Technical Reference Note

Embedded Power for Business-Critical Continuity

> Rev.11.06.13_#1.0 ERM50 Series Page 1

ERM50 Series

50 Watts

Quarter-Brick DC-DC

Total Power: 50 Watts
Input Voltage: 72 or 110 Vdc
of Outputs: Single

Special Features

- Small 57.9 x 36.8 x12.7 mm package
- Input Ranges 43-101 Vdc or 66-160 Vdc
- High Efficiency up to 92%
- No Minimum Load Requirement
- Operating Temp. Range
 -40 °C to +85 °C with derating
- Reinforced Insulation 3000 VACrms
- Under-Voltage Shutdown
- · Remote On/Off
- Metal Case with Isolated Baseplate
- Vibration and Thermal Shock to EN61373
- · EN60950-1 Safety Standard
- EN50155/EN50121-3-2 Railway Standard
- 3 Year Warranty

Safety

cUL/UL 60950-1 IEC/EN 60950-1 IEC/EN 50155

Product Descriptions

ERM50 series is a new generation of high performance, isolated dc-dc converter modules. The product offers 50W in a small, fully encapsulated package. The input voltage ranges comply with European railway standard EN50155. Reinforced insulation and high EMC immunity qualifies these converters also for many demanding applications in railway and other transportation systems.

Advanced circuit topology provides a very high efficiency up to 92% which allows ambient temperatures range up to +85°C with derating.

Further features include remote On/Off, under-voltage shutdown as well as overload and over-temperature protection.

Model Numbers

Rev.11.06.13_#1.0 ERM50 Series Page 2

Model	Input Voltage Range	Output Voltage	Minimum Load	Maximum Load
ERM10A72	72 (43 - 101) Vdc	5V	0A	10A
ERM04B72	72 (43 - 101) Vdc	12V	0A	4.17A
ERM03C72	72 (43 - 101) Vdc	15V	0A	3.33A
ERM02H72	72 (43 - 101) Vdc	24V	0A	2.08A
ERM10A110	110 (66 - 160) Vdc	5V	0A	10A
ERM04B110	110 (66 - 160) Vdc	12V	0A	4.17A
ERM03C110	110 (66 - 160) Vdc	15V	0A	3.33A
ERM02H110	110 (66 - 160) Vdc	24V	0A	2.08A

Note - All DC/DC converters should be externally fused at the front end for protection.

Options

Heatsink (-HS)

Electrical Specifications

Rev.11.06.13_#1.0 ERM50 Series Page 3

Absolute Maximum Ratings

Stress in excess of those listed in the "Absolute Maximum Ratings" may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply's reliability.

Table 1. Absolute Maximum Ratings:

Parameter	Model	Symbol	Min	Тур	Max	Unit
Input Voltage: (DC continuous operation)	ERM10A72 ERM04B72 ERM03C72 ERM02H72 ERM10A110 ERM04B110 ERM03C110 ERM02H110	Vı	43 43 43 43 66 66 66 66	- - - - -	101 101 101 101 160 160 160	Vdc
Maximum Output Power	All models	P _{O,max}	ı	-	50	W
Isolation Resistance 500Vdc	All models		1000	-	-	Mohm
I/O Isolation Capacitance 100KHz, 1V	All models		-	-	3000	pF
Isolation Voltage Input to output Input to case Output to case	All models All models All models		3000 1500 1500	- - -	- - -	VACrms Vdc Vdc
Operating Temperature (without Heatsink / with Heatsink)	ERM04B72 ERM03C72 ERM03C110 ERM02H72 ERM04B110 ERM02H110 ERM10A72 ERM10A110	T _A	-40	-	72 / 75 72 / 75 72 / 75 68 / 71 68 / 71 68 / 71 63 / 67 63 / 67	ºC
Operating Base-plate Temperature Range	All models		-40	-	+105	ōС
Storage Temperature	All models	T _{STG}	-50	-	+125	ōС
Humidity (non-condensing)	All models		5	-	95	%

Input Specifications

Table 2. Input Specifications:

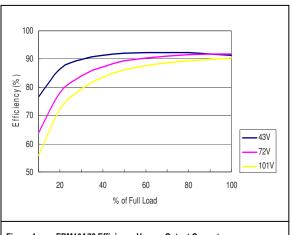
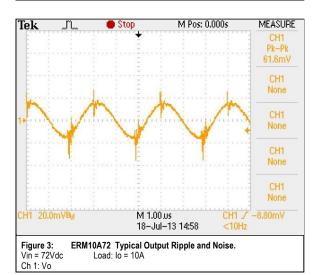
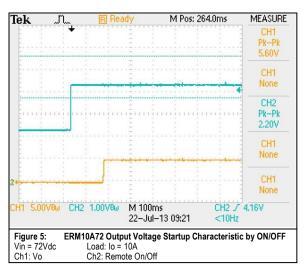
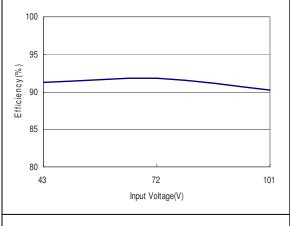
Parameter		Condition	Symbol	Min	Nom	Max	Unit
Operating Input Voltage, DC	ERM10A72 ERM04B72 ERM03C72 ERM02H72 ERM10A110 ERM04B110 ERM03C110 ERM02H110	All	Vı	43 43 43 43 66 66 66 66	72 72 72 72 110 110 110	101 101 101 101 160 160 160	Vdc
Input Surge Voltage	ERM10A72 ERM04B72 ERM03C72 ERM02H72 ERM10A110 ERM04B110 ERM03C110 ERM02H110	100ms. Max (with 220uF/200V capacitor)		-0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7	-	165 165 165 165 250 250 250 250	Vdc
Maximum Input Current	ERM10A72 ERM04B72 ERM03C72 ERM02H72 ERM10A110 ERM04B110 ERM03C110 ERM02H110	Maximum value at Vin= Vin nom; Full Load	I _{I,max}	-	771 755 754 762 505 500 494 499	-	mA
No Load Input Current	ERM10A72 ERM04B72 ERM03C72 ERM02H72 ERM10A110 ERM04B110 ERM03C110 ERM02H110	Typical value at Vin = Vin nom; No Load	I _{I,no_load}	-	50 45 45 50 40 35 35 40	-	mA
Efficiency @Max. Load	ERM10A72 ERM04B72 ERM03C72 ERM02H72 ERM10A110 ERM04B110 ERM03C110 ERM02H110	Vin =Vin nom; Full Load; TA =25℃	η	-	90 92 92 91 90 91 92 91	-	%
Input Reflected Ripple Current		0 to 500KHz, 4.7μH source impedance		-	35	-	mApk-pk
Start Up Time				-	0.35	-	S
Internal Filter Type			Pi F		N55022,CI ompliance		ass B

