAR_FEATURE Device: 9.4.1

Interface: Not supported.

Endpoint
GET_CONFIGURATION Returns the current device configuration value. 9.4.2
GET_DESCRIPTOR Returns the specified descriptor. 943
GET_INTERFACE Returns the selected alternate interface setting for the specified 9.4.4

interface.
GET_STATUS Device: 9.4.5

Interface:

Endpoint:
SET_ADDRESS Sets the device address for all future device accesses. 9.4.6
SET_CONFIGURATION Sets the device configuration. 9.4.7
SET_DESCRIPTOR This optional request is not supported. 9.4.8
SET_FEATURE Device: 9.4.9

DEVICE_REMOTE_WAKEUP support is selected by the

bRemoteWakeUp User Module Parameter.

TEST_MODE is not supported.

Interface: Not supported.

Endpoint: The specified endpoint is halted.
SET_INTERFACE Not supported. 9.4.10
SYNCH_FRAME Not supported. Future implementations of the user module adds 9.4.11

support to this request to enable Isochronous transfers with repeating
frame patterns.

Document Number: 001-64851 Rev. *F Page 52 of 72

USBFS Bootloader

HID Class Request

Device
Class
Definition
for HID -
Class Request BootLdrUSBFSe User Module Support Description Section
GET_REPORT Allows the host to receive a report by way of the Control pipe. 7.21
GET_IDLE Reads the current idle rate for a particular Input report. 7.2.3
GET_PROTOCOL Reads which protocol is currently active (either the boot or the report 7.2.5
protocol).
SET_REPORT Allows the host to send a report to the device, possibly setting the 7.2.2
state of input, output, or feature controls.
SET _IDLE Silences a particular report on the Interrupt In pipe until a new event 7.2.4
occurs or the specified amount of time passes.
SET_PROTOCOL Switches between the boot protocol and the report protocol (or vice 7.2.6

versa).

USB Setup Wizard

This section details all the USB descriptors given by the BootLdrUSBFSe User Module. The descriptions
include the descriptor format and how user module parameters map into the descriptor data.

The USB Setup Wizard is a tool given by Cypress to assist engineers in designing USB devices. The
setup wizard displays the device descriptor tree; when expanded, the following folders that are part of the
standard USB descriptor definitions appear:

Device attributes
Configuration descriptor
Interface descriptor

HID Class descriptor
Endpoint descriptor
String/LANGID

HID Descriptor

To access the setup wizard, right click the BootLdrUSBFSe User Module icon in the Workspace Explorer
and click the Device: Application USB Setup Wizard... menu item.

When the device descriptor tree is fully expanded, all the setup wizard options are visible. The left side
displays the name of the descriptor, the center displays the data, and the left displays the operation
available for a particular descriptor. In some instances, a descriptor has a pull down menu that presents
available options.

Document Number: 001-64851 Rev. *F Page 53 of 72

£ CYPRESS

PERFORM

Descriptor
USB User Module descriptor root
Device descriptor
Device attributes
Vendor ID
Product ID
Device release (bcdDevice)
Device class
Subclass
Protocol
Manufacturer string
Product string
Serial number string
Configuration descriptor
Configuration attributes
Configuration string
Max power
Device power
Remote wakeup
Interface descriptor
Interface attributes
Interface string
Class
Subclass
HID class Descriptor
Descriptor type
Country code
HID report
Endpoint descriptor
Endpoint attributes
Endpoint number

Direction

Document Number: 001-64851 Rev. *F

Data
“Device Name”

DEVICE_1

FFFF

FFFF

0000
Undefined
No subclass
None

No string
No string

No string

CONFIG_NAME

No string

100

Bus powered
Disabled
INTERFACE_NAME

No string
Vendor specific

No subclass

Report
Not supported
None

ENDPOINT_NAME

pull down
pull down
pull down
pull down
pull down

pull down

pull down

pull down

pull down

pull down
pull down

pull down

pull down

pull down

pull down

pull down

USBFS Bootloader

Operations

Add device

Remove|Add configuration

Remove|Add interface

Remove|Add endpoint

Remove

Page 54 of 72

= CYPRESS USBFS Bootloader

PERFORM

Descriptor Data Operations
Transfer type CNTRL pull down
Interval 10
Max packet size 8

String/LANGID

String descriptors Device name Add string

LANGID pull down

String Selected string name Remove

Descriptor

HID Descriptor Device name Import HID Report Template

Understanding the USB Setup Wizard

The USB Setup Wizard window is a table that presents three major areas for programming. The first area
is the USB Descriptor, the second is the String/LANGID, and the third is the Descriptor HID report. Use the
two buttons below the table to perform the selected command.

The first section presents the Descriptor. The second section presents the String/LANGID; when a string
ID is required, this area is used to input that string. To add a string for a USB device, click on the Add
String operation. The software adds a row and prompts you to Edit your string here. Type the new string
and click Save/Generate. After the string is saved, it is available for use in the Descriptor section from the
pull down menus. If you close without saving, the string is lost.

The third area presents the HID Report Descriptor Root. From this area, you can add or import a HID
Report for the selected device.

USB User Module Descriptor Root

The first column displays folders to expand and collapse. For the purpose of this discussion, you must fully
expand the tree that all options are visible. The setup wizard allows you to enter data into the middle Data
column; if there is a pull down menu, use it to select a different option. If there is no pull down menu, but
there is data, use the cursor to highlight and select the data, then overwrite that data with another value or
text option. All the values must meet the USB 2.0 Chapter 9 Specifications.

The first folder displayed at the top is the USB User Module Descriptor Root. It has the user module name
in the Data column (this is the user module name given to it by the software. This user module is the one
placed in the Interconnect View. The Add Device operation on the right hand column adds another USB
device complete with all the different fields required for describing it. The new USB device descriptor is
listed at the bottom after the endpoint Descriptor. Click OK to save. If you do not save the newly added
device, it is not available for use.

