
ER300 THRU ER306

SUPERFAST RECOVERY RECTIFIERS VOLTAGE - 50 to 600 Volts CURRENT - 3.0 Amperes

FEATURES

- Superfast recovery times-epitaxial construction
- Low forward voltage, high current capability
- Exceeds environmental standards of MIL-S-19500/228
- Hermetically sealed
- Low leakage
- High surge capability
- Plastic package has Underwriters Laboratories Flammability Classification 94V-O utilizing Flame Retardant Epoxy Molding Compound

DO-201AD

MECHANICAL DATA

Case: Molded plastic, DO-201AD

Dimensions in inches and (millimeters)

Terminals: Axial leads, solderable to MIL-STD-202,

Method 208

Polarity: Color Band denotes cathode end

Mounting Position: Any

Weight: 0.04 ounce, 1.12 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25° ambient temperature unless otherwise specified.

Resistive or inductive load, 60Hz.

	ER300	ER301	ER301A	ER302	ER303	ER304	ER306	UNITS
Maximum Recurrent Peak Reverse Voltage	50	100	150	200	300	400	600	V
Maximum RMS Voltage	35	70	105	140	210	320	420	V
Maximum DC Blocking Voltage	50	100	150	200	300	400	600	V
Maximum Average Forward Current .375"(9.5mm) lead length at $T_A=55$					3.0			A
Peak Forward Surge Current, I_{FM} (surge): 8.3ms single half sine-wave superimposed on rated load(JEDEC method)					125.0			A
Maximum Forward Voltage at 3.0A DC	.95			.95	1.25	1.7		V
Maximum DC Reverse Current at Rated DC Blocking Voltage				5.0				A
Maximum DC Reverse Current at Rated DC Blocking Voltage $T_A=125$				300				A
Maximum Reverse Recovery Time(Note 1)				35.0				ns
Typical Junction capacitance (Note 2)				35				pF
Typical Junction Resistance(Note 3) R_{JA}				20.0				/W
Operating and Storage Temperature Range T_J				-55 to +150				

NOTES:

1. Reverse Recovery Test Conditions: $I_F=.5A$, $I_R=1A$, $I_{RR}=.25A$

- Measured at 1 MHz and applied reverse voltage of 4.0 VDC
- Thermal resistance from junction to ambient and from junction to lead length 0.375"(9.5mm) P.C.B. mounted

RATING AND CHARACTERISTIC CURVES ER300 THRU ER306

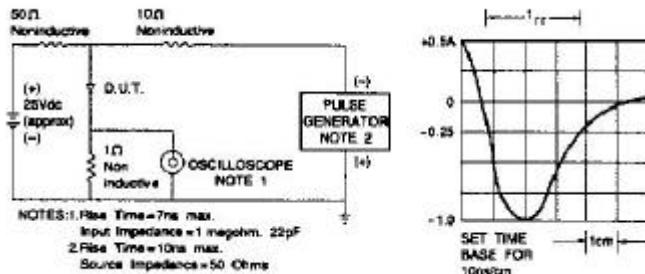


Fig. 1-REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

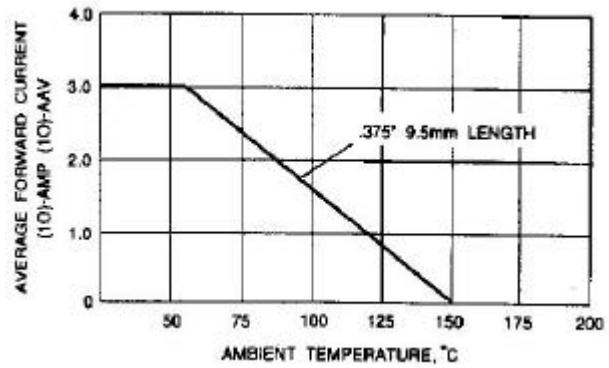


Fig. 2-MAXIMUM AVERAGE FORWARD CURRENT RATING

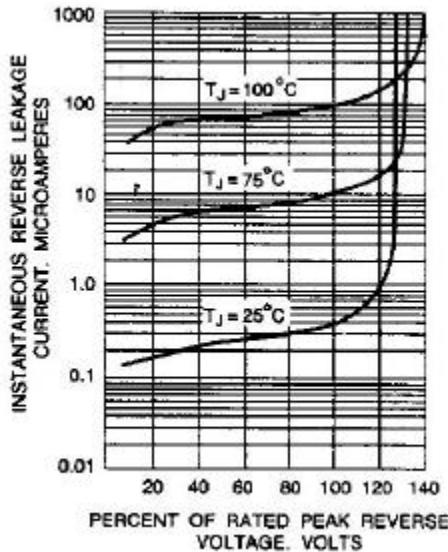


Fig. 3-TYPICAL REVERSE CHARACTERISTICS

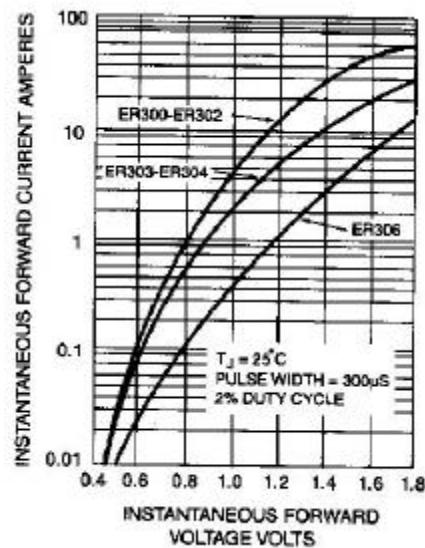


Fig. 4-FORWARD CURRENT DERATING CURVE

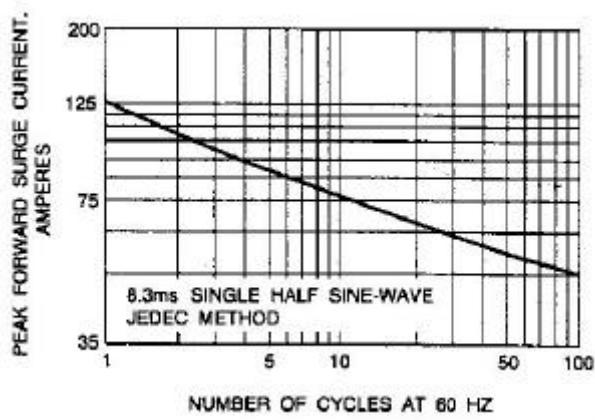


Fig. 5-MAXIMUM NON-REPETITIVE SURGE CURRENT

Fig. 6-TYPICAL JUNCTION CAPACITANCE