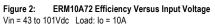
Output Specifications

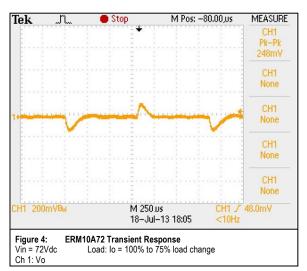
Table 3. Output Specifications:

Parameter		Condition	Symbol	Min	Nom	Max	Unit
Output Voltage Set-Point	ERM10A72 ERM04B72 ERM03C72 ERM02H72 ERM10A110 ERM04B110 ERM03C110 ERM02H110	Vin=Vin nom; Full Load; TA=25℃	V _o	4.95 11.88 14.85 23.76 4.95 11.88 14.85 23.76	5 12 15 24 5 12 15 24	5.05 12.12 15.15 24.24 5.05 12.12 15.15 24.24	Vdc
Convection Output Current, continuous	ERM10A72 ERM04B72 ERM03C72 ERM02H72 ERM10A110 ERM04B110 ERM03C110 ERM02H110	Convection cooling	0	-	-	10 4.17 3.33 2.08 10 4.17 3.33 2.08	Α
Max. Output Capacitance Load	ERM10A72 ERM04B72 ERM03C72 ERM02H72 ERM10A110 ERM04B110 ERM03C110 ERM02H110			-	-	17000 2950 1900 740 17000 2950 1900 740	μF
Output Ripple, pk-pk	ERM10A72 ERM04B72 ERM03C72 ERM10A110 ERM04B110 ERM03C110	20MHz bandwidth, measured with a 1μF MLCC and a 10μF Tantalum Capacitor		-	-	100	mVp-p
	ERM02H72 ERM02H110			-	-	150	mVp-p
Load Transient Respons	e Peak Deviation Settling Time	Measured to within 1% error band 25% Load Step Change	- T _s	- -	±3. 250	±5 -	% μSec
Line Regulation		Vin=Min. to Max. @ Full Load		-	-	±0.2	%V _O
Load Regulation		Min. Load to Full Load		-	-	±0.3	%V _o
Output Voltage Adjustment Range			V _O	-10	-	+10	%V _O
Output Power		Convection cooling	P _O	-	-	50	W
Temperature Coefficient		All models		-	-	±0.02	%/ ℃
Switching Frequency		All models	f _{SW}	-	320	-	KHz

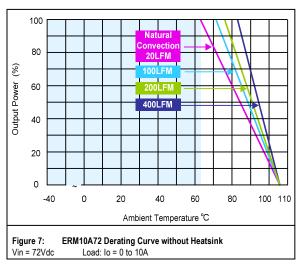
ERM10A72 Performance Curves

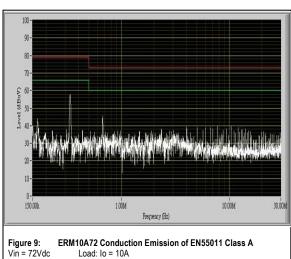






Figure 1: **ERM10A72 Efficiency Versus Output Current** Vin = 43 to 101Vdc Load: Io = 0 to 10A

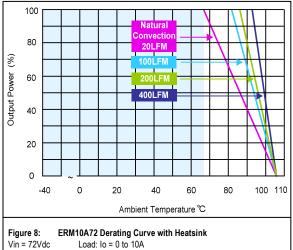


Rev.11.06.13_#1.0 ERM50 Series Page 6

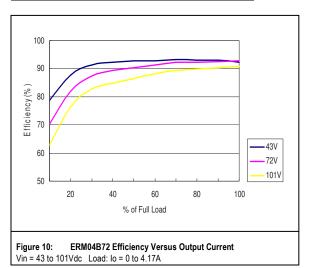


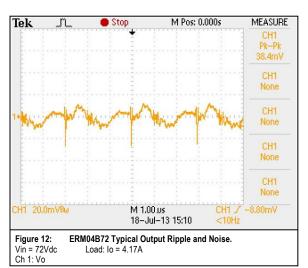


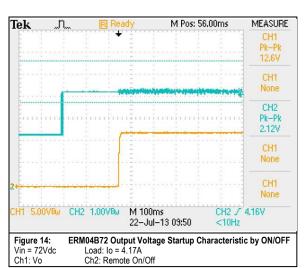
M Pos: -59,00ms MEASURE Tek CH1 5,127 CH2 Pk-Pk 72.07 CH1 None CH1 None CH1 None CH1 5.00VB_W CH2 50.0VB_W M 100ms 30-Aug-13 14:25 Figure 6: ERM10A72 Output Voltage Startup Characteristic by Vin Vin = 72Vdc Load: lo = 10A Ch1: Vo