Device Descriptor has DEVICE_NUMBER as the Data; it may be removed or a configuration added. All
the information about a particular USB device may be entered by over writing the existing data or by using
a pull down menu.

When the input of data is complete, either by using the pull down menus or by typing alphanumeric text in
the appropriate spots, click OK to save.

Document Number: 001-64851 Rev. *F Page 55 of 72

= CYPRESS USBFS Bootloader

PERFORM

USB Suspend, Resume, Remote Wakeup and Monitoring USB Activity

The BootLdrUSBFSe User Module supports USB Suspend, Resume, and remote wakeup. Since these
features are tightly coupled into the user application, the BootLdrUSBFSe User Module gives a set of API
functions.

The BL_USBFS_bCheckActivity API function enables you to check if any USB bus activity has occurred. If
the device supports remote wakeup, the application is able to determine if the host enabled remote
wakeup with the BL_USBFS_bRWUEnabled API function. When the device is suspended and it
determines the conditions to initiate a remote wakeup are met, the application uses the BL_USBFS_Force
API function to force the appropriate J and K states onto the USB Bus, signaling a remote wakeup.

Creating Vendor Specific Device Requests and Overriding Existing Requests

The BootLdrUSBFSe User Module supports vendor specific device requests by providing a dispatch
routine for handling setup packet requests. You can also write your own routines that override any of the
supplied standard and class specific routines, or enable unsupported request types.

Processing USB Device Requests

All control transfers, including vendor specific and overridden device requests, are composed of:

B A setup stage where request information is moved from host to device.

B A data stage consisting of zero or more data transactions with data send in the direction specified in
the setup stage.

B A status stage that concludes the transfer.

In the BootLdrUSBFSe User Module, all control transfers are handled by the endpoint O Interrupt Service
Routine (BootLdrUSBFSe_EPOQ_ISR).

The endpoint O Interrupt Service Routine transfers control of all setup packets to the dispatch routine,
which routes the request to the appropriate handler based upon the bmRequestType field. The handler
initializes specific user module data structures and transfers control back to the endpoint 0 ISR. A handler
for vendor specific or override device request is given by the application. The user module handles the
data and status stages of the transfer without involving your application. After the transfer is completed,
the user module updates a completion status block. The status block is monitored by the application to
determine if the vendor specific device request is complete.

All setup packets enter the BootLdrUSBFSe_EPO ISR, which routes the setup packet to the
BootLdrUSBFSe_bmRequestType_Dispatch routine. From here all the standard device requests and
vendor specific device requests are dispatched. The device request handlers must prepare the application
to receive data for control writes or prepare the data for transmission to the host for control reads. For no-
data control transfers, the handler extracts information from the setup packet itself.

The BootLdrUSBFSe User Module processes the data and status stages exactly the same way for all
requests. For data stages, the data is copied to or from the control endpoint buffer (registers EPODATAO-
EPODATAY) depending upon the direction of the transaction.

Vendor Specific Device Request Dispatch Routines

Depending upon the application requirements, the USBFS User Module dispatches up to eight types of
vendor specific device requests based upon the bmRequestType field of the setup packet. Refer to
section 9.3 of the USB 2.0 specification for a discussion of USB device requests and the bmRequestType
field. The eight types of vendor specific device requests the USBFS User Module dispatches are listed in
the Table 1:

Document Number: 001-64851 Rev. *F Page 56 of 72

e
CYPRESS USBFS Bootloader

PERFORM

Table 1. Vendor Specific Request Dispatch Routine Names

Direction Recipient Dispatch Routine Entry Point Enable Flag
Host to Device Device USB_DT_h2d_vnd_dev_Dispatch USB_CB_h2d_vnd_dev
(Control Write) } ; :

Interface USB_DT_h2d_vnd_ifc_Dispatch USB_CB_h2d_vnd_ifc
Endpoint USB_DT_h2d_vnd_ep_Dispatch USB_CB_h2d_vnd_ep
Other USB_DT_h2d_vnd_oth_Dispatch USB_CB _h2d_vnd_oth
Device to Host Device USB_DT _d2h_vnd_dev_Dispatch USB_CB _d2h_vnd_dev
(Control Read) }) ;
Interface USB_DT_d2h_vnd_ifc_Dispatch USB_CB_d2h_vnd_ifc
Endpoint USB_DT_d2h_vnd_ep_Dispatch USB_CB_d2h_vnd_ep
Other USB_DT_d2h_vnd_oth_Dispatch USB_CB_d2h_vnd_oth

You must follow these steps for an application to give an assembly language dispatch routine for the
vendor specific device request.

1. In the BootLdrUSBFSe.inc file, enable support for the vendor specific dispatch routine. Find the dis-
patch routine enable flag and set EQU to 1.

2. Write an appropriately named assembly language routine to handle the device request. Use the entry
points listed in Table 1.

Override Existing Request Routines

To override a standard or class specific device request, or enable an unsupported device request, you
must do the following:

1. In the BootLdrUSBFSe.inc file, redefine the specific device request as USB_APP_SUPPLIED.

2. Write an appropriately named assembly language function to handle the device request. The name of
the assembly language function is APP_ plus the device name.

For example, to override the supplied HID class Set Report request, USB_CB_SRC_h2d cls_ifc_09,
enable the routine with these changes to BootLdrUSBFSe.inc:

;@PSoC _UserCode BODY 1@ (Do not change this line.)

; NOTE: interrupt service routines must preserve
; the values of the A and X CPU registers.

