

Status: Engineering

Features:

- V_{DS}, 100 V
- Maximum R_{DS(ON)}, 3.2 mΩ
- I_D, 60 A
- Pb-Free (RoHS Compliant), Halogen Free

EPC2022 eGaN® FETs are supplied only in passivated die form with solder bars

Die Size: 6.05 mm x 2.3 mm

Applications:

- High Frequency DC-DC Conversion
- Motor Drive
- Industrial Automation
- Synchronous Rectification
- Inrush Protection
- Class-D Audio

MAXIMUM RATINGS

Parameter	Value
V _{DS} (Maximum Drain – Source Voltage)	100 V
V _{GS} (Gate – Source Maximum Voltage Range)	-4 V < V _{GS} < 6 V
I_D Continuous Drain Current, 25 °C, θ_{JA} = 5.7)	60 A
I _D (Maximum Pulsed Drain Current, 25 °C, T _{pulse} = 300 μs)	360 A
T」(Optimum Temperature Range)	-40 °C < T _J < 150 °C

STATIC CHARACTERISTICS

Parameter	Conditions	Value
I _{DSS} (Maximum Drain – Source Leakage)	$V_{DS} = 80 \text{ V}, V_{GS} = 0 \text{ V}$	0.7 mA
R _{DS(ON)} (Maximum R _{DS(ON)})	$V_{GS} = 5 \text{ V}, I_D = 25 \text{ A}$	3.2 mΩ
R _{DS(ON)} (Typical R _{DS(ON)})	$V_{GS} = 5 \text{ V}, I_D = 25 \text{ A}$	2.4 mΩ
V _{GS(TH)} (Gate – Source Threshold Voltage)	$V_{DS} = V_{GS}$, $I_D = 12 \text{ mA}$	$0.7 \text{ V} < V_{GS(TH)} < 2.5 \text{ V}$
I _{GSS} (Gate – Source Maximum Positive Leakage)	V _{GS} = 5 V	9 mA
I _{GSS} (Gate – Source Maximum Negative Leakage)	V _{GS} = -4 V	-1 mA

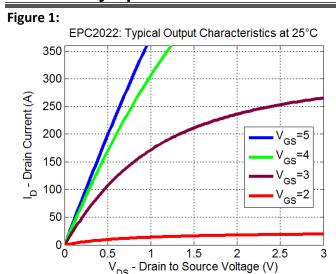
T_J = 25 °C unless otherwise stated

Specifications are with Substrate shorted to Source where applicable

DYNAMIC CHARACTERISTICS

Parameter	Conditions	Typical Value
C _{ISS} (Input Capacitance)		1.5 nF
Coss (Output Capacitance)	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$	940 pF
C _{RSS} (Reverse Transfer Capacitance)		18 pF
R _G (Gate Resistance)		0.3 Ω
Q _G (Total Gate Charge)		13 nC
Q _{GS} (Gate to Source Charge)	$V_{DS} = 50 \text{ V, } I_D = 25 \text{ A}$	3.7 nC
Q _{GD} (Gate to Drain Charge)		2.0 nC
Q _{G(TH)} (Gate Charge at Threshold)		2.6 nC
Qoss (Output Charge)	V _{DS} = 50 V, V _{GS} = 0 V	62 nC
Q _{RR} (Source-Drain Recovery Charge)		0

T_J = 25 °C unless otherwise stated


THERMAL CHARACTERISTICS

		TYP	
RθJC	Thermal Resistance, Junction to Case	0.5	°C/W
RθJB	Thermal Resistance, Junction to Board	1.4	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1)	42	°C/W

Note 1: R_{0JA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board.

Specifications are with Substrate shorted to Source where applicable

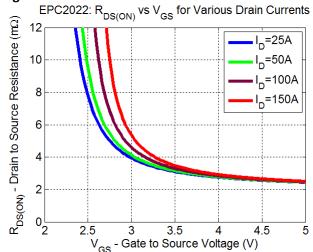


Figure 5a:

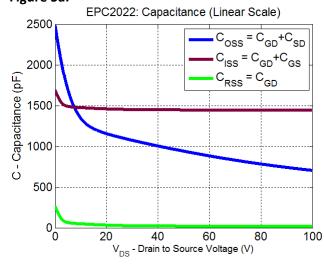


Figure 2:

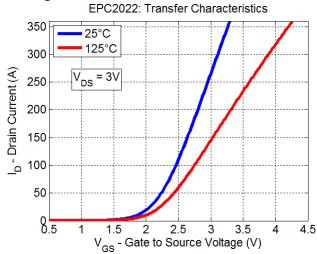


Figure 4:

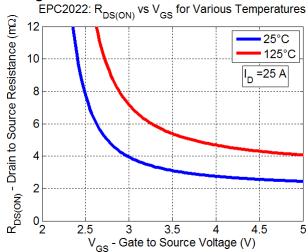


Figure 5b:

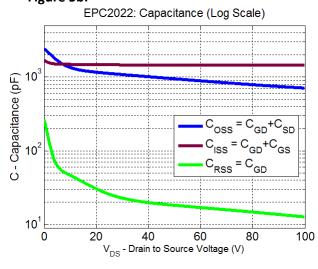


Figure 6:

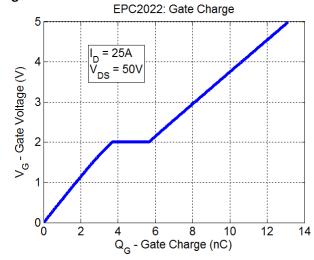


Figure 7:

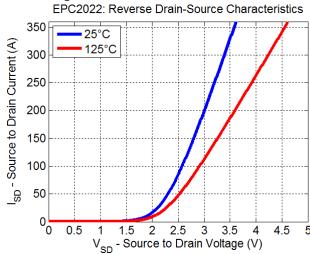
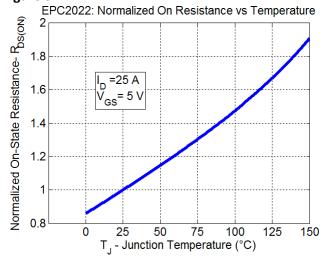
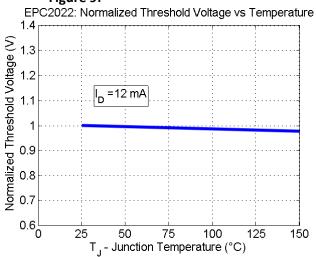
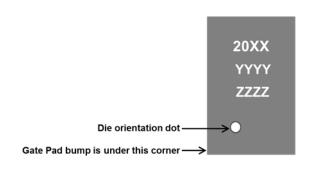
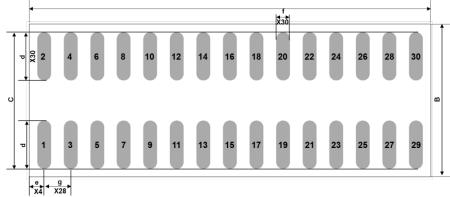


Figure 8:

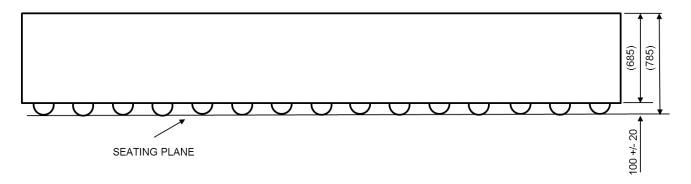




Figure 9:

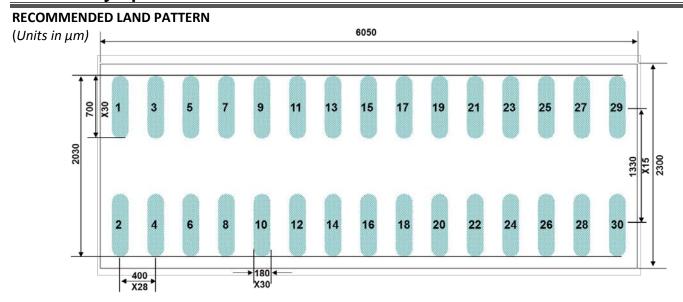
All measurements were done with substrate shorted to source


DIE MARKINGS

	Laser Marking		
Part Number	Part # Marking	Lot_Date Code	Lot_Date Code
	Line 1	Marking Line 2	Marking Line 3
EPC2022ENGR	20XX	YYYY	ZZZZ

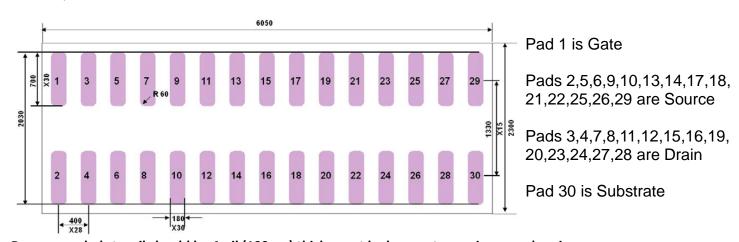

DIE OUTLINE

Solder Bar View



DIM	MICROMETERS		
	MIN	Nominal	MAX
Α	6020	6050	6080
В	2270	2300	2330
С	2047	2050	2053
d	717	720	723
e	210	225	240
f	195	200	205
g	400	400	400

Side View



Pad 1 is Gate Pads 2,5,6,9,10,13,14,17,18,21,22,25,26,29 are Source Pads 3,4,7,8,11,12,15,16,19,20,23,24,27,28 are Drain Pad 30 is Substrate

Land pattern is solder mask defined Solder mask opening is 10 μm smaller per side than bump

RECOMMENDED STENCIL

(Units in µm)

Recommended stencil should be 4mil (100 μm) thick, must be laser cut, openings per drawing.

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein. Engineering devices, designated with an ENG* suffix at point of purchase, are first article products that EPC is preparing for production release. Specifications may change on final production release of the device. If you have questions please contact us. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of other.

eGaN* is a registered trademark of Efficient Power Conversion Corporation.
U.S. Patents 8,350,294; 8,404,508; 8,431,960; 8,436,398; 8,785,974; 8,890,168; 8,969,918; 8,853,749; 8,823,012

Revised December, 2015