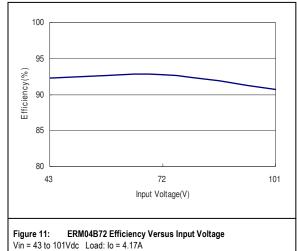

Ch2: Vin

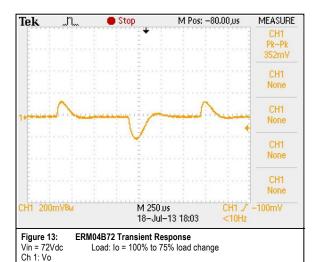
ERM10A72 Performance Curves

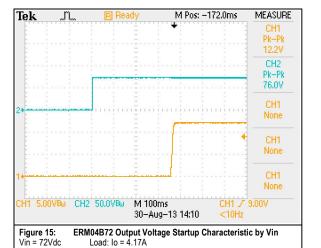




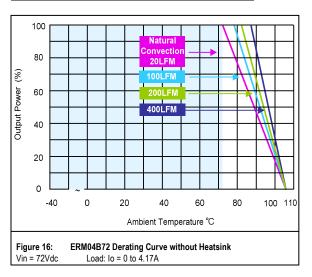

Note - All test conditions are at 25°C

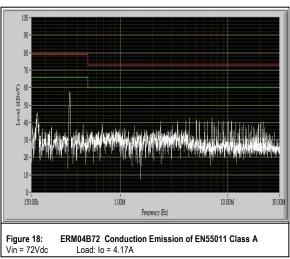

ERM04B72 Performance Curves



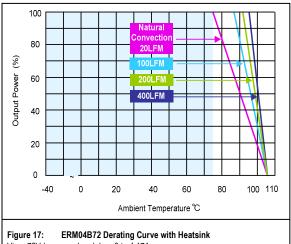


Rev.11.06.13_#1.0 ERM50 Series Page 8

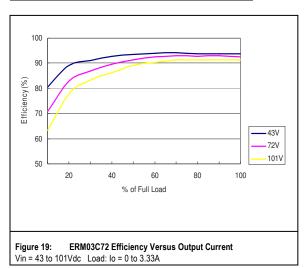

Load: Io = 100% to 75% load change

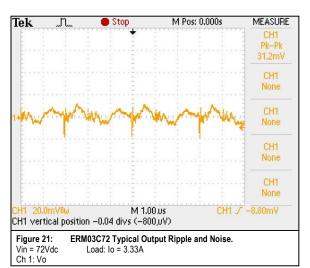


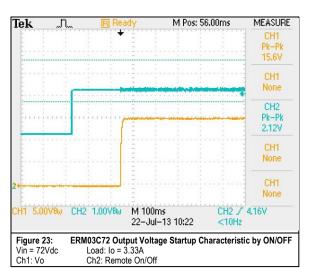
Ch1: Vo

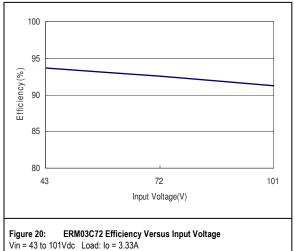

Ch2: Vin

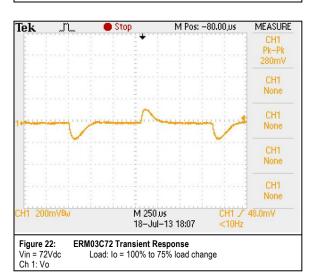
ERM04B72 Performance Curves

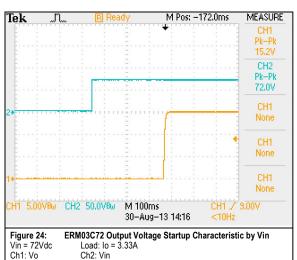


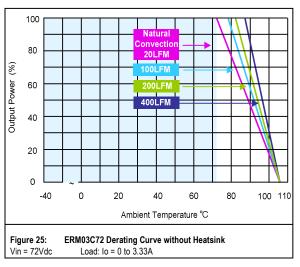

Note - All test conditions are at 25°C

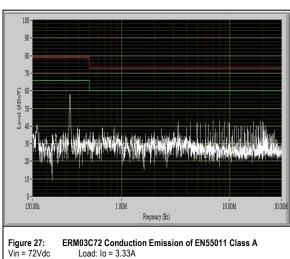


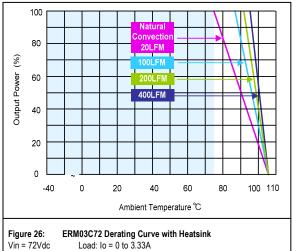

Vin = 72Vdc Load: Io = 0 to 4.17A


ERM03C72 Performance Curves

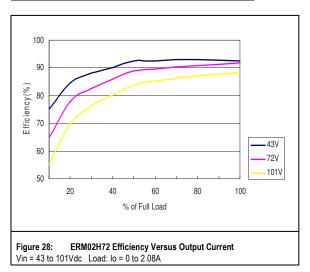


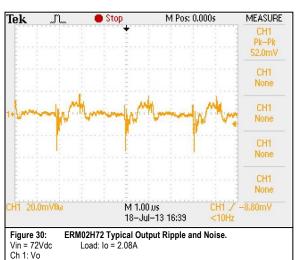