; Enable an override of the HID class Set Report request.
USB_CB SRC_h2d cls ifc 09: EQU USB_APP SUPPLIED

;@PSoC _UserCode END@ (Do not change this line.)

Then, write an assembly language routine named APP_USB_CB_SRC_h2d_cls_ifc_09. Device request
names are derived from the USB bmRequestType and bRequest values (USB specification Table 9-2).

Document Number: 001-64851 Rev. *F Page 57 of 72

e
CYPRESS USBFS Bootloader

PERFORM

This code is a stub for the assembly routine for the previous example:

export APP USB CB SRC h2d cls ifc 09
APP USB CB SRC h2d cls ifc 09:

; Add your code here.

; Long jump to the appropriate return entry point for your application.
LJMP BootLdrUSBFSe InitControlWrite

Appendix B — Bootloader Topics

The following section contains additional information that you may find useful when creating a USB
bootloader.

Dispatch and Override Routine Requirements

At a minimum, the dispatch or override routine must return control back to the endpoint 0 ISR by a LIMP
to one of the endpoint 0 ISR Return Points listed in Table 2. The routine may destroy the A and X registers,
but the Stack Pointer (SP) and any other relevant context must be restored before returning control to the
ISR.

Table 2. Endpoint 0 ISR Return Points

Return Entry Point Required Data Items Description
BootLdrUSBFSe_Not_Supported Use this return point when the request is not supported. It STALLs the request.
Data Items: None
BootLdrUSBFSe_InitControlRead This return point is used to initiate a Control Read transfer.

BootLdrUSBFSe_DataSource (BYTE) The data source is RAM or ROM
(USB_DS _RAM or USB_DS_ROM).
This is necessary since different
instructions are used to move the data
from the source ROMX or MOV.

BootLdrUSBFSe_TransferSize The number of data bytes to transfer.
(WORD)

BootLdrUSBFSe_DataPtr (WORD) RAM or ROM address of the data.

BootLdrUSBFSe_ StatusBlockPtr Address of a status block allocated with
(WORD) the USB_XFER_STATUS BLOCK
optional macro.

BootLdrUSBFSe_InitControlWrite This return point is used to initiate a Control Write transfer.

BootLdrUSBFSe_DataSource (BYTE) USB_DS_RAM (the destination for
control writes must RAM).

BootLdrUSBFSe_TransferSize Size of the application buffer to receive
(WORD) the data

Document Number: 001-64851 Rev. *F Page 58 of 72

USBFS Bootloader

Return Entry Point Required Data Items Description

BootLdrUSBFSe_DataPtr (WORD) RAM address of the application buffer
to receive the data

BootLdrUSBFSe_ StatusBlockPtr Address of a status block allocated with
(WORD) optional the USB_XFER_STATUS_BLOCK
macro.

BootLdrUSBFSe_InitNoDataContr This return point is used to initiate a No Data Control transfer.
olTransfer

BootLdrUSBFSe_StatusBlockPtr Address of a status block allocated with
(WORD) the USB_XFER STATUS BLOCK
optional macro.

Update USB Application Requests Routines through USB Bootloader

The BootLdrUSBFSe User Module allows you to override an existing USB application or to add a new
USB application (other than another bootloader).

To enable the feature, redefine the UPDATE_USB_APP_HANDLERS constant value to
USB_UM_SUPPLIED in the BootLdrUSBFSe.inc file. Note that you must enable this feature before the
bootloader is deployed. The code that calls custom request routines should be located between the
UserDispatchCode andUMDispatchCode labels in the BootLdrUSBF Se.asm file. Values returned through
the <UM_Name>_ReqReturninstruction variable are used to control the next action of the Bootloader and
are described in Table 3.

Table 3. Actions Performed by Bootloader after UserDispatchCode Code Execution

Value Description
USB_UM_DISPATCH Dispatch the request by User Module
USB_NO_DATA STAGE_CONTROL_TRANSFER Prepare status stage of no data control write

USB_GET _TABLE_ENTRY Transfer data structures
USB_INIT_CONTROL_READ Initialize control read
USB_INIT_CONTROL_WRITE Initialize control write
USB_NOT_SUPPORTED_ REQUEST Process the request as Not Supported

Note Direct jump to these bootloader routines from the UserDispatchCode section is not allowed. If you
need to jump from the routine to any place in the bootloader code that is not defined in Table 3, you must
add the jump location to the BootLdrUSBFSe DT _App_Req dispatch table in the
BootLdrUSBFSe_drv.asm file. You may then jump to the location you have defined. Again, note that these
changes must be made before the USB bootloader is deployed.

Status Completion Block

The status completion block contains two data items, a one byte completion status code and a two byte
transfer length. The “main" application monitors the completion status to determine how to proceed.
Completion status codes are found in the following table. The transfer length is the actual number of data
bytes transferred.

Document Number: 001-64851 Rev. *F Page 59 of 72

e
CYPRESS USBFS Bootloader

PERFORM

Table 4. USBFS Transfer Completion Codes

Completion Code Description

USB_XFER_IDLE (0x00) USB_XFER_IDLE indicates that the associated data buffer does not have valid
data and the application should not use the buffer. The actual data transfer
takes place while the completion code is USB_XFER_IDLE, although it does
not indicate a transfer is in progress.

USB_XFER_STATUS_ACK USB_XFER_STATUS_ACK indicates the control transfer status stage
(0x01) completed successfully. At this time, the application uses the associated data
buffer and its contents.

USB_XFER_PREMATURE (0x02) USB_XFER_PREMATURE indicates that the control transfer was interrupted
by the SETUP of a subsequent control transfer. For control writes, the contents
of the associated data buffer contains the data up to the premature completion.

USB_XFER_ERROR (0x03) USB_XFER_ERROR indicates that the expected status stage token was not
received.

