

General Description

The DS1083L is a spread-spectrum clock modulator IC that reduces EMI in high-clock, frequency-based, digital electronic equipment.

Using an integrated phase-locked loop (PLL), the DS1083L accepts an input clock signal in the range of 16MHz to 134MHz and delivers a spread-spectrum modulated output clock signal. The PLL modulates, or dithers, the output clock about the center input frequency at a pin-selectable magnitude. The DS1083L automatically adjusts the dither rate based on the input clock frequency to maximize the EMI reduction.

By dithering the system clock, all the address, data, and timing signals generated from this signal are also dithered so that the measured EMI at the fundamental and harmonic frequencies is greatly reduced. This is accomplished without changing clock rise/fall times or adding the space, weight, design time, and cost associated with mechanical shielding.

The DS1083L is provided in a low-cost, space-saving, 6-lead thin SOT23 package and operates over a full automotive temperature range of -40°C to +125°C.

Applications

LCD Panels for TVs, Desktop Monitors, Notebook and Tablet PCs

Automotive Telematics and Infotainment

Printers

Pin Configuration and Typical Operating Circuit appear at end of data sheet.

Features

- ♦ Modulates a 16MHz to 134MHz Clock with Center Spread-Spectrum Dithering
- **♦** Selectable Spread-Spectrum Modulation Magnitudes of:

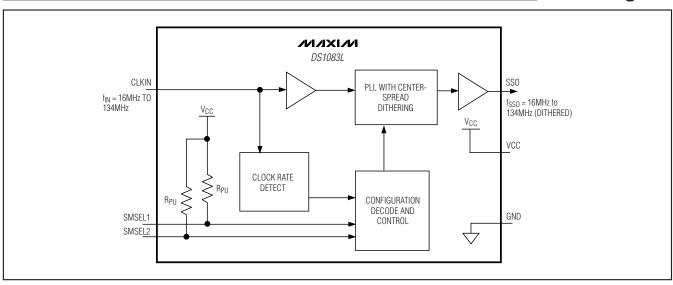
±0.5%

±1%

±1.5%

±2%

- ♦ Low 75ps Cycle-to-Cycle Jitter
- **♦** Automatic Dither Cycle Rate Adjustment to **Maximize EMI Reduction**
- **♦ Low Cost**
- **♦ Low Power Consumption**
- ♦ 3.3V Single Voltage Supply
- **♦** -40°C to +125°C Operating Temperature Range
- ♦ Small 6-Lead Thin SOT23 Package


Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
DS1083LR+T	-40°C to +125°C	6 Thin SOT23

+Denotes a lead-free package.

T = Tape and reel.

Block Diagram

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

Voltage Range on VCC Relative to GND0.5V to +3.63V	Storage Temperature Range	55°C to +125°C
Voltage Range on Any Lead Relative	Soldering Temperature	Refer to the IPC/JEDEC
to GND0.5V to (V _{CC} + 0.5V), not to exceed +3.63V		J-STD-020 Specification.
Operating Temperature Range40°C to +125°C		

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

 $(TA = -40^{\circ}C \text{ to } +125^{\circ}C, \text{ unless otherwise noted.})$

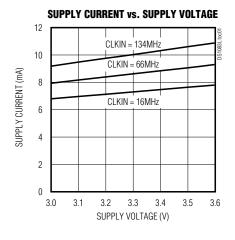
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	МАХ	UNITS
V _{CC} Supply Voltage	Vcc	(Note 1)	3.0		3.6	V
SMSEL1/SMSEL2 Input Logic 1	VIH		0.7 x Vcc		V _{CC} + 0.3	V
SMSEL1/SMSEL2 Input Logic 0	VIL		-0.3		0.3 x VCC	V
SSO Load	CL	fsso < 80MHz			15	pF
330 Load	CL	80MHz ≤ f _{SSO} < 134MHz			7	рг
CLKIN Frequency	f _{IN}		16		134	MHz
CLKIN Duty Cycle	fINDC		40		60	%
V _{CC} Power-Up Time	tpv	GND to V _{CCMIN}			200	ms

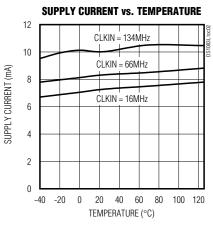
DC ELECTRICAL CHARACTERISTICS

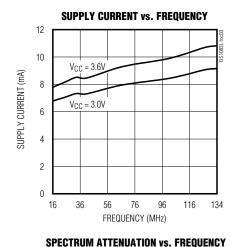
 $(V_{CC} = +3.0V \text{ to } +3.6V, T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}, \text{ unless otherwise noted.})$

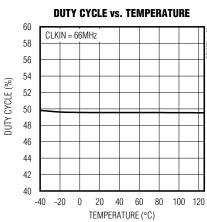
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	Icc	$C_L = 7pF,$ $f_{IN} = 134MHz$			15	mA
SMSEL1/SMSEL2 Pullup Resistance	Rpu	$T_A = +25^{\circ}C$	60	100	140	kΩ
SMSEL1/SMSEL2 Input Leakage	lıL	0V < VIN < VCC			±80	μΑ
Low-Level Output Voltage (SSO) VoL		I _{OL} = 4mA			0.4	V
High-Level Output Voltage (SSO)	Voh	I _{OH} = -4mA	2.4			V

