

High Speed, Low Voltage, 3 Ω , Differential 4:1 CMOS Analog Multiplexer/Switch

DESCRIPTION

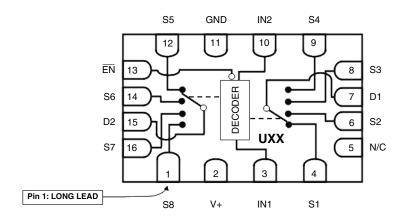
The DG2707 is a high speed, low voltage, 3 Ω , differential 4:1 multiplexer. It operates from a 1.65 V to 4.3 V single power supply. All channels guaranteed break before make switching. When powered with single 3.15 V supply, channel to channel ON Resistance matching is within 0.3 Ω .

All control logic input has 0.5 V to 1.65 V threshold. The EN pin enables cascading of the multiplexers. It features a 120 MHz - 3 dB bandwidth, - 90 dB crosstalk and - 70 dB off-isolation at 1 MHz.

The DG2707 comes in a small miniQFN-16 lead package (1.8 mm x 2.6 mm x 0.75 mm). As a committed partner to community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations and is 100 % RoHS complicant.

FEATURES

- Low voltage operation (1.65 V to 4.3 V)
- Low on-resistance R_{ON} : 2.8 Ω typ. at 3.15 V
- Low voltage logic threshold
- Low crosstalk: 70 dB
- High off-isolation: 90 dB
- Ultra small package: miniQFN16 of 1.8 mm x 2.6 mm


RoHS

APPLICATIONS

- · A/V and analog signal routing
- · Battery operated devices
- · Data acquisition systems
- · Communications systems
- · Medical and ATE equipments

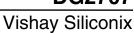
FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

miniQFN-16L

Top View

Device Marking: UXX Traceability Code: U is DG2707DN XX = Date/Lot

ORDERING INFORMAT	RDERING INFORMATION			
Temp. Range	Package	Part Number		
- 40 °C to 85 °C	miniQFN-16	DG2707DN-T1-E4		



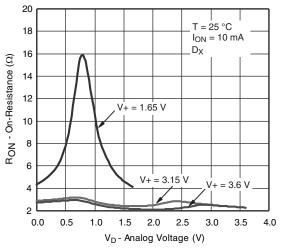
TRUTH TABLE DG2707 MULTIPLEXER, MINIQFN-16L							
Enable Input Select Input EN (Pin 13) IN2 (Pin 10) IN1 (Pin 3)		Input	On Switches (Pin)				
		IN1 (Pin 3)	Description (Pin)	Common (Pin)			
0	0	0	S5 (Pin 12)				
0	0	1	S6 (Pin 14)	D0 (Din 15)			
0	1	0	S7 (Pin 16)	D2 (Pin 15)			
0	1	1	S8 (Pin 1)				
0	0	0	S1 (Pin 4)				
0	0	1	S2 (Pin 6)	D4 /Bin 7\			
0	1	0	S3 (Pin 8)	D1 (Pin 7)			
0	1	1	S4 (Pin 9)				
1	Х	Х	All Switches are off				
Pin 5 N/C							

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C, unless otherwise noted)					
Parameter		Limit	Unit		
Reference to GND	V+	- 0.3 to 5.0	V		
Reference to GND	EN, IN, D _X , S _X ^a	- 0.3 to (V+ + 0.3)	7 v		
Current (Any terminal except S_X or D_X)		30			
Continuous Current (S _X or D _X)		± 300	mA		
Peak Current (Pulsed at 1 ms, 10 % Dut	y Cycle)	± 500			
Storage Temperature (D Suffix)		- 65 to 150	°C		
Thermal Resistance (Package) ^b	miniQFN-16	152	°C/W		
Power Dissipation (Packages) ^b	miniQFN-16 ^{c, d}	525	mW		

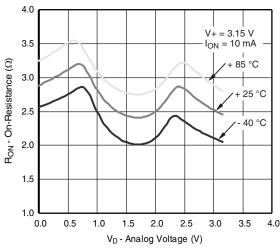
Notes:

- $a. \ Signals \ on \ S_X \ or \ D_X, \ or \ IN_X \ or \ EN \ exceeding \ V+ \ will \ be \ clamped \ by \ internal \ diodes. \ Limit \ forward \ diode \ current \ to \ maximum \ current \ ratings.$
- b. All leads welded or soldered to PC board.
- c. Derate 6.6 mW/°C above 70 °C
- d. Manual soldering with iron is not recommended for leadless components. The miniQFN-16 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

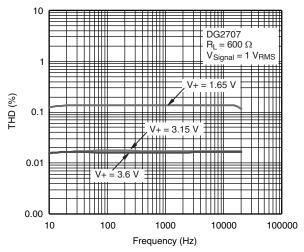
SPECIFICATIONS (V	+ = 3.15 V)						
				Limits			
D	0	Test Conditions	Temp.b		°C to 8		
Parameter Control	Symbol	Otherwise Unless Specified	Temp.	Min. ⁴	ıyp.°	Max.	Unit
Analog Switch	.,		T =	I _	l	I	
Analog Signal Range ^e	V _{analog}	R _{DS(on)}	Full	0		V+	V
On Resistance	R _{DS(on)}	$V+ = 3.15 \text{ V}, \text{ IS}_X = 10 \text{ mA}, \text{ VD}_X = 1.0 \text{ V}$	Room Full		2.8	5.5 6	Ω
R _{ON} Match	$\Delta R_{(on)}$	$V+ = 3.15 \text{ V}, \text{ IS}_X = 10 \text{ mA}, \text{ VD}_X = 1.0 \text{ V}$	Room		0.3		
R _{ON} Resistance Flatness	R _(on) Flatness	$V+ = 3.15 \text{ V}, \text{ IS}_X = 10 \text{ mA}, \text{ VD}_X = 0.0 \text{ V}, 1.0 \text{ V}$	Room		0.6		
Observat Off Lastrana Original	I _{SX(off)}	V. 0.C.V.V.C. 0.F.V.O.V.V.D. 0.V.O.F.V.	Room	- 5		5	
Channel-Off Leakage Current	I _{DX(off)}	$V+ = 3.6 \text{ V}, VS_X = 0.5 \text{ V}/3 \text{ V}, VD_X = 3 \text{ V}/0.5 \text{ V}$	Full	- 10		10	
01		V	Room	- 10		10	nA
Channel-On Leakage Current	I _{DX(on)}	$V+ = 3.6 V, VS_X, VD_X = 3 V/0.5 V$	Full	- 20		20	
Digital Control							
Input High Voltage	V _{INH}			1.65			V
Input Low Voltage	V_{INL}		Full			0.4	
Input Current	I _{INL} or I _{INH}	V _{IN} = 0 or V+		- 1		1	μΑ
Input Capacitance	C _{IN}	V+ = 3.15, f = 1 MHz			5.1		pF
Dynamic Characteristics							
Break-Before-Make Time	t		Room		1		
Dieak-Deloie-Wake Tille	t _{BBM}		Full	5			ns
Enable Turn-On Time	t _{ON(EN)}		Room		20	45	
Enable furn-Off fillie		$VS_X = 1.5 \text{ V}, R_1 = 50 \Omega, C_1 = 35 \text{ pF}$	Full			55	
Enable Turn-Off Time	t _{OFF(EN)}	$VS_X = 1.5 \text{ V}, H_L = 50 \Omega, G_L = 35 \text{ pr}$	Room		15	35	
Enable turn-Oil time			Full			45	
Transition Time			Room		35	55	
Transition Time			Full			65	
Charge Injection ^d	Q _{INJ}	$C_L = 1 \text{ nF, } R_{GEN} = 0 \Omega, VS_X = 2 V$	Room		- 14		рC
Off-Isolation ^d	OIRR	V+ = 3.15 V, f = 1 MHz, R_L = 50 Ω, C_L = 5 pF	D		- 70		40
Crosstalk ^{d, f}	X _{TALK}	$V + = 3.15 \text{ V}, I = 1 \text{ MIHz}, H_L = 30 \text{ SZ}, G_L = 5 \text{ pr}$	Room		- 90		dB
Bandwidth ^d	BW	V+ = 3.15 V, R_L = 50 Ω, C_L = 5 pF, - 3 dB	Room		120		MHz
Total Harmonic Distortion ^d	THD	$V+ = 3.15 \text{ V}, R_{load} = 600 \Omega$	Room		0.02		%
D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C _{S(off)}		Room		16		pF
S _X , D _X Off Capacitance ^d	CD _{X(off)}	V+ = 3.15 V, f = 1 MHz			42		
Channel-On Capacitance ^d	CD _{X(on)}	· · · · · · · · · · · · · · · · · · ·			49		
Power Supply	, , ,						
Power Supply Range	V+			1.65		4.3	٧
Power Supply Current	l+	$V_{IN} = 0 \text{ V or V} +$	Full			1	μΑ