Customizing HID Class Report Storage Area

If you enable optional HID class support, the Setup Wizard creates a fixed-size report storage area for
data reports from the HID class device. It creates separate report areas for IN, OUT, and FEATURE
reports. This area is sufficient for the case where no Report ID item tags are present in the Report
descriptor and therefore only one Input, Output, and Feature report structure exists. If you want better
control over the report storage size or want to support multiple report IDs, you must do the following:

1. Use the wizard to specify your device description, endpoints, and HID reports then generate the appli-
cation.

Disable the wizard defined report storage area in USB_descr.asm.

Copy the wizard created code that defines the report storage area.

Paste it into the protected user code area in USB_descr.asm or a separate assembly language file.
Customize the code to define the report storage area.

apkonN

Specify Your Device and Generate Application

Use the USB setup wizard to specify your device description, endpoints, and HID reports. Click the
Generate Applicationbutton in PSoC Designer.

Disable Wizard Defined Report Storage Area

In the USB_descr.asm file, disable the wizard defined storage area by uncommenting the
WIZARD DEFINED REPORT_STORAGE line in the custom code area, as shown in the following code:

WIZARD: equ 1
WIZARD DEFINED REPORT STORAGE: equ 1

;@PSoC UserCode BODY 1@ (Do not change this line.)

; Redefine the WIZARD equate to 0 below by
; uncommenting the WIZARD: equ 0 line

Document Number: 001-64851 Rev. *F Page 60 of 72

L
CYPRESS

PERFORM

; to allow your custom descriptor to take effect

; WIZARD: equ O
WIZARD DEFINED REPORT STORAGE: equ 0

;@PSoC _UserCode END@ (Do not change this line.)

Copy the Wizard Created Code

Find this code in USB_descr.asm.

IF WIZARD DEFINED REPORT STORAGE

USBFS Bootloader

AREA 1it (ROM, REL, CON)
.LITERAL
USB_DO Cl1 IO IN RPTS:
TD START TABLE 1 ; Only 1 Transfer Descriptor
TD ENTRY USB_DS_RAM, USB HID RPT 3 IN RPT SIZE, USB_ INTERFACE O IN RPT DATA,
NULL PTR
.ENDLITERAL

ENDIF ; WIZARD DEFINED REPORT STORAGE

There are three sections, one each for the IN, OUT, and FEATURE reports. Copy all three sections.

Paste Code Into Protected User Code Area

You can paste the code into the protected user code area of USB_descr.asm shown or a separate

assembly language file:

;@PSoC _UserCode BODY 2@ (Do not change this line.)

; Redefine your descriptor table below. You might
; cut and paste code from the WIZARD descriptor
; above and then make your changes.

;@PSoC UserCode END@ (Do not change this line.)

; End of File USB descr.asm

Customize Code to Define Report Storage Area

To define the report storage area, you need to write your own transfer descriptor table entries. The table
contains entries to define storage space for the required data items. Each transfer descriptor entry in the
table creates a new Report ID. IDs are numbered consecutively, starting with zero. Report ID 0 is reserved

Document Number: 001-64851 Rev. *F

Page 61 of 72

£ CYPRESS USBFS Bootloader

PERFORM

in the USB spec; you cannot use Report ID of 0, but the transfer descriptor entry specified for the ID 0 is
used when no Report IDs are present in the Report descriptor. For code efficiency, you must use Report
IDs in order starting with ID 1.

Table 5. Transfer Descriptor Table Entries

Table Entry Required Data Items Description
TD_START_TABLE USB_NumberOfTableEntries Number of Report IDs defined. IDs are
numbered consecutively from 0. Report ID
0 is not used.
TD_ENTRY
USB_DataSource The data source is RAM or ROM
(USB_DS_RAM or USB_DS_ROM).
USB_TransferSize Size of the data transfer in bytes. The first
byte is the Report ID.
USB_DataPtr RAM or ROM address of the data transfer.
USB_ StatusBlockPtr Address of a status block allocated with the

USB_XFER_STATUS_BLOCK macro.

The following example sets up the unused Report ID 0, and two other IN reports with different sizes. Note
Conditional assembly statements are only necessary if you place the code in the protected user code area
of USB_descr.asm.

IF WIZARD DEFINED REPORT STORAGE

ELSE

_IDO RPT SIZE: EQU 0 ; 7 data bytes + report ID = 8 bytes (unused)
_SM RPT SIZE: EQU 3 ; 2 data bytes + report ID = 3 bytes
_LG_RPT SIZE: EQU 5 ; 4 data bytes + report ID = 5 bytes
AREA data (RAM, REL, CON)

EXPORT IDO RPT PTR

_IDO_RPT PTR: BLK O ; Allocates space for report IDO (unused)
EXPORT _SM RPT PTR

_SM_RPT PTR: BLK 3 ; Allocates space for report IDI1

EXPORT LG RPT PTR

_LG_RPT PTR: BLK 5 ; Allocates space for report ID2

AREA bss (RAM, REL, CON)

EXPORT _SM RPT STS PTR

Document Number: 001-64851 Rev. *F Page 62 of 72

oz
CYPRESS USBFS Bootloader

PERFORM

_SM_RPT STS_PTR: USB_XFER_STATUS BLOCK
EXPORT LG _RPT STS PTR
_LG_RPT STS_PTR: USB_XFER_STATUS BLOCK

AREA 1lit (ROM, REL, CON)
.LITERAL
EXPORT USB_ DO C1 I0 IN RPTS:
TD_START TABLE 3
TD_ENTRY USB DS RAM, ID0 RPT SIZE, _IDO RPT PTR, NULL PTR ; IDO unused
TD_ENTRY USB DS RAM, SM RPT SIZE, _SM RPT PTR, _SM RPT STS PTR ; ID1
TD_ENTRY USB DS RAM, LG RPT SIZE, LG RPT PTR, LG RPT STS PTR ; ID2
.ENDLITERAL