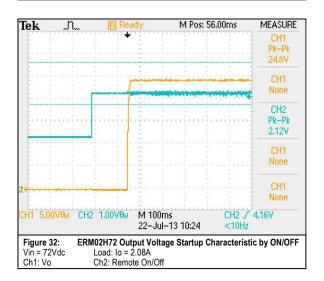


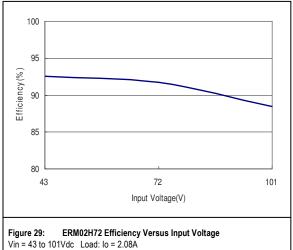


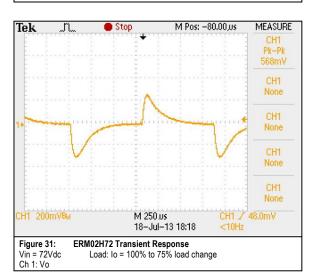
ERM03C72 Performance Curves

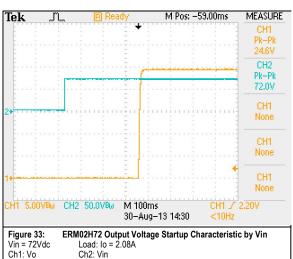




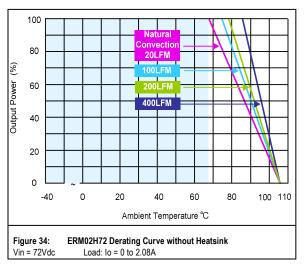

Note - All test conditions are at 25°C

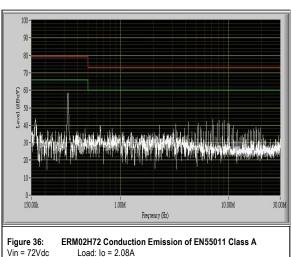

ERM02H72 Performance Curves

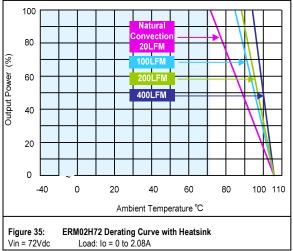




Rev.11.06.13_#1.0 ERM50 Series Page 12



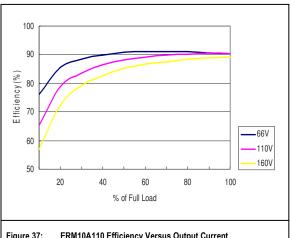
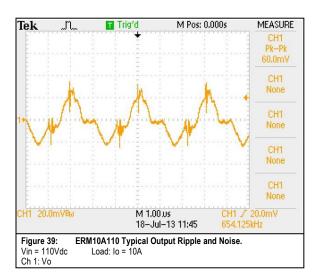
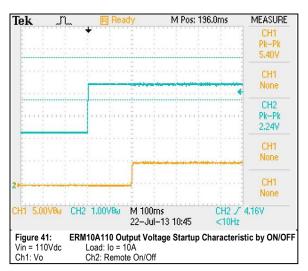
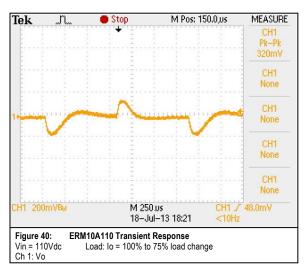


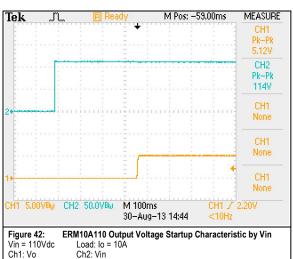

Ch2: Vin

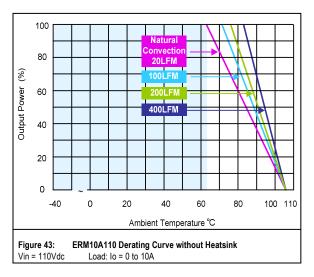
ERM02H72 Performance Curves

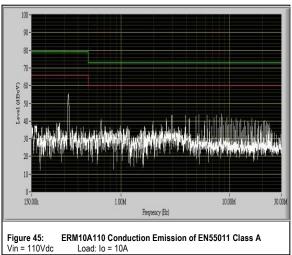
Note - All test conditions are at 25°C

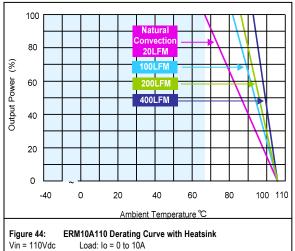
ERM10A110 Performance Curves

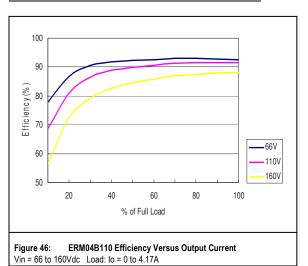

Figure 37: ERM10A110 Efficiency Versus Output Current Vin = 66 to 160Vdc Load: lo = 0 to 10A