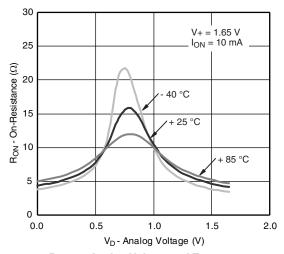

Notes:

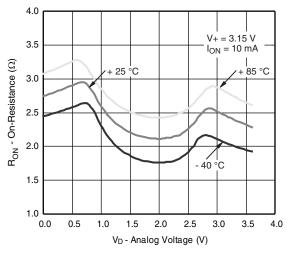
- a. Room = 25 °C, Full = as determined by the operating suffix.
- b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- c. Typical values are for design aid only, not guaranteed nor subject to production testing.
- d. Guarantee by design, not subjected to production test.
- e. V_{IN} = input voltage to perform proper function.
- f. Crosstalk measured between channels.

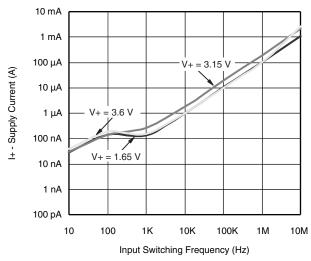

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

VISHAY.


TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

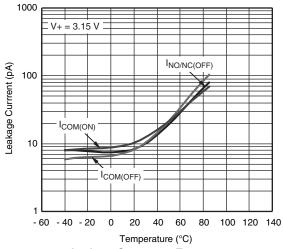

 $\rm R_{ON}$ vs. $\rm V_{D}$ and Single Supply Voltage

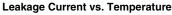

R_{ON} vs. Analog Voltage and Temperature

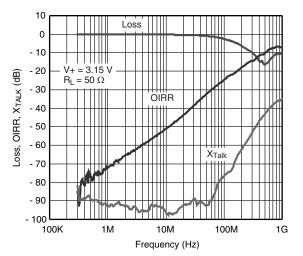

Switching Threshold vs. Supply Voltage

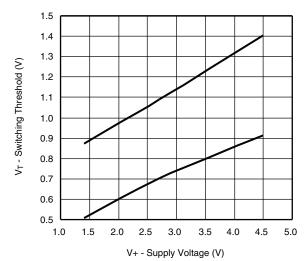
R_{ON} vs. Analog Voltage and Temperature

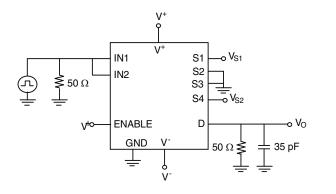
R_{ON} vs. Analog Voltage and Temperature




Supply Current vs. Input Switching Frequency




TYPICAL CHARACTERISTICS ($T_A = 25$ °C, unless otherwise noted)


Insertion Loss, Off-Isolation Crosstalk vs. Frequency

Switching Threshold vs. Supply Voltage

VISHAY.