ENDIF ; WIZARD DEFINED REPORT STORAGE

Bootloader USB Download Protocol

Each command to the bootloader is followed by a response from the bootloader. The following figure
shows the format of the Enter Bootloader command:

Enter Bootloader Packet

Packet data (BULK QUTY:
oaoa 0o 0o 00 0o oo oo

0010 00 80 01 00 01 40 15 40 00 AB 3F FF 01 00 15 40
0020 00 00 00 00 00 0O OO 00 00 00 0o 0o 00 00 00 oo
0030 00 00 00 00 00 0O 00 00 OO 00 0o 0o 00 00 00 oo
Status data (BULKIM):

0000 01 00 00 00 04 00 00 00 00 00 00 00 00 00 00 00
ao10 |
0020 00 00 00 00 00 00 00 00 00 00 40 00 3B 20 81 M
0030 FF 01 00 00 00 00 00 00 00 00 00 01 00 00 00 00

BootLoader Commands
BootLoader Key
otatus Byte
Error Byte
BootlLoader Configuration Data (from dld file)

|BootLoader Configuration Data (from Bootloader code)

The BootLoader Configuration data has the following format:

Byte Number Description Verified during Bootload Process
0x10-0x11 Address of relocatable interrupt table +
0x12-0x13 Address of Checksum block +
0x14-0x15 Address of Bootloader area +
0x16-0x17 Address of Application area -

Document Number: 001-64851 Rev. *F Page 63 of 72

e
S # _YPRESS USBFS Bootloader

PERFORM

Byte Number Description Verified during Bootload Process
0x18-0x19 Application area size in flash blocks -
0x2A-0x2B Max ROM address +
0x2C-0x2D User module version, for example, +

0x0100, 0x0200

Ox2E-0x2F Address of Application area using -
ImageCraft compilerAddress of
Bootloader area using HI-TECH compiler

The first line begins with the bootloader command FF38, enter bootloader. This command is followed by
the bootloader key. All bootloader commands must be sent with the bootloader key. The bootloader
ignores commands that are not sent with the proper key. You can set the bootloader key with the
Bootloader_Key parameter. Other bootloader commands are:

Command Meaning
FF38 Enter bootloader
FF39 Write block
FF3A Verify flash
FF3B Exit bootloader

The command is followed by a status response from the bootloader. In the status response, the first byte is

the status byte and the second byte is the error flag. Following is the definition of each bit of the status
byte:

Code Meaning
0x01 Bootloading in progress
0x02 Boot Complete OK
0x04 Wait for Enter Bootloader Command

The following table describes each bit in the error byte. For details, see the flowcharts at the end of the
document.

Document Number: 001-64851 Rev. *F Page 64 of 72

£ CYPRESS

PERFORM

Code
0x01

0x02

0x04

0x08

0x10

0x20

0x40

0x80

Bootloader Write Block Command

USBFS Bootloader

Meaning

Timeout error. If read or write timeout occurred because of a long
period of inactivity from the host, the flag is set and software reset
is executed. The timeout verification executes only when
BOOT_TIMEOUT constant is greater than zero.

Received ‘Exit bootloader’ command. The checksum of application
and relocatable interrupt vector areas calculated by bootloader
does not match the checksum received from Host.

Flash checksum error. Flash block content does not match the data
received from Host.

Flash protection error. Flash block cannot be rewritten because its
flash protection level does not allow this.

Comm checksum error. Received a packet with incorrect
checksum.

Config Data error. Received ‘Enter bootlLoader’ command, but the
data packet contained incorrect Configuration data.

Invalid bootloader key. Received a packet with incorrect
bootLoaderKey value.

Invalid command error. Received unknown command.

Most of the commands sent to the bootloader are write block commands. The format of each of the write
block commands is identical. Each 64-byte block is broken up into two 32-byte packets. Each command
requires a status response from the slave. The transmission of a 64-byte block is shown in the following

figure:

Document Number: 001-64851 Rev. *F

Page 65 of 72

USBFS Bootloader

First Download Packet

Packet data (BULK OUTY:
aooo 1]

0010 30 30 FE 30 30 7E 30 30 30 7E 30 30 30
0020 30 7F 30 30 30 7F 30 30 30 7E 30 30 30 (8
0030 00 0O 00 OO 00 00 00 00 0O 00 00 00 oo
Status data (BULK M)

0000 01 00000 00 02 20 00 00 00 0O OO0 00 00 00 oo 00
0010 00 80 01 0O 01 40 15 40 00 AB 3F FF O1 00 15 40
0020 00 OO 00 00 00 00 00 OO 00 00 40 00 3B 20 81 M
0030 FFO1 00 00 00 00 00 00 00 00 0007 00 00 0o 00

Packet data (BULK OUTY:
aoon 1

0010 30 7E 30 30 30 7E 30 30 30 7E 30 30 30 7F
0020 30 7F 30 30 30 7F 30 30 30 7F 30 30 30 [CB
0030 00 OO OO 00 00 00 00 00 00 00 00 00 oo
Status data (BULK IN):

goao 01 @001 00 02 40 00 00 00 00 OO0 00 00 00 oo 00
0010 00 80 01 00 01 40 15 40 00 AB 3F FF O1 00 15 40
0020 00 OO 00 OO 0O 00 00 00 03 00 40 B0 3B 00 00 1
g030 FFO1 00 00 00 00 00 00 00 00 00 01 00 00 00 00

BootLoader Commands
BootLoader Key
Block Murber

Block Segment

Status Byte

Errar Byte

B4 bytes of data

Segment Checksurn for 32 bytes of data

The first line of the first packet consists of a write block command and the bootloader key followed by the
block number being transmitted. Since each block is broken in two, the block number is followed by the
block segment number, either 0x00 for the first segment or 0x01 for the second. The last three bytes of the
first line, all sixteen bytes of the second line, and the first 13 bytes of the third line represent the 32 bytes
of valid data, followed by a checksum for the segment data. The remainder of the block is empty data to
pad the segment to 64 bytes.