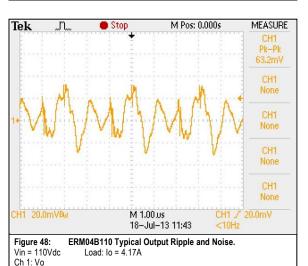


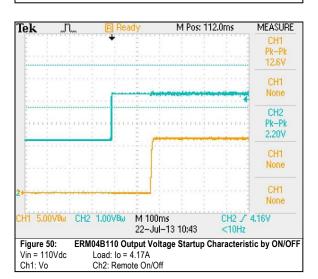


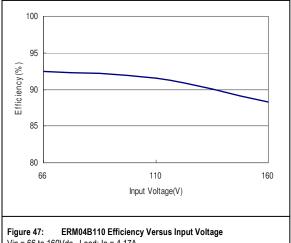


ERM10A110 Performance Curves

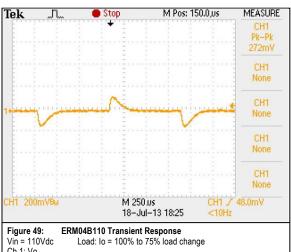


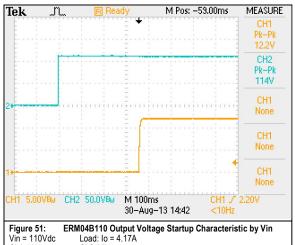



Note - All test conditions are at 25°C

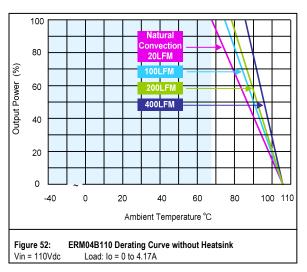


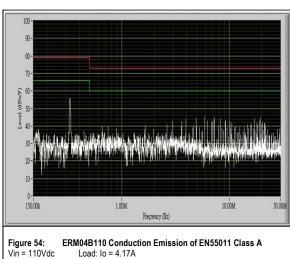
ERM04B110 Performance Curves

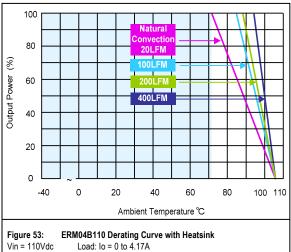




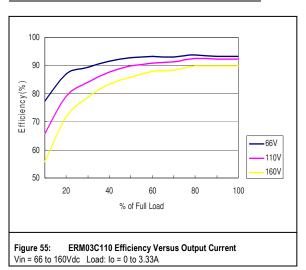
Vin = 66 to 160Vdc Load: lo = 4.17A

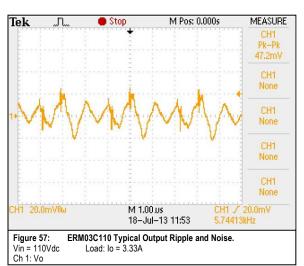


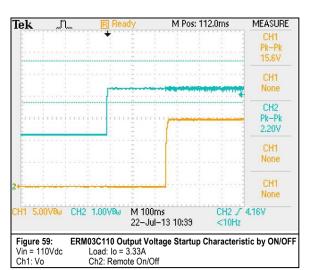

Vin = 110Vdc Ch 1: Vo

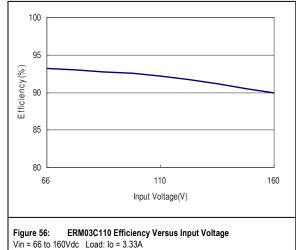

Ch1: Vo Ch2: Vin

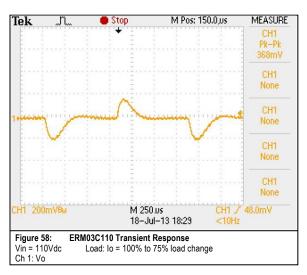
ERM04B110 Performance Curves

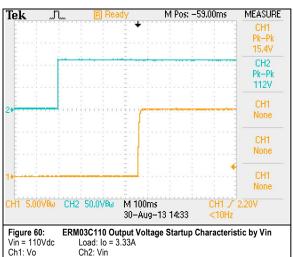


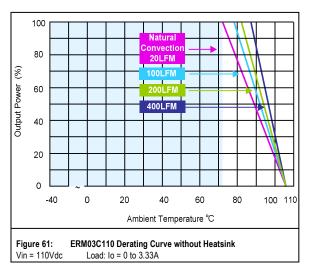


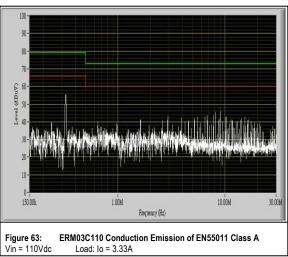

Note - All test conditions are at 25°C

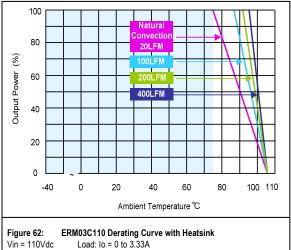



ERM03C110 Performance Curves

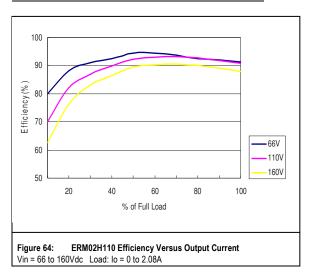


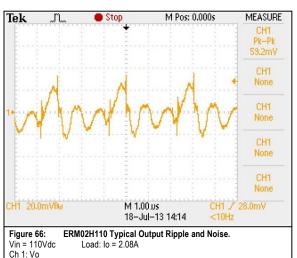


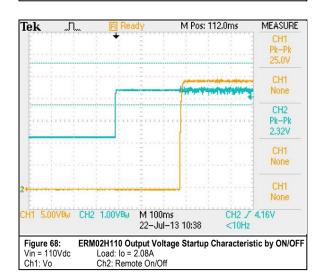


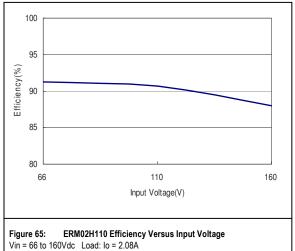


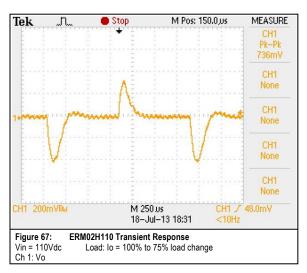
ERM03C110 Performance Curves

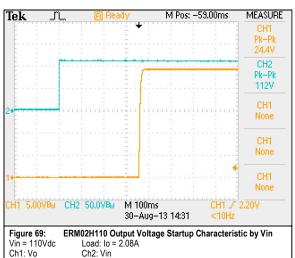


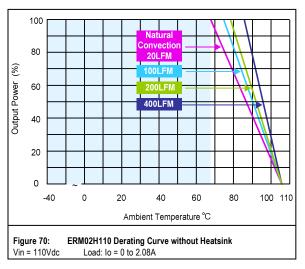


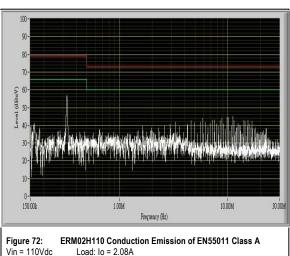

Note - All test conditions are at 25°C

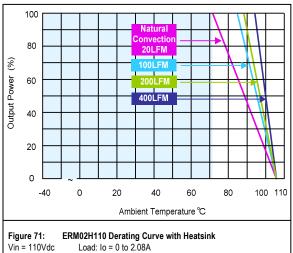



ERM02H110 Performance Curves









ERM02H110 Performance Curves

Note - All test conditions are at 25°C

Protection Function Specification

Rev.11.06.13_#1.0 ERM50 Series Page 22

Over Voltage Protection (OVP)

The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage.

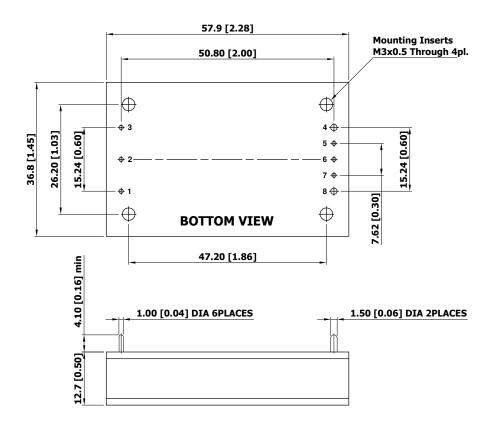
Parameter		Min	Nom	Max	Unit
	ERM10A72 ERM10A110	/	6.2	/	Vdc
V _O Output	ERM04B72 ERM04B110	/	15	/	Vdc
Overvoltage	ERM03C72 ERM03C110	/	18	/	Vdc
	ERM02H72 ERM02H110	/	27	/	Vdc

Over Temperature Protection (OTP)

Over Temperature (non-latching), base plate temperature.