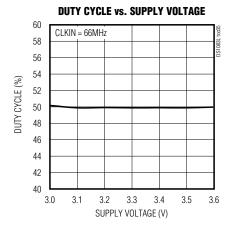
AC ELECTRICAL CHARACTERISTICS

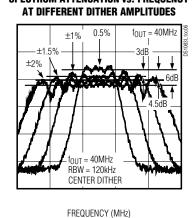

 $(V_{CC} = +3.0V \text{ to } +3.6V, T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}, \text{ unless otherwise noted.})$


PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SSO Duty Cycle	fssodc	Measured at V _{CC} /2	40		60	%
SSO Rise Time	t _R	C _L = 7pF		1		ns
SSO Fall Time	tF	C _L = 7pF		1		ns
Peak Cycle-to-Cycle Jitter	tJ	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, 10,000 \text{ cycles}$		75		ps


Note 1: All voltages referenced to ground. Currents into the IC are positive and currents out of the IC are negative.


Typical Operating Characteristics


 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$



ATTENUATION (dB)

Pin Description

PIN	NAME	DESCRIPTION						
1	CLKIN	Clock Input. 16MHz to 134MHz clock	Clock Input. 16MHz to 134MHz clock input (fin).					
2	GND	Ground						
3	SSO	Spread-Spectrum Clock Output. Outputs a center-dithered spread-spectrum version of the clock input at CLKIN.						
4 SMSEL2	SMSEL2	Spread-Spectrum Magnitude Select Inputs. These digital inputs select the desired spread-spectrum magnitude as shown in the table below. Both inputs contain pullup resistors (R _{PU}) to V _{CC} .						
	OWOLL	SMSEL2	SMSEL1	MAGNITUDE SELECTED (%)				
	1	0	0	±2				
	5 SMSEL1	0	1	±1.5				
5 S		1	0	±1				
		1	1	±0.5				
6	VCC	Supply Voltage	<u> </u>	·				

Detailed Description

The DS1083L modulates an input clock to provide a center-dithered spread-spectrum output. A 16MHz to 134MHz clock is applied to the CLKIN pin. The PLL dithers the output clock about its center frequency at a user-selectable magnitude. The user is required to cycle power to the device each time there is a change in the input frequency, for the PLL to lock correctly. This ensures proper output frequency and dither rate. The desired spread-spectrum magnitude is selected using input pins SMSEL1 and SMSEL2 (see the *Pin Description* for details). The DS1083L is capable of generating spread-spectrum clocks from 16MHz to 134MHz.

Dither-Rate Selection

The output spread-spectrum dither rate is automatically adjusted depending on the input frequency, to maximize EMI reduction.

The dither cycle rate is:

 $f_{IN}/512$, if f_{IN} is between 16MHz and 33MHz $f_{IN}/1024$, if f_{IN} is between 33MHz and 64MHz $f_{IN}/2048$, if f_{IN} is between 64MHz and 134MHz

On power-up, the output clock (SSO) remains three-stated until it reaches a stable frequency (f_{SSO}). The dither rate is selected by sampling the input clock at power-up.

Applications Information

Power-Supply Decoupling

To achieve best results, it is highly recommended that a decoupling capacitor is used on the IC power-supply pins. Typical values of decoupling capacitors are $0.01\mu F$ and $0.1\mu F$. Use a high-quality, ceramic, surfacemount capacitor, and mount it as close as possible to the VCC and GND pins of the IC to minimize lead inductance.

Chip Information

SUBSTRATE CONNECTED TO GROUND

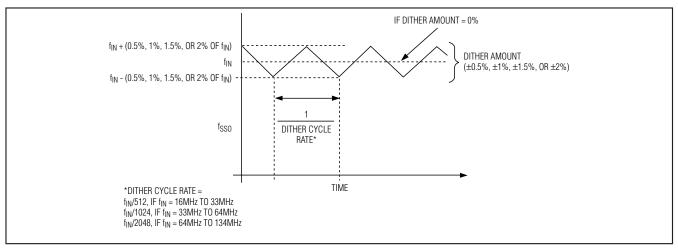
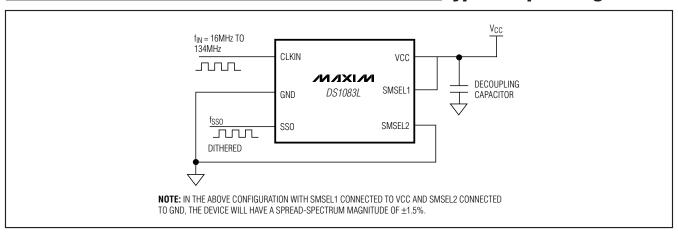
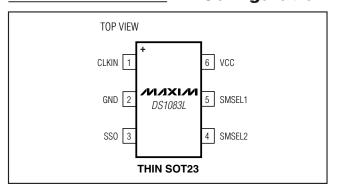




Figure 1. Spread-Spectrum Frequency Modulation

Typical Operating Circuit

Pin Configuration

Package Information

For the latest package outline information, go to www.maxim-ic.com/packages.

PACKAGE TYPE	DOCUMENT NO.
6 Thin SOT23	<u>21-0114</u>

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated:

DS1083LR+T DS1083LR-U+