The status response consists of the status byte, error byte, and 62 bytes of empty data to pad the segment
to 64 bytes.

The format of the second segment of the block is exactly the same as the first. All transmitted data blocks
follow this format, except the checksum block. The checksum block contains checksums and other
necessary data for bootloader operation. The format of the checksum data block is shown in the following
figure:

Document Number: 001-64851 Rev. *F Page 66 of 72

USBFS Bootloader

Checksum Block Packet

Packet data (BULK OUT]:

0000 FF 33 00 01 02 03 04 05 05 OF 00 04
o010 3F o0 oo NGNS o1 20 15 20 G0
30 30 30 30 30 30 30
0030 00 00 00 00 00 0o 00 00 00 00 00 0o
Status data (BULK IM):

Oooo 0100 00 00 04 20 00 00 00 00 00 00 00 00 00 oo
0010 00 B0 01 0O 01 40 15 40 00 AB 3F FF 01 00 15 40
0020 00 OO0 00 00 00 0o 00 00 03 00 40 80 3B 00 00 o1
0030 FFO1 00 OO OO 00 00 0O 00 00 00 01 00 00 00 00

Packet data (BULK OUT):

0000 FF 32 0001 02 03 04 05 06 OF OO0 04 01 30 30 30
0010 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
0020 30 30 30 30 30 30 30 30 30 40 CO B2 3F 97 00 00
0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0o oo
Status data (BULK IN):

Oooo 01 00 01 00 04 40 00 00 OO0 00 OO0 00 00 00 0o oo
0010 00 80 01 0O 01 40 15 40 00 AB 3F FF O1 00 15 40
Q020 00 00 00 00 00 00 00 00 O3 00 40 80 3B 00 00 01

Checksurm of the remainder of 58 bytes of data
Reloc Int Vecs address
Checksum block address

Bootloader start address

Application start address

Application size (in blocks)

Device memary size

Bootloader version number

Reloc code start addresss (for Image Craft only)
Application checksum 2's complement
Application checksum

Depending on device family, checksum block is located at either block 0x0004 or 0x0002 (for this
example, block number is 0x0004).

The first line contains the bootloader write block command, the bootloader key, the block number, and
block segment just as the other records did. The next two bytes contain the checksum for the last 58 bytes
of the block, 0x0D34 in this case. The last byte of the first line and the first byte of the second line contain
auxiliary application checksum. If application code is correct then auxiliary application checksum is equal
to application checksum, otherwise application code is incorrect.

The next lines contain two-byte values that represent the hex addresses of the Relocatable Interrupt
Vectors, Checksum Block, Bootloader Start, Application Start, Application Size, Device Max Memory,
Bootloader version number, and Reloc code start address.

Most of the next lines are empty data space. The checksum for the segment occupies the same place in
the packet that it did for the other packets. The remainder of the packet is empty space. The second
packet of the checksum block begins as all other packets but the only data that it contains is the
application checksum and the segment checksum in line three.

The last download packet is the Bootloader Exit command:

Document Number: 001-64851 Rev. *F Page 67 of 72

oz
CYPRESS USBFS Bootloader

PERFORM

Last Download Packet

Packet data (BULK QUTY:
oaoa 0o oo oo oo oo oo

0010 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 0o od
0020 00 00 00 00 00 00 00 OO0 00 00 OO0 00 00 00 0o od
0030 00 00 00 00 00 00 00 OO0 00 00 OO0 00 00 00 oo od
Status data (BULK M)

0000 020001 00 00 40 01 00 80 00 OO0 00 00 00 00 od
0010 00 80 01 00 01 40 15 40 00 AB 3F FF O1 00 15 40
0020 00 00 00 00 0O 00 00 00 03 00 40 80 3B 00 00 @1
0030 FF 01 00 00 00 00 00 00 00 00 00 01 00 00 00 0

BootLoader Exit Commands
BootLoader Key
otatus Byte

Error Byte
BootLoader Configuration Data (from Bootloader code)

The bootloader exit command consists of the bootloader exit command 0xFF3B, and the bootloader key.

The final status response consists of a status byte with value 0x02 (Boot Complete OK) and error byte with
value 0x00 (no errors). If status and error byte have other values then the bootloading process must have
failed.

Document Number: 001-64851 Rev. *F Page 68 of 72

____:,‘_

USBFS Bootloader

CYPRESS

hy,

PERFORM

BootLdrUSBFSe User Module Operations Flowchart (64-byte Flash Block Devices)

Figure 5.

ENTER_BOOTLOADER v

]

Status

ait for Enter Bootloader Command™

.