Parameter	Min	Nom	Max	Unit
Over - temperature	-50	/	110	ōC

Over Current Protection (OCP)


Current Limitation at 150% typ. of lout max., Hiccup mode. To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Parameter		Min	Nom	Max	Unit
	ERM10A72 ERM10A110	/	15.000	/	А
V _O Output	ERM04B72 ERM04B110	/	6.255	/	А
Overcurrent	ERM03C72 ERM03C110	/	4.995	/	А
	ERM02H72 ERM02H110	/	3.120	/	А

Mechanical Specifications

Rev.11.06.13_#1.0 ERM50 Series Page 23

Mechanical Outlines

Pin Connections

Pin 1 - +Vin

Pin 2 - Remote On/Off

Pin 3 - -Vin

Pin 4 - -Vout

Pin 5 - -Sense(8)

Pin 6 – Trim

Pin 7 - +Sense(8)

Pin 8 – +Vout

Note:

1. If remote sense not used, the +sense should be connected to +output and -sense should be connected to -output.

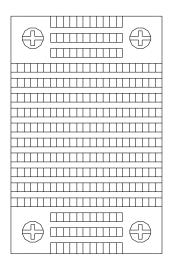
2. All dimensions in mm (inches)

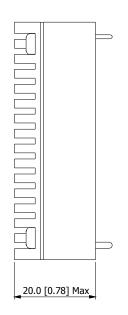
Tolerance: $X.X\pm0.5$ ($X.XX\pm0.02$)

 $X.XX \pm 0.25$ ($X.XXX \pm 0.01$)

3. Pin diameter: 1.0 \pm 0.05 (0.04 \pm 0.002)

4. Pin diameter: $1.5 \pm 0.05 (0.06 \pm 0.002)$

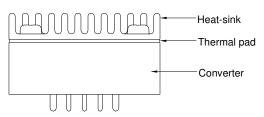

Physical Characteristics


Table 4.

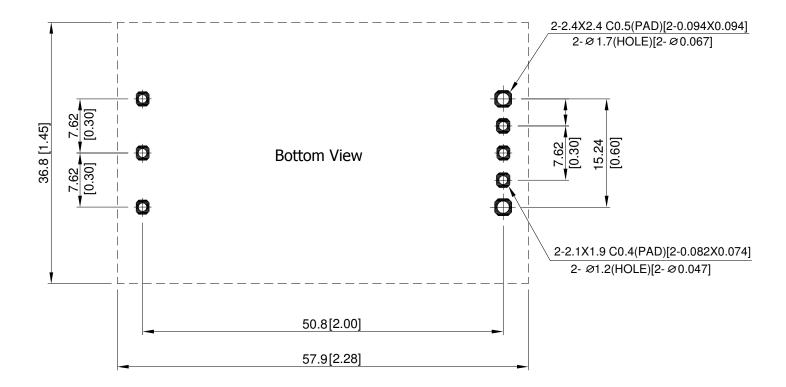
Rev.11.06.13_#1.0 ERM50 Series Page 24

Case Size	57.9x36.8x12.7 mm (2.28x1.45x0.5 inches)
Case Material	Aluminum Frame with Black Anodized Coating
Top Side Base Material	Aluminum Plate
Bottom Side Base Material	Non-conductive Black Plastic Base Plate
Potting Material	Epoxy (UL94-V0)

Heatsink (Option -HS)

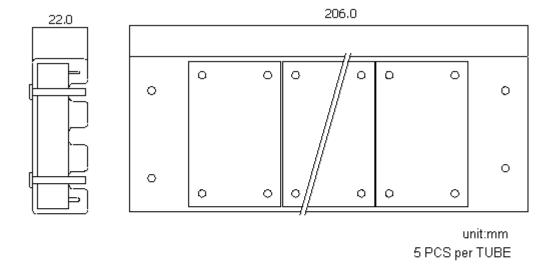


Heatsink Material: Aluminum Finish: Black Anodized Coating

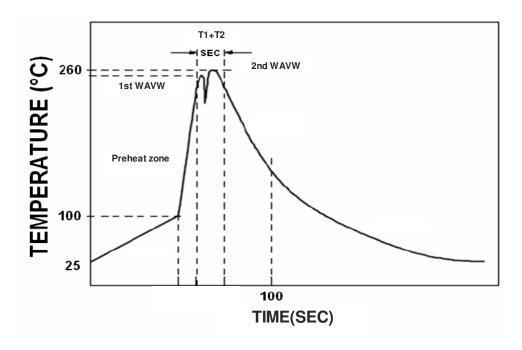

Weight: 13g

The advantages of adding a heatsink are:

- 1. To help heat dissipation and increase the stability and reliability of DC/DC converters at high operating temperature atmosphere.
- 2. To upgrade the operating temperature of DC/DC converters, please refer to Derating Curve.



Recommended Pad Layout


Packaging Information

Rev.11.06.13_#1.0 ERM50 Series Page 26

Soldering and Reflow Considerations

Lead free wave solder profile for ERM50 Series

Rev.11.06.13_#1.0 ERM50 Series Page 27 <u>Weight</u>

The ERM50 series weight is 0.13 lb. (61 grams) maximum.

Environmental Specifications

Rev.11.06.13_#1.0 ERM50 Series Page 28

EMC Immunity

ERM50 series power supply is designed to meet the following EMC immunity specifications. The ERM50 series can meet EN61000-4-4 & EN61000-4-5 by adding a capacitor across the input pins. Suggested capacitor: CHEMI-CON KXG $470\,\mu$ F/200V.

Table 5. EMC Specifications:

Parameter	Standards & Level	Performance
EMI	EN55022	Class A/Class B
ESD	EN61000-4-2 air \pm 8KV , Contact \pm 6KV	Perf. Criteria A
Radiated immunity	EN61000-4-3 10V/m	Perf. Criteria A
Fast transient	EN61000-4-4 ±2KV	Perf. Criteria A
Surge	EN61000-4-5 ±1KV	Perf. Criteria A
Conducted immunity	EN61000-4-6 10V/m	Perf. Criteria A

Safety Certifications

Rev.11.06.13_#1.0 ERM50 Series Page 29

The ERM50 power supply is intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application. This product is only for inclusion by professional installers within other equipment and must not be operated as a stand alone product.

Table 6. Safety Certifications for ERM50 series power supply system

Document	Description
cUL/UL 60950-1	US and Canada Requirements
IEC/EN 60950-1	European Requirements
IEC/EN 50155	Railway standard

EMI Emissions Rev.11.06.13_#1.0 ERM50 Series Page 30

EMI-Filter to meet EN 55022, class A, class B

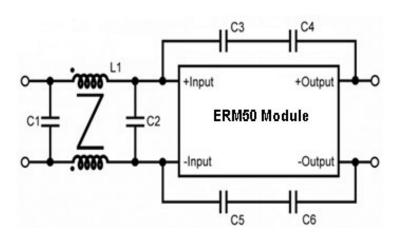


Table 7. Conducted EMI emission specifications

	Class A	Class B		
	All models	ERMXXX72	ERMXXX110	
L1	450 μ H/450 μ H	450 µ H	/450 µ H	
C1	CHEMI-CON KXG Series 68 μ F/200V	CHEMI-CON KXG Series 220 µ F/200V		
C2	None	CHEMI-CON KXG Series 220 µ F/200V		
C3	2200pF/3KV	None	3300pF/3KV	
C4	2200pF/3KV	None	3300pF/3KV	
C5	2200pF/3KV	None	None	
C6	2200pF/3KV	None	None	