TEST CIRCUITS

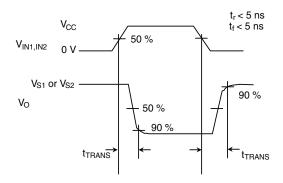
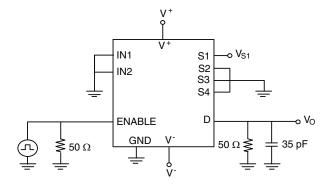



Figure 1. Transition Time

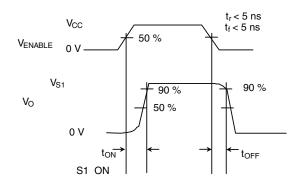
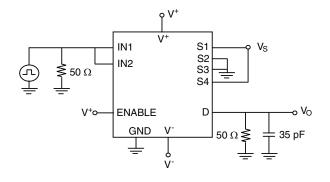



Figure 2. Enable Switching Time

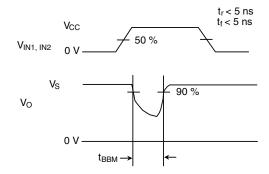


Figure 3. Break-Before Make

TEST CIRCUITS

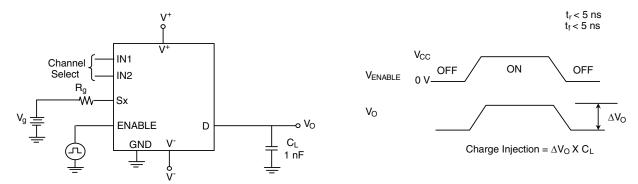


Figure 4. Charge Injection

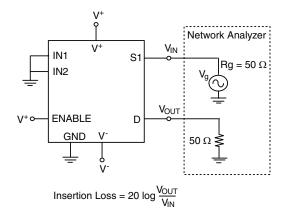


Figure 5. Insertion Loss

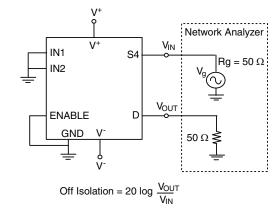


Figure 6. Off-Isolation

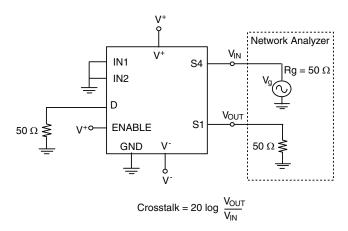
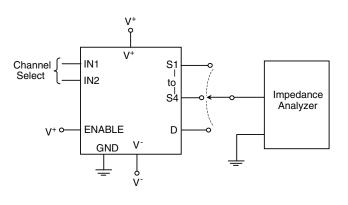
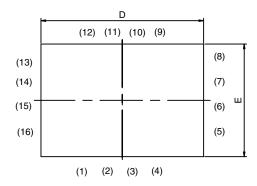
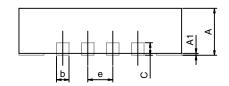
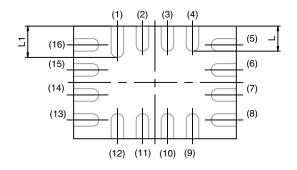


Figure 7. Crosstalk

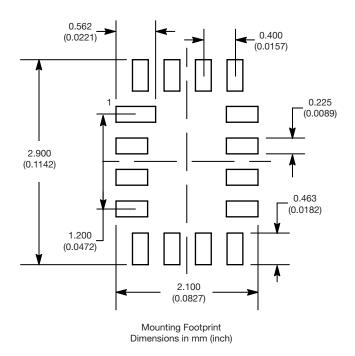




Figure 8. Source, Drain Capacitance


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?68397.

miniQFN-16L

BACK SIDE VIEW


DIM	MILLIMETERS			INCHES		
DIM	MIN.	NAM	MAX.	MIN.	NAM	MAX.
Α	0.70	0.75	0.80	0.0275	0.0295	0.0315
A1	0	-	0.05	0	-	0.002
b	0.15	0.20	0.25	0.0059	0.0078	0.0098
С	0.15	0.20	0.25	0.0059	0.0078	0.0098
D	2.50	2.60	2.70	0.0984	0.1023	0.1063
E	1.70	1.80	1.90	0.0669	0.0708	0.0748
е		0.40 BSC		0.0157 BSC		
L	0.35	0.40	0.45	0.0137	0.0157	0.0177
L1	0.45	0.50	0.55	0.0177	0.0196	0.0216

ECN T16-0234-Rev. B, 09-May-16

DWG: 5954

RECOMMENDED MINIMUM PADS FOR MINI QFN 16L

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000