EnableOutEP(2) _

Host has written data to EP2

Copy EP2 buffer to RamBuffer _

-

v

_ ErrorCode |= "Invalid command error’ ‘

RamBuffer{1] = “Enter bootloader”

v

_ ErrorCode |= "Invalid bootloader key" 7

] = “bootLoaderKey”

{16-21] = "00 80 01 00 01 40”

¥

_ ErrorCode |= “Config Data error” 7

27] = "Flash Size” - 1

RamBuffer[28-29] = “BootLoader version™

I —

¥

_ Update EP1 with Status and ErrorCode 7

ErrorCode = 0
Status = *Bootloading in progress"
Erase Checksum Block
Update EP1 with Status and ErrorCode

Host has read data from EP1

EnableQutEP(2)

Host has written data to EP2

)

Blockld = RamBuffer[10-11]

7 Copy EP2 buffer to RamBuffer

RamBuffer[0] = 0xFF

¥

7 Command = RamBuffer[1] _

RamBuffer[2-9] = “bootLoaderKey’

l

ErrorCode |= “Invalid bootloader key” 7

L

Bootloader parameters stored in
Checksum Block are correct

Command = “Exit bootloader”

+
v

Calculate checksum of Application and
Relocatable vectors AREAs and save it in the
FlashChecksum variable.

Read from flash same checksum calculated by
Wizard and stored in AppCksum constant.

Command = "Write block”

Block

Write 64 bytes of FlashBuffer0 to *Block|d” Flash

Any eror occured during flash write

_ ErrorGode |= “Flash protection error”

Command = “Verify flash”

Read 64 bytes from “Blockld™ Flash Block to
FlashBuffer! buffer

FlashBuffer0 = FlashBuffer1

_ ErrorCode alid command error” 7

_ ErrorCode |= “Flash checksum error”

H

FlashChecksum = AppCksum

IF CHECKSUM_ON_CKSUMBLK

ErrorCode |= “Image verify error” _

)
AuxChecksum = AppChecksum
Rewrite Checksum Black with correct
AuxChecksum
Status |= "Boot completed OK'

R

ErrorCode |= “Comm checksum error

RamBuffer(45]

, N

RamBuffer[12] = 0

(Copy 32 data byles of received packet to first half 7

of FlashBuffer0 buffer

%

Set incorrect AuxChecksum in FlashBuffer0 buffer

Checksum Block is received

Copy 32 data bytes of received packet to second
half of FlashBuffer0 buffer

_ Update EP1 with Status and ErrorCode 7

Host has read data from EP1

ErmrorCode & “Flash protection error*

ErrorCode & “Image verify error™

EmorCode & “Invalid bootloader key”

ErrorCode & “Boot completed OK"

m Software Reset

Page 69 of 72

: 001-64851 Rev. *F

Document Number

____:,‘_

USBFS Bootloader

l,

PERFORM

BootLdrUSBFSe User Module Operations Flowchart (128-byte Flash Block Devices)

Figure 6.

m ENTER_BOOTLOADER v

Status = “Wait for Enter Bootloader Command”
DestPainter = 0

EnableQutEP(2) _

Host has written data to EP2

Copy EP2 buffer to RamBuffer

RamBuffer[0] = 0xFF

7 ErrorCode = “Invalid command eror" 7

[1] = “Enter bootlcader”

'

7 EmorCode = “Invalid baotioader key" 7

2-8] = “bootloaderKey”

RamBuffer[16-21] = "00 80 01 00 01 80"

27] = "Flash Size” - 1

7 ErrorCode |= “Config Data error” 7

7 Update EP1 with Status and ErrorCode 7

29] = “Bootloader versi

ErrorCode = 0
Status = “Bootioading in progress”
Erase Checksum Block
Update EP1 with Status and ErrorCode

Host has read data from EP1

_ EnableQutEP(2)

Host has written data to EP2

Copy EP2 buffer to RamBuffer
Blockld = RamBuffer[10-11]

I

RamBuffer[0] = OxFF

+
v

_ Command = RamBuffer[1] 7

RamBuffer(2-9] = *bootLoaderKey*

ErrorCode |= “Invalid bootloader key"

Command = “Exit bootloader"

Bootloader parameters stored in
Checksum Block are correct

Calculate checksum of Application and
Relocatable vectors AREAs and save it in
FlashChecksum variable

Read from flash same checksum calculated by
\Wizard and stored in AppCksum constant.

Command = "Write block”

Command = *Verify flash”

Write 128 bytes of FlashBuffer0 to “Blockld" Flash
Block

Any error occured during flash write:

ErrorCode [=

! L

lash protection error”

FlashBufferd = “Blockld” Flash block

rrorCode |= “Invalid command error”

_ 7 ErrorCode |= “Flash checksum error

FlashChecksum = AppCksum

IF CHECKSUM_ON_CKSUMBLK
iecksum of Checksum block is corres

ErrorCode |= “Image verify error”

v
AuxChecksum = AppChecksum
Rewrite Checksum Block with correct
AuxChecksum
Boot completed OK"

¥ RamBufferfi] =
i=0

RamBuffer{45]

|

ecksum Block is received

Set incorrect AuxChecksum in FlashBuffer0 buffer
I

(RamBuffer[12] & 0x01)
(DestPointer = 0x40)

RamBuffer[11] & 0x01

L]
Copy 32 data bytes of received packet into
FlashBuffer0 buffer starting from DestPointer
position.

DestPointer += 32

[

ErrorCede |= “Invalid command error”

(Copy 32 data bytes of received packet to first 32
lbytes of FlashButferd buffer.
DestPointer += 32

.

DestPainter = 0x80

7 DestPointer = 0 7

Update EP1 with Status and ErrorCode

Host has read data from EP1

ErrorCode & “Flash protection error

ErrorCode & “Image verify error™

EmorCode & “Invalid 3

EmorCode & “Boot completed OK™

m Software Reset U

Page 70 of 72

001-64851 Rev. *F

Document Number

e
CYPRESS USBFS Bootloader

PERFORM

BootLdrUSBFSe and E2PROM User Module Coexistence

When placing an E2PROM UM in a Bootloader project, allocate E2ZPROM blocks in Customer Reserved
Blocks area. This area is between Bootloader Code Area and Application Code Area (see Bootloader
Memory Organization for information). That way E2PROM blocks are not part of the Application Code
Area, and ill not be calculated as part of Application checksum.