Operating Temperature

Rev.11.06.13_#1.0 ERM50 Series Page 31

Table 8. Environmental Specifications:

			Ма			
Parameter	Model / Condition	Min	Without Heatsink	With Heatsink	Unit	
Operating Ambient Temperature Range Natural Convection ¹ Nominal Vin, Load 100% Inom	ERM04B72 ERM03C72 ERM03C110 ERM02H72 ERM04B110 ERM02H110 ERM10A72 ERM10A110	-40	72 72 72 68 68 68 68 63	75 75 75 71 71 71 67	°C	
	Natural Convection without Heatsink	7.5	-	-		
	Natural Convection with Heatsink	6.8	-	-	°C/W	
	100LFM Convection without Heatsink	6.1	-	-		
The war of the period on a c	100LFM Convection with Heatsink	4.1	-	-		
Thermal Impedance	200LFM Convection without Heatsink	5.3	-	-	-C/VV	
	200LFM Convection with Heatsink	3.3	-	-]	
	400LFM Convection without Heatsink	3.9	-	-]	
	400LFM Convection with Heatsink	2.2	-	-		
Operating Base-plate Temperature Range		-40	40 +105		ōC	
RFI	Six-Sided Shielded, Metal Case					
Lead Temperature (1.5mm from case for 10Sec.)		-	26	60	°С	

Note1 - The "natural convection" is about 20LFM but is not equal to still air (0 LFM).

Storage and Shipping Temperature

Rev.11.06.13_#1.0 ERM50 Series Page 32

The ERM50 series power supplies can be stored or shipped at temperatures between -50 °C to +125 °C and relative humidity from 5% to 95% non-condensing.

Humidity

The ERM50 series will operate within specifications when subjected to a relative humidity from 5% to 95% non-condensing.

MTBF and Reliability

Rev.11.06.13_#1.0 ERM50 Series Page 33

The MTBF of ERM50 series of DC/DC converters has been calculated using MIL-HDBK 217F NOTICE 2, Operating Temperature 25 °C, Ground Benign.

Model	MTBF	Unit			
ERM10A72	315,900				
ERM04B72	482,900				
ERM03C72	460,200				
ERM02H72	420,100	Hours			
ERM10A110	314,900	Hours			
ERM04B110	431,500				
ERM03C110	456,100				
ERM02H110	414,200				

Power and Control Signal Descriptions

Rev.11.06.13_#1.0 ERM50 Series Page 34

Power and Signal Pins

These pins provide power and signal interface to the ERM50 series module.

```
Pin 1
       - Vin (+)

    Input Voltage Positive

Pin 2 - Remote On/Off - ON / OFF Control
Pin 3
      - Vin (-)
                        - Input Voltage Return
Pin 4
      - Vout (-)
                        - Output Voltage Return
Pin 5 - SENSE (-)
                        - Remote Sense Return
Pin 6 - TRIM
                        - Output Voltage Trim
Pin 7
      - SENSE (+)
                        - Remote Sense Positive
Pin 8 - Vout (+)
                        - Output Voltage Positive
```

Vin (+), Vin (-) - (Pins 1, 3)

These pins are the Input Voltage Positive and Input Voltage Return pins of the module.

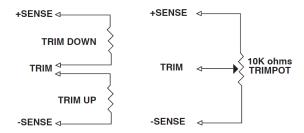
Remote On/Off - (Pin 2)

Remote On/Off pin allows the user to turn ON and OFF the output of the ERM50 series modules.

Parameter	Conditions	Conditions Min.		Max.	Unit			
Converter On	3.5V ~ 12V or Open Circuit							
Converter Off	0V ~ 1.2V or Short Circuit							
Control Input Current (on)	Vctrl = 5.0V	-	0.5	-	mA			
Control Input Current (off)	Vctrl = 0V	-	-0.5	-	mA			
Control Common	Referenced to Negative Input							
Standby Input Current	Nominal Vin	-	2.5	-	mA			

Vout (+), Vout (-) – (Pins 8, 4)

These pins are the Output Voltage Positive and Output Voltage Return pins of the module.


SENSE (+), SENSE (-) – (Pins 7, 5)

The ERM50 is equipped with a Remote Sensing capability that will compensate for voltage drop between the output pins of the module and the sensed voltage point (load). This feature is implemented by connecting the SENSE (+) (pin 7) and the SENSE (-) (pin 5) to the positive and return rails of the output, respectively, at a location that is near to the load. Care should be taken in the routing of the sense lines as any noise sources or additional filtering components introduced into the output voltage rail may affect the stability of the power supply. The ERM50 series will operate appropriately without the sense lines connected; however it is recommended that the sense lines be connected directly to the output pins if remote sensing is not required.

TRIM - (Pin 6)

Rev.11.06.13_#1.0 ERM50 Series

Output can be externally trimmed by using the method shown below. The trim up/down range is $\pm 10\%$ minimum Page 35 of the nominal output voltage

ERM10AXX Trim Table

Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Volts
Rd=	45.53	20.61	12.31	8.15	5.66	4.00	2.81	1.92	1.23	0.68	KOhms
	_	_			_	_				40	0/
Trim up	1	2	3	4	5	6	/	8	9	10	%
Vout=	Vox1.01	Vox1.02	Vox1.03	Vox1.04	Vox1.05	Vox1.06	Vox1.07	Vox1.08	Vox1.09	Vox1.10	Volts
Ru=	36.57	16.58	9.92	6.59	4.59	3.25	2.30	1.59	1.03	0.59	KOhms

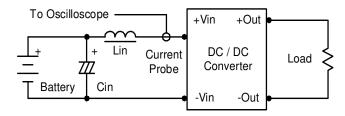
ERM04BXX Trim Table

Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Volts
Rd=	394.50	179.74	106.08	68.86	46.39	31.36	20.60	12.51	6.21	1.17	KOhms
Trim up	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox1.01	Vox1.02	Vox1.03	Vox1.04	Vox1.05	Vox1.06	Vox1.07	Vox1.08	Vox1.09	Vox1.10	Volts
Ru=	368.92	161.92	94.97	61.86	42.12	29.00	19.66	12.66	7.23	2.89	KOhms

ERM03CXX Trim Table

Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Volts
Rd=	572.67	248.63	145.60	94.97	64.87	44.92	30.72	20.10	11.86	5.28	KOhms
Trim up	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox1.01	Vox1.02	Vox1.03	Vox1.04	Vox1.05	Vox1.06	Vox1.07	Vox1.08	Vox1.09	Vox1.10	Volts
Ru=	392.98	182.12	108.73	71.43	48.85	33.71	22.86	14.69	8.33	3.23	KOhms

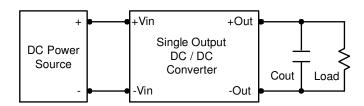
ERM02HXX Trim Table


Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Volts
Rd=	512	229.6	138.3	90.3	60.7	42.4	29.04	18.67	11.09	4.78	KOhms
										- 40	0/
Trim up	1	2	3	4	5	6	/	8	9	10	%
Vout=	Vox1.01	Vox1.02	Vox1.03	Vox1.04	Vox1.05	Vox1.06	Vox1.07	Vox1.08	Vox1.09	Vox1.10	Volts
Ru=	574	256.9	149.6	96.5	64.7	43.28	27.68	16.72	7.68	1.11	KOhms

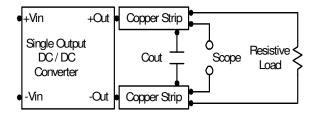
Application Notes

Rev.11.06.13_#1.0 ERM50 Series Page 36

Input Reflected-Ripple Current Test Setup


Input reflected-ripple current is measured with a inductor Lin (4.7 μ H) and Cin (220 μ F, ESR < 1.0 Ω at 100 KHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 KHz.

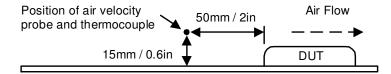
Component	Value	Reference
Lin	4.7 μ H	-
Cin	220 μ F (ESR<1.0 Ω at 100KHz)	Aluminum Electrolytic Capacitor


Output Ripple Reduction

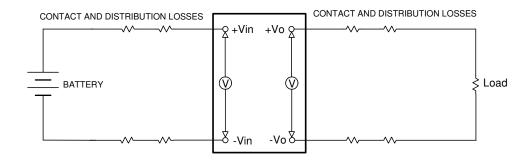
A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use $4.7 \,\mu$ F capacitors at the output.

Peak-to-Peak Output Noise Measurement Test

Use a 1 μ F ceramic capacitor and a 10 μ F tantalum capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.

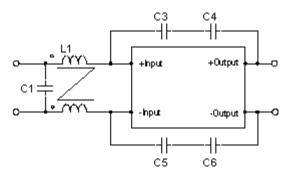


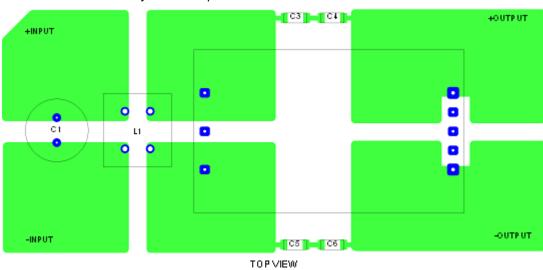
Maximum Capacitive Load


The ERM50 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in below table.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105 °C. The derating curves are determined from measurements obtained in a test setup.


Output voltage and efficiency measurement test up


Efficiency =
$$\left(\frac{V_{out} \times I_{out}}{V_{in} \times I_{in}}\right) \times 100\% = [\%]$$

EMC considerations

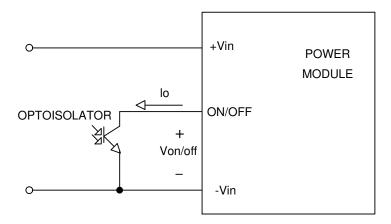
Recommended circuit to comply EN55011 Class A Limits

Recommended PCB Layout with Input Filter

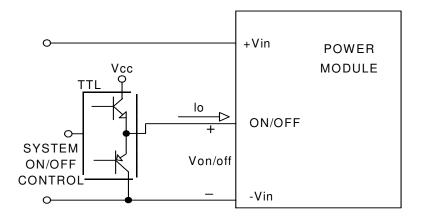
To: comply with EN55011 CLASS A following components are needed:

Model	Component	Value
	C1	CHEMI-CON KXG Series 68 μ F/200V
ERM50 Series	C3.C4.C5.C6	2200pF/3KV
	L1	450 μ H/450 μ H

Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module.

In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup.


Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a capacitor of a $3.3 \,\mu$ F for the 72V input devices and a $1 \,\mu$ F for the 110V input devices.

Remote ON/OFF Control

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 3) during a logic low is -100 μ A. The ON/OFF input signal (Von/off) that referenced to GND. If not using the remote on/off feature, please open circuit between on/off pin and -Vin pin to turn the module on. Remote ON/OFF implementation is below.

Isolated-Closure Remote ON/OFF

Americas

5810 Van Allen Way Carlsbad, CA 92008 USA

Telephone: +1 (760) 930 4600 Facsimile: +1 (760) 930 0698

Europe (UK)

Waterfront Business Park Merry Hill, Dudley West Midlands, DY5 1LX United Kingdom

Telephone: +44 (0) 1384 842 211 Facsimile: +44 (0) 1384 843 355

Asia (HK)

14/F, Lu Plaza 2 Wing Yip Street Kwun Tong, Kowloon Hong Kong

Telephone: +852 2176 3333 Facsimile: +852 2176 3888

For global contact, visit:

www.emersonnetworkpower.com

techsupport.embeddedpower @emerson.com

While every precaution has been taken to ensure accuracy and completeness in this literature, Emerson Network Power assumes no responsibility, and disclaims all liability for damages resulting from use of this information or for any errors or omissions.

Emerson Network Power.

The global leader in enabling business-critical continuity.

- AC Power
- Connectivity
- DC Power
- Embedded Computing
- Embedded Power
- Monitoring
- Outside Plant
- Power Switching & Controls
- Precision Cooling
- Racks & Integrated Cabinets
- Services
- Surge Protection

EmersonNetworkPower.Com

Emerson Network Power and the Emerson Network Power logo are trademarks and service marks of Emerson Electric Co. ©2008 Emerson Electric Co.