Version History

Version Originator Description
1.0 DHA Initial version
1.10 DHA 1. Removed .Literal/.Endliteral directives around jmp instructions.

2. Removed Directives .SECTION and .ENDSECTION for USBFS_bGetProtocol and
USBFS_UpdateHIDTimer functions in the USB_cls_hid.asm.

1.20 DHA 1. Added verification of the writing EPO_CR.
2. Added verification of the SIE MODEs and ACK bit into the EPO ISR.
3. Increased Bootloader area.
4. Added help file to wizard.
5. Replaced .Literal and .EndLiteral statements with .nocc around SSC call.

6. Removed export " @INSTANCE_NAME"_EnterBootloader statement.
1.30 DHA 1. Moved Application Descriptors from "AREA UserModules" to "AREA lit".

2. Added initialization of USB_Protocol variable to comply with HID specification.
3. Added support to display bootloader output files in Workspace Explorer.
4. Corrected the Large Memory Model mode directives to address compile errors.

5. Added the automatic frequency locking of the internal oscillator to the USB traffic into
bootResetlsr() function for Encore Ill devices.

6. Added description in the "Improper Settings in Flashsecurity.txt" section.
1.40 DHA 1. Updated Figure 3 and Figure 4.
1.50 DHA 1. Fixed "@INSTANCE_NAME"_bCheckActivity API function to prevent missed activity.

2. Added CYRF89235 device support.

3. Limited BootLoaderKey parameter to 16 symbols.

Document Number: 001-64851 Rev. *F Page 71 of 72

USBFS Bootloader

Version Originator Description

2.00 HPHA 1. Added the capability to override USB Application requests routines through the USB
bootloader.

2. Added the capability to override routines for Not_Supported requests.

3. The checksum verification was moved from startup to bootload complete stage to
accelerate application startup and met USB compliance

3.00 MYKZ 1. Corrected BL_USBFS_bReadOutEP function to eliminate changes of CPU clock in
CY8C20xx6 family.

2. Added CY8C24x93 and CY7C69000 support.

3. Added a warning message to notify the user when the user module is removed from a
project.

4. Fixed memory overlap problem: variables used by both Bootloader and Application
were locked at the end of RAM page 0.

3.00.b HPHA Improved the algorithm that sets the "Relocatable code start address" parameter of the
ImageCraft compiler.

Note PSoC Designer 5.1 introduces a Version History in all user module datasheets. This section docu-
ments high level descriptions of the differences between the current and previous user module ver-
sions.

Document Number: 001-64851 Rev. *F Revised March 12, 2015 Page 72 of 72

Copyright © 2010-2015 Cypress Semiconductor Corporation. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility
for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended
to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products
in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

PSoC Designer™ and Programmable System-on-Chip™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works
of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with
a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is
prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems
where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Cypress Semiconductor:
CYBCTMG200A-48LTXIT CYBCTMG201A-48LTXIT CYB8CTMG120-56LTXIT CY8CTMG201A-48LTXI

CYBCTMG120-56LTXI CYS8CTMG200A-48LTXI

http://www.mouser.com/cypresssemiconductor
http://www.mouser.com/access/?pn=CY8CTMG200A-48LTXIT
http://www.mouser.com/access/?pn=CY8CTMG201A-48LTXIT
http://www.mouser.com/access/?pn=CY8CTMG120-56LTXIT
http://www.mouser.com/access/?pn=CY8CTMG201A-48LTXI
http://www.mouser.com/access/?pn=CY8CTMG120-56LTXI
http://www.mouser.com/access/?pn=CY8CTMG200A-48LTXI

	Features and Overview
	Quick Start
	Functional Description
	Theory of Operation
	USBFS Bootloader Memory Organization
	Bootloader Utility
	Bootloader Tools
	Notes about Checksum Semiautomatic Generation
	Special Files Given
	USB Descriptors
	USB Compliance for Self Powered Devices
	Bootloader VID and PID
	Block Entry of Parameters
	Host Application Debugging
	Timing
	USBFS Setup Wizard
	Using Blocks Instead of Addresses

	Common Problems
	Updating Bootloader Projects, Service Pack Upgrades, and Compilers
	Internal Use of the Watchdog Timer
	Improper Settings in Flashsecurity.txt
	Incorrect Relocatable Code Start Address (Linker Parameter ImageCraft Compiler Only)
	Power Stability
	Application or Interrupts Not Completely Stopped During Bootload Process
	Downloading a New File Causes the Device to Stop Working

	Parameters and Resources
	Renaming User Modules
	Default Parameters

	Application Programming Interface
	Bootloader APIs
	USBFS APIs
	USB-UART APIs

	Sample Firmware Source Code
	HID Device
	USB-UART (CDC)

	Appendix A – USBFS Topics
	USB Standard Device Requests
	HID Class Request
	USB Setup Wizard
	Understanding the USB Setup Wizard
	USB User Module Descriptor Root
	USB Suspend, Resume, Remote Wakeup and Monitoring USB Activity
	Creating Vendor Specific Device Requests and Overriding Existing Requests
	Processing USB Device Requests
	Vendor Specific Device Request Dispatch Routines
	Override Existing Request Routines

	Appendix B – Bootloader Topics
	Dispatch and Override Routine Requirements
	Update USB Application Requests Routines through USB Bootloader
	Status Completion Block
	Customizing HID Class Report Storage Area
	Specify Your Device and Generate Application
	Disable Wizard Defined Report Storage Area
	Copy the Wizard Created Code
	Paste Code Into Protected User Code Area
	Customize Code to Define Report Storage Area
	Bootloader USB Download Protocol
	Bootloader Write Block Command

